Furnace Technology Systems Workshop Preliminary Schedule

Sunday, March 3. 2013 San Antonio, TX

Time	Company	Presenter	Topic	Description				
8:00 – 8:45	Bloom Engineering Co.	Don Whipple	Basics of Combustion	The presentation will discuss the typical				
			and Environmental	air/fuel combustion process with emphasis on				
			Considerations	ways to save fuel and minimize emissions.				
8:50 – 9:35	Bloom Engineering Co.	Jim Checkeye	Typical Burners Used in	Discussion on burner types with respect to				
			Aluminum Cast Houses	furnace configuration, efficiency, productivity				
				and emissions.				
9:40 – 10:25 10:25 – 10: 40	Robinson Fans Inc.	Deanna Weaver	Blowers/Exhausters	This presentation will cover the basics of fan				
				design. It will give you the understanding of				
				how to read a fan curve and where they come				
				from. It will also cover the importance of				
				density and how to calculate it. We will also go				
				over the fan laws and how to use them				
				correctly. This is great class for those who are				
				new to fans and a great refresher for those				
	Drook			who are not.				
10:40 – 11: 25	Nederman	David Edgerton	Dioxin and Furan Issues	How dioxins are formed, how to avoid them				
10.40 - 11. 25	(formerly Dantherm)	David Edgerton	Dioxiii and Furan issues	and solutions on how to deal with them, when				
	(Iointelly Danthelli)			you do have them.				
11:30 – 12:15	Harbison-Walker	John Sutton	Refractory Selection for	Refractory selection for the aluminum cast				
11.50 - 12.15	Refractories	John Gutton	Aluminum Furnaces	house and rotary furnaces are based on				
	remadicines		7 darman i amases	fundamental refractory properties. Refractory				
				considerations involve not only product				
				selection, but lining types, installation methods				
				and maintenance practices. Refractory brick				
				and monolithic refractory products and				
				construction considerations will be reviewed.				
				Testing of refractories for metal contact				
				applications is important in selection as				
				operating conditions become more				
				aggressive. New product technologies and				
				recent developments in furnace lining dry-out				
				modeling field results are reviewed.				
12:15 – 1:00 Lunch								
1:00 – 1:45	The Schaefer Group, Inc	David W. White	High Efficiency	This paper will expand on the "ranking of ROI"				
		cell	Aluminum Melting in	expenditures for aluminum furnaces: or, how				
			Reverberatory Furnaces	to get the biggest "bang for your bucks" from				
			and True ROI	quickest-to-slowest investment recovery.				

				Efficiencies, ancillary equipment to enhance efficiency and refractory linings will be addressed. Different burner systems will be compared as well as the importance of cleaning the furnaces. This overall view of what it takes to save energy and money when operating a reverberatory melting furnace will allow you to specify the type of furnace and options that give you the best return on your investment.			
1:50 – 2:35	Pyrotek/EMP Inc.	Jim Grayson	Metal Circulation	This session focuses on the benefits of metal circulation in aluminum melters. Typical devices such as mechanical pumps and electromagnetic strirrers will be discussed highlighting cost versus benefit in different applications.			
2:35 – 2:50 Break							
2:50 – 3:35	Melting Solutions, Ltd	Clive Hall	Principles and Fundamentals of Tilting Rotary Furnace Operation, Design and Application in the Secondary Aluminum Industry	Topics will include: • Why use a rotary furnace? • Background and development in the aluminum industry. • Examples of rotary furnace applications. • Design aspects: mechanical, refractory, combustion and controls. • Performance what is actually achievable and how to operate a rotary. • Economics of rotary melting. • Innovations and development of rotary technology. • Q&A			
3:40 – 4:25	Gautschi Engineering GmbH	Oliver Moos	Aluminum Oxidation in Liquid Metal Furnaces	Our industry is focusing on dross processing in recent years rather than avoiding dross generation in the first place. This paper is concentrating on different areas of the cast house and furnaces to help operators to understand on how they can help to reduce the generation of dross. It will also show on how proper maintenance of the equipment has a direct influence on metal losses in a furnace.			