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Abstract 

 
The application of the halogen effect was extended to Ni-base 
superalloys with low aluminium content. A dense protective 
alumina scale can be formed by increasing the Al-activity through 
the halogen effect. Thermodynamic calculations predicted the 
existence of a region for the F- and Cl-effect for the alloys IN738 
and IN939 at temperatures between 900°C and 1200°C. The 
suitable F- and Cl-concentrations were found for IN738 by using 
ion implantation. The oxidation mechanism changed from an 
inward-growing discontinuous scale to a dense continuous 
protective alumina layer. The F-effect on IN738 improves the 
oxidation resistance during long term oxidation.  By using the F-
effect a pure alumina scale was also obtained for  alloy  CMSX-4. 
 

Introduction 
 
Poor oxidation resistance at temperatures above 1000°C is typical 
for technical Ni-base alloys with Al-contents of significantly less 
than 10 wt%. These Al-concentrations are below the critical Al-
concentration necessary for the formation of a dense protective 
alumina scale. A fast growing complex non-protective oxide scale 
covers the metal surface after short oxidation time. Below the 
oxide scale internal oxidation of aluminium takes place forming a 
discontinuous alumina scale which allows the diffusion of oxygen 
and nitrogen from the environmental atmosphere into the metal 
[1]. Al-rich coatings are commonly used to establish a protective 
alumina scale on the surface of components for high temperature 
technology [2-3]. According to Wagner`s theory of oxidation [4] a 
protective alumina scale can be formed if the Al-activity on the 
alloy surface is sufficiently high. The halogen effect [5] offers a 
new way to realize this condition. By using the halogen effect 
good results were obtained for TiAl-alloys [6-10]. First 
investigations applying the halogen effect to Ni-base alloys 
revealed the change of the oxidation mechanism from an 
internally growing discontinuous alumina scale to the formation 
of an externally growing dense protective alumina scale [11, 12]. 
In this work the halogen effect is applied to the alloys IN738, 
IN939 and CMSX-4. The predictions of the thermodynamical 
calculations to realize the halogen effect for F, Cl and I are 
presented. The corresponding halogen concentrations were 
achieved by using ion implantation. The oxidation resistance 
during long term isothermal oxidation at 1050°C is investigated. 
 

Materials and Methods 
 

This work is focused on the Ni-base alloys IN738, IN939 and 
CMSX-4. Their elemental composition is summarized in table 1. 
After cutting into pieces of size 10 x 10 x 1 mm3 the specimens 
were polished down to 4000 grit SiC. The fluorine ion 
implantation was performed at the ion implanter of the Institute of 
Nuclear Physics (IKF) of the Goethe-University in 
Frankfurt/Main. Prior to implantation the F- and Cl-implantation  

profiles were calculated  by using the software package T-DYN 
[13] based on a Monte Carlo-model. The given implantation 
parameters (fluence, energy) have been varied for  F between 1 x 
1016 F cm-2 / 38 keV  and 5 x 1017 F cm-2 / 38 keV, whereas the 
Cl-fluences were chosen within  1 x 1016 Cl cm-2 / 70 keV  and 4 x 
1017 Cl cm-2 / 70 keV. The ion energies correspond to a mean 
projected range of about 35 nm in the alloys for both F- and Cl-
ions as was obtained by using the energy-range calculation with 
TRIM 95 [14]. Only one side of the samples was implanted for 
the screening, and the untreated side served as a comparison. In 
case of the TGA-measurements both sides and all edges were 
implanted with fluorine. The PIGE (Proton Induced Gamma-ray 
Emission) technique [15] allowed the non-destructive 
measurement of the F-depth profiles. The resonant nuclear 
reaction  19F(p, αγ)16O at a proton energy of 484 keV allowed the 
F-depth profiling  up to a depth of 1 µm. By varying the incidence 
angle to 60 degrees a depth resolution of 10 nm near the surface 
could be obtained. The high-energetic γ-rays (5..7 MeV) were 
registered by using a NaI-detector. The implanted Cl-dose was 
determined by non-destructive RBS (Rutherford Backscattering 
Spectrometry) [15]. The backscattered He-ions were detected with 
a surface barrier detector. The PIGE and RBS-measurements were 
carried out at the 2.5 MV Van de Graaff - accelerator of the IKF.  
All oxidation tests were performed in a furnace under lab air at 
1050°C up to 1000 hours. During the TGA-measurements a 
microbalance (Sartorius) recorded the mass gain simultaneously 
during isothermal oxidation in synthetic air. Metallographic cross-
sections were prepared to study the structure of the oxide scales 
by using light microscopy as well as SEM and EDX-spectrometry.  
For the thermodynamical calculations the software FactSage [16] 
was used. New databases for the Ni-base alloys and all halides (F, 
Cl, Br and I) had been installed. 
 
