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Abstract 

Freckle formation is a long time investigated but in its high 
complexity still not completely understood phenomenon. Some 
new aspects of this phenomenon especially concerning freckle 
formation inside single crystal castings and the simulation of 
freckling are alighted. A simple and near process criterion for 
the prediction of freckle threatened areas in single crystal com- 
ponents has been developed. The investigations reveal that there 
are still a lot of open questions concerning where freckle 
formation exactly takes place. Nevertheless the results presented 
offer new starting points concerning solutions and may inspire to 
intensify the research activities on this interesting phenomenon. 

Introduction 

Freckles are presently one of the main defects encountered in 
advanced directional solidification (DS) and single crystal (SC) 
casting technology of superalloys. They appear as long chains of 
equiaxed grains preferentially at the component’s surface. A 
reasonable explanation of freckle formation is thermosolutal 
convection driven by a density inversion in the mushy zone. 
This is caused by alloy specific segregations, which is indicated 
by a noticeable shit? of the freckles grain composition towards 
the alloy’s eutectic composition. The convection evolution is 
influenced by the component geometry as well as by alloy com- 
position and primary process parameters as temperature gradient 
G and solidification velocity Y [l-3]. Today the most complete 
criterion available seems to be the Rayleigh criterion. It com- 
bines the influences of alloy composition and process parameters 
but does not take into account component geometry. 

Sarazin and Hellawell [4] suggested to characterize fluid flow 
associated with freckle formation by using the Rayleigh number 
as follows: 

Freckling when: 
kT% 

RU = - 
74 

> Ra* 

h4 

where the parameter h is a characteristic linear dimension of the 
system linked to the dendritic array in the mushy zone [3,4]: 

h4 = /II4 or h4 = Kl,2. 

Auburtin et al. [5] investigated the influence of the growth front 
angle on the freckle formation and modified the Rayleigh crite- 
rion. However this highly sophisticated criterion requires enor- 
mous efforts in measuring alloy specific thermophysical and 
thermochemical data. 

In order to predict freckle threatened areas in complicated DS- 
or SC-components it is necessary to develop a criterion, which 
takes into account process parameters as well as geometrical 
effects but does not depend on the complete knowledge of al- 
loys’ chemistry. 

Such an accurate criterion enables the production of specific 
freckle tainted specimens for an investigation of their lifetime 
relevant effects on DS- and SC-components. 
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Exnerimental 

The SC casting experiments were carried out in an industrial 
sized vacuum Bridgman furnace where solidification conditions 
are the same as in those furnaces used for production of DS/SC 
parts. The chosen solidification parameters were similar to those 
normally used in the production process. Withdrawal velocities 
from v = 0.5 mrn/min up to 3.0 rnm/min and heater temperatures 
T = 1500°C were applied. A round copper chill plate of 150 mm 
diameter was used for the cyclic clusters. Ceramic molds 
(A1203/Si02 based) were manufactured by standard investment 
process. Up to 20 thermocouples could exactly be positioned in 
the different specimens. The alloy CMSX-4 [6] was chosen for 
the investigations because due to its segregation behavior it is a 
typical freckle prone alloy. Furthermore there is great interest in 
widening the application range of CMSX-4 to large IGT-blades. 
The composition of the alloy is given in Table I. 

Table I: Composition of the investigated alloy 
CMSX-4 (wt’%) [6]. 

Cr Co MO W Ta Re Al Ti Hf Ni 
6.5 9 0.6 6 6.5 3 5.6 1.0 0.1 bal 

Several cylindrical geometries with constant or varying diameter 
were examined, Figurel. Freckle chains were characterized by 
Energy-Dispersive-X-Ray (EDX) and by Electron-Back- 
Scattering-Diffraction (EBSD). Composition and orientation 
distribution of the freckle chains in comparison to their counter- 
parts in the single crystal matrix were examined in detail. 
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Figure 1: Outline of the investigated simple specimen geometries. 
The samples were solidified in clusters which consist of either 
four specimens with constant or four specimens with varying 
diameter. The circles indicate the position of the thermocouples. 

All FEM-simulations were performed with the in-house program 
CASTS [7-lo]. Simulations of grain growth were done with a 
cellular automaton (CA) algorithm [ 1 I]. 

Results and discussion 

G*v-criterion 

Based on temperature measurements with thermocouples exactly 
positioned in a ceramic shell mold a new, more simple and near 
application criterion for freckle formation has been developed. 
Late experiments prove, that the freckle chains do not always 
grow along the direction of the primary dendritic solidification 
front representing the crystallographic orientation, Figure 2. 
The comparison with FEM-simulations shows that the curved 
freckle chain which is visible on the surface of the turbine blade 
follows nearly exactly the curvature of the solidus line. Accord- 
ing to the fact that freckle formation takes place during the last 
period of solidification, the measured velocity of the solidus 
isotherm and the temperature gradient just in front of this 
isotherm were used to generate a G*v-criterion suitable for 
practical use. It takes into account the varying local solidifica- 
tion conditions during the Bridgman process. The results of 
these experimental investigations are shown in Figure3. It is 
revealed that freckling only occurs below the critical threshold 
value G*v= 0.14 K/s. In a transitional area, which cannot be 
determined exactly, most likely freckling mainly depends on 
geometrical influences. 

