TABLE OF CONTENTS

Structural Aluminides for Elevated Temperature Applications: Gamma Titanium and Other Metallic Aluminides

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Editors</td>
<td>xv</td>
</tr>
<tr>
<td>Gamma Titanium Aluminides</td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>Gamma TiAl Applications at GE Aviation</td>
<td>5</td>
</tr>
<tr>
<td>M. Weimer, and T. Kelly</td>
<td></td>
</tr>
<tr>
<td>Current Status of Mass Production of Gamma Titanium Aluminide Alloy</td>
<td>7</td>
</tr>
<tr>
<td>Challenges Turbine Rotors in Turbochargers and Future</td>
<td></td>
</tr>
<tr>
<td>T. Noda</td>
<td></td>
</tr>
<tr>
<td>Refractory Crucible Melting and Related Mechanical Properties of Nb-</td>
<td>9</td>
</tr>
<tr>
<td>Containing TiAl Alloys</td>
<td></td>
</tr>
<tr>
<td>A. Dlouhy, K. Docekalova, T. Bartak, I. Dlouhy, and L. Zemcik</td>
<td></td>
</tr>
<tr>
<td>The Development of a Tranquil Tilt Pouring Process for</td>
<td>15</td>
</tr>
<tr>
<td>Casting Titanium Aluminides</td>
<td></td>
</tr>
<tr>
<td>R. Harding, M. Wickins, H. Wang, G. Djambazov, and K. Pericleous</td>
<td></td>
</tr>
<tr>
<td>Refractories as Mould Face Coatings for Investment Casting</td>
<td>23</td>
</tr>
<tr>
<td>TiAl-Based Alloys</td>
<td></td>
</tr>
<tr>
<td>Q. Jia, Y. Cui, and R. Yang</td>
<td></td>
</tr>
<tr>
<td>Development of the Cost-Affordable Titanium Aluminides</td>
<td>31</td>
</tr>
<tr>
<td>Turbo-Charger Rotor</td>
<td></td>
</tr>
<tr>
<td>S. Sung, M. Kim, B. Han, S. Noh, and Y. Kim</td>
<td></td>
</tr>
</tbody>
</table>
Mechanical Behavior

Durability Assessment of TiAl Alloys
S. Draper, and B. Lerch

Effect of Al Content on Microstructure/Phase Distribution and Strength/Ductility in a PM Gamma Alloy
S. Russ, C. Woodward, Y. Kim, and F. Yolton

Influence of Impact on the Mechanical Behaviour of a Cast and a Forged Gamma Based TiAl Alloy
S. Gebhard, P. Peters, D. Roth-Fagaraseanu, and H. Voggenreiter

Strengthening of Lamellar TiAl Alloys by Precipitation of Beta Phase during Long-Term Creep
H. Zhu, D. Seo, and K. Maruyama

Effect of Heat Treatment on Microstructures and Properties of Y Bearing TiAl Alloy
Y. Chen, F. Kong, F. Yang, B. Li, S. Xiao, and Z. Liu

An Electron Microscope Study of Low-Cycle Fatigue in a High Niobium Containing and Precipitation Hardened TiAl Alloy
F. Appel, T. Heckel, and H. Christ

Fracture Toughness of TiAl Alloys: A Comparison of Two γ/a2 Structures
N. Barbi, F. Diologent, R. Goodall, and A. Mortensen

Tensile Impact Behavior of Duplex Ti-46.5Al-2Nb-2Cr at Elevated Temperatures
X. Zan, Z. Duan, Y. Wang, Y. Xia, and Y. He

Axial-Torsional Thermo-Mechanical Fatigue of Ti-45Al-5Nb-0.2B-0.2C
S. Brookes, H. Kühn, B. Skrotzki, H. Klingelhöffer, R. Sievert, J. Pfetzing, D. Peter, and G. Eggeler

Surface Strengthening for Enhanced Fatigue Performance of Gamma Titanium Aluminides
M. Glavatskikh, J. Lindemann, C. Leyens, M. Oehring, and F. Appel
Deformation of TiAl by the Formation of L11 Pseudo-Twin

D. Xu, H. Wang, Y. Li, and R. Yang

Processing and Microstructures

Modulated Microstructures - A Novel Approach for the Design of TiAl Alloys

F. Appel, J. Paul, and M. Oehring

In-Situ Characterization of Phase Transformations and Microstructure Evolution in a γ-TiAl Based Alloy

K. Liss, A. Bartels, H. Clemens, A. Stark, T. Buslaps, D. Phelan, and L. Yeoh

Thermal- and Stress-Induced Formation of Ordered γ-Phase in Nb-Rich γ-TiAl Based Alloys

A. Stark, A. Bartels, Schimansky, R. Gerling, and H. Clemens

A Numerical Model for the Description of the Lamellar and Massive Phase Transformations in Ti-Alpha Alloys

A. Rostamian, and A. Jacot

Microstructure and Compressive Property in Aluminum-Titanium-Vanadium Ternary Alloys with Phase Constitutions Containing γ-Intermetallics and β Phase

T. Takahashi, N. Liu, and T. Nunome

On the Influence of Nb and C on the Phase Transition Temperatures in γ-TiAl Based Alloys

