

# SUPERALLOYS





| PROCESS                            | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VIDEO                                                                                            | SELECTED RESOURCE                                                                                                                                                                                                                                                                                                                                      | WEBLINK                                |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Gas Tungsten Arc Welding<br>(GTAW) | "Gas tungsten arc welding (GTAW), also known as<br>tungsten inert gas (TIG) welding, is an arc welding<br>process that uses a nonconsumable tungsten<br>electrode to produce the weld. The weld area is<br>protected from atmospheric contamination by a<br>shielding gas (usually an inert gas such as argon),<br>and a filler metal is normally used, though some<br>welds, known as autogenous welds, do not require<br>it. A constant-current welding power supply<br>produces energy which is conducted across the<br>arc through a column of highly ionized gas and<br>metal vapors known as a plasma." [from<br>Wikipedia] | "Tungsten Inert Gas<br>Welding", Georgia<br>Tech/Control Vision Inc.,<br>Copyright 1999.         | M.B. Henderson, D. Arrell, M. Heobel, R.<br>Larsson, and G. Marchant. "Nickel-Based<br>Superalloy Welding Practices for Industrial Gas<br>Turbine Applications." International<br>Conference on Microstructure and<br>Performance of Joints in High-Temperature<br>Alloys." Institute of Materials, Mining and<br>Materials. London. 20 November 2002. | <u>Read the Full</u><br><u>Article</u> |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  | S.S. Babu, S.A. David, J.W. Park, and J.M.<br>Vitek. "Joining of Nickel-Base Superalloy<br>Single Crystals." International Conference on<br>Microstructure and Performance of Joints in<br>High-Temperature Alloys." Institute of<br>Materials, Mining and Materials. London. 20                                                                       | <u>Read the Full</u><br><u>Article</u> |
| Gas Metal Arc Welding<br>(GMAW)    | "Gas metal arc welding (GMAW), sometimes<br>referred to by its subtypes, metal inert gas (MIG)<br>welding or metal active gas (MAG) welding, is a<br>semi-automatic or automatic arc welding process<br>in which a continuous and consumable wire<br>electrode and a shielding gas are fed through a<br>welding gun. A constant voltage, direct current<br>power source is most commonly used with GMAW,<br>but constant current systems, as well as<br>alternating current, can be used." [from Wikipedia]                                                                                                                       | Dr. Richard Dolby, "The<br>Arc Welding Process",<br>video, University of<br>Cambridge/TWI, 2002. |                                                                                                                                                                                                                                                                                                                                                        |                                        |









| PROCESS                        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VIDEO                                                                                       | SELECTED RESOURCE                                                                                                                                                                                                                                                                                                                                      | WEBLINK                                |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Electron Beam Welding<br>(EBW) | "Electron beam welding (EBW) is a fusion welding<br>process in which a beam of high-velocity electrons<br>is applied to the materials being joined. The<br>workpieces melt as the kinetic energy of the<br>electrons is transformed into heat upon impact,<br>and the filler metal, if used, also melts to form part<br>of the weld. Pressure is not applied, and a<br>shielding gas is not used, though the welding is<br>often done in conditions of a vacuum to prevent<br>dispersion of the electron beam." [from Wikipedia] |                                                                                             | "Process Modelling of Electron Beam Welding<br>of Aeroengine Components" R.C. Reed, H.J.<br>Stone, D. Dye, S.M. Roberts and S.G.<br>McKenzie. Superalloys 2000, Warrendale, PA:<br>TMS, 2000, p. 665-674                                                                                                                                               | Read the Full<br>Article               |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             | "The Influence of B, P and C on Heat Affected<br>Zone Micro-Fissuring in INCONEL type<br>Superalloy"[pp. 703-711]<br>S. Benhaddad, N.L. Richards, U. Prasad, H.<br>Guo and M.C. Chaturvedi. Superalloys 2000.                                                                                                                                          | Read the Full<br>Article               |
| Laser Beam Welding (LBW)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jonathan Colton, "Laser<br>Welding", Georgia<br>Tech/Control Vision Inc.,<br>Copyright 2000 | M.B. Henderson, D. Arrell, M. Heobel, R.<br>Larsson, and G. Marchant. "Nickel-Based<br>Superalloy Welding Practices for Industrial Gas<br>Turbine Applications." International<br>Conference on Microstructure and<br>Performance of Joints in High-Temperature<br>Alloys." Institute of Materials, Mining and<br>Materials. London. 20 November 2002. | <u>Read the Full</u><br><u>Article</u> |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             | S.S. Babu, S.A. David, J.W. Park, and J.M.<br>Vitek. "Joining of Nickel-Base Superalloy<br>Single Crystals." International Conference on<br>Microstructure and Performance of Joints in<br>High-Temperature Alloys." Institute of<br>Materials, Mining and Materials. London. 20<br>November 2002.                                                     | Read the Full<br>Article               |
| Post Weld Processing           | When fusion welding methods are used to join<br>precipitation hardenend superalloys, a cast<br>structure results at the interface. Therefore, heat<br>treatment is required after welding to precipitate<br>the strengthening phase.                                                                                                                                                                                                                                                                                             |                                                                                             | A.E. Kolman. "Improving Properties of Single<br>Crystal to Polycrystalline Cast Alloy Welds<br>through Heat Treatment." Superalloys 2000,<br>Warrendale, PA: TMS, 2000, p. 721-726.                                                                                                                                                                    | Read the Full<br>Article               |



