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Abstract

The creep deformation behaviour of a high pressure
(cooled) turbine blade section is modelled using the fi-
nite element method. Realistic estimates of the thermal
and mechanical loading expected during service are em-
ployed; properties for the single crystal superalloy CMSX-
4 are assumed. The constitutive model accounts for both
a

2
<110> tertiary creep in the γ matrix and a <211>

shearing of the γ′ phase. The results indicate that the
load in the web decreases during service due to creep
deformation, because of the primary creep effect. It is
demonstrated that a variation in the blade orientation of
20◦ away from [001] causes a variation in the creep strain
at 20 × 106 s (about 5500 h) of about a factor of two.
Off-axis orientations experience higher stresses in the web
and correspondingly greater primary creep strains in the
cooler web locations. Uncertainties in the locations of the
cooling holes of up to 0.2 mm are predicted to increase
the creep strain by a factor of around 15%.

Introduction

Nickel-based superalloy turbine blades are amongst the
most important of the components required for the mod-
ern aeroengine, and indeed the performance characteris-
tics (e.g. specific fuel consumption, thrust) depend criti-
cally upon the severity of the environment which can be
endured. Work continues to develop new grades of these
alloys with improved high temperature capabilities, e.g.
in creep, fatigue and oxidation. Usually, these compo-
nents are fabricated from the nickel-based superalloys in
single crystal form, so that a strong degree of anisotropic
behaviour is inherited from the solidification processing
used for their fabrication. As a class of engineering ma-
terial developed specifically for high temperature appli-

cations, the superalloys should be regarded as a major
success story.

For practical application under service conditions, an
accurate analysis of the mechanical response to the an-
ticipated loading is obviously of great importance, not
least because the results of this will influence the service
life which can be declared. Existing analysis capabilities
for the deformation behaviour of turbine blading remain
unsatisfactory in a number of important respects. First,
there is usually a significant degree of empiricism invoked
so that the underlying micromechanics of deformation -
in particular the interdependence of the different defor-
mation modes - are not properly respected. Second, the
anisotropy of deformation is difficult to account for, so
that major assumptions have needed to be introduced,
with a resultant loss of physical faithfulness to the under-
lying metal physics. Third, a coupling of all the relevant
effects - the heat transfer characteristics, the non-linear
temperature-dependent deformation, the geometrical un-
certainties introduced from the manufacturing steps - re-
mains a significant numerical challenge. It follows that
further work is required before one can say that existing
analysis capability is optimised. One can argue that more
accurate predictive analyses will become more important
as conditions in the turbine become more aggressive, since
it will not be possible to rely upon safety factors as large
as those used at present.

The work reported in this paper was carried out with
these factors in mind. Recently, the authors have devel-
oped a model for the creep deformation of single crystal
superalloys, which accounts for the important microstruc-
tural degradation mechanisms occurring on the scale of
the microstructure, and their inter-relationship: the glide
of a/2 < 011> {111} dislocations in the matrix phase
of these materials which causes tertiary creep, and the
shearing of the strengthening gamma prime precipitate
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by a< 112> {111} ribbons which is responsible for pri-
mary creep. Here, the model is applied to analyse the
performance of a cooled turbine blade which is subject
to a loading history which is likely to be representative
of that experienced during the initial stages of the flight
cycle.

Modelling Approach

The numerical analysis reported in this paper requires the
elastic and plastic portions of the total deformation to be
separated; for this purpose, a multiplicative decomposi-
tion is used. The elastic part comprises the stretch and
rotation of the lattice, and the plastic part corresponds
to the unrecoverable deformation caused by dislocation
activity. Because the material consists of two phases, it
is necessary to decide how to treat the stress and strain
distributions across the interfaces separating them; here
it has been assumed that the external stress can be av-
eraged across the unit cell consisting of the γ − γ′ mi-
crostructure, following Svoboda. Two distinct deforma-
tion mechanisms are accounted for: (i) dislocation glid-
ing in the channels of the matrix, so-called tertiary creep,
and (ii) shearing of the precipitates by dislocation rib-
bons, referred to as primary creep. The two mechanisms
occur with different overall glide directions and therefore
have different Schmid matrices and different deformation
anisotropy.

