TMS2016 145th Annual Meeting & Exhibition

FEBRUARY 14-18 DOWNTOWN NASHVILLE, TENNESSEE MUSIC CITY CENTER

Connecting the Global Minerals, Metals, and Materials Community.

This is the Preliminary Technical Program for TMS2016. All dates, times, and details are current as of December 29, 2015, however, changes may occur before the at-meeting program is finalized in early January. This preliminary file will not be updated. Please view the online session sheets (www.tms.org/TMS2016/SessionSheets) or download the mobile app for the most up-to-date information.

Oral sessions are listed alphabetically by the symposium name in groupings of session day and time. Poster sessions are listed after the Thursday PM sessions. To locate a specific presentation or presenter, use the search function of your PDF reader.

2016 Functional Nanomaterials: Emerging Nanomaterials and Techniques for 3D Architectures — 2D Materials-based 3D Architectures

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Nanomaterials Committee

Program Organizers: Terry Xu, UNC Charlotte; Nitin Chopra, The University of Alabama; Jung-Kun Lee, University of Pittsburgh; Jiyoung Kim, University of Texas; V. U. Unnikrishnan, The University of Alabama

Monday AM Room: 211

February 15, 2016 Location: Music City Center

Session Chairs: Terry Xu, UNC Charlotte; Swastik Kar, Northeastern University

8:30 AM Invited

From 2D to 3D: Smart Materials and their Combinatorial Structures for Advanced Applications: Swastik Kar¹; ¹Northeastern University

9:00 AM Invited

3-D Graphene Structures Synthesized by Catalyst-free Chemical Vapor Deposition: *Zhengwei Pan*¹; Kaiyuan Li¹; Xufan Li¹; ¹University of Georgia

9.30 AM

Highly Uniform Synthesis of Large-Area, Few-Layer WSe₂: Philip Campbell¹; Alexey Tarasov¹; Corey Joiner¹; Meng-Yen Tsai¹; Georges Pavlidis¹; Samuel Graham¹; Jud Ready¹; Eric Vogel¹; ¹Georgia Institute of Technology

9:50 AM

Low Temperature Synthesis of Graphite on Ni Films Using Inductively Coupled Plasma Enhanced CVD: Jaebeom Lee¹; Lanxia Cheng¹; Antonio T.Lucero¹; Kayoung Yun²; Hoseok Nam²; Jiyoung Kim¹; ¹university of texas at dallas; ²Kookmin university

10:10 AM Break

10:30 AM Invited

The Impact of Interfaces on the Integration of 2D Materials into Nanoelectronics: Stephen McDonnell¹; Keren Freedy¹; Angelica Azcatl²; Christopher Smyth²; Rafik Addou²; Christopher Hinkle²; Robert Wallace²; ¹University of Virginia; ²University of Texas at Dallas

11:00 AM Invited

Plasmonic Hot Electron Induced Photocurrent Response at MoS2-Metal Junctions: *Yaqiong Xu*¹; Tu Hong¹; Bhim Chamlagain²; Shuren Hu¹; Sharon Weiss¹; Zhixian Zhou²; ¹Vanderbilt University; ²Wayne State University

11:30 AM

Deposition and Characteristics of Al based Gate Dielectrics with Ozone Treatment for MoS2 Applications: Lanxia Cheng¹; Jaebeom Lee¹; Antonio Lucero¹; Youngchul Byun¹; Jiyoung Kim¹; ¹UTD

11:50 AM

Anisotropic Photocurrent Response at Black Phosphorous-MoS2 p-n Heterojunctions: *Tianjiao Wang*¹; Tu Hong¹; Bhim Chamlagain²; Hsun-Jen Chuang²; Zhixian Zhou²; Ya-Qiong Xu¹; ¹Vanderbilt University; ²Wayne State University

7th International Symposium on High Temperature Metallurgical Processing — Energy Efficient Clean Metallurgical Technology

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Monday AM Room: 105B

February 15, 2016 Location: Music City Center

Session Chairs: Jiann-Yang Hwang, Michigan Technological University; Yousef Mohassab, University of Utah

8:30 AM Introductory Comments

8:35 AM

Flash Reduction of Magnetite and Hematite Concentrates with Hydrogen in a Lab-Scale Reactor for a Novel Ironmaking Process: Yousef Mohassab¹; Mohamed Elzohiery²; Hong Yong Sohn²; ¹University of Utah; ²University of Utah

8:55 AM

Investigation of Coal Tar Pitch Binder for the Production of Formed Coal Briquettes for COREX from High Volatile Coal Powder: Yang Yong-bin¹; Wang Ya-xuan¹; ¹Central South University

9:15 AM

Upgrading of Iron-rich Titanium Ores using a Molten Salt Process: Farzin Fatollahi-Fard¹; Petrus Pistorius¹; ¹Carnegie Mellon University

9:35 AM

Direct Electrolytic Production of Mo-Si-Ti-C Composites from their Oxides/Sulfide/Carbon Mixture Precursor in Molten Salt: Xingli Zou¹; Xionggang Lu¹; Qian Xu¹; Hongwei Cheng¹; Shuhua Geng¹; Zhongfu Zhou²; ¹State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, P. R. China.; ²Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, UK.

9:55 AM

Advanced Oxygen Lances for Safer Furnace Tapping Operations: Peter Sylvén¹; Darwin Morales²; ¹Envicom AB; ²Trefimet S.A.

10:15 AM Break

10:30 AM

Reduction Kinetics of Magnetite Concentrate Particles with H₂ + CO at 1200 to 1600 °C Relevant to a Novel Ironmaking Process: Mohamed Elzohiery¹; Yousef Mohassab²; Jagannath Pal¹; Shengqin Zhang¹; Hong Yong Sohn¹; ¹University of Utah; ²University of Utah

10:50 AM

Solar-driven Carbothermal Zinc Recycling: *Nikolaos Tzouganatos*¹; Christian Wieckert¹; Aldo Steinfeld²; ¹Solar Technology Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; ²Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland

11:10 AM

Preparing Silicide Layers on Metallic Substrates Using Molten Oxide Electrolysis: *Hideaki Sasaki*¹; Masafumi Maeda¹; ¹Institute of Industrial Science, The University of Tokyo

Additive Forming of Components - Tailoring Specific Material Properties in Low Volume Production — Overviews

Sponsored by:

Program Organizers: Judith Schneider, University of Alabama at Huntsville; Mark Stoudt, National Institute of Standards and Technology; Kester Clarke, Los Alamos National Laboratory; Lee Semiatin, US Air Force Research Laboratory; Mohsen Asle Zaeem, Missouri University of Science and Technology; Eric Lass, National Institute of Standards and Technology; Paul Mason, Thermo-Calc Software Inc.

Monday AM Room: 205B

February 15, 2016 Location: Music City Center

Session Chairs: Mark Stoudt, NIST; Lee Semiatin, US Air Force Research Laboratory

8:30 AM Invited

A Roadmap for Developing the Next Generation of Additive Manufacturing Materials: *Todd Palmer*¹; Greg Dillon¹; Gary Messing¹; Rich Martukanitz¹; Tim Simpson¹; Ross Brindle²; Greg Hildeman²; Jared Kosters²; ¹Penn State; ²Nexight Group LLC

9:00 AM Invited

Challenges in Using AM Components in Industrial Applications: John Lewandowski¹; ¹Case Western Reserve University

9:30 AM Invited

Additive Manufacturing of Metals: The Devil in the Details: Lyle Levine¹; National Institute of Standards and Technology

10:00 AM Break

10:20 AM Invited

New Alloy Systems for Direct Metal Powderbed Processes: Tim Horn¹; Ola Harrysson¹; Harvey West¹; ¹North Caroline State University

10:50 AM Invited

Multimodal Correlated Datasets to Understand Location Specific Processing State for Additive Manufacturing: Edwin Schwalbach¹; Michael Groeber; Ryan Dehoff; Vincent Paquit²; Norman Schehl³; William Porter³; Dennis Buchanan³; Reji John; ¹Air Force Research Laboratory; ²Oak Ridge National Laboratory; ³University of Dayton Research Institute

11:20 AM Invited

Prediction of Porosity Caused by Insufficient Melt Pool Overlap: P. Chris Pistorius¹; Ming Tang¹; ¹Carnegie Mellon University

11:50 AM Invited

Simulation and Modeling of the Metal Laser Powder Bed Fusion Process to Accelerate Certification: Wayne King¹; ¹Lawrence Livermore National Laboratory

Additive Manufacturing: Building the Pathway towards Process and Material Qualification — Connections between Processing and Microstructures I

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Powder Materials Committee, TMS: Process Technology and Modeling Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas; Reginald Hamilton, The Pennsylvania State University; Edward Herderick, GE; Rajiv Mishra, University of North Texas; James Sears, GE GRC

Monday AM Room: 205A

February 15, 2016 Location: Music City Center

Session Chairs: Tony Rollett, Carnegie Mellon Univ.; Joe McKeown, Lawrence Livermore National Lab

8:30 AM Invited

Measuring Porosity in Additively Manufactured Materials via Synchrotron–based 3D X-ray Microtomography: Suraj Rao¹; Ross Cunningham¹; Tugce Ozturk¹; Anthony Rollett¹; ¹Carnegie Mellon University

9:00 AM

Characterization of Internal Defects and Their Effect on Mechanical Properties of Stainless Steel 304L Components Fabricated through Laser-based Directed Energy Deposition: *Allison Beese*¹; Zhuqing Wang¹; Todd Palmer¹; ¹Pennsylvania State University

9.20 AM

Microstructure Evolution, Tensile Properties, and Fatigue Crack Growth Mechanisms in Ti-6Al-4V Alloys Fabricated by Electron Beam Melting: Haize Galarraga¹; Diana Lados²; Ryan Dehoff³; Michael Kirka³; ¹Worcester Polytechnic Institute; ³Oak Ridge National Laboratory

9:40 AM

XRM: Tomography and 3D Grain Mapping for Additive Manufacturing Qualification: Leah Lavery¹; Arno Merkle¹; William Harris¹; Christian Holzner¹; ¹Carl Zeiss X-ray Microscopy, Inc.

10:00 AM Break

10:20 AM Invited

Microstructure Evolution during Laser-Induced Rapid Alloy Solidification: Joseph McKeown¹; Jean-Luc Fattebert¹; Aurelien Perron¹; John Roehling¹; Patrice Turchi¹; ¹Lawrence Livermore National Laboratory

10:50 AM

Stress State and Strain Rate Dependence of an Electron Beam Additive Manufactured Ti6Al4V: *Omar Rodriguez*¹; Paul Allison¹; Wilburn Whittington²; David Francis²; Oscar Rivera¹; Kevin Chou¹; Xibing Gong¹; Todd Butler¹; Jedediah Burroughs³; ¹The University of Alabama; ²Mississippi State University; ³US Army ERDC

11:10 AM

Structure / Property (Constitutive and Dynamic Strength / Damage) Characterization of Additively Manufactured 316L SS: George Gray¹; Veronica Livescu¹; Carl Trujillo¹; John Carpenter¹; Thomas Lienert¹; Saryu Fensin¹; ¹Los Alamos National Laboratory

11:30 AM

Understanding the Relationships Between Solidification Microstructure and Mechanical Properties of Additively Manufactured Ti-6Al-4V: Ross Cunningham¹; Sneha Narra¹; Jack Beuth¹; Anthony Rollett¹; ¹Carnegie Mellon University

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session I

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; John Carpenter, Los Alamos National Laboratory; Marko Knezevic, University of New Hampshire; Wolfgang Pantleon, Technical University of Denmark; Thomas Bieler, Michigan State University; Khalid Hattar, Sandia National Laboratories; Irene Beyerlein, Los Alamos National Laboratory

Monday AM Room: 103B

February 15, 2016 Location: Music City Center

Session Chairs: Brad Boyce, Sandia National Laboratories; Michael Mills, The Ohio State University

8:30 AM Invited

Revealing Deformation Mechanisms in Superalloys Using STEM-Based Imaging and Spectroscopy: *Michael Mills*¹; Tim Smith¹; Yunzhi Wang¹; Stephen Niezgoda¹; ¹The Ohio State University

9:00 AM

Application of a Spectral Method Framework to Interrogate the Influences of Experimental Uncertainty on Crystal Plasticity: *Philip Eisenlohr*¹; Pratheek Shanthraj²; Martin Diehl²; Chen Zhang¹; Thomas Bieler¹; Franz Roters²; Ruqing Xu³; ¹Michigan State University; ²Max-Planck-Institut für Eisenforschung GmbH; ³Argonne National Laboratory

9:20 AM

Investigation of Microstructural Stability of CuNb Composites under High-pressure Torsion (HPT): Samikshya Subedi¹; Irene Beyerlein²; Elvan Ekiz³; Pascal Bellon³; Anthony Rollett¹; ¹Carnegie Mellon University; ²Los Alamos National Laboratory; ³University of Illinois at Urbana-Champaign

9:40 AM

Multiscale Modeling of IN718 Superalloy Based on Micropillar Compression and Computational Homogenization: Jon Molina-Aldareguia¹; Bin Gan¹; Aitor Cruzado¹; Marcos Jiménez¹; Javier Llorca¹; Javier Segurado¹; ¹IMDEA Materials Institute

10:00 AM Break

10:20 AM Invited

Quantifying Grain-Scale Deformation for Direct Comparison to Crystal Plasticity Predictions: *Brad Boyce*¹; Hojun Lim¹; Jay Carroll¹; Thomas Buchheit¹; Corbett Battaile¹; ¹Sandia National Labs

10:50 AM Invited

Using Synchrotron Radiation to Characterize Deformation: Anthony Rollett¹; Robert Suter¹; ¹Carnegie Mellon University

11:20 AM

Probing Grain Boundary Mechanics in alpha-titanium Using Nanoindentation and Boundary-sensitive Crystal Plasticity Modeling: Yang Sul'; Claudio Zambaldi²; David Mercier²; Philip Eisenlohr¹; Thomas Bieler¹; Martin Crimp¹; ¹Michigan State University; ²Max-Planck-Institut für Eisenforschung

11:40 AM

Strength Distribution in a Spalled Material and Its Dependence on Local Microstructure: Shraddha Vachhani¹; Carl Trujillo¹; Ellen Cerreta¹; George Thompson III¹; ¹Los Alamos National Laboratory

12:00 PM

Automated Correlative Tomography of an Aluminum 7075 Alloy Spanning Length Scales and Modalities: *Arno Merkle*¹; Nikhilesh Chawla²; Sudhanshu Singh²; ¹Carl Zeiss X-ray Microscopy; ²Arizona State University

12:20 PM

Mechanical properties and Characterization of Microstructural Gradients with Various Gamma Prime Distributions in Low Solvus High Refractory (LSHR) Nickel Base Superalloy: Samuel Kuhr¹; John Sosa¹; Hamish Fraser¹; ¹The Ohio State University

Advanced Magnetic Materials: An FMD Symposium in Honor of Michael E. McHenry — Soft Magnetic Materials I

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Magnetic Materials Committee

Program Organizers: Raju Ramanujan, Nanyang Technological University; Matthew Willard, Case Western Reserve University; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory

Monday AM Room: 209C

February 15, 2016 Location: Music City Center

Session Chairs: Raju Ramanujan, NTU; Francis Johnson, GE Global Research

8:30 AM Introductory Comments

8:40 AM Invited

Magnetic Anisotropy in Nanocomposites – What More Do We Know, What Questions Remain?: Michael McHenry¹, ¹Carnegie Mellon University

9:10 AM Invited

Nucleation Mediated Nanostructures in Soft Magnetic Fe-Si-B Based Alloys (Invited): Tushar Borkar¹; Talukder Alam¹; Sameehan Joshi¹; Shravana Katakam¹; Xi Chen²; Narendra Dahotre¹; Raju Ramanujan²; *Rajarshi Banerjee*¹; ¹University of North Texas; ²Nanyang Technological University

9:40 AM

Advanced Magnetic Materials for High Power Density, High Efficiency Electrical Systems: Francis Johnson¹; ¹GE Global Research

10:00 AM Break

10:20 AM

Application of Soft Magnetic Nanocomposites in Power Electronics: Alex Leary¹; Michael McHenry¹; ¹Carnegie Mellon University

10.40 AM

Atomic Scale Characterization of Soft Magnetic Fe-Si-B Based Amorphous Alloys with Strong Creep Induced Anisotropy: Pradeep Konda Gokuldoss¹; ¹Max Planck Institute for Iron Research GmbH

1.00 AM

Design of Nano-crystalline Soft Magnetic Alloys: Electronic Structure: *Ji-hoon Park*¹; Yang-Ki Hong¹; Woncheol Lee¹; Seok Bae²; Seong-Gon Kim³; Chul-Jin Choi⁴; ¹The University of Alabama; ²LG Innotek; ³Mississippi State University; ⁴Korea Institute of Materials Science

11:20 AM

Cation Disorder in Nanoparticle and Thin Film Ferrite Systems: Vincent Harris¹; ¹Northeastern University

Advanced Materials in Dental and Orthopedic Applications — Session I

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Luis Rocha, UNESP, Univ. Estadual Paulista, Faculdade de Ciências; Grant Crawford, South Dakota School of Mines and Technology; Terry Lowe, Colorado School of Mines; Ana Ribeiro, National Institute of Metrology Quality and Technology; Reginald Hamilton, The Pennsylvania State University

Monday AM Room: 206A

February 15, 2016 Location: Music City Center

Session Chairs: Tolou Shokuhfar, Michigan Technological University; Cimara Ferreira, University of Tennessee; Grant Crawford, South Dakota School of Mines & Technology

8:30 AM Keynote

The Growing Orthopedic Infection Problem: Can Anything Stop It ?: *Thomas Webster*¹; ¹Northeastern University

9:05 AM Invited

Surface Treatments and Dental Implant Infections: Cimara Ferreira¹; ¹UTHSC College of Dentistry

9:30 AM

Room Temperature Aging of Ti-Nb based Beta Alloys: *Song Cai*¹; J Schaffer¹; Y Ren²; ¹Fort Wayne Metals Research Products Corp.; ²Argonne National Laboratory

9:50 AM

Examining the Effects of Three Biologically Compatible Solvents on the Behavior of Chitosan Bonded to Titanium: *Holly Martin*¹; Kathryn Shields¹; Snjezana Balaz²; ¹Department of Chemical Engineering, Youngstown State University; ²Department of Physics and Astronomy, Youngstown State University

10:10 AM Break

10:25 AM

Mechanically Strong TiO2 Nanotubes for Hip Implants: Sweetu Patel¹; Giovanni Solitro²; Cortino Sukotjo²; Christos Takoudis²; Mathew Mathew³; Farid Amirouche²; Tolou Shokuhfar²; ¹Michigan Technological University; ²University of Illinois at Chicago; ³Rush University Medical Center

10:45 AM Invited

In-Vivo Performance and Characterization of Nanostructured Orthopedic Surfaces: Craig Friedrich¹; Erin Baker²; Sachin Bhosle¹; ¹Michigan Technological University; ²Beaumont Health System

1:10 AM

Beta-type Titanium Alloys for Use as Rods in Spinal Fixation Devices: *Mitsuo Niinomi*¹; Masaaki Nakai¹; Huihong Liu¹; Kengo Narita¹; ¹Tohoku University

11:30 AM

Processing, Microstructure Characterization and Biological Response of Cold Sprayed Biocomposite Coatings: Eden Bhatta¹; Grant Crawford¹; Joana Villanueva²; ¹South Dakota School of Mines and Technology; ²Humboldt State University

11:50 AM

Surface Amorphization of NiTi Alloy Induced by Ultrasonic Nanocrystal Surface Modification for Biomedical Applications: Xiaoning Hou¹; Ruixia Zhang¹; Yalin Dong¹; Chang Ye¹; ¹University of Akron

Alloys and Compounds for Thermoelectric and Solar Cell Applications IV — Session I

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CRISMAT laboratory; Stephane Gorsse, ICMCB-CNRS; Yoshisato Kimura, Tokyo Institute of Technology; Lan Li, Boise State University; CW Nan, Tsinghua University; G. Jeffrey Snyder, Northwestern University; Hsin-jay Wu, National Sun Yat-Sen University

Monday AM Room: 103C

February 15, 2016 Location: Music City Center

Session Chairs: Sinn-wen Chen, National Tsing Hua University; Stéphane Gorsse, Bordeaux INP

8:30 AM Introductory Comments

8:35 AM Invited

Thermoelectric Properties of Higher Copper Chalcogenides

: Holger Kleinke1; 1University of Waterloo

8:55 AM Invited

Copper (oxy)chalcogenides, New Promising Thermoelectric Materials: David Berardan¹; Celine Barreteau¹; Jing Li²; Zhao Lidong¹; Lin Pan¹; Sunanda Mitra¹; Nita Dragoe¹; ¹Univ. Paris Sud; ²Harbin Institute of Technology

9:15 AM Invited

Recent Adavnces in Complex Sulphide Materials: Emmanuel Guilmeau¹; Cédric Bourgès¹; Tristan Barbier¹; Pierric Lemoine¹; Oleg Lebedev¹; Ramzy Daou¹; Vincent Hardy¹; ¹CRISMAT Lab.

9:35 AM Invited

Thermoelectric Properties of Cu2-dX-based (X=S, Se, and Te) Materials: Xun Shi¹; ¹Shanghai Institute of Ceramics

9:55 AM Break

10:15 AM Invited

Nanointerface Engineering of Electronic Transport in Bulk Nanostructured in Half-Heulser Alloys: Pierre Ferdinand Poudeu Poudeu¹; ¹University of Michigan

10:35 AM Invited

Towards High Figure of Merit zT>1 for p-type FeNbSb Half-Heusler Thermoelectric Materials: *Tiejun Zhu*¹; Xinbing Zhao¹; ¹Zhejiang University

10:55 AM

Half-Heusler Microstructure Investigations and Ring-shaped Thermo-elements Elaboration: Christelle Navone¹; Gilles Gaillard¹; Guillaume Bernard-Granger¹; Alizee Visconti¹; ¹Commissariat à l'Energie Atomique et aux Energies Alternatives

11:15 AM

Phase Diagrams of Chalcogenide Sn-Sb-Se Ternary System: *Jui-shen Chang*¹; Sinn-wen Chen¹; ¹National TsingHua University

Biological Materials Science Symposium — Biological Materials and Bioinspiration I

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Francois Barthelat, McGill University; Kalpana Katti, North Dakota State University; Paul Allison, University of Alabama; Rajendra Kasinath, DePuy Synthes Products, LLC

Monday AM Room: 207A

February 15, 2016 Location: Music City Center

Session Chairs: Francois Barthelat, McGill University; Paul Allison, University of Alabama

8:30 AM Introductory Comments

8:35 AM Invited

Structural Design Elements in Biological Materials: Application to Bioinspiration: *Marc Meyers*¹; Steve Naleway¹; Joanna McKittrick¹; Michael Porter²; ¹UCSD; ²Clemson U

9:15 AM

Flexible Dermal Armor in Arapaima, Coelacanth, and Alligator Gar: *Vîncent Sherman*¹; Haocheng Quan¹; Wen Yang²; Robert Ritchie³; Marc Meyers¹; ¹University of California, San Diego; ²ETH Zurich; ³Lawrence Berkeley National Laboratory

9:35 AM

A Comparison of the Microstructure of Teleost Fish Scales: Sandra Murcia¹; Ellen Lavoie¹; Alex Ossa²; Dwayne Arola¹; ¹University of Washington; ²Universidad Eafit

9:55 AM

Bio-inspired Flexible Armors with 3D Printed Tailored Architectures: Roberto Martini¹; David Van Zyl¹; *François Barthelat*¹; ¹McGill University

10:15 AM Break

10:35 AM

On the Exceptional Deformability and Toughness of Snake Eggshells: Yin Chang¹; Po-Yu Chen¹; ¹National Tsing Hua University

10:55 AM

Why the Seahorse Tail is Square: *Michael Porter*¹; Dominique Adriaens²; Ross Hatton³; Marc Meyers⁴; Joanna McKittrick⁴; ¹Clemson University; ²Ghent University; ³Oregon State University; ⁴University of California, San Diego

11:35 AM

Paddlefish Rostrum as a Structure for Bioinspiration: Analysis and Modeling of the Stress State and Strain Rate Dependence Behavior of Cartilage: *Jeremiah Deang*¹; Mark Horstemeyer¹; Lakiesha Williams¹; Ed Perkins²; Paul Allison³; Guillermo Riveros²; ¹Mississippi State University; ²US Army Engineer Research & Development Center; ³University of Alabama

11:15 AM

Lightweight Biological Composites: The Relationship between the Structure and Function of the Feather Vane and Inspired Designs: *Tarah Sullivan*¹; Steven Herrera²; David Kisailus²; Vlado Lubarda¹; Marc Meyers¹; ¹University of California, San Diego; ²University of California, Riverside

Bulk Metallic Glasses XIII — Alloy Development and Application I

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Monday AM Room: 101E

February 15, 2016 Location: Music City Center

Session Chairs: William Johnson, Caltech; Peter Liaw, The University of Tennessee

8:30 AM Keynote

Towards a Commercial Metallic Glass Technology: William Johnson¹; Marios Demetriou¹; ¹California Institute of Technology

9:00 AM Invited

A Research on Micro/Nano Imprinting of Metallic Glasses: Ke-Fu Yao¹; Xue Liu¹; Jia-Lun Gu¹; ¹Tsinghua University

9:25 AM Invited

Using Femtosecond Pulsed Laser Irradiation to Magnetically Pattern the Surface of Non-Ferromagnetic Amorphous Steel: Maria D Baró¹; H. Y. Zhang¹; Y.P. Feng¹; D. Nieto²; G.M. OʻConnor³; E. García-Lecina⁴; C. McDaniel³; J. Díaz-Marcos⁵; M. T. Flores-Arias²; E. Pellicer¹; J. Sort¹; ¹Universitat Autònoma de Barcelona; ²University of Santiago de Compostela; ³National University of Ireland; ⁴IK4-CIDETEC; ⁵Universitat de Barcelona

9:45 AM Invited

Densification of a Cu-Zr-Al Metallic Glass Powder by Spark Plasma Sintering: Sandrine Cardinal¹; Jean-Marc Pelletier¹; Guillaume Bonnefont¹; Jichao Qiao²; Guoqiang Xie³; ¹INSA-Lyon; ²Northwestern Polytechnical University; ³Tohoku University

10:10 AM Break

10:25 AM Invited

Design and Implementation of BMG and BMG Composites in NASA Robotics Applications: Douglas Hofmann¹; Scott Roberts¹; ¹NASA JPL/Caltech

10:45 AM Invited

Synthesis of Nanoporous Structure by Dealloying of Al-based Amorphous Alloys: Kang Chul Kim¹; Woo Chul Kim¹; Kyung Ho Kong¹; Cham Il Kim¹; Won Tae Kim²; *Do Hyang Kim*¹; ¹Yonsei University; ²Cheongju University

11:05 AM

Synthesis of Bulk Amorphous Co-C Alloys: Hesham Elmkharram¹; A. Aning¹; ¹Virginia Tech

11:25 AM Invited

Temperature-dependent Average Nearest-neighbor Distance in Metallic Melts: *Jianzhong Jiang*¹; X.D. Wang¹; Q. Yu¹; Q.P. Cao¹; D.X. Zhang¹; ¹Zhejiang University

Bulk Processing of Nanostructured Powders and Nanopowders by Consolidation — Session I

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Deliang Zhang, Shanghai Jiao Tong University; Bowen Li, Michigan Technological University; Stephen Mashl, Michigan Technological University

Monday AM Room: 210

February 15, 2016 Location: Music City Center

Session Chairs: Deliang Zhang, Shanghai Jiao Tong University; Katsuyoshi Kondoh, Osaka University

8:30 AM Introductory Comments

8:35 AM Keynote

Nano-duplex Alloys: a Family of Stable Nanocrystalline Materials Amenable to Rapid Sintering: $Christopher\ Schuh^1;\ ^1MIT$

9:15 AM Invited

Bulk Processing of Nanostructured Powders for Functional Materials with Hierarchical Structure Inspired by Natural Species: *Di Zhang*¹; Wang Zhang¹; Jiajun Gu¹; Shenmin Zhu¹; Huilan Su¹; Qinglei Liu¹; ¹Shanghai Jiao Tong University

9:45 AM Invited

Fracturing Mechanism of Carbon Nanotubes Reinforced Aluminum Matrix Composites: *Katsuyoshi Kondoh*¹; Biao Chen¹; Lei Jia¹; Junko Imai¹; Hisashi Imai¹; ¹Osaka University

10:15 AM Break

10:35 AM Invited

The Key Issues in Fabrication of Ultrafine Structured Metallic Materials and Metal Matrix Nanocomposites by Thermomechanical Consolidation of Nanostructured Powders: *Deliang Zhang*¹; Dengshan Zhou¹; Jiamiao Liang¹; Xun Yao¹; Yifeng Zheng¹; 'Shanghai Jiao Tong University

11:05 AM Invited

Modified Strain Rate Regime in Consolidated Ultrafine Copper Powders with Silver Micro-alloying: Yannick Champion¹; Julie Bourgon¹; Xavier Sauvage¹; ¹CNRS

11:35 AM

Microstructures and Mechanical Properties of Ultrafine Grained Al-7Si-0.3Mg Alloy Produced by Thermomechanical Consolidation of a Milled Powder: *Jiamiao Liang*¹; C. Kong²; Md Zakaria Quadir²; Yifeng Zheng¹; X. Yao¹; Paul Munroe²; Deliang Zhang¹; ¹Shanghai Jiao Tong University; ²University of New South Wales

11:55 AM

Spark Plasma Sintering of Nanostructured AA5083 Powder with Varying Cryomilling Duration: Frank Kellogg¹; Benjamin Boesl²; Clara Hofmeister³; Anit Giri⁴; Yongho Sohn³; Kyu Cho⁵; Brandon McWilliams⁵; ¹Bowhead Science and Technology; ²Florida International University; ³University of Central Florida; ⁴TKC Global; ⁵US Army Research Laboratory

CFD Modeling and Simulation in Materials Processing — Iron And Steelmaking (Tundish, Casting, Converter, Blast Furnace)

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Laurentiu Nastac, The University of Alabama; Lifeng Zhang, University of Science and Technology Beijing; Brian Thomas, University of Illinois at Urbana-Champaign; Miaoyong Zhu, Northeastern University; Andreas Ludwig, Montanuniversitaet Leoben, Dep. Metallurgy; Adrian Sabau, Oak Ridge National Laboratory; Koulis Pericleous, University of Greenwich; Hervé Combeau, Institut Jean Lamour

Monday AM Room: 207D

February 15, 2016 Location: Music City Center

Session Chair: Lifeng Zhang, Beijing University of Science and Technology

8:30 AM Invited

On the Importance of Modeling 3D Shrinkage Cavities for the Prediction of Macrosegregation in Steel Ingots: *Andreas Ludwig*¹; Menghuai Wu¹; Abdellah Kharicha¹; ¹University of Leoben, Dep. Metallurgy

8:55 AM

Computational Fluid Dynamic Simulations of a Laboratory Flash Reactor Relevant to a Novel Flash Ironmaking Process: Yousef Mohassab¹; Deqiu Fan²; Hong Yong Sohn²; ¹University of Utah; ²University of Utah

9:15 AM

Fluid Flow and Inclusion Motion in A Five-strand Continuus Casting Tundish: Abulikemu Yasen¹; Dongteng Pan¹; Lifeng Zhang¹; ¹University of Science and Technology Beijing

9:35 AN

Liquid Steel Flow and Interactions with Nonmetallic Phases in the Continuous Casting Tundish Using CFD & Physical Modeling: Christopher Eastman¹; Peter Glaws¹; Dongbu Cao¹; ¹TimkenSteel Corporation

9:55 AM Break

10:15 AM

Simulation of Heat Transfer in Slab Continuous Casting Mold and New Formation Mechanism of Shell Hot Spots: Zhao-zhen Cai¹; Miao-yong Zhu¹; ¹Northeastern university

10:35 AM

Computational Investigation of Splashing Behaviors in Steelmaking Converter: *Qiang Li*¹; Mingming Li¹; Zongshu Zou¹; ¹Northeastern University

10.55 AM

Simulation of Air Entrainment in High Pressure Die Casting Applications: Juergen Jakumeit¹; Julian Gänz²; Herfried Behnken¹; ¹Access e.V.; ²CD-adap-co

11:15 AM

Numerical Simulation of the Multiphase Flow in the Single-Tundish System

: Shupei Liu¹; Bo Wang¹; Zhiliang Yang¹; Shuai Feng¹; Kongfang Feng¹; Jinyin Xie¹; Jieyu Zhang¹; ¹Shanghai University

11:35 AM

CFD Analysis of Blast Furnace Operating Condition Impacts on Operational Efficiency: Tyamo Okosun¹; Armin Silaen¹; Guangwu Tang¹; Bin Wu¹; Chenn Zhou¹; ¹Purdue University Calumet

11.55 AM

Numerical and Experimental Investigation of Vertical Twin Roll Strip Casting Process: Yuvaraj Patil¹; Sudipto Ghosh¹; Ajayakumar Shukla¹; ¹Indian Institute of Technology

Characterization of Minerals, Metals, and Materials — Method Development

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Monday AM Room: 103A

February 15, 2016 Location: Music City Center

Session Chairs: Andrew Brown, UNSW Australia; Carl Cady, Los Alamos National Laboratory

8:30 AM

Effect of Poisson's Ratio on Stress/Strain Concentration at Circular Holes in Elastic Plates Subjected to Biaxial Loading- Three Dimensional Finite Element Analysis: Amr Abd Elfattah¹; Hossam El-Din Sallam¹; ¹Jazan University

8:50 AM

On the Use of Higher Order Moment Invariants in the Classification of Microstructural Shapes: Ryan Harrison¹; Marc De Graef¹; ¹Carnegie Mellon University

9:10 AM

The Spacing Transform: Application and Validation: William Monroe¹; Charles Monroe¹; Robin Foley¹; ¹UAB

9:30 AM

DigiM Porosimetry: A Web Based Image to Simulation Portal for Material Characterization: *Shawn Zhang*¹; Cheney Zhang²; ¹DigiM Solution LLC; ²McCall Middle School

9:50 AM

Measuring Fracture Toughness Using Digital Image Correlation: Carl Cady¹; Cheng Liu¹; Manuel Lovato¹; ¹Los Alamos National Laboratory

10:10 AM Break

10:25 AM

Nondestructive Materials Characterization in 3D by Laboratory Diffraction Contrast Tomography: Christian Holzner¹; Arno Merkle¹; Leah Lavery¹; Erik Lauridsen²; Peter Resichig²; Michael Feser¹; ¹Carl Zeiss X-ray Microscopy, Inc.; ²Xnovo Technology ApS

10:45 AM

Speckle Measurements in Deformation Experiments and Dilatometry: Alexander Makitka¹; ¹Linseis

11:05 AM

A Unified Dictionary Approach for the Indexing of Electron Diffraction Modalities: Saransh Singh¹; Marc De Graef¹; ¹Carnegie Mellon University

11:25 AM

Facile Measurements of Single-crystal Elastic Constant Tensor Properties from Polycrystalline Samples: Xinpeng Du¹; Ji-Cheng Zhao¹; ¹Ohio State University

11:45 AM

Methodology for Determining Spall Damage Mode Preference in Shocked FCC Polycrystalline Metals from 3-D X-Ray Tomography Data: Andrew Brown¹; Quan Pham²; Pedro Peralta²; Brian Patterson³; Juan P. Escobedo-Diaz¹; Sheng-Nian Luo⁴; Darcie Dennis-Koller³; Ellen Cerreta³; Darrin Byler³; Aaron Koskelo³; Xianghui Xiao⁵; ¹UNSW Australia; ²Arizona State University; ³Los Alamos National Laboratory; ⁴The Peac Institute of Multiscale Sciences; ⁵Argonne National Laboratory

Characterization of Minerals, Metals, and Materials — Non-Ferrous

Sponsored by:TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Monday AM Room: 102B

February 15, 2016 Location: Music City Center

Session Chairs: Arnab Baksi, Lamar University; Evgeniya Skripnyak, National Research Tomsk State University

8:30 AN

Verification of the Predicted Martensitic Transformation in a Au-Cu-Zn Alloy: Michael Chapman¹; Marc DeGraef¹; ¹Carnegie Mellon University

8:50 AM

Low Cyclic Fatigue of Light Alloys with a Bimodal Grain Size Distribution: Evgeniya Skripnyak¹; Nataliya Skripnyak¹; Vladimir Skripnyak¹; Vladimir Skripnyak¹; National Research Tomsk State University

9:10 AM

High Accuracy Technique to Measure the Electrical Conductivity of Highly Conductive Molten Salts: *Thomas Villalon*¹; Shizhao Su¹; Uday Pal¹; ¹Boston University

9:30 AM

Effect of Microstructural Anisotropy on the Dynamic Mechanical Behaviour of Rolled Ti-6Al-4V: Andrea Lock¹; Andrew Brown¹; Gareth Appleby-Thomas²; Md. Z. Quadir¹; Paul Hazell¹; *Juan P. Escobedo-Diaz*¹; ¹UNSW Australia; ²Cranfield University

9:50 AN

Microstructure Evolution during Thermal Aging of Inconel 718: Rajakumar Devarapalli¹; Jonathan Cormier¹; *Mustapha Jouiad*¹; ¹Masdar Institute

10:10 AM Break

10:25 AM

Microstructure Characterization of Nickel Alloy 718 with Automated Optical Image Processing: *Thomas Ivanoff*¹; Trevor Watt¹; Eric Taleff¹; ¹Univer-

sity of Texas at Austin

10:45 AM

An Empirical Equation to Predict the Porosity of Titanium Foams: Xiao Jian¹; Cui Hao¹; Qiu Guibao¹; Yang Yang¹; ¹chongqing university

11.05 AM

Microstructure of Metal Injection Molded MIM418 Using Master Alloy Technique: Lin Zhang¹; Xiaowei Chen¹; Chi Chen¹; Xuanhui Qu¹; ¹University of Science and Technology Beijing

Computational Materials Engineering for Nuclear Reactor Applications — Understanding Nuclear Fuel Behavior

Sponsored by:

Program Organizers: Michael Tonks, Idaho National Laboratory; Julie Tucker, Oregon State University; Mark Tschopp, Army Research Laboratory; Richard Williamson, Idaho National Laboratory

Monday AM Room: 101D

February 15, 2016 Location: Music City Center

Funding support provided by: The symposium will be co-sponsored by the ICME

committee

Session Chair: To Be Announced

8:30 AM Invited

Development of the NEAMS Fuels Product Line: Steven Hayes¹, 'Idaho National Laboratory

9:10 AM

Computational Materials Engineering for Reactor Applications Using the Open-Source MOOSE Framework: *Michael Tonks*¹; Daniel Schwen²; ¹Pennsylvania State University; ²Idaho National Laboratory

9:30 AM

Cluster Dynamics Modeling of Extended Defects in Irradiated UO₂ with Off-stoichiometry Considerations: Sarah Khalil¹; Todd Allen²; *Anter El-Az-ab*³; ¹UW - Madison; ²Idaho National Lab; ³Purdue University

9:50 AM Break

10:10 AM

3D Phase Field Simulation of Grain Growth in Porous UO2: *Karim Ahmed*¹; Yongfeng Zhang¹; Todd Allen¹; Michael Tonks¹; Anter El-Azab²; ¹Idaho National Laboratory; ²Purdue University

10:30 AM Invited

Multi-scale Simulation of Fission Gas Diffusion in UO₂ Nuclear Fuel: *David Andersson*¹; ¹Los Alamos National Laboratory

11:10 AM

Thermodynamic Modeling of Complex Oxide Phases in U-M-O Systems where M = Ce, Nd, Pr, La, Y, Gd, and Th: *Jacob McMurray*¹; Dongwon Shin¹; Stewart Voit²; Robbie Brese¹; Ben Slone¹; Suengmin Lee³; Theodore Besmann⁴; ¹Oak Ridge National Laboratory; ²Los Alamos National Laboratory; ³Pacific Northwest National Laboratory; ⁴University of South Carolina

11:30 AM

One Dimensional Migration and Gas Bubble Superlattice Formation in UMo Metal Fuels--a Phase-field Model: Shenyang Hu¹; Douglas Burkes¹; Curt Lavender¹; David Senor¹; Zhijie Xu¹; ¹Pacific Northwest National Laboratory

11:50 AM

PCI Analysis of a Commercial PWR using Bison-CASL Fuel Performance Code: Nathan Capps¹; Wenfeng Lui²; Joe Rashid²; Brian Wirth¹; ¹University of Tennessee; ²Anatech

Computational Methods for Spatio-temporal Scale-bridging: from Atomistics to Mesoscale — Bridging Timescales

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Danny Perez, Los Alamos National Laboratory; Dallas Trinkle, University of Illinois, Urbana-Champaign; Maryam Ghazisaeidi, Ohio State University; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Monday AM Room: 209A

February 15, 2016 Location: Music City Center

Session Chairs: Normand Mousseau, Université de Montréal; Danny Perez, Los Alamos National Laboratory

8:30 AM

Characterization and Quantification of Crack Tip Plasticity in Crystalline Materials at Experimentally Achievable Strain Rate: Subhendu Chakraborty¹; Jiaxi Zhang¹; Somanth Ghosh¹; ¹Johns Hopkins University

8:50 AM

Accelerating Ring-Polymer Molecular Dynamics Simulation: A Parallel-Replica Dynamics Approach: Chun-Yaung Lu¹, Danny Perez²; Arthur Voter²; ¹Stanford University; ²Los Alamos National Laboratory

9:10 AM

Development of Accelerated Reactive Molecular Dynamics Framework for Chemically Reactive Systems: Srujan Rokkam¹; Tapan Desai¹; John Lawson²; Peter Cross³; Richard Burnes⁴; ¹Advanced Cooling Technologies, Inc.; ²NASA Ames Research Center; ³Naval Air Warfare Center; ⁴Naval Air Warfare Center