Table 1: Elemental composition of the Ni-base alloys investigated 

(in wt.%). 
 
Element IN738 IN939     CMSX-4 
Ni 61.13 48.35 61.7 
Co 9.0 20.0 10.0 
Cr 16.0 22.0 6.0 
Al 3.30 1.40 5.6 
W 1.70 2.0 6.0 
Mo 2.60 - 0.60 
C 0.17 0.15 - 
Ti 3.50 3.80 1.0 
Ta 1.70 1.30 6.0 
Others 0.90 Nb 1.0 Nb   3.0 Re; 0.1 Hf 
 

Principles Of The Halogen Effect For Ni-Base Alloys 
 

The halogen effect can be described by the selective formation of 
gaseous Al-halides at high temperatures in pores and microcracks 
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near the alloy surface. This model, originally developed for the 
case of TiAl-alloys [5] was applied to the Ni-base alloys. If the 
near-surface region of a Ni-base alloy is doped with a halide, e. g. 
fluorine, the formation of gaseous metal fluorides at high 
temperatures becomes possible. As a consequence mainly the Al-
fluorides migrate to the surface. The increasing oxygen partial 
pressure leads to the disintegration of the Al-fluorides and the 
formation of Al2O3. The free gaseous fluorine can partly return 
into the metal and reacts to form Al-fluorides again. The 
continuation of this cycle process allows the formation  of a dense  
protective alumina scale. The other alloying elements, mainly Ni, 
remain in the metal because of the relatively low partial pressure 
of the corresponding metal fluorides. The most important 
reactions are summarized schematically in figure 1. 
 

    
Figure 1: Possible reactions of fluorine within a cavity of a Ni-
base superalloy 
 

Thermodynamical Calculations for Halogens and Ni-Base 
Alloys 

 
Results for Fluorine 
 
To identify a region of a selective formation of Al-fluorides, 
thermodynamic calculations were performed using the software 
FactSage for temperatures between 900°C and 1200°C on the 
alloys IN738 and IN939. The results obtained for 1100°C   are   
illustrated  in  figure 2.  Beneath   a  critical  pressure of p(AlF)min, 
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calculated by the growth kinetics of  alumina [18], the amount of 
Al needed for further Al2O3 scale growth is too low.  In this   
region no F-effect can occur. If the partial pressure of an Al-
fluoride (here AlF) meets the value of p(AlF)min at the point 
p(F)min the Al-transport becomes significant and the F-effect is 
open. The F-effect works until the partial pressure of the metal 
fluorides of other alloying elements (Ni, Co, Cr, Ti) reaches the 
critical pressure of p(AlF)min  at  p(F)max leading to the formation 
of a mixed oxide scale. As a consequence, a positive F-effect is 
possible only within the window (p(F)max - p(F)min) of total 
fluorine partial pressures. The calculations for the temperatures 
between 900°C and 1200°C show the existence of a window 
defined by the limiting total F-partial pressures p(F)max and  
p(F)min for the alloy IN738. Figure 3 illustrates the corridor for the 
positive F-effect vs. temperature for the alloy IN738.  
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The thermodynamical calculations for the alloy IN939 with a lower 
Al-amount also predict the existence of a corridor for a positive F-
effect as depicted in figure 4. 
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Figure 2: Window for a positive F-effect at 1100°C for the alloy 
IN738 [17]. The calculation was performed with FactSage. 

