Experiment Insertion in a High Power Test Reactor

Debra J. Utterbeck Manager, Irradiation Testing Idaho National Laboratory

February 27, 2012

www.inl.gov

INL/MIS-12-24864

Topics

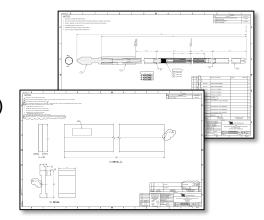
- Experiment Reactor Insertion Process
 - Defining the Experiment Objectives
 - Experimental Design Process
 - Required Analysis
 - Documentation Requirements
 - Typical ATR Experiments
 - Reconfiguration and Transportation

Experiment Objectives

- Experiment Technical and Operational Requirements
 - Balancing experimental objectives and reactor requirements
 - Experiment Objectives
 - Phenomena of interest (effects of irradiation)
 - e.g. Material defects, structural changes, fuel performance
 - Fluence (desired flux over total irradiation time [dpa/ wt.% burnup])
 - Parametric controls (temperature, pressure)
 - Reactor Requirements/Restrictions
 - Criticality safety (flux perturbations, reactivity)
 - Appropriate containment of materials to ensure no release
 - Materials incompatible with the reactor fuel element cladding, canal water or reactor primary coolant system (PCS)

aho National Laboratory

- (i.e. mercury, gold, copper, silver and chlorides).
- Generally Excluded Materials (may vary between reactors)
 - Explosive materials, cryogenic liquids, etc.
- Material type (stainless steel, aluminum, titanium)
 - > 235 psig internal pressure meet intent of ASME Pressure Boundary Code or demonstrate by prototype testing to withstand service conditions without failure.


Idaho National Laboratory

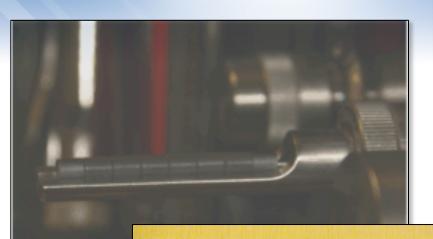
Experimental Design

- Select Appropriate Experiment Type
 - Select Suitable Reactor Position
 - Experiment Objectives
 - Flux
 - Lobe Power
 - Position Size
- Design of test specimen and components
- Scoping Analysis desired as built configuration / nominal operating conditions
- Bounding Analysis maximum configuration / accident conditions
 - Neutronic
 - Reactivity
 - Neutron/gamma heating rates
 - Heat Generation Rate
 - Fuel fission power density
 - Thermal/Hydraulic
 - Min. and max. temperatures as a function of gas gap/gas mixture
 - Appropriate Cooling
 - Effects of Coolant Flow on the Experiment Assembly
 - Departure from Nucleate Boiling Ratio (DNBR)
 - Flow Instability Ratio (FIR)
 - Structural
 - Effect on material during irradiation (temperature, pressure, etc.)
 - Structural integrity must be maintained

Idaho National Laboratory

Documentation Requirements

- Project Execution Plan
- Technical and Functional Requirements (T&FRs)
- Design Drawings
 - Test specimen, Capsule, Basket, Assembly
- Engineering Calculation & Analysis Report
 - Neutronic, Thermal, Structural
- Fabrication and Inspection Plans
- As-built Data Packages
 - Work orders
 - Lab notes, etc.
 - Material certifications No Unknown Materials with the exception of trace constituents
- Experiment Safety Assurance Package
- Design Acceptance



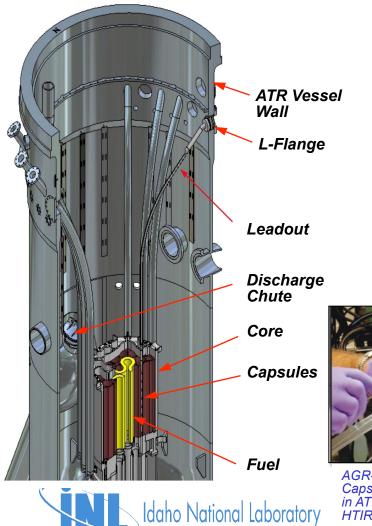
2 STANLEY® 3 4

Fabrication and Assembly

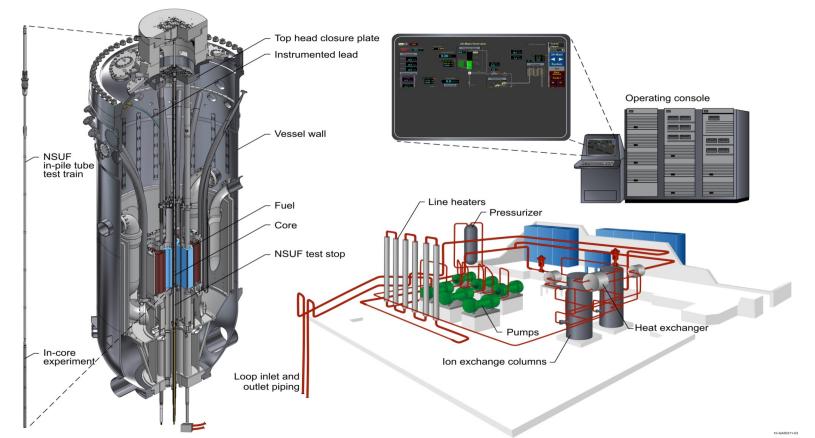
- Fabrication of Test Specimen
- Pre-irradiation characterization
- Fabrication of Components
- Acceptance testing of components
- Assembly of Components
- Approval for Reactor Insertion