9:30 AM Invited

From Nanosecond to Second: Following Long-time Off-lattice Atomistic Dynamics with the Kinetic Activation-relaxation Technique: Normand Mousseau¹; ¹Université de Montréal

10:00 AM Break

10:20 AM

Further Development of the Local Hyperdynamics Method for Accelerated Molecular Dynamics: Dipanjan Ray¹; Danny Perez¹; Arthur Voter¹; ¹Los Alamos National Laboratory

10:40 AM Invited

Increasing the Power of Accelerated Molecular Dynamics Methods: Arthur Voter¹; ¹Los Alamos National Laboratory

11:10 AM

Atomistic Modeling of Radiation Damage over Long Timescales: Laurent K Beland¹; Yuri N Osetsky¹; German D. Samolyuk¹; Roger E Stoller¹; ¹Oak Ridge National Laboratory

11:30 AM

Using Speculative Parallelization to Enhance Temperature Accelerated Dynamics Simulations: *Richard Zamora*¹; Danny Perez¹; Arthur Voter¹; ¹Los Alamos National Laboratory

11:50 AM

Multiscale Diffusion Method for Simulations of Long-Time Defect Evolution with Application to Dislocation Climb: Kristopher Baker¹; William Curtin¹; ¹EPFL

12:10 PM

Sublattice Parallel Replica Dynamics: *Enrique Martinez Saez*¹; Blas Uberuaga¹; Arthur Voter¹; ¹LANL

Computational Methods for Uncertainty Quantification, Model Validation, and Stochastic Predictions — Uncertainty Quantification and Accuracy of DFT Calculations

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Francesca Tavazza, National Institute of Standards and Technology; Richard Hennig, University of Florida; Mark Tschopp, Army Research Laboratory; Li Ma, NIST

Monday AM Room: 207C

February 15, 2016 Location: Music City Center

Session Chair: Thomas Allison, NIST

8:30 AM Invited

Effect of K-point Convergence on Derived Properties for Pure Crystals: Thomas Allison¹; ¹NIST

9:10 AM

Searching Transition States under Model-Form Uncertainty in Density Functional Theory Simulation: Lijuan He¹; Yan Wang¹; ¹Georgia Institute of Technology

9:30 AM Invited

Assessing the Accuracy of DFT Formation Energies: Chris Wolverton¹; ¹Northwestern University

10:10 AM Break

10:30 AM Invited

Quality Control: Has Your DFT Code Been Δ-approved?: *Kurt Lejaeghere*¹; Veronique Van Speybroeck¹; Ward Poelmans¹; Stefaan Cottenier¹; ¹Ghent University

11:10 AM

Density-Functional Theory Energy Density Method: Extracting Information and Identifying Finite-size Errors: Bora Lee¹; Min Yu²; *Dallas Trinkle*¹; ¹University of Illinois, Urbana-Champaign; ²Univ. Wisconsin

Computational Thermodynamics and Kinetics — Defect Thermodynamics and Diffusion I

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Chemistry and Physics of Materials Committee Program Organizers: Dane Morgan, University of Wisconsin - Madison; Shawn Coleman, U.S. Army Research Laboratory; Xiang-Yang Liu, Los Alamos National Lab; Chris Wolverton, Northwestern University

Monday AM Room: 208B

February 15, 2016 Location: Music City Center

Session Chairs: Wei Chen, Lawrence Berkelely National Laboratory; Bilge Yildiz, Massachusetts Institute of Technology

8:30 AM Invited

Doping on the Valley of Hydrogen Solubility: A Route to Design Hydrogen Resistant Zirconium Alloys: Mostafa Youssef¹; Ming Yang¹; Bilge Yildiz¹;

¹Massachusetts Institute of Technology

9:00 AM

Investigation of the Ionic Conductivity of c-ZrO2 by Applying the CAL-PHAD Approach: Mohammad Asadikiya¹; Yu Zhong¹; ¹MME Department of Florida International University

9:20 AM

Identification of Bulk Oxide Defects in an Electrochemical Environment: Defect Stability Phase Diagrams: *Mira Todorova*¹; Joerg Neugebauer¹;
¹Max-Planck-Institut fuer Eisenforschung GmbH

9:40 AM

Impact of Varying Oxygen Stoichiometry on Electrochromic Behavior in WO₃: Wennie Wang¹; Anderson Janotti¹; Chris Van de Walle¹; ¹University of California, Santa Barbara

10:00 AM Break

10:20 AM Invited

Intrinsic Point Defect in Intermetallics: From Computation to Data Mining: Wei Chen¹; Hong Ding¹; Bharat Medasani¹; Maciej Haranczyk¹; Kristin Persson¹; Mark Asta²; ¹Lawrence Berkeley National Laboratory; ²UC Berkeley

10:50 AM

First Principles Calculations of Lattice Parameters and Elastic Constants of Fe Phases Containing Solutes: *Michael Fellinger*¹; Louis Hector Jr.²; Dallas Trinkle¹; ¹University of Illinois at Urbana-Champaign; ²General Motors R&D Center

11:10 AM

Exploration into the Kinetics of Ultra-light Magnesium Alloys: Philipp Alieninov¹; Ian Parker¹; Michele Manuel¹; ¹University of Florida

11·30 AM

Develop a Diffusivity Database for Mg Alloys Using Diffusion Multiples and Liquid-Solid Diffusion Couples: Wei Zhong¹; Wei-Hua Sun¹; Alan. A Luo¹; Ji-Cheng Zhao¹; ¹The Ohio State University

11:50 AM

Light Element Diffusion in Mg Using First Principles Calculations: Anisotropy and Elastodiffusion: *Ravi Agarwal*¹; Dallas Trinkle¹; ¹University of Illinois, Urbana-Champaign

Driving Discovery: Integration of Multi-Modal Imaging and Data Analysis — Session I

Sponsored by: TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Charudatta Phatak, Argonne National Laboratory; Doga Gursoy, Argonne National Laboratory; Emine Gulsoy, Northwestern university; Yang Jiao, Arizona State University

Monday AM Room: 102A

February 15, 2016 Location: Music City Center

Session Chair: Emine Gulsoy, Northwestern university

8:30 AM Keynote

Integrated Imaging: The Sum is Greater than the Parts: Amanda Pet-ford-Long¹; ¹Argonne National Laboratory

9:00 AN

Digital Representation of Materials Grain Structure from

Four-Dimensional X-ray Microtomography Data: Ashwin Shahani¹; Xianghui Xiao²; Peter Voorhees¹; ¹Northwestern University; ²Argonne National Laboratory

9:20 AM

In Situ Synchrotron Quantification of Evolving Solidification Microstructures in Ni and Co Based Alloys: Mohammed Azeem¹; Peter Lee¹; Peter Rockett²; Loic Courtois¹; Shyamprasad Karagadde³; Fenglin Yi¹; Rahman Khandaker⁴; David Dye⁴; Robert Atwood⁵; ¹Manchester University; ²Oxford University; ³IIT Bombay; ⁴Imperial College, London; ⁵Diamond Light Source

9:40 AM

3D and **4D** Characterization of Failure Mechanisms in Commercial Li-Ion Batteries: *Jeff Gelb*¹; Paul Shearing²; Donal Finnegan²; Dan Brett²; ¹San Jose State University; ²University College London

10:00 AM Break

10:20 AM Invited

Multi-scale, Multi-Model Analysis of Deformation Behavior in Metallic Materials by X-ray Microtomography, FIB, and EBSD: James Mertens¹; Antony Kirubanandham¹; Sudhanshu Singh¹; Arno Merkle²; Xianghui Xiao³; Yang Jiao¹; *Nikhilesh Chawla*¹; ¹Arizona State University; ²Carl Zeiss; ³Advanced Photon Source, Argonne National Laboratory

10:50 AM

Integrated Multimodal Imaging of Cathodes for Lithium Ion Battery: Charudatta Phatak¹; Doga Gursoy¹; Emine Gulsoy¹; Lynn Trahey¹; Vincent

De Andrade¹; ¹Argonne National Laboratory

11:10 AM Invited

Correlation of Multi-modal Chemical Imaging with Computational Simulations for Energy Materials: Arun Devaraj¹; Robert Colby¹; Craig Szymanski¹; Jie Bao¹; Zhijie Xu¹; Vijay Murugesan¹; Tolek Tyliszczak²; Suntharampillai Thevuthasan³; ¹Pacific Northwest National Lab; ²Lawrence Berkeley National Laboratory; ³Qatar Environment and Energy Research Institute

11:40 AM Invited

Multi-Modality Imaging at the Hard X-ray Nanoprobe Beamline at the NSLS-II: *Yong Chu*¹; Hanfei Yan¹; Xiaojing Huang¹; Li Li¹; Ken Lauer¹; Sebastian Kalbfleisch¹; Wen Hu¹; Mingyuan Ge¹; Evgeny Nazaretski¹; ¹Brookhaven National Laboratory

Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology — Tin Whisker; Intermetallic Compound I

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Albert T. Wu, National Central University; Yan Li, Intel; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Monday AM Room: 201A

February 15, 2016 Location: Music City Center

Session Chairs: Christopher Gourlay, Imperial College London; Babak Arfaei, Binghamton University

8:30 AM Invited

Modeling the Growth of Whiskers under Thermally-induced Strain: Eric Chason¹; Fei Pei¹; ¹Div of Engineering

8.55 AM

Mitigation of Sn Whisker Growth by Dopant Addition: Indranath Duttal; Babak Talebanpour¹; Sherin Bhassyvasantha²; Lutz Meinshausen¹; Soumik Banerjee¹; Bhaskar Majumdar²; ¹Washington State University; ²New Mexico Tech

9:15 AM

Synchrotron Radiation X-ray Measurement on Residual Stress in Sn Films and Kinetic Analysis of Sn Whiskers Growth: *Hao Chen*¹; Hsin Yi Lee²; Ching Shun Ku²; Albert T. Wu¹; ¹National Central University; ²National Synchrotron Radiation Research Center

9:35 AM Invited

In Situ FIB/SEM Tensile Testing of Tin (Sn) Whiskers: Renuka Vallabhaneni¹; Ehsan Izadi¹; Carl Mayer¹; Sudhanshu Singh¹; C. Shashank Kaira¹; Jagannathan Rajagopalan¹; Nikhilesh Chawla¹; ¹Arizona State University

10:00 AM Break

10:20 AM

Effect of Crystal Orientation and Microstructure on the Nucleation and Growth of Tin (Sn) hillocks by In Situ Nanoindentation and Electron Backscattered Diffraction (EBSD): Irene Lujan-Regalado¹; Antony Kirubanandham¹; Carl Mayer¹; Sudhanshu Singh¹; Jason Williams¹; Nikhilesh Chawla¹; Arizona State University

10:40 AM

Nucleation Rates of \946-Sn, Cu₆Sn₅, and Cu_xAl_y in Aluminum-Modified Lead-Free Solder Alloys

: Kathlene Reeve¹; Carol Handwerker¹; Iver Anderson²; ¹Purdue University; ²Ames Laboratory

11:00 AM

Influence of Surface Finish on the Formation of Intermetallic Compounds during Reflow Soldering: In-situ Real-time Observations: M. A. A. Mohd Salleh¹; C. M. Gourlay²; H. Yasuda³; A. Sugiyama⁴; T. Nagira⁵; S. D. McDonald¹; K. Nogita¹; ¹School of Mechanical and Mining Engineering, University of Queensland; ²Imperial College; ³Kyoto University; ⁴Osaka Sangyo University; ⁵Osaka University

11:20 AM

Influence of the Substrate on the Nucleation of Tin in Solder Reactions: Christopher Gourlay¹; Sergey Belyakov¹; Zhaolong Ma¹; Jingwei Xian¹; ¹Imperial College London

Energy Technologies and Carbon Dioxide Management — Session I

Sponsored by:TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Li Li, Cornell University; Donna Guillen, Idaho National Laboratory; Neale Neelameggham, Ind LLC; Lei Zhang, University of Alaska Fairbanks; Jingxi Zhu, Carnegie Mellon University; Nawshad Haque, CSIRO; Dirk Verhulst, Consultant, Extractive Metallurgy; Soumendra Basu, Boston University; Tao Wang, Nucor Steel; Xuan Liu, Carnegie Mellon University

Monday AM Room: 104D

February 15, 2016 Location: Music City Center

Session Chairs: Neale Neelameggham, Ind LLC; Nawshad Haque, CSIRO; Jingxi Zhu, Carnegie Mellon University

8:30 AM

CO2 Reduction in Metallurgical and Gasification Industries Using Slag Byproduct: *Jinichiro Nakano*¹; James Bennett¹; Anna Nakano¹; ¹US Department of Energy National Energy Technology Laboratory

8:50 AM

CO2 Reduction in the Cement Industry by Chemical Synthesis Processes: *Juan Restrepo*¹; Oscar Restrepo¹; Jorge Tobón¹; ¹Universidad Nacional de Colombia

9:10 AM Invited

Study on Molten Salt CO2 Capture and Electrochemical Transformation (MSCC-ET): Dihua Wang¹; ¹Wuhan University

9:50 AN

Research on Greenhouse Gas Emission of Solid Dust Recovery Using Rotary Hearth Furnace Process in China: *Hong-Qiang Liu*¹; Jian-Xun Fu¹; Si-Yu Liu¹; ¹State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai, China, 200072

10:10 AM Break

10:30 AM Invited

Effect of Cations on Carbon Dioxide Sorption in Manganese Dioxide Octahedral Molecular Sieves: *Izaak Williamson*¹; Winnie Wong-Ng²; Lan Li¹; ¹Boise State University; ²National Institute of Standards and Technology

11:10 AM

Thermodynamic Analysis of Hydrogen Production from Cog-Steam Reforming Process Using Blast Furnace Slag as Heat Carrier: Wenjun Duan¹; Qingbo Yu²; Junxiang Liu²; Qin Qin²; ¹Northeastern University; ²Northeastern University

11:30 AM

CO2 Gasification of Catalysts-loaded Petroleum Coke at Different Grinding Medium: Zhengjie Chen¹; Wenhui Ma¹; Kuixian Wei¹; Jijun Wu¹; ¹Kunming University of Science and Technology

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention — Identification of Fatigue Precursors and Their Effect on Local/Global Plasticity and Fracture

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky; Ashley Spear, University of Utah

Monday AM Room: 213

February 15, 2016 Location: Music City Center

Session Chair: Antonios Kontsos, Drexel University

8:30 AM Keynote

Advances in Modeling of Fatigue Thresholds: *Huseyin Sehitoglu*¹; Piyas Chowdhury¹; Sertan Alkan¹; ¹University of Illinois

9:10 AM Invited

Quantifying Dislocation Microstructure and Point Defect Evolutions during Cyclic Loading: Ahmed Hussein¹; *Jaafar El-Awady*¹; ¹Johns Hopkins University

9:30 AM

In-situ Laue Micro-Diffraction during Cyclic Plastic Deformation of Copper under Shear: Ainara Irastorza-Landa¹; Steven Van Petegem¹; Antoine Guitton¹; Alex Bollhalder¹; Daniel Grolimund¹; Helena Van Swygenhoven¹; ¹Paul Scherrer Institut

9:50 AM

Statistical Analysis of Elastic Stress Field at Surface of Ti6Al4V Polycrystals Predicted by Finite Elements Simulations: Loic Signor¹; Van Truong Dang¹; Patrick Villechaise¹; Samuel Hemery¹; ¹Pprime Institute (CNRS - ISAE/ENSMA - Poitiers University)

10:10 AM Break

10:30 AM Invited

Multidisciplinary Approach for Capturing Fatigue Damage Precursor Effects in Metallic Structures under Dynamic Loading: Ed Habtour¹; Daniel Cole¹; Brian Wisner²; Antonios Kontsos²; ¹Army Research Laboratory; ²Drexel University

10:50 AM Invited

Detecting the Precursor to Fatigue Crack Initiation in Nanocrystalline Ni-Fe Using Synchrotron Diffraction: *Brad Boyce*¹; Timothy Furnish¹; ¹Sandia National Labs

11:10 AM

Microstructure-Sensitive Investigation of Aluminum 2024 Fatigue Damage Precursors using Acoustic Emission (Note: This presentation will also appear in the poster session.): Brian Wisner¹; Antonios Kontsos¹; ¹Drexel University

11:30 AM

Investigation of Nonmetallic Inclusion-driven Failures: Diwakar Naragani¹; Michael Sangid¹; Paul Shade²; Jay Schuren²; Hemant Sharma³; Jun-Sang Park³; Peter Kenesei³; Joel Bernier⁴; Todd Turner²; ¹Purdue University; ²Air Force Research Laboratory; ³Argonne National Laboratory; ⁴Lawrence Livermore National Laboratory

Frontiers in Solidification: An MPMD Symposium in Honor of Michel Rappaz — Keynote/Nucleation

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wilfried Kurz, Swiss Fed. Inst. of Techn.; Jon Dantzig, EPFL and University of Illnois; Alain Karma, Northeastern University; Jeffrey Hoyt, McMaster University

Monday AM Room: 105A

February 15, 2016 Location: Music City Center

Session Chairs: Wilfried Kurz, Swiss Fed. Inst. of Techn.; Alain Karma, Northeastern University

8:30 AM Introductory Comments

8:45 AM Keynote

Nonequilibrium Physics in Materials Research: James Langer¹; ¹University of California, Santa Barbara

9:20 AM Keynote

Bridging Multiple Length Scales in Solidification Modeling: What Can We Do, and What's Worth Doing?: Robert Sekerka¹; ¹Carnegie Mellon University

9:55 AM Break

10:15 AM Invited

A Criterion for Wavelength Selection in Pattern Forming Systems: *Jeffrey Hoyl*¹; Ken Elder²; ¹McMaster University; ²Oakland University

10:40 AM Invited

Influence of Icosahedral Ordering in the Liquid on Nucleation of a Solid: Atomistic Simulation Investigations: Jun Ding¹; Mark Asta²; Jeffrey Hoyt³; ¹Lawrence Berkeley National Laboratory; ²University of California, Berkeley; ³McMaster University

11:05 AM Invited

Solute Precipitate Nucleation: Advances in Theory and Simulation Methods: Baron Peters¹; ¹University of California, Santa Barbara

11:30 AM Invited

Structural and Compositional Templating for Heterogeneous Nucleation: *Zhongyun Fan*¹; ¹Brunel University

High-Temperature Systems for Energy Conversion and Storage — Ceramic Reliability I

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Energy Conversion and Storage Committee

Program Organizers: Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Amit Shyam, Oak Ridge National Laboratory; Kyle Brinkman, Clemson University; Paul Ohodnicki, National Energy Technology Laboratory; Jung Pyung Choi, Pacific Northwest National Laboratory

Monday AM Room: 104E

February 15, 2016 Location: Music City Center

Session Chairs: Amit Pandey, RRLGFCS; Amit Shyam, ORNL

8:30 AM Introductory Comments

8:35 AM Keynote

Thermal Spray as an Additive and Layered Manufacturing Technology for Applications in Energy Systems: Sanjay Sampath¹; ¹Stony Brook University

9:10 AM

Composition and Temperature Dependence of Fracture Behavior of Diffusion Aluminide Bond Coats: Nagamani Jaya Balila¹; Md Zafir Alam²; Sanjit Bhowmick³; Dipak K Das⁴; Samir Kamat⁴; S. A. Syed Asif³; Vikram Jayaram⁵; ¹MPIE GmbH; ²Johns Hopkins University; ³Hysitron Inc.; ⁴DMRL; ⁵IISe

11

9:30 AM Invited

Synchrotron-Based X-ray Imaging of Energy Conversion and Storage Materials: Wilson Chiu¹; ¹University of Connecticut

9:55 AM Break

Ultraviolet Digital Image Correlation (UV-DIC) for Measuring Full-Field Strains at Extreme Temperatures: Ryan Berke¹; ¹Utah State University

Hidden Information in Standard Characterization of Ceramics: James Zimmermann¹; ¹Corning

11:00 AM

Thermomechanical Properties of Bilayer La2Zr2O7 Thermal Barrier Coatings: Xingye Guo¹; Zhe Lu²; Yeon-Gil Jung²; Li Li³; James Knapp³; Jing Zhang¹; ¹Indiana University - Purdue University Indianapolis; ²Changwon National University; ³Praxair Surface Technologies Inc.

Evaluation of Delamination Life for Thermal Barrier Coating with Various Bond Coats: Taehyung Kim¹; Jongkee Ahn¹; Dongick Shin¹; Kitae Kim¹; Yeon-Gil Jung²; Donghoon Kim³; ¹Hanwha Techwin; ²Changwon National University; ³Agency for Defense Development

Hume-Rothery Award Symposium: Thermodynamics of Materials — Phonon and Mechanisms I Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural

Materials Division, TMS: Alloy Phases Committee

Program Organizers: Ursula Kattner, National Institute of Standards and Technology; Michael Manley, Oak Ridge National Laboratory

Monday AM Room: 107A

February 15, 2016 Location: Music City Center

Session Chairs: Ursula Kattner, National Institute of Standards and Technology; Mark Asta, University of California, Berkeley

8:30 AM Introductory Comments Michael E. Manley

8:40 AM Keynote

The Origin of Entropy in Materials: Brent Fultz¹; ¹California Institute of Technology

9:20 AM Invited

Vibrational Entropy and Chemical Configurations: Experimental Quantification and Their Correlation: Matthew Lucas¹; ¹California Institute of Technology, Oak Ridge National Laboratory, and Air Force Research Laboratory

9:50 AM

X-ray and Neutron Scattering Studies of Lattice Vibrations and Thermodynamic Phase Stability in Vanadium Dioxide: John Budai¹; Jiawang Hong¹; Olivier Delaire¹; Michael Manley¹; Chen Li¹; Jonathan Tischler²; Ayman Said²; Bogdan Leu²; Douglas Abernathy¹; Eliot Specht¹; Lynn Boatner¹; ¹Oak Ridge National Laboratory; ²Argonne National Laboratory

10:10 AM Break

10:30 AM Invited

Harnessing Materials Properties and Data for Accelerated Design: Kristin Persson1; 1UC Berkeley

Thermodynamics and Thermal Transport Near Lattice Instabilities: Olivier Delaire1; 1Oak Ridge National Laboratory

11:30 AM Invited

Electronic Transitions upon Compression: From Changes of the Fermi Surface Topology to Crossings of Core Levels: Igor Abrikosov¹; Marcus Ekholm¹; Qingguo Feng¹; Leonid Pourovskii²; Mikhail Katsnelson³; John Wills⁴; Alexey Tal⁵; Natalia Dubrovinskaia⁶; Leonid Dubrovinsky⁶; ¹Linköping University; ²Ecole Polytechnique; ³Radboud University; ⁴Los Alamos Natl Lab; ⁵NUST 'MISIS'; ⁶University of Bayreuth

ICME Infrastructure Development for Accelerated Materials Design: Data Repositories, Informatics, and Computational Tools — Applications

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Carelyn Campbell, National Institute of Standards and Technology; Dongwon Shin, Oak Ridge National Laboratory; Jiadong Gong, QuesTek Innovations; Shengyen Li, National Institute of Standards and Technology; Francesca Tavazza, National Institute of Standards and Technology; Mark Tschopp, Army Research Laboratory

Room: 207B Monday AM

February 15, 2016 Location: Music City Center

Session Chairs: Jiadong Gong, QuesTek Innovations; Dongwon Shin, Oak Ridge National Laboratory

8:30 AM Keynote

Genomic Data Infrastructure for Computational Materials Design: Greg Olson¹; ¹Northwestern University & QuesTek Innovations

An ICME Approach to the Investigation of the Relationship between Processing Parameters and Microstructure Development in an Extruded ZE20 Magnesium Alloy: Joy Forsmark¹; Mei Li¹; Raj Mishra²; Plumeri John³; Richard Michie³; Ahmad Chamanfar³; Wojciech Misiolek³; Zachary McClelland4; Andrew Oppedal4; Mark Horstemeyer4; Stephen Horstemeyer4; Xianfeng Ma⁵; John Allison⁵; Scott Sutton⁶; Alan Luo⁶; Eric Nyberg⁷; Nes Abdulrahman⁸; ¹Ford Motor Company; ²General Motors; ³Lehigh University; ⁴Mississippi State University; ⁵University of Michigan; ⁶Ohio State University; ⁷Pacific Northwest National Labs; ⁸Mag Specialties Inc

9:40 AM Keynote

An ICME Approach to Generation Three Advanced High Strength Steel **Development**: Louis Hector Jr¹; ¹General Motors

10:20 AM Break

10:40 AM

An Integrated Model for Prediction of Yield Stress in Al-7Si-Mg Cast Alloys: Chen Rui¹; Xu Qingyan¹; Liu Baicheng¹; ¹Tsinghua University

Web Based Nano-materials Design Platform for Li Ion Battery: Min-Ho Lee¹; Sang-Soo Han¹; Kwang-Ryeol Lee¹; ¹KIST

11.20 AM

Explicit and Reduced Geometrical Representations for Design of Knitted Functional Fabrics: Daniel Christe¹; Dani Liu¹; Chenyang Mo¹; Krzysztof Mazur¹; Aditi Ramadurgakar²; Shane Esola¹; Genevieve Dion³; David Breen⁴; Antonios Kontsos¹; ¹Department of Mechanical Engineering & Mechanics, Drexel University; ²Department of Materials Science & Engineering, Drexel University; 3Westphal College of Media Arts & Design, Drexel University; ⁴College of Computing and Informatics, Drexel University

Light Metals Keynote — Pushing Boundaries -- Innovative Thinking in Light Metals Production

Sponsored by: No Sponsors Found!

Program Organizer: TMS2016 Administration

Monday AM Room: 202A

February 15, 2016 Location: Music City Center

Session Chair: Margaret Hyland, University of Auckland

8:30 AM Introductory Comments

8:40 AM Keynote

Dr Martin Iffert, CEO Trimet Aluminium SE: TMS2016 Administration¹;

9:20 AM Keynote

Dr Stephane Delalande, Deputy Scientific Director, PSA Peugeot Citroën: TMS2016 Administration¹; ¹TMS

10:00 AM Concluding Comments

Magnesium Technology 2016 — Keynote Session

Sponsored by:TMS Light Metals Division, TMS: Magnesium Committee Program Organizers: Alok Singh, National Institute for Materials Science; Kiran Solanki, Arizona State University; Michele Manuel, University of Florida; Neale Neelameggham, Ind LLC

Monday AM Room: 204

February 15, 2016 Location: Music City Center

Session Chairs: Alok Singh, National Institute for Materials Science; Kiran Solanki, Arizona State University

8:30 AM Introductory Comments

8:40 AM Keynote

Challenges for Implementation of Magnesium into More Applications: Karl Kainer¹; ¹Helmholtz-Zentrum Geesthacht

9:20 AM Keynote

Development of Magnesium Alloys for High Speed Trains in China: *Eric Nyberg*¹; Jian Peng²; Neale Neelameggham³; ¹Pacific Northwest National Laboratory; ²Chongqing University; ³Ind LLC

9:55 AM Break

10:15 AM Keynote

Korea's R&D Activities Towards the Application of Wrought Mg Alloys: Nack J. Kim¹; ¹POSTECH

10:50 AM Keynote

Fascinating LPSO-structured Mg Alloys: Eiji Abe¹; ¹University of Tokyo

11:25 AM Keynote

Developments in High Magnesium-content Bulk Metallic Glasses and Future Possibilities: *Kevin Laws*¹; Karl Shamlaye¹; Jörg Löffler²; Michael Ferry¹; ¹University of New South Wales; ²ETH Zurich

Material Design Approaches and Experiences IV - Material Design Tools and Models

Sponsored by:TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Akane Suzuki, GE Global Research; Ji-Cheng Zhao, The Ohio State University; Michael Fahrmann, Haynes International Inc.; Qiang Feng, University of Science and Technology Beijing

Monday AM Room: 208A

February 15, 2016 Location: Music City Center

Session Chairs: Ji-Cheng Zhao, Ohio State University; Akane Suzuki, GE Global Research

8:30 AM Invited

A Quantitative Description of Hierarchical Microstructure for Materials Engineering Design: Dennis Dimiduk¹; Sean Donegan¹; Michael Groeber²; Adam Pilchak²; Shesh Srivatsa³; ¹BlueQuartz Software, LLC; ²Air Force Research Laboratory; ³Srivatsa Consulting, LLC

9:00 AM Invited

 $\begin{tabular}{ll} \textbf{Decision Support Strategies in Design of Hierarchical Alloy Systems: } \textit{David McDowell}^t; \ ^1Georgia Institute of Technology \\ \end{tabular}$

9:30 AM

A Novel Computational Tool Linking Microstructure and Properties for Thermomechanical Processes: *Pengyang Zhao*¹; Thaddeus Song En Low¹; Yunzhi Wang¹; Stephen Niezgoda¹; ¹The Ohio State University

9:50 AM Break

10:10 AM Invited

High Temperature Statistical Mechanics to Enable Alloy Design: *Anton Van der Ven*¹; John Thomas¹; Brian Puchala²; Anirudh Raju Natarajan¹; John Goiri¹; ¹University of California Santa Barbara; ²University of Michigan

10:40 AM Invited

Further Developments of CALPHAD Based Tools for Alloy Design: *Paul Mason*¹; Kaisheng Wu¹; Chao Jiang¹; Qing Chen²; Johan Bratberg²; Anders Engstrom²; ¹Thermo-Calc Software Inc.; ²Thermo-Calc Software AB

11:10 AM Invited

Integrated Computational Materials Engineering for Precipitation Modeling of Multi-Component Alloys: Weisheng Cao¹; Fan Zhang¹; Shuanglin Chen¹; Chuan Zhang¹; Jun Zhu¹; ¹CompuTherm

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Fuels I

Sponsored by:TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Monday AM Room: 101A

February 15, 2016 Location: Music City Center

Session Chair: Ramprashad Prabhakaran, Pacific Northwest National Laboratory

8:30 AM

Recent Results of Microstructural Characterization of U-10Mo Monolithic Fuel Plates Irradiated in the Advanced Test Reactor: Dennis Keiser¹; Jan-Fong Jue¹; Jian Gan¹; Brandon Miller¹; Adam Robinson¹; ¹Idaho National Laboratory

8:50 AM

Characterization via Transmission Electron Microscopy of the Diffusional Interactions between U-10Mo and AA6061 Alloys at 600°C: Emmanuel Perez¹; Dennis Keiser¹; Yong-ho Sohn²; ¹Idaho National Laboratory; ²University of Central Florida

9:10 AM

Chemical Dependence of the Amorphization Behavior of the UMo-Al Interaction Layer in Dispersion Fuels: Laura Jamison¹; Bei Ye¹; Sumit Bhattacharya²; Abdellatif Yacout¹; ¹Argonne National Laboratory; ²Northwestern University

9:30 AM

The Effect of Grain Size on the Homogenization Kinetics and Eutectoid Decomposition in U-10 wt% Mo Alloys: Vineet Joshi¹; Curt Lavender¹; Zhijie Xu¹; Dean Paxton¹; Douglas Burkes¹; ¹Pacific Northwest National Laboratory

9:50 AM

Swift Heavy Ion Irradiation Induced Interactions in the UMo/X/Al Trilayer System: Hsin-Yin Chiang¹; Winfried Petry¹; S.-H. Park²; M. Mayer³; K. Schmid³; M. Balden³; U. Boesenberg⁴; R. Jungwirth¹; G. Falkenberg⁴; Tobias Zweifel¹; ¹Technische Universität München / FRM II; ²Ludwig-Maximilians-Universität München; ³Max-Planck-Institut für Plasmaphysik; ⁴Deutsches Elektronen-Synchrotron

10:10 AM Break

10:30 AM

Microstructure-based Finite Element Analysis of the Effect of Homogenization on the U-10Mo/Zr Interface: *Ayoub Soulami*¹; Zhijie Xu¹; Vineet Joshi¹; Colleen McInnis¹; Curt Lavender¹; Doug Burkes¹; ¹Pacific Northwest National Laboratories

10:50 AM

Miniature Bulge Test for Measuring HIPed Aluminum/Aluminum and Aluminum/Uranium Interfacial Fracture Toughness: Manuel Lovato¹; Cheng Liu¹; Kester Clarke¹; David Alexander¹; Wiliam Blumenthal¹; ¹Los Alamos National Laboratory

11:10 AM

Recrystallization and Texture Development in Rolled U-10 wt% Mo Alloys: Vineet Joshi¹; Curt Lavender¹; Ayoub Soulami¹; David Field²; Doug Burkes¹; ¹Pacific Northwest National Laboratory; ²Washington State University

11:30 AM

The Thermal Properties of Fresh and Spent U-Mo Fuels: An Overview: Winfried Petry¹; Tanja Huber¹; Harald Breitkreutz¹; Christian Reiter¹; Stefan Elgeti²; Douglas Burkes³; Amanda Casella³; Andrew Casella³; Frances Smith³; Daniel Wachs⁴; ¹Technische Universität München / FRM II; ²Max-Plank-Institute for Plasmaphysics; ³Pacific Northwest National Laboratory; ⁴Idaho National Laboratory

11:50 AM

Corrosion Studies on U-10Mo Fuel for Research Reactor Applications: Ramprashad Prabhakaran¹; Levi Gardner²; Vineet Joshi¹; Curt Lavender¹; Douglas Burkes¹; ¹Pacific Northwest National Laboratory; ²Utah State Univ

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Structural Materials I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Monday AM Room: 101B

February 15, 2016 Location: Music City Center

Session Chair: Raul Rebak, GE Global Research

8:30 AM

Atomic-level Characterization of the Metal-oxide Interface of a Zircaloy-4 Cladding from Commercial LWR Irradiated Fuel: Philip Edmondson¹; Chad Parish¹; Tyler Gerczak¹; Keith Leonard¹; Arthur Motta²; Kurt Terrani¹; ¹Oak Ridge National Laboratory; ²Penn State University

8:50 AM

Synchrotron Characterization of Oxidation in Nuclear Claddings for LWR Applications: Simerjeet Gill¹; *Mohamed Elbakhshwan*¹; Raul Rebak²; Lynne Ecker¹; ¹Brookhaven National Lab; ²GE Global Research, Schenectady

9:10 AM

Transitions in Creep Mechanisms of HANA 4 – Applications to Dimensional Change Predictions during Dry Storage: Boopathy Kombaiah¹; Korukonda Linga Murty¹; ¹North Carolina State University

9:30 AM

Atom Probe Examinations of Zircaloy Irradiated at Nominally 358C: *Brian Cockeram*¹; Phil Edmondson²; Keith Leonard²; Jim Hollenbeck¹; ¹Bechtel-Bettis; ²Oak Ridge National Laboratory

9:50 AM

Al-Ti-Cr Coating on Zr Alloys for Enhancing Accident Tolerance of Fuel Claddings: Jeong-Yong Park¹; Il-Hyun Kim¹; Hyun-Gil Kim¹; Yang-Il Jung¹; Dong-Jun Park¹; Jung-Hwan Park¹; Yang-Hyun Koo¹; ¹Korea Atomic Energy Research Institute

10:10 AM Break

10:30 AM

Irradiation Memory Effects in Zirconium Alloy Corrosion: Jason Gruber¹; ¹Bechtel Marine Propulsion Corporation

10:50 AM

Synthesis and Characterization of Magnetron Sputtered Cr2AlC Coatings to Improve Oxidation Resistance of Zirconium Alloys: Maulik Patel¹; Yueying Wu¹; Devin Roberts¹; Philip Rack¹; Jonna Partezana¹; Robert Comstock¹; Kurt Sickafus¹; ¹University of Tennessee

11:10 AM

Comparison of Zirconium Oxidation Behavior under Oxygen-rich Gaseous and High Humidity Environments via In-situ TEM: Wayne Harlow¹; Mitra Taheri¹; ¹Drexel University

11:30 AM

Study of Microstructural Evaluation and Thermal Creep Behavior of Heat-Treated Zr-Excel Pressure Tube Materials: Kazi Ahmmed¹; Levente Balogh¹; Yasir Idrees¹; David Kerr¹; Mark Daymond¹; ¹Queens University

Mechanical Behavior at the Nanoscale III — In-situ Characterization of Nanoscale Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Daniel Gianola, University of California, Santa Barbara; Ting Zhu, Georgia Institute of Technology; Julia Greer, California Institute of Technology; Harold Park, Boston University; Garritt Tucker, Drexel University; Jiangwei Wang, University of Pittsburgh

Monday AM Room: 214

February 15, 2016 Location: Music City Center

Session Chair: Jonathan Zimmerman, Sandia National Laboatories

8:30 AM Invited

In Situ TEM Characterization on Deformation of FeCoNiMnCr High Entropy Alloy: *Qian Yu*¹; ZiJiao Zhang²; Jiangwei Wang³; Scott X. Mao³; Robert O. Ritchie⁴; ¹University of Michigan, Ann Arbor; ²Zhejiang University; ³University of Pittsburgh; ⁴UC Berkeley

9:10 AM

Anisotropy in Nanolamellar Pearlitic Steels Investigated at the Micron Scale: Marlene Kapp¹; Anton Hohenwarter²; Stefan Wurster²; Bo Yang¹; Reinhard Pippan¹; ¹Erich Schmid Institute of Materials Science; ²Montanuniversität Leoben

9:30 AM

In Situ Study of Oxygen's Influence on Deformation Twinning in Alpha-Titanium: *Rachel Traylor*¹; Josh Kacher²; Max Poschmann²; Mark Asta²; Daryl Chrzan²; Andrew Minor²; ¹Other; ²University of California Berkeley

9:50 AM

Growth and Stress-induced Transformation of Zinc Blende AlN Layers in Al-AlN-TiN Multilayers: Nan Li¹; Satyesh Yadav¹; Shuai Shao¹; *Jian Wang*²; Xiang-Yang Liu¹; Amit Misra³; ¹Los Alamos National Laboratory; ²University of Nebraska-Lincoln; ³University of Michigan

10:10 AM Break

10:30 AM

In Situ Nanomechanics: Ting Zhu¹; ¹Georgia Institute of Technology

10:50 AM

Correlating In and Ex Situ Nanomechanical Measurements: *Douglas Stauffer*¹; Eric Hintsala²; William Gerberich²; S.A. Syed Asif¹; ¹Hysitron, Inc.; ²Chemical Engineering & Materials Science, University of Minnesota

11:10 AN

Enhancing Ductility of Metal-Metal (BCC-HCP) and Metal-Ceramic Multilayered Nanocomposites: Siddhartha Pathak¹; William Mook²; Youxing Chen¹; Nan Li¹; Jon Baldwin¹; Irene Beyerlein¹; Nathan Mara¹; ¹Los Alamos National Laboratory; ²Sandia National Laboratory

11:30 AM

In Situ Atomic-scale Observation of Twinning Dominated Deformation in Nanoscale BCC Bi-crystals: Scott Mao¹; Jiangwei Wang¹; Zhi Zeng²; Christopher Weinberger³; Ze Zhang⁴; Ting Zhu²; ¹University of Pittsburgh; ²Georgia Institute of Technology; ³Sandia National Laboratories; ⁴Zhejiang University

Metal and Polymer Matrix Composites II — Polymer Matrix Composites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Commit-

tee

Program Organizer: Nikhil Gupta, New York University

Monday AM Room: 110A

February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

8:30 AM Invited

Effect of Spatial Distribution of Borosilicate Particles in Polypropylene Matrix Composites Using X-Ray Microtomography: Somya Singh¹; James Mertens¹; C. Shashank Kaira¹; Hechao Li¹; Sudhanshu Singh¹; Yang Jiao¹; Nikhilesh Chawla¹; ¹Arizona State University

8:50 AM Invited

Multifunctional Polymer Matrix Nanocomposites toward Microwave Absorption: Qingliang He¹; Jiang Guo¹; Xingru Yan¹; Zhanhu Guo¹; ¹University of Tennessee

9:10 AM

Development of a Composite Material Filament for Lightweight 3D Printed Components: Steven Zeltmann¹; *Nikhil Gupta*¹; Mrityunjay Doddamani²; ¹New York University; ²National Institute of Technology, Karnataka

9:30 AM

Degradation Study of High Melt Strength Polypropylene/Clay Nanocomposites in Environmental and Accelerated Conditions: Luiz Komatsu¹; Washington Oliani¹; Ademar Lugao¹; Duclerc Parra¹; Vijaya Rangari¹; ¹Nuclear and Energy Research Institute

9:50 AM

The Role of Titania Surface on the Degradation Behavior of LLDPE Composites: Hamilton Viana¹; Patricia Poveda²; Leonardo Silva²; ¹College of Engineering - University Center of Santo Andre; ²IPEN - University of Sao Paulo

10:10 AM Break

10:30 AM Invited

Alternative Materials for Printed Circuit Board (PCB) Based on High Performance Poly(ether-ether-ketone) Matrix Composites: Rajendra Goyal¹; ¹College of Engineering, Pune (CoEP)

10:50 AM Invited

Polymer to Ceramic Transformation of Polysilazane Wrapped Nanotubes and their Applications in Energy-Based Devices: Gurpreet Singh¹; ¹Kansas State University

11:10 AM

Laser Pulse Heating of Carbon Nanotube Composites: Stephen Bartolucci¹; Michael Miller¹; Karen Supan²; Jeffrey Warrender¹; ¹ARDEC-Benet Laboratories; ²Norwich University

11:30 AM

Nanotube Sheet - Graphite Hybrid Nanocomposite for Damage Detection: Jiukun Li¹; Sirish Namilae¹; ¹ERAU

11:50 AM

Progressive Damage and Failure Analysis of Composite Structures for Wind Turbine Blades and Airplane Fuselase Using Multiscale Synergistic Damage Mechanics Approach: Chandra Veer Singh¹; John Montesano¹; ¹University of Toronto

Nanostructured Materials for Nuclear Applications — Session I

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Nuclear Materials Committee, TMS: Nanomaterials Committee, TMS: Nanomaterials Behavior Committee

Program Organizers: Cheng Sun, Los Alamos National Laboratory; Michael Demkowicz, Massachusetts Institute of Technology; Amit Misra, University of Michigan; Osman Anderoglu, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories

Monday AM Room: 101C

February 15, 2016 Location: Music City Center

Session Chairs: Cheng Sun, Los Alamos National Laboratoary; Khalid Hattar, Sandia National Laboratory

8:30 AM Introductory Comments

8:35 AM Invited

An Overview of Some Major Recent Advances in Nanostructured Ferritic Alloys for Nuclear Energy Service: G. Robert Odette¹; ¹University of California Santa Barbara

9:05 AM Invited

Point Defect-fluxes to Interfaces during Irradiation: *Shen Dillon*¹; Shimin Mao¹; ¹University of Illinois at Urbana-Champaign

9:35 AM

Microstructural Investigation of Irradiation Effects in Nanoscale Stable Precipitation-Strengthened Steels: Clarissa Yablinsky¹; Osman Anderoglu¹; Semyon Vaynman²; Yip-Wah Chung²; Morris Fine²; Kristin Tippey³; John Speer³; Kip Findley³; Omer Dogan⁴; Paul Jablonski⁴; Stuart Maloy¹; Amy Clarke¹; Kester Clarke¹; ¹Los Alamos National Laboratory; ²Northwestern University; ³Colorado School of Mines; ⁴National Energy Technology Laboratory

9:55 AM

Determination of Kr-Ion Irradiation-damage Tolerance of Ultra-Fine Grain 316L SS Alloys Processed by Novel SPD Methods: *Mauricio Gordillo*¹; Jörg Wiezorek¹; ¹University of Pittsburgh

10:15 AM Break

10:35 AM Invited

Radiation Stability of High Dose Irradiated Nanostructured Alloys and the Development of Novel Alloy Concepts: Peter Hosemann¹; Nathan Bailey¹; Manuel Abad¹; David Frazer¹; Rachel Connick¹; Joanna Szornel¹; Scott Parker¹; Daniel Kiener²; Mychailo Toloczko³; ¹University of California Berkeley; ²Montanuniversität Leoben; ³Pacific Northwest National Laboratory

11:05 AM

Probing Nanoscale Damage Gradients in Irradiated Materials with Spherical Nanoindentation: *Nathan Mara*¹; Siddhartha Pathak¹; Yongqiang Wang¹; Russ Doerner²; Surya Kalidindi³; ¹Los Alamos National Laboratory; ²University of California, San Diego; ³Georgia Institute of Technology

11:25 AM

On the Nano-Oxide Phase in MA957 and FCDR NFA-1: Yuan Wu¹; Stephan Kraemer¹; soupitak Pal¹; George Odette¹; Nathan Bailey²; Peter Hosemann²; James Ciston³; ¹UCSB; ²UCB; ³LBL

11:45 AM

First Principles Study on Helium Bubble Formation at the Y-Ti-N/C Enriched Nano-precipitates in 14YWT: Yingye Gan¹; Huijuan Zhao¹; Di Yun²; David Hoelzer³; ¹Clemson University; ²Argonne National Laboratory; ³Oak Ridge National Laboratory

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XV — Electromigration & Electric Current Effects

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shih-kang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Cheng University; Jae-Ho Lee, Hongik University; Ikuo Ohnuma, National Institute for Materials Science (NIMS); Chih-Ming Chen, National Chung Hsing University; Yee-Wen Yen, National Taiwan Univ of Science & Tech; Shien Ping Feng, The University of Hong Kong; Clemens Schmetterer, Fraunhofer Institute

Monday AM Room: 109

February 15, 2016 Location: Music City Center

Session Chairs: Ming-Tzer Lin, National Chung Hsing University; Iku Ohnuma, National Institute for Materials Science (NIMS)

8:30 AM Invited

Development of High Strength and High Electrical Conductivity of Cu-Ni-Al Alloys: *Kiyohito Ishida*¹; Takashi Miyamoto¹; Ikuo Ohnuma¹; Toshihiro Omori¹; Ryousuke Kainuma¹; ¹Tohoku university

9:00 AM Invited

Material Issues in Memristive Devices: Jianhua Yang¹; ¹University of Massachusetts, Amherst

9:30 AM

The Kinetic Analysis of Co-Sn Binary System: Chieh-Fu Chen¹; Mu-Tao Chen¹; Fan-Yi Ouyang¹; ¹National Tsing Hua University

9:50 AM Break

10:10 AM

Morphological Stability of Interfaces under Electromigration Condition: Insights from Phase-field Study: Arnab Mukherjee¹; Kumar Ankit²; Britta Nestler²; ¹Karlsruhe University of Applied Sciences; ²Karlsruhe Institute of Technology

10:30 AM

Stress and Currents Density Effects on Copper-Tin Intermetallic Compound Formation: Yue-Lin Lee¹; Jhou-Cheng Wu¹; S.-F. Lin¹; *Ming-Tzer Lin*¹; ¹National Chung Hsing University

10:50 AM

A New Insight on the Electromigration Effect: Strain-induced Atomic Migration under Current Stressing: *Yu-chen Liu*¹; Yong-si Yu¹; Shang-Jui Chiu²; Yen-Ting Liu²; Hsin-Yi Lee²; Shih-kang Lin¹; ¹National Cheng Kung University; ²National Synchrotron Radiation Research Center

11:10 AM

Effects of Electromigration on the p-Bi2Te3/Sn Interfacial Reactions: *Chih Fan Lin*¹; Hsing-Ting Chan¹; Yee-Wen Yen²; Chih-Ming Chen¹; ¹National Chung Hsing University; ²National Taiwan University of Science and Technology

11:30 AM

Failure Mechanism of Cu₆Sn₅ Microbumps under Current Stressing: *Yi Cheng Chu*¹; Chih Chen¹; Chau-Jie Zhan²; Yu-wei Huang²; ¹Department of Materials Science & Engineering, National Chiao Tung University; ²Assembly and Reliability Department/EOL/ITRI

Phase Transformations and Microstructural Evolution — Phase Transformations - Fundamentals - Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Monday AM Room: 107B

February 15, 2016 Location: Music City Center

Session Chair: Stephen Niezgoda, The Ohio State University

8.30 AM

γ' in Co-Al-W: Why Won't It Just Go Away?: Eric Lass¹, ¹National Institute of Standards and Technology

9.00 AN

Study of Phase Precipitation in Binary Systems using Diffusion Multiples and Simulations: *Qiaofu Zhang*¹; Ji-Cheng Zhao¹; ¹The Ohio State University

9:20 AM

Study of Phase Transformation, Recovery and Recrystallization in Ti-5Al-5V-5Mo-3Cr Alloy and Their Effects on Dilatometric Response: *Mainak Sen*¹; Swati Suman¹; Amit Bhattacharjee²; Sujoy Kar¹; ¹Indian Institute Of Technology; ²Defence Metallurgical Research Laboratory, Hyderabad.

9.40 AV

The Effect of Excess Energy in the Simulation of Dendritic Growth Using the Phase Field Model Coupled with a CALPHAD Database: Kerboub Abdelhak¹; Belbacha El Djemai¹; ¹university hadj-lakhdar Batna

10:00 AM Break

10:20 AM

Supersaturation and Decay: The Life of Vacancies during Precipitation: Alexis Deschamps¹; De Geuser Frederic¹; ¹Grenoble Institute of Technology

11:00 AM

The Stability of the Moving Boundary in Spherical and Planar Geometries and its Relation to Nucleation and Growth: Rahul Basu¹; ¹SAIT, VTU

11:20 AM

Modification of Phase Evolution Pathways in Nanocrystalline Metallic Thin Films: Megan Emigh¹; Pralav Shetty¹; Jessica Krogstad¹; ¹University of Illinois, Urbana-Champaign

11:40 AM

Symmetry Breaking and Pathway Degeneracy during Structural Phase Transformations: *Yipeng Gao*¹; Suliman Dregia¹; Yunzhi Wang¹; ¹The Ohio State University

Phase Transformations and Microstructural Evolution — Phase Transformations in Fe-Alloys - Session

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Monday AM Room: 108

February 15, 2016 Location: Music City Center

Session Chair: Sudarsanam Babu, University of Tennessee, Knoxville

8:30 AN

Combined Atom Probe Tomography and Electron Microscopy Investigation of Intermediate Carbides Precipitation from Supersaturated Virgin Fe-Ni-C Martensites: Frederic Danoix¹; Sophie Cazottes²; Mohamed Goune³; Helena ZAPOLSKY¹; Sebastien Allain⁴; Philippe Maugis⁵; ¹CNRS - Université de Rouen; ²MATEIS INSA Lyon; ³ICMCB Bordeaux; ⁴IJL Université de Lorraine; ⁵Aix-Marseille Université IM2NP

9:00 AM

Ballistic Martensite: Nicholas Wengrenovich¹; Greg Olson¹; ¹Northwestern University

9:20 AM

Boron Segregation and its Effects in Boron Containing Steels: Kara Luitjohan¹; David Johnson¹; Volkan Ortalan¹; ¹Purdue University

9.40 AM

Carbide Evolution during Quenching and Partitioning of Steel Studied by Mössbauer Spectroscopy: Dean Pierce¹; Dan Coughlin²; Amy Clarke²; Don Williamson³; Jonathan Poplawsky⁴; Kester Clarke²; John Speer¹; David Matlock¹; Emmanuel De Moor¹; ¹Advanced Steel Processing and Products Research Center, Colorado School of Mines; ²Materials Science and Technology Division, Los Alamos National Laboratory; ³Department of Physics, Colorado School of Mines; ⁴Materials Science and Technology Division, Oak Ridge National Laboratory

10:00 AM

Atomistic Modeling of Interfaces of Cementite and Ferrite: Matthew Guziewski¹; Christopher Weinberger¹; ¹Drexel University

10:20 AM Break

10:40 AM

Correlation of Microstructure to Creep Properties of Fe-30Cr-3Al Alloys Strengthened by Laves Phase: *Benjamin Shassere*¹; Yukinori Yamamoto²; Sudarsanam Babu¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

11:00 AM

Effect of Two-step Isothermal Transformation of Bainite on Microstructures and Tensile Properties of TRIP Assisted Steels: Chang-Hoon Lee¹; Kyeong-Won Kim¹; Jun-Yun Kang¹; Tae-Ho Lee¹; ¹Korea Institute of Materials Science

11:20 AM

Phase Transformation and Age Hardening Behavior of Microalloyed Austenitic Fe-30Mn-9Al-0.9C Light-weight Steels: Joonoh Moon¹; Seong-Jun Park¹; Chang-Hoon Lee¹; Tae-Ho Lee¹; ¹Korea Institute of Materials Science

11:40 AM

High Temperature Spheroidization of Cementite in a 2C-4Cr Ultrahigh Carbon Steel.: *Matthew Hecht*¹; Yoosuf Picard¹; Bryan Webler¹; ¹Carnegie Mellon University

Phase Transformations in Multi-component Systems: An MPMD Symposium Honoring Gary R. Purdy — Interaction of Alloying Elements with Stationary and Migrating Interfaces

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Hatem Zurob, McMaster University; Annika Borgenstam, KTH, Royal Institute of Technology; Tadashi Furuhara, Tohoku University; Wenzheng Zhang, Tsinghua University; Christopher Hutchinson, Monash University; Robert Hackenberg, Los Alamos National Laboratory

Monday AM Room: 110B

February 15, 2016 Location: Music City Center

Session Chairs: Matthias Militzer, University of British Columbia; Annika Borgenstam, KTH, Royal Institute of Technology

8:30 AM Invited

Towards a Unified Analysis of Migrating Austenite/Ferrite Interfaces in Steels: John Agren¹; ¹Royal Institute of Technology

9:00 AM Invited

New Insights into Alloying Elements Interaction with Migrating α-ferrite/ γ-austenite Interface in Fe-C-Mn System: Goune Mohamed¹; Fréderic Danoix²; Xavier Sauvage²; Didier Huin³; ¹ICMCB-Bordeaux1; ²Université of Rouen; ³ArcelorMittal

9:30 AM

Solute Drag in a 40 Years Perspective: Bo Sundman¹; ¹CEA Saclay

9:50 AM

On the Question of Solute Atom Trajectories during Dynamic Segregation: Glenn Hibbard¹; ¹University of Toronto

10:10 AM Break

10:30 AM Invited

The Effect of C and N on the Cyclic Partial Phase Transformation Behaviour in an Mn Containing Steel: *Sybrand van der Zwaag*¹; Hussein Farahani; Hatem Zurob; ¹Technical University Delft

11:00 AM

Grain Boundary Segregation in Phase Separating Nanocrystalline Alloys: The Role of Competing Processes on Microstructure Evolution: Fadi Abdeljawad¹; Stephen Foiles¹; Blythe Clark¹; ¹Sandia National Laboratories

11:20 AM

Solute Interactions at the Ferrite-Austenite Interphase Boundary: Brian Langelier¹; Hugo Van Landeghem¹; *Hatem Zurob*¹; ¹McMaster University

11:40 AM Panel Discussion

Rare Metal Extraction & Processing Symposium — Rare Earth Elements / Base & Rare Metals I

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Shafiq Alam, University of Saskatchewan; Hojong Kim, Penn State University; Neale Neelameggham, Ind LLC; Takanari Ouchi, MIT; Harald Oosterhof, Umicore

Monday AM Room: 106A

February 15, 2016 Location: Music City Center

Session Chairs: Harald Oosterhof, Umicore; Takanari Ouchi, Massachusetts Institute of Technology

8:30 AM Keynote

The Search Minerals Direct Extraction Process for Rare Earth Element Recovery: David Dreisinger¹; Niels Verbaan²; Mike Johnson²; ¹Univ of B.C.; ²SGS Minerals Services

9:05 AM

Hydrometallurgical Extraction of Rare Earth Elements and Phosphorous from Low Grade Mine Tailings: Sebastiaan Peelman¹; ¹Delft University of Technology

9:30 AM

Fluorination Behavior of Uranium and Zirconium Mixture for Fuel Debris Treatment: Nobuaki Sato¹; Akira Kirishima¹; Tetsuo Fukasawa²; ¹IM-RAM; ²Hitachi-GE Nuclear Energy

9:55 AM Invited

Hydrometallurgical Recovery of Rare Earth Metals from Spent FCC Catalysts: *Marco Wenzel*¹; K. Schnaars¹; N. Kelly¹; K. Gloe¹; Jan Weigand¹; S. Robles M²; K. Kretschmer²; Phuc Nguyen Le³; Dang Thanh Tung³; Nguyen Huu Luong³; Tran Vinh Loc³; Dang Van Sy⁴; ¹TU Dresden; ²Delta Engineering & Chemistry GmbH; ³Vietnam Petroleum Institute; ⁴LILAMA EME

10:20 AM Break

10:40 AM

Direct Solvent Extraction of Nickel from Sulfuric Acid Leach Solutions of Low Grade and Complicated Nickel Resources Using a Novel Extractant of HBL110: *Li Zeng*¹; Guiqing Zhang¹; Liansheng Xiao¹; Zuoying Cao¹; ¹Central South University

11:05 AM

Preparation and Analysis of Nd2O3 Doped Apatite Concentrate for Pyrometallurgical Recovery of Rare Earth Element: *Tianming Sun*¹; Mark William Kennedy²; Kai Tang³; Gabriella Tranell⁴; Ragnhild E. Aune⁴; ¹KTH; ²Proval Partners SA; ³SINTEF Materials and Chemistry; ⁴Norwegian University of Science and Technology (NTNU)

Recent Advancement on Stretchable and Wearable Electronics — Session I

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee, TMS: Nanomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Pooran Joshi, ORNL; Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Jiahua Zhu, The University of Akron; Nuggehalli Ravindra, New Jersey Institute of Technology; Catherine Dubourdieu, CNRS - INL; Madan Dubey, US Army Research Lab

Monday AM Room: 205C

February 15, 2016 Location: Music City Center

Session Chairs: Pooran Joshi, ORNL; Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Lab

8:30 AM

3D Printing Liquid Metals at Room Temperature for Fabrication of Functional, Stretchable, and Soft Electronics: *Dishit Parekh*¹; Collin Ladd¹; Michael Dickey¹; ¹North Carolina State University

8:50 AM Invited

Inkjet Printed Metal Oxide Thin Film Transistors

: Chih-hung Chang1; 1Oregon State University

9.15 AM Invited

Laser Writing and Photonic Reduction of High Performance Supercapacitors on Flexible Substrates: Anming Hu¹; ¹University of Tennessee

9:40 AM Invited

Low-Cost Inkjet Process for Printing Embedded Electronics: Christopher Schmitt¹; *Wenchao Zhou*¹; ¹University of Arkansas

10:05 AM Break

10:25 AM Invited

New Paradigms for Enabling Printing of Flexible Optoelectronics through Engineered Metal-organic Inks and Direct Writing: Konstantinos (Kostas) Sierros¹; ¹West Virginia University

10:50 AM Invited

Ultrasonic Spray Printing for High-performance Flexible Organic Field-effect Transistors and Hybrid Perovskite Solar Cells: Kai Xiao¹; San-

jib Das²; Ming Shao¹; Bin Yang¹; Jong Keum¹; Ilia Ivanov¹; Gong Gu²; Tolga Aytug¹; Pooran Joshi¹; Christopher Rouleau¹; David Geohegan¹; ¹Oak Ridge National Laboratory; ²University of Tennessee

11:15 AM Invited

Wireless Gas Sensing with NFC-enabled Mobile Device: Tuo Ji¹; Yichuan Zhao¹; Forrest Sheng Bao¹; *Jiahua Zhu*¹; ¹The University of Akron

11:40 AM

Mechanical Stability of Printed Metallizations on Polymer Substrates: Oleksandr Glushko¹; Megan Cordill²; Andreas Klug³; Emil List-Kratochvil⁴; ¹Erich Schmid Institute; ²Erich Schmid Institute; ³NanoTecCenter Weiz; ⁴NanoTecCenter Weiz

Recent Developments in Biological, Structural and Functional Thin Films and Coatings — Biomedical and Energy Applications

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Thin Films and Interfaces Committee

Program Organizers: Nancy Michael, University of Texas at Arlington; Adele Carradò, IPCMS; Heinz Palkowski, TU Clausthal; Nuggehalli Ravindra, New Jersey Institute of Technology; Chintalapalle Ramana, Univ of Texas at El Paso

Monday AM Room: 206B

February 15, 2016 Location: Music City Center

Session Chairs: Adele Carrado, IPCMS; Nuggehalli Ravindra, NJIT; Ramana Chintalapalle, Univ of Texas at El Paso

8:30 AM

Iron Oxide Nanoparticles - Biomedical Applications: Natali Gendelberg¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

8:50 AM

Thin Films and Coatings for Absorptive Removal of Antimicrobials, Antibiotics, and Other Pharmaceuticals: David Cocke¹; Andrew Gomes¹; Saiful Islam¹; Gary Beall²; ¹Lamar University; ²Texas State University

9:10 AM

Surface Functionalization of Titanium Surfaces to Design Innovative Hybrid and Biocompatible Materials: Melania Reggente¹; Irene Bonafede²; Geneviève Pourroy¹; Patrick Masson¹; Marco Rossi²; Heinz Palkowski³; Adele Carradò¹; ¹Université de Strasbourg; ²Sapienza University of Rome; ³Clausthal University of Technology

9:30 AM

Surface Functionalization of Titanium Substrates for Improving Osteointegration: Quang Van Le¹; Mathilde Giraudel²; Geneviève Pourroy¹; Caroline Fischer³; Koenig Géraldine³; Leandro Jacomine⁴; Jacques Faerber⁵; Fabienne Perrin-Schmitt³; *Adele Carradò*¹; ¹Université de Strasbourg - CNRS IPCMS; ²Université de Strasbourg - CNRS ICS; ³Université de Strasbourg, Faculté de Médecine; ⁴Université de Strasbourg - CNRS ICS; ⁵Université de Strasbourg

9:50 AM Break

10:10 AM

Effect of Post-Heat Treatment on the Electrochemical Performance of Sandwich Structured Cu/Sn/Cu Electrode: Burcin Bilici¹; Deniz Polat¹; Ozgul Keles¹; ¹ITU

10:30 AM

Improving Electrochemical Performance of LiNi0.5Mn1.5O4 by MnO2 Top Coat: Ceren Yagsi¹; Deniz Polat¹; Ozgul Keles¹; ¹ITU

10:50 AM

Role of Membrane Properties on Charge Transport across Conjugated Oligoelectrolyte Modified Phospholipid Bilayers: *Justin Jahnke*¹; Guillermo Bazan²; James Sumner¹; ¹US Army Research Laboratory; ²UC Santa Barbara

11:10 AN

Magnetic Field Assisted Assembly: *B. S. Mant*¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

11:30 AM

Magnetic Field Assisted Assembly Machine: *Yan Liu*¹; Nuggehalli Ravindra¹; New Jersey Institute of Technology

11:50 AM

Modelling Optical Properties of Black Silicon: Sita Rajyalaxmi Marthi¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

Refractory Metals 2016 — Processing & Characterization of Refractory Metals: Bulk & Coatings

Sponsored by:TMS Structural Materials Division, TMS: Refractory Metals Committee Program Organizers: Gary Rozak, HC Starck; Eric Taleff, Univ. Texas; Ivi Smid, Penn State

Monday AM Room: 106B

February 15, 2016 Location: Music City Center

Session Chairs: Eric Taleff, University of Texas at Austin; Brian Cockeram, Bechtel Marine Propulsion Corp

8:30 AM Introductory Comments Refractory Metals Overview, Applications & Direction

8:50 AM

The Initiation and Propagation of Dynamic Abnormal Grain Growth in Refractory Metals: *Philip Noell*¹; Eric Taleff¹; ¹University of Texas at Austin, Dept of Mechanical Engrg

9:10 AM

Introduction of Precisely Controlled Microstructural Defects into SRF Cavity Nb Sheet and Their Impact on Local Superconducting Properties: *Mingmin Wang*¹; Di Kang¹; Zuhawn Sung²; Peter Lee²; Anatolii Polyanskii²; Christopher Compton¹; Thomas Bieler¹; ¹Michigan State University; ²Florida State University

9:30 AM

Effect of Silicon on Texture of Niobium: Abhishek Bhattacharyya¹; *Marc Abouaf*²; ¹H.C. Starck, Inc.; ²H. C. Starck Inc.

9:50 AM

Manufacturing of Bulk Ultrafine Grain Tungsten from Nanocrystalline Tungsten Powder and Its Potential Application for Nuclear and Fusion Reactors: Chai Ren¹; Z. Zak Fang¹; Huan Zhang¹; Dean Buchenauer²; Robert Kolasinski²; ¹University of Utah; ²Sandia National Lab

10:10 AM Break

10:25 AM

Micro-Mechanical Characterization of Micro-Architectured Refractory Metal Coatings: Quan Jiao¹, *Jaafar El-Awady*¹, ¹Johns Hopkins University

10:45 AM

Micromechanical Testing of Multi Compositional Tungsten Thin Film Alloys: Vladica Nikolic¹; Stefan Wurster²; Alan Savan³; Alfred Ludwig³; Reinhard Pippan¹; ¹Erich Schmid Institute for Materials Science, Austrian Academy of Sciences; ²Department of Materials Physics, Montanuniversität Leoben; ³Institute for Materials, Ruhr-Universität Bochum

11:05 AM

Thermo-mechanical Behavior of FG Tungsten/EUROFER Coating System under In-service Conditions: D. Qu¹; M. Wirtz²; J. Linke²; R. Vaßen²; *Jarir Aktaa*¹; ¹Karlsruhe Institute of Technology; ²Forschungszentrum Jülich GmbH

11:25 AM

Etched Surface of CVTD Single Crystal Tungsten Coating after Serving under High Temperature: *Hongtao Huang*¹; Yongfeng Wei¹; Jianpin Zheng¹; Chengwen Tan²; ¹China Institute of Atomic Energy; ²Beijing Institute of Technology

11:45 AM

Influences of Rare Earth on Microstructures and Mechanical Properties of Functionally Graded Cemented Carbides: Xiaofeng Li¹; Yong Liu¹; ¹Central South University

REWAS 2016 — Enabling & Understanding Sustainability - Ferrous & Non-ferrous Metals Processing

Sponsored by:

Program Organizers: Randolph Kirchain, Massachusetts Institute of Technology; Bart Blanpain, KU Leuven; Anne Kvithyld, SINTEF; Christina Meskers, Umicore Precious Metals Refining; Elsa Olivetti, Massachusetts Institute of Technology; Jeffrey S. Spangenberger, Argonne National Laboratory; Diran Apelian, Worcester Polytechnic Institute; Brajendra Mishra, Colorado School of Mines; Neale Neelameggham, Ind LLC

Monday AM Room: 104B

February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

8:30 AM

Recycling of Poly-Metallic Residues from Metal Industry – Current Status and Future Developments: Juergen Antrekowitsch¹; ¹University of Leoben

8:55 AN

Bauxite Residue for Phosphorus Removal from Waste Water: Gamini Mendis¹; Amanda Brock¹; Kai Gao¹; Indrajeet Chaubey¹; Ron Turco¹; John Howarter¹; ¹Purdue University

9:20 AM

Modeling the Electromagnetic Processing of Recycled Silicon Dust

: *Georgi Djambazov*¹; Koulis Pericleous¹; Valdis Bojarevics¹; Michele Forzan²; Fabrizio Dughiero²; ¹University of Greenwich; ²University of Padua

9:45 AM

Potential Contribution to the Supply of Silver by the Recycling of Industrial Residues from Zn, Pb and Cu Plants: Stefan Steinlechner¹; ¹University of Leoben

10:10 AM Break

10:30 AM

Thermodynamic Analysis of Zinc Status in the Upstream EAF Offgas Cleaning Systems Associated with In-process Separation of Zinc from EAF Dust: Naiyang Ma¹; ¹ArcelorMittal

10:55 AM

Evaluation of Reactor REOV-01 with Ti Electrode for Electrochemical Recovery of Ag from Industrial Wastes: Pedro Ramirez Ortega¹; Victor Reyes Cruz¹; Maria Veloz Rodríguez¹; Diana Arenas Islas¹; laura García Hernández¹; Mizraim Flores Guerrero¹; Luis García Lechuga¹; ¹Universidad Tecnológica de Tulancingo

11:20 AM Invited

Zero Waste Valorization Schemes for Non-ferrous and Ferrous Slags: Some Industrial Case Studies: Bart Blanpain¹; ¹KU Leuven

11:45 AM

Mini Mill Solutions in the Recycling of Electric Arc Furnace Dust – the 2sDR Process: Gernot Rösler¹; Christoph Pichler¹; Stefan Steinlechner¹; Juergen Antrekowitsch¹; ¹Montanuniversitaet Leoben

REWAS 2016 — Understanding & Enabling Sustainability - (Rechargeable) Batteries

Sponsored by:

Program Organizers: Randolph Kirchain, Massachusetts Institute of Technology; Bart Blanpain, KU Leuven; Anne Kvithyld, SINTEF; Christina Meskers, Umicore Precious Metals Refining; Elsa Olivetti, Massachusetts Institute of Technology; Jeffrey S. Spangenberger, Argonne National Laboratory; Diran Apelian, Worcester Polytechnic Institute; Brajendra Mishra, Colorado School of Mines; Neale Neelameggham, Ind LLC

Monday AM Room: 104C

February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

8:30 AM

Roadmap for the Lifecycle of Advanced Battery Chemistries: *Timothy Ellis*¹; ¹RSR Anode Group and RSR Technologies

8:55 AM

Portland Cement with Battery Waste Contents: Henry A. Colorado¹; ¹Universidad de Antioquia

9:20 AM

Automotive Lithium-ion Battery Recycling: A Thermodynamic Evaluation: Reza Beheshti¹; Ragnhild Aune²; ¹KTH; ²NTNU

9:45 AM

Life Cycle Analysis Summary for Automotive Lithium-ion Battery Production and Recycling: Jennifer Dunn¹; Linda Gaines¹; *Jarod Kelly*¹; Kevin Gallagher¹; ¹Argonne National Laboratory

Thermodynamic Applications, Optimizations and Simulations in High-Temperature Processes: An EPD Symposium in Honor of Christopher W. Bale's 70th Birthday — Steelmaking/Ferrous Applications I

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: In-Ho Jung, McGill University; Arthur Pelton, Ecole Polytechnique; Patrice Chartrand, Ecole Polytechnique; Phillip Mackey, P.J. Mackey Technology; David Robertson, Missouri S&T; P Taskinen, Alto Univ; Malin Selleby, KTH Royal Institute of Technology

Monday AM Room: 106C

February 15, 2016 Location: Music City Center

Session Chairs: Arthur Pelton, Ecole Polytechnique; Youn-Bae Kang, Postech

8:30 AM Keynote

The Application of FactSage to Steelmaking Operations: Predictions and Actual Results: Eugene Pretorius¹; ¹Nucor Steel

9:10 AM

Thermodynamic and Experimental Investigations of High Temperature Refractory Corrosion by Molten Slags: Christoph Wagner¹; Christine Wenzl¹; Dean Gregurek¹; Daniel Kreuzer¹; Stefan Luidold²; Holger Schnideritsch²; ¹RHI AG; ²University of Leoben

9:30 AM

Design Principles for Fluorine-free Mold Fluxes Based on Thermodynamic Calculations: *Jungwook Cho*¹; ¹Pohang University of Science and Technology

9:50 AM

Perspectives of FactSage® for Application in Continuous Casting Mold Flux Developments: Il Sohn¹; ¹Yonsei University

10:10 AM Break

10:30 AM

A Kinetic Ladle Furnace Process Simulation Model: Marie-Aline Van Ende¹; *In-Ho Jung*¹; ¹McGill University

10:50 AM

Applications of Computational Thermodynamics to Predict the Refractory-slag-metal Reaction Equilibria at High Temperatures: *Joohyun Park*¹; ¹Hanyang University

11:10 AM

Rapid Dissolution of Quicklime into Molten Slag by Internally Formed Gas: Nobuhiro Maruoka¹; Hiroshi Nogami¹; ¹Tohoku University

11:30 AM

A Dynamic Flux Dissolution Model for Oxygen Steelmaking: Ameya Kadrolkar¹; Nils Andersson¹; Neslihan Dogan¹; ¹McMaster University

Transforming the Diversity Landscape — Signifcance and Impact

Sponsored by: TMS: Education Committee

Program Organizers: Natalie Larson, University of California, Santa Barbara; Wennie Wang, University of California, Santa Barbara; David Hwang, University of California, Santa Barbara

Monday AM Room: 104A

February 15, 2016 Location: Music City Center

Session Chairs: Natalie Larson, University of California, Santa Barbara; Wennie Wang, University of California, Santa Barbara; David Hwang, University of California, Santa Barbara

8:30 AM Invited

Diversity Beyond the Numbers: Fostering and Sustaining Diversity in the Minerals, Metals, and Materials Professions: Elizabeth Holm¹; ¹Carnegie Mellon University

9:10 AM Invited

Diversity Leads to Innovation: Cammy Abernathy¹; ¹University of Florida

9:30 AM Invited

Understanding and Addressing the Patterns of Bias in STEM Environments: Kristen Constant¹; ¹Iowa State University

10:10 AM Break

10:30 AM

Securing the Future of American Public Research Universities by Increasing the Number of Under-reprsented Minorities in STEM: Aeriel Murphy¹; ¹University of Michigan

10:50 AM

The Impact of Coaching, Mentoring, and Sponsorship on Diversity: Kathleen Chou¹; ¹The Boeing Company

Ultrafine Grained Materials IX — Grain Boundary Phenomena

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Monday AM Room: 209B

February 15, 2016 Location: Music City Center

Session Chairs: Timothy Rupert, University of California, Irvine; Suveen Mathaudhu, University of California, Riverside

8:30 AM Invited

Grain Boundaries in Severely Deformed Metallic Materials: *Gerhard Wilde*¹: ¹University of Muenster

9:00 AM Invited

In-situ Observations of Mechanical Instability and Deformation Mechanisms in Nanocrystalline Thin Films: Kevin Hemker¹; Paul Rottmann¹; Suman Dasgupta¹; ¹Johns Hopkins University

9:30 AM

Nanocrystalline Grain Boundary Network Evolution: Ying Chen¹; ¹Rensselaer Polytechnic Institute

9:50 AM

A Simple Mechanical Model for Grain Boundary Sliding that Accounts for the Effect of Size Distribution of Grains on the Yield Strength at Quasistatic and Dynamical Loading: *Elijah Borodin*¹; Alexander Mayer¹; ¹Chelyabinsk State University

10:10 AM Break

10:30 AM Invited

Stress-assisted Grain Growth in Nanocrystalline Metals Inhibited by Grain Boundary Segregation: Yang Zhang¹; Garritt Tucker²; *Jason Trelewicz*¹; ¹Stony Brook University; ²Drexel University

11:00 AM Invited

Dynamic Behavior and Microstructural Evolution of Nanocrystalline and Ultrafine Grained Cu-Ta Alloys: S Turnage¹; M. Rajagopalan¹; K Darling²; Kiran Solanki¹; ¹Arizona State University; ²ARL

11:30 AM

Mechanisms of Grain Boundary Diffusion in Severely Deformed Materials: Sergii Divinsky¹; Gerhard Wilde¹; ¹University of Münster

11:50 AM

Grain Boundary Motion, Solute Drag and Precipitation in Al Alloys Processed by SPD: Xavier Sauvage¹; Yana Nasedkina¹; Elena Bobruk²; Maxim Murashkin²; Nariman Enikeev²; Ruslan Valiev²; ¹University of Rouen, CNRS; ²IPAM-USATU

2016 Functional Nanomaterials: Emerging Nanomaterials and Techniques for 3D Architectures — Unique Techniques to Create 3D Architectures I

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Nanomaterials Committee

Program Organizers: Terry Xu, UNC Charlotte; Nitin Chopra, The University of Alabama; Jung-Kun Lee, University of Pittsburgh; Jiyoung Kim, University of Texas; V. U. Unnikrishnan, The University of Alabama

Monday PM Room: 211

February 15, 2016 Location: Music City Center

Session Chairs: Jiyoung Kim, UT Dallas; Johnson Samuel, Rensselaer Polytechnic Institute

2:00 PM Invited

Invited Talk: A Hybrid 3D Printing Technique for Laminated Polymer Nanocomposite Architectures: Johnson Samuel¹; ¹Rensselaer Polytechnic Institute

2:30 PM Invited

Scaled-Up Microscale and Nanoscale 3-D Electrochemical Printing of Solid Metal Structures: Minfeng Yu¹; ¹Georgia Institute of Technology

3:00 PM

3D Pick and Place Sintering Nanoprinter: *Max Carlson*¹; Ka-Yen Yau¹; Robert Simpson²; Michael Short¹; ¹Massachusetts Institute of Technology; ²Singapore University of Technology and Design

3:20 PM

Nano-manufacturing Process Using Electro-fountain Pen Nanolithography: Ben Luce¹; Indranath Dutta¹; ¹Washington State University

3:40 PM Break

4:00 PM Invited

High Throughput Reactive Printing Compatible Approaches for In-situ Manufacturing of Nanomaterials: *Ghassan Jabbour*¹; Hyung Choi¹; Tianlei Zhou¹; ¹University of Nevada Reno

4:20 PM Invited

Invited Talk: Inorganic Infiltration in Polymer Templates via Atomic Layer Deposition: Pathway for Synthesis of Hybrid Materials and Direct Patterning Inorganic Nanostructures: Chang-Yong Nam¹; ¹Brookhaven National Laboratory

4:50 PM

3-Dimensional Nanostructures in Bulk Monolithic Solids by Enhanced High Pressure Sintering: *James Wollmershauser*¹; Boris Feigelson¹; Kedar Manandhar²; ¹Naval Research Laboratory; ²ASEE Postdoctoral Fellowship Program

5:10 PM

Electron Beam Induced Deposition: A Direct Write Method for Nanoscale 3-Dimensional Architectures: *Brett Lewis*¹; Robert Winkler²; Jason Fowlkes³; Michael Stanford¹; Harald Plank²; Philip Rack¹; ¹University of Tennessee; ²Graz University of Technology; ³Oak Ridge National Laboratory

5.30 DM

Nanostructuring Vanadium Dioxide for 3D Silicon Photonics Devices: Robert Marvel¹; Thomas Campbell²; Richard Haglund¹; ¹Vanderbilt Univerity; ²Murray State University

7th International Symposium on High Temperature Metallurgical Processing — Extraction and Recovery of Metals

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Monday PM Room: 105B

February 15, 2016 Location: Music City Center

Session Chairs: Dean Gregurek, RHI AG; Ender Keskinkilic, Atilim University

2:00 PM Introductory Comments

2:05 PM

Active Oxidation and Fume Formation from Liquid SiMn: *Ida Kero*¹; Gabriella Tranell²; Dmitry Slizovskiy²; ¹SINTEF; ²Norwegian University of Science and Technology

2:25 PM

Research on Enrichment of MFe and RO Phase from Converter Steel Slag by Super Gravity: Chong Li¹; Jintao Gao¹; Zhancheng Guo¹; ¹University of science and technology Beijing

2:45 PM

Volatilization of Rhenium from Molybdenite Concentrate by Oxidative Roasting: *Guanghui Li*¹; Rong Sun¹; Zhiwei Peng¹; Linfeng Zhou¹; Yuanbo Zhang¹; ¹School of Minerals Processing and Bioengineering, Central South University

3:05 PM

Kinetic Investigation of the Electric Furnace Copper Slag Treatment: Stephan Steinacker¹; Juergen Antrekowitsch¹; ¹Montanuniversitaet Leoben

3:25 PM

The Extraction of Zinc from Willemite by Calcified-roasting and Ammonia-leaching Process Based on Phase Reconstruction: Wei Chen¹; Yufeng Guo¹; Feng Chen¹; *Tao Jiang*¹; Xudong Liu¹; ¹Central South University

3:45 PM Break

4:00 PM

An Investigation on Antimony Production by Using Niederschlag Process: Sedef Basag¹; Ahmet Turan²; Onuralp Yucel¹; ¹Istanbul Technical University; ²Yalova University

4.20 PM

Oxygen-rich Side Blow Bath Smelting Technology – History and New Developments in China: *Lin Chen*¹; Wei Chen¹; Hui Xiao¹; Tianzu Yang¹; Weifeng Liu¹; Duchao Zhang¹; ¹Central South University

4:40 PN

Carbon Refractories in an Oxidizing Process? Copper Smelting in an Outotec® Ausmelt TSL Furnace with a UCAR® Chill-KoteTM Refractory System: Jacob Wood¹; Stefanie Creedy¹; Peter Duncanson²; ¹Outotec Pty Ltd.; ²GrafTech International

5:00 PM

Enrichment of Gold in Low Grade Copper Matte from Arsenical Refractory Gold Concentrate via Matte Smelting Method: Zhang Duchao¹; Xiao

Additive Forming of Components - Tailoring Specific Material Properties in Low Volume Production — Additive Manufacturing of Ni-Based Alloys

Sponsored by:

Program Organizers: Judith Schneider, University of Alabama at Huntsville; Mark Stoudt, National Institute of Standards and Technology; Kester Clarke, Los Alamos National Laboratory; Lee Semiatin, US Air Force Research Laboratory; Mohsen Asle Zaeem, Missouri University of Science and Technology; Eric Lass, National Institute of Standards and Technology; Paul Mason, Thermo-Calc Software Inc.