Processing and Properties of Gamma TiAl Sheet from Atomized Power

L. Xu, C. Bai, D. Liu, W. Sun, D. Yu, Y. Cui, and R. Yang

Solidification of Nb-Rich TiAl-Based Alloys: Grain Refinement by Boron Additions and the Role of Peritectic Growth

U. Hecht, V. Witusiewicz, A. Drevermann, and J. Zollinger
Texture Formation in High-Nb Containing γ-TiAl Alloys during Hot Rolling ... 197
A. Stark, A. Bartels, D. Gosslar, F. Schimansky, R. Gerling, and H. Clemens

Diffusion Bonding between TiAl and Ti2AlNb ... 205
J. Zou, Y. Cui, and R. Yang

New Class of Gamma Alloys

Development of Beta Gamma Alloys: Opening Robust Processing and Greater Application Potential for TiAl-Base Alloys .. 215
Y. Kim, S. Kim, D. Dimiduk, and C. Woodward

A β-Stabilized γ-TiAl Based Alloy for Improved Processing Performance .. 217

Phase Transformations Studies of TiAl-Based Alloys Solidifying Through the β Phase ... 229
M. Thomas

Development of Multiphase β-Solidifying γ-TiAl Alloys with Enhanced Mechanical Properties ... 239
R. Imayev, V. Imayev, T. Khismatullin, and T. Oleneva

Microstructure and Corresponding Tensile Properties of AS-Cast, b-Solidifying, γ-TiAl Based TNM Alloys ... 249

Effect of Small Boron and Carbon Additions on the Mechanical Properties of a Novel High Niobium-Containing Gamma Titanium Aluminide Alloy ... 257
J. Lindemann, M. Glavatskikh, C. Leyens, and D. Roth-Fagaraseanu

Forging of β-Phase Containing γ-TiAl Alloys ... 265
J. Zhang, M. Becker, F. Appel, C. Leyens, and B. Viehweger
Environmental Effects and Protection

Early Oxidation Behavior of Ti50Al and Ti45Al8Nb Alloys............................275
 L. Zhao, J. Lin, G. Chen, and Y. Wang

Oxidation Behavior of the γ-TiAl Based Alloy Ti-45Al-8Nb
 Coated with TiAlYN and CrAlYN Thin Films...289
 R. Braun, D. Müßener, M. Moser, F. Rovere, P. Mayrhofer,
 and C. Leyens

Oxidation Behavior of Beta Gamma TiAl Alloys ..297
 M. Yoshihara, and Y. Kim

Influence of Oxidation Protective Coatings on the Ductility of
a γ'-TiAl Based Alloy ..305
 M. Moser, P. Mayrhofer, and H. Clemens

Oxidation Characteristics of γ'-TiAl-8Nb Coated with a
CrAlYN/CrN Nanoscale Multilayer Coating..315
 I. Ross, W. Rainforth, Z. Zhou, J. Walker, C. Reinhard,
 A. Ehiasarian, P. Hovsepian, R. Braun, and C. Leyens

The Fluorine Effect for High Temperature Oxidation
Protection of TiAl-Alloys for Automotive and Aero-Engine
Applications..323
 A. Donchev, A. Kolitsch, W. Möller, M. Schütze, and R. Yankov

Ti-Al-Cr-X Coatings for High Temperature Oxidation
Protection of Gamma Titanium Aluminides..333
 M. Fröhlich, R. Braun, and C. Leyens

Environmental Protection of γ-TiAl Alloys Coated with
CrAlYN/CrN Nanoscale Multilayer Coatings and EB-PVD
Thermal Barrier Coatings ...341
 R. Braun, D. Müßener, C. Leyens, P. Hovsepian, C. Reinhard,
 and A. Ehiasarian

Multiple F-Implantation for Improved Oxidation Protection of
Gamma-TiAL Alloy ...349
 H. Zschau, and M. Schütze

Author Index ...407

Subject Index ..411
TABLE OF CONTENTS

Structural Aluminides for Elevated Temperature Applications: Gamma Titanium and Other Metallic Aluminides

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Editors</td>
<td>xv</td>
</tr>
</tbody>
</table>

Non-TiAl Aluminides

Fe Aluminides

The Role of Stable Nanoparticles on Improving the Creep Resistance of Iron Aluminides

D. Morris, M. Muñoz-Morris, and I. Gutierrez-Urrutia

Fatigue Crack Growth Resistance of a Fe-40Al Alloy Prepared by Mechanical Alloying and Forging

G. Hénaff, G. Benoît, Y. Girard, and S. Launois

Anisotropic Properties of Interfaces in Fe-Al

V. Paidar, J. Kopecek, and P. Lejcek

The Development of High Specific Strength Fe3Al-Based Wrought Alloys

S. Kobayashi, A. Takei, and T. Takasugi

Other Aluminides

From Nanometric Ni/Al Multilayers to Intermetallic Thin Films

M. Vieira, J. Noro, and A. Ramos

Effects of Ru Additions on Phase Equilibria, Microstructures, and Mechanical Properties of E21 Co3AlC1-x Based Alloys

Y. Uotani, Y. Kimura, and Y. Mishima