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Abstract 

 
The structure evolution of bi-crystal samples during directional 
solidification was explored. It was found that in the case of 
diverging dendrites the better aligned grains overgrew the 
misaligned grains by means of the dendrite development from the 
better aligned grains. However, in the case of converging 
dendrites the result differs in two ways from the prediction of the 
generally accepted model for competitive grain growth. First, the 
misaligned dendrites are able to overgrow the better aligned 
dendrites. Second, the misaligned grains are able to overgrow the 
better aligned grain by blocking the dendrites of the better aligned 
grains at the grain boundary. The results can explain the potential 
sources of misorientation defects in seeded single crystal 
components and can be used to optimize process design to 
eliminate the stray grain defects in seeded single crystal casting. 
 

Introduction 
 
Turbine blades are routinely cast from nickel-base superalloys. To 
improve creep-rupture, fatigue, oxidation and coating properties, 
the modern blades are often cast in single crystal (SC) form, 
which results in superior turbine engine performance and 
durability [1, 2]. In certain circumstances pertaining to mechanical 
response, it is necessary to obtain an <001> orientation within a 
component that is misaligned with respect to the withdrawal 
direction and temperature gradient, the normal determinants of 
preferred crystal growth direction [3]. This is achieved by means 
of a seeding technique. 
  
In commercial production, the prefabricated seed with desired 
orientation is partially melted back in the mould during the 
thermal soaking period prior to casting. Subsequently, the molten 
alloy is introduced through the mould cavity across the seed 
“melt-back” interface and the mould is then withdrawn from the 
furnace. It was reported [4, 5] that upon initiation of withdrawal, 
copious nucleation occurred, of crystals with random orientation 
distributed uniformly around the perimeter of the seed at the melt-
back interface. In the following growth process [4, 5], stray grains 
survived and expanded transversely on one side of the seed. Stray 
grains grew on the side of the seed where the primary dendrites of 
the seed diverged from the mould wall. The stray grains were 
overgrown by the seed crystal (Figure 1) where the dendrites 
converged on the mould wall. A general model for competitive 
grain growth, the Walton and Chalmers model [6], can explain 
why the stray grains survive and expand transversely on the 
diverging side, but it cannot explain why stray grains better 
aligned to the withdrawal direction and thermal gradient were 
overgrown by the misaligned seed on the converging side.  
 
The Walton and Chalmers model suggests that the process of 
grain overgrowth is based on the difference in undercooling of 
favourably and unfavourably oriented dendrites with respect to the 

thermal gradient, as shown in Figure 2 [7]. Grains A1 and A2 are 
favorably oriented, while grain B is unfavorably oriented and the 
<001> direction has a misorientation (θ) with respect to the heat 
flow direction. To keep up with the better aligned neighbors, grain 
B grows at a greater undercooling. In the case of diverging 
dendrites, the two grains on the right of Figure 2, development of 
new dendrites from grain A2 can lead to overgrowth of grain B 
and the grain boundary (GB) is thus inclined. In the case of 
converging dendrites, the two grains on the left of Figure 2, the 
dendrite tips in grain B impinge upon the side of grain A1 at the 
GB and are stopped. Since grain A1 does not develop new 
dendrites at the GB and the dendrites in grain B cannot overgrow 
the dendrites in grain A1, the GB lies parallel to the dendrites in 
grain A1. 
 
In our work [8], structure evolution of bi-crystal (BC) samples 
during the DS process was explored in an attempt to understand 
the mechanism of competitive grain growth. It was found that in 
the case of diverging dendrites the best aligned grain overgrew the 
misaligned grain. This result was in accordance to the Walton and 
Chalmers model. However, in the case of converging dendrites 
the result differed from the prediction of the Walton and Chalmers 
model. First, the misaligned dendrites were able to overgrow the 
best aligned dendrites. Second, the misaligned grain was able to 
overgrow the best aligned grain by blocking the best aligned 
dendrites at the GB. These results on BC samples are well in 
accordance with the results as shown in Figure 1. 
 
In a BC sample, one grain can be employed to reflect the seed 
crystal and the other can be employed to reflect a stray grain. 
From this method we can understand which grain ‘wins’ in the 
process of competitive grain growth and more readily predict 
stray grain defects in SC components. Since such predictions can 
optimize process design and reduce scrap, casting conditions 
encompassing those used in an industrial process were adopted in 
the BC casting process of the present work. 

 
Experiments 

 
Materials and Arrangement of Seeds 
 
The compositions of the materials used in the present work are 
listed in Table I.  
 
SC seeds from superalloy CMSX-4 were used to initiate the 
structure development in the casting process. To keep both <001> 
directions in the BC samples on the same plane, the SC seeds 
were cut from the same SC plate. Each seed was cut into two 
halves along the sample axis. Subsequently, the seeds were 
arranged in such a way that the samples with diverging or 
converging dendrites were produced. Seed A was used to reflect a 
stray grain and its <001> direction was varied in the experiments. 
Seed B was used to reflect the seed crystal and its <001> direction 
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was constant (15-17º misaligned from the sample axis). θA and θB 
were used to describe misorientation of the <001> direction from 
the sample axis in seed A and B, respectively. In the present work, 
seed A and seed B were placed on the left and right, respectively. 
Thus, θA and θB are defined to be plus when they are inclined from 
the left to the right. In contrast, θA and θB are defined to be minus 
when they are inclined from the right to the left. The details of θA 
and θB in the experiments are listed in Table II. It is clear from 
Table II that |θA| ≤ |θB|, i.e. grain A is better aligned to the thermal 
gradient than grain B. 
 
Casting Experiments 
 
Casting experiments were carried out using the conventional 
Bridgman high rate solidification (HRS) technique in a vacuum 
environment. The SC seeds of 20 − 25 mm length were placed in 
the bottom of a ceramic mould to control the orientations of 
casting samples. The mould was preheated to 1540 °C, partially 
melting the seed in a longitudinal thermal gradient. Following a 
soaking period of 20 minutes, the melt was cast into the preheated 
mould and the assembly withdrawn at a rate of 3.8 mm /min after 
3 minutes delay. The cast samples were almost cylindrical with 
one flat side and had a diameter of 12 mm.  

 
Sample Examination 
 
Macroetching was employed to determine the positions of the 
grain overgrowth and the melt-back interface. The misorientation 
of the GB plane from the sample axis (θGB) was determined by  
tan θGB = R / L, where R is the sample radius and L is the distance 
from the melt-back interface to the position of grain overgrowth. 
Following the convention used to describe the seed orientations, 
θGB is defined to be plus when the GB plane is inclined from the 
left to the right, i.e. the GB plane is inclined in such a way that the 
better aligned grain A overgrows the misaligned grain B; and θGB 
is defined to be minus when the GB plane is inclined from the 
right to the left, i.e. the GB plane is inclined in such a way that the 
misaligned grain B overgrows the better aligned grain A. 
Subsequently, the casting samples were cut along the sample axis 
to show the microstructures. θA, θB, primary dendrite arm spacing 
(λ1), and frequency (f) of dendrite development at the GB were 
examined by optical metallography on etched samples. λ1 was 
determined on the longitudinal plane and on the direction 
perpendicular to the [001] direction in a grain. 
 
Furthermore, samples of Exp. 6 and 7 were cut perpendicular to 
the solidification direction and grain structures at different 
solidified lengths were studied by means of optical microscope or 
electron back scattered diffraction (EBSD) analysis in a FEI 
Sirion field emission gun scanning electron microscope, equipped 
with Oxford EBSD equipment. In the process of EBSD analysis, 
the sample surface was scanned using an incremental step size of 
50 μm which is much less than λ1. 
 
 
 
 

Table I. Nominal compositions of alloys as used in the 
experiments (in weight percent). 

 
Cr Co Mo W Al Ti Ta Re Hf Ni 
6.5 9.0 0.6 6.0 5.6 1.0 6.5 3.0 0.1 Bal. 
Free of B, Zr and C 

Table II. Structural characteristics of the BC samples. 
 

Exp. Seed disposition  θA θB 
Exp.1 Divergence -15° 15° 
Exp.2 Divergence -5° 15° 
Exp.3 Divergence 0° 15° 
Exp.4 Divergence 8° 15° 
Exp.5 Divergence 15° 17° 
Exp.6 Convergence 9° -16° 
Exp.7 Convergence 0° -15° 
Exp.8 Convergence -9° -16° 

 
 

 
 
Figure 1. Schematic diagram showing the structure evolution in 
the SC casting initiated by the SC seed in [4, 5].  
 
 
 

 
 
Figure 2. Schematic illustration of the Walton and Chalmers 
model for competitive grain growth [7].  
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Figure 3. Dependence of λ1 on [001] misorientation. 

 

Results 
 
Figure 3 summaries the dependence of λ1 on [001] misorientation. 
λ1 decreased slightly with increasing [001] misorientation.  
 
 
BC Samples with Diverging Dendrites 
 
Figure 4 (a) shows the optical metallographic microstructure of a 
BC sample with diverging dendrites. New dendrites developed 
from grain A and B at the GB and the gap between the diverging 
grains was filled by these new dendrites. Depending on the 
development of new dendrites from grain A, the GB was inclined 
in such a way that grain A overgrew grain B. 
 
The dependence of θGB on θA in the case of diverging dendrites is 
summarized in Figure 4 (b). In Exp. 1, |θA| = |θB| gives θGB = 0, i.e. 
the GB was parallel to the sample axis and there was no grain 
overgrowth in this experiment. In Exp. 2-5, θGB > 0 indicates grain 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. (a) Optical micrograph showing the microstructure in a BC sample with diverging dendrites, (b) dependence of θGB on θA in the 
BC samples with diverging dendrites, and (c) dependence of f on θA in the BC samples with diverging dendrites.  
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Figure 5. (a) Optical micrograph showing the microstructure on longitudinal section in a BC sample in Exp. 6 with converging dendrites; 
(b), (c), (d) and (e) optical micrographs showing the microstructures on different sections cut perpendicular to the solidification direction. 
 
 
 
A overgrows grain B. In Exp. 1-5, there is the same result of θGB – 
θA > 0, which means new dendrites can develop from grain A at 
the boundary. As θA became increasingly positive, fewer dendrites 
developed from grain A. θGB – θA thus became smaller with 
increasing θA. When θA increased to be nearly the same as θB, 
very few dendrites developed from grain A at the boundary. 
Consequently, θGB was nearly equal to θA in Exp. 5.  
 
Primary dendrite numbers (f) developed from grain A as the 
boundary per unit length along the [001] direction in grain A (f is 
a ratio of unit length and l001) is plotted as a function of θA in 
Figure 4 (c). f is reduced with increasing θA. In Exp. 5 f≠0 is due 
to θB = 17º which is a little greater than θA (θA = 15º). 
 
BC Samples with Converging Dendrites 
 
Figure 5 shows the structure evolution in Exp. 6.  The 
microstructure on the sample polished longitudinally (Figure 5(a)) 
is different from the prediction of the Walton and Chalmers model 
in two ways. First, not only were the better aligned dendrites able 
to block the misaligned dendrites (black arrows), but also the 
misaligned dendrites were able to block the better aligned 
dendrites (white arrows). Second, new dendrites developed from 
both grains A and B at the boundary. The positions where new 

dendrites began appearing was not ahead of the blocked dendrite 
tips but behind them. Some dendrites developed from the better 
aligned grain A blocked the misaligned dendrites at the boundary, 
while dendrites developed from the misaligned grain B cannot 
generally block the better dendrites. The dendrites in the 
metallographic samples cut perpendicular to the solidification 
direction appear as grey crosses in Figure 5 (b)-(e). Grains can be 
recognized from the different contrast and the gain boundaries are 
marked by black curves. It is apparent from the microstructure 
that grain B was overgrown by grain A. However, the grain 
overgrowth process was not due to the GB displacement on the 
direction c but due to the GB displacement on the directions a and 
b as marked in Figure 5 (c). 
 
Structure evolution in Exp. 7 is shown in Figure 6. As observed in 
Exp. 6, not only the better aligned dendrites were able to block the 
misaligned dendrites, but also the misaligned dendrites were able 
to block the better aligned dendrites at the boundary, examples of 
which are marked by short white arrows on the longitudinal 
polished sample (Figure 6 (a)). Blocking of misaligned dendrites 
by the better aligned dendrites cannot lead to the GB inclination. 
However, blocking of better aligned dendrites by the misaligned 
dendrites can lead to the GB being inclined in such a way that the 
misaligned grain B overgrew the better aligned grain A. As  
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Figure 6. (a) Optical micrograph showing the microstructure on 
the longitudinal section in a BC sample in Exp. 7 with converging 
dendrites; (b), (c) and (d) grain maps and corresponding inverse 
pole figures on different sections cut perpendicular to the 
solidification direction by means of EBSD analysis. 

 
 
Figure 7. Dependence of θGB on θA in the BC samples with 
converging dendrites.  
 
 
observed in Exp. 6, new dendrites were able to develop at the GB 
and the positions where they began appearing was behind the 
blocked dendrite tips. However, the dendrite number developed at 
the GB in Exp. 7 was much less than that in Exp. 6. Grain B thus 
overgrew grain A as evidenced by EBSD analysis (Figure 6 (b), 
(c) and (d)). 
 
