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Abstract 
 
Ni-based superalloys are used for turbine airfoil applications due 
to their excellent high temperature properties.  Alloy design has 
historically focused on creep resistance as the critical design 
limiting parameter.  Recently, the focus has shifted to include 
fatigue resistance, resulting in the need to better understand the 
effects of alloy microstructure on fatigue crack initiation and 
propagation.   
 
In this study, sustained peak low cycle fatigue tests of coated 
monocrystalline René N5 specimens oriented with the loading 
axis along [001] were conducted in strain control in the 
temperature range of 980-1100°C.  Tests were performed with 
either a tensile dwell (hold) time or a compressive dwell time.  
Fracture surfaces were characterized via scanning electron 
microscopy (SEM).  Microstructural analysis was performed 
using a high resolution SEM.  Far field deformation mechanisms 
were examined perpendicular to the loading axis and parallel to 
the loading axis using transmission electron microscopy.  The 
occurrence of creep-fatigue interaction was characterized by the 
different types of rafting seen, and the deformation mechanisms 
varied between specimens with compressive hold time and tensile 
hold time.   
 
This project is a collaborative effort with GE Aviation and is 
funded by the AFOSR under the MEANS2 program. 
 

Introduction 
 

Nickel based superalloys have been used historically in the 
aerospace industry for turbine airfoil applications.  The alloys are 
useful at high temperatures because of their creep resistance, 
along with hot corrosion and oxidation resistance [1,2].  Until 
recently, creep has been the limiting factor for turbine airfoils, and 
thus creep mechanisms have been the subject of numerous studies 
[1-6].  Early generation alloying of monocrystalline alloys was 
developed to improve creep resistance by adding slower diffusing 
elements, such as rhenium and ruthenium.  Rhenium additions 
improve creep rupture life and oxidation resistance [7,8], while 
ruthenium decreases overall density compared to rhenium, 
stabilizes the microstructure, and increases oxidation resistance 
[8,9].  Additionally, creep resistance increases with a decreasing 
number of grain boundaries, and therefore the invention of the 
monocrystalline blade increased creep resistance.  Coincidentally, 
fatigue resistance has tended to increase with improvements in 
creep resistance. However, more recently fatigue failures have 
been experienced.  Consequently, fatigue mechanisms have 
become of interest.   

It is known that engine efficiency increases with increasing 
temperature, and therefore the need for alloys that can withstand 
higher temperatures is necessary.  Past engine designs have been 
limited by the melting temperature of the blade material, and 
ceramic systems are not feasible due to fracture issues.  However, 
more recent changes in modern high pressure turbine (HPT) blade 
designs incorporate cooling channels, which allow an increase in 
the engine operating temperature while keeping the blade at an 
acceptable maximum temperature.  The introduction of cooling 
channels has caused local stresses, especially within the thin 
regions between the channels, and temperature gradients across 
the blade to increase.  In these HPT components, experience and 
experimental studies have shown that fatigue can be a life-limiting 
factor. The changing limitation from creep to fatigue has 
highlighted the need for a comprehensive study of fatigue 
deformation mechanisms, as well as creep-fatigue mechanisms, 
since the engine operates at high temperature where creep occurs.   

 
Previously, creep-fatigue studies have observed that cyclic creep 
decreases lifetime compared to creep alone [10]. A study by Zrnik 
observed fracture surfaces and dislocation structures in specimens 
that were subjected to static loading, cyclic loading and cyclic 
loading with a hold at maximum load.  Static tests were 
performed in tension while the cyclic tests were tension-tension, 
with an R-ratio (Pmin/Pmax) of 0.0125. After static loading, tangles 
of dislocations were present in both the γ and γ’ phases and the 
fracture surface was indicative of pure creep.  Under cyclic 
loading conditions, as the hold time decreased to 0 (purely cyclic 
loading), the dislocations became more confined to the matrix 
phase alone. The fracture surfaces of specimens with longer hold 
times were similar to specimens failed in pure creep, while 
specimens with shorter hold times had fatigue striations, like the 
fracture surfaces seen in the pure fatigue case [11].  While these 
observations provide insight into the transition from creep to 
creep-fatigue to fatigue deformation, the results are only 
representative of the tension case.  Furthermore, no observations 
of the microstructural changes with deformation were noted. 
 