Based on the temperature field calculations the experimental 
G*v-criterion could be transferred to the simulation. It was 
implemented as a post processing tool. Freckle threatened and 
certainly freckle free areas can accurately be predicted, 
Figure 4. This criterion cannot predict where freckling actually 
will take place. A new approach in the calculation of freckle 
formation using coupled nonequilibrium FEM-methods and 
cellular automaton calculations is part of the ongoing investiga- 
tion. First results of a 3D-CA coupled with equilibrium FEM- 
calculations are presented later. 

Exnanding specimens 

The microstructure analysis of the stepwise and continuous 
expanding specimens reveals no tendency for freckle formation 
inside the specimens. Even if a freckle was found at the surface 
of a specimen in front of a step the freckle chain could not 
penetrate the castings inside more than a few millimeters, 
Figure 5 and Figure 7. 

Experiments, in which specimens with stepwise and continuous 
expansion of cross-section were cast together in one cluster 
under the same process conditions show the same tendency. The 
specimen with continuously increasing cross-section shows one 
freckle chain starting at a diameter of 12.5 mm and growing 
along the surface of the whole specimen. The stepwise expand- 
ing specimen contains surface freckle chains at each diameter, 
but these chains always stop at a foot of a new step. 
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Figure 2: Calculated liquidus isotherm (left picture), turbine blade with extended freckling and calculated solidus isotherm (right pic- 
ture) of an aero-engine turbine blade. The curvature of the freckle chains on the turbine blade seems to follow the solidus more than 
the liquidus line. The intermittent freckling structure occurs due to the non steady state conditions with locally varying growth veloci- 
ties. The vertical temperature gradient G, was slightly decreased, the lateral gradient G, increased. Due to the torsion and the varying 
wall thickness not all freckle chains rises upward at the outer edges of the blade. Additionally should be remarked, that the liquidus 
and solidus isotherms have not the same propagation velocity. Simulations were performed with the FEM-program CASTS. 
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Figure 3: Freckle tendency of the Ni based superalloy CMSX-4. Above the critical threshold value G*v = 0.14 K/s (dashed line) no 
freckling occurs. In the transitional area (between the dashed and the dotted line) freckling seems to depend mainly on 
geometrical influences. 
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After that a new chain starts a few millimeters above the step at a 
different position according to the cluster’s centerline. This indi- 
cates that the newly arising freckle chain is not correlated to the 
one that stopped at the step’s foot. It does only occur because the 
conditions at the surface are prone for freckling, Figure 6. 

> 0.2500 

> 0.2350 

> 0.2200 

> 0.2050 

> 0.1900 

> 0.1750 

> 0.1600 

> 0.1450 

> 0.1300 

10mm 

> 0.1000 

W IsI 
Figure 4: Comparison of a freckle tainted specimen with the 
simulated situation. The freckle chain appears in the region of 
the lowest calculated G*v-value. The lack of symmetry in the 
simulation is due to the inhomogeneous radiation conditions of 
the cluster configuration. 

Freckles 
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Figure 6: Specimens with stepwise and continuous increasing 
diameter. Whereas the step geometry shows different freckle 
chains at the foot of each step, the continuous expanding speci- 
men contains one single freckle chain, which grew from a di- 
ameter of 12.5 mm to the top. 

Figure 5: Microstructure of a stepwise expanding specimen. A 
grain of a freckle chain is visible at the surface of the specimen 
in a transversal micrograph just below the step. 400 urn after 
the expansion only a small grain of the freckle chain is still 
visible in the single crystal matrix. 

Additional investigations were performed on the question, if 
segregation channels, which are predicted by some authors 
[ 12-141 can be detected above the edge of these step specimens 
even if there was no freckling detected. ZD-simulations predict 
the formation of convection channels (plumes) in expanding 
domains [13]. Therefore freckle free specimens were investi- 
gated by EDX-analysis, Figure 8. Because the channels were 
expected to be in the dimension of dendrite axe spacing, a scan 
distance of 100 urn was chosen. The measured line scans show 
no significant concentration decrease or increase of any element 
in the area above the edge of the step, Figure 9 and Figure 10. 
A few microns after the cross-sectional transition the distribu- 
tion seems to be disturbed in the expanded area, Figure 9. But 
the distribution flattens with the distance from the edge, 
Figure 10. The high variations in the concentration of neigh- 
boring spots are due to the interdendritic segregations which are 
opposite for Ti and Ta on the one and Re and W on the other 
hand. 
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Figure 7: Freckle chain at the surface of a CMSX-4 stepwise 
expanding specimen. The freckle chain ends at the edge of the 
step probably due to a disturbance of the convection flow by the 
expansion. At the surface of the expanded part a slightly disori- 
ented grain develops. 