### SUPERALLOYS





| PROCESS           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VIDEO   | SELECTED RESOURCE                                                                                                                         | WEBLINK             |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Diffusion Bonding | "Diffusion bonding, as a subdivision of both solid<br>state welding and liquid-phase welding, is a joini<br>process wherein the principal mechanism is<br>interdiffusion of atoms across the interface.<br>Diffusion bonding of most metals is conducted ir<br>vacuum or in an inert atmosphere (normally dry<br>nitrogen, argon or helium) in order to reduce<br>detrimental oxidation of the faying surfaces.<br>Bonding of a few metals which have oxide films<br>that are thermodynamically unstable at the bond<br>temperature (e.g. silver) may be achieved in air.<br>from Amir Shirzadi. University of Cambridge<br>Website, www.msm.cam.ac.uk/phase-<br>trans/2005/Amir/bond.html | ng<br>i | A.A. Shirzadi and E. R. Wallach. "New<br>to Diffusion Bond Superalloys." Scienc<br>Technology of Welding and Joining, 20<br>9 no. 1 p. 37 | ce & <u>Article</u> |

**Friction Welding** 

"Friction Welding (FW) is a group of solid-state welding processes using heat generated through mechanical friction between a moving workpiece, with the addition of an upsetting force to plastically displace the material. Technically, because no melt occurs, friction welding is not actually a welding process in the traditional definition, but a forging technique. However, due to the similarities between these techniques and traditional welding, the term has become common." [from Wikipedia]

"Friction Welding Demo", Manufacturing Technology,

"Friction Welding", TWI World Center for Materials Joining Technology.



#### SUPERALLOYS





| DDOCESS                           | DECODIDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | VIDEO       |                                                                                                                                                                                                                                                                                                                       |                          |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| PROCESS                           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VIDEO       | SELECTED RESOURCE                                                                                                                                                                                                                                                                                                     | WEBLINK                  |
| Inertia Friction Welding          | "Inertia Friction Welding is a variation of friction<br>welding in which the energy required to make the<br>weld is supplied primarily by the stored rotational<br>kinetic energy of the welding machine. In Inertia<br>Welding, one of the work pieces is connected to a<br>flywheel and the other is restrained from rotating.<br>The flywheel is accelerated to a predetermined<br>rotational speed, storing the required energy. The<br>drive motor is disengaged and the work pieces ar<br>forced together by the friction welding force. This<br>causes the faying surfaces to rub together under<br>pressure. The kinetic energy stored in the rotating<br>flywheel is dissipated as heat through friction at th<br>weld interface as the flywheel speed decreases.<br>An increase in friction welding force (forge force)<br>may be applied before rotation stops. The forge<br>force is maintained for a predetermined time after<br>rotation ceases." [from Manufacturing Technology] | e<br>e<br>l | G. Baxter, M. Preuss and P. J. Withers.<br>"Inertia Friction Welding of Nickel Base<br>Superalloys for Aerospace Applications. "<br>International Conference on Microstructure and<br>Performance of Joints in High-Temperature<br>Alloys. Institute of Materials, Mining and<br>Materials. London. 20 November 2002. |                          |
| Transient Liquid Phase<br>Bonding | "The TLP process produces a strong, interface-<br>free joint with no remnant of the bonding agent. It<br>differs from diffusion bonding in that the formation<br>of a thin liquid layer eliminates the need for a high<br>bonding or clamping force. The interlayer can be<br>provided by foils, electroplate, sputter coats, or ar<br>other process that deposits a thin film on the fayin<br>surfaces." [from W. D. McDonald and T. W.<br>Eagar. Annu. Rev. Mater. Sci. 22:23-46. Annual<br>Reviews Inc. 1992]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g           | W. D. McDonald and T. W. Eagar, "Transient<br>Liquid Phase Bonding". Annu. Rev. Mater. Sci.<br>22:23-46. Annual Reviews Inc. 1992.                                                                                                                                                                                    | Read the Full<br>Article |

