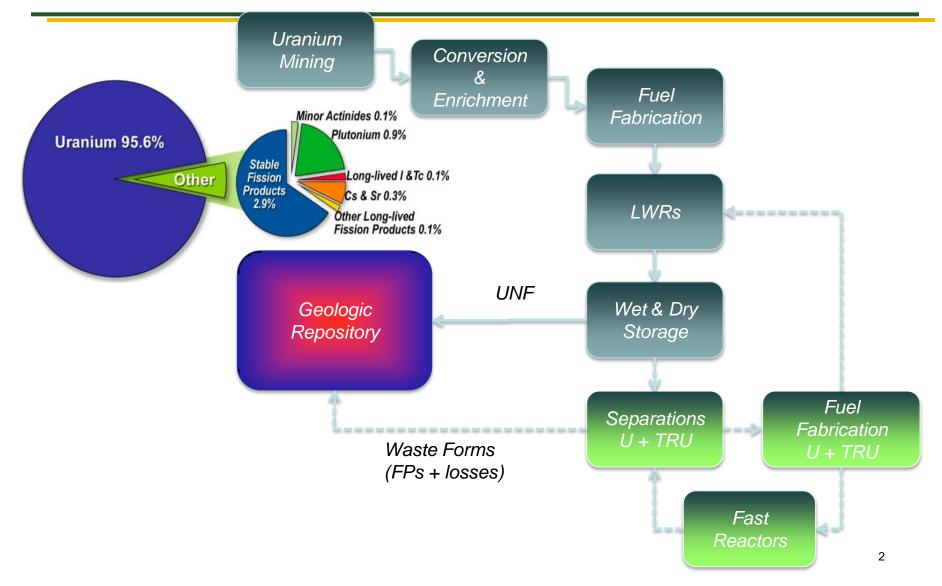


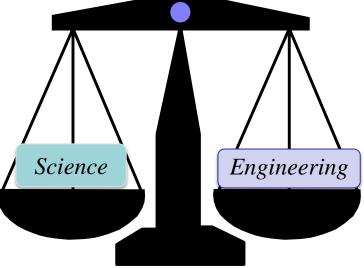
Nuclear Energy

Fuel Cycle Research and Development


FCRD Overview

Kemal O. Pasamehmetoglu National Technical Director, Advanced Fuels Campaign

Nano-Nuclear Workshop Gaithersburg, MD June 6, 2012


FCRD includes a variety of technologies looking at different fuel cycle options

Separations and Waste Form Campaign Objectives

- Develop the next generation of fuel cycle separation and waste management technologies that enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.
 - The campaign strategy is based a sound balance between science and engineering

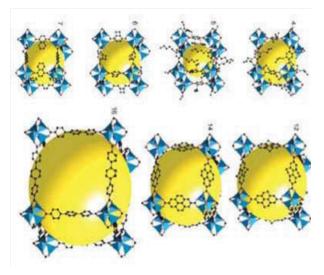
Campaign Overview

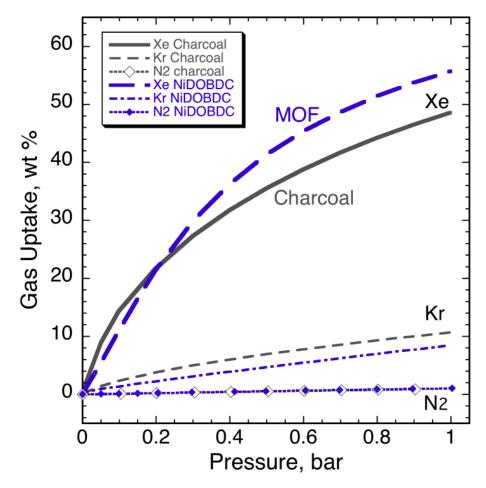
Where we were, where we are and where we are going -

Past (history)	Present (options)		Future (needs)
Pu for weapons	UO _X burning only	Pu MOX	Recycle TRU
PUREX	Once through	PUREX	Advanced separations
Waste stored in tanks	Local SNF storage	Immediate waste treatment	Consolidated processing/storage
Vent fission gasses	n/a	Vent or release fission gasses	Capture and immobilize fission gasses
Deferred vitrification	Deferred Fuel disposal	Glass for future disposal	High performance waste forms/ geologic disposal

Focused Objectives

Fundamental Science & Mod/Sim	 Develop the next generation methods and tools for separations, waste form development, and waste form performance- fundamental science related to applied research
Minor Actinide Sigma Team	 Enabling technology for TRU recycle options from LWR fuel Develop cost effective technology ready for deployment
Off-gas Sigma Team	 Enabling technology for any recycle option (Tritium, Iodine, Krypton) Develop cost effective technology ready for deployment
Advanced Waste Forms & Processes	 Open disposal options with higher performance waste forms Develop cost effective technology ready for deployment
Electrochemical Processing	 Develop and demonstrate deployable and sustainable technology for fast reactor fuel reprocessing
Fuel Resources	 Develop cost effective method for passive sea water extraction Establish bounding cost for uranium resource

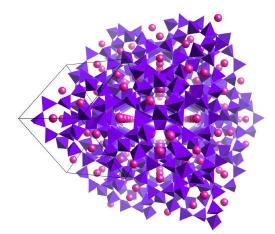


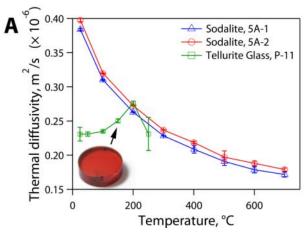

Noble Gas Separations at Room Temperature

Nuclear Energy

- Novel metal organic frameworks (MOF's) are being developed with the correct size and functionality to selectively capture Kr and Xe from air at near room temperature.
- These materials are being developed for use in used nuclear fuel reprocessing plants.
- There are obvious commercial applications for noble gas separation and sale.

Metal-organic framework's tuned to molecule size and chemistry, Eddaoudi, et al.,2002, Science, 295, 469. →


↑ Strachan, D.M., et al. 2011, Summary Report on the Volatile Radionuclide and Immobilization Research for FY2011 at PNNL. FCRD-SWF-2011-000378, PNNL-20807.

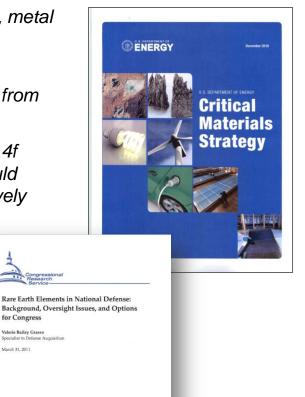


Waste Forms Applicable to Fukushima

Nuclear Energy

- The Fuel Cycle Research and Development Program has been developing waste forms for streams important to advanced fuel cycles:
 - Alkali-alumino-silicate ceramics for high heat materials such as Cs
 - Ceramics and glass ceramics for high halide streams
 - These may be applicable to the Cs capture media and heavy brine wastes being collected as part of the Fukushima site cleanup

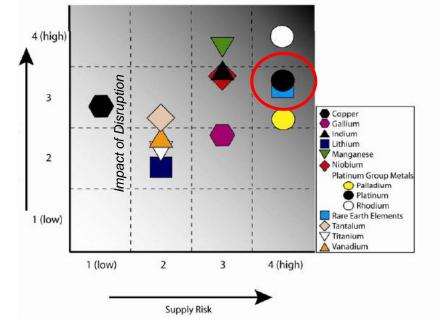
Model structure of (¹³⁷Ba¹³⁷Cs¹³³Cs)AlSi₂O₆ J Fortner and M Kaminski. 2008. Annual Report on Characterization of Aged Radioactive Pollucite, ANL, Argonne, IL.