Monday PM Room: 205B

February 15, 2016 Location: Music City Center

Session Chairs: Judy Schneider, University of Alabama at Huntsville; Sundarsanam Babu, University of Tennessee

2:00 PM Invited

ICME Approach to the Materials Challenges in Additive Manufacturing of Components: *Jiadong Gong*¹; David Snyder¹; Greg Olson¹; Jason Sebastian¹; ¹QuesTek Innovations

2:30 PM Invited

Powder-bed Fabrication of the High-temperature Ni-base Superalloy LSHR: *Chantal Sudbrack*¹; Michael Kirka²; Ryan Dehoff²; Robert Carter¹; S. Lee Semiatin³; Timothy Gabb¹; ¹NASA Glenn Research Center; ²Oak Ridge National Laboratory; ³Air Force Research Laboratory

2:50 PM

Microstructural Evolution of Inconel 625 Manufactured through Direct Metal Laser Sintering Technique of Additive Manufacturing: Yaakov Idell¹; Lyle Levine¹; Sudah Cheruvadhur¹; Eric Lass¹; Mark Stoudt¹; Carelyn Campbell¹; Li Ma¹; ¹National Institute of Standards and Technology

3:10 PM

Microstructural Characterization and Process Mapping in Beam-Based Additive Manufacturing of Inconel 625: Luke Sheridan¹; Nathan Klingbeil¹; Colt Montgomery²; Jack Beuth²; ¹Wright State University; ²Carnegie Mellon University

3:30 PM Break

3:50 PM Invited

Rationalization of Advanced Site-specific Microstructure Control within Additive Manufactured Components: *Michael Kirka*¹; Ryan Dehoff¹; Michael Goin¹; Michael Pearce¹; Hassina Bilheux¹; Louis Santodonato¹; Suresh Babu²; ¹Oak Ridge National Laboratory; ²University of Tennessee-Knoxville

4:20 PM

Residual Stress Determination of Additively Manufactured Inconel 718 Specimens: *Thomas Watkins*¹; Ryan DeHoff¹; Philip Maziasz¹; James Neumann²; Vinod Nangia²; ¹ORNL; ²Honeywell Aerospace

4:40 PM

Direct Writing of Nickel Super Alloy(N5) Single Crystal: Yichen Wang¹; Jeongyong Choi¹; *Jyoti Mazumder*¹; ¹University of Michigan

5:00 PM

Controlling Microstructure of IN738LC Superalloy during Selective Laser Melting (SLM) Process: Hossein Meidani¹; Thomas Etter¹; Fabian Geiger¹; Roman Engeli¹; ¹GE Switzerland

5:20 PM

Effect of Heat Treatment on the Microstructure, Texture and Elastic Anisotropy of a Nickel-based Superalloy Processed by Direct Laser Deposition

: *Rocio Munoz Moreno*¹; Divya Vadegadde Duggappa¹; Sarah Driver¹; Trevor Illston²; Scarlett Baker³; Howard J. Stone¹; ¹University of Cambridge; ²Materials Solutions; ³Materials Solutions

Additive Manufacturing: Building the Pathway towards Process and Material Qualification — Connections between Processing and Microstructures II

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Powder Materials Committee, TMS: Process Technology and Modeling Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas; Reginald Hamilton, The Pennsylvania State University; Edward Herderick, GE; Rajiv Mishra, University of North Texas; James Sears, GE GRC

Monday PM Room: 205A

February 15, 2016 Location: Music City Center

Session Chairs: Josh Sugar, Sandia National Laboratory; Ryan Dehoff, Oak Ridge National Lab

2:00 PM

Characterization and Detection of Pores in Direct Laser Deposited Ti-6Al-4V via Neutron Radiography and Real-Time Thermographic Inspection: W. Young!; Garrett Marshall!; Scott Thompson!; Nima Shamsaei!; Steven Daniewicz!; 'Mississippi State University

2:20 PM Invited

Building Design and Optimization Tools for Additive and Near-net Shape Processes: Josh Sugar¹; Arthur Brown¹; Lauren Beghini¹; Samuel Subia²; Daryl Dagel²; David Keicher²; Kyle Allen¹; Thomas Reynolds¹; Dorian Balch¹; Chris San Marchi¹; ¹Sandia National Labs, Livermore, CA; ²Sandia National Labs, Albuquerque, NM

2:50 PM

Qualification Methodology for AlSi10Mg Spaceflight: *Bryan McEnerney*¹; R. Dillon¹; John Borgonia¹; Andrew Shapiro-Scharlotta¹; ¹Jet Propulsion Laboratory

3:10 PM

Spatial Control of Solidification Microstructure in the Electron Beam Melting of Ti-6Al-4V: Sneha Narra¹; Ross Cunningham¹; Daniel Christiansen¹; *Jack Beuth*¹; Anthony Rollett¹; ¹Carnegie Mellon University

3:30 PM Break

3:50 PM Invited

Automated In-situ Defect Detection and Geometry Validation on the AR-CAM Q10 System: Ryan Dehoff¹; Vincent Paquit¹; Michael Kirka¹; Edwin Schwalbach²; Michael Groeber²; Michael Goin¹; Michael Pearce¹; Oak Ridge National Laboratory; ²Wright-Patterson AFRL

4:20 PN

Microstructural Characterization of Additively Manufactured Metals: Terry Holesinger¹; Pallas Papin¹; Thomas Lienert¹; John Carpenter¹; ¹Los Alamos National Laboratory

4:40 PM

Microstructural Analysis of IN 625 and MAR-M 247 Components Fabricated Using Powder Bed Additive Manufacturing: Yi Li¹; Ji-Cheng Zhao¹; ¹The Ohio State University

5:00 PM

Anisotropy in Mechanical Properties of Ti-6Al-4V: A Comparison between Mill-annealed and Additively Manufactured Alloys: Rupalee Mulay¹; Jeffrey Florando¹; Mukul Kumar¹; ¹Lawrence Livermore National Laboratory

5:20 PM

Oxide, Porosity and Fatigue Performance of AlSi10Mg Parts Produced by Selective Laser Melting: Ming Tang¹; Petrus Pistorius¹; ¹Carnegie Mellon University

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session II

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; John Carpenter, Los Alamos National Laboratory; Marko Knezevic, University of New Hampshire; Wolfgang Pantleon, Technical University of Denmark; Thomas Bieler, Michigan State University; Khalid Hattar, Sandia National Laboratories; Irene Beyerlein, Los Alamos National Laboratory

Monday PM Room: 103B

February 15, 2016 Location: Music City Center

Session Chairs: Nan Li, Los Alamos National Laboratory; Roumen Petrov, Ghent University

2:00 PM Invited

Structural Analysis of In-field Loaded Railway Steel: Roumen Petrov¹; Jun Wu²; Loic Malet³; Stephan Godeth³; Jilt Sietsma²; ¹Ghent University; ²Delft University of Technology; ³Universite Libre de Bruxelles

2:30 PM Invited

Physical Analysis of High Resolution Single Grain and Subgrain Diffraction Profiles: *Ulrich Lienert*¹; Wolfgang Pantleon²; Gábor Ribárik³; Tamás Ungár³; ¹Deutsches Elektronen-Synchrotron; ²Technical University of Denmark; ³Eötvös University Budapest

3:00 PM

Multiaxial Strain Path Changes in Grain Boundary Dominated Materials: In-situ Observations during XRD and SEM: Antoine Guitton¹; Alex Boll-halder¹; Steven Van Petegem¹; Daniel Grolimund¹; Antonio Cervellino¹; Helena Van Swygenhoven¹; ¹Paul Scherrer Institut

3:20 PM Break

3:40 PM Invited

Designing High Fracture Toughness Nanocomposites via In Situ TEM Approach: Nan Li¹; Satyesh Yadav¹; Xiang-Yang Liu¹; Richard Hoagland¹; Nathan Mara¹; Amit Misra²; Jian Wang¹; ¹Los Alamos National Laboratory; ²University of Michigan, Ann Arbor

4:10 PM

Tracking Subgrains during Strain Path Changes by High Resolution Reciprocal Space Mapping: Christian Wejdemann¹; Henning Friis Poulsen¹; Ulrich Lienert²; Wolfgang Pantleon¹; ¹Technical University of Denmark; ²DESY Photon Science

4:30 PM

Post Processing Effects on EBSD based Dislocation Density Measurements: Stuart Wright¹; David Field²; Matthew Nowell¹; ¹EDAX; ²Washington State University

4:50 PM

Dark Field X-Ray Microscopy for Studies of Very Low Angle Boundaries: *Sonja Ahl*¹; Hugh Simons¹; Anders Jakobsen¹; Frederik Stöhr¹; Yubin Zhang¹; Wolfgang Pantleon¹; Dorte Juul Jensen¹; Henning Poulsen¹; ¹Technical University of Denmark

5:10 PM

Quantifying the Local and Global Misorientation Distributions as a Function of Crystallographic Orientation and Level of Plastic Strain in Polycrystalline Materials by Utilizing EBSD Mapping: Vahid Khademi¹; Thomas Bieler¹; Carl Boehlert¹; ¹Michigan State University

5:30 PM

Plasticity Mechanisms in Hafnium Nitride at Room and Elevated Temperature: *Katherine Vinson*¹; Xiao-Xiang Yu¹; Christopher Weinberger²; Gregory Thompson¹; ¹The University of Alabama; ²Drexel University

Advanced Magnetic Materials: An FMD Symposium in Honor of Michael E. McHenry — Thin Films, Processing, Characterization

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Magnetic Materials Committee

Program Organizers: Raju Ramanujan, Nanyang Technological University; Matthew Willard, Case Western Reserve University; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory

Monday PM Room: 209C

February 15, 2016 Location: Music City Center

Session Chairs: Manfred Wuttig, University of Maryland; Jun Ding, National University of Singapore

2:00 PM Invited

Often Overlooked Aspects of the Symmetry of Magnetic Materials: David Laughlin¹; ¹ALCOA Professor of Physical Metallurgy: Carnegie Mellon University

2:30 PM Invited

Current Trends in Giant Magnetoimpedance Materials Research: M.H. Phan¹; ¹University of South Florida

3:00 PM Invited

Magnetic Field Mapping at the Nanoscale in the Transmission Electron Microscope: Rafal Dunin-Borkowski¹; Jan Caron¹; Jörn Ungermann¹; ¹Forschungszentrum Jülich

3:30 PM Break

3:50 PM Invited

Magnetic Materials and Minerals in Planetary Exploration: Marina Diaz Michelena¹; ¹INTA

4:20 PM Invited

Artificial Magnetic Lattices and Their Applications: *Mitsuteru Inoue*¹; ¹Toyohashi University of Technology

4:50 PM

Processing and Characterization of Magnetic Materials for Magnetic Refrigeration, High Frequency Power Conversion, and High Temperature Electrical Machine Applications: *Matthew Lucas*¹; ¹Air Force Research Laboratory

5:10 PM

Preparation and Characterization Fe-Pt and Fe-Pt-M (M=B, SI) Microwires: Valentina Zhukova¹; Ahmed Talaat¹; Juan del Val¹; Mihail Ipatov¹; *Arcady Zhukov*²; ¹Basque Country University, UPV/EHU, San Sebastian, Spain; ²Basque Country University and Ikerbasque

Advanced Materials in Dental and Orthopedic Applications — Session II

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Luis Rocha, UNESP, Univ. Estadual Paulista, Faculdade de Ciências; Grant Crawford, South Dakota School of Mines and Technology; Terry Lowe, Colorado School of Mines; Ana Ribeiro, National Institute of Metrology Quality and Technology; Reginald Hamilton, The Pennsylvania State University

Monday PM Room: 206A

February 15, 2016 Location: Music City Center

Session Chairs: Paulo Lisboa-Filho, School of Sciences, UNESP - Universidade Estadual Paulista; Luis Rocha, Universidade Estadual Paulista

2:00 PM Invited

Dental and Orthopaedic Implants with Surface TiO2 Nanotubes for Enhanced Osseo-Integration: *Sungho Jin*¹; Dan Justin¹; Garrett Smith²; Gary Johnston²; ¹Nanovation Partners; ²Nasseo, Inc.

2:25 PM Invited

Vanadium Interactions in Biological Systems: Paulo Lisboa-Filho¹; Bruna Costa¹; ¹UNESP - Sao Paulo State University

2:50 PM Invited

Overview of Degradation Phenomena in Dentistry and Orthopedics: *Luis Rocha*¹; Fernando Oliveira²; Sofia Oliveira²; Maria Runa²; Mathew Mathew³; Tolou Shokhufar⁴; Ana Ribeiro⁵; ¹UNESP, Univ. Estadual Paulista, Faculdade de Ciências; ²MEMS-Uminho, Center MicroElectroMechanical Systems, Universidade do Minho; ³Rush University Medical Center; ⁴University of Illinois at Chicago; ⁵National Institute of Metrology Quality and Technology

3:15 PM Invited

Interfacial Properties of Cellulose Nanocrystals for Biomedical Applications: Reza Shahbazian-Yassar¹, ¹Michigan Technological University

3:40 PM Break

3.55 PM

Polymeric Coating for Optimization of Drug Release from Drug-Loaded Surfaces: Azhang Hamlekhan¹; Sweetu Patel¹; Tolou Shokuhfar²; ¹Michigan Tech; ²University of Illinois at Chicago

4:15 PM Invited

Titanium Oxide Nano-bio Interactions: Repercussions in Health Effects

: Ana Ribeiro¹; Sara Gemini-Piperni¹; Wanderson Souza¹; Renata Travassos¹; Leandro Lemgruber²; Renata Carvalho¹; André Rossi³; Tolou Shokhufar⁴; Luis Rocha⁵; Jacques Werckmann¹; José Granjeiro¹; ¹INMETRO; ²Welcome Trust Centre for Molecular Parasitology, University of Glasgow; ³Centro Brasileiro de Pesquisas Física; ⁴UIC; ⁵UNESP-BAURU

4:40 PM Invited

Development of Novel Beta Ti-Mo-Zr Alloys for Orthopedic Applications: Raul Araújo¹; Pedro Kuroda¹; Mariana Lourenço¹; Gabriela Suarez¹; Diego Correa¹; Fabio Vicente¹; Carlos Grandini¹; ¹UNESP - Univ. Estadual Paulista

5.05 PM

One-step Anodic Deposition of HA with Ag Nanoparticles on Titanium for Anti-bacterial and Bioactive Implant: *Gye-Won Kim*¹; Ki-Ryong Shin¹; Yeon-Sung Kim¹; Young-Gun Ko²; Dong-Hyuk Shin¹; ¹Hanyang University; ²Yeungnam University

5:25 PM

Diagnostics and Dental Materials for Crack Mitigation in Natural Teeth: Cherilyn Sheets¹; *James Earthman*²; ¹Newport Coast Oral-Facial Institute; ²University of California, Irvine

Alloys and Compounds for Thermoelectric and Solar Cell Applications IV — Session II

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CRISMAT laboratory; Stephane Gorsse, ICMCB-CNRS; Yoshisato Kimura, Tokyo Institute of Technology; Lan Li, Boise State University; CW Nan, Tsinghua University; G. Jeffrey Snyder, Northwestern University; Hsin-jay Wu, National Sun Yat-Sen University

Monday PM Room: 103C

February 15, 2016 Location: Music City Center

Session Chairs: Lan Li, Boise State University; Franck Gascoin, Ensicaen University of Caen

2:00 PM Invited

Structural Studies and High Performance on Mg2Si-based Ternary and Quaternary Materials for Thermoelectric Power Generation: *Theodora Kyratsi*¹; ¹University of Cyprus

2:20 PM Invited

Synthesis of Higher Manganese Silicide via Low Energy Ball Milling and Reactive Sintering: Franck Gascoin¹; ¹CRISMAT laboratory

2:40 PM Invited

Exploring the Role of Disorder in Discovering New Materials: Entropy Stabilized Oxides: Stefano Curtarolo¹; Jon-Paul Maria²; ¹Duke University;

²North Carolina State University

3:00 PM Invited

Perspectives for High Temperature Thermoelectrics: Takao Mori¹; ¹National Institute for Materials Science (NIMS)

3.20 PM Invited

Microstructure, Texture and Incommensurability of Higher Manganese Silicide: Stephane Gorsse¹; Solange Vivès¹; ¹ICMCB-CNRS

3:40 PM Break

4:00 PM Invited

First-Principles Investigation on Improving Thermoelectric Materials: Lan Li¹; Izaak Williamson¹; ¹Boise State University

4:20 PM Invited

Modeling the Properties of Thermoelectric Materials via First Principles Simulations: *Philippe Jund*¹; Kinga Niedziolka¹; Patrick Hermet¹; Jean-Claude Tédenac¹; ¹Montpellier University

4:40 PM Invited

Nanostructuring Silicon Base Materials and Its Impacts on the Thermoelectric Properties: Teruyuki Ikeda¹; ¹Ibaraki University

5:00 PM Invited

Crystal Chemistry, Phase Diagrams, and Thermoelectric Properties of the Ca-M-Co-O (M=Sr, Zn, La, Nd, and Sm) Systems: Winnie Wong-Ng¹; William Laws¹; Guangyao Liu²; Qing Huang¹; Yonggao Yan³; Joshua Martin¹; James Kaduk⁴; ¹NIST; ²China University of Geosciences; ³Wuhan University of Technology; ⁴Illinois Institute of Technology

5:20 PM

The Ga and In Coupling Effects in the Doping of the CoSb3 Compound: *Po-Han Lin*¹; Sinn-wen Chen¹; Ssu-ming Tseng¹; Yinglu Tang²; G. Jeffrey Snyder³; ¹National Tsing Hua University; ²Materials Science, California Institute of Technology; ³Northwestern University

Alumina & Bauxite — Bauxite and Alternative Raw Materials

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Paul McGlade, GHD

Monday PM Room: 203A

February 15, 2016 Location: Music City Center

Session Chair: Natasha Haggard, Al Taweelah Alumina

2:00 PM Introductory Comments

2.05 PM

An Improved Lime Sinter Process to Produce Al2O3 from Low-grade Al-containing Resources: Yongpan Tian¹; Xiaolin Pan¹; Haiyan Yu¹; Yuejiao Han¹; Ganfeng Tu¹; Shiwen Bi¹; ¹Northeastern University

2:30 PM

Investigation of Flotation Behaviors of Refractory High Silica Bauxite: *Guihong Han*¹; Lulu Liu¹; Yanfang Huang¹; Shuzhen Yang¹; Dianyuan Dang¹; ¹Zhengzhou University

2:55 PM

Study on Effective Extraction of Al and Fe from High-iron Bauxite through "Calcification-carbonization" Method: Zhang Weiguang¹; Zhang Ting'an¹; Lv Guozhi¹; Zhang Xuhua¹; Zhu Xiaofeng¹; Wang Yanxiu¹; Wang Long¹; ¹Northeastern University

3:20 PM Break

3:40 PM

Ways to Improve of Aluminium Content Raw Material Treatment by Sintering Method: Vadim Lipin¹; Vladimir Kazakov¹; ¹Saint Petersburg State Polytechnical University

4:05 PM

Extraction of Aluminium by Autoclave Hydrochloric Acid Leaching of Boehmite-kaolinite Bauxite: Dmitry Valeev¹; Vyacheslav Pak¹; Alexandra

Mikhailova¹; Margarita Gol'Dberg¹; Mark Zheleznyi²; Irina Dorofievich²; Yuri Lainer¹; Valerii Bychinskii³; Konstantin Chudnenko³; ¹Baikov Institute of Metallurgy and Materials Science, Russian Academy of Science; ²National University of Science and Technology MISIS; ³Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences

4:30 PM

FT-IR, XPS and Density Functional Theory Study of Adsorption Mechanism of Sodium Formate onto Goethite or Hematite: Meng Wang¹; Huiping Hu¹; Qiyuan Chen¹; ¹Central South University

Aluminum Alloys, Processing and Characterization — Alloy Development and Applications

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Steven Long, Kaiser Aluminum Corporation

Monday PM Room: 201B

February 15, 2016 Location: Music City Center

Session Chair: Zhengdong (Steven) Long, Kaiser Aluminum

2:00 PM Introductory Comments

2:05 PM

Characterization of Near-Net Shape Castable Rare Earth Modified Aluminum Alloy for High Temperature Application: Zachary Sims¹; Orlando Rios¹; Oak Ridge National Laboratory

2:30 PM

Effect of Magnesium on Fe-rich Intermetallic Compounds in Al-Fe-Mn Alloys: *Yipeng Zhou*¹; Zhongping Que¹; Yun Wang¹; Zhongyun Fan¹; ¹Brunel Centre for Advanced Solidification Technology

2:55 PM

On the Effects of Alloying Element Range on the Mechanical Properties of Recycled Aluminium Alloy EN AB-46000: *Izudin Dugic¹*; Felix Henriksson¹; Conrad Strebel¹; Ozkan Kosmaz¹; Salem Seifeddine¹; ¹Linnaeus University

3:20 PM Break

3:35 PM

Phase and Thermal Stability Analysis of Al-Fe-V-Si-Y Alloys After Solidification at Intermediate Cooling Rates: *Ryan Marshall*¹; Robert Field¹; Krish Krishnamurthy²; Michael Kaufman¹; ¹Colorado School of Mines; ²Honeywell

4:00 PM

Microstructure and Phase Evolution in A201 Alloys with Additions of Si: Suzan Abd El Majid¹; Menachem Bamberger¹; Alexander Katsman¹; ¹technion

4:25 PM

High Temperature Creep Evolution in Al-Si Alloys Developed for Automotive Powertrain Applications - a Neutron In-situ Study on hkl-plane Creep Response: Dimitry Sediako¹; Wojciech Kasprzak²; Frank Czerwinski²; Ahmed Nabawy¹; Amir R. Farkoosh³; ¹Canadian Nuclear Laboratories; ²CanmetMATERIALS; ³McGill University

Aluminum Reduction Technology — Cell Technology & Design

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Stephan Broek, Hatch Ltd

Monday PM Room: 202C

February 15, 2016 Location: Music City Center

Session Chair: Martin Segatz, Hydro Aluminium

2:00 PM Introductory Comments

2:05 PM

Conception of a "Dream Cell" in Aluminium Electrolysis: Peter Polyakov¹; Andrey Kluchantsev²; Andrey Yasinsky¹; Yury Popov³; ¹Siberian Federal University; ²LLC ETC RUSAL; ³Light Metals Ltd

2:30 PM

The Impact of the Cavity on the Top Heat Losses in Aluminum Electrolysis Cells: Francois Allard¹; Martin Désilets¹; Marc LeBreux¹; Alexandre Blais²; ¹Université de Sherbrooke; ²Rio Tinto Aluminium

2:55 PM

Rio Tinto AP44 Cell Technology Development at Alma Smelter: Pascal Thibeault¹; Louis Guimond¹; Herve Mezin¹; ¹RioTinto Alcan

3:20 PM Break

3:35 PM

Hydro's Cell Technology Path towards Specific Energy Consumption below 12 kWh/kg: *Martin Segatz*¹; Jorund Hop¹; Pierre Reny¹; Håvard Gikling¹; ¹Hydro Aluminium

4:00 PM

The Successful Implementation of DUBAL DX+ Technology at EMAL: *Michel Reverdy*¹; Sajid Hussain¹; Qassim Galadari¹; Jean-Luc Faudou¹; Abdalla Al Zarouni¹; Nadia Ahli¹; Ibrahim Al Ali¹; Shaikha Al Shehhi¹; Bijan Malladeb¹; Muna Abdulla¹; Vinod Nair¹; ¹Emirates Global Aluminium (EGA)

Biological Materials Science Symposium — Biomaterials I

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Francois Barthelat, McGill University; Kalpana Katti, North Dakota State University; Paul Allison, University of Alabama; Rajendra Kasinath, DePuy Synthes Products, LLC

Monday PM Room: 207A

February 15, 2016 Location: Music City Center

Session Chairs: Kalpana Katti, North Dakota State University; Rajendra Kasinath, DePuy Synthes

2:00 PM Invited

Biomimetic Hard-to-Soft Interfaces: Guiding Osteogenesis to Infection Free Implants: Candan Tamerler¹; ¹University of Kansas

2:40 PM

Biomimetic Remineralization Strategies towards Novel Dental Health Care: *Mehmet Sarikaya*¹; Hanson Fong¹; Candan Tamerler²; Sami Dogan¹; ¹University of Washington; ²University of Kansas

3:00 PM

Chemotherapeutic-Induced Surface Degradation of Subcutaneous Venous Access Ports - A Preliminary Comparative In-Vitro and In-Vivo Study: Maren Kirknes Fossum¹; Charlotta Tegnestedt²; Kristina Dahlberg³; Emma Strömberg⁴; Javier Sanchez⁵; Håkan Wallén⁵; Annelie Liljegren⁵; Claes Frostell⁵; Gunilla Björling²; Ragnhild E. Aune¹; ¹Norwegian University of Science and Technology (NTNU); ²The Swedish Red Cross University College; ³Stockholm South General Hospital; ⁴KTH-Royal Institute of Technology; ⁵Karolinska Institutet

3:20 PM Break

3:40 PM

Electrochemical Properties of Microarc Oxidation Coating on Biocompatible Magnesium Alloy: *Jing Zhang*¹; Jiayang Liu¹; Zhe Lu²; Yeon-Gil Jung²; Chengyun Ning³; ¹Indiana University - Purdue University Indianapolis; ²Changwon National University; ³South China University of Technology

4:00 PM

Biochemical Characterisation of *Rhizophora mangle* L. Leaf: Prospect as a Natural-Green Inhibitor of Steel-Rebar Corrosion in Marine/Saline Service-Environment: *Joshua Okeniyi*¹; Olubanke Ogunlana¹; Elizabeth Okeniyi¹; Taiwo Owoeye¹; Oluseyi Ogunlana²; ¹Covenant University, Ota, Nigeria; ²Crawford University, Igbesa, Nigeria

Bulk Metallic Glasses XIII — Alloy Development and Application II

Sponsored by:TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Monday PM Room: 101E

February 15, 2016 Location: Music City Center

Session Chairs: Frans Spaepen, Harvard University; Eun Soo Park, Seoul National

University

2:00 PM Keynote

Production of Amorphous Materials by Supersonic Spray Drying: Esther Amstad¹; David Weitz¹; Frans Spaepen¹; ¹Harvard School of Engrg & Appl Sciences

2:30 PM

Dissolution of Low Solubility Elements during Arc Melting: Scott Roberts¹; Douglas Hofmann¹; ¹JPL

2:50 PM Invited

Consolidation of Blended Powders by Severe Plastic Deformation to Form Amorphous Metal Matrix Composites: Suveen Mathaudhu¹; K. Theodore Hartwig²; Ibrahim Karaman²; ¹University of California Riverside; ²Texas A&M University

3:15 PM Invited

Variations in Glass Transition during Vitrification: Chae Woo Ryu¹; *Eun Soo Park*¹; Geun Woo Lee²; Andreas Meyer³; ¹Seoul National University; ²Korea Research Institute of Standards and Science; ³Deutsches Zentrum für Luft- und Raumfahrt (DLR)

3:35 PM Break

3:50 PM

A Novel Technique for Thermoplastically Forming Functional BMG Parts with Complex 3D Geometries and Multi-scale Features: Phil Meagher¹; David Jarvis²; Wayne Voice²; David Browne¹; ¹University College Dublin; ²European Space Agency

4·10 PM

Bulk Metallic Glasses Composites Produced via Severe Plastic Deformation: Lisa Kraemer¹; Verena Maier¹; Karoline Kormout¹; Daria Setman²; Yannick Champion³; Reinhard Pippan¹; ¹Erich Schmid-Institute of Materials Sciences, Austrian Academy of Sciences; ²Physics of Nanostructured Materials, Faculty of Physics, University of Vienna; ³Institut de Chimie et des Matériaux Paris-Est, Université Paris-Est Créteil

4:30 PM

Porous Bulk Metallic Glasses for Application as Biomedical Materials: *Guoqiang Xie*¹; Fengxiang Qin¹; Ichiro Seki¹; Wei Wang²; ¹Tohoku University; ²Tokyo Medical and Dental University

4:50 PM

Glass-forming Ability and Mechanical Properties of a Zr52. 8Cu29.1Ni7.3Al9.8Y1 Bulk Metallic Glass Prepared by Hereditary Process: Shuaidan Lu¹; ¹Northeastern University

5:10 PM

High Density Ni-based Metallic Glasses Formed by Spark Plasma Sintering: *Henry Neilson*¹; Alex Petersen²; Joseph Poon²; Gary Shiflet²; John Lewandowski¹; ¹Case Western Reserve University; ²University of Virginia

Bulk Processing of Nanostructured Powders and Nanopowders by Consolidation — Session II

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Deliang Zhang, Shanghai Jiao Tong University; Bowen Li, Michigan Technological University; Stephen Mashl, Michigan Technological University

Monday PM Room: 210

February 15, 2016 Location: Music City Center

Session Chairs: Zhiqiang Li, Shanghai Jiao Tong University; Jürgen Eckert, IFW

Dresden

2:00 PM Keynote

Bulk Processing of Nanostructured Advanced Materials: *J. Eckert*¹; R.N. Shahid¹; P. Wang¹; K. G. Prashanth¹; M. Stoica¹; S. Scudino¹; Deliang Zhang²; ¹IFW Dresden; ²Shanghai Jiao Tong University

2:40 PM Invited

Bulk Nanostructured Al Synthesized by Consolidation of Al Nanopowders: *Yaojun Lin*¹; Xuejian Liu²; Bocong Xu²; ¹Wuhan University of Technology; ²Yanshan University

3:10 PM Invited

Bulk Nano Materials with Exceptional Properties Developed by High Energy Ball Milling and Spark Plasma Sintering

: Srinivasa Murty Budaraju¹; ¹IIT Madras

3:40 PM Break

4:00 PM Invited

Bio-mimetic Design and Fabrication of Nano-Carbon Reinforced Bulk Aluminum Composites by Flake Powder Metallurgy: *Zhiqiang Li*¹; Zhanqiu Tan¹; Genlian Fan¹; Di Zhang¹; ¹Shanghai jiao Tong Univeristy

4:30 PM

Processing of Steel-magnesium Composites by Compaction of Mg Powders through Severe Plastic Deformation: Xavier Sauvage¹; Julien Nguyen¹; Olivier Bouaziz²; ¹University of Rouen, CNRS; ²LEM3 - University of Loraine

4:50 PM

Dynamic Cu Grain Growth of Mechanically Milled Nanostructured Cu-5vol.%Al2O3 Powder Particles during Hot Extrusion: *Dengshan Zhou*¹; Deliang Zhang¹; Paul Munroe²; Charlie Kong²; Wei Zeng¹; ¹Shanghai Jiao Tong University; ²University of New South Wales

5:10 PM

Shock Wave Consolidation of Hierarchical Copper Powders Consisting of Nano/Ultrafine Particles and Micro Agglomerates, and the Mechanical Properties of Synthesized Bulk: Dong-Hyun Ahn¹; Wooyeol Kim¹; Lee Ju Park²; Hyoung Seop Kim¹; ¹POSTECH; ²Agency for Defense Development (ADD)

Cast Shop Technology: An LMD Symposium in Honor of Wolfgang Schneider — Direct Chill Casting

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Mohamed Hassan, Masdar Institute of Science and Technology

Monday PM Room: 202A

February 15, 2016 Location: Music City Center

Session Chair: Matthew Krane, Purdue University

2:00 PM Introductory Comments

2:05 PM Keynote

35 Years of Contributions to Cast Shop Research and Development – Honoring Prof. Dr. Wolfgang Schneider: *Gerd-Ulrich Gruen*¹; ¹Hydro Aluminium Rolled Products GmbH

2:25 PM

Effect of Liquid Metal Distribution on the Flow Field and Macrosegregation during Direct Chill Casting of Aluminum Alloy 7050: John Coleman¹;

Kyle Fezi¹; Matthew Krane¹; ¹Purdue University

2:50 PM

Aluminum Billets D.C. Casting: Level-pour vs. Fall-pour: A Techno-historical Approach: Plácido García Pérez¹; Personal

3:15 PM

Hot Tearing in DC Casting Ingot of 7XXX Aluminum Alloys: Nobuhito Sakaguchi¹; ¹UACJ Corporation

3:40 PM Break

3:55 PM

Initial Development of Micro-Shrinkage Crack During Early Stages of Direct Chill Casting of Al-4.5%Cu Alloy

: Mostafa El-Bealy¹; ¹Clausthal University of Technology

4:20 PM

Successful Implementation of a New Rolling Slab Casting Technology, AFM, within Hydro: *Arild Hakonsen*¹; Terje Iveland²; Magne Boge²; Stian Rørvik²; ¹Hycast AS; ²Hydro Aluminium

4:45 PM

Uncertainty Propagation in Numerical Modeling of Direct Chill Casting: Kyle Fezi¹; Matthew Krane¹; ¹Purdue University

5:10 PM

The Study Conditions Occurrence of Hot Tearing in the Billets Alloy EN AW6060 Produced with the Process of Direct Chill Casting: Ivica Buljeta¹; Ana Beroš¹; Zdenka Brodarac²; ¹Faculty of Metallurgy and Materials Science; ²University of Zagreb, Faculty of Metallurgy

CFD Modeling and Simulation in Materials Processing — Microstructure Evolution

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Laurentiu Nastac, The University of Alabama; Lifeng Zhang, University of Science and Technology Beijing; Brian Thomas, University of Illinois at Urbana-Champaign; Miaoyong Zhu, Northeastern University; Andreas Ludwig, Montanuniversitaet Leoben, Dep. Metallurgy; Adrian Sabau, Oak Ridge National Laboratory; Koulis Pericleous, University of Greenwich; Hervé Combeau, Institut Jean Lamour

Monday PM Room: 207D

February 15, 2016 Location: Music City Center

Session Chairs: Hervé Combeau, École des Mines Nancy; Miaoyong Zhu, The Northeastern University

2:00 PM Invited

Microporosity Prediction in Aluminium DC Casting: Laurent Heyvaert¹; Hervé Combeau¹; Miha Založnik¹; Philippe Jarry²; Emmanuel Waz²; ¹Institut Jean Lamour; ²C-TEC, Constellium Technology Center

2:25 PM

Simulation of Structure Evolution of 2-D Liquid Metal Using a Lattice Boltzmann Front Tracking Method: Zhuokun Cao¹; Yang Yu¹; Hongjie Luo¹; Cong Wang¹; ¹Northeastern University, China

2:45 PM

Modeling the Multicomponent Columnar-to-Equiaxed Transition of Alloy 625: *Kyle Fezi*¹; Matthew Krane¹; ¹Purdue University

3:05 PM

Validation of a Model for the Columnar to Equiaxed Transition with Melt Convection: Mahdi Torabi Rad¹; Christoph Beckermann¹; ¹University of Iowa

3:25 PM

Performance Optimization and Evaluation of a 3D CA-FVM Model for Dendritic Growth of Fe-C Alloy: Weiling Wang¹; Sen Luo¹; Miaoyong Zhu¹; ¹Northeastern University

3:45 PM Break

4:05 PM

Multiscale Modeling of the Solidification Structure Evolution of Continuously Cast Steel Blooms and Slabs: Laurentiu Nastac¹; Pilvi Oksman²; Mikko Kärkkäinen²; Seppo Louhenkilpi²; ¹The University of Alabama; ²Aalto University

4:25 PM

Simulation of Flows and Instabilities during Crystal Growth via the Traveling Heater Method: Jeff Peterson¹; Jeffrey Derby¹; ¹University of Minnesota

4:45 PM

Prediction of Microstructure Evolution of Hot Forged AISI 4140 Steel by Numerical Simulation: Tiago Colombo¹; *Alberto Brito*¹; Lirio Schaeffer¹; ¹Universidade Federal of Rio Grande do Sul

5.05 PM

Numerical Simulation of Dendritic growth of Fe-C Binary Alloy with Natural Convection: Sen Luo¹; Weiling Wang¹; Miaoyong Zhu¹; ¹Northeastern University

5:25 PM

Localized Strengthening of Al-based Alloys by Automatized Optimization OF Laser Heat Treatment: Andreas Ludwig¹; Tobias Holzmann¹; ¹University of Leoben, Dep. Metallurgy

5:45 PM

Understanding Freeze Casting Solidification Process: Santiago Gil-Duran¹; Edgar Alexander Ossa Henao¹; ¹Universidad EAFIT

Characterization of Minerals, Metals, and Materials — Minerals

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Monday PM Room: 102B

February 15, 2016 Location: Music City Center

Session Chairs: Bowen Li, Michigan Technological University; Zhiwei Peng, Central South University

2:00 PM

Characterization of Magnesite from Tsakasimptah Nigeria for Glass Making: Zainab Aliyu¹; Adele Garkida¹; Edwin Ali¹; Muhammad Dauda¹; ¹Ahmadu Bello University

2:20 PM

High Temperature Thermal Analysis and Calorimetry Applied to the Characterization and Thermodynamic Studies of Feldspars and Feldspathoids: Kristina Lilova¹; Link Brown¹; ¹Setaram Inc.

2:40 PM

Study On Coal Minerals Phase Transformations under Different Coking Conditions: *Qiu Shuxing*¹; Zhang Shengfu¹; Zhang Pengqi¹; Qiu Guibao¹; Zhang Qingyun¹; ¹Chongqing University

3:00 PM

Electrical Effect and Influence Factors of Tourmaline: *Qi Lu*¹; Bowen Li²; Feng Bai¹; ¹China University of Geosciences; ²Michigan Technological University

3:20 PM Break

3:35 PM

Wettability of Pyrolytic Graphite by Molten Blast Furnace Slag Bearing TiO2: *Yanhui Liu*¹; Xuewei Lv¹; Chenguang Bai¹; Baohua Li¹; ¹School of Materials Science and Engineering, Chongqing University

27

3:55 PM

Dielectric Properties and Microwave Heating Characteristics of Nickel-copper Ore: *Liu Chenhui*¹; Jinhui Peng²; TianCheng Liu²; Junming Guo²; ¹ Yunnan Minzu University; ²Yunnan Minzu University

4-15 PM

Evaluation of White Bentonite Modified by Acid Attack: *Christiano Gianesi Bastos Andrade*¹; Danilo Marin Fermino¹; Marcos Fernandes Gonzales¹; Francisco Rolando Valenzuela Diaz¹; ¹University of Sao Paulo

Characterization of Minerals, Metals, and Materials — Processing and Corrosion

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Monday PM Room: 103A

February 15, 2016 Location: Music City Center

Session Chairs: Jian Li, CanmetMATERIALS; Prathmesh Joshi, Visvesvaraya National Institute of Technology (V.N.I.T.)

2:00 PM

Characterization of Iron Oxide Scale Formed in Naphthenic Acid Corrosion: Peng Jin¹; Winston Robbins¹; Gheorghe Bota¹; Srdjan Nesic¹; ¹Institute for Corrosion and Multiphase Technology (ICMT), Ohio University

2.20 PM

Transport of Chloride Ions through Modulated Concrete Microstructures: Batric Pesic¹; ¹University of Idaho

2:40 PM

Effect of Cold Work on the Corrosion Resistance of an Austenitic Stainless Steel: Jian Li¹; Pei Liu¹; ¹CanmetMATERIALS

3:00 PM

Microstructural Evolution of Single Ni2TiAl or Hierarchical NiAl/Ni2TiAl Precipitates in Fe-Ni-Al-Cr-Ti Ferritic Alloys during Thermal Treatment: Gian Song¹; Yanfei Gao¹; Zhiqian Sun¹; Jonathan Poplawsky²; Peter Liaw¹; ¹University of Tennessee, Knoxville; ²Oak Ridge National Laboratory

3:20 PM

The Chemical Composition and Micro-mechanical Properties of Cooling γ' Precipitates in a Polycrystalline Nickel Alloy: Muzi Li¹; Fionn Dunne¹; Barbara Shollock¹; ¹Imperial College London

3:40 PM Break

3:55 PM

Ferronickel Preparation from Nickeliferous Laterite by Rotary Kiln-electric Furnace Process: *Guanghui Li*¹; Hao Jia¹; Jun Luo¹; Zhiwei Peng¹; Yuanbo Zhang¹; Tao Jiang¹; ¹School of Minerals Processing and Bioengineering, Central South University

4:15 PM

Characterization of Copper-Manganese-Aluminum-Magnesium Mixed Oxyhydroxide and Oxide Catalysts for Redox Reactions: Arnab Baksi¹; David Cocke¹; Andrew Gomes¹; John Gossage¹; Mark Riggs²; Gary Beall²; Hylton McWhinney³; ¹Lamar University; ²Texas State University; ³Prairie View A&M University

4:35 PM

Pyrolysis of Active Fraction of Humic Substances-based Binder for Iron Ore Pelletizing: *Guihong Han*¹; Duo Zhang¹; Yanfang Huang¹; Longjie Xing¹; Lulu Liu¹; Wencui Chai¹; Tao Jiang²; ¹Zhengzhou University; ²Central South University

4:55 PM

Determination of Processing-Microstructure-Relationships in SPD-Processed 316L SS using Nano-Scale Resolution Automated Crystal Orienta-

tion Mapping in the TEM: Mauricio Gordillo¹; Jörg Wiezorek¹; ¹University of Pittsburgh

5·15 PM

Stamping Versus Wire Electrical Discharge Machining (WEDM) of HIP-ERCO® 50 Alloy Laminates – A Comparative Study of Their Magnetic Properties and Cut-edge Characteristics: *Tanjore Jayaraman*¹; ¹Carpenter Technology Corporation

Computational Materials Engineering for Nuclear Reactor Applications — Zirconium Cladding Behavior

Sponsored by:

Program Organizers: Michael Tonks, Idaho National Laboratory; Julie Tucker, Oregon State University; Mark Tschopp, Army Research Laboratory; Richard Williamson, Idaho National Laboratory

Monday PM Room: 101D

February 15, 2016 Location: Music City Center

Funding support provided by: The symposium will be co-sponsored by the ICME committee

Session Chair: To Be Announced

2:00 PM Invited

An Overview of the Fuel, Materials and Chemistry Focus Area within the CASL Energy Innovation Hub: Chris Stanek¹; ¹Los Alamos National Laboratory

2:40 PM

Computer Modeling of Hydrogen and Oxygen Transport during Zirconium Corrosion: Xian-Ming Bai¹; Yongfeng Zhang¹; Michael Tonks¹; ¹Idaho National Laboratory

3:00 PM

Molecular Dynamics Simulations on Homogeneous Hydride Nucleation in Alpha-Zr: *Yongfeng Zhang*¹; Xianming Bai¹; Jianguo Yu¹; Michael Tonks¹; ¹Idaho National Lab

3:20 PM Break

3:40 PM

Stochastic Modeling of the Corrosion of Zirconium and its Alloys: Theory and Application to Autoclave Corrosion: William Howland¹; ¹Bechtel Marine Propulsion Company

4:00 PM Invited

Coupled Micro/Meso/Macro Modeling of the Crud Source Term in Light Water Reactors: Penghui Cao¹; Michael Short¹; Derek Gaston¹; Daniel Wells²; ¹MIT; ²Electric Power Research Institute (EPRI)

4:40 PM

Coupled PWR Oxidation Modeling with the HOGNOSE Code: Andrew Dykhuis¹; Michael Short¹; ¹Massachusetts Institute of Technology

5:00 PM

Multiscale Modeling of the Coherency Loss of Hydrides in \945Zr: Marc-Antoine Louchez¹; Guy Oum¹; *Ludovic Thuinet*¹; Rémy Besson¹; Alexandre Legris¹; ¹Université de Lille

5:20 PM

Validation of BISON Calculation of Hydrogen Distribution by Comparison to Experiment: Evrard Lacroix¹; Arthur Motta¹; ¹Pennsylvania State University

Computational Methods for Spatio-temporal Scale-bridging: from Atomistics to Mesoscale – Scale-Bridging Methods for Plasticity

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Danny Perez, Los Alamos National Laboratory; Dallas Trinkle, University of Illinois, Urbana-Champaign; Maryam Ghazisaeidi, Ohio State University; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Monday PM Room: 209A

February 15, 2016 Location: Music City Center

Session Chairs: Carlos Tome, Los Alamos National Laboratory; Maryam Ghazisaeidi, Ohio State University

2:00 PM

A Quantized Crystal Plasticity Model for Nanocrystalline Metals: Connecting Atomistic Simulations and Physical Experiments: Lin Li¹; Paul Christodoulou²; Peter Anderson²; ¹University of Alabama; ²The Ohio State University

2:20 PM

A Systematic Framework for Predicting Twinning in Hexagonal Closepacked Materials: *Dingyi Sun*¹; Mauricio Ponga¹; Kaushik Bhattacharya¹; Michael Ortiz¹; ¹California Institute of Technology

2:40 PM Invited

Atomistic Modeling at Experimental Strain Rates and Time Scales: Harold Park¹; ¹Boston University