The object of this study is to characterize the sustained peak low 
cycle fatigue behavior of Rene N5, a second-generation single 
crystal nickel based superalloy containing 3% rhenium.  Tests 
with tension and compression dwell were performed.  We observe 
that fracture modes and microstructural evolution differ between 
compression and tension dwell.  The deformation character for 
each of the test types was found to be dislocation network 
formation and γ’ shearing, respectively.  Creep-fatigue 
interactions influence the deformation behavior more than either 
creep or fatigue alone. 
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Experimental Procedure 
 

For this study, the material of focus was monocrystalline nickel-
based superalloy René N5.  Specimens were prepared by GE 
Aviation and tested by Metcut (Cincinnati, OH). Coated, 
cylindrical specimens oriented with the [001] axis parallel to the 
loading direction were tested in air at 980-1100°C (1800- 
2000°F).   Sustained peak low cycle fatigue (SPLCF) tests were 
performed in total strain control, with a total strain range between 
0.4 and 1.2 percent, and a 2 minute dwell (hold) time in either 
compression or tension, as illustrated in the strain vs. time 
schematics in Figures 1 and 2, respectively.  The corresponding 
stress vs. time behavior is also shown schematically.  During each 
cycle, the material yields during loading to peak strain.  During 
the hold time, stress relaxation occurs which coincides with creep 
in the material.  Over the course of the compression hold 
experiment, the mean stress increases and a positive mean stress 
develops by mid-life, while in the tension hold experiment, the 
mean stress decreases but stays positive.  The peak stress 
stabilized after about 10-20% of the total life, and was less than 
350 MPa for all specimens.  All specimens failed under 20,000 
cycles.  The fractured specimens were provided to OSU for 
analysis.  
 
Fracture surfaces were characterized using an FEI Quanta 
scanning electron microscope (SEM).  The fracture surfaces were 
characterized parallel to loading axis.  The specimens were then 
sectioned for both SEM and transmission electron microscopy 
(TEM) analysis.  Microstructures and substructures were 
investigated parallel and perpendicular to the loading axis, having 
normal directions of [100] and [001] respectively.  Samples with a 
[100] normal were oriented using orientation image mapping 
techniques.  Specimens for SEM were mounted in conductive 
Bakelite and etched with a solution of 50mL lactic acid, 30mL 
nitric acid, and 2mL hydrofluoric acid.  The two phase γ/γ’ 
microstructure was characterized using a high resolution FEI 
Sirion SEM.  TEM foils were made using conventional 
preparation techniques.  All foils were jet polished using a 
solution of 10% hydrochloric acid and 90% methanol at -20°C 
and 13V.  The substructures were characterized with an FEI 
CM200 TEM.  Burgers vectors were determined by g·b analysis.  
Additionally, the thermally exposed but undeformed material 
obtained from the grip ends of a specimen was examined for 
comparison purposes.  

 
Results and Discussion 

 
Fractography 
 
A comparison of the fracture surfaces in specimens with 
compressive and tensile dwells shows different failure 
mechanisms operating under each condition.  Fractography 
indicated that specimens with compression hold cycles failed 
similarly at all temperatures surveyed.  A representative fracture 
surface can be seen in Figure 3a, which has multiple crack 
initiation sites at the surface (A and B), with only one of the 
initiation sites (A) growing to form the main crack.  Multiple 
surface initiation sites are common at high temperatures for 
coated specimens.  Fatigue striations were observed, and a 
representative section of a fracture surface is shown in Figure 3b.  
The crack extension per cycle decreased during testing as would 
be expected in a total strain control test since the peak applied  

 
 

Figure 1.  Schematic of applied strain during cyclic loading with 
compression hold time and the resulting stress response evolution 

with time. 
  
 

 
Figure 2.  Schematic of applied strain during cyclic loading with 
tension hold time and the resulting stress response evolution with 

time. 
 
stress intensity will decrease as the specimen becomes more 
compliant. The decrease in crack growth rate became more 
dramatic in specimens tested at higher temperatures.  This was 
determined by the closer spacing of fatigue striations at longer 
crack lengths.  The crack wake of each specimen was oxidized. 
Oxidation, which is prevalent at high temperatures, can increase 
crack closure and could be a contributing factor to the slowing 
crack propagation.  Also, the plane of crack propagation changes 
from perpendicular to the loading direction during initiation to 
steep angles to the loading axis during propagation.  Assuming the 
fatigue crack growth process is dominated by mode I loading, this 
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transition from mode I to mixed mode loading may reduce the 
driving force for crack growth. 
 
In the case of the tension hold, crack extension by creep 
deformation is observed in contrast to typical cyclic propagation.  
In this type of failure, seen in Figures 4a and 4b, there are flat, 
shallow dimples with evidence of casting pores.  As these voids 
grow, they coalesce and the specimen finally fails.  The fracture 
surfaces of the specimens were macroscopically flat compared to 
the compression hold specimens.  In the tension dwell case, 
oxidation is seen over the entire surface, but does not appear to be 
as thick as the oxidation observed on the compression dwell tests.  
This oxidation most likely occurred when the samples were 
finally fractured at temperature, since ductile failure happens by 
the coalescence of voids that may not be exposed to the air during 
the SPLCF tests. 
 
Microstructure Characterization 
 
The γ/γ’ microstructures in the SPLCF specimens with 
compression and tension dwell time were characterized and 
compared with the microstructure of the undeformed thermally 
exposed material.  In the case of the thermally exposed material, 
cuboidal γ’ dominated the structure, with no preferential  
 

 

 
Figure 3a.  Fracture surface of specimen with compression 

dwell.  Arrows indicate surface initiation sites. 

 

 
Figure 3b.  Striations on the fracture surface of a compression 

dwell specimen. Arrow indicates direction of crack propagation. 

alignment of the γ’ phase (i.e. rafting).  The microstructure on the 
(001) and (100) crystallographic planes can be seen in Figures 5a 
and 5b, which are images taken parallel and perpendicular to the 
loading axis, respectively.  In all figures, the γ phase is a light 
gray while the γ’ phase is a dark gray. 
 
In the compression dwell tests, rafts formed parallel to the loading 
axis, referred to as “p-type” rafting.  The flat sides of the rafts can 
be seen in Figure 6a.  Characterization of this structure transverse 
to the loading axis shows that the rafts formed in orthogonal 
orientations, both parallel to the loading axis, seen in Figure 6b. In 
the case of the tension dwell tests, there was “n-type” rafting, or 
rafts perpendicular to the loading axis.  Figure 7a shows the 
rafting parallel to the loading axis, while Figure 7b shows the flat 
sides of the rafts, which are perpendicular to the loading direction.  
Both types of rafting are well documented for nickel-based 
superalloys with a negative γ/ γ’ misfit [1,2,12,13].   
 
In both tension and compression dwell specimens, the γ’ phase 
became the continuous phase after loading, in contrast to the 
thermally exposed material where γ is continuous.  Additionally, a 
topological inversion has taken place, where the γ’ phase has a 
larger area fraction after deformation.  From the figures, it can be  
 
 

 

 
Figure 4a.  Fracture surface of specimen with tension dwell. No 

obvious initiations sites at surface are observed. 

A 

B 

 
 

 
Figure 4b. Fracture surface of specimen with tension dwell.  

Shallow dimples can be seen, with casting pores throughout the 
surface. 
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observed that the γ phase is altered compared to specimens tested 
under creep alone.  In creep, long continuous γ and γ’ channels are 
developed [2,5], but in the SPLCF specimens, the γ phase has 
shorter sections, as seen in Figure 7a.  Here the γ channels are 
interrupted by the γ’ phase coalescing with neighboring rafts.  
This is attributed to the creep-fatigue interaction, where the 
fatigue causes additional deformation that creep alone could not 
accomplish.  Because interrupted tests were not done, it is not 
clear whether the rafts were ever long and continuous as expected 
during monotonic creep.  It is known that rafts are caused by the 
superposition of the external stress and the coherency stress, 
which results in an unequal stress state developing in the γ 
channels during deformation [1,2,14-16].  During tensile loading, 
the external stress reduces the compressive strain energy in the 
vertical channels relative to the horizontal channels.  Stresses in 
the horizontal channels are relieved by the formation of 
dislocation networks.  Because the stresses are not relieved in all 
directions, a gradient in elastic strain energy is formed between 
the horizontal and vertical channels.  This gradient is the driving 
force for diffusional mass transport, and the rafted structure forms 
[15,17].  As seen in the schematics in Figures 1 and 2, the cyclic 
loading causes both compressive and tensile stresses in the 
specimen.  Therefore the rafts do not fully develop because, in the 
case of cyclic fatigue, dislocations are forming in both horizontal 
and vertical channels, reducing the driving force for diffusional 
mass transport, and therefore rafting. 
 
Substructure Analysis 
 
Even in the thermally exposed material, in the absence of applied 
stress, dislocations are present at γ/γ’ interfaces, probably to 
accommodate the negative misfit of the γ’ precipitates due to the 
rhenium additions [18].  Figure 8 shows that these dislocations 
travel through the γ channels and loop around the γ’ precipitates.  
The dislocations have burgers vectors of a/2<110 > and 
a/2< 101 >.  Intersecting dislocations form nodes and dislocation 
networks.  No rafting was observed, however, after thermal 
exposure.  In the absence of externally applied stresses, the 
dislocations move because of a combination of thermal gradient 
stresses and the stresses associated with the negative misfit of the 
γ/γ’ interface.  The dislocations achieve lower energy 
configuration by arranging into the network formation. 
 