Thermal diffusivity for a tellurite glass and sodalite samples for high chloride wastes: BJ Riley et al. 2010. Alternative Electrochemical Salt Waste Forms, Summary of FY2010 Results, FCRD-WAST-2010-000129

Separation/Purification of Rare Earth Elements

Nuclear Energy

- Rare earth elements are used in electronics, magnets, catalysts, glass, metal alloys and ceramics – many of these uses have strategic and defense applications
- Currently about 95% of the world supply of rare earth elements comes from China
- The FCR&D minor actinide sigma team has extensive experience with 4f element separation and many of the technologies being developed could have application to separate or purify rare earth elements more effectively



for Congress

Valerie Bailey Grasso

CRS Report for Cons

March 31, 2011

The program must address all three major elements of the campaign in a balanced way!

Nuclear Energy

Next generation LWR fuels with enhanced performance and safety and reduced waste generation Metallic transmutation fuels with enhanced proliferation resistance and resource utilization

Capabilities Development for Science-Based Approach to Fuel

<u>Development</u> -Advanced characterization and PIE techniques -Advanced in-pile instrumentation -Separate effects testing -Transient testing infrastructure

Vision, Mission and Near-Term Goals

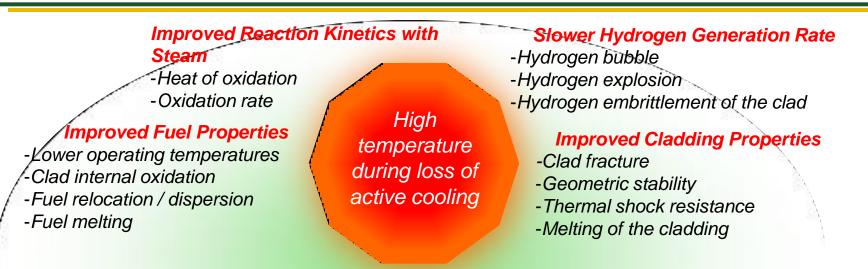
Nuclear Energy

Vision:

LWR fleet with enhanced accident tolerance providing a substantial fraction of the national clean energy needs

Mission:

Develop advanced fuels and non-design intrusive reactor system technologies(e.g. instruments, auxiliary power sources) with improved performance, reliability and safety characteristics during normal operations and accident conditions


10-year Goals

- Insert a LTA into a operating commercial reactor
- Demonstrate non-intrusive technologies that enhance safety (e.g. instrumentation with enhanced accident tolerance)

What are the major issues to be addressed for the attributes?

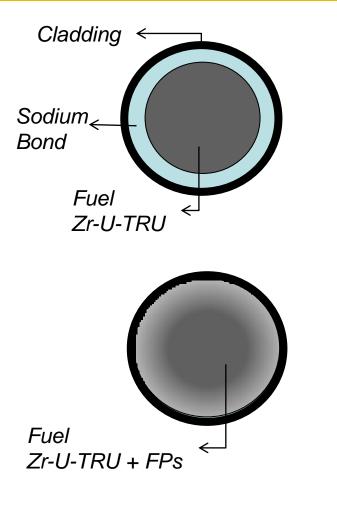
Nuclear Energy

Enhanced Retention of Fission Products

-Gaseous fission products -Solid/liquid fission products

Fuels with enhanced accident tolerance are those that, in comparison with the standard UO_2 – Zircaloy system, can tolerate loss of active cooling in the core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations.

To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements and the design of advanced fuel/cladding system.



Major issues for metallic fuel

Nuclear Energy

Cladding –

- HT-9 possibly good up to 200 dpa
- Radiation tolerance above 200 dpa
- Fuel-Clad Chemical Interactions
 - Diffusion barrier between the fuel and cladding
 - Ln getters within the fuels
- Fission gas getters in the plenum

Major issues for storage/disposition

Nuclear Energy

Disposition

Container/cask materials resistant to environmental degradation in hundred thousand-year time frame

Dry storage

- Container/casks materials resistant to environmental degradation in hudredyear time frame
- Remote/non-destructive monitoring technologies