3:10 PM

Coarse-grained Models for Reducing Complexity in the Description of Crystal Plasticity: Roman Groger¹; ¹Academy of Sciences of the Czech Republic

3:30 PM Break

3:50 PM

Decohesion Relationships for Hydrogen Induced Grain Boundary Embrittlement in Nickel extracted from Molecular Dynamics Simulations: Wesley Barrows¹; Remi Dingreville²; *Douglas Spearot*³; ¹University of Arkansas; ²Sandia National Laboratories; ³University of Florida

4:10 PM Invited

Improved Twinning Simulation by Linking Meso-scale Full-field FFT Approach with Macro-scale Effective Medium VPSC Model: Carlos Tome¹; M. Arul Kumar¹; Irene Beyerlein¹; Rodney McCabe¹; ¹Los Alamos National Lab

4:40 PM

Peierls Potential and Kink Pair Mechanism in High Pressure MgSiO3 Perovskite: Philippe Carrez¹; Antoine Kraych¹; Pierre Hirel¹; Patrick Cordier¹; ¹Lab. UMET CNRS-UMR8207

5:00 PM

The Strength and Deformation Behavior of Nickel Based Superalloy Microcrystals through Discrete Dislocation Dynamics Simulations: *Ahmed Hussein*¹; Satish Rao²; Triplicane Parthasarathy³; Jaafar Elawady¹; Michael Uchic⁴; ¹Johns Hopkins University; ²EPFL; ³UES Inc.; ⁴WPAFB

5:20 PM

Evaluation of Strain Localizations on AA-7050 Using CP-FFT and EBSD: *Andrea Nicolas*¹; Alberto Mello¹; Michael Sangid¹; ¹Purdue University

Computational Methods for Uncertainty Quantification, Model Validation, and Stochastic Predictions – Empirical Interatomic Potentials: Development and Validation

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Francesca Tavazza, National Institute of Standards and Technology; Richard Hennig, University of Florida; Mark Tschopp, Army Research Laboratory; Li Ma, NIST

Monday PM Room: 207C

February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM Invited

Advancements in Methods for Materials Discovery and Validation: Susan Sinnott¹; ¹Penn State University

2.30 PM

Atomistic Study of Carbon Nanotubes: Effect of Cut-off Distance: S. Thamaraikannan¹; S.C. Pradhan¹; ¹Department of Aerospace Engineering, Indian Institute of Technology Kharagpur

2:50 PM Invited

Database Optimization for Empirical Interatomic Potentials: Pinchao Zhang¹; *Dallas Trinkle*¹; ¹University of Illinois, Urbana-Champaign

3:20 PM

Elasticity Size Effects in ZnO Nanowires and Subjective Definitions of Cross-sectional Area: An Overlooked Source of Uncertainty: Zachary Trautt¹; Lawrence Friedman¹; Chandler Becker¹; Robert Cook¹; ¹National Institute of Standards and Technology

3:40 PM Break

4:00 PM Invited

Development of the ReaxFF Force Field for Complex Materials and Interfaces: *Adri van Duin*¹; Weiwei Zhang¹; Yun-Kyung Shin¹; Sungwook Hong¹; Jejoon Yeon¹; Metin Aktulga²; ¹Penn State; ²Michigan State University

4:30 PM

Quantifying Model-Form Uncertainty in Molecular Dynamics Simulation: *Anh Tran*¹; Yan Wang¹; ¹Georgia Institute of Technology

4:50 PM Invited

Using Correlations between Materials Properties in Potential Development Procedure for Metals: Mikhail Mendelev¹; ¹Ames Laboratory

5-20 PM

MEAM Potential for Boron Suboxide (B6O): Mehul Bhatia¹; Kiran Solanki¹; Mark Tschopp²; ¹Arizona State University; ²U.S. Army Research Laboratory,

Computational Thermodynamics and Kinetics — Defect Thermodynamics and Diffusion II

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Chemistry and Physics of Materials Committee Program Organizers: Dane Morgan, University of Wisconsin - Madison; Shawn Coleman, U.S. Army Research Laboratory; Xiang-Yang Liu, Los Alamos National Lab; Chris Wolverton, Northwestern University

Monday PM Room: 208B

February 15, 2016 Location: Music City Center

Session Chairs: Nicole Benedek, Cornell University; Henry Wu, University of Wisconsin - Madison

2:00 PM Invited

Engineering High and Constant Cation Diffusivity in Oxides through Percolation Theory: Gerbrand Ceder¹; Jinhyk Lee²; Alex Urban²; ¹UC Berkeley; ²MIT

2:30 PM

Cation Diffusion Path in Ionic Structures -- A Pathfinder Algorithm to Precondition NEB Calculations and a Fast Approximate Barrier Calculation Method: Ziqin Rong¹; Daniil Kitchaev¹; Pieremanuele Canepa¹; Gerbrand Ceder¹: ¹MIT

2:50 PM

Fast Li-ion Transport Kinetics in LiBH4-based Solid-state Electrolytes: *Zhenpeng Yao*¹; Kyle Michel¹; Yongsheng Zhang¹; Christopher Wolverton¹; ¹Northwestern University

3:10 PM

The Role of Grain Boundaries for Lithium Diffusion in Graphite: *Christopher Shumeyko*¹; Edmund Webb¹; Garritt Tucker²; ¹Lehigh University; ²Drexel University

3:30 PM Break

3:50 PM Invited

Enhancement of Ionic Transport in Complex Oxides through Soft Lattice Modes and Epitaxial Strain: Nicole Benedek¹; ¹Cornell University

4:20 PM

High-Throughput ab-initio Solute Diffusion Database with the MAterials Simulation Toolkit (MAST): Henry Wu¹; Tam Mayeshiba¹; Haotian Wu¹; Liam Witteman¹; Ben Anderson¹; Dane Morgan¹; ¹University of Wisconsin-Madison

4:40 PM

Kinetics Investigation of Titanium-Based Multicomponent Systems Using Liquid-Solid Diffusion Couples

: *Zhi Liang*¹; Changdong Wei¹; Alan Luo¹; Ji-Cheng Zhao¹; James Williams¹; Anil Sachdev²; ¹The Ohio State University; ²General Motors

5:00 PM

Molecular Dynamics Study of Unexpected, Anisotropic Diffusion through Nickel-based Alloys and Oxides: Penghui Cao¹; Michael Short¹; Daniel Wells²; ¹Massachusetts Institute of Technology; ²Electric Power Research Institute

5:20 PM

Effect of Solute Atoms on Dislocation Motion in Mg: An Electronic Structure Perspective: Tomohito Tsuru¹; Daryl Chrzan²; ¹Japan Atomic Energy Agency; ²University of California Berkeley

5:40 PM

Numerical Analysis Evaluation of Solutions to the Diffusion Equation for Binary Interdiffusion Situations: *Irina Belova*¹; Tanvir Ahmed¹; ¹University of Newcastle

Driving Discovery: Integration of Multi-Modal Imaging and Data Analysis — Session II

Sponsored by:TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Charudatta Phatak, Argonne National Laboratory; Doga Gursoy, Argonne National Laboratory; Emine Gulsoy, Northwestern university; Yang Jiao, Arizona State University

Monday PM Room: 102A

February 15, 2016 Location: Music City Center

Session Chair: Charudatta Phatak, Argonne National Laboratory

2:00 PM Invited

Neutrons, Materials and Data Challenges: Thomas Proffen¹; ¹Oak Ridge National Laboratory

2:30 PM

Methodology for Reconstruction of Samples Analyzed with Simultaneous Neutron and X-Ray Imaging: *Jacob LaManna*¹; Daniel Hussey¹; Eli Baltic¹; David Jacobson¹; ¹National Institute of Standards and Technology

2:50 PM Invited

Real Time Analysis, Interpretation and Experimental Steering for Electron Microscopy: Kerstin Kleese van Dam¹; ¹Pacific Northwest National Lab-

oratory

3:20 PM Break

3:40 PM Invited

Bingham Mixture Model for Efficient Microtexture Estimation from Discrete Orientation Data: Stephen Niezgoda¹; Eric Magnuson¹; ¹The Ohio State University

4:10 PM

Modeling Multi-modal Images of Photocatalysis on Cu₂O: Liang Li¹; Yimin Wu¹; Yuzi Liu¹; Jeffrey Guest¹; Tijana Rajh¹; Ian McNulty¹; Zhonghou Cai¹; *Maria Chan*¹; ¹Argonne National Laboratory

4:30 PM Invited

Recognizing Patterns from Experimental Data: *Daniela Ushizima*¹; ¹Lawrence Berkeley National Laboratory

5.00 PM

Structure Quantification, Property Prediction and 4D Reconstruction Using Limited X-ray Tomography Data: Hechao Li¹; Somya Singh¹; C. Kaira¹; James Mertens¹; Nikhilesh Chawla¹; Yang Jiao¹; ¹Arizona State University

5:20 PM

Error Analysis of Near-field High Energy Diffraction Microscopy

: David Menasche¹; Paul Shade; Robert Suter¹; ¹Carnegie Mellon University

Electrode Technology — Electrode Materials and Characterization

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Angelique Adams, Alcoa Inc

Monday PM Room: 202B

February 15, 2016 Location: Music City Center

Session Chair: Marvin Lubin, Rain CII Carbon

2:00 PM Introductory Comments

2:10 PM

Characterization of Carbon Anode Materials by Image Analysis: *Xianai Huang*¹; Duygu Kocaefe¹; Dipankar Bhattacharyay¹; Yasar Kocaefe¹; Brigitte Morais²; ¹University of Quebec at Chicoutimi; ²Aluminerie Alouette Inc.

2:35 PM

Electrochemical Reactivity and Wetting Properties of Anodes Made from Anisotropic and Isotropic Cokes: Camilla Sommerseth¹; Rebecca Thorne²; Arne Ratvik³; Espen Sandnes¹; Stein Rørvik³; Lorentz Lossius⁴; Hogne Linga⁴; Ann Svensson¹; ¹Norwegian University of Science and Technology, NTNU; ²Norsk institutt for luftforskning; ³SINTEF Materials and Chemistry; ⁴Hydro Aluminium AS

3:00 PM

Study of the Wetting of Coke by Different Pitches: *Ying Lu*¹; Duygu Kocae-fe¹; Yasar Kocae-fe¹; Dipankar Bhattacharyay¹; Xian-Ai Huang¹; Brigitte Morais²; ¹University of Quebec at Chicoutimi; ²Aluminerie Alouette Inc.

3:25 PM

Quantification of Sodium Present in Dry Aggregates and Anodes: *Julie Bureau*¹; Duygu Kocaefe¹; Dipankar Bhattacharyay¹; Yasar Kocaefe¹; Brigitte Morais²; ¹University of Quebec at Chicoutimi; ²Aluminerie Alouette Inc.

3:50 PM Break

4:05 PM

Interfacial Boundary between Carbon Anodes and Molten Salt Electrolyte: Wojciech Gebarowski¹; Camilla Sommerseth¹; Arne Petter Ratvik²; Stein Rørvik²; Espen Sandnes¹; Lorentz Petter Lossius³; Hogne Linga³; Ann Mari Svensson¹; ¹NTNU - Norwegian University of Science and Technology; ²SINTEF Materials and Chemistry; ³Hydro Aluminium AS

4:30 PM

Measurement of the Electric Current Distribution in an Anode: Marc-Alain Andoh¹; Duygu Kocaefe¹; Dipankar Bhattacharyay¹; Yasar Kocaefe¹; Daniel Marceau¹; Brigitte Morais²; ¹University of Quebec at Chicoutimi; ²Aluminerie Alouette Inc.

Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology — New Bonding Approaches

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Albert T. Wu, National Central University; Yan Li, Intel; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Monday PM Room: 201A

February 15, 2016 Location: Music City Center

Session Chairs: Yan Li, Intel; John Elmer, Lawrence Livermore National Laboratory

2:00 PM Invited

WBG Die-attach Ceramic Substrate for Severe Thermal Cycling: *Katsuaki Suganuma*¹; Hao Zhang¹; Shijo Nagao¹; Tohru Sugahara¹; Minoru Ueshima²; Yoichi Furukawa³; Kazuhiko Minami³; Hans Albrecht⁴; Klaus Wilke⁴; Yoshinori Shirakawa⁴; Seigo Kurosaka⁵; Masanobu Tsujimoto⁵; Masayuki Kiso⁵; ¹Osaka University; ²Senju Metal; ³Showa Denko; ⁴Siemens; ⁵C. Uyemura

2:25 PM

Die-attach Structure Using SiC Particle Added Ag Paste for Ultra High Thermal Stability Usage: *Hao Zhang*¹; Shijo Nagao¹; Tohru Sugahara¹; Emi Yokoi¹; Katsuaki Suganuma¹; ¹The Institute of Scientific and Industrial Research (ISIR) Osaka University

2:45 PM

Reliability of Die Attach Using Ag Nanoporous Sheet for High Temperature Electronics: Min-Su Kim¹; Hiroshi Nishikawa¹; ¹Osaka University

3:05 PM

On the Evolution of the Nanoporous Microstructure of Sintered Ag during Ageing: Wei Mao¹; James Carr²; Loic Signor¹; Carole Nadot-Martin¹; Azdine Nait-Ali¹; Pascal Gadaud¹; Marc Legros³; Xavier Milhet¹; ¹Pprime Institute UPR CNRS 3346; ²The Manchester University; ³CEMES - CNRS

3:25 PM Break

3:45 PM

Electrical Conductivity of Porous Silver Made by Annealing Silver Nanoparticles for Short Periods: Zuruzi Abu Samah¹; Kim Siow²; ¹Institut Teknologi Brunei; ²Universiti Kebangsaan Malaysia

4:05 PM

Development of Interconnection Technology for Double Side Power IC Module: *Zixuan Zhu*¹; C.C. Li¹; L. L. Liao²; M. J. Dai²; C. K. Liu²; C. Robert Kao¹; ¹Department of Materials Science and Engineering, National Taiwan University; ²Electronic and Optoelectronics Research Laboratories, Industrial Technology Research Institute

4:25 PM

Identifying Alternative Formulations for Transient Liquid Phase Bonding: John Holaday¹; Carol Handwerker¹; ¹Purdue University

4:45 PM

Wafer Level Au-Sn TLP Bonding from Eutectic Composition: Serkan Yilmaz¹; Eyup Can Demir¹; Oguzhan Temel¹; Tayfun Akin¹; Eren Kalay¹; METU

Energy Technologies and Carbon Dioxide Management — Session II

Sponsored by:TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Li Li, Cornell University; Donna Guillen, Idaho National Laboratory; Neale Neelameggham, Ind LLC; Lei Zhang, University of Alaska Fairbanks; Jingxi Zhu, Carnegie Mellon University; Nawshad Haque, CSIRO; Dirk Verhulst, Consultant, Extractive Metallurgy; Soumendra Basu, Boston University; Tao Wang, Nucor Steel; Xuan Liu, Carnegie Mellon University

Monday PM Room: 104D

February 15, 2016 Location: Music City Center

Session Chairs: Cong Wang, Northeastern University; Zuotai Zhang, Peking University; Xuan Liu, Carnegie Mellon University

2:00 PM Invited

Heat Recovery from High Temperature Slags: Chemical Methods: Zuotai Zhang¹; Yongqi Sun¹; ¹Peking University

2:30 PM Invited

Development of Fluorine-Free Mold Flux Based on CaO-SiO2-B2O3 Slag System: Lejun Zhou¹; Wanlin Wang¹; ¹Central South University

3:00 PM

Corrosion Fatigue of X46Cr13 in CCS Environment: Anja Pfennig¹; *Marcus Wolf*²; Thomas Böllinghaus²; ¹HTW Berlin; ²BAM Federal Institute of Materials Research and Testing

3:20 PN

Power Generation by Organic Rankine Cycle from Low Temperature Waste Heat of Metallurgical Industry: Xu Zhang¹; Hao Bai¹; Ning Li¹; Xin Zhang²; ¹State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing; ²China International Engineering Consulting Corporation

3:40 PM Break

4:00 PM

Preparation of TI-AL-V Alloys by Aluminothermic Reaction: *Zhijiang Gao*¹; Huimin Lu¹; ¹Beihang University

4:20 PM Invited

Utilization of Copper Smelter Slags by Direct Reduction: Baojing Zhang¹; Dapeng Zhao¹; Xiaodong Zou¹; Cong Wang¹; ¹Northeastern University

4:50 PM

Long Term Prediction of Linz-Donawitz Converter Gas (LDG) in Steel Making Process: Xiancong Zhao¹; Hao Bai¹; Qi Shi¹; Yang Wang¹; Zhancheng Guo¹; ¹State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing

5:10 PM

Coke Modification Using Hydrothermal Oxidation Treatment: *Quanqiang Ma*¹; Huiqing Tang¹; Huanyu Zhang¹; ¹University of Science and Technology Beijing,

5:30 PM

Optimization and Management of Byproduct Gas Distribution in Steel Mills under Time-of-use (TOU) Electricity Price: Xiancong Zhao¹; *Hao Bai*¹; Qi Shi¹; Zhancheng Guo¹; ¹State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention — 3-D Effects of Microstructure on Fatigue Damage

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky; Ashley Spear, University of Utah

Monday PM Room: 213

February 15, 2016 Location: Music City Center

Session Chair: Tongguang (Tony) Zhai, University of Kentucky

2:00 PM Invited

Federation of European Materials Societies (FEMS) International Scholar Presentation: Finite Element Simulations of Short Fatigue Crack Propagation in Three Dimensional Microstructures Obtained by X-ray Tomography: Henry Proudhon¹; Jia Li¹; Erembert Nizery¹; Jean-Yves Buffiere²; Wolfgang Ludwig²; Samuel Forest¹; ¹MINES ParisTech; ²INSA Lyon

2:20 PM Invited

A 3-D Understanding of the Anisotropy in Fatigue Crack Nucleation in an AA7075 T651 Al Alloy Plate: Yan Jin¹; Lin Yang¹; Pei Cai¹; Jiagang Xu¹; Wei Sun¹; Donovan Leonard²; Fuqian Yang¹; Yang-Tse Cheng¹; *Tongguang Zhai*¹; ¹University of Kentucky; ²Oak Ridge National Laboratory

2:40 PM Invited

How to Quantify the Grain Boundary Resistance against Slip Transfer Experimentally by Combination of Geometric and Stress Approach Using Stage-I-fatigue Cracks: *Michael Marx*¹; Florian Schaefer¹; Alain Knorr¹; Christian Motz¹; ¹Saarland University

3.00 PM

3D Characterization of the Propagation of Physically Small Fatigue Cracks in Forged High Strength Steels: Pablo Lorenzino¹; Catherine Verdu¹; *Jean-Yves Buffiere*¹; ¹Universite de Lyon INSA LYON

3:20 PM

Quantitative Effects of Texture and Grain Size on Short Fatigue Crack Growth in High Strength Al Alloys by a 3D Microstructural-based Model: *Pei Cai*¹; Tongguang Zhai¹; Yan Jin¹; Wei Wen²; ¹University of Kentucky; ²Novelis Global Research and Technology Center

3:40 PM Break

4:00 PM Invited

Understanding of Fatigue Crack Formation in Ni Superalloy with Inclusions Using HR-EBSD and HR-DIC: Jun Jiang¹; Jie Yang²; Tiantian Zhang³; Yu Wang⁴; Fionn Dunne³; Ben Britton³; ¹Imperial College London; ²Beijing Institute of Aeronautical Materials; ³Imperial College London; ⁴Beijing Institute of Aeronautical Materials

4:20 PM Invited

TEM Studies of the Evolution of Dislocation Configurations under Cyclic Loading in Al Alloys

: Ramasis Goswami¹; Chandra Pande¹; ¹Naval Research Laboratory

4:40 PM

Fatigue in Titanium: Dislocation Mechanisms, Initiation, Hydrogen and Alpha2: David Dye¹; Trevor Lindley¹; Tamara Chapman¹; Anna Radecka¹; Edward Saunders²; Paul Bagot³; Adrian Walker²; Thomas Martin³; David Rugg²; ¹Imperial College; ²Rolls-Royce; ³Oxford University

5:00 PM

Dislocation Patterns under Cyclic Loading in Multiple Slip: *Shengxu Xia*¹; Anter El-Azab¹; ¹Purdue University

Frontiers in Solidification: An MPMD Symposium in Honor of Michel Rappaz — Microstructure I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wilfried Kurz, Swiss Fed. Inst. of Techn.; Jon Dantzig, EPFL and University of Illnois; Alain Karma, Northeastern University; Jeffrey Hoyt, McMaster University

Monday PM Room: 105A

February 15, 2016 Location: Music City Center

Session Chairs: Ingo Steinbach, Ruhr-University Bochum; Jeffrey Hoyt, McMaster University

2:00 PM Invited

Phase-field Crystal Modeling of Crystal Nucleation Including Homogeneous and Heterogeneous Processes, and Growth Front Nucleation: Laszlo Granasy¹; Frigyes Podmaniczky¹; Gyula Tóth¹; ¹Wigner Research Centre for Physics

2:25 PM Invited

Multiscale Modeling of Columnar to Equiaxed Transition: *Alain Karma*¹; Pierre-Antoine Geslin¹; ¹Northeastern University

2:50 PM Invited

Dendrite Orientation Transitions in Al-Zn Alloys: Jon Dantzig 1 ; 1 Univ of Illinois

3:15 PM Invited

Phase-field Simulations of Dendritic Sidebranching in Three Dimensions: *Mathis Plapp*¹; Alain Karma²; ¹CNRS/Ecole Polytechnique; ²Northeastern University

3:40 PM Break

4:00 PM Invited

Evolution of the Specific Solid-liquid Interface Area in Directional Solidification: *Christoph Beckermann*¹; Hieram Neumann-Heyme²; Kerstin Eckert²; ¹University of Iowa; ²Technical University Dresden

4:25 PM Invited

Study of Solidification Phenomena Using Phase Field Crystal Models: Bernadine Jugdutt¹; Nana Ofori-Opoku¹; Harith Humadi²; Jeffrey Hoyt²; *Nikolas Provatas*¹; ¹McGill University; ²McMaster University

4:50 PM

Multi-scale Experiments and Modeling of Metal Alloy Solidification Dynamics: Amy Clarke¹; Damien Tourret¹; Seth Imhoff¹; John Gibbs¹; Younggil Song²; Alain Karma²; Kamel Fezzaa³; Paul Gibbs¹; Daniel Coughlin¹; John Roehling⁴; Joseph McKeown⁴; Jon Kevin Baldwin¹; ¹Los Alamos National Laboratory; ²Northeastern University; ³Argonne National Laboratory; ⁴Lawrence Livermore National Laboratory

High-Temperature Systems for Energy Conversion and Storage — Recent Advancements in Solid Oxide Fuel Cell Technology I

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Energy Conversion and Storage Committee

Program Organizers: Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Amit Shyam, Oak Ridge National Laboratory; Kyle Brinkman, Clemson University; Paul Ohodnicki, National Energy Technology Laboratory; Jung Pyung Choi, Pacific Northwest National Laboratory

Monday PM Room: 104E

February 15, 2016 Location: Music City Center

Session Chairs: Paul Ohodnicki, NETL; Kathy Lu, Virginia Tech

2:00 PM Introductory Comments

2:05 PM Keynote

Department of Energy Office of Fossil Energy's Solid Oxide Fuel Cells Program: Shailesh Vora¹; ¹U.S. Department of Energy

2:40 PM

A Thermodynamics and Density Functional Theory Based Approach to Design Alloys with Passivating Oxide Layer for Silver-free SOFC Braze Application: *Tridip Das*¹; Quan Zhou¹; Jason Nicholas¹; Thomas Bieler¹; Yue Qi¹; ¹Michigan State University

3:00 PM Invited

Perovskite-type Cathode Materials and Coatings for Solid Oxide Fuel Cells: Kathy Lu¹; Kris Shen¹; ¹Virginia Tech

3:25 PM Break

3:45 PM Invited

Solid Oxide Fuel Cell - Energy Storage Hybrid Devices: Shriram Ramana-than¹; ¹Harvard Univ

4:10 PM Invited

Three-Dimensional Reconstruction of Solid Oxide Fuel Cell Electrodes: *Mark De Guire*¹; Harshil Parikh¹; Naima Hilli¹; Arthur Heuer¹; ¹Case Western Reserve University

4:35 PM

High Temperature Electroceramic Oxide Based Nanomaterial Research and Development for Solid Oxide Fuel Cell and Embedded Sensing Applications: Paul Ohodnicki¹; Kirk Gerdes¹; Shiwoo Lee¹; Harry Abernathy¹; Yueling Fan¹; Yuhua Duan¹; Michael Buric¹; Zsolt Poole¹; ¹National Energy Technology Laboratory

4:55 PM

Spark Plasma Sintering of Ceramic Composites for Solid Oxide Fuel Cell and Hydrogen Separation Applications: *Kyle Brinkman*¹; Siwei Wang¹; Yufei Liu¹; Jian He¹; Fanglin Chen²; ¹Clemson University; ²University of South Carolina

Hume-Rothery Award Symposium: Thermodynamics of Materials — Structure

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Ursula Kattner, National Institute of Standards and Technology; Michael Manley, Oak Ridge National Laboratory

Monday PM Room: 107A

February 15, 2016 Location: Music City Center

Session Chairs: Beatriz Roldan Cuenya, Ruhr University Bochum; Raphael Hermann, Oak Ridge National Laboratory

2:00 PM Invited

Charting the Elastic Properties of Crystalline Inorganic Compounds: Maarten de Jong¹; Wei Chen²; Tom Angsten¹; Anthony Gamst³; Randy Notestine³; Gerbrand Ceder²; Kristin Persson²; Mark Asta¹; ¹University of Cal-

ifornia, Berkeley; ²Lawrence Berkeley National Laboratory; ³University of

California, San Diego

2:30 PM Invited

Elasticity of Metallic Glasses, Crystals, and Glass Forming Liquids: William Johnson¹; ¹California Institute of Technology

3:00 PM Invited

Thermodynamic Properties and Vibrational Dynamics of Pt and Fe Nanoparticles: Size, Shape, Support, and Adsorbate Effects: Beatriz Roldan Cuenya¹; ¹Department of Physics, Ruhr University Bochum

3:30 PM Break

3:50 PM Invited

High-throughput Computational Search for Strengthening Precipitates in Alloys: Chris Wolverton¹; ¹Northwestern University

4:20 PM

First-principles Modelling of Grain Boundary Phase in Nd-Fe-B Permanent Magnet: Ying Chen¹; Arkapol Saengdeejing¹; Masashi Matsuura¹; Satoshi Satoshi Sugimoto¹; ¹Tohoku University

4:40 PM Invited

Hydrides and Hydrogen Pipe Diffusion in Palladium: First Principles, Kinetic Monte Carlo, and Neutron Scattering: Dallas Trinkle¹; Emily Schiavone¹; Brent Heuser¹; ¹University of Illinois, Urbana-Champaign

5.10 PN

Ab-initio Modeling of Quasielastic Neutron Scattering of Hydrogen Pipe Diffusion in Palladium: *Emily Schiavone*¹; Dallas Trinkle¹; ¹University of Illinois at Urbana-Champaign

ICME Infrastructure Development for Accelerated Materials Design: Data Repositories, Informatics, and Computational Tools — Tool Integration

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Carelyn Campbell, National Institute of Standards and Technology; Dongwon Shin, Oak Ridge National Laboratory; Jiadong Gong, QuesTek Innovations; Shengyen Li, National Institute of Standards and Technology; Francesca Tavazza, National Institute of Standards and Technology; Mark Tschopp, Army Research Laboratory

Monday PM Room: 207B

February 15, 2016 Location: Music City Center

Session Chairs: Sheng Yen Li, NIST; Mark Tschopp, U.S. Army Research Laboratory

2:00 PM Keynote

PRISMS: An Integrated Predictive Multi-Scale Capability for the Materials Community: *John Allison*¹; Larry Aagesen¹; Samantha Daly¹; Krishna Garikipati¹; Vikram Gavini¹; Margaret Hedstrom¹; H. Jagadish¹; J. Wayne Jones¹; Emmanuelle Marquis¹; Amit Misra¹; Brian Puchala¹; Shiva Rudraraju¹; Veera Sundararaghavan¹; Sravya Tamma¹; Glenn Tarcea¹; Katsuyo Thornton¹; Anton Van der Ven²; ¹University of Michigan; ²University of California-Santa Barbara

2:40 PM

MIDAS: A Workflow Tool for Improving Materials Strength Modeling: *Jeffrey Florando*¹; Nathan Barton¹; Kevin Durrenberger¹; Peter Norquist¹; Lawrence Livermore National Laboratory

3:00 PM Invited

Towards an ICME Methodology: Current Activities in Europe: Georg Schmitz¹; ¹Access e.V. at the RWTH Aachen

3:30 PM Break

3:50 PM Invited

The Materials Data Facility - Data Services to Advance Materials Science Research: I. Foster¹; R. Ananthakrishnan²; Ben Blaiszik²; K. Chard²; J. Pruyne²; J. Towns³; S. Tuecke¹; ¹University of Chicago; Argonne National Laboratory; ²University of Chicago; ³University of Illinois at Urbana-Champaign (UIUC)

4:20 PM Invited

Materials Data Management and Chaining of Multiprocess Modeling under the Framework of ICME: *Jianzheng Guo*¹; Alain Jacot²; ¹ESI US R&D; ²Calcom ESI SA

4:50 PM

Automated Convergence Checks with the Python Based Workbench Py-Iron: Jan Janssen¹; Tilmann Hickel¹; Joerg Neugebauer¹; ¹Max-Planck-Institut fuer Eisenforschung GmbH

In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques — Mechanical Characterization of Materials at Small Length Scales

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sanjit Bhowmick, Hysitron Inc.; Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Vikas Tomar, Purdue University; Vikram Jayaram, Indian Institute of Science; Benjamin Morrow, Los Alamos National Laboratory; Paul Shade, Air Force Research Laboratory; Weizhong Han, Xi'an Jiaotong University; Arief Budiman, Singapore University of Technology and Design

Monday PM Room: 212

February 15, 2016 Location: Music City Center

Session Chairs: Sanjit Bhowmick, Hysitron, Inc.; Vikram Jayaram, Indian Institute of

Science

2:00 PM Keynote

Indentation: Evolution and Application: *Brian Lawn*¹; ¹National Institute of Standards and Technology

2:40 PM

Hardness Anisotropy of Single Crystal Calcite Indented with Three-sided Indenters: Shefford Baker¹; Joseph Carloni¹; Mathias Werner¹; Miki Kunitake¹; Lara Estroff¹; Sanjit Bhowmick²; Ryan Major³; Ryan Stromberg³; Syed Asif³; Thomas Wyrobek³; ¹Cornell University; ²Hysitron Inc.; ³Hysitron, Inc.

3:00 PM

The Exponent 3/2 Instead of 2 on h for Conical/Pyramidal Indentation: Physical Foundation and Unprecedented Applications: Gerd Kaupp¹; ¹University of Oldenburg

3:20 PM

New Methodology to Accurately Measure the Onset of Yield Point:: Amit Pandey¹; Robert Wheeler²; Amit Shyam¹; Thomas Stoughton³; ¹Oak Ridge National Laboratory; ²MicroTesting Solutions LLC; ³General Motors

3:40 PM Break

4:00 PM Invited

Layer Thickness Effects on the Strength and Deformation Mechanisms of Al/SiC Nanolaminates: Jon Molina-Aldareguia¹; Lingwei Yang¹; Carl Mayer²; Javier Llorca¹; Nikhilesh Chawla²; ¹IMDEA Materials Institute; ²Arizona State University

4:30 PM

Micro-scale Fracture Behavior of Co Based Metallic Glass Thin Films: Nagamani Jaya Balila¹; Mathias Koehler¹; Volker Schnabel²; Dierk Raabe¹; Jochen Schneider²; Christoph Kirchlechner¹; Gerhard Dehm¹; ¹MPIE GmbH; ²RWTH Aachen

4:50 PM

Ascertaining the Role of Microstructure on Fatigue Crack Initiation and Propagation in Rene-88 DT Ni-base Superalloy at Room Temperature: Za-fir Alam¹; David Eastman¹; Thomas Straub²; Jessica Krogstad³; Chris Eberl²; Kevin Hemker¹; ¹Johns Hopkins University; ²Fraunhofer Institute for Mechanics of Materials, Freiburg, Germany; ³University of Illinois Urbana Champaign

5:10 PM

Unveiling 3D Deformations in Carbon Fiber Reinforced Polymer Composites by Coupled micro X-Ray Computed Topography and Volumetric Digital Image Correlation: Brendan Croom¹; Wei-Ming Wang²; Jingjing Li²; Xiaodong Li¹; ¹University of Virginia; ²University of Hawaii at Manoa

Magnesium Technology 2016 — Keynote Session Part II and Primary Production and Recycling

Sponsored by:TMS Light Metals Division, TMS: Magnesium Committee
Program Organizers: Alok Singh, National Institute for Materials Science; Kiran
Solanki, Arizona State University; Michele Manuel, University of Florida; Neale
Neelameggham, Ind LLC

Monday PM Room: 204

February 15, 2016 Location: Music City Center

Session Chairs: Neale R Neelameggham, IND LLC; Dmytro Orlov, Lund University; Kiran Solanki, Arizona State University

2:00 PM Keynote

A Perspective: Potential Growth in the Global Magnesium Industry – Where is our Research Leading Us?: Martyn Alderman¹; ¹Magnesium Elektron

2:40 PM

Study on Mechanism of Magnesia Production by Reversion Reaction Process in Vacuum: Yang Tian¹; ¹Kunming University of Science and Technology

3:00 PM

Thermodynamic Description of Reactions between Mg and CaO: Rainer Schmid-Fetzer¹; Artem Kozlov¹; Björn Wiese²; Chamini Mendis²; Domonkos Tolnai²; Karl Kainer²; Norbert Hort²; ¹Clausthal University of Technology; ²Helmholtz-Zentrum Geesthacht

3:20 PM Break

3:40 PM

Atomic-level Mechanisms of Magnesium Oxidation: Sandra Gardonio¹; Mattia Fanetti¹; *Dmytro Orlov*²; ¹University of Nova Gorica; ²Lund University

4:00 PM Poster Pitches

Material Design Approaches and Experiences IV — Superalloys

Sponsored by:TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Akane Suzuki, GE Global Research; Ji-Cheng Zhao, The Ohio State University; Michael Fahrmann, Haynes International Inc.; Qiang Feng, University of Science and Technology Beijing

Monday PM Room: 208A

February 15, 2016 Location: Music City Center

Session Chairs: David Dye, Imperial College; Sammy Tin, Illinois Institute of Technology

2:00 PM Invited

Precipitate Phase Stability in High Nb Containing Ni-base Superalloys: Sammy Tin¹; 'Illinois Institute of Technology

2:30 PM Invited

Progress in Polycrystalline Co/Ni Superalloys: *David Dye*¹; Matthias Knop¹; T. Lindley¹; Vassili Vorontsov¹; Farah Ismail¹; B. Shollock¹; Mark Hardy²; ¹Imperial College London; ²Rolls-Royce ple

3:00 PN

Stability of Carbides in Advanced Polycrystalline Ni-base Superalloys: Stoichko Antonov¹; Sammy Tin¹; ¹Illinois Institute of Technology

3:20 PM Break

3:40 PM Invited

Development of γ ' Strengthened Co-Base Superalloys - Phase Stability and Applications: $Kiyohito\ Ishida^1$; ¹Tohoku university

4:10 PM

Alloying Effects on Oxidation Mechanisms in Polycrystalline Co-Ni-Al-W-Ta Base Superalloys: Farah Ismail¹; Barbara Shollock²; Trevor Lindley¹; David Dye¹; Mark Hardy³; ¹Imperial College London; ²WMG, University of Warwick; ³Rolls-Royce plc

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Fuels II

Sponsored by:TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Monday PM Room: 101A

February 15, 2016 Location: Music City Center

Session Chair: Jon Carmack, Idaho National Laboratory

2:00 PM

Characterization of High Burnup Structure in LWR Irradiated Urania: Kurt Terrani¹; Philip Edmondsson¹; Chad Parish¹; Tyler Gerczak¹; Charles Baldwin¹; Keith Leonard¹; ¹Oak Ridge National Laboratory

2:20 PM

Migration of Lanthanides in U-Zr Alloy Fuel under a Thermal Gradient: Yeon Soo Kim¹; T. Wiencek¹; E. O'Hare¹; J. Fortner¹; J.S. Cheon²; B.O. Lee²; ¹Argonne National Laboratory; ²KAERI

2:40 PM

TEM Investigation of Phases Formed in Ternary U-Pu-Zr Systems: *Assel Aitkaliyeva*¹; James Madden¹; Cynthia Papesch¹; ¹Idaho National Laboratory

3:00 PM

3D Microstructural Characterization of UO2+x Using High-energy X-rays: *Reeju Pokharel*¹; Donald Brown¹; ¹Los Alamos National Laboratory

3:20 PM

Modeling Solute Segregation during Solidification of U-Mo Alloys: *Matthew Steiner*¹; Elena Garlea²; Sean Agnew¹; ¹University of Virginia; ²Y-12 National Security Complex

3:40 PM Break

4:00 PM

High Resolution Electron Microscopy Examination of Fission Product Precipitates in Triso Coated Particles: Isabella van Rooyen¹; Terry Holesinger²; Haiming Wen¹; ¹Idaho National Laboratory; ²Los Alamos National Laboratory

4:20 PM

Correlation of Fission Product Transport to Grain Boundary Character in Neutron Irradiated Tristructural Isotropic Coated Nuclear Fuel Particles: Haiming Wen¹; Isabella van Rooyen¹; ¹Idaho National Laboratory

4:40 PM

Microstructure Characterization of TRISO Fuels by Atom Probe Tomography: Y. Wu¹; I van Rooyen²; H Wen²; J Burns¹; J Madden²; ¹Boise State University; ²Idaho National Laboratory

5:00 PM

Comprehensive EBSD Analysis of the SiC Layer from AGR-1 and AGR-2 Constituent TRISO Fuel Batches: *Tyler Gerczak*¹; John Hunn¹; ¹Oak Ridge National Laboratory

5:20 PM

Advanced Fuels by Field Assisted Sintering Technology – Fuel Properties Characterization and Accident Tolerance: *Jie Lian*¹; Tiankai Yao¹; ¹Rensselaer Polytechnic Institute

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Structural Materials II

Sponsored by:TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Monday PM Room: 101B

February 15, 2016 Location: Music City Center

Session Chair: Clarissa Yablinsky, Los Alamos National Laboratory

2:00 PM

Grain Orientation Factor and Stress Corrosion Crack Initiation in Neutron-irradiated Austenitic Stainless Steels: Maxim Gussev¹; Kevin Field¹; Jeremy Busby¹; Kale Stephenson²; Gary Was²; ¹Oak Ridge National Laboratory; ²University of Michigan

2:20 PM

Effect of Irradiation on Primary Water Stress Corrosion Cracking Behavior of Alloy 718 Subjected to Different Heat Treatments: Mi Wang¹; Silva Chinthaka²; Miao Song¹; Gary Was¹; ¹University of Michigan; ²Oak Ridge National Laboratory

2:40 PN

Irradiation-induced Microstructure of Precipitate Hardened Nickel Based Alloy: Miao Song¹; Mi Wang¹; David Woodley¹; Zhijie Jiao¹; Gary Was¹; ¹University of Michigan

3:00 PM

In-pile Creep of High Purity SiC and Selected FeCrAl Alloys: *Yutai Katoh*¹; Kurt Terrani¹; Yukinori Yamamoto¹; Lance Snead¹; Torill Karlsen²; ¹Oak Ridge National Laboratory; ²Halden Reactor Project

3:20 PM

A TEM Study of the Effect of Neutron Irradiation on the Microstructure of Fe-Cr Alloys: *Dhriti Bhattacharyya*¹; Yuan Wu²; Joel Davis¹; Robert Harrison¹; Emmanuelle Marquis³; Takuya Yamamoto²; Peter Wells²; Mukesh Bachhav³; G. Robert Odette²; ¹ANSTO; ²University of California, Santa Barbara; ³University of Michigan

3:40 PM Break

4:00 PM

Thermal Desorption Spectroscopy of High Fluence Irradiated Ultrafine and Nanocrystalline Tungsten: Helium Trapping and Desorption Correlated with Morphology: Osman El-Atwani¹; Chase Taylor²; James Frishkoff¹; Mitra Taheri¹; ¹Drexel Unviersity; ²Idaho National Laboratory

4:20 PM

Precipitation in 316 Stainless Steels under Irradiation in Light Water Reactors Condition: Mahmood Mamivand¹; Ying Yang²; Dane Morgan¹; ¹University of Wisconsin-Madison; ²Oak Ridge National Laboratory

4:40 PM

Phase-Specific Nanoindentation of Wear-Resistant Alloys for Nuclear Power Plant Applications: *Peter Anderson*¹; Marc Doran¹; Ryan Smith¹; David Gandy²; Suresh Babu³; ¹The Ohio State University; ²Electric Power Research Institute; ³University of Tennessee

5:00 PM

Design of Radiation Tolerant Materials via Interface Engineering: *Weizhong Han*¹; ¹CAMP-Nano, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University

Mechanical Behavior at the Nanoscale III — Mechanical Behaviors and Defect Dynamics of Nanostructured Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Daniel Gianola, University of California, Santa Barbara; Ting Zhu, Georgia Institute of Technology; Julia Greer, California Institute of Technology; Harold Park, Boston University; Garritt Tucker, Drexel University; Jiangwei Wang, University of Pittsburgh

Monday PM Room: 214

February 15, 2016 Location: Music City Center

Session Chair: Ting Zhu, Georgia Institute of Technology

2:00 PM Invited

Nanodomains in Nickel Enable Simultaneous High Strength and Ductility: "Self-Precipitation Hardening" without Second-Phase Precipitates: Evan Ma¹; ¹Johns Hopkins University

2:40 PM

Deformation Mechanisms and Instabilities in Metallic Multilayer on the Nanoscale: *Stefan Sandfeld*¹; Danial Pourjafar¹; Ruth Schwaiger²; ¹University of Erlangen (FAU); ²Karlsruhe Institute of Technology (KIT)

