Challenges for Reactor Materials

J.T. Busby (with slides from many)

Fuel Cycle and Isotopes Division Oak Ridge National Laboratory

2012 Nanonuclear Workshop

February 28, 2012

Rice University

2 Managed by UT-Battelle for the U.S. Department of Energ

Materials performance: Why do we care?

- Materials degradation and performance is a common problem/ concern in existing reactors/nuclear facilities
- Understanding the long-term behavior of materials in the reactor core, vessel, and many other subsystems is critical for safe, reliable, reactor operation.
- Understanding materials performance is a key need in designing any new reactor facility.

• Understanding the limitations of materials in nuclear reactor applications will be key in moving forward in the "nuclear renaissance."

3 Managed by UT-Battelle for the U.S. Department of Energ

Materials issues are a key concern for the existing nuclear reactor fleet

- Materials research is already a key need for the existing nuclear reactor fleet
- Materials degradation can lead to increased maintenance, increased downtime, and increased risk.
- Materials issues must be resolved for:
 - Reactor Pressure Vessels and Primary Piping
 - Core Internals
 - Secondary System
 - Weldments
 - Concrete
 - Cabling
 - Buried Piping

Fig.3 Detail Drawing of the Breaking Portion

Escalation of reactor construction costs provides a strong motivation for innovation in design and construction methods.

• The investment required in a new nuclear plant is significant.

5 Managed by UT-Battelle for the U.S. Department of Energ

D. Schlissel and B. Biewald, 2008

SIA OAK

Materials performance may have a significant impact on the economic case for nuclear power

Drivers of Nuclear Generation Cost Reduction*

Driver	Unit Cost Factor Improved	
Series effect (from FOAK to NOAK)	K) Capital Investment	
Design Standardization	Capital Investment and O&M	
Design Simplification	Capital Investment and O&M	
Multi-unit sites	Capital Investment and O&M	
Decreasing Construction Time	Capital Investment	
Increasing Power Level	Capital Investment	
Increasing Availability Factor	Capital Investment	
Increasing Plant Life	Capital Investment	
Increasing Fuel Burnup	Fuel Costs	

• Materials performance can positively and directly influence these factors.

6 Managed by UT-Battelle for the U.S. Department of Energy *"The Outlook for Nuclear Energy," NEA 2008

This presentation will describe a science-based approach to help overcome past materials limitations

Outline:

- Motivation for understanding materials performance in reactor systems
- Common materials of construction
- Complexity of nuclear systems and requirements for materials use
- Challenges in different reactor systems
 - Irradiation damage
 - Corrosion processes
 - Other select processes
 - Concrete

Materials of construction for reactor systems

Service environments and material choices vary widely between reactor concepts

Construction materials for current reactor designs are diverse

	LWR	SFR	GFR/VHTR
Coolant	Water	Sodium	Helium
Temperature	288-360°C	500-550°C	550-1100°C
Cladding	Zirconium-based	9 or 12Cr steels	SiC/SiC
Core Internals	304/316 SS	316 SS	SiC/Alloy 800H
Vessel	Steel/316 SS	316 SS	Steel/316 SS
Heat Exchanger	Alloy 600/690	9-12Cr/316 SS	Alloy 617
Piping	SS/LA Steel	9-12Cr/316 SS	Alloy 617

 Despite considerable differences in operating parameters, there are common material uses between LWR and SFR applications

Materials in PWRs

Source: R. Staehle

Material selection in a reactor environment is complex

- Many factors are important for reactor service.
 - Availability
 - Cost
 - Fabrication/Processing
 - Reproducibility/Uniformity
 - Irradiation resistance
 - Mechanical performance
 - Creep performance
 - Corrosion performance
 - Thermal properties
 - Joining
 - Fatigue
 - Fracture toughness

All materials must also meet all regulatory (or code qualification) standards.

Structural materials are a critical component for space fission reactor performance

- Space reactors are complex systems and create a harsh environment for structural materials
 - High irradiation fields
 - Often liquid metal coolants
 - Long lifetimes under stress.
 - No opportunity for maintenance or surveillance.
- Structural material performance will determine
 - Reactor temperature
 - Reactor lifetime
 - Reactor configuration
 - Many other design features (mass!)
- The selection of structural materials is a key consideration that impacts all phases of reactor design, construction, and operation.

for the U.S. Department of Energy

Source: JIMO Program

Complexity of material performance in reactor systems

Even within a single component, many modes of degradation may exist

U.S. Failures by Degradation Mechanisms

Joint U.S. NRC – DOE Workshop on U.S. Nuclear Power Plant Life Extension Research and Development Issues, Bethesda, MD, February 19-21, 2008

Slide 3

Source: S. Gosselin

Materials degradation within subsystems is complex

25 different mode-location cases of corrosion have been identified in a SG with Alloy 600 tubes and drilled hole tube supports

From Staehle and Gorman, 2004

Materials aging and degradation in nuclear reactor systems is complex

17 Managed by UT-Battelle

Challenges for material performance in reactor systems

Radiation Damage: the basics

 All of radiation damage boils down to a common step: collisions between incoming neutrons and atoms in the crystal lattice!