Constitutive Laws for the Matrix Phase, γ

The matrix material has an fcc crystal structure. If mo-
bile and immobile dislocations are not distinguished, the
Orowan equation can be used to calculate the shear rate
γ̇α for each slip system α according to

γ̇fcc = ρfccbλ
α

fccFattack exp

(
−

Q110
slip

kBT

)

× exp

(
|τ + τmis| − τpass − τoro

kBT
VC

)
(1)

where b is the magnitude of the Burgers vector, Fattack

the dislocation vibration frequency which must be less
than the Debye frequency, Q is an activation energy which
is expected to be close to the activation energy for self-
diffusion, kB is Boltzmann’s constant, T is the temper-
ature and τ is the resolved shear stress on the system.
τpass and τoro are resistance stresses coming from disloca-
tion interactions and configuration curving, respectively,
while τmis is the average misfit stress in the matrix phase.

Vc is an activation volume and λ the average jump dis-
tance. A detailed description and derivation is given else-
where [1]. The dislocation density evolves according to

ρ̇fcc =
cmult1
bλα

fcc

γ̇fcc − cannh1ρfccγ̇fcc (2)

where cmult1 and cannh1 are fitting parameters for the dis-
location multiplication and annihilation rates.

Constitutive Laws for the Precipitate, γ′

The precipitate material has an L12 ordered crystal struc-
ture. It is assumed that a/2< 011> {111} dislocations
combine to form the a< 112> {111} ribbons observed to
form during primary creep [2] and that these shear the
γ′. Therefore the dislocation ribbons are not required
to bend around inside the γ channel and therefore the
Orowan stresses acting on them are small. Consequently,
the following flow rule for the γ′ is employed:

γ̇L12 = ρL12bλ
α

L12Fattack exp

(
−

Q112
slip

kBT

)

exp

(
|τL12| − τpass

kBT
VC

)
(3)

Since the ribbon dislocations extend across both the chan-
nel and precipitate, one part of each ribbon dislocation
experiences a forward misfit stress and the other a back-
ward misfit stress. Therefore it is rather difficult to con-
sider the effect of misfit for the ribbons. For this reason,
the effect of misfit is omitted for the L12 superdisloca-
tions.

The dislocation multiplication/annihilation term has
an additional component to describe the combination of
γ dislocations. Each possible set which might possibly
combine to form an a < 112> ribbon is considered in
turn, hence

ρ̇L12 = +cmult21 min(ρIfcc, ρ
II
fcc)Γ

+
cmult22

bλ
γ̇L12 − cannh1ρL12γ̇L12 (4)

where Γ is the dislocation combination frequency and ρIFCC
and ρIIFCC are the densities of each of two dislocation can-
didates for combination. The term Γ is described as a
thermally activated process, according to

Γ = Fattack exp

(
|τ | − τAPB − G |δmis| − τpass

kBT
VC

)
(5)

where G is the shear modulus and the resistance stress
τAPB is defined via the anti-phase boundary energy γAPB
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by τAPB = γAPB/b and the misfit parameter δ is defined as
δmis = 2 (aγ′ − aγ) / (aγ′ + aγ).

For each possible dislocation combination, one has to
account for the formation of the a<112> ribbon disloca-
tions from distinct a/2<110> matrix dislocations. For
this to occur, it is assumed that two pairs of dislocations
present on a common slip plane combine according to
equations such as

2 ×
(a

2
[110] +

a

2
[101]

)
= a[211] (6)

i.e.

2 × (bI
FCC + bII

FCC) = bL12. (7)

Damage Caused by Vacancy Accumulation

Damage causing eventual creep fracture is attributed to
the condensation of voids from vacancies, leading to the
formation of porosity and microcracks [3]. Here, it is
assumed that the phenomenon of void condensation is
caused by dislocation evolution; each unit volume is con-
sidered to represent of order (ρ/b)b3 = ρb2 vacancies,
which are released by dislocation annihilation. Voids then
form which both (i) reduce the effective internal cross-
section and (ii) increase the climb rate of γ/γ′ phase
boundary dislocations.