The dependence of θGB on θA in the case of converging dendrites 
is summarized in Figure 7. In Exp. 6, θGB > 0 indicates that the 
better aligned grain A overgrew the misaligned grain B.  In Exp. 7 
and 8, θGB < 0 indicates that the misaligned grain B overgrew the 
better aligned grain A. In Exp. 6-8, there was the same result of 
θGB < θA, which is different from the suggestion of θGB = θA in the 
Walton and Chalmers model.  

 
Discussion 

 
Overgrowth of Diverging Grains 
 
The results in the samples with diverging dendrites are in 
accordance to the Walton and Chalmers model. Figure 8 
schematically illustrates the dependence of θGB on θA and dendrite 
development at the GB. The grey bars in the figure represent 
primary dendrites in grain A. It is clear from Figure 8 that 
dendrite development from grain A always leads to a GB that is 
inclined from grain A to grain B (i.e. from the left to the right). 
Thus θ' is always positive as our definition and θ' = tan-1 (λ1/l001) 
= tan-1 (λ1f). θGB, θA and θ' follows the equation: θGB = θA + θ'= 
θA + tan-1 (λ1f). 

 
The present study indicates, as shown in Figure 1, that any stray 
grain that is better aligned to the thermal gradient than the seed 
crystal can survive during competitive growth process with the 
seed crystal at the diverging side. The stray grains which expand 
fastest on the transverse section are not the ones whose [001] 
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misorientation is well aligned to the thermal gradient, but the ones 
whose [001] misorientations are closest to the [001] orientation of 
the seed crystal. The stray grains compete with each other for 
growth in the casting process. Thus the fastest expanding stray 
grain may not survive during competitive growth with other stray 
grains. However, to eliminate all stray grains in a SC component, 
the fastest expanding stray grain cannot be neglected in the 
process design.  
 
Overgrowth of Converging Grains and Dendrites 
 
In the previous work [8], we have reported that the thermal 
gradient of the casting system is not the reason why the 
misaligned dendrites are able to overgrow the better aligned 
dendrites, i.e. the overgrowth process is not due to the inclination 
of the thermal gradient with respect to the withdrawal direction. 
The mechanism by which the misaligned dendrites overgrow the 
better aligned dendrites cannot be stated conclusively from the 
experimental data. However, solutal interaction of the converging 
dendrite tips is the most probable factor, i.e. growth of the 
converging tips at the GB will be retarded due to solutal 
interactions when they get within the interaction distance. Thus 
the immediate neighbor of the misaligned dendrite has a chance to 
overgrow the better aligned dendrite at the GB. In the previous 
work [8], it was found the dendrites at the GB are behind their 
immediate neighbors. This result served as evidence of solutal 
interactions. 
 
In the Walton and Chalmers model, because the misaligned 
dendrites are not able to overgrow the better aligned dendrites and 
there is no dendrite development at the GB of converging grains, 
the GB lies parallel to the better aligned dendrites (i.e. θGB = θA). 
Here, we found in the case of converging dendrites the misaligned 
dendrites are able to overgrow the better aligned dendrites and  
 
 
 

 
 
Figure 8. Schematic diagram showing dependence of θGB on θA 
and dendrite development at the GB. 
 

new dendrites are able to develop at the GB. Consequently, the 
GB does not lie parallel to the better aligned dendrites (i.e. θGB ≠ 
θA). As pointed out above, dendrite development from grain A 
leads to inclination of the GB by an amount θ' from grain A to 
grain B (θ' is plus). However, blocking of the better aligned 
dendrites by the misaligned dendrites at the GB leads to the GB is 
inclined θ'' from grain B to grain A. Following our convention, θ'' 
is minus. Obviously, in the case of converging dendrites θGB can 
be written as: θGB = θA + θ' + θ''. As shown in Figure 7 θGB is 
always less than θA in the case of converging dendrites. This 
indicates θ' < |θ''|, i.e. the effect of dendrite blocking is greater 
than the effect dendrite development.  
 