Y. Zheng and K. Tangri. "Microstructure and Bonding Behavior of a New Zr-Bearing Interlayer Alloy for Single Crystal Nickel-Base Superalloy." Superalloys 1992, Warrendale, PA: TMS, 1992, p. 857-866

Read the Full Article

Y. Nakao, K. Nichimoto, K. Shinozaki and C. <u>Read the Full Article</u> Kang. "Theoretical Research on Transient Liquid Insert Metal Diffusion Bonding of Nickel Base Alloys." Superalloys 1988, Warrendale, PA: TMS, 1988, p. 775-784



# SUPERALLOYS





| PROCESS | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VIDEO                                                                                                                                 | SELECTED RESOURCE                                                                                                                                             | WEBLINK                  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Brazing | "Brazing is a joining process whereby a non-<br>ferrous filler metal or alloy is heated to melting<br>temperature (above 450°C; 842°F) and distributed<br>between two or more close-fitting parts by capillary<br>action. At its liquid temperature, the molten filler<br>metal and flux interacts with a thin layer of the<br>base metal, cooling to form an exceptionally<br>strong, sealed joint due to grain structure<br>interaction. The brazed joint becomes a sandwich<br>of different layers, each metallurgically linked to the<br>adjacent layers. Common brazements are about<br>1/3 as strong as the materials they join because<br>the metals partially dissolve each other at the<br>interface and usually the grain structure and joint<br>alloy is uncontrolled. To create high-strength<br>brazes, sometimes a brazement can be annealed,<br>or cooled at a controlled rate, so that the joint's<br>grain structure and alloying is controlled. It is also<br>at 1/3 strength because the metal used to braze is<br>usually weaker than the other metal because it is | e                                                                                                                                     | Improving Repair Quality of Turbine Nozzles<br>Using SA650 Braze Alloy, W.A. Demo, S.<br>Ferrigno, D. Budinger and E. Huron.<br>Superalloys 2000, pp. 713-720 | Read the Full<br>Article |
|         | usuaiv weaker man die omer metal because ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Brazing of Nickel<br>Superalloys. R.<br>Broomfield. "International<br>Conference on<br>Microstructure and<br>Performance of Joints in | Introduction to Furnace Brazing. Allentown, PA<br>Air Products and Chemicals, Inc, 2001.                                                                      | : <u>Read Pamphlet</u>   |

High-Temperature Alloys." Institute of Materials, Mining and Materials. London. 20 November 2002. (Presentation)



# SUPERALLOYS





| PROCESS                  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                              | VIDEO | SELECTED RESOURCE                                                                                                                                                                                                                                           | WEBLINK                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Repair (various methods) | Repair is a general term intended to encompass<br>many actions aimed at putting a superalloy<br>component back into service. Actions may include<br>hot isostatic pressing to heal creep cavitation, use<br>of joining techniques to close cracks, machining to<br>remove damage or corrosion attack, recoating and<br>others. [from M. J. Donachie and S. J. Donachie.<br>Superalloys: A Technical Guide. 2nd Edition.<br>Materials Park, OH: ASM International, 2002.] |       | Gandy, D.W., G. Frederick, J.T. Stover, and R.<br>Viswanathan. "Overview of Hot Section<br>Component Repair Methods." ASM<br>International Materials Solutions Conference<br>2000 Gas Turbine Materials Technology<br>Session. St. Louis, MO. October 2000. | Read the Full<br>Article |
| Hot Isostatic Pressing   | Cavities which form during creep deformation may<br>be healed by hot isostatic processing. Elevated<br>temperature and pressure are simultaneously<br>applied in an autoclave under an inert gas.                                                                                                                                                                                                                                                                        |       | Rejuvenation of Service-Exposed in 738<br>Turbine Blades. A.K. Koul, J P. Immarigeon,<br>R. Castillo, P. Lowden and J. Liburdi.<br>Superalloys 1988, Warrendale, PA: TMS,<br>1988, p. 755-764.                                                              | Read the Full<br>Article |
| Re-coating               | When environmental conditions have degraded coatings, they must be removed and re-applied.                                                                                                                                                                                                                                                                                                                                                                               |       | T. Sourmail. "Coatings for High Temperature Applications". University of Cambridge.                                                                                                                                                                         | Launch Site              |