ATR Experiments Typical Static Capsule

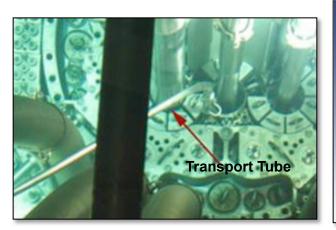
- "Drop-in"
- Fill gas to maintain desired temperature
- Reflector positions or flux traps
- Isotopes, structural materials, fuel
- 6 8 Months to prepare

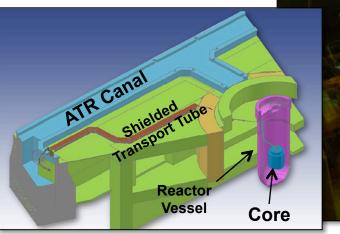

Top view of capsule basket with flux monitor wires inserted

ATR Experiments Typical Instrumented Lead


- Specialized gas environments to control temp. (helium, neon, argon)
- Temperature control range 250-1200°C, within +/- 5°C
- Application of mechanical forces
- Monitoring of exhaust gases for experiment performance (e.g., fission products, leaking materials)
- Reflector positions or flux traps
 - 1.5 years to prepare

ATR Experiments Typical Loop

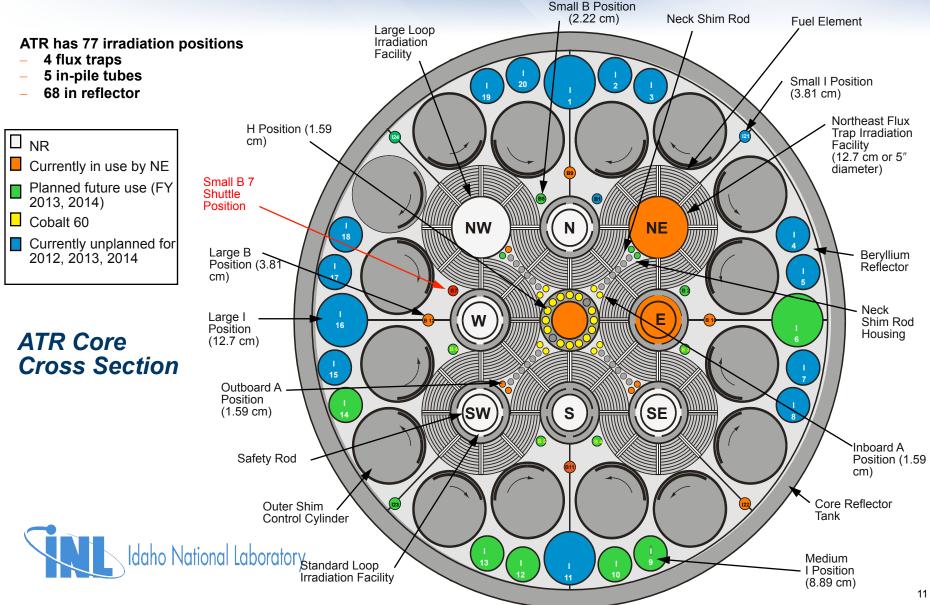



- Five Loop positions currently in flux trap positions; 6th loop is planned for center flux trap
- Independent from ATR primary coolant system
- Each loop has temperature, pressure, flow, and chemistry control systems
- Transient testing capabilities (cycle/seconds)
- 1 to 1.5 years

Idaho National Laboratory ATR Experiments Hydraulic Shuttle Irradiation System (HSIS)

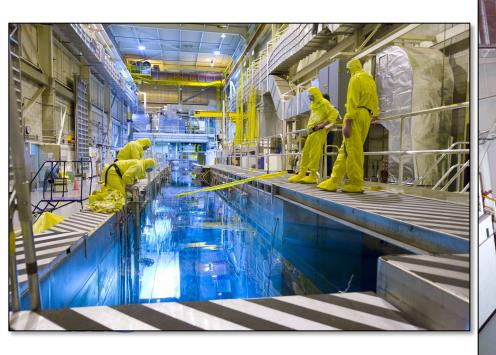
- Inserted and Removed During Reactor Operations
- 14 Capsule Train
- Flux (at 110 MW total Rx power)
 - Thermal: 2.5E14 n/cm²-s
 - Fast (>1MeV): 8.1E13 n/cm²-s
- Dimensions
 - ~ 0.55-inch ID, ~2-inch L
 - ~ 7 cc useable volume
 - ~35 g Contents depending on density
- 6 8 months to prepare

Transport 8 ft Water Send/Receive


Station

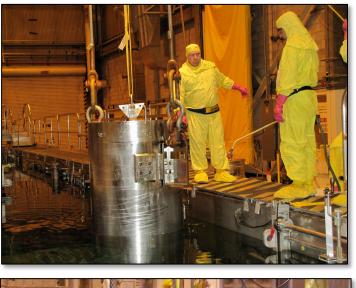
1001 2000

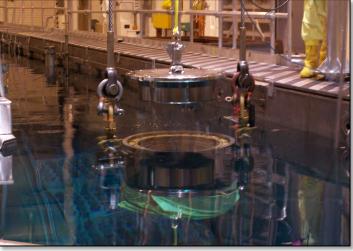
Tubes


Selection of Reactor Position

Reconfiguration

- Experiments Planned for Multi-cycle Irradiations
- Performed in Canal Between Irradiation Cycles
 - Typically 2 week duration
- Provide Uniform Fluence Across Capsules
- Replace Capsules Reaching Desired Burnup/dpa





Cool Down and Transportation to PIE

- Assemblies stored in canal
- ~100 day cool down period
- Type A or Type B Shipment to PIE Facility