In the case of converging grains, if dendrites at the GB can 
develop new dendrites on the same longitudinal plane towards the 
GB by means of branching effect, the positions where the new 
dendrites begin appearing should be ahead of the blocked dendrite 
tips in the other grain, but not behind them. Therefore, the 
microstructures in Figures 5 (a) and 6 (a) show that the new 
dendrites at the GB of converging grains do not develop from the 
dendrites on the same longitudinal plane. Figure 9 schematically 
illustrates the evolution of GB structure in Exp. 6. The white and 
grey dendrites are on different planes 1 and 2, respectively. Plane 
2 is behind plane 1. When secondary dendrite arms become 
developed (fine and long) as a result of the high withdrawal speed 
(such as the withdrawal speed of 3.8 mm/ min in the present 
work), the grey dendrites on the plane 2 are able to extend their 
branches to plane 1 and develop new dendrites on plane 1 as 
highlighted by arrows a1 and a2 in Figure 9 (b). Likewise, the 
white dendrites on the plane 1 are able to extend their branches to 
plane 2 and develop new dendrites on plane 2 as pointed out by 
arrows b1 and b2 in Figure 9 (c). As pointed out above, in Exp. 6 
the overgrowth of grain B by grain A mainly depends on the GB 
displacement along directions a and b as marked in Figure 5 (c). 
Such GB evolution indicates that there is a branching effect from 
one longitudinal plane to another longitudinal plane in Exp. 6 as 
illustrated by Figure 9. Since grain A is better aligned with respect 
to the gradient, some dendrites developed from grain A can stop 
the growth of the misaligned dendrites at the GB (for example, 
dendrite a1 in Figure 9 (b)). However, new dendrites developed 
from grain B generally cannot stop the growth of the better 
aligned dendrites at the GB. The dendrite development thus 
reduces the overgrowth tendency of grain A by grain B, and 
increases the overgrowth tendency of grain B by grain A.  
 
In Exp. 7 and 8, since the frequency of dendrite impingement 
between grains A and B is less than that in Exp. 6, this merely 
being due to their geometric disposition to one another, the 
frequency of branching resolved at longitudinal planes in Exp. 7 
and 8 is similarly less than that in Exp. 6. Consequently, far fewer 
dendrites develop from grains A and B at the GB in Exp. 7 and 8, 
and the dendrite blocking effect dominated the overgrowth of the 
better aligned grain A by the misaligned grain B. The geometric 
dispositions in [8] are similar to that of Exp. 7 and the secondary 
dendrite arms in [8] were undeveloped due to the use of a slower 
withdrawal speed (1 mm/min). The branching effect between 
different longitudinal planes was thereby very weak, i.e. dendrites 
are hard to develop at the GB of converging grains and there is 
dendrite blocking effect only in [8]. 
 
It is clear from the results in the present work that stray grains, as 
reflected by grains A in Exp. 7 and 8, have no chance to survive 
during the competitive growth process with the seed crystal B in 
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Figure 9. Schematic diagram showing the structure evolution in Exp. 6. (a) Grain boundary structure at time t0, (b) grain boundary 
structure at time t1, and (c) grain boundary structure on one longitudinal plane at time t1. 

 
 

the practice as shown in Figure 1, converging side. The stray grain 
as reflected by grain A in Exp. 6 may also have less chance to 
survive in practice. This would be due to the stray grains being 
very small in size, and their dendrites are not well developed at 
the initial state of withdrawal. The above branching effect at 
different longitudinal planes thus cannot appear on the stray 
grains. However, the overgrowth effect of stray grains by the seed 
crystal occurs immediately after withdrawal. 
 

Conclusions 
 
The overgrowth mechanisms and behaviours of diverging and 
converging grains in DS castings are different.  
 
In the case of diverging grains, the better aligned grain overgrows 
the misaligned grain. The grain overgrowth process depends on 
the development of new dendrites from the better grain at the GB.  
 
In the case of converging grains, the result differs from the 
prediction of the Walton and Chalmers model. First, when 
extended secondary arms are developed, new primary and tertiary 
dendrites are able to develop at the GB depending on the 
branching effect at different longitudinal planes. This lateral 
branching effect increases the overgrowth tendency of the 
misaligned grains by the better aligned grains. Second, on the 
same longitudinal plane the misaligned dendrites are able to block 
the better aligned dendrites. The dendrite blocking effect alone 
can lead to the misaligned grains overgrowing the better aligned 
grains. Third, grain overgrowth in the case of converging 
dendrites is controlled by the lateral branching effect and dendrite 
blocking effect together. Under the casting conditions used in the 
present work, the dendrite blocking effect is greater than the 
dendrite developing effect. Consequently, the misaligned grains 
are able to overgrow the better aligned grains.  

The experimental results on BC samples indicate in seeded SC 
casting practice, any stray grain better aligned to the thermal 
gradient than the seed crystal has a chance to survive on the side 
where the primary dendrites of the seed diverge from the mould 
wall. However, stray grains, even those better aligned to the 
thermal gradient than the seed crystal, have no chance to survive 
on the side where the primary dendrites of the seed converged to 
the mould wall. 
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