Friendship Village Lifelong Learning Series January 18, 2007

Nuclear Renaissance: The Resurgence of Nuclear Energy

Larry Foulke, PhD, PE

Past-President, American Nuclear Society Director, Nuclear Programs, University of Pittsburgh Chief Scientist Emeritus, Bettis Laboratory

World View of Nuclear Energy

World View of Nuclear Energy

- 440 nuclear power plants
- 16% of world's electricity
- Displaces 2.5 billion metric tons of CO₂/year

Substantial New GW (gigawatt = 1 million kilowatts) Targets

	Country	Operating (GW)	Under Construction (GW)	Target (GW)
* .	China	7	2.0	36 by 2020
۲	India	3	4	24 by 2020
	Japan	45	3.2	15 on order or planned by 2015
	Russia	22	1.9	15-25 additional by 2020
	South Korea	16	8.8	10 additional by 2015

Plants and Capacity Factors

		Number	% CF	% of Total Generation
	United States	103	92	20
	France	59	88	78
	Japan	52	70	34
	Russia	30	68	17
*	Canada	21	64	13
	South Korea	19	92	40
*1	China	9	79	2
*	Taiwan	6	88	22
۲	Mexico	2	79	5

World View

- Global electricity demand to increase 50% by 2025
 - 1.6%/yr for industrial world
 - 3.6%/yr for developing world

Environment

Nuclear

 Limits greenhouse gas emissions

Global Average Temperature

Global Emissions and Atmospheric Concentration of CO₂

Cause of Disruption

- Emissions from CO₂ from fossil fuel
- Fossil fuel
 - 80% of world's energy
 - 80% of new capacity brought on line in 2003

Environment

2 x CO₂ of Existing Levels

4 x CO₂ of Existing Levels

2030

Temperature Rise

U.S. View

U.S. View of Nuclear Energy

Quick facts

104 nuclear plants
20% of the nation's electricity

- Displaces 680 million metric tons of CO₂/yr
- Equivalent to 131 million passenger cars/yr

7337-12/05-10

U.S. Nuclear Drivers

- Safe
- Proven performance
- Cost effective
- Affordable
- Energy security/ energy independence
- Base load generation/ grid stability
- Emission-free

7337-12/05-11

Nuclear has best safety record

Deaths from Accidents from Generating Electricity per Billion MWe-hr

United States Nuclear Power's Proven Performance

Source: Energy Information Administration/Nuclear Regulatory Commission

7337-12/05-13

United States Cost Effective (in constant cents/kWh)

Fossil Fuel Supplies

- Western World must reduce their dependence on oil
 - Limit influence on foreign policy
 - Reduce cost to economy of oil price shocks
 - Reduce greenhouse gas emissions
 - Prepare for inevitable resource depletion
 - Husband oil for other uses
- Reducing oil use is not a solution to terrorism but it may help

Consolidation of Nuclear Ownership

7337-12/05-16

Top U.S. Nuclear Owners

Company	Total Nameplate Capacity (MW)	Recent Acquisitions (MW)	Percent of U.S. Total
Exelon Corp.	15,557	2,329	16
Entergy Corp.	9,010	3,998	9
Tennessee Valley Authority	6,695	—	7
Dominion Resources, Inc.	5,175	2,576	5
Duke Energy Corp.	5,020	—	5
FPL Group, Inc.	3,962	1,581	4
FirstEnergy Corp.	3,760	—	4
Constellation Energy Group, Inc.	3,748	2,045	4
Southern Co.	3,598	—	4
Progress Energy, Inc.	3,597	—	4
All others	39,090	—	39
Total	99,210	12,529	100

Utility Stock Performance

Indexed Stock Price Performance

Financial Repercussions of Nuclear Announcements

Company	Stock Price before announcement	Stock Price at close on Dec 5, 2006	% Change
Constellation Energy Group, Inc.	\$53.85 (10/26/05)	\$70.10	30
Duke Energy Corp.	\$27.45 (2/15/05)	\$32.69	19
Entergy Corp.	\$72.25 (9/21/05)	\$91.95	27
Exelon Corp.	\$61.30 (9/28/06)	\$62.43	2
FPL Group, Inc.	\$40.14 (3/31/06)	\$53.90	34
NRG Energy	\$47.13 (6/20/06)	\$58.63	24
Pinnacle West	\$40.12 (5/17/06)	\$50.00	25
Progress Energy, Inc.	\$43.06 (8/26/05)	\$48.70	13
SCANA	\$41.73 (8/23/05)	\$41.91	0.4
Southern Co.	\$33.04 (5/11/05)	\$36.71	11
TXU	\$65.00 (8/30/06)	\$57.80	-11
Average			16

U.S. Energy Demand

America Is Projected to Need 50% More Electricity by 2025

Source: U.S. Department of Energy

United States vs. Global Nuclear Capacity Additions 1960-2008

Capacity Brought on Line by Fuel Type (1950-2002)

337-12/05-22

Source: RDI PowerDat database. Last updated 9/15/03.