3:00 PM

The Origins of High Hardening and Low Ductility in Magnesium: Zhaoxuan Wu¹; William Curtin²; ¹Institute of High Performance Computing, A*STAR; ²Ecole Polytechnique Federale de Lausanne

3:20 PM

Transition of Deformation Modes in Hollow Cu-Zr Metallic Glass Nanolattices: Seok-Woo Lee¹; Mehdi Zadeh²; David Chen³; Yong-Wei Zhang²; Julia Greer³; ¹University of Connecticut; ²Institute of High Performance Computing, A*STAR; ³California Institute of Technology

3:40 PM Break

4:00 PM Invited

Microstructural Stability under Wear of Binary Nanocrystalline Alloys with Improved Thermal Stability: Blythe Clark¹; Nicolas Argibay¹; Brad Boyce¹; Timothy Furnish¹; Michael Dugger¹; Michael Chandross¹; Christopher Schuh²; ¹Sandia National Laboratories; ²Massachusetts Institute of Technology

4:40 PM

Investigation of Creep in Nanocrystalline CuTa: B. Hornbuckle¹; Mansa Rajagopalan²; Scott Turnage²; Anthony Roberts¹; Kiran Solanki²; Laszlo Kecskes¹; Kris Darling¹; ¹U.S. Army Research Laboratory; ²Arizona State University

5:00 PM

Mechanical Scaling Behavior of Nanopopous Gold Based on 3D Structural Analysis and Indentation-based Testing: Kaixiong Hu¹; Markus Ziehmer¹; Ke Wang²; Erica Lilleodden¹; ¹Helmholtz-Zentrum Geesthacht; ²Hamburg University of Technology

Metal and Polymer Matrix Composites II — Metal Matrix Nanocomposites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizer: Nikhil Gupta, New York University

Monday PM Room: 110A

February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM Keynote

Effect of Defects on the Intrinsic Strength and Stiffness of Graphene: Nikhil Koratkar¹; ¹Rensselaer Polytechnic Institute

2:40 PM Invited

Super-strong Light Metals by Populous Dispersed Nano-elements: $Xiaochun\ Li^1;\ ^1$ University of California

3:00 PM Invited

Toughening of Aluminum Matrix Nanocomposites via Spatial Arrays of B₄**C Spherical Nanoparticles**: *Lin Jiang*¹; Hanry Yang¹; Joshua Yee¹; Xuan Mo¹; Dalong Zhang¹; Troy Topping²; Enrique Lavernia¹; Julie Schoenung¹; ¹University of California Davis; ²California State University, Sacramento

3:20 PM Invited

Progresses in Light Metal Multiscale Composites by Cryogenic Nanostructuring: Kyu Cho¹; ¹US Army Research Laboratory

3:40 PM Break

4:00 PM Invited

Processing and Properties of Amorphous Alloy Matrix Nanocomposites: Sandip Harimkar¹; ¹Oklahoma State University

4:20 PM Invited

Self-Lubricating Aluminum Matrix Nanocomposites Reinforced by Graphene Nanoplatelets: Meysam Tabandeh-Khorshid¹; Emad Omrani¹; Pradeep Menezes²; Pradeep Rohatgi¹; ¹University of Wisconsin Milwaukee; ²University of Nevada Reno

4:40 PM Invited

Mechanical Properties of Amorphous Metallic Alloys at High Strain Rate: Dung Luong¹; ¹New York University

5:00 PM

Nanoparticle Assisted Processing for Immiscible Alloys: Chezheng Cao¹; Lianyi Chen¹; Jiaquan Xu¹; Weiqing Liu²; Xiaochun Li¹; ¹University of California, Los Angeles; ²Harbin Institute of Technology

5:20 PM

Effect of Nano-particle Addition on Grain Structure Evolution of Friction Stir Processed Al 6061 during Post-weld Annealing: *Junfeng Guo*¹; Bing Yang Lee¹; Zhenglin Du²; Guijun Bi¹; Ming Jen Tan²; Jun Wei¹; ¹Singapore Institute of Manufacturing Technology (SIMTech); ²Nanyang Technological University

Nanostructured Materials for Nuclear Applications — Session II

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Nuclear Materials Committee, TMS: Nanomaterials Committee, TMS: Nanomaterials Behavior Committee

Program Organizers: Cheng Sun, Los Alamos National Laboratory; Michael Demkowicz, Massachusetts Institute of Technology; Amit Misra, University of Michigan; Osman Anderoglu, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories

Monday PM Room: 101C

February 15, 2016 Location: Music City Center

Session Chairs: Osman Anderoglu, Los Alamos National Laboratory; Mikhail Sokolov, Oak Ridge National Laboratory

2:00 PM Invited

The History and Recent Progress in Development of the Advanced ODS 14YWT Ferritic Alloy for Radiation Tolerance: David Hoelzer¹; Kevin Field¹; Kinga Unocic¹; Thak Sang Byun²; Jeoung Han Kim³; Stuart Maloy⁴; ¹Oak Ridge National Laboratory; ²Pacific Northwest National Laboratory; ³Hanbat National Laboratory; ⁴Los Alamos National Laboratory

2:30 PM

Deformation Mechanisms of ODS Nanostructured Ferritic Steels: *Mercedes Hernández-Mayoral*¹; Elvira Oñorbe¹; Marta Serrano¹; ¹CIEMAT

2:50 PN

Nanoscale Strengthening Mechanisms: Comparison of Different Obstacles in Fe: Yury Osetsky¹; Roger Stoller¹; ¹ORNL

3:10 PM

Microstructure and Strengthening Mechanism of Austenitic ODS Steels for High-Temperature Nuclear Applications: *Yinbin Miao*¹; Kun Mo²; Zhangjian Zhou³; Xiang Liu¹; Kuan-Che Lan¹; Guangming Zhang³; Jun-Sang

Park²; Jonathan Almer²; James Stubbins¹; ¹University of Illinois at Urbana-Champaign; ²Argonne National Laboratory; ³University of Science and Technology Beijing

3:30 PM Break

3:50 PM Invited

Processing and Properties of Nanostructured Fe-Cr Alloys: *Thak Sang Byun*¹; David Hoelzer²; Hee Joon Jung¹; Jeoung Han Kim³; Stuart Maloy⁴; ¹Pacific Northwest National Laboratory; ²Oak Ridge National Laboratory; ³Hanbat National University; ⁴Los Alamos National Laboratory

4:20 PM

The Mechanical Properties of a PM2000 Oxide-Dispersion-Strengthened Alloy Tested by High Temperature Nanoindentation Testing: *Ude Hangen*¹; Asta Richter²; Chun-Liang Cheng³; Doug Stauffer¹; ¹Hysitron, INC.; ²University of Applied Sciences Wildau; ³National Dong-Hwa University

4:40 PM

Irradiation Induced Changes to Nano-particles in F/M ODS: *Tianyi Chen*¹; Jonathan Gigax¹; Eda Aydogan¹; Di Chen¹; Xuemei Wang¹; Shigeharu Ukai²; Frank garner³; Lin Shao¹; ¹Texas A&M University; ²Hokkaido University; ³Radiation Effects Consulting

5:00 PM

The Roles of Oxide Interfaces and Grain Boundaries in Helium Management in Nano-structured Ferritic Alloys: A First Principles Study: *Yong Jiang*¹; Litong Yang¹; Jian Xu¹; G. Odette²; Yuan Wu²; Takuya Yamamoto²; Zhangjian Zhou³; Zheng Lu⁴; ¹Central South University; ²University of California, Santa Barbara; ³University of Science and Technology, Beijing; ⁴Northeastern University

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XV—Thermoelectric, Solar-cell, Fuel-cell & Battery Materials

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shih-kang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Cheng University; Jae-Ho Lee, Hongik University; Ikuo Ohnuma, National Institute for Materials Science (NIMS); Chih-Ming Chen, National Chung Hsing University; Yee-Wen Yen, National Taiwan Univ of Science & Tech; Shien Ping Feng, The University of Hong Kong; Clemens Schmetterer, Fraunhofer Institute

Monday PM Room: 109

February 15, 2016 Location: Music City Center

Session Chairs: Shih-kang Lin, National Cheng Kung University; Chih-Ming Chen, National Chung Hsing University

2:00 PM Invited

Interfacial Reactions in the Ni/Ag-Sb and Ni/Ag-Ge Couples: Sinn-wen Chen¹; Ling-chieh Chen¹; Jen-chieh Wang¹; Po-han Lin¹; ¹National Tsing Hua University

2:20 PM

Thermal Stabilities and Properties of AgBis₂ and AgBi₃S₅: a Review and Experimental Study: Fiseha Tesfaye¹; Daniel Lindberg¹; ¹Åbo Akademi University

2:40 PM

Interfacial Reactions between Tin and Ni-coated Bi2Te3: Yu-Chen Tseng¹; Chih-Ming Chen¹; ¹National Chung Hsing University

3:00 PM

Phase Equilibria of Ag–Ga–Te Thermoelectric Materials: *Yen-Te Cho*¹; Hsin-jay Wu¹; ¹Department of materials and Optoelectronic Science, National Sun Yat-Sen University

3:20 PM

Phase Equilibria of Thermoelectric Ag-Bi-Se System: Cheng Hao-Yen¹; ¹National Sun Yat-Sen University

3:40 PM Break

4:00 PM

A Significant Improvement in the Electrocatalytic Stability of N-doped Graphene Nanosheets used as a Counter Electrode for Iodide/triiodide based Dye-sensitized solar cells and [Co(bpy)3]3+/2+ based Porphyrin-sensitized Solar Cells: Zhai Peng¹; Feng Shien-Ping¹; ¹The University of Hong Kong

4:20 PM

Formula Optimization of Titanium Dioxide Paste for Dye-sensitized Solar Cells: Chih Chung Wu¹; Ting Chien Liu¹; Chih Ming Chen¹; ¹National Chung Hsing University

4:40 PM

Ab Initio Mechanistic Study on the Charging/Discharging Behaviors of the Layered-layered Lithium-rich Composite Cathode for Lithium-ion Batteries: *Yu-cheng Chuang*¹; Ping-chun Tsai¹; Shih-kang Lin¹; ¹Department of Materials Science and Engineering, National Cheng Kung University, Taiwan

5:00 PM

Investigation on the Phase Stability of Perovskite in La-Sr-Cr-Fe-O System and Its Long-term Operation: *Hooman Sabarou*¹; Shadi Darvish¹; Yu Zhong¹; ¹Florida International University

Phase Transformations and Microstructural Evolution — Phase Transformations - Fundamentals - Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Monday PM Room: 107B

February 15, 2016 Location: Music City Center

Session Chair: Yunzhi Wang, The Ohio State University

2:00 PM

Homogenization Behavior in the Au-Zn-Al and Al-Ag Systems: Seth Imhoff¹; Amy Clarke¹; Adam Farrow¹; John Gibbs¹; Joel Montalvo¹; Damien Tourret¹; George Havrilla¹; Velma Lopez¹; ¹Los Alamos National Laboratory

2:30 PM

Epsilon to Tau Phase Transformation in MnAl Alloy Systems: Ayse Genc¹; Ozgun Acar¹; *Eren Kalay*¹; ¹METU

2:50 PM

Phase Field Modelling of Emulsion Formation: *Gyula Toth*¹; Bjorn Kvamme¹; ¹University of Bergen

3:10 PM

The Large Scale Synthesis of Aligned Plate Nanostructures: Yang Zhou¹; Philip Nash¹; ¹Illinois Institute of Technology

3:30 PM Break

3:50 PM

Powder Processing of Ultra Ultra High Carbon Steels: *Ibrahim Khalfallah*¹; Alex Aning¹; ¹Virginia Tech

4:10 PM

Production of Corrosion Resistance Steel: Arnab Chatterjee¹; ¹NIT DURGAPUR

4:30 PM

Insights Into the Microstructure and Nucleation of the Zeta Phase in Transition Metal Carbides and Nitrides: *Hang Yu*¹; Thompson Gregory²; Christopher Weinberger¹; ¹Drexel University; ²The University of Alabama

Phase Transformations and Microstructural Evolution — Phase Transformations in Fe-Alloys - Session

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Monday PM Room: 108

February 15, 2016 Location: Music City Center

Session Chair: Amy Clarke, LANL

2:00 PM

Characterization of Transition Carbide Formation in Steels Processed by Quenching and Tempering or Quenching and Partitioning: Daniel Coughlin¹; Amy Clarke¹; Dean Pierce²; Jonathan Poplawsky³; Omer Dogan⁴; Paul Jablonski⁴; Kathy Powers³; Virginia Judge¹; John Speer²; Emmanuel De Moor²; Kester Clarke¹; ¹Los Alamos National Laboratory; ²ASPPRC Colorado School of Mines; ³Oak Ridge National Laboratory; ⁴National Energy Technology Laboratory

2:30 PM

Simulated Welding Heat Affected Zone of a SAF2507 Super-duplex Stainless Steel by Gleeble Simulator: *Lilia Olaya-Luengas*¹; Juan A. Pozo-More-jón²; Ivani S. de Bott¹; ¹PUC-Rio; ²Universidad Central "Marta Abreu" de Las Villas

2:50 PM

Microstructural Evolution and Embrittlement of Thermally Aged Cast Duplex Stainless Steels: Sarah Mburu¹; R. Kolli¹; Samuel Schwarm¹; Daniel Perea²; Jia Liu²; Arielle Eaton²; Sreeramamurthy Ankem¹; ¹University of Maryland; ²Pacific Northwest National Laboratory

3:10 PM

Role of Alloying Elements on Thermal Stability of Duplex Stainless Steel: David Garfinkel¹; Jonathan Poplawsky²; Wei Guo²; George Young³; Julie Tucker¹; ¹Oregon State University; ²Oak Ridge National Laboratory; ³Knolls Atomic Power Laboratory

3:30 PM Break

3:50 PM

The Study of Lead Segregation Behavior of the Heterogeneous Nucleation in Steel: Lu Xiong¹; Hongpo Wang¹; ¹Chongqing University

4:10 PM

The Microstructure of As-Quenched 12Mn Steel: John Morris¹; Christopher Kinney¹; Liang Qi²; Ken Pytlewski¹; Armen Khachaturyan¹; Nack Kim³; ¹University of California Berkeley; ²Univ. of Michigan; ³POSTECH

Phase Transformations in Multi-component Systems: An MPMD Symposium Honoring Gary R. Purdy — Bainite Transformation

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Hatem Zurob, McMaster University, Annika Borgenstam, KTH, Royal Institute of Technology, Tadashi Furuhara, Tohoku University; Wenzheng Zhang, Tsinghua University; Christopher Hutchinson, Monash University; Robert Hackenberg, Los Alamos National Laboratory

Monday PM Room: 110B

February 15, 2016 Location: Music City Center

Session Chairs: John Ägren, KTH, Royal Institute of Technology; Hatem Zurob, Mc-Master University

2:00 PM Invited

Carbon Enrichment in Austenite during Ferrite and Bainite Transformations in Fe-Mn-C Based Alloys: *Goro Miyamoto*¹; Tadashi Furuhara¹; ¹To-hoku University

2:30 PM

Incomplete Bainite Transformation in Fe-0.4C-3Si Alloy: *Huidong Wu*¹; Goro Miyamoto¹; Zhigang Yang²; Chi Zhang²; Tadashi Furuhara¹; ¹Tohoku University; ²Tsinghua University

2:50 PM

Particularities of Kinetics of Austenite Decomposition above and below Martensite-Start Temperature in the Carbide Free Low Alloyed Steel: *Igor Yakubtsov*¹; Gary Purdy²; ¹Integrity Testing Laboratory Inc; ²McMaster University

3:10 PM

On the Feathery Structure of Bainite: *Jiaqing Yin*¹; Annika Borgenstam¹; Mats Hillert¹; ¹KTH Royal Institute of Technology

3:30 PM Break

3:50 PM Invited

Analysis of Mo Effect on the Kinetics of Ferrite and Bainitic Ferrite Formation: Jianing Zhu¹; Zhigang Yang¹; Chi Zhang¹; Congyu Zhang¹; *Hao Chen*¹; ¹Tsinghua University

4·20 PM

Modelling the Condition of Upper and Lower Bainite Formation: *Ze nan Yang*¹; Wei Xu²; Zhi gang Yang¹; Chi Zhang¹; Hao Chen¹; Sybrand van der Zwaag²; ¹School of Materials Science and Engineering, Tsinghua University; ²Faculty of Aerospace Engineering, TU Delft

4:40 PM

Effect of Boron on the Bainitic Transformation Kinetics after Ausforming Process: *Mingxin Huang*¹; Binbin He¹; Wei Xu²; ¹The University of Hong Kong; ²Northeastern University

5:10 PM Panel Discussion

Rare Metal Extraction & Processing Symposium — Rare Earth Elements / Base & Rare Metals II

Sponsored by:TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Shafiq Alam, University of Saskatchewan; Hojong Kim, Penn State University; Neale Neelameggham, Ind LLC; Takanari Ouchi, MIT; Harald Oosterhof, Umicore

Monday PM Room: 106A

February 15, 2016 Location: Music City Center

Session Chairs: Shafiq Alam, University of Saskatchewan; Hojong Kim, The Pennsylvania State University

2:00 PM Keynote

Recovery of Yttrium and Neodymium from Copper Pregnant Leach Solutions by Solvent Extraction: Rebecca Copp¹; Brent Hiskey¹; ¹University of

Arizona

2:35 PM

Calcined Nanocrystaline Layered Double Hydroxides for the Removal of Arsenate and Arsenite: Eman Wahbah¹; *Yousef Mohassab*²; Manoranjan Misra¹; Monalisa Panda¹; ¹University of Utah; ²University of Utah

3:00 PM

Experimental Study on Valuable Metals Dissolution from Copper Slag: Ying Sun¹; Jing Zhang¹; Yanze Wang¹; Qiuju Li¹; ¹Shanghai University

3:25 PM

Adsorption of Platinum and Palladium from Hydrochloric Acid Media by Hydrothermally Treated Garlic Waste Gel: Bo Liang¹; Kai Huang¹; Hongmin Zhu¹; Shafiq Alam¹; ¹University of Science and Technology Beijing

3:50 PM Break

4:10 PM

Pressure Oxidation Leaching of Gold-antimony Alloy: Dou Aichun¹; ¹Jiangsu University, China

Recent Advancement on Stretchable and Wearable Electronics — Session II

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee, TMS: Nanomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Pooran Joshi, ORNL; Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Jiahua Zhu, The University of Akron; Nuggehalli Ravindra, New Jersey Institute of Technology; Catherine Dubourdieu, CNRS - INL; Madan Dubey, US Army Research Lab

Monday PM Room: 205C

February 15, 2016 Location: Music City Center

Session Chairs: Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Kai Xiao, Oak Ridge National Laboratory; Wenchao Zhou, University of Arkansas

2:00 PM Keynote

A New Architecture for Flexible Large-area Electronic Systems: Sigurd Wagner¹; Warren Rieutort-Louis¹; Josue Sanz-Robinson¹; Tiffany Moy¹; Liechao Huang¹; Yingzhe Hu¹; Yasmin Afsar¹; James Sturm¹; Naveen Verma¹; ¹Princeton University

2:30 PM Invited

Materials Integration for Flexible Electronics: Cu-interconnects, Supercapacitors: *Tolga Aytug*¹; Pooran Joshi¹; Matthew Rager¹; ¹Oak Ridge National Laboratory

2:55 PM Invited

Post Processing and In Situ Processing for Low Thermal Budget Integration of Electronic Materials on Flexible Substrates: *Joo Hyon Noh*¹; Pushpa Pudasaini¹; Pooran Joshi²; Philip Rack¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

3:20 PM Invited

RF Devices based on 2D Materials for Flexible and Wearable Electronics: Matthew Chin¹; Alex Mazzoni¹; Pankaj Shah¹; Robert Burke¹; *Madan Dubey*¹; Barbara Nichols¹; ¹U.S. Army Research Laboratory

3:45 PM Break

4:10 PM Invited

Self-sensing Ionic Polymer-metal Composite Soft Robotic Actuator Integrated with Gallium-indium Alloy: Sarah Trabia¹; Viljar Palmre²; Kwang Kim¹; ¹University of Nevada, Las Vegas; ²University of Nevada, Las Vegas; University of Texas, Houston Medical School

4:30 PM

DFT Approach to Electronic and Optical Properties of Foldable and Stretchable Graphene: Yan Chu¹; Yan Liu¹; *Nuggehalli Ravindra*¹; ¹New Jersey Institute of Technology

4:50 PM

Flexible Copper Clad Laminate prepared by Roll-to-Roll Additive Manufacturing: Bing An¹; Xinlin Xie²; Mingzhi Gao²; ¹Huazhong U. of Sci. &

Tech.; ²Zhuhai Richview Electronics Ltd.

5:10 PM

Silver Nanowire Networks for Flexible Electromagnetic Interface Shields: Ece Alpugan¹; Sahin Coskun¹; Arcan Dericioglu¹; *Husnu Unalan*¹; ¹Middle East Technical University

5:30 PM

Wearable Energy Storage Devices from Cotton T-shirts: Zan Gao¹; Ningning Song¹; Yunya Zhang¹; Xiaodong Li¹; ¹University of Virginia

Recent Developments in Biological, Structural and Functional Thin Films and Coatings — Thin Films and Coatings II

Corrosion and Wear Applications

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Thin Films and Interfaces Committee

Program Organizers: Nancy Michael, University of Texas at Arlington; Adele Carradò, IPCMS; Heinz Palkowski, TU Clausthal; Nuggehalli Ravindra, New Jersey Institute of Technology; Chintalapalle Ramana, Univ of Texas at El Paso

Monday PM Room: 206B

February 15, 2016 Location: Music City Center

Session Chairs: Heinz Palkowski, Clausthal Univ of Technology/Institute of Metallurgy; Nancy Michael, Univ of Texas at Arlington

2:00 PM

Residual Stress Characterization of Thermal Spray Coatings: Andrew Robertson¹; Jean-Baptiste Giouse¹; Ken White¹; ¹University of Houston

2:20 PM

Grain Boundary Segregation Effects on Post-Coalescence Thin Film Growth: Tyler Kaub¹; Gregory Thompson¹; ¹University of Alabama

2:40 PN

Influence of Interfacial Structure on the Phase Stability and Growth Stress in Cu/Nb Multilayered Films: *Qianying Guo*¹; Li Wan¹; Richard Martens¹; Gregory Thompson¹; ¹The University of Alabama

3:00 PM

Optimizing Coating Growth by Gas Jet Assisted Physical Vapor Deposition Using Through-process Simulations: *Theron Rodgers*¹; Hengbei Zhao²; Haydn Wadley²; ¹Sandia National Laboratories; ²University of Virginia

3:20 PM Break

3:40 PM

Comparing Two Steel Surface Treatments on the Bonding of Chitosan and the Resulting Corrosion Protection: *Holly Martin*¹; Stephen Cornich¹; Jacob Millerleile¹; Snjezana Balaz²; ¹Department of Chemical Engineering, Youngstown State University; ²Department of Physics and Astronomy, Youngstown State University

4:00 PV

On the Boronizing Response of NiCrMo Alloys in Use for Wear and Corrosive Service: Manuel Marya¹; Virendra Singh¹; ¹Schlumberger Technology Corporation

4:20 PM

The Investigation on the Intermetallic Layer of Hot-dipping Al-10Si Alloy with 22MnB5 and DC51 Substrate: Weidong Hu¹; Wende Dan¹; Wangjun Peng¹; Guangxin Wu¹; Qing Du¹; Jieyu Zhang¹; ¹Shanghai University

4:40 PM

The Wetting Behavior of Fe-Si and Fe-Mn Alloy with Al-10%Si Coating: Wende Dan¹; Guangxin Wu¹; Bo Zhang²; Qing Du¹; Weidong Hu¹; Jieyu Zhang¹; Wangjun Peng¹; ¹Shanghai University; ²Guiyang Institute of Industry Technology

5:00 PM

Thermally-Assisted Interfacial Diffusion in High Phosphorous Nickel Plating on a 4140 Low-alloy Steel: Virendra Singh¹; Manuel Marya¹; Tatiana Ayers¹; ¹Schlumberger

5:20 PM Invited

Harvesting Light from Crystalline-Silicon via Processing Of Stressed Interface with Sol-Gel Based Silica: *Sufian Abedrabbo*¹; Anthony Fiory²; Nuggehalli Ravindra²; ¹The Petroleum Institute; University of Jordan; ²New Jersey Institute of Technology

Refractory Metals 2016 — Deformation of Refractory Metals And

Processing & Properties of Refractory Metal Compounds

Sponsored by:TMS Structural Materials Division, TMS: Refractory Metals Committee Program Organizers: Gary Rozak, HC Starck; Eric Taleff, Univ. Texas; Ivi Smid, Penn State

Monday PM Room: 106B

February 15, 2016 Location: Music City Center

Session Chairs: Ivi Smid, Pennsylvania State University; Kevin Jaansalu, Royal Military College of Canads

2:00 PM

On Plasticity of Polycrystalline Rhenium at Room Temperature: Peter Panfilov¹; Yuri Gornostyrev²; Vitalii Pilyugin³; Alexander Yermakov¹; ¹Ural Federal University; ²Institute of Quantum Materials Science; ³Institute of Metalphysics of the Ural Branch of the RAS

2:20 PM

Thermally Activated Deformation Processes in Body-Centered Cubic Cr – How Microstructure Influences Strain-Rate Sensitivity: Verena Maier¹; Anton Hohenwarter²; Reinhard Pippan¹; Daniel Kiener²; ¹Austrian Academy of Science; ²Montanuniversität Leoben

2:40 PM

Mechanical Properties of Cold-rolled Tungsten at Different Strain Rates: *Qiuming Wei*¹; Laszlo Kecskes²; ¹University of North Carolina at Charlotte; ²US-ARL

3:00 PM

Fracture of Severely Plastically Deformed Niobium and Tantalum: Anton Hohenwarter¹; ¹Department of Materials Physics, Montanuniversität Leoben, Austria

3:20 PM

Stress Accommodation in Plastic Zone Ahead Crack Tip in Iridium: Peter Panfilov¹; Mikhail Gutkin²; Elijah Borodin¹; Elena Lyapunova¹; ¹Ural Federal University; ²Institute of Problems of Mechanical Engineering of the RAS

3:40 PM Break

3:55 PM

High Temperature Properties of Directionally Solidified Nb-rich Nb-Si-Cr Eutectics: Florian Gang¹; Martin Heilmaier¹; ¹Karlsruhe Institute of Technology

4:15 PM

Improving the Performance of Nb-Silicide Based Refractory Alloys through a Novel Cold Crucible Directional Solidification: Hongsheng Ding¹; Kun He¹; Shiqiu Liu¹; Yongwang Kang¹; Jingjie Guo¹; ¹Harbin Institute of Technology

4:35 PM

Microstructure and Properties of a Ternary Eutectic Mo-Si-B Alloy: Georg Hasemann¹; Florian Gang²; Martin Palm³; Iurii Bogomol⁴; Manja Krüger¹; ¹Otto-von-Guericke University Magdeburg; ²Karlsruhe Institute of Technology; ³Max-Planck-Institut für Eisenforschung GmbH; ⁴National Technical University of Ukraine "KPI"

4:55 PM

Size Effect of Intermetallic Compounds on Fracture Toughness of Mo-Si-B Alloys: *Jong Min Byun*¹; Su-Ryong Bang¹; Myung-Jin Suk²; Sung-Tag Oh³; Young Do Kim¹; ¹Hanyang University; ²Kangwon National University; ³Seoul National University of Science and Technology

5:15 PM

Reactive Spark Plasma Sintering of Tungsten Borides Using Elemental Tungsten and Boron Powders: Govind Choudhary¹; Ravi Kumar¹; ¹Indian Institute of Technology (IIT),Madras

REWAS 2016 — Enabling & Understanding Sustainability - Building Materials & Slag Valorization

Sponsored by:

Program Organizers: Randolph Kirchain, Massachusetts Institute of Technology; Bart Blanpain, KU Leuven; Anne Kvithyld, SINTEF; Christina Meskers, Umicore Precious Metals Refining; Elsa Olivetti, Massachusetts Institute of Technology; Jeffrey S. Spangenberger, Argonne National Laboratory; Diran Apelian, Worcester Polytechnic Institute; Brajendra Mishra, Colorado School of Mines; Neale Neelameggham, Ind LLC

Monday PM Room: 104C

February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM

Inorganic Polymers from Metallurgical Slags: High Performance Materials that Offer a Sustainable Alternative: *Yiannis Pontikes*¹; Silviana Onisei¹; Remus Ion Iacobescu¹; Lubica Kriskova¹; Bart Blanpain¹; ¹KU Leuven

2:25 PM

Valorization of Bauxite Residue in a Technologically Realistic, Financially Viable Process: Are We Getting There?: *Yiannis Pontikes*¹; Efthymios Balomenos²; Peter Tom Jones¹; Koen Binnemans¹; ¹KU Leuven; ²NTUA

2:50 PM

Energy Generation from Waste Slags: Beyond Heat Recovery: *Jinichiro Nakano*¹; James Bennett¹; Anna Nakano¹; ¹US Department of Energy National Energy Technology Laboratory

3:15 PM

Production of Lightweight Aggregate and Ceramic Balls by Utilizing Gold Tailing, Red Mud and Limestone: Hyunsik Park¹; Soo-kyung Kim¹; Doyun Shin¹; Jeong-soo Sohn¹; ¹Korea Institute of Geoscience and Mineral Resources

3:40 PM Break

4:00 PM

Accounting for Variation in Life Cycle Inventories: The Case of US Portland Cement Production in the U.S.: Xin Xu¹; Jeremy Gregory¹; Randolph Kirchain¹; ¹Massachusetts Institute of Technology

4:25 PM

Kinetics of Dephosphorization from the Steelmaking Slag by Leaching with C6H8O7-NaOH-HCl Solution: Yong Qiao¹; Jiang Diao¹; Xuan Liu¹; Xiaosa Li¹; Tao Zhang¹; Bing Xie¹; ¹Chongqing University

4:50 PM

Treatment of Molten Steel Slag for Cement Application: *Joao Ferreira Neto*¹; Catia Fredericci¹; Joao Oswaldo Garcia Faria¹; Fabiano Chotoli¹; Tiago Ramos Ribeiro¹; Antonio Malynowskyj¹; Andre Luiz Nunis da Silva¹; Valdecir Angelo Quarcioni¹; Andre Alexandrino Lotto¹; ¹Institute for Technological Research - IPT

5:15 PM

Incorporation of Sewage Sludge into Heavy Clay Ceramic Body: Carlos Maurício Vieira¹; Isabela Areias¹; ¹State University of the North Fluminense

REWAS 2016 — Enabling & Understanding Sustainability - Rare Earth Element Applications

Sponsored by:

Program Organizers: Randolph Kirchain, Massachusetts Institute of Technology; Bart Blanpain, KU Leuven; Anne Kvithyld, SINTEF; Christina Meskers, Umicore Precious Metals Refining; Elsa Olivetti, Massachusetts Institute of Technology; Jeffrey S. Spangenberger, Argonne National Laboratory; Diran Apelian, Worcester Polytechnic Institute; Brajendra Mishra, Colorado School of Mines; Neale Neelameggham, Ind LLC

Monday PM Room: 104B

February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM

Life Cycle Assessment of Rare Earth Production from Monazite: Nawshad Haque¹; Callum Browning¹; Stephen Northey²; Warren Bruckard¹; Mark Cooksey¹; ¹CSIRO; ²Monash University

2:25 PM

Rare Earth Metals Recycling from Spent CFLs and Permanent Magnets: Brajendra Mishra¹; Patrick Eduafo²; Caleb Stanton²; ¹Worcester Polytechnic Institute; ²Colorado School of Mines

2:50 PM

Recovery of Rare Earth Elements from the Ferrous Fraction of Electronic Waste: Lars Klemet Jakobsson¹; Mark Kennedy¹; Gabriella Tranell¹; Ragnhild Aune¹; ¹Norwegian University of Science and Technology

3.15 PM

Fundamental Study of the Rare Earths Recycling Through the Pyrotetallurgical Route - Phase Relations and Crystallization Behavior of the CaO-SiO2-Nd2O3 System: *Thu Hoai Le*¹; Annelies Malfliet¹; Bart Blanpain¹; Muxing Guo¹; ¹KU Leuven

3:40 PM Break

4:00 PM

Mitigating Supply Risk of Critical and Strategic Materials: The Role of Trade Policies: Vasken Xhaxhollari¹; Michele Bustamante¹; Gabrielle Gaustad¹; ¹Rochester Institute of Technology

4:25 PM

Sustainable Processing of Phosphogypsum Waste Stream for the Recovery of Valuable Rare Earth Elements: Mugdha Walawalkar¹; Gisele Azimi¹; Connie Nichol²; ¹University of Toronto; ²Agrium Inc.

4:50 PM

Life Cycle Analysis for Solvent Extraction of Rare Earth Elements from Aqueous Solutions: Ehsan Vahidi¹; Fu Zhao²; ¹Division of Environmental and Ecological Engineering, Purdue University; ²School of Mechanical Engineering, Purdue University

5·15 PM

Characteristics of Light Rare Earths from Korean Coal Power Plants Ash: Ahn Whan¹; Thenepalli Thriveni¹; ¹Korea Institute of Geosciences and Mineral Resources(KIGAM)

Thermodynamic Applications, Optimizations and Simulations in High-Temperature Processes: An EPD Symposium in Honor of Christopher W. Bale's 70th Birthday — Software/Programing

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: In-Ho Jung, McGill University; Arthur Pelton, Ecole Polytechnique; Patrice Chartrand, Ecole Polytechnique; Phillip Mackey, P.J. Mackey Technology; David Robertson, Missouri S&T; P Taskinen, Alto Univ; Malin Selleby, KTH Royal Institute of Technology

Monday PM Room: 106C

February 15, 2016 Location: Music City Center

Session Chairs: David Robertson, Missouri Univ. S&T; Gunnar Eriksson, GTT Technologies

2:00 PM Keynote

FactSage – Past, Present and Future: Christopher Bale¹; ¹Ecole Polytechnoque

2:40 PM

Combining Thermodynamics, Education, and Software—a Neglected but Productive Combination: Art Morris¹; ¹Thermart Software

3:00 PM

CALPHAD, Materials Design, and Materials Genome®: *Zi-Kui Liu*¹; ¹The Pennsylvania State University

3:20 PM

Simulation of the Precipitation Kinetics of Aluminum Alloys and Magnesium Alloys: Fan Zhang¹; Weisheng Cao¹; Chuan Zhang¹; Shuanglin Chen¹; Jun Zhu¹; Rainer Schmid-Fetzer²; ¹CompuTherm; ²Clausthal University of Technology, Institute of Metallurgy

3:40 PM Break

4:00 PM

Paraequilibrium Phase Diagrams: *Arthur Pelton*¹; Pertti Koukkari²; Risto Pajarre²; Gunnar Eriksson³; ¹Ecole Polytechnique; ²VTT Technical Research Centre of Finland; ³GTT-Technologies

4:20 PM

PolySection Projection Phase Diagrams with Applications to Heat Treating: John Morral¹; ¹The Ohio State University

4:40 PM

Calculation of Property Contour Diagrams: Shuanglin Chen¹; Weisheng Cao¹; Fan Zhang¹; Chuan Zhang¹; Jun Zhu¹; ¹CompuTherm, LLC

5:00 PN

Identifying Optimal Conditions for Alloys and Process Design Using the Mesh Adaptive Direct Search Algorithm: Aimen Gheribi¹; *Jean-Phillipe Harvey*²; Patrice Chartand¹; Eve Belisle¹; Chris Bale¹; Arthur Pelton¹; ¹Ecole Polytechnique de Montreal; ²McGill University

Transforming the Diversity Landscape — Taking Action

Sponsored by: TMS: Education Committee

Program Organizers: Natalie Larson, University of California, Santa Barbara; Wennie Wang, University of California, Santa Barbara; David Hwang, University of California, Santa Barbara

Monday PM Room: 104A

February 15, 2016 Location: Music City Center

Session Chairs: Natalie Larson, University of California, Santa Barbara; Wennie Wang, University of California, Santa Barbara; David Hwang, University of California, Santa Barbara

2:00 PM

PEERs: Educating and Empowering Student Change Agents in the University of Washington's College of Engineering: Alexis Nelson¹; ¹University

of Washington

2:20 PM

JSU ADVANCE: Bias Awareness Strategies to Affect University Policies: Thomas Hudson¹; Loretta Moore¹; Janice Lassiter-Mangana¹; ¹Jackson State University

2:40 PM Invited

How to do Diversity at the PhD Level in STEM: Lessons and Tools from the Fisk-Vanderbilt Bridge Program: Keivan Stassun¹; ¹Vanderbilt University

3:20 PM Break

3.40 PM

Panel of Past TMS Presidents: Transforming the Diversity Landscape: Dan Thoma; Robert Shull¹; Brajendra Mishra²; J. Wayne Jones³; *Tresa Pollock*⁴; Diran Apelian⁵; ¹National Institute of Standards and Technology; ²Colorado School of Mines; ³University of Michigan; ⁴University of California, Santa Barbara; ⁵Worcester Polytechnic Institute

Ultrafine Grained Materials IX — Dislocation and Twinning Mechanisms

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Monday PM Room: 209B

February 15, 2016 Location: Music City Center

Session Chairs: Hans Roven, Norwegian University of Science and Technology (NTNU); Qizhen Li, Washington State University

2:00 PM Invited

Synthesis of UFG Nanotwinned Alloys: Andrea Hodge¹; ¹University of Southern California

2:30 PM Invited

Grain-Size Dependent Mechanical Behavior of Nanocrystalline Metals: Marc Meyers¹; Eric Hahn¹; Eduardo Bringa¹; Yzhe Tang¹; ¹UCSD

3:00 PM

Deformation Mechanism of a Strong and Ductile Nanotwinned Steel: *Mingxin Huang*¹; Peng Zhou¹; ¹The University of Hong Kong

3-20 PM

Phase-field Simulations of Microstructure Evolution under Elastic-plastic Deformation in Nanostructured Materials: Shenyang Hu¹; Yulan Li¹; Suveen Mathaudhu²; ¹Pacific Northwest National Laboratory; ²University of California, Riverside

3:40 PM Break

4:00 PM Invited

Understanding Effects of Dislocation Emissions and Crystallographic Textures on Grain-size Dependent Behavior of Nanocrystalline Metals: Caizhi Zhou¹; Rui Yuan¹; Irene Beyerlein²; ¹Missouri University of Science and Technology; ²Los Alamos National Laboratory

4:30 PM

Effects of Stacking Fault Energy on Dislocation Nucleation and Plastic Deformation Mechanisms in fcc Metals: *Valery Borovikov*¹; Mikhail Mendelev¹; Alexander King¹; ¹The Ames Laboratory

4:50 PM

Developing Atomistically-Informed Interface Dislocation Dynamics (AIDD) Simulator: *Jian Wang*¹; Shuai Shao²; Irene Beyerlein²; Amit Misra³; ¹University of Nebraska-Lincoln; ²Los Alamos National Laboratory; ³University of Michigan

5:10 PM

Nanodomains in Nickel Enable Simultaneous High Strength and Ductility: Evan Ma¹; X.L. Wu²; ¹Johns Hopkins University; ²Inst of Mechanics

2016 Functional Nanomaterials: Emerging Nanomaterials and Techniques for 3D Architectures — Fundamental and Unique Techniques to Create 3D Architectures II

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Nanomaterials Committee

Program Organizers: Terry Xu, UNC Charlotte; Nitin Chopra, The University of Alabama; Jung-Kun Lee, University of Pittsburgh; Jiyoung Kim, University of Texas; V. U. Unnikrishnan, The University of Alabama

Tuesday AM Room: 211

February 16, 2016 Location: Music City Center

Session Chairs: Nitin Chorpa, The University of Alabama; Jinwoo Hwang, The Ohio State University

8:30 AM Invited

Effect of Rapid Thermal Annealing vs. Ta Thickness on Anisotropy of Perpendicular Magnetic Tunnel Junctions: Subhadra Gupta¹; Billy Clark¹; ¹University of Alabama

9:00 AM Invited

Three-Dimensional Imaging of Point Defects in Functional Materials Using Quantitative STEM: *Jinwoo Hwang*¹; ¹The Ohio State University

9:30 AM Invited

Invited: Contact Thermal Resistance between Individual Nanostructures: *Deyu Li*¹; ¹Vanderbilt University

10:00 AM

Size-Dependence in Thermo-Mechanical Characterization of Multifunctional Nanocomposite Materials: V. U. Unnikrishnan¹; ¹The University of Alabama

10:20 AM Break

10:40 AM

Synthesizing Self-assembled 3D Materials Using Biomaterial Scaffolds: Venkatanarayana prasad Sandireddy¹; Michael Z Hu²; Soydan Ozcan²; Ramki Kalyanaraman¹; ¹University of Tennessee Knoxville; ²Oak Ridge National Laboratory

11:00 AM

Synthesis of 3D Optical Metamaterials through Directional Solidification of Eutectics: Kaitlin Tyler¹; Julia Kohanek¹; Jinwoo Kim¹; Paul Braun¹; ¹University of Illinois Urbana Champaign

11:20 AM

Fabrication of Tubular Structures with Optimized Nanoporous Sandwich Walls: Theresa Juarez¹; Andrea Hodge¹; ¹University of Southern California

11:40 AM

Self-Assembled Ultra High Strength, Ultra Stiff Mechanical Metamaterials Based on Inverse Opals: Jefferson do Rosário¹; *Erica Lilleodden*²; Martin Waleczek³; Roman Kubrin¹; Alexander Petrov¹; Pavel Dyachenko¹; Julian Sabisch²; Kornelius Nielsch³; Norbert Huber²; Manfred Eich¹; Gerold Schneider¹; ¹Hamburg University of Technology; ²Helmholtz-Zentrum Geesthacht; ³University of Hamburg