Molecular dynamic simulations provide a good picture of this process

20 Managed by UT-Battelle for the U.S. Department of Energy

Molecular dynamic simulations provide a good picture of this process

21 Managed by UI-Battelle for the U.S. Department of Energy Radiation Damage can Produce Large Changes in Structural Materials

- Radiation hardening and embrittlement (<0.4 T_M, >0.1 dpa)
- Phase instabilities from radiation-induced precipitation (0.3-0.6 T_M, >10 dpa)
- Irradiation creep (<0.45 T_M, >10 dpa)

- Volumetric swelling from void formation (0.3-0.6 T_M, >10 dpa)
- High temperature He embrittlement (>0.5 T_M, >10 dpa)

22 Managed by UT-Battelle for the U.S. Department of Energy

Source: S. Zinkle

Radiation damage is inherently multiscale with interacting phenomena ranging from ps to decades and nm to m

B.D. Wirth, UC-Berkeley

23 Managed by UT-Battelle for the U.S. Department of Energy

Dislocation loop microstructure

Bright Field

Dark Field

CP-304 SS irradiated to 0.55 dpa with protons at 360°C

24 Managed by UT-Battelle for the U.S. Department of Energy

Irradiation Hardening

25 Managed by UT-Battelle for the U.S. Department of Energy Source: J. Busby

Radiation hardening

 On a macroscopic scale, this hardening is also observed.

- Increases in YS and UTS are commonly observed.
- Irradiation also results in a drop in ductility.

26 Managed by UT-Battelle for the U.S. Department of Energy

Reactor Vessel Integrity Assessments Must Account for Potential Degrading Effects of Neutron Irradiation

Radiation-Induced Segregation

- High concentrations of radiation-induced defects will migrate to defect sinks.
- Any preferential association between an atom and one type of defect will result in segregation.

RIS comparison for proton- and neutronirradiated 316 SS after 1.0 dpa

29 Managed by UT-Battelle for the U.S. Department of Energy Source: J. Busby

Comparison of γ' in proton- and neutron-irradiated SS

Tihange baffle bolt: neutron-irradiated to ~7 dpa at 299°C*.

<u>304+Si proton-irradiated</u> to 5.5 dpa at 360°C.

30 Managed by UT-Battelle for the U.S. Department of Energy •ATEM Characterization of Stress-Corrosion Cracks in LWR-Irradiated Austenitic Stainless Steel Core Components, PNNL EPRI Report, 11/2001.

Advances in analytical techniques have allowed for more rapid and detailed analysis of materials

3-D APT of Ion-irradiated HCM12A (7.0 dpa at 400°C)

31 Managed by UT-Battelle for the U.S. Department of Energy

Radiation-induced Stress Relaxation

Managed by UT-Battelle for the U.S. Department of Energy

Stress-relaxation is an important factor for a number of LWR core internals

Spring components on fuel assemblies relax during service.

○ Top Nozzle

O Grid Asembly

Easily Observed Swelling

 Swelling: Volume increase in a material caused by void formation and growth

34 Managed by UT-Battelle for the U.S. Department of Energy

Easily Observed Swelling

FFTF Fuel Pin Bundles

HT-9, no swelling

316-Ti stainless, swelling

35 Managed by UT-Battelle for the U.S. Department of Energy

Baffle bolts experience some of the highest fluences and temperatures in a PWR core

A number of common transmutation reactions in reactors can influence irradiation performance

- A number of important reactions occur in reactor environments, varying with spectrum and materials
- Most create helium
 - ⁵⁸Ni + n_f → ⁵⁵Fe + ⁴He
 - ⁶⁰Ni + n_f → ⁵⁷Fe + ⁴He
 - ⁵⁸Ni + n \rightarrow ⁵⁹Ni + γ \rightarrow ⁵⁶Fe + ⁴He
 - ¹⁰B + n → ⁷Li + ⁴He
- He production is of interest due to implications on embrittlement in fast reactors.

Helium Embrittlement for fast reactors

helium content, temperature, and strain rate

Managed by UT-Battelle

van der Schaaf and Marshall, 1983

Nanostructured ferritic alloys are advanced ODS steels for high fluence applications

NFA contain high density of Ti-, Y-, and O-enriched nanoclusters

- NC discovered in 12YWT in 1999 (3D-APT at ORNL)
- NC observed in INCO MA957 in 2003 (3D-APT at ORNL and SANS)
- Neither are available...14YWT developed at ORNL early this century

NFA alloys exhibit extreme radiation tolerance

L.K. Mansur and W.A. Coghlan, ASTM STP 1046, 1989

Lift-Out FIB Specimen

- Simultaneous neutron and He implantation
- HFIR: 9 dpa and up to 380 ppm He at 500°C

Source: D. Hoelzer

J. Bentley et al., Microsc. Microanal., V13(Suppl 2), 2007, CD1072

T. Yamamoto et al., JNM, 367-370, 2007

- Ti-, Y-, and O-enriched NC are stable during irradiation
- He trapping If cavities exist, they are too small (<~2 nm) to detect reliably using standard through focus imaging

10 Managed by UT-Battelle for the U.S. Department of Energ

Corrosion also plays an important role in the economics of nuclear power

Ten most expensive costs of corrosion for Oconee units 1, 2, and 3 (PWR)

			% attributed to	
Work Activities	Cost	Cost, %	corrosion	Cost of Corrosion
Steam Generators	\$22,757.765	8.26	95	\$21,619,877
Maint. Engg. Supp.	\$13,204,783	4.79	33	\$4,357,578
Radiation Protect.	\$12,116,142	4.40	80	\$9,692,912
Mechanical Comp.	\$10,709,285	3.89	33	\$3,534,064
Maint. Funct. Supp.	\$10,675,567	3.87	33	\$3,522,937
Work Control	\$6,073,111	2.20	33	\$2,004,127
Chemistry	\$5,570,659	2.02	60	\$3,342,395
Piping	\$2,391,285	0.87	60	\$1,434,771
Coatings and Paint	\$2,279,358	0.83	45	\$1,025,771
Decontamination	\$1,216,689	0.44	80	\$913,351
Other	\$188,590,607	68.43	9	\$17,122,624
TOTAL	\$275,585,251		25	\$68,896,313

41 Managed by UT-Battelle for the U.S. Department of Energy

Source: B. Gordon in ASM Handbook, Vol 13c, 2005, p. 340.

Assessment of the Event RPV Head Degradation- Nozzle 3

42 Managed by UT-Battelle for the U.S. Department of Energy

Today's LWR environments are continuously managed

	BWR-NWC	BWR-HWC	PWR
Coolant Temp (°C)	288	288	320
Coolant Press. (pisig)	1020	1020	2420
pH (at 25°C)	6.0	6.0	7.0-7.2
Oxygen (ppb)	300-2000	<10	<5
Hydrogen (ppm)		0.4-3	3-5 (35 cc/kg)
ECP (mV _{SHE})	+150	<-230	-770
Conductivity (µS/cm)	<0.1	<0.1	20.5
B content (ppm)			1000
Li content (ppm)			2-3
SO ₄ ⁻ content (ppb)	< 3	< 3	< 3
Cl ⁻ content (ppb)	< 1	< 1	< 1

Corrosion of many forms occurs with nuclear power plants

- General corrosion
- Stress Corrosion Cracking: combination of stress and environment
- **Pitting:** Localized corrosion driven by species and electrochemical differences
- Crevice Corrosion: Localized corrosion driven by species and electrochemical differences
- Intergranular attack: localized corrosion driven by material and microstructural differences
- Erosion-Corrosion: driven by a combination of factors
- Flow-assisted corrosion: driven by flow-rates and corrosion processes

44 Managed by UT-Battelle for the U.S. Department of Energy

Source: D. Jones, Principles and Prevention of Corrosion, Prentice-Hall, 1996.

Flow-accelerated corrosion caused the Mihama-3 incident

Source: **R**. Staehle

SCC in one component can lead to other forms of corrosion

46

Nozzle #3 with insulation removed and shielding installed 03-16-02

(d) Nozzle #3 cleaned

(e) LPSCC crack in cladding

Source: R. Staehle

⁽c)

IASCC: baffle former bolts in PWR

3. Research ~Examples of the Investigation Results for Cracking~

Source: G.S. Was

Cracking of the Shroud (2F-3) ~ Microscopic observation ~

Source: G.S. Was

Types of Liquid Metal Corrosion

- Solution of solid metal(s) into LM
- Diffusion of LM atoms into solid metal lattice
- Formation of intermetallic compound on surface of solid metals
- Mass transfer
- Leaching of constituents from alloy surface due to selective solution
- Subsurface precipitation of intermetallic compound caused by inward diffusion of LM atoms and interaction with alloy components
- Impurity reactions
- (No radiolysis and associated corrosion)

Concrete (Originally Based on Lime Hardened by Atmospheric Carbonation) has been Utilized as a Construction Material for Several Thousand Years

Great Pyramid at Giza Colo (~2500 BC) (82

Colosseum (82 AD) Pantheon (126 AD)

Arch of Severus (205 AD)

Source: D. Naus

- Why did these structures survive?
 - Careful materials selection
 - Mild climatic conditions
 - Lack of steel reinforcement
 - Construction method
- These structures were not fabricated using current "hydraulic portland cement" (circa 1824)

NPP Safety-Related Concrete Structures are Composed of Several Constituents that, In Concert, Perform Multiple Functions

3 Managed by UT-Battelle for the U.S. Department of Energy

All NPPs Contain Concrete Structures Whose Performance and Function are Necessary to Protect the Safety of Plant Operating Personnel and General Public

Trojan NPP

Steel Reinforcement In Wall Near Base

- Concrete structures are essentially passive under normal operating conditions, but play a key role in mitigating the impact of extreme/abnormal operating and environmental events
- Structural components are somewhat plant specific, may be difficult to inspect, and usually can not be replaced
- Structures are subject to timedependent changes that may impact their ability to withstand various demands from operation, the environment, and accident conditions
 - Excessive degradation can lead to failure
 - Failure often affects serviceability, not safety

Summary of Common Causes of Defects in Concrete Members

Unsuitable Materials	Improper Workmanship	Environmental Exposure	Structural
Aggregate unsound or reactive contaminated Cement wrong type manufacturing error contaminated Admixture wrong kind contaminated Water organic contaminants chemical contaminants dirty Reinforcement wrong kind incorrect size	Faulty Design Incorrect Concrete Mix low cement content high water content incorrect admixture dose batching errors High Slump Unsuitable Formwork/Shoring Misplaced Reinforcement Handling/Placing Concrete segregation careless placing inadequate or over vibration poor finishing Incomplete Curing	Concrete Chemical Attack efflorescense or leaching sulfates acids or bases delayed ettringite formation alkali-aggregate reactions Physical Attack salt crystallization freezing and thawing thermal exposure/thermal cycling abrasion/erosion/cavitation irradiation fatigue or vibration biological attack Steel Reinforcement carbonation, chlorides and stray currents	Loads Exceed Design Accident Settlement Earthquake

Carbonation Chloride Ingress Reinforcement Corrosion Source: D. Naus

Crystal River Unit 3 Containment Delamination

Steam Generator Replacement Opening • At liner – 23' 6" by 24' 9"

- At concrete opening 25' 0" by 27' 0"

Managed by UT-Battelle for the U.S. Department of Energy

Summary

- Material performance is essential to reactor performance, economics, and safety.
- A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance
- Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions)
- New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.
- Nanotechnology may be able to solve some of these issues...but

The incorporation of advanced alloys is not a trivial task!

- Many factors are important for reactor service.
 - Availability
 - Cost
 - Fabrication/Processing
 - Reproducibility/Uniformity
 - Irradiation resistance
 - Mechanical performance
 - Creep performance
 - Corrosion performance
 - Thermal properties
 - Joining
 - Fatigue
 - Fracture toughness

• Any new alloy must also meet all regulatory (or code qualification) standards.

The DOE-NE NEET program currently has open calls for advanced materials and manufacturing

Nuclear Energy

- Under this competitive process, materials are sought that provide
 - Improvement in mechanical performance by a factor of 5-10 over traditional materials
 - Increase in maximum operating temperature of greater than 200°
 C over an 80 year lifetime
 - Increased radiation tolerance to beyond 300 dpa
- Materials that support multiple designs or missions would be favored over single-applications
- High-risk/reward and transformational concepts are appropriate for NEET.
- Evolutionary gains are appropriate for the individual programs.
- DE-FOA-0000426 (materials)
- DE-FOA-0000427 (manufacturing)