Reactor Technologies

Gen III⁺

Gen IV

Today's Designs

F337-12/05-23

Today's New Design—Generation III⁺

Advanced Light Water Reactors (ALWRs)

- Simplified design
- Passive or redundant systems to enhance safety
- Standardized designs based on modularization producing shorter construction schedules
- Enhanced resistance to proliferation

Today's New Design—*Generation III⁺ ALWR*

■ General Electric → ESBWR

■ TOSHIBA/
 Westinghouse → AP 1000

■ AREVA/ → EPR Framatome-ANP

Today's New Design—*Generation III⁺ ALWR*

Westinghouse—AP 1000 (1,148 MWe)

- Passive safety systems permit simplification and improve safety
- Modularization reduces construction schedule
- NRC design certification provides regulatory certainty:
 - AP 600—December 1999
 - AP 1000—January 2006

Westinghouse

Status of Reactor Designs

Applications for Design Certification

	Design	Vendor	Туре	Design Certification Status
ation	ABWR	GE Nuclear	BWR	Approved
Genera	System 80+	Westinghouse	PWR	Approved
	AP-600	Westinghouse	PWR	Approved

<u>*</u>	AP-1000	Westinghouse	PWR	Certification January 2006
ation	ESBWR	GE Nuclear	BWR	Application—August 2005 Certification—2008
Genera	EPR	Framatome ANP	PWR	Application—August 2007 Certification—June 2010

Future Designs—Generation IV - ARS

Technology (VHTR)

- Top priority Next Generation Nuclear Plant
 - High temperature
 - Passive safety
 - Improved economics
 - Demonstrates hydrogen production
 - High efficiency direct-cycle electricity production
 - Nonproliferation
- Technology suppliers

 - AREVA/Framatome → ANTARES

PBMR (Pty) Ltd.
 Pebble Bed Modular Reactor (PBMR)

The Energy Policy Act of 2005

Nuclear

New Plant Construction

- Loan guarantees
- Risk assurance
- Production tax credit
- Price-Anderson
- Decommissioning funds

R&D

- Next generation nuclear plant
- Nuclear hydrogen production
- Advanced fuel cycle initiative
- Nuclear engineering program
- Medical isotopes

7337-12/05-30

New Plant Construction Key Provisions

Loan guarantees	80% of project cost	Higher leverageLower debt cost
Production tax credit	\$18/MW hr	 Through 2021 \$125M/1000 MW per year 6,000 MW eligible IRS rule making: February 2006
Risk assurance	Delay protection	 \$500M for 1st 2 plants \$250M for next 4 plants Final rules: August 2006
Price-Anderson	Nuclear liability insurance	Reauthorization for 20 years
Decommissioning funds	Updates for treatment	 Allows companies to establish funds and make contributions Allows transfer of nonqualified funds to qualified funds

The Licensing Process

Old Process Two-step licensing process (10 CFR 50)

Opportunity for intervention, hearings, and delay

15 Years

New Process Combined licensing process (10 CFR 52)

New U.S. Licensing Process

Early Site Permit (ESP)

Design Certification

Combined Construction and Operating License (COL)

Early Site Permits

- Site approval obtained before a utility decides to build a new plant
- Utility "banks" site up to 20 years
- Decision made, design chosen later
- Reduces risk to a utility

Design Certification

Provides NRC's advanced approval of a reactor design

Lengthy delays avoided before site preparation and construction begins

Combined Construction and Operating License

- One license for building and operating a new nuclear power plant
- Early focus of public comment
- Intended to provide greater regulatory certainty

Timeline to New Nuclear Construction

Best-Case Scenario

U.S. Path Forward

Evidence of U.S. Nuclear Revival

Energy Policy Act of 2005

Supports nuclear energy as a major component of national energy policy

Nuclear Power 2010 program

Cost sharing initiative between industry and government for new deployment

Utilities

Congress

DOE

Several utilities developing ESPs and COL applications for new reactors

Evidence of U.S. Nuclear Revival

- Browns Ferry #1 restart
 - Tennessee Valley Authority
 - 1,280 MWe
 - Applied for 20-year license renewal
 - 100% power June 2007
 - on budget

Evidence of U.S. Nuclear Revival— *License Renewals*

Evidence of U.S. Nuclear Revival

Increasing Public Support

Source: Bisconti Research Inc.

A handful of utility companies have expressed interest in building new nuclear power plants. But none have made a firm commitment yet, and industry experts doubt that more than a few of the 27 possible new reactors identified by the Nuclear Regulatory Commission will be built anytime soon. At least initially, any new reactors are expected to be added to existing nuclear power sites.

U.S. Nuclear Industry—First Movers

Existing or Expected ESP / COL Applications in the U.S.

Reactor Type	Number
AP1000 (Westinghouse)	11
EPR (AREVA)	5
ABWR & ESBWR (GE)	7
TBA	10
Total	33

Source: Nuclear News, January, 2007

Challenges

- **1.** Financial markets
- **2.** Continued Safe Operation
- **3.** Lack of agility (construction time, licensing risk)
- 4. Infrastructure (workforce, lack of momentum, equipment suppliers)
- **5.** Waste / transport
- 6. Safety culture tuning and the never-ending challenges (DB, TEPCO, Tokaimura)
- 7. Public perceptions (safety, security, terrorism, proliferation)

Current Top Issues

- **1.** Accelerating the opening of Yucca Mountain.
- 2. Creating interim storage sites for spent commercial nuclear fuel.
- 3. Accelerating R&D and construction funding of prototype advanced reactors.
- **4.** Testing the new licensing procedure.
- 5. Committing to deployment of a closed fuel cycle, as outlined in the administration's GNEP proposal.
- 6. Expanding federal funding to train the next generation nuclear workforce.
- 7. Rebuilding the nation's infrastructure to manufacture large reactor components.

Questions?

