MATERIALS INFORMATICS: An Introduction

Krishna Rajan
Director:
NSF International Materials Institute:
Combinatorial Sciences and Materials Informatics Collaboratory
(CoSMIC-IMI)
Iowa State University
1. What is “materials informatics”?

2. Why do we need informatics for materials science and engineering?

3. What experimental and computational resources and tools are needed to enable materials informatics?
 - Data generation / combinatorial experiments / high throughput experimentation / reference libraries and databases
 - Data warehousing
 - Dimensionality reduction
 - Clustering analysis
 - Predictive modeling techniques
 - Visualization techniques
 - Cyber infrastructure
DATA DRIVEN MATERIALS SCIENCE

\[
\text{Data} + \text{Correlations} + \text{Theory} = \text{Knowledge Discovery}
\]

- Combinatorial experimentation
- Digital libraries & data bases

- Data mining
- Dimensionality reduction

- Atomistic based calculations
- Continuum based theories

- Materials discovery
- Structure-property-processing relationships
- Hidden data trends

Information is multivariate, diverse, can be very large and access/expertise is globally distributed

Krishna Rajan
WHY MATERIALS INFORMATICS?

Potential of informatics:

• Management of informational complexity
• Accelerated discovery
• Identifying new pathways
• Building new learning communities through cyber-infrastructure

Realizing the potential:

• Data mining and statistical learning
• Cyber infrastructure
• Research platforms
• Impact on education – new paradigm for materials education
THE INFORMATICS CYCLE

Portal Technology

Atom probe, TEM & Spectroscopy

Databases

Data mining

Crystallography & Microstructure

Visualization

Krishna Rajan

IOWA STATE UNIVERSITY
College of Engineering
SOURCES OF DATA: diversity of databases

Reference libraries
- crystallographic
- thermodynamic
- properties
- handbooks

Literature data
- dispersed
- books/reviews

Experiments
- systematic data collection – slow
- combinatorial experiments – high throughput
- in-situ / dynamic experiments – time series data
REFERENCE LIBRARIES

- Crystallographic –
 - hierarchical database- group theory driven

- Thermodynamic –
 - primary database- ie. Heat capacities – thermochemical data
 - derivative database- free energy data...computational phase diagrams

- Property databases ...
 - meta database...building on primary and derived data but organized phenomenologically...eg. strength ..UTS / % RA / .2% off set yieldfoundations for “handbooks”
DATA STORAGE

- Database administration & management
 - thermodynamic, crystallographic & property databases
 - combinatorial experimental data

DATA CURATION

- Oracle, Unix, Supercomputing, SQL
 - taxonomy and ontology of materials science data
 - data sharing, networking/cyber infrastructure

DATA REPRESENTATION

- JAVA, HTML, Python
 - object oriented programming language
 - visualization of high dimensional data

KNOWLEDGE DISCOVERY

- Data mining algorithms
 - Clustering analysis
 - Quantitative Structure-Activity Relationships (QSAR) for materials design

Krishna Rajan

Iowa State University
College of Engineering
DATA MINING and KNOWLEDGE DISCOVERY

Reducing the dimensionality of data offers:
- Identify the strongest patterns in the data
- Capture most of the variability of the data by a small fraction of the total set of dimensions
- Eliminate much of the noise in the data making it beneficial for both data mining and other data analysis algorithms
- Data generation
 - Size and diversity
 - Combinatorial experiments
- Data storage and organization
 - Large data sets and computer memory
- Data query
 - Linking computer language to scientific theory and paradigms
- Data transfer and sharing
 - Cyber infrastructure
- Seeking correlations among diverse data sets
 - Curse of dimensionality
- Mining the data
 - Developing classification and predictions- QSAR
- Interpretation
 - Linking theory to data mining /
- Defining information space
 - Defining criticality and nature of descriptors
Functionality = \(F (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, \ldots) \)

Issues:

- how many variables?
- which variables are important?
- classify behavior among variables
- making quantitative predictions ...relate functionality to variables ...
 - traditionally we describe them by empirical equations:
 - Quantitative Structure Activity Relationships (QSARs) are derived from data mining techniques not assuming a priori which physics is the most important

Need to build database with these variables
COMPUTATIONAL ISSUES

Data can come across length and time scales

Seek DIVERSITY in datasets

Focus on properties of signal / macroscopic behavior rather than noise/ error. Assume complexity !!!

Utilize data dimensionality reduction techniques
Analyze variation and correlation in data
Establish correlations across diverse data sets (ie. length & time scales)
Identify outliers: explore cause
Develop predictive models
 - Target requirements of missing data
 - Quantitatively assess data diversity

Model relationships in data to seek heuristic relationships:

Advanced statistical learning tools can deal with:
- skewed data
- missing data
- differentiate between local and global minima
- ultra large scale datasets
- variable uncertainty
 - Singular value decomposition
 - Cluster analysis
 - Partial least squares
 - Support vector machines
 - Association mining
 - Fuzzy clustering

Establish multivariate database:

- Singular value decomposition
- Cluster analysis
- Partial least squares
- Support vector machines
- Association mining
- Fuzzy clustering
Why couple computational materials science & informatics?

- Accelerated insertion of materials into engineering systems
- Rapid multiscale design and optimization of materials properties
- Establishment of new structure–property correlations among large, heterogeneous and distributed data sets
- Discovery of new chemistries and compounds
- Formulation and/or refinement of new theories for materials behavior
- Rapid identification of critical data and theoretical needs for future problems