Based on this premise and assuming that a single va-
cancy has a volume b3, the ratio of void volume to the
total volume Rvoid is then taken to be proportional to the
annihilation terms for the channel dislocation and ribbon
dislocations. Hence one defines

Ṙvoid = cvoid (fγ
˙̄ρfcc + fγ′ ˙̄ρL12) (8)

where each f denotes the fraction of one of the two phases
present and cvoid is a constant. The damage parameter
D is then defined by

D = (Rvoid)
2

3 (9)

Note that D acts to increase the effective stress by de-
creasing the available section area in the normal way;
hence the resolved shear stress τ is then replaced by an
effective shear stress τeff according to τeff = τ/(1 − D).
Because the three matrix channels (two horizontal and
one vertical) will have different stress levels, the vacancy
concentration will be different in the horizontal and ver-
tical channels. Therefore the entire model in fact consid-
ers each channel separately, Figure 1. In particular, the
imbalance of vacancy concentration around any given γ′

precipitate will cause atoms to migrate around it.

channel 

thickness h

precipitate size lX

precipitate 

volume 

fraction  fg'

channel 

volume 

fraction fg/3

Z

Figure 1: Schematic illustration of the microstructural
unit of a single crystal superalloy.

Obtaining the Stress and Strain States for the Material

In principle, it is possible to identify a unit cell of material
composed of the precipitate and matrix channels, to mesh
these in the finite element analysis as a submodel and
then obtain an exact solution for the stress and strain
everywhere within the unit cell; however, this approach
is computationally expensive and excessively complex to
apply to the analysis of components. Therefore, it has
not been used here. Instead, Svoboda’s scheme [4] has
been used to derive the overall flow behaviour from that
of each microstructural component, as follows. In Figure
1 we identify a precipitate of size lx, ly, lz and channels
of thickness hx, hy, hz. The change in dimensions of the
precipitate (occurring by diffusional processes) must obey
the rule hx + lx = hy + ly = hz + lz = L0 and lxlylz = l30 .
So the volume fractions f can be defined as a function of
(lx, ly, lz) as follows

f pct = lxlylz/L3

0
= (l0/L0)

3

f chn
x = (L0 − lx)lylz/L3

0

f chn
y = lx(L0 − ly)lz/L3

0

f chn
z = 1 − f chn

x − f chn
y − f pct (10)

For all single crystal superalloys, a non-zero misfit δ
will cause a significant discontinuity in the elastic strains
across the matrix/precipitate interface. However, plastic
deformation results in the establishment of misfit disloca-
tions at the interface that can completely relax the misfit
strains / stresses. For the γ channel with normal along the
1 direction (x), f chn

x , then the following tensor equation
can be used for the in-plane components ij = 22, 33, 23,

σchn
x = C̃chn(C̃

−1

pctT
pct + δmisI−

∑

α

ρα

FCCb
2M̃α) (11)

where C̃chn and C̃pct are the single crystal stiffness tensors

for the channel and precipitate and M̃α is the Schmid
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Figure 2: The input temperature field (top) and material
points identified in the turbine blade section.

matrix for slip system α in the starting configuration.
For the other two channels, the i, j are permuted. For the
stresses normal to the interface, i.e. the ij = 11, 12, 13
components for the f chn

x channel, it is assumed that

σchn
x = Tpct. (12)

Finally, a force balance can be used to find the local stress
within the microstructural component, in terms of the
applied stress tensor

σext = f pctσpct + f chn
x σchn

x + f chn
y σchn

y + f chn
z σchn

z . (13)

Application to turbine blade creep

The model has been applied to analyse a cooled high pres-
sure turbine blade, one of the most critical components in
the gas turbine. The primary loads on the turbine blade
section are centrifugal (along the long axis of the blade)
but these are augmented by considerable thermal stresses
caused by the high temperature gradients.