A characterization of the freckle chain in Figure 7 with EBSD- 
analysis gives an orientation distribution which indicates that 
there are no significant correlations between the single grains in 
the freckle chain, Figure 11. The polar plot shows the position of 
the [loo]-orientations of the SC-matrix and the other measured 
grains. These orientations seem to be distributed quite coinci- 
dentally, but the high disorder is not only due to the different 
orientations in the chain but also to some fuzziness which is 
typical for the EBSD-analysis. The best focus is given in the 
center of the investigated specimen and the more the beam gets 
out of the center the more fuzzy the reflexes are. The matrix 
reveals a nearly perfect [loo]-orientation, which is indicated by 
the dots in the polar plot. 

Figure 8. Expanding domain specimen investigated by EDX. 
The dashed line shows the path of the line scan. The distance 
between the measure spots was 100 urn, so that there were 46 
measure points for each line scan. Two more line scans were 
performed at a distance of 7.5 mm and 12.5 mm from the edge. 

Figure 11: Polar plot of the measured [ lOO]-directions of the 
SC-matrix (dots) and some freckle chain grains. 
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Figure 9: The EDX-line scan just above the edge of the expanding domain shows no significant concentration variation. It seems that 
the element distribution in the outer part of the domain (negative distance) is disturbed by the expansion. The columns display the 
concentration measured at each spot, whereas the lines represent an integral Fourier smoothing function term. 
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Figure 10: Titanium distribution 7.5 mm (left) and 12.5 mm (right) above the edge. The distribution seems to flatten with the distance 
above the edge. The high variations between neighboring spots are due to the interdendritic segregations. 
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Grain structure simulation 

The simulation of the grain structure formation during DS- or 
SC-solidification was performed with a cellular automaton 
rotated grid algorithm. In this model the grain orientation is 
identified with the orientation of the grid. A detailed descrip- 
tion of the rotated grid algorithm is given in [ 151. 
2D-calculations of grain selection development were per- 
formed. 3D-calculations are only done for the single crystal 
solidification. The grain growth of a single crystal in a simpli- 
fied geometry of a turbine blade inner shroud was calculated, 
Figure 12. The results of the grain growth calculation with a 
grain orientation slightly rotated against the shrouds coordi- 
nate system (Euler angles 9 = 0”, ~JJ = O”, cp = 8’) are shown in 
Figure 13. A transversal and two longitudinal (x- and y-plane) 
sections through the geometry at the same time step are 
displayed. The transversal section shows the slight rotation of 
the grain envelope which coincides with the crystallographic 
rotation. The longitudinal sections through the x- and y-plane 
look the same due to the crystal’s symmetry. The same situa- 
tion was calculated with the 3D-CA coupled with FEM 
temperature field simulation, Figure 14. Again a transversal 
and two longitudinal sections through this geometry at the 
same time step are shown. These pictures clarify the influence 
of the calculated temperature field on the grain envelope 
development. The anisotropic growth into the edges of the 
shroud is due to the faster cooling in the center of the cluster. 
The curvature of the surface in the longitudinal sections is 
caused by the macroscopic curvature of the isotherm in the 
temperature field simulation [l I]. 

Figure 12: Principle sketch of the investigated simplified 
geometry of a turbine blade inner shroud. The lines indicate 
the sectional planes. 

Figure 13: Transversal (upper picture) and longitudinal 
sections through the simplified geometry of an inner shroud. 
The gray areas represent the grain envelope of the single 
crystal whereas the white areas are still liquid. The snapshots 
were taken at the same calculation time step. 

Figure 14: The same situation as in Figure 13 calculated 
with a 3D-CA coupled with FEM temperature field simula- 
tion. The anisotropic growth into the edges of the shroud is 
due to the faster cooling in the center of the cluster. The 
curvature of the surface in the longitudinal sections is 
caused by the macroscopic curvature of the isotherm in the 
temperature field simulation. The snapshots were taken at 
the same calculation time step. 
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To use this model for the prediction of freckling it will be 
necessary to include a fluid flow calculation and a nuclea- 
tion model. This model has to consider undercooling as well 
as crystallographic and convection effects. 

The main conclusions of the present work are as follows: 

l A simple G*v-criterion for practical use has been devel- 
oped which takes into account varying local solidification 
conditions near solidus temperature during Bridgman 
process. 

l FEM temperature field simulation combined with the 
experimental G*v-criterion allows the prediction of com- 
ponent areas which are extremely freckle threatened and 
those areas, which are certainly freckle free. 

l At solidification conditions typical of industrial produc- 
tion sized Bridgman furnaces freckles does not form inside 
the casting even at abrupt cross-section expansions. 

l By now it is not possible to predict where freckle forma- 
tion actually will take place. An improvement in freckle 
prediction by using a combination of FEM-simulation in- 
cluding fluid flow models with cellular automaton calcu- 
lations is part of further investigation. 
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