In the compression hold specimens, extensive dislocation 
networks formed in the γ phase, as seen in Figure 9.  Investigation 
of a large section of the sample revealed that dislocation networks 
formed in both vertical and horizontal γ channels, along with γ/γ’ 
interfaces.  The dislocations in the networks have burgers vectors 
of a/2< 110 >, a/2< 011>, and a/2< 101 >.  An isolated 
dislocation with a burgers vector of a/2< 110 > was found within 
the γ’ phase that connected to the dislocations in the matrix 
networks.  This indicates that the applied stress was large enough 
to cause dislocations to shear the γ’ phase.  While there were 
isolated dislocations shearing the γ’ phase, most of the 
deformation appears to be confined to the γ phase.  Therefore, the 
dominant deformation mode was dislocation movement within the 
γ channels and not by a γ’ shearing mechanism. 
 
 

 

 
a) 

 

 
b) 

Figure 5. High resolution SEM of the microstructure of 
thermally exposed material. No rafting is observed. 

a) Parallel to [001]- specimen axis is vertical.  b) Perpendicular 
to [100]- specimen axis is orthogonal to the image. 

 
 

 
a)  

 

 
b)  

Figure 6.  Microstructure of specimen with compression dwell. P-
type rafting is observed.  a) Parallel to load- [100] normal, loading 
axis is vertical.  b) Perpendicular to load- [001] normal- specimen 

axis is orthogonal to image. 
 

 

 
a) 

 

 
b) 

Figure 7.  Microstructure of specimen with tension dwell. N-type 
rafting is observed.  a) Parallel to load- [100] normal, loading axis 
is vertical.  b) Perpendicular to load- [001] normal- specimen axis 

orthogonal to image. 
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Figure 8.  Bright field TEM image of the thermally 
exposed material.  Dislocation networks form at γ/γ’ 

interfaces to accommodate the negative misfit. 
Loading axis is normal to image. 

 
Figure 9.  Bright field TEM image of specimen with 

compression dwell.  Dislocation motion in the γ 
channels dominates the deformation. Loading axis is 

nearly horizontal. 

 
Figure 10.  Bright field TEM image of specimen with 

tension dwell.  Shearing of γ’ particles was the primary 
deformation mode. Loading axis is nearly horizontal. 

In the tension hold specimens, the dislocation networks were 
confined to the γ/γ’ interfaces, shown in Figure 10.  The 
dislocation networks were again seen in both horizontal and 
vertical channels.  Multiple dislocations with burgers vectors of 
<101> were observed in the γ’ phase.  Screw dislocations were 
observed shearing through multiple γ’ particles at once, while 
others were bowing within the γ’ phase. Since the dislocation 
networks were confined to the interface, the γ’ appears to be an 
important deformation mode, suggesting that at least at this stage 
of deformation, the γ’ phase is acting as the continuous “matrix” 
phase. 
 
TEM observations from both samples reveal that dislocation 
networks have formed in both vertical and horizontal γ channels 
and along all γ/γ’ interfaces.  As stated earlier, the formation of 
dislocations along both types of channels decreases the driving 
energy for diffusional mass transport.  Therefore it is evident 
through the TEM studies that the cyclic loading is deterring raft 
formation. 

 
Conclusions 

 
In this work, the microstructural changes occurring in SPLCF 
specimens with tension and compression dwell times were 
compared with thermally exposed material. It was observed that 
the combination of creep and fatigue loading caused short, 
discontinuous rafts, in comparison to rafts observed in monotonic 
creep.  TEM analysis confirmed that dislocations were moving in 
both horizontal and vertical channels, and therefore deterring raft 
formation because the driving force for diffusional mass transport 
is being reduced by the strain accommodation.  The reduced 
driving force does not allow long continuous rafts to form as 
easily, and the short, discontinuous rafting was observed.  
Dislocation network formation and γ’ shearing appears to be the 
main deformation mode for compression dwell and tension dwell, 
respectively.  For each of the SPLCF specimens it is difficult to 
distinguish what deformation is due to monotonic loading or 
cyclic loading. This highlights the need for a separate fatigue 
study, where the fatigue mechanisms can be described before 
attempting to analyze the combined, and probably synergistic, 
effect of creep and fatigue.   
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