Finite Element Implementation

The creep model has been implemented as a user ma-
terial subroutine within Abaqus [5]. A 2-element high
mesh of 2434 eight-noded hexahedra (C3D8H) was gen-
erated for the blade section studied by MacLachlan [6].
During creep deformation, planes normal to the blade
axis (denoted z) were kept coplanar, such that the top
and bottom surfaces of the mesh remain symmetrical in-
plane. Rigid body motion was excluded by constraining
two nodes on the bottom plane. The centrifugal loads
were added by applying a surface pressure to the top sur-
face. Three time steps were included in the finite element
(FE) analysis. First, heating from ambient to the operat-
ing temperature field was applied, Figure 2, enabling the
thermal stresses to be calculated. Second, the centrifu-
gal load was added. Finally, in the third step creep de-
formation was simulated under the influence of both the
thermal and centrifugal loads. Figure 2 indicates that
the temperatures range from ∼ 750 to 1100◦C and so
both primary creep by glide of L12 superdislocations and
tertiary creep by fcc dislocation glide may both occur si-
multaneously in different parts of the blade section. Note
that the aerodynamic loads have been ignored in the mod-
elling.

In the present model a < 112 > {111} ribbon shear
of the γ′ is only a significant contributor to creep at
low temperatures, because the threshold stress required
is high and therefore at temperatures in the region of
700 − 1100◦C a/2 < 110 > {111} creep of the γ matrix
dominates. This is appealing because the temperature
cut-off of primary creep arises naturally from the model.

From e.g. Ref [7] the thermal expansion coefficients of
the γ (denoted αchn) and γ′ (denoted αpct) are known
to be considerably different and also temperature depen-
dent. Here, an average thermal expansion for the mi-
crostructure has been employed, such that the thermal
expansion amounts to the application of a load, as fol-
lows

ᾱ = (f chn
x + f chn

y + f chn
z )αchn + f chnαpct (14)

where (αchn, αpct) take values of 1.63 × 10−5 ◦C−1 and
1.26×10−5 ◦C−1 respectively, which are the values found
in the literature at 850◦C.

Following [6], a centrifugal load of 350 MPa has been
applied, which approximates to the worst-case operating
conditions experienced during takeoff. The sensitivity to
blade orientation has been examined, Table 1 and Fig 3.
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Figure 3: Initial orientations tested in the basic triangle;
here only [001] and Q are examined.

Evolution of the Stress Distribution

Although the thermal expansion is isotropic, elastic
anisotropy gives rise to an orientation dependence of the
thermal stress distribution, Figure 4(a-b). The stresses
in the perfect [001] orientation vary by around 400 MPa,
with the highest stresses found in the blade core, which is
the coolest part of the blade, and the lowest stresses found
in the blade tip. In the Q orientation the stress variation
is much more significant, ∼ 700 MPa, but is broadly sim-

Orientation φ1 Φ φ2

001 0 0 0
A −148.5 1.5 180
B −178.6 2.4 180
D −167.8 3.7 180
F −162.8 5.0 180
G −147.0 5.3 180
J −165.0 8.0 180
L −142.3 9.6 180
M −155.6 12.7 180
O −177.9 17.5 180
P −179.3 19.8 180
Q −166.4 23.0 180

Table 1: Input initial orientations for used in the turbine
blade model, following those used for monotonic creep
testing by Drew[8]. The Euler angles φ1, Φ and φ2 repre-
sent rotations around Z, X and Z respectively.

ilar in pattern. The thermal loads are not large enough
to cause primary creep in the core, but are high enough
to cause tertiary creep and rafting throughout the blade
skin.

When the simulated service load is applied, Figure 4(c-
d), the stress distribution pattern is very similar to the
thermal case but the loads are of course more tensile. No-
tably, this load is large enough, > 550 MPa, to cause
primary creep in the Q orientation in the blade web.
Therefore primary creep of the web would be expected
to dominate the response during the initial stages of life.

As shown by MacLachlan [6], because the blade section
normal to the blade axis must remain coplanar there must
therefore be a load shift from the web (primary creep) to
the blade skin (tertiary creep) during the early stages of
deformation. After around 5000 h of creep, Figure 4(e,f),
the stress distribution therefore equilibrates to give much
less variation across the blade section. It is important to
note that this response would not be predicted by a model
of only tertiary creep, which would predict that an ever-
increasing fraction of the load would be borne by the cold
web. Notably, the eventual stress distribution suggests
that these equilibrated stresses are universally lower than
the threshold stress of 550 MPa for precipitate cutting.

The evolution of the normal stress for both the [001]
and Q orientations is shown in Figure 5. Notably, the
stress decreases in the first ∼ 1000 h in the two larger
sections of the web (P2 and P7), which is balanced by a
corresponding increase in the rest of the blade, including
the remaining web location, P4. In the perfect [001] orien-
tation, the stress at the blade tip remains nearly constant,
but in the Q orientation it increases. In the blade skin
the stresses are nearly constant over life. After around
6×106 s or ∼ 1650 h, the stresses remain nearly constant
throughout the blade.

Creep Strain Variation Within the Blade

The significant temperature and normal stress distribu-
tion throughout the blade can produce variations in the
mechanisms for creep deformation, Figure 6, which de-
composes the creep strain into the shear caused by each
of the fcc and L12 ribbon dislocations for the [001] and Q
orientations. Clearly, the points in the web (P2 and P7)
creep mostly by primary ribbon creep, whilst the points
in the blade skin and trailing edge creep mostly by ter-
tiary creep. In the Q orientation, the amount of primary
creep in the web is greater than the [001], which reflects
the fact that they are both more highly stressed and are
in a poorer orientation for primary creep resistance. In
addition, the threshold effect for primary creep is clearly
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Figure 4: Normal stress distribution in the turbine blade
section. (a) and (b) are the stress due to the thermal load
only, (c) and (d) are the stresses after application of the
thermal and centrifugal loads and (e) and (f) are the stress
after 2× 107 s =∼ 5500 h exposure to creep. (a), (c) and
(e) correspond to a blade with a perfect [001] orientation
and (b), (d) and (f) to orientation Q, respectively.
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Figure 5: Evolution of the normal stress at selected points
in the blade for the [001] orientation (top) and Q (bot-
tom).

observed.

Orientation Dependence of the Blade Response

The 12 orientations shown in Table 1 have been studied.
The maximum distances of the orientations listed in table
1 from the [001] orientation are about 20◦ inside the basic
triangle [8]. Figure 7 shows the total and creep deforma-
tion along the blade axis for each orientation studied. The
variation observed between the samples is dominated by
the elastic response, but the creep strains also vary by up
to 0.03%. As expected, the [001] is the best orientation,
but the creep response does not vary directly according
to distance from [001]. For example, the M and Q ori-
entations have almost the same overall response but are
nearly 10◦ different in primary orientation and the P and
O orientations are the worst. Also note that the creep
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Figure 6: Shear strain evolution at different locations in
the blade section due to the fcc γ and <112> γ′ disloca-
tions, for blades in both the [001] and Q orientations.
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responses, even at the whole blade level, do not map onto
a single master curve, with some orientations showing a
lower initial primary creep rates but larger rates at later
times.

Figure 7(top) surprisingly indicates that orientation Q
gives the best deformation resistance among the test ori-
entations, as suggested previously [8]. In contrast to com-
mon perception, this study shows that the larger the dis-
tance from the [001] orientation, the better the deforma-
tion resistance. However, it is important to recognise that
this is a consequence of the variation in elastic response
rather than of the creep response, Figure 7(bottom).

Effect of Casting Shape Variations on the Creep Response

During the investment casting of superalloy blades, the
location of the ceramic cores used to form the cooling
passages can be difficult to control. This can be the
case both due to difficulties in casting preparation or due
to motion of the cores during charging with the molten
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alloy[9]. Therefore it is inevitable to have certain varia-
tion in the core locations compared to the design ideal.
Here we examine the effect of displacements of the cores
of 0.2 mm from their ideal positions in each direction.

Interestingly, Figure 8 shows that changing the cooling
hole position changes the amount of primary creep experi-
enced in the web significantly. The total strain, Figure 9,
varies by about 1× 10−4 between the four displacements,
with a displacement of +y = 0.2 mm found to minimize
the strain response. A similar pattern is observed in the
overall creep strain in the blade, but again elastic effects
dominate the response. The overall effect on the amount
of creep observed found to vary by around 10% due to
variations in cooling hole position alone. Interestingly,
deflections towards the vacuum (concave, −y) face ap-
pear to be most critical. Similarly, deflections in the −x
direction appear to have very little effect while deflections
in the +x direction do affect the response.

These considerations suggest that the optimal position
for the cooling holes may be a deflection in the +y di-
rection, but this model has ignored the effect of such de-
flections on the temperature distribution (which has been
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ferent modification of cooling hole positions.

scaled to keep the surfaces at the same temperature). Of
course, there are additional design considerations, such as
the vibrational modes, that affect cooling hole location.

Comparison to the Blade Section Model of MacLachlan

The evolution of the normal stress at different locations
in the blade, Figure 6, is different to the predictions made
previously by MacLachlan [10, 6]. In that model a soften-
ing factor was introduced for primary creep to allow one
slip system to dominate primary creep until the orienta-
tion reaches the duplex slip boundary. Therefore, rather
large rotations and creep strains are predicted and so a
load shift is predicted twice: at first load shifts from the
cold web to the hot skin and subsequently load shifts back
to the web. In the present model slip system activation
depends only on the resolved shear stress and resistance
from dislocation interactions. Therefore little softening is
caused by crystal rotation and only one load shift, from
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the web to the skin, is predicted. Currently, there is no
experimental data available to clarify which behaviour ac-
tually occurs in practice, although additional experimen-
tation on the orientation evolution during a creep test
would allow elucidation of which approach is correct.

However, compared to MacLachlan’s model [10, 6], the
current work predicts a similar dependence of creep resis-
tance on orientation, that is that the closer to the [001]
orientation, the better the creep resistance. In addition,
MacLachlan’s model predicts that the overall blade strain
rate accelerates with strain, whereas here slowdown is ob-
served. This is because in the present model the drop in
load in the web results in a cessation of primary shear
and therefore in a drop in the overall blade strain rate.

Furthermore, besides creep deformation anisotropy, in
this paper we have considered consequent change in the
elastic response. This implies that the overall strain is not
minimised in the [001] orientation. Although thermal gra-
dient and centrifugal loading cause larger normal stress
for the Q orientation, the elastic anisotropy, the different
Schmid factors for different slip systems and different dis-
location interactions produce better overall deformation
resistance for orientations away from [001].

Summary and Conclusions

The creep deformation behaviour of a high pressure
(cooled) turbine blade in CMSX-4 has been developed,
which properly respects the loading conditions antici-
pated during operation. The underlying modes of micro-
mechanical behaviour in primary and tertiary creep (and
their inter-relationship) are accounted for.

The following conclusions can be drawn from this work.

1. The analysis indicates that load shakedown occurs
during the initial stages of life, with primary creep in
the webs of the blade resulting in load shedding to the
periphery (skin) of the blade and a consequent cessation
of primary creep in the web.

2. Variations in orientation about [001] can cause sig-
nificant variations in the normal stress in the blade web,
which produces different primary creep responses in that
location. The total strain is minimized, due to elastic
anisotropy, in the Q orientation, but the [001] orientation
minimizes the creep response.

3. The effect of variation in the location of the cooling
channels has been analysed and found to cause up to a
10% variation in the creep response. However, this ef-
fect appears to be smaller than that due to uncertainties
in the orientation of the blade with respect to the [001]
crystallographic axis.
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