12:00 PM

Flip-Chip GaN LEDs Using Photoelectrochemical Liftoff: David Hwang¹; Benjamin Yonkee¹; Burhan Saifaddin¹; Steven DenBaars¹; ¹University of California, Santa Barbara

7th International Symposium on High Temperature Metallurgical Processing — Alloys and Materials Preparation

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Tuesday AM Room: 105B

February 16, 2016 Location: Music City Center

Session Chairs: P. Chris Pistorius, Carnegie Mellon University; Merete Tangstad,

NTNU

8:30 AM Introductory Comments

8:35 AN

Zinc and Refractories – A Nasty Relation: Dean Gregurek¹; Christine Wenzl¹; Alfred Spanring¹; Stefanie Redik¹; ¹RHI AG

8:55 AM

Preliminary Study on Preparation of Al-Sc Master Alloy in Na3AlF6-K3AlF6-AlF3 Melt: Zhongliang Tian¹; Yanqing Lai¹; Kai Zhang¹; Xun Hu¹; Hongliang Zhang¹; Jie Li¹; ¹School of Metallurgy and Environment, Central South Unviersity

9:15 AM

Effect of the Reductants on the Production of Iron Based Alloys from Mill Scale by Metallothermic Process: Mehmet Bugdayci¹; Ahmet Turan²; Murat Alkan³; Onuralp Yucel¹; ¹Istanbul Technical University; ²Yalova University; ³Mineral Reseach& Exploration General Directorate

9:35 AM

Production of FeMn Alloys with Heat Treated Mn-nodules: *Merete Tangs-tad*¹; Eli Ringdalen²; Edmundo Manilla³; Daniel Davila³; ¹NTNU; ²SINTEF; ³Autlan

9:55 AM

Experimental Study on Iron-based Alloy as Cladding Layer—Improving High Temperature Oxidation Resistance of Furnace Alloy: Yanze Wang¹; Chen Chen¹; Xin Hong¹; ¹Shanghai University

10:15 AM Break

10:30 AM

Production of ZrB2-B4C Composite Materials VIA SHS Process: *Kagan Benzesik*¹; Mehmet Bugdayci¹; Ahmet Turan²; Onuralp Yucel¹; ¹Istanbul Technical University; ²Yalova University

10:50 AM

Thermodynamic Analysis and Experiments on Vacuum Separation of Sn-Sb Alloy: *Junjie Xu*¹; Lingxin Kong¹; Bin Yang¹; Yifu Li²; Tao Qu¹; Yongnian Dai²; Kunhua Wu³; Anxiang Wang²; ¹National Engineering Laboratory for Vacuum Metallurgy, China; ²National Engineering Laboratory for Vacuum Metallurgy, China; ³National Engineering Laborator

11:10 AM

Simulation of Solidification Microstructure of 30Cr2Ni4MoV Steel Ingot under Different Intensities of Mechanical Oscillation Condition: ShuangYu Du¹; JieYu Zhang¹; Bo Wang¹; SenYang Qian¹; Jian Zhao¹; ¹Shanghai University

11:30 AM

Preparation and Microstructure of Al-Sc-Zr Alloys Using Electrolysis Method in Cryolite Based Molten Salt: Zengjie Wang¹; Xuemei Xiang²; Yi Qian²; Jilai Xue²; ¹College of Materials Science and Engineering, Beijing University of Technology; ²School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing

11:50 AM

Experimental Study on Effect of Microstructures of Nb-V-Ti Microalloy Slabs on Direct Charging Cracks: Bang Lun Wang¹; Feng Lian Wang¹; Anhui Polytechnic University

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling — Ion Beam Irradiation and In-situ TEM

Sponsored by: TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California Berkeley; Todd Allen, Idaho National Laboratory; Elaine West, Knolls Atomic Power Laboratory

Tuesday AM Room: 101B

February 16, 2016 Location: Music City Center

Session Chair: James Cole, Idaho National Laboratory

8:30 AM Invited

Accelerated Irradiation for Emulation of Radiation Damage in Reactor: *Gary Was*¹; Arthur Motta²; Brian Wirth³; ¹University of Michigan; ²Pennsylvania State University; ³University of Tennessee

9:00 AM

Self-ion Irradiation Induced Dispersoid Instabilities and Dispersiod-defect Interactions in ODS Alloys: *Tianyi Chen*¹; Jonathan Gigax¹; Hyosim Kim¹; Chao-Chen Wei¹; Di Chen¹; Frank Garner²; Lin Shao¹; ¹Texas A&M University; ²Radiation Effects Consulting

9:20 AN

Microstructural and Nanomechanical Characteristics of an Ion-Irradiated Lanthana-Bearing Nanostructured Ferritic Steel: Somayeh Pasebani¹; Ankan Guria¹; Jatuporn Burns²; Yaqiao Wu²; *Indrajit Charit*¹; Darryl Butt²; James Cole³; Lin Shao⁴; Lloyd Price⁴; ¹University of Idaho; ²Boise State University; ³Idaho National Laboratory; ⁴Texas A&M University

9:40 AM

Oxidation of FeCrAl Alloys in Simulated PWR Environments during In-situ Proton Irradiation: Peng Wang¹; Gary S. Was¹; ¹University of Michigan

10:00 AM Break

10:20 AM Invited

Ion Irradiation of Thin Foils: Mechanisms, Modeling, and Prediction of Neutron Damage: Marquis Kirk¹; Meimei Li¹; ¹Argonne National Laboratory

10:50 AM

Ion Irradiation Damage in Ferritic/Martensitic Steel T91: Xiang Liu¹; Yinbin Miao²; David Krumwiede³; Peter Hosemann³; Meimei Li²; Marquis Kirk²; James Stubbins¹; ¹University of Illinois at Urbana Champaign; ²Argonne National Laboratory; ³University of California, Berkeley

11:10 AM

Suppression of Void Nucleation during Self-ion Irradiation by Interaction of Injected Interstitial Effect and Ion Beam Rastering: Frank Garner¹; Jonathan Gigax²; Tianyi Chen²; Eda Aydogan²; Di Chen²; Lin Shao²; ¹Radiation Effects Consulting; ²Texas A&M University

11:30 AN

Utilizing Sandia's In-situ Ion Irradiation TEM to Elucidate Governing Mechanisms in Complex Environments: Brittany Muntifering¹; Sarah Blair¹; Cajer Gong¹; Aaron Dunn¹; Remi Dingreville¹; Janmin Qu²; *Khalid Hattar*¹; Sandia National Laboratories; Northwestern University

11:50 AM

Ion Irradiation Induced Defect Evolution in Ni and Ni-Based FCC Binary Alloys: *Ke Jin*¹; Hongbin Bei¹; Yanwen Zhang¹; ¹Oak Ridge National Laboratory

Additive Forming of Components - Tailoring Specific Material Properties in Low Volume Production — Additive Manufacturing of Ti-Based Alloys

Sponsored by:

Program Organizers: Judith Schneider, University of Alabama at Huntsville; Mark Stoudt, National Institute of Standards and Technology; Kester Clarke, Los Alamos National Laboratory; Lee Semiatin, US Air Force Research Laboratory; Mohsen Asle Zaeem, Missouri University of Science and Technology; Eric Lass, National Institute of Standards and Technology; Paul Mason, Thermo-Calc Software Inc.

Tuesday AM Room: 205B

February 16, 2016 Location: Music City Center

Session Chairs: John Lewandowski, Case Western Reserve University; Edwin

Schwalbach, AFRL

8:30 AM Invited

Tailoring Titanium Alloy Compositions for Optimum Additive Manufacturing: Brian Welk¹; Hamish Fraser¹; ¹The Ohio State University

9:00 AM

Microstructure and Mechanical Properties of a Complex Industrial Component: a Case Study of Electron Beam Melting Additive Manufactured Ti-6Al-4V Impeller: Pan Wang¹; Xipeng Tan²; Mui Ling Sharon Nai³; Shu Beng Tor²; Jun Wei³; ¹Singapore Institute of Manufacturing Technology (SIM-Tech); ²Nanyang Technological University; ³Singapore Institute of Manufacturing Technology (SIMTech)

9:20 AM

Anisotropic Mechanical Properties in a Big-sized Ti-6Al-4V Plate Fabricated by Electron Beam Melting: Pan Wang¹; Mui Ling Sharon Nai²; Xipeng Tan³; Wai Jack Sin²; Shu Beng Tor³; Jun Wei²; ¹Singapore Institute of Manufacturing Technology (SIMTech); ²Singapore Institute of Manufacturing Technology (SIMTech); ³Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University

9:40 AM

Mechanical Anisotropy at High Temperature in Additively Manufactured Ti6Al4V: Leila Ladani¹; Jafar Razmi²; ¹University of Connecticut; ²University of Connecticut

10:00 AM Break

10:20 AM

Microstructure Evolution, Tensile and Dynamic Properties, and Computational Modeling in Ti-6Al-4V and Inconel 718 Alloys Manufactured by Laser Engineered Net Shaping: Yuwei Zhai¹; Diana Lados¹; ¹Worcester Polytechnic Institute, Integrative Materials Design Center

10:40 AM

Optimization of the Mechanical Properties of the Ti-6Al-4V Alloy Fabricated By Additive Manufacturing Using Thermochemical Processes: GUNEY MERT BILGIN¹; Arcan Dericioglu¹; Ziya Esen²; Seniz Reyhan Kushan Akin²; ¹Middle East Technical University; ²Cankaya University

11:00 AM

Effects of Microstructure on the Mechanical Properties of Direct Laser Deposited Ti-6Al-4V: Brian Torries¹; Amanda Sterling¹; Nima Shamsaei¹; Linkan Bian¹; Scott Thompson¹; ¹Mississippi State University

11:20 AM

Fracture, Fatigue and Microstructural Informatics of EBM Ti-6Al-4V: *Mohsen Seifi*¹; Ayman Salem²; Daniel Satko²; Tim Horn³; Ola Harrysson³; Jack Beuth⁴; John Lewandowski¹; ¹Case Western Reserve University; ²Materials Resources LLC; ³North Carolina State University; ⁴Carnegie Mellon University

Additive Manufacturing: Building the Pathway towards Process and Material Qualification — Qualification of Novel Materials

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Powder Materials Committee, TMS: Process Technology and Modeling Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas; Reginald Hamilton, The Pennsylvania State University; Edward Herderick, GE; Rajiv Mishra, University of North Texas; James Sears, GE GRC

Tuesday AM Room: 205A

February 16, 2016 Location: Music City Center

Session Chairs: Ryan Wicker, University of Texas - El Paso; Frank Liou, Missouri University of Science & Tech

8:30 AM Invited

Improved Part Production Using Layerwise Monitoring and Control in Metallic Powder Bed Fusion Additive Manufacturing Processes: Ryan Wicker¹; Jorge Mireles¹; ¹The University of Texas at El Paso

9:00 AM

Selective Laser Melting of TiB2/H13 Steel Bulk Nanocomposites: Influence of Nanoscale Reinforcement: Bandar AlMangour¹; Dariusz Grzesiak²; Jenn-Ming Yang¹; ¹UCLA; ²West Pomeranian University of Technology

9.20 AN

Superelasticity Improvement on SLM Fabricated NiTi Parts: Soheil Saedi¹; Ali Turabi¹; Mohsen Taheri Andani²; Narges Shayesteh Moghaddam²; Mohammad Elahinia²; Haluk Karaca¹; ¹university of kentucky; ²University of Toledo

9:40 AN

Mechanical and Corrosion Properties of CoCrFeNiTi-based High-entropy Alloy Additive Manufactured Using Selective Electron Beam Melting: *Tadashi Fujieda*¹; Hiroshi Shiratori²; Kosuke Kuwabara¹; Mamoru Hirota¹; Takahiko Kato¹; Kenta Yamanaka²; Yuichiro Koizumi²; Akihiko Chiba²; ¹Hitachi, Ltd.; ²Tohoku University

10:00 AM Break

10:20 AM Invited

Model-Based Qualification for Directed Energy Deposition Processes: *Frank Liou*¹; ¹Missouri University of Science and Technology

10:50 AM

Direct Energy Deposition Additive Manufacturing of Magnetic Shape-Memory Alloys: Jakub Toman¹; Yuval Krimer¹; Peter Mullner²; Markus Chmielus¹; ¹University of Pittsburgh; ²Boise State University

11:10 AM

Matrix Grain Refinement in Functionally Graded Ti-6Al-4V/TiB Composite Fabricated by LENS Additive Manufacture: Denver Seely¹; Hongjoo Rhee¹; Mark Horstemeyer¹; ¹Mississippi State University/Center for Advanced Vehicular Systems

11:30 AM

Microstructure and High Temperature Tensile Deformation Behavior of Ni-1.6%Si Metal Manufactured by Laser Metal Deposition: Kee-Ahn Lee¹; Chul-O Kim¹; Soon-Hong Park²; Ji-Hoon Yu³; ¹Andong National University; ²RIST; ³Korea Institute of Materials Science

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session III

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; John Carpenter, Los Alamos National Laboratory; Marko Knezevic, University of New Hampshire; Wolfgang Pantleon, Technical University of Denmark; Thomas Bieler, Michigan State University; Khalid Hattar, Sandia National Laboratories; Irene Beyerlein, Los Alamos National Laboratory

Tuesday AM Room: 103B

February 16, 2016 Location: Music City Center

Session Chairs: Peter Hosemann, University of California Berkeley; María Teresa Pérez Prado, IMDEA Materials Institute

8:30 AM Invited

Characterization of Dislocation and Twinning Activity by EBSD-assisted Trace Analysis: Application to Unravel Grain Size Effects on the Plasticity of Pure Mg Polycrystals: Carmen Cepeda-Jiménez¹; Jon M. Molina-Aldareguia¹; María Teresa Pérez Prado¹; ¹IMDEA Materials Institute

9:00 AM

Investigation of the Temperature Dependence of Mechanical Deformation in a-uranium: Christopher Calhoun¹; Elena Garlea²; Thomas Sisneros³; Ke An⁴; Sean Agnew¹; ¹University of Virginia; ²Y-12 National Security Complex; ³Los Alamos National Laboratory; ⁴Oak Ridge National Laboratory

9:20 AM

Using FFT Simulations to Understand EBSD Twinning Characterization: *M. Arul Kumar*¹; Irene Beyerlein¹; Rodney McCabe¹; Carlos Tome¹; ¹Los Alamos National Lab

9:40 AM

The Effect of Texture on Multi-scale Strain Patterns in Magnesium AZ31 Investigated by In Situ Microscopic Image Correlation: Cahit Aydiner¹; Enver Kapan¹; Sevinc Ucar¹; Nima Shafaghi¹; ¹Bogazici University

10:00 AM Break

10:20 AM Invited

In Situ Deformation Study of Nanotwinned and Single Crystal Cu Implanted with He Using a Novel Implantation Method: Peter Hosemann¹; Zhangjie Wang²; Frances Allen³; Ian Winter¹; Daryl Chrzan¹; Zhiwei Shan²; ¹University of California Berkeley; ²Xi'an Jiaotong University; ³Lawrence Berkeley National Laboratory

10:50 AM

Quantification of Twinning for Sub-Grid Mesoscale Modeling: *Veronica Livescu*¹; Curt Bronkhorst¹; Irene Beyerlein¹; Hashem Mourad¹; Manuel Lovato¹; Olivia Dippo¹; ¹Los Alamos National Laboratory

11:10 AM

Quantitative Analysis of Local Stress Concentration in Nanotwinned Metal during Plastic Deformation: Kui Du¹; Ning Lu¹; Lei Lu¹; Hengqiang Ye¹; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences

11:30 AM

High-resolution Plastic Strain Mapping during Tensile Deformation of a Magnesium Alloy: *Alberto Orozco-Caballero*¹; David Lunt¹; João Quinta da Fonseca¹; ¹The University of Manchester

11:50 AN

Unique Deformation Mechanisms in Mg-Y from In Situ Mechanical Test: Leyun Wang¹; Julian Sabisch²; Erica Lilleodden¹; ¹Helmholtz-Zentrum Geesthacht; ²University of California, Berkeley

12:10 PM

Tensile Deformation of CP Titanium Using In-situ EBSD Analysis and Crystal Plasticity Simulations: *Joo-Hee Kang*¹; Ji Hoon Kim²; Chang-Seok Oh¹; ¹Korea Institute of Materials Science; ²Pusan National University

Advanced Magnetic Materials: An FMD Symposium in Honor of Michael E. McHenry — Soft and Bio Magnetic Materials

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Magnetic Materials Committee

Program Organizers: Raju Ramanujan, Nanyang Technological University; Matthew Willard, Case Western Reserve University; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory

Tuesday AM Room: 209C

February 16, 2016 Location: Music City Center

Session Chairs: Paul Ohodnicki, National Energy Technology Laboratory (NETL) Carnegie Mellon Universisty; E.H. Brück, Delft University of Technology

8:30 AM Invited

Unusual Magneto-Elasticity of Fe-(Co), Ga, (Al, Ge, Si) Alloys: *Manfred Wuttig*¹; ¹University of Maryland

9:00 AM Invited

Synthesis of Fe3O4 Nanostructures and Their Potential Applications: *Jun Ding*¹; ¹National University of Singapore

9:30 AM

Tunable Control of Magnetic Nanofluids: *Raju Ramanujan*¹; Z Wang¹; A Ray¹; V Verma¹; R Wu¹; Z Wang¹; ¹Nanyang Technological University

9:50 AM Break

10:10 AM

The Role of Alloying Elements on the Magnetostriction of Fe: *Nicholas Jones*¹; Gabriela Petculescu²; Marilyn Wun-Fogle¹; James Restorff¹; Arthur Clark³; Kristl Hathaway⁴; Deborah Schlagel⁵; Thomas Lograsso⁵; ¹Naval Surface Warfare Center, Carderock Division; ²University of Lousiana at Lafayette; ³Clark Associates; ⁴Spectrum Technology Group, Inc.; ⁵Ames Laboratory

10:30 AM

Textures of Non-oriented Electrical Steels Processed by Skew Rolling: *Youliang He*¹; Erik Hilinski²; ¹Natural Resources Canada; ²Tempel Steel

10:50 AM

First Order Reversal Curve (FORC) Analysis of Iron-Nickel Zinc Ferrite Nanocomposites: *Anit Giri*¹; S. Lund²; C. Dennis²; ¹TKC Global/US Army Research Laboratory; ²National Institute of Standards and Technology

11:10 AM

FeCo Alloy Mesochains by Co-precipitation: *Dustin Clifford*¹; Carlos Castano¹; Amos Lu¹; Everett Carpenter¹; ¹Virginia Commonwealth University

11:30 AM

Magnetic and Structural Correlation of Ferrite-coated Ferrous Powder Soft Magnetic Composites: *Katie Jo Sunday*¹; Francis Hanejko²; Mitra Taheri¹; ¹Drexel University; ²GKN Hoeganaes

Advanced Materials in Dental and Orthopedic Applications — Session III

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Luis Rocha, UNESP, Univ. Estadual Paulista, Faculdade de Ciências; Grant Crawford, South Dakota School of Mines and Technology; Terry Lowe, Colorado School of Mines; Ana Ribeiro, National Institute of Metrology Quality and Technology; Reginald Hamilton, The Pennsylvania State University

Tuesday AM Room: 206A

February 16, 2016 Location: Music City Center

Session Chairs: Holly J. Martin, Youngstown State University; Ana Ribeiro, Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO

8:30 AM

The Improvement in Fatigue, Biocompatibility and Corrosion Resistance of Low Modulus Beta Titanium Alloy using UNSM & LSP: Rohit Jagtap!;

Vijay Vasudevan¹; Abhishek Telang¹; S. Mannava¹; ¹University of Cincinnati

8:50 AM

Thermal Stability and Structural Characteristics of Metastable Beta-type Ti-Nb Alloys for Implant Applications: *Mariana Calin*¹; Matthias Bönisch¹; Arne Helth¹; Stefan Pilz¹; Annett Gebert¹; Werner Skrotzki²; Lars Giebeler¹; Jürgen Eckert¹; ¹IFW Dresden; ²TU Dresden

9:10 AM

Novel Approach for Manufacturing Technological Based Characterization of Residual Strength Behavior of Ceramic for Dental Applications: Berend Denkena¹; Thilo Grove¹; Lukas Gottwik²; Britta Hering¹; Meinhard Kuntz²; Andi Wippermann¹; ¹Leibniz Universität Hannover; ²CeramTec GmbH

9:30 AM Invited

Titania Nanotube Arrays as Interfaces for Neural Prostheses: Jonathan Sorkin¹; Stephen Hughes¹; Paulo Soares²; *Ketul Popat*¹; ¹Colorado State University; ²Pontifícia Universidade Católica do Paraná

9:55 AM Break

10:10 AM

Structural Characteristics and Mechanical Behavior of Selective Laser Sintered Porous Ti-6Mo Alloy for Biomedical Applications: Fangxia Xie¹; Xueming He¹; Jinghu Yu¹; Yanming Lv¹; Meiping Wu¹; ¹Jiangnan University

10:30 AM

Effect of MMT Nanoparticle Clay on Flexural Properties of Polymer Based BisGMA/TEGDMA Resin: Duclerc Parra¹; Luiza Campos²; Letícia Boaro³; Henrique Ferreira¹; Ademar Lugão¹; Vijaya Rangari⁴; ¹IPEN (Institute of Nuclear and Energy Research, University of São Paulo); ²IPEN (Institute of Nuclear and Energy Research, University of São Paulo); ³University of Santo Amaro; ⁴Tuskegee University

10:50 AM

Tensile Mean Strain Effects on the Fatigue Behavior of Superelastic Nitinol: Benjamin Rutherford¹; M.J. Mahtabi¹; Nima Shamsaei¹; ¹Mississippi State University

11:10 AM

Bioactivity and Mechanical Stability of Ti6Al4V Implant Superplastically Embedded with Hydroxyapatite (HA) in Rats: Hidayah Mohd Khalid[†]; ¹University of Malaya

11:30 AM

Improving the Compatibility of a Veneering Ceramic System Using a New Graded Interlayer Composition: Sheila Passos¹; Bernard Linke¹; Paul Major¹; John Nychka¹; ¹University of Alberta

Alloys and Compounds for Thermoelectric and Solar Cell Applications IV — Session III

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CRISMAT laboratory; Stephane Gorsse, ICMCB-CNRS; Yoshisato Kimura, Tokyo Institute of Technology; Lan Li, Boise State University; CW Nan, Tsinghua University; G. Jeffrey Snyder, Northwestern University; Hsin-jay Wu, National Sun Yat-Sen University

Tuesday AM Room: 103C

February 16, 2016 Location: Music City Center

Session Chairs: Albert Wu, National Central University; Teruyuki Ikeda, Ibaraki University

8:30 AM Invited

Multicomponent Silicides for Thermoelectrics. Why Thermodynamic of Materials is Required? *Jean Claude Tedenac*¹; Philippe Jund²; Alexandre Berche³; ¹ICG; ²University of Montpellier; ³Institut Charles Gerhardt

8:50 AM Invited

Strategies and Approaches for Cost-effective Thermoelectricity: From Materials to Devices: *Lidong Chen*¹; Xun Shi¹; ¹Shanghai Institute of Ceramics, Chinese Academy of Sciences

9:10 AM Invited

Enhancement of Thermoelectric Performance Calcium Cobaltite through Cation Grain Boundary Segregation: *Xueyan Song*¹; Cullen Boyle¹; Paulo Carvillo¹; Yun Chen¹; Ever Barbero¹; Dustin McIntyre²; Paul Barnes³; ¹West Virginia University; ²National Energy Technology Laboratory; ³Army Research Laboratory

9:30 AM Invited

Strategies for Improving the Thermoelectric Performance in Fe2VAl-type Heusler Compounds

: Ernst Bauer¹; Igor Kanpp¹; Ronja Kamelreiter¹; Karina Bulgakova¹; Florain Mussnig¹; Kunnummel¹; Peter Rogl²; Peter Prenninger³; ¹Vienna University of Technology; ²University of Vienna; ³AVL Graz

9:50 AM Invited

Tetrahedrites: A Way for Sustainable Thermoelectrics?: Antonio Pereira Goncalves¹; Elsa Branco Lopes¹; Judith Monnier²; Eric Alleno²; Claude Godart²; Jean-Baptiste Vaney³; Bertrand Lenoir³; ¹Instituto Superior Técnico; ²Institut de Chimie et des Matériaux de Paris Est (ICMPE), UMR 7182 CNRS, CMTR; ³Université de Lorraine

10:10 AM Break

10:30 AM Invited

Ni/(Bi0.25Sb0.75)2Te3 and Ni/Bi2(Se0.1Te0.9) Interfacial Reactions: Sinnwen Chen¹; Ting-ruei Yang¹; Haw-wen Hsiao¹; Hsu-shen Chu²; Jenn-dong Huang²; ¹National Tsing Hua University; ²Industrial Technology Research Institute

10:50 AM Invited

Development of High-performance n-type Bi₂(TeSe)₃ Thermoelectric Alloys by Powder Metallurgical Process: Jing-Feng Li¹; Yu Pan¹; ¹Tsinghua University

11:10 AM Invited

Development of Large Scale Production of p-type Bi2Te3 Alloys with High Performance via Powder Metallurgy Approach: Soon-Jik Hong1; Chulhee Lee1; ¹Kongju National University and Institute for Rare Metals

11:30 AM Invited

Effect of Excess Magnesium on Mg2Sn Based Thermoelectric Materials: Matthew Barnett¹; Rameshkumar Varma¹; Sitarama Kada¹; ¹Deakin University

11:50 AM

Synthesis and Grain Growth Rates of Ti-Ni-Sn Based Thermoelectric Alloys: Jacob Young¹; Haoxing Yang¹; Ramana Reddy¹; ¹The University of Alabama

Alumina & Bauxite — Digestion

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Paul McGlade, GHD

Tuesday AM Room: 203A

February 16, 2016 Location: Music City Center

Session Chair: Benny Raahauge, FLSmidth

8:30 AM Introductory Comments

8:35 AM

Effect of Different Silica Mineral Compositions on the Digestion Results in Bayer Process: *minghui Luo*¹; cao wenzhong¹; Zhang Liping¹; ¹Nanchang University

9:00 AM

Effect of Lime Addition during Digestion on Stability of Digested Liquor of Diasporic Bauxite: Tao Jiang¹; Xiao-lin Pan¹; Haiyan Yu¹; Xianlin Hou¹; Ganfeng Tu¹; Yu Lu¹; Ren Zhang¹; ¹Northeastern University

9:25 AM

Influence Factors of Stirring Speed of Self-stirring Tubular Reactor Used in Bauxite Digestion Process: Zhang Zimu¹; Zhao Qiuyue¹; Zhang Dianhua¹; Zhang Ting'an¹; Liu Yan¹; Lv Guozhi¹; ¹Northeastern University

9:50 AM Break

10:05 AM

Leaching Kinetics for Recovering Alumina from Waste Tricalcium Aluminate Generated after Filtration of Bayer's Liquor: Balakrushna Padhi¹; ¹National Aluminium Company Limited

10:30 AM

Industrial Implementation Characteristics of Aluminates Liquor Low-temperature Desilication Technology: Vadim Lipin¹; ¹Saint Petersburg State Polytechnical University

10:55 AM

Study on the Influence of Chemical Additives during the Digestion of Bauxite: Cao Wenzhong¹; Li Kai¹; Tian Weiwei¹; Zhong Hong²; ¹Nanchang University; ²Central South University

Aluminum Alloys, Processing and Characterization — Corrosion Resistance

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Steven Long, Kaiser Aluminum Corporation

Tuesday AM Room: 201B

February 16, 2016 Location: Music City Center

Session Chair: William Golumbfskie, US Naval Surface Warfare Center

8:30 AM Introductory Comments

8:35 AM Invited

Investigation of Thick Plate Marine Grade Aluminum Alloys: William Golumbfskie¹; Jennifer Gaies¹; Daniel Stiles¹; Richard Link²; ¹Naval Surface Warfare Center, Carderock Division; ²United States Naval Academy

9:00 AM

Influencing Intergranular Corrosion via Surface Treatment: Marcel Rosefort¹; Christiane Matthies¹; Vivian Poll¹; Hubert Koch¹; ¹TRIMET ALUMIN-IUM SE

9:25 AM

Sensitization Effects on Environmentally Assisted Cracking of Al-Mg Alloys: *Mohsen Seifi*¹; Henry Holroyd¹; John Lewandowski¹; ¹Case Western Reserve University

9:50 AM Break

10:05 AM

Sensitization Effects on the Fatigue Crack Growth Behavior of Al-Mg Alloys: *Mohsen Seifi*¹; Hao Jiang¹; Bo Li¹; John Lewandowski¹; ¹Case Western Reserve University

10:30 AM

Mechanical Characterization and Corrosion Testing of X608 Aluminum Alloy: Ramprashad Prabhakaran¹; Jung-Pyung Choi¹; Elizabeth Stephens¹; David Catalini¹; Curt Lavender¹; Aashish Rohatgt¹; ¹Pacific Northwest National Laboratory

10:55 AM

Simultaneous Improvement of Mechanical and Corrosion Properties of Aluminum Alloys: Javier Esquivel¹; Rajeev Gupta¹; ¹The University of Akron

11:20 AM

Observation of Mg Segregation in Aluminum Magnesium Alloys during Cyclic In-situ TEM Heating Experiments: Daniel Scotto D'Antuono¹; Jennifer Gaies²; William Golumbfskie²; Mitra Taheri³; ¹Drexel University; ²Naval Surface Warfare Center, Carderock Division; ³Drexel University

Aluminum Reduction Technology — Environment I

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Stephan Broek, Hatch Ltd

Tuesday AM Room: 202C

February 16, 2016 Location: Music City Center

Session Chair: Bernard Cloutier, Fives Solios

8:30 AM Introductory Comments

8:35 AM

Design, Start-up and Performance of Four Gas Treatment Centers for the Ma'aden Smelter: Jean Baptiste Robin¹; Bernard Cloutier¹; Maied Majrashi²; Rahul K. Pandey²; Bandar M. Al-Zahrani²; Ahmed Y. Al-Taher²; Fabienne Virieux¹; *Jeremy Neveu*¹; ¹Fives Solios; ²Maaden Aluminium

9:00 AM

Management and Performance of the Largest Gas Treatment Centre at EMAL Potline during Major Shutdown of Main Exhaust Fans: Khawla AlMarzooqi¹; Shaikha Al shehhi¹; Vijayakumar Pillai¹; Sunny John Mathew¹; Padmaraj Gunjal¹; Bharat Gadilkar¹; ¹EGA

9:25 AM

Compact GTC Design: Reducing Footprint and Overall Steel Weight: Peter Klut¹; Travis Turco¹; Wouter Ewalts¹; Erik Dupon¹; Edo Engel¹; ¹Danieli Corus

9:50 AM

Technology for Removal of Sulphur Compounds from Gases Generated during Aluminum Production: *Victor Buzunov*¹; Viktor Mann²; Stanislav Belousov¹; John Johnson¹; Vyacheslav Anikin¹; Yury Bogdanov¹; Aleksey Zherdev¹; Sergey Pavlov¹; ¹RUSAL "Engeneering and Technological Center"; ²Global Management B.V.

10:15 AM Break

10:30 AM

Sustainable Practices in Spent Potlining - an Industrial Ecology Approach: Phil Black¹; Bernie Cooper¹; ¹Regain Materials

10:55 AN

The LCL&L Process: A Sustainable Solution for the Treatment and Recycling of Spent Potlining: *Laurent Birry*¹; Simon Leclerc¹; Stephane Poirier¹; ¹Rio Tinto Alcan

11:15 AM

Development, Proof of Concept and Industrial Pilote of the New CHAC Scrubbing Technology: An Innovative Efficient Way to Scrub Sulfur Dioxide: Jean-Nicolas Maltais¹; Cyril Gaudreault¹; Jonathan Bernier¹; Simon Leclerc¹; Josette Ross¹; ¹Rio Tinto Alcan

11:40 AM

Aluminerie de Bécancour Conditioning Tower Replacement: Peter Klut¹; Travis Turco¹; Erik Dupon¹; Edo Engel¹; ¹Danieli Corus BV

Bio Nano Interfaces and Engineering Applications – Bio-Nano Interfaces: Fundamentals

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Po-Yu Chen, National University of Tsing Hua University; Terry Lowe, Colorado School of Mines; John Nychka, University of Alberta; Wen Yang, Swiss Federal Institute of Technology in Zurich (ETHZ)

Tuesday AM Room: 206B

February 16, 2016 Location: Music City Center

Session Chair: Candan Tamerler, UNIVERSITY OF Kansas

8:30 AM Introductory Comments Candan Tamerler, University of Kansas

8:40 AM Invited

Interrogating Bio-Nano Interactions and Enhancing Materials Properties: Rajesh Naik¹; ¹Air Force Research Laboratory

9:20 AM Invited

Recluse Spider's Silk Nanoribbons — a Quasi-2D Protein Material with Outstanding Mechanical and Adhesive Properties: Hannes Schniepp¹; ¹The College of William & Mary

9:50 AM Invited

Bacterial Surface Display for Discovery and Study of Peptide-Directed Material Interfaces

: Dimitra Stratis-Cullum¹; Bryn Adams¹; Margaret Hurley¹; Justin Jahnke²; Deborah Sarkes¹; Hong Dong³; ¹US Army Research Laboratory; ²ORAU Postdoctoral Fellow/US Army Research Laboratory; ³GTS Technical Services, LLC

10:20 AM Break

10:40 AM Invited

Precision Assembly of Biologically Functional Abiotic/Biotic Materials: Carlo Montemagno¹; ¹University of Alberta

11:20 AM Invited

Designer Self-assembling Peptides for Programming the Bio-material Interface: *Larry Unsworth*¹; Kyle Koss¹; ¹University of Alberta/National Institute for Nanotechnology

11:50 AM

Thermodynamic Characterization of Self-Assembled Peptides on Graphite: *Shohei Tsuchiya*¹; Morio Isoda¹; Mehmet Sarikaya²; Yuhei Hayamizu¹; ¹Tokyo Institute of Technology; ²University of Washington

Biological Materials Science Symposium — Biological Materials and Bioinspiration II

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Francois Barthelat, McGill University; Kalpana Katti, North Dakota State University; Paul Allison, University of Alabama; Rajendra Kasinath, DePuy Synthes Products, LLC

Tuesday AM Room: 207A

February 16, 2016 Location: Music City Center

Session Chairs: Paul Allison, University of Alabama; Francois Barthelat, McGill University

8:30 AM

Influence of Interface on the Fracture of Bio-inspired Laminated Composites: Tao Qu¹; Chandra Prakash¹; Vikas Tomar¹; ¹Purdue University

8:50 AM

Bioinspired Composites through Clathrates and Hydrates in Freeze Casting: Steven Naleway¹; Christopher Yu¹; Rachel Hsiong¹; Arijit Sengupta²; Peter Iovine²; John Hildebrand¹; Marc Meyers¹; Joanna McKittrick¹; ¹University of California, San Diego; ²University of San Diego

9:10 AM

3D Printing of Tough Double Network Hydrogel: Junhua Wei¹; *Jingjing Qiu*¹; Jilong Wang¹; Siheng Su¹; ¹Texas Tech University

9:30 AM

Nature's Multiscale Design Strategies and Smart Manufacturing of Engineering Materials: Xiaodong Li¹; ¹University of Virginia

9:50 AM Break

10:10 AM

Architectured Materials in Engineering and in Nature: Francois Barthelat¹; ¹McGill University

10:30 AM Invited

Damage-tolerance in Bio-inspired Hybrid Ceramics Containing a Polymeric or Metallic Compliant Phase: Bernd Gludovatz¹; Valentina Naglieri¹; Hao Bai¹; Xu Deng¹; Ryan Wilkerson²; Amy Wat²; Antoni Tomsia¹; Robert Ritchie²; ¹Lawrence Berkeley National Laboratory; ²University of California Berkeley

11:10 AM

Bio-inspired Phase Transforming Materials for Energy Dissipation: *David Restrepo*¹; Nilesh Mankame²; Pablo Zavattieri¹; ¹Purdue University; ²Smart Materials and Structures, General Motors Global Research & Development

Bladesmithing Symposium 2016 — Session I

Sponsored by: No Sponsors Found!