Figure 3: Corridor of a positive fluorine effect for the alloy 
IN738 between 900°C and 1200°C. 

Figure 4: A positive F-effect is predicted for the alloy IN939 
showing a corridor for temperatures between 900°C and 1200°C. 
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It is important to note that all calculations assume a 
thermodynamical equilibrium throughout. However the kinetic 
behaviour during instationary processes, e. g. the heating process, 
can not be explained by these calculations. 
 
Results for Chlorine 
 
If one modifies the reactions summarized in figure 1 by replacing 
F with Cl the mechanism of the Cl-effect is described. By 
applying these reactions for the thermodynamical calculations 
using FactSage   similar  results  as in  the  fluorine case  were  
obtained (Fig. 5). A critical  pressure p(AlCl)min is  required  to 
ensure a significant transport of Al via the gaseous Al-chlorides to 
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the surface. Below this critical pressure no Cl-effect will occur 
and a protective alumina scale will not be formed. By increasing 
the Cl-total partial pressure to p(Cl)min  firstly the partial pressure 
of AlCl reaches this value which opens the Cl-effect. At a total 
Cl-partial pressure of p(Cl)max the gaseous  TiCl3 meets this 
condition too. 
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From that point a simultaneous formation of gaseous AlCl and 
TiCl3 and their transport to the surface takes place leading to the 
growth of a non-protective mixed oxide scale. As a consequence 
the window for the Cl-effect is defined by the limiting partial 
pressures p(Cl)min and p(Cl)max. If this condition is fulfilled the 
growth of a protective alumina scale is expected. The window for 
the Cl-effect was obtained for temperatures between 900°C and 

1200°C revealing a corridor for the Cl-effect for the alloy IN738 
as depicted in Fig. 6. The lower limit p(Cl)min is one order of 
magnitude higher than the lower limit p(F)min (see Fig. 3) 
indicating that the F-effect is more sensitive. 
 
 
Results for Iodine 
 
The thermodynamic calculations with FactSage for iodine showed 
the absence of a window for the preferred formation of Al-
iodides. The gaseous species CrI and AlI meet the critical pressure 
p(AlI)min simultaneously. Hence no window for an iodine-effect 
can be defined. Similar results were obtained for bromine. 
Therefore the following investigations were focused on fluorine 
and chlorine. 
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Fluorine-effect at Ni-Base alloys 
 
The limiting fluorine partial pressures (p(F)min, p(F)max) obtained 
from thermodynamical considerations have to be transformed into 
a window of F-concentrations (c(F)min, c(F)max) useful for 
practical applications. Due to the absence of a direct equation 
between the fluorine partial pressures and the fluorine 
concentrations, they have to be determined by a screening. 
Because this screening is described in detail in [12, 19] only the 
main work packages are briefly described in this section. A well-
defined F-doping of the alloy surface was achieved by using the 
ion implantation. Prior to implantation the F-implantation profiles 
have been calculated by using the software T-DYN based on a 
Monte Carlo model illustrated in Fig. 8.  According to these 
results the implantations were performed by choosing fluences 
between 1016 and 4 x 1017 F cm-2 corresponding to maximal F-
concentrations between 4 and 44 at.%. The F-profiles could be 
verified by using the PIGE-technique. After oxidation between 
24h and 160h/1050°C/air cross-sections of the samples were 
prepared followed by SEM/EDX-studies of the oxide structure. A 
change of the oxidation mechanism was observed as depicted in 
Fig. 9 for a fluence of 4 x 1017 F cm-2 after oxidation 
(24h/1050°C/air). Whereas the untreated alloy shows internal oxi-
dation of Al beneath a 20 µm thick chromia scale the implanted 

Figure 5: Window for a positive Cl-effect at 1100°C for the 
alloy IN738. 

Figure 6: Corridor for the positive chlorine effect between 
900°C and 1200°C for IN738. 

Figure 7: No window exists for a positive Iodine-effect at 1100°C  
and the alloy IN738. 
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sample formed a 1-2 µm external growing protective alumina 
scale with a Ni-Al-spinel scale on top. 
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For long term oxidation the best results were obtained with 
fluences between  5 x 1016 and  1017 F cm-2 according  to maximal 
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Figure 8: Calculated F-implantation profiles in the alloy IN738 
by using the Monte Carlo software T-DYN [13]. 
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Cr2O3 

Al2O3 (internal oxidation)

Ni-coating Spinel 

Alloy 
Al2O3 

Figure 9:  Oxide scale on the Ni-base alloy IN738. Top 
micrograph: Untreated sample after oxidation 
(24h/1050°C/air). Bottom micrograph: Implanted sample (4 
x 1017 F cm-2 / 38 keV) after oxidation (24h/1050°C/air). 

Figure 10: Mass gain during isothermal oxidation at 1050°C/ 
air of F-implanted  alloy IN738. 
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Figure 11: Oxide scale of an untreated (top micrograph) and 
an implanted (5 x 1016 F cm-2 / 38 keV) sample (bottom 
micrograph) of IN738 after isothermal oxidation 
(TGA/1000h/1050°C/air). 
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F-concentrations between 10-18 at.% as can be seen  in Fig. 8.  
The TGA-curves of  IN738  implanted  with fluences of  5 x 1016,  
1017 and 2 x 1017 F cm-2 shown in Fig. 10 reveal a distinct mass 
gain within the first 100-200 hours. The high mass gain during the 
first 100-150h may be caused by the formation of metastable 
transient oxides. For the untreated sample a nearly linear mass 
loss during the following oxidation was observed. A fluence of 2 
x 1017 F cm-2 shows a parabolic behaviour but the kinetics is too 
fast. After implantation with 1017 F cm-2 the slow mass gain 
changes into a slow mass loss after 600 hours. In the case of 5 x 
1016 F cm-2 alumina kinetics are reached after 200 h characterized 
by a kinetic constant of kp = 2.51 x 10-9 g2 cm-4 h-1. At 900 hours a 
small mass loss is visible. To summarize, several processes can 
influence the TGA-curves: Formation of transient oxides during 
the first 100-150 h leading to a high mass gain, internal oxidation 
and nitridation, evaporation of gaseous species of the main alloy 
constituents (Cr, Ni, Ti) and scale spallation.  
 
             

 
  
             

 
 
 
 
 
 
 
 
 

The mass loss may be due to the evaporation processes and/or the 
spallation of outer scales like chromia or spinel. However the 
SEM-study of the metallographic cross-sections reveals the 
protective scale structure as shown in Fig. 11. The untreated 
sample (Fig. 11, top micrograph) is covered with a 2-3 µm thick 
alumina scale showing internal oxidation and a top scale of spinel.  
The outer chromia scale had spalled. Additionally nitrides are 
formed beneath the alumina scale up to a depth of 30-40 µm.  In 
contrast to this a 1-2 µm thick protective alumina scale was 
established on the sample implanted with 5 x 1016 F cm-2/38 keV 
after oxidation (1000h/1050°C/air) as illustrated in Fig. 11, 
bottom micrograph. The alumina scale is covered with Ni-Al-
spinel. Only a few nitrides are visible. 
 
Although the F-effect for the alloy IN939 was predicted by 
thermodynamical considerations (Fig. 4) no effect was found after 
ion implantation and subsequent oxidation at 1050°C. This may 
be due to the low Al-content which hinders the formation of a 
suffucient amount of Al-fluorides. 
 
The F-effect was observed for the alloy CMSX-4 and 
implantation parameters of 1016 F cm-2/38 keV (Fig. 12). After 
oxidation (60h/1050°C/air) a 0.5 – 1 µm thick stoichiometric 
Al2O3 – scale was found at the metal/oxide – interface (Fig. 12, 
top micrograph). Above this scale a 0.5 µm Al-Ni-mixed oxide 
scale with inclusions of Ta and W was formed. The outer scale of 
1 µm thickness consists of Al-Ni-Cr-mixed oxide. The untreated 
alloy shows an Al-Ni-mixed oxide scale at the metal/oxide-
interface, covered with a layer rich in Ta and W and a Al-Ni-Cr-
mixed oxide scale. The outer scale of 3 µm thickness consists of 
Ni-oxide (Fig. 12, bottom micrograph).  
 

Chlorine-Effect for Ni-Base Alloys 
 
The Cl-effect predicted by thermodynamical calculations was 
detected for the first time at a Ni-base alloy. Based on the T-DYN 
calculations for the Cl-implantation  into  IN738  a  screening was  
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Figure 12: Top micrograph. The implanted alloy CMSX-4 
(1016 F cm-2) forms a  0.5 – 1 µm stoichiometric Al2O3.- 
scale  after oxidation (60h/1050°C/air). Bottom micrograph: 
A complex oxide scale covers the surface of the untreated 
alloy.  
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Figure 13: The oxide scale of untreated IN738 after 
isothermal oxidation (60h/1050°C/air) shows distinct in-
ternal oxidation of aluminium. Additionally nitrides were 
formed within the subsurface zone of the alloy. 

737



   
 
 
 
 
 
 
done with fluences between 1016 and 4 x 1017 Cl cm-2. The ion 
energy of 70 keV corresponds to a mean projected Cl-ion range of 
35 nm in the alloy. Whereas the unprotected alloy is shown in Fig. 
13, the Fig. 14 illustrates the Cl-effect at implanted IN738 (2 x 
1017 Cl cm-2) after oxidation (60h/1050°C/air). 
Below a 2-5 µm thick partly spalled Cr2O3 – top scale a 
pronounced internal oxidation of Al was found (Fig. 13). The non-
protective alumina scale can not inhibit the inward diffusion of 
nitrogen leading to the formation of needle-like Ti-nitrides within 
the subsurface zone up to a depth of about 30 µm. However the 
implanted sample is covered with a 1 µm thin protective alumina 
scale with a partly spalled chromia scale on top. No nitrides are 
visible at the metal/oxide interface indicating the protective nature 
of the alumina scale (Fig. 14). 
 
 

Conclusions 
 
A new method was presented for Ni-base alloys with 3-5 wt.% 
Al-content  to establish a protective alumina scale instead of the 
discontinuous non-protective inward growing alumina scale. The 
halogen effect was proposed to increase the Al-activity. Based on 
thermodynamical calculations with fluorine and chlorine the 
existence of a window for the halogen effect was shown for the 
Ni-base alloys IN738 and IN939 at temperatures between 900 and 
1200°C. Each window is defined by a minimum and a maximum 
partial pressure of the halogen. In the case of bromine and iodine 
no halogen effect was predicted. A screening by using ion 
implantation was performed for the alloys IN738 and IN939 to 
transform the window for the partial pressures into a window in 
terms of halogen concentrations. In the case of IN738 windows 
for the F-effect and the Cl-effect were found and the 
corresponding fluences and concentrations were determined.  The 
optimal implantation parameters for F are between 5 x 1016 and 
1017 F cm-2/38 keV, whereas for Cl it is 2 x 1017 Cl cm-2/70 keV, 
resp.  The formation of a dense protective alumina scale was 
achieved for oxidation at 1050°C. The long term isothermal 
oxidation behaviour up to 1000h/1050°C investigated by TGA 
reveals significant decrease of the oxidation rate. Due to their low 
Al-content the alloy IN939 is unable to establish a protective 

alumina scale. After implantation with 1016 F cm-2/38 keV the 
formation of a pure alumina scale was also observed for the alloy 
CMSX-4. 
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