Program Organizers: Bharat Jasthi, South Dakota School of Mines and Technology; Roxana Ruxanda, Emerson Climate Technologies; Garry Warren, University of Alabama; Michael West, South Dakota School of Mines and Technology

Tuesday AM Room: 104A

February 16, 2016 Location: Music City Center

Session Chair: Garry Warren, University of Alabama

8:30 AM Introductory Comments

8:35 AM Keynote

Connections: Superplasticity, Damascus Steels, Laminates, the Giza Pyramid, and Carbon Dating: Jeffrey Wadsworth¹; ¹Batelle Memorial Institute

9:15 AN

A Study on the Reproduction of Genuine Damascus Steel Blades: Samuel Wagstaff¹; ¹Massachusetts Institute of Technology

9:35 AM

Characterization and Thermomechanical Processing of a Modified Skinner Knife with Modern Pattern Welded Steel: Rachel Guarriello¹; ¹University of Florida

9:55 AM

Simulated Meteoric Blade: Cameron Crowell¹; ¹Virginia Tech

10:15 AM Break

10:30 AM

Making the First Sword: David Sapiro1; 1Carnegie Mellon University

10:50 AM

From Ore to More: Bloom to Blade: Tom Boundy¹; Hunter Sceats¹; ¹Colorado School of Mines

11:10 AV

Metal/Metal Oxide Assisted Forge Welding: William Story¹; ¹University of Alabama

11:30 AM

Heat Treatment Optimization and Fabrication of a 440C Knife: Jacob Gill¹; Caleb Myrhe¹; Ralph Bush¹; ¹USAFA

11:50 AM

Characterization of the Microstructure and Mechanical Properties of AEB-L Stainless Steel through Different Heat Treatments: Sam Karcher¹; ¹Washington State University

Bulk Metallic Glasses XIII — Structures and Characterization

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Tuesday AM Room: 102B

February 16, 2016 Location: Music City Center

Session Chairs: Jan Schroers, Yale University; Judy Cha, Yale University

8:30 AM Invited

Direct Investigation of Crystallization of Metallic Glass Nanostructures Using In Situ TEM: Sung Woo Sohn¹; Yeonwoong Jung¹; Yujun Xie¹; Chinedum Osuji¹; Jan Schroers¹; *Judy Cha*¹; ¹Yale University

8:55 AM Invited

Evidence of Phase Transition in a Supercooled Metallic Liquid: Si Lan¹; Matthew Blodgett²; Ken Kelton²; *Xun-Li Wang*¹; ¹City University of Hong Kong; ²Washington University at St. Louis

9:15 AM

Free-volume Dependent Atomic Dynamics in Beta Relaxation Pronounced La-based Metallic Glasses: Jianzhong Jiang¹; Xiaodong Wang¹; B Ruta²; L.H Xiong¹; D.W Zhang¹; Y Chushkin²; H.W Sheng³; H.B Lou¹; Q.P Cao¹; ¹Zhejiang University; ²ESRF; ³George Mason University

9:35 AM Invited

Atomic-scale Characterization of Shear Bands in Metallic Glasses: Tracer Diffusion, Free Volume and Nanocrystal Development: Gerhard Wilde¹; ¹University of Muenster

9:55 AM Break

10:10 AM

Assessing the Critical Casting Thickness via High-speed Thermography: Fabian Haag¹; Jörg Löffler¹; ¹ETH Zurich

10:30 AM Invited

In Situ Investigation of the Mechanical Behavior of Micronanoscaled Metallic Glasses: Lin Tian¹; Zhiwei Shan¹; ¹Xi'an Jiaotong University

10:50 AM Invited

Evolution of Atomic Distribution during Devitrification of Bulk Metallic Glasses: Sanghita Mridha¹; *Sundeep Mukherjee*¹; ¹University of North Texas

11:10 AM Invited

Microstructure Evolution of a Bulk-metallic-glass Matrix Composite Subjected to Different Deformations: E-Wen Huang¹; Junwei Qiao²; Wen-Jay Lee³; ¹National Chiao Tung University; ²Taiyuan University of Technology; ³National Center for High-Performance Computing

11:30 AM

Nanoscale Size Effects in Crystallization of Metallic Glass Nanorods: Sungwoo Sohn¹; Yeonwoong Jung¹; Yujun Xie¹; Chinedum Osuji¹; Jan Schroers¹; Judy Cha¹; ¹Yale University

11:50 AM

Microstructural Investigation of CuZr-based Metallic Glass

upon Sub-Tg Annealing: *Baran Sarac*¹; Mihai Stoica¹; Jürgen Eckert¹; ¹IFW Dresden

Bulk Metallic Glasses XIII — Structures and Mechanical Properties I

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Tuesday AM Room: 101E

February 16, 2016 Location: Music City Center

Session Chairs: Takeshi Egami, The University of Tennessee; Eric Homer, Brigham Young University

8:30 AM Keynote

Absence of Microscopic Elasticity in BMG and Its Implications: *Takeshi Egami*¹; Yang Tong²; Wojciech Dmowski¹; ¹University of Tennessee; ²City University of Hong Kong

9:00 AM Invited

Tuning Order in Disorder: Evan Ma¹; ¹Johns Hopkins University

9:25 AM Invited

Heterogeneity and Structural Relaxation during Elastic Deformation in Zr-based BMG: Wojciech Dmowski¹; Yang Tong¹; Yoshihiko Yokoyama²; Takeshi Egami³; ¹University of Tennessee; ²Tohoku University; ³ORNL

9:45 AM Invited

Structural Heterogeneity Induced Plasticity in Metallic Glasses: *Yanfei Gao*¹; Hongbin Bei²; ¹Univ of Tennessee; ²Oak Ridge National Laboratory

10:05 AM Break

10:20 AM Invited

Structural Features and Strain Analysis of Plastically Deformed Bulk Metallic Glasses: Jurgen Eckert¹; ¹IFW Dresden

10:40 AM Invited

Effect of Nanocrystallization on Stress Relaxation in Bulk Metallic Glasses: $Alexandru\ Stoica^1$; Dong Ma 1 ; 1ORNL

11:00 AM Invited

Elucidating the Mechanisms of Rate Dependent Deformation: Matthew Harris¹; *Eric Homer*¹; ¹Brigham Young University

11:20 AM

Characteristics of Stress Relaxation Kinetics of La-based Bulk Metallic Glass: Evidence of Experiments and Simulations: *Jichao Qiao*¹; Yun-Jiang Wang²; Jean-Marc Pelletier³; Y. Yao¹; ¹Northwestern Polytechnical University; ²Stake Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences,; ³INSA de Lyon

11:40 AM

Compositional Dependence of Martensitic Transformation in Secondary Phase of BMG Matrix Composites: Wook Ha Ryu¹; Hyun Seok Oh¹; Eun Soo Park¹; 'Seoul National University, Dept of Materials Science & Engrg

Bulk Processing of Nanostructured Powders and Nanopowders by Consolidation — Session III

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Deliang Zhang, Shanghai Jiao Tong University; Bowen Li, Michigan Technological University; Stephen Mashl, Michigan Technological University

Tuesday AM Room: 210

February 16, 2016 Location: Music City Center

Session Chairs: Donghyun Bae, Yonsei University; Yong Liu, Central South University

8:30 AM Keynote

Tri-modal Composites: A Review: *Julie Schoenung*¹; ¹University of California, Davis

9:10 AM Invited

High Strength Mg-Alloys via Powder Metallurgy: Current Results and Future Opportunities: Suveen Mathaudhu¹; ¹University of California Riverside

9:40 AM Invited

Nanocrystalline Ti-Mg Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering: Yong Liu¹; Bin Liu¹; Hong Wu¹; Huiping Tang²; ¹Central South University; ²Northwestern Institute of Nonferrous Metals

10:10 AM Break

10:30 AM Invited

Mechanical Properties of Nano-carbon Reinforced Al-based Composites: Donghyun Bae¹; Seeun Shin¹; ¹Yonsei university

11:00 AM Invited

Effect of Dispersion of Multiwalled Carbon Nanotubes on the Mechanical Properties of Titanium Metal Matrix Composites: Khurram Munir¹; Yuncang Li¹; Yifeng Zheng²; Deliang Zhang²; Cuie Wen¹; ¹RMIT University; ²Shanghai Jiao Tong University

11:30 AM

Precipitation Behavior of UFG Al6063-5vol%SiC Nanocomposites: *Xun Yao*¹; Yifeng Zheng¹; Wei Zeng¹; Jiamiao Liang¹; Deliang Zhang¹; ¹Shanghai Jiao Tong University

11:50 AM

Spark Plasma Sintering (SPS) vs. Hot Isostatic Pressing (HIP) of Nanostructured Aluminum Alloy Powders: *Indranil Roy*¹; Gregoire Jacob¹; Rashmi Bhavsar¹; ¹Schlumberger

Cast Shop Technology: An LMD Symposium in Honor of Wolfgang Schneider — Alloying and Grain Refinement

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee
Program Organizer: Mohamed Hassan, Masdar Institute of Science and Technology

Tuesday AM Room: 202A

February 16, 2016 Location: Music City Center

Session Chair: Pierre Bouchard, STAS INC

8:30 AM Introductory Comments

8:35 AM

Grain Refinement of Self-hardening Aluminum Alloys: Mario Rosso¹; ¹PO-LITECNICO di Torino

9:00 AM

Modification of Eutectic Si and Refinement of Eutectic Grain in Al-Si-Mg Based Alloys by CrB2 and Sr Addition: Jiehua Li¹; Peter Schumacher¹; ¹University of Leoben

9:25 AM

Effect of High Intensity Ultrasonic Treatment on the Microstructure, Corrosion and Mechanical Behaviour of AC7A Aluminium Alloy: Ahmed Abd El Aziz¹; Waleed Khalifa²; Mohamed Ashraf El-Hady El-Hady¹; ¹German University in Cairo; ²Cairo University, Faculty of Engineering

9:50 AM Break

10:05 AM

Mechanism of Zirconium Poisoning Effect on TiB2 Inoculation in Aluminium Alloys: Yun Wang¹; Li Zhou¹; Zhongyun Fan¹; ¹Brunel University

10:30 AM

Study of Manganese Dissolution in Aluminum Melts: *Ghadir Razaz*¹; Torbjörn Carlberg¹; ¹Mid Sweden University

10:55 AM

Ultrasonic Grain Refining of Continuous Cast Aluminum: Microstructure and Properties: *Michael Powell*¹; Kiran Manchiraju¹; Qingyou Han²; ¹Southwire Company; ²Purdue University

CFD Modeling and Simulation in Materials Processing — Casting with External Field Interaction

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Laurentiu Nastac, The University of Alabama; Lifeng Zhang, University of Science and Technology Beijing; Brian Thomas, University of Illinois at Urbana-Champaign; Miaoyong Zhu, Northeastern University; Andreas Ludwig, Montanuniversitaet Leoben, Dep. Metallurgy; Adrian Sabau, Oak Ridge National Laboratory; Koulis Pericleous, University of Greenwich; Hervé Combeau, Institut Jean Lamour

Tuesday AM Room: 207D

February 16, 2016 Location: Music City Center

Session Chair: Koulis Pericleous, University of Greenwich

8:30 AM Invited

A High-Order Acoustic Cavitation Model for the Treatment of a Moving Liquid Metal Volume: Gerard Lebon¹; Iakovos Tzanakis²; Koulis Pericleous¹; Dmitry Eskin²; ¹University of Greenwich; ²Brunel University

8:55 AM

MHD Flow Model for Liquid Metal Batteries: Valdis Bojarevics¹; Andrejs Tucs¹; Koulis Pericleous¹; ¹University of Greenwich

9:15 AM

Numerical Simulation of Fluid Flow and Surface Fluctuation in Continuous Casting Mold with Vertical Electromagnetic Brake: Engang Wang¹; Zhuang Li¹; Fei Li¹; Lin Xu¹; ¹Northeastern University, China

9:35 AM

Robust and Efficient Numerical Methods for the CFD Simulation of Additive Manufacturing and Controlled Melting and Solidification Processes: Brian Weston¹; ¹University of California, Davis

9:55 AM Invited

Progress on Numerical Modeling of the Dispersion of Ceramic Nanoparticles during Ultrasonic Processing and Solidification of Al-based Nanocomposites: Daojie Zhang¹; Laurentiu Nastac¹; ¹The University of Alabama

10:20 AM Break

10:40 AM

Modeling of Macrosegregation Induced by Magnetohydrodynamic Thermosolutal Convection in Electroslag Remelting Ingot: Baokuan Li¹; *Qiang Wang*¹; ¹Northeastern University of China

11:00 AM

Effects of Velocity-Based Packing Criteria on Models of Alloy Solidification with Free Floating Solid: Alex Plotkowski¹; Matthew Krane¹; ¹Purdue University

11:20 AM

Large Eddy Simulations of the Effects of Double-Ruler Electromagnetic Braking and Nozzle Submergence Depth on Molten Steel Flow in a Commercial Continuous Casting Mold: Kai Jin¹; Surya Vanka¹; Brian Thomas¹; Xiaoming Ruan²; ¹University of Illinois at Urbana Champaign; ²Baosteel

11:40 AM

Modelling Unsteady Mould Filling of Single Crystal Turbine Blade Castings: *Vanessa Indrizzi*¹; Duncan Putman²; Nils Warnken¹; ¹University of Birmingham; ²Rolls Royce plc.

Characterization of Minerals, Metals, and Materials — Ferrous

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Tuesday AM Room: 103A

February 16, 2016 Location: Music City Center

Session Chairs: Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D

8:30 AM

Discussion on Coking Wastewater Treatment and Control Measures in Iron and Steel Enterprises: Lei Zhang¹; ¹Wuhan iron and steel company

8:50 AM

Effect of MgO and Basicity on Microstructure and Metallurgical Properties of Iron Ore Sinter: Mingming Zhang¹; Marcelo Andrade¹; ¹ArcelorMittal Global R&D

9:10 AM

Grain Boundary Plane Dependence of Sensitization in Austenitic Stainless Steel: Matthew Hartshorne¹; Mitra Taheri¹; ¹Drexel University

9:30 AM

Material Characterization of Power Plant Steel in the Virgin and Artificially-aged Conditions: Magdy El Rayes¹; Ehab El-Danaf¹; ¹King Saud University

9:50 AM

Mechanical Characterization of Historic Steel Rods: Paolo Matteis¹; Giorgio Scavino¹; *Donato Firrao*¹; ¹Politecnico di Torino - DISAT

10:10 AM Break

10:25 AM

Site-specific Studies on the Interfacial Structures of Galvanized Dual Phase Steels: *Imran Aslam*¹; Bin Li²; Rich Martens³; Johnny Goodwin³; Hongjoo Rhee¹; Mark Horstemeyer¹; Frank Goodwin⁴; ¹Mississippi State University; ²University of Nevada, Reno; ³The University of Alabama; ⁴International Zinc Association

10:45 AM

Microstructure and Hardness Properties of Tool Steel Friction Cladding on Mild Steel Substrate: Venkateswarlu Devuri¹; Nageswararao Palukuri¹; Manas Mahapatra¹; ¹IIT Roorkee

11:05 AM

Metallurgy and Creep Behavior of Type 310S Stainless Steel at High Temperature in Different Atmospheres and Loading Conditions: Coralie Parrens¹; Benoit Malard¹; Jean-Luc Dupain²; Dominique Poquillon¹; ¹CIRIMAT; ²MESSIER-BUGATTI-DOWTY

11:25 AM

Characterization of Humic Acid Modified Bentonite Binder for Iron Ore Pelletization: Yang Sun¹; Bin Xu¹; Yuanbo Zhang¹; Bingbing Liu¹; Youlian Zhou¹; Zijian Su¹; ¹Central South University

11:45 AN

Optimization of Material Properties of High Strength Multiphase Steels via Microstructure and Phase Transformation Adjustment: Annette Baeumer¹; Eva Zimmermann¹; ¹ThyssenKrupp Steel Europe

Computational Materials Engineering for Nuclear Reactor Applications — Reactor Pressure Vessel

Sponsored by:

Program Organizers: Michael Tonks, Idaho National Laboratory; Julie Tucker, Oregon State University; Mark Tschopp, Army Research Laboratory; Richard Williamson, Idaho National Laboratory

Tuesday AM Room: 101D

February 16, 2016 Location: Music City Center

Funding support provided by: The symposium will be co-sponsored by the ICME

committee

Session Chair: To Be Announced

8:30 AM

Predicting the Radiation Dependent Flow Stress and Cleavage Failure in RPV steels using Crystal Plasticity: Pritam Chakraborty¹; Yongfeng Zhang¹; S. Bulent Biner¹; ¹Idaho National Laboratory

8:50 AM

Structural Integrity Analysis of Reactor Pressure Vessel with Lamellar Flaws in Grizzly: *Marie Backman*¹; Benjamin Spencer²; Robert Dodds¹; Brian Wirth¹; ¹University of Tennessee; ²Idaho National Laboratory

9:10 AM

Coupling Radiation Damage from Binary Collision Monte Carlo to Phase Field Microstructure Evolution: Daniel Schwen¹; Yongfeng Zhang¹; ¹Idaho National Laboratory

9:30 AM Invited

First Principles Neural Networks and Diffusion in Nuclear Structural Materials: Par Olsson¹; Luca Messina¹; Christophe Domain²; Nicolas Castin³; Giulio Imbalzano¹; ¹KTH Royal Institute of Technology; ²EDF R&D; ³SCK CEN

10:10 AM Break

10:30 AM

Enhanced Helium Clustering Process in Iron: *Zuya Huang*¹; Brian Wirth¹; Xunxiang Hu²; Mary Cusentino¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

10:50 AM

Cluster Dynamics Modeling of Damage Evolution in Iron Chrome Alloys: Aaron Kohnert¹; Brian Wirth¹; ¹University of Tennessee

11:10 AM

Microstructure-explicit Rate Theory Modeling of Point Defect Transport during Irradiation Damage: Jesse Carter¹; Jared Tannenbaum¹; Richard Smith¹: ¹Bettis Atomic Power Laboratory

Computational Methods for Spatio-temporal Scale-bridging: from Atomistics to Mesoscale — Bridging Physics

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Danny Perez, Los Alamos National Laboratory; Dallas Trinkle, University of Illinois, Urbana-Champaign; Maryam Ghazisaeidi, Ohio State University; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Tuesday AM Room: 209A

February 16, 2016 Location: Music City Center

Session Chairs: Gang Lu, California State University Northridge; Dallas Trinkle, University of Illinois at Urbana-Champaign

8:30 AM Invited

Large-scale Real-space Electronic Structure Calculations: Vikram Gavini¹; Phani Motamarri¹; ¹University of Michigan

9:00 AN

Density-functional Embedding Theory: An Effective Way to Perform Multi-scale Quantum Mechanics Simulations of Materials: Chen Huang¹;

Emily Carter²; Michele Pavone³; ¹Florida State University; ²Princeton University; ³University of Naples Federico II

9:20 AM Invited

Multiscale Quantum/Atomistic Coupling Using Constrained Density Functional Theory: Xu Zhang¹; W. A. Curtin²; Gang Lu¹; ¹California State University Northridge; ²Ecole Polytechnique Federale de Lausanne

9:50 AM

Understanding Hydrophobicity Trends in Mixed F/H Terminated C(111) Surfaces through DFT and Classical Point-Charge Force Fields: Leonhard Mayrhofer¹; Gianpietro Moras¹; N Mulakuri¹; Michael Moseler¹; Paul Stevens²; *Srinivasan Rajagopalan*²; ¹Fraunhofer IWM; ²ExxonMobil Research and Engineering Company

10:10 AM Break

10:30 AM

Quantum Dynamics of Atomic Motion in Beryllium: *Rodrigo Freitas*¹; Mark Asta²; Vasily Bulatov³; ¹University of California, Berkeley and Lawrence Livermore National Laboratory; ²University of California, Berkeley; ³Lawrence Livermore National Laboratory

10:50 AM

Embedding a Microstructure Model in a Macro-scale Solidification Model: John Gibbs¹; Seth Imhoff¹; Damien Tourret¹; Neil Carlson¹; Amy Clarke¹; ¹Los Alamos National Laboratory

11:10 AM

Generating Reactive Force Fields: From Universal but Challenging to Special but Simple: Bernd Hartke¹; ¹Institute for Physical Chemistry, Christian-Albrechts-University

Computational Methods for Uncertainty Quantification, Model Validation, and Stochastic Predictions — Uncertainties and Validation from Atoms to Aircrafts (Joint Session with theICME Infrastructure Development for Accelerated Materials Design symposium)

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Francesca Tavazza, National Institute of Standards and Technology; Richard Hennig, University of Florida; Mark Tschopp, Army Research Laboratory; Li Ma, NIST

Tuesday AM Room: 207C

February 16, 2016 Location: Music City Center

Session Chairs: Carelyn Campbell, NIST; Francesca Tavazza, NIST

8:30 AM Invited

Density Functional Theory and Prediction of Energy Storage Materials Properties: $Kristin\ Persson^1$; $^1UC\ Berkeley$

9:10 AM Invited

Multiscale Modeling of with Quantified Uncertainties and Cloud Computing: Towards Computational Materials Design: Alejandro Strachan¹; ¹Purdue University

9:50 AM Question and Answer Period

10:00 AM Break

10:20 AM Invited

Materials and Data Development for Airframes: Ryan Glamm¹; Andrew Baker¹; Erik Sapper¹; James Cotton¹; ¹Boeing Research and Technology

11:00 AM Invited

Citrination: Open Infrastructure for Ingesting, Storing, and Mining Materials Data: Bryce Meredig¹; ¹Citrine Informatics

Computational Thermodynamics and Kinetics — Phase Field

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Chemistry and Physics of Materials Committee Program Organizers: Dane Morgan, University of Wisconsin - Madison; Shawn Coleman, U.S. Army Research Laboratory; Xiang-Yang Liu, Los Alamos National Lab; Chris Wolverton, Northwestern University

Tuesday AM Room: 208B

February 16, 2016 Location: Music City Center

Session Chairs: Long Qing Chen, Penn State University; Katsuyo Thornton, University of Michigan

8:30 AM Invited

General Method for Incorporating CALPHAD Free Energies of Mixing into Phase Field Models: Application to the a-Zirconium/d-Hydride System: Andrea Jokisaari¹; *Katsuyo Thornton*¹; ¹University of Michigan

9:00 AM Invited

A Verified Phase Field Method for Phase Transformations in Ni-Al-Cr alloys

: S. Poulsen¹; Peter Voorhees¹; ¹Northwestern University

9:30 AV

A Phase-field Study of Cascading Widmanstätten-ferrite Plates: Avisor Bhattacharya¹; Kumar Ankit²; Britta Nestler²; ¹Institute of Materials and Processes, Karlsruhe University of Applied Sciences; ²Institute of Applied Materials, Karlsruhe Institute of Technology (KIT)

9:50 AM

Phase Field Modeling of Oxide Growth: Quentin Sherman¹; Peter Voorhees¹;
¹Northwestern University

10:10 AM Break

10:30 AM Invited

Linear and Nonlinear Responses of Microstructures and Microstructure Evolution under Highly Nonequilibrium Conditions: Long Qing Chen¹; ¹Penn State University

11:00 AM

A Phase-Field Model for Simulating Microstructure Development during Physical Vapor Deposition of Isotropic Multiphase Polycrystalline Thin Film Systems: James Stewart¹; Douglas Spearot¹; ¹The University of Arkansas

11:20 AM

Phase Field Simulation for the Cementite Shape's Effect on the Cementite Spheroidization: *Kohtake Takahiko*¹; Hideaki Sawada¹; Kazuto Kawakami¹; ¹Nippon Steel & Sumitomo Metal Corporation

Electrode Technology — Joint Session with Aluminum Reduction

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Angelique Adams, Alcoa Inc

Tuesday AM Room: 202B

February 16, 2016 Location: Music City Center

Session Chair: Mark Dorreen, Light Metals Research Centre, The University of

8:30 AM Introductory Comments

8:40 AM

Cathode Wear in Electrowinning of Aluminum Investigated by a Laboratory Test Cell: *Zhaohui Wang*¹; Saeid Nobakhtghalati²; Asbjørn Solheim¹; Kati Tschöpe³; Arne Petter Ratvik¹; Tor Grande²; Anne Støre¹; ¹SINTEF Materials and Chemistry; ²Norwegian University of Science and Technology; ³Hydro Aluminium AS

9:05 AM

Copper Bars for the Hall-Héroult Process: René von Kaenel¹; Louis Bugnion¹; Jacques Antille¹; Laure von Kaenel¹; ¹KAN-NAK SA

9:30 AM

Porous Carbon Anodes for the Supply of Methane during Electrowinning of Aluminium: Babak Khalaghi¹; Geir Martin Haarberg¹; ¹Norwegian University of Science and Technology (NTNU)

9:55 AM

Uneven Cathode Wear in Aluminium Reduction Cells: *Tao Li*¹, Stein Tore Johansen²; Asbjørn Solheim²; ¹Norwegian University of Science and Technology, SINTEF Materials and Chemistry; ²SINTEF Materials and Chemistry

10:20 AM Break

10:35 AM

Creep Behavior and Change of Porous Structure of Graphite Cathode Material in NaF-AlF3-Al2O3 Melt under External Pressure: *Qiwei Tan*¹; Jilai Xue¹; Jing Sun¹; Jun Zhu¹; ¹University of Science and Technology Beijing

11:00 AM

Modeling Gravity Wave in 3D with OpenFoam in an Aluminum Reduction Cell with Regular and Irregular Cathode Surfaces: *Marc Dupuis*¹; Michaël Pagé²; ¹GéniSim Inc; ²Simu-K inc.

11:25 AM

Effect of Cathode Collector Copper Inserts on the Hall-Héroult Cell MHD Stability: Valdis Bojarevics¹; ¹University of Greenwich

Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology — Mechanical Behaviors; Composite Materials for Packaging

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Albert T. Wu, National Central University; Yan Li, Intel; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Tuesday AM Room: 201A

February 16, 2016 Location: Music City Center

Session Chairs: Nogita Kazuhiro, The University of Queensland; Sergey Belyakov, Imperial College London

8:30 AM Invited

FCBGA Mechanical Shock Performance Enhancement at Elevated Temperature Using Edgebond Material: Tae-Kyu Lee¹; ¹Cisco Systems

8:55 AM

Failure Morphology of Lead-free Sn-3.0Ag-0.5Cu Solder Joint under Low-G Drop Impact: *Jian Gu*¹; Yongping Lei¹; Jian Lin¹; Hanguang Fu¹; Zhongwei Wu¹; ¹Beijing University of Technology

9:15 AM

Microstructural Improvements of SAC Alloys with Bi Additions during Accelerated Thermal Cycling: Eva Kosiba¹; Polina Snugovsky¹; John Mc-Mahon¹; Doug Perovic²; ¹Celestica; ²University of Toronto

9:35 AM

Effects of Composition and Assembly Processes on the Microstructure and Reliability of Various Lead Free Solder Alloys: Babak Arfaei¹; Francis Mutuku²; Eric Cotts²; ¹Universal Instruments Co.; ²Binghamton University

9:55 AM Break

10:15 AM

High Temperature Tensile Creep Behavior in Eutectic AuSn Solder: Rupalee Mulay¹; John Elmer¹; ¹Lawrence Livermore National Laboratory

10:35 AN

Properties of a Cu-Ni / Sn-Alloy Powder Composite for Use as a High Temperature Lead-Free Solder: Stephanie Choquette¹; Iver Anderson¹; ¹Ames Lab

10:55 AM

Fabrication and Electrical Characterization of Hybrid CNT/Copper Composite Material: *Ibrahim Awad*¹; Leila Ladani¹; ¹University of Connecticut

Energy Technologies and Carbon Dioxide Management — Session III

Sponsored by:TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Li Li, Cornell University; Donna Guillen, Idaho National Laboratory; Neale Neelameggham, Ind LLC; Lei Zhang, University of Alaska Fairbanks; Jingxi Zhu, Carnegie Mellon University; Nawshad Haque, CSIRO; Dirk Verhulst, Consultant, Extractive Metallurgy; Soumendra Basu, Boston University; Tao Wang, Nucor Steel; Xuan Liu, Carnegie Mellon University

Tuesday AM Room: 104D

February 16, 2016 Location: Music City Center

Session Chairs: Li Li, Cornell University; Lei Zhang, University of Alaska Fairbanks; Ziqi Sun , Queensland University of Technology

8:30 AM Invited

Chemical Design of High-performance Metal Oxide Photoelectrodes for Solar Energy Conversion: Ziqi Sun¹; ¹Queensland University of Technology

9:10 AM Keynote

Polar Surface Domains in Non-polar Materials: Bismuth Vanadate and Strontium Titanate: *Gregory Rohrer*¹; ¹Carnegie Mellon University

10:10 AM Break

10:30 AM

Surface Segregation in SOFC Cathode Materials: Soumendra Basu¹; Yang Yu¹; Jacob Davis¹; Deniz Cetin¹; Heng Luo¹; Karl Ludwig¹; Uday Pal¹; Xi Lin¹; Srikanth Gopalan¹; ¹Boston University

10:50 AM Invited

Nanostructured and Nanocomposite Material Enabled Optical Sensors for Chemical Sensing in CO2 Sequestration and Other Geological Harsh Environment Applications: *Paul Ohodnicki*¹; Thomas Brown¹; Congjun Wang¹; ¹National Energy Technology Laboratory

11:30 AM

Preparation and Characterization of Stearic Acid/SiO2 Nano-encapsulated Phase Change Materials via Sol-gel Method: Huanmei Yuan¹; *Hao Bai*¹; Yuanyuan Wang¹; ¹State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing

11:50 AN

P Doped Highly Promoted Nanoconfined MgH₂ Desorption Thermodynamic Properties, Released Hydrogen at Room Temperature: Daliang He¹; Chengzhang Wu¹; Yulong Wang¹; Weizhong Ding¹; ¹Shanghai University

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention — Microstructure-Properties-Fatigue Relationships

Sponsored by TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky; Ashley Spear, University of Utah

Tuesday AM Room: 213

February 16, 2016 Location: Music City Center

Session Chair: Antonios Kontsos, Drexel University

8:30 AM Keynote

Multi-Scale Crystal Plasticity FE Models for Predicting Fatigue in Polycrystalline Metals and Alloys: Somnath Ghosh¹; Deniz Ozturk¹; Ahmad Shaba¹; ¹Johns Hopkins University

9:10 AM Invited

Ni Base Microstructure Modeling and Its Applications in Fatigue: Shakhrukh Ismonov¹; Adrian Loghin¹; ¹GE GRC

9:30 AM

Evaluation of Fatigue Crack Initiation Mechanism and Its Driving Forces in a Polycrystalline Nickel-base Superalloy Using Experiments and Computations (Note: This presentation will also appear in the poster session.): Saikumar Reddy Yeratapally¹; Michael Sangid²; Geoffrey Bomarito³; Jacob Hochhalter³; ¹National Institute of Aerospace; ²Purdue University; ³National Aeronautics and Space Administration

9:50 AM

Multiaxial Thermo-Mechanical Loading at High Temperature on a Nibased Single Crystal Superalloy: *Jean-Briac le Graverend*¹; Vincent Bonnand²; Jonathan Cormier³; Didier Pacou²; Jose Mendez³; ¹Texas A&M University; ²ONERA; ³Institut P'/ISAE-ENSMA

10:10 AM Break

10:30 AM Invited

Using Ultrasonic Fatigue to Investigate Crack Initiation and Short Crack Growth in the Very High Cycle Fatigue (VHCF) Regime

: J. Wayne Jones¹; John Allison¹; ¹University of Michigan

10:50 AM Invited

From Strain Localization to Fatigue Damage: Critical Experimental Data to Assess the Effect of the Microstructure: *J.C. Stinville*¹; M.P. Echlin¹; W.C. Lenthe¹; T.M. Pollock¹; ¹University of California Santa Barbara

11:10 AM Invited

Design of Cold-Spray 6061 Aluminum Alloys for Fatigue Crack Growth Resistance in Structural Components, Coatings, and Repairs: Anastasios Gavras¹; Diana A. Lados²; Victor Champagne³; ¹Riley Power Inc.; ²Worcester Polytechnic Institute; ³US Army Research Laboratory

11.30 AM

Rapid Evaluation of Titanium Microstructures for Fatigue Resistance through Computationally Efficient Localization Approaches: Noah Paulson¹; Matthew Priddy¹; Surya Kalidindi¹; David McDowell¹; ¹Georgia Institute of Technology

Frontiers in Solidification: An MPMD Symposium in Honor of Michel Rappaz — Microstructure II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wilfried Kurz, Swiss Fed. Inst. of Techn.; Jon Dantzig, EPFL and University of Illnois; Alain Karma, Northeastern University; Jeffrey Hoyt, McMaster University

Tuesday AM Room: 105A

February 16, 2016 Location: Music City Center

Session Chairs: Christoph Beckermann, University of Iowa; Bernard Billia, CNRS

8:30 AM Invited

Divorced Eutectic Solidification of Mg-Al Alloys: *Ingo Steinbach*¹; Alexander Monas¹; Se-Jong Kim²; Chang Dong Yim²; Joo-Hee Kang²; ¹Ruhr-University; ²KIMS

8:55 AM Invited

Complex Dynamics of Multiphase Solidification Front Patterns in Ternary Eutectic Alloys: Silvere Akamatsu¹; Sabine Bottin-Rousseau²; Gabriel Faivre³; ¹CNRS - UPMC; ²INSP; ³UPMC

9:20 AM

Dynamics of Locked Eutectics in Thin Samples and Phase Orientation Relationships: Sabine Bottin-Rousseau¹; Gabriel Faivre¹; Silvère Akamatsu¹; INSP

9:40 AM Invited

Solidification in 4D: A.V. Shahani¹; John Gibbs²; A. Mohan³; B. Gulsoy¹; C. Bouman³; M. DeGraef⁴; *Peter Voorhees*¹; ¹Northwestern University; ²Los Al-

amos National Laboratory; ³Purdue University; ⁴Carnegie Mellon University

10:05 AM Break

10:25 AM Invited

In Situ Characterization by Synchrotron X-ray Radiography of the Growth Dynamics of Equiaxed Grains in Al-10wt.%Cu Alloys: *Guillaume Reinhart*¹; Aboul-Aziz Bogno²; Henri Nguyen-Thi¹; Jose Baruchel³; Bernard Billia¹; ¹IM2NP - Aix-Marseille Univ; ²University of Alberta; ³ESRF

10:50 AM Invited

In-situ X-ray Observations Showing the Impact of Natural and Forced Convection on Dendritic Solidification: Sven Eckert¹; Natalia Shevchenko¹; O. Roshchupkina¹; O. Sokolova²; ¹Helmholtz-Zentrum Dresden-Rossendorf; ²Perm National Research Polytechnic University

11:15 AM Invited

Massive-like Transformation during and after Solidification in Fe-based Alloys: *Hideyuki Yasuda*¹; Tomohiro Nishimura¹; Tomoya Nagira²; Kohei Morishita¹; Masato Yoshiya²; ¹Kyoto University; ²Osaka University

High-Temperature Systems for Energy Conversion and Storage — Recent Advancements in Solid Oxide Fuel Cell Technology II

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Energy Conversion and Storage Committee

Program Organizers: Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Amit Shyam, Oak Ridge National Laboratory; Kyle Brinkman, Clemson University; Paul Ohodnicki, National Energy Technology Laboratory; Jung Pyung Choi, Pacific Northwest National Laboratory

Tuesday AM Room: 104E

February 16, 2016 Location: Music City Center

Session Chairs: Vikram Jayaram,, IISc; Prabhakar Singh, University of Connecticut

8:30 AM Invited

Thick Zirconia Coatings by Electrolytic Anodisation: Subodh Patel¹; *Vikram Jayaram*¹; Dipankar Banerjee¹; ¹Indian Institute of Science

8:55 AM Invited

Chromium Poisoning in High Temperature (600-1000C) Electrochemical Systems: *Prabhakar Singh*¹; Chiying Liang¹; Boxun Hu¹; Manoj Mahapatra¹; Byung Jun¹; ¹University of Connecticut

9:20 AM Invited

Electrical Contact and Contact Materials for Solid Oxide Fuel Cell Stacking: *Jiahong Zhu*¹; ¹Tennessee Technological University

9:45 AM Invited

Advanced Interconnect Coating Process for Planar SOFC Stacks: Jung Pyung Choi¹; Jeff Stevenson¹; Matt Chou¹; ¹Pacific Northwest National Laboratory

10:10 AM Break

10:30 AM Invited

An Improvement of SOFC Durability by the Mass Transport Analysis at the Interfaces: Teruhisa Horita¹; ¹AIST

10:55 AM

CeO2 Modified Spinel Coating on Ferritic Alloys for SOFC Interconnect Application: Tingke Fang¹; Jiahong Zhu¹; ¹Tennessee Tech University

11·15 AM Invited

High Performance Molybdenum Dioxide (MoO₂)-Based Anode for Gasolin-Fueled SOFCs: Beyong Wan Kwon¹; *Su Ha*²; ¹Korea Institute of Science and Technology; ²Washington State University

11:35 AM Invited

Synthesis and Characterization of Mixed-Cation Rare-Earth Orthophosphates: Corinne Packard¹; ¹Colorado School of Mines

High Entropy Alloys IV — Alloy Development and Applications I

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Tuesday AM Room: 102A

February 16, 2016 Location: Music City Center

Session Chairs: Peter Liaw, The University of Tennessee; Michael Gao, National Energy Technology Laboratory

8:30 AM Keynote

Physical Metallurgy of High-entropy Alloys: *Jien-Wei Yeh*¹; ¹National Tsing Hua University

9:00 AM Invited

Refractory High Entropy Alloy with Excellent Cold Workability: Oleg Senkov¹; S. Lee Semiatin¹; ¹Air Force Research Laboratory

9:25 AM

Deviation from High-Entropy Configurations in the Al1.3CoCrCuFeNi Alloy: Louis Santodonato¹; Yang Zhang²; Mikhail Feygenson¹; Chad Parish¹; Michael Gao³; Richard Weber⁴; Joerg Neuefeind¹; Zhi Tang⁵; Peter Liaw⁶; Oak Ridge National Laboratory; ²University of Illinois at Urbana-Champaign; ³National Energy Technology Laboratory; ⁴Materials Development, Inc.; ⁵Virginia Tech; ⁶The University of Tennessee

9:45 AM Invited

Thermodynamics of High Entropy Alloys: *Dan Miracle*¹; Oleg Senkov¹; ¹AF Research Laboratory

10:10 AM Break

10:25 AM Invited

Design of Single-Phase High-Entropy Alloys: *Michael Gao*¹; David Alman¹; Jeff Hawk¹; ¹National Energy Technology Lab

10:45 AM Invited

On the Fracture Toughness of fcc Medium- and High-entropy Alloys at Ambient to Cryogenic Temperatures: Bernd Gludovatz¹; Keli Thurston²; A. Hohenwarter³; Dhiraj Catoor⁴; Hongbin Bei⁴; Easo George⁵; Robert Ritchie²; ¹Lawrence Berkeley National Laboratory; ²University of California Berkeley; ³Montanuniversität Leoben; ⁴Oak Ridge National Laboratory; ⁵Ruhr University

11:10 AM

A Bragg-Williams Model of Ordering in High-entropy Alloys: Louis Santodonato¹; Peter Liaw²; ¹ORNL and UT; ²The University of Tennessee

11:30 AM Invited

Design of Mo-based High Entropy Alloys: Ganesh Balasubramanian¹; Iowa State University

11:50 AM

Design of High Entropy Alloys of Single Phase Solid Solutions: *Yifan Ye*¹; Yong Yang¹; 'City University of Hong Kong

Hume-Rothery Award Symposium: Thermodynamics of Materials — Phonon and Mechanisms II

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Ursula Kattner, National Institute of Standards and Technology; Michael Manley, Oak Ridge National Laboratory

Tuesday AM Room: 107A

February 16, 2016 Location: Music City Center

Session Chairs: Dallas Trinkle, Univerity of Illinois, Urbana-Champaign; Michael

Manley, Oak Ridge National laboratory

8:30 AM Invited

Experimental Studies of Mode-resolved Thermal Phonon Transport Properties: Austin Minnich¹; ¹Caltech

9:00 AM Invited

Phonon Density of States and Dispersion Relations: Thermodynamics & Elasticity from Inelastic X-Ray Scattering: Esen Alp¹; ¹Argonne National Laboratory

9:30 AM Invited

Phonon Dynamics and Vibrational Entropy of bcc Fe at Elevated Temperatures: Lisa Mauger¹; Matthew Lucas¹; Jorge Munoz¹; Sally Tracy¹; Brent Fultz¹; ¹California Institute of Technology

10:00 AM Break

10:30 AM Invited

Phonons and Bonding in Information Storage Phase Change Materials: Raphael Hermann¹; ¹Oak Ridge National Laboratory

11:00 AM Invited

The Topology of Fast Li-ion Conductors: Gerbrand Ceder¹; ¹UC Berkeley

11:30 AM Invited

Electromechanical Coupling of Ferroelectric Relaxors Enhanced by Polar-nanoregion Vibrations: *Michael Manley*¹; ¹Oak Ridge National Laboratory

In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques — In-Situ Characterization of Mechanical Properties of Materials I

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sanjit Bhowmick, Hysitron Inc.; Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Vikas Tomar, Purdue University; Vikram Jayaram, Indian Institute of Science; Benjamin Morrow, Los Alamos National Laboratory; Paul Shade, Air Force Research Laboratory; Weizhong Han, Xi'an Jiaotong University; Arief Budiman, Singapore University of Technology and Design

Tuesday AM Room: 212

February 16, 2016 Location: Music City Center

Session Chairs: Vikas Tomar, Purdue University; Weizhong Han, Xi'an Jiaotong University

8:30 AM Invited

In Situ Raman Spectroscopy-based Imaging of the Spatial Distribution of Phases Induced during Instrumented Indentation of Silicon: Robert Cook¹; Yvonne Gerbig¹; Chris Michaels¹; ¹National Institute of Standards and Technology

9:00 AM

Deformation Induced Structural Changes in Solid and Liquid Lubricant Films Studied by In Situ Raman Tribometry: Praveena Manimunda¹; Richard Chromik¹; Seong Kim²; Ala Al-Azizi²; Sanjay Biswas³; Vikram Jayaram³; ¹McGill University; ²Pennsylvania State University; ³Indian Institute of science

9:20 AM

Characterization of High Temperature Crack Tip Plasticity and Size Effect in Alloy 617 Using Nanomechanical Raman Spectroscopy and High Temperature Indentation: Yang Zhang¹; Vikas Tomar¹; ¹Purdue University

9:40 AM Invited

Investigation of Pressure-Induced Phase Transformation in Rare-Earth Orthophosphates by In-Situ Raman Spectroscopy: Corinne Packard¹; ¹Colorado School of Mines

10:10 AM Break

10:30 AM

In Situ Micro-mechanical Testing – Case Studies in Crystal Rotation and Radiation Damage Effects: Dhriti Bhattacharyya¹; Mihail Ionescu¹; Ashley Reichardt²; Peter Hosemann²; Michael Saleh¹; Robert Wheeler³; Paul Munroe⁴; Lyndon Edwards¹; ¹ANSTO; ²University of California, Berkeley; ³Microtesting Solutions Inc.; ⁴UNSW

10:50 AM

TEM In Situ Mechanical Testing of Irradiated Oxide Dispersion Strengthened Alloys: Janelle Wharry¹; Yaqiao Wu¹; Matthew Swenson¹; Masego Lepule¹; Kayla Yano¹; ¹Boise State University

11.10 AM

In Situ Irradiation Induced Creep Measurements on Micropillar Specimens at Elevated Temperatures: Sezer Özerinç¹; Robert Averback¹; William King¹; ¹University of Illinois at Urbana-Champaign

11:30 AM

In Situ Study of Defect Migration Kinetics and Self-Healing of Twin Boundaries in Heavy Ion Irradiated Nanotwinned Metals: *Jin Li*¹; Kaiyuan Yu²; Youxing Chen¹; Miao Song¹; Haiyan Wang¹; Mark Kirk³; Meimei Li³; Xinghang Zhang¹; ¹Texas A&M University; ²China University of Petroleum-Beijing; ³Argonne National Laboratory

Interface-driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry — Structure-Property Relations

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nanomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Fadi Abdeljawad, Sandia National Laboratories; Stephen Foiles, Sandia National Laboratories; Timofey Frolov, UC Berkeley; Emine Gulsoy, Northwestern university; Heather Murdoch, Army Research Lab; Mitra Taheri, Drexel University

Tuesday AM Room: 108

February 16, 2016 Location: Music City Center

Session Chair: Stephen Foiles, Sandia National Laboratories

8:30 AM

A Three-dimensional Polyhedral Structural Unit Model for Grain Boundaries in FCC Metallic Systems: Arash Banadaki¹; Srikanth Patala¹; ¹North Carolina State University

8:50 AM

Building, Optimizing and Characterizing Grain Boundaries in Atomistic Simulations: *Shawn Coleman*¹; Mark Tschopp¹; Jennifer Synowczynski-Dunn¹; ¹U.S. Army Research Laboratory

9:10 AM

High-throughput Grain Boundary Property Calculations: Barriers and Solutions: Jonathan Humberson¹; Elizabeth Holm¹; ¹Carnegie Mellon University

9:30 AM

Experimental Observations and Modeling of Interfacial Defects at an Asymmetric S=5 Grain Boundary in Fe: Douglas Medlin¹; K. Hattar¹; J. Zimmerman¹; F. Abdeljawad¹; S. Foiles¹; ¹Sandia National Labs

9:50 AN

A General and Predictive Model of Anisotropic Grain Boundary Energy and Morphology for Polycrystal-level Simulations: Brandon Runnels¹;

Irene Beyerlein²; Sergio Conti³; Michael Ortiz⁴; ¹University of Colorado; ²Los Alamos National Laboratory; ³Universidät Bonn; ⁴California Institute of Technology

10:10 AM Break

10:30 AM Invited

Modeling Thermodynamics, Kinetics and Defects in Solidification Phenomena Using Phase Field Crystal Methods: *Nikolas Provatas*¹; Gabriel Kocher¹; Matthew Seymour¹; Kate Elder¹; Nana Ofori-Opoku¹; Vahid Fallah²; Babak Raeisinia³; Shahrzad Esmaeili²; ¹McGill University; ²University of Waterloo; ³Novelis Global Research & Technology Center

11:10 AM

Grain Boundary Damage Resistance and Accommodation using Atomistic Simulations: Garritt Tucker¹; Daniel Foley¹; ¹Drexel University

11:30 AM

Dynamic Observation of Step Nucleation and Propagation at Grain Boundaries: *Matthew Bowers*¹; Colin Ophus¹; Abhay Gautam¹; Frédéric Lançon²; Ulrich Dahmen¹; ¹NCEM, Molecular Foundry, Lawrence Berkeley National Lab; ²Laboratoire de Simulation Atomistique (L_Sim),SP2M,INAC,-CEA

11:50 AM

On the Interaction of Solutes with Grain Boundaries: Remi Dingreville¹; Ste'phane Berbenni²; ¹Sandia National Laboratories; ²Universite' de Lorraine

Magnesium Technology 2016 — Alloy Development, Diffusion and Joining

Sponsored by:TMS Light Metals Division, TMS: Magnesium Committee Program Organizers: Alok Singh, National Institute for Materials Science; Kiran Solanki, Arizona State University; Michele Manuel, University of Florida; Neale Neelameggham, Ind LLC

Tuesday AM Room: 204

February 16, 2016 Location: Music City Center

Session Chairs: Sean Agnew, University of Virginia; Miroslav Sahul, Slovak University of Technology Bratislava

8:30 AM

Development of Mg-Al-Sn-Si Alloys Using a CALPHAD Approach: *Andrew Klarner*¹; Weihua Sun¹; Janet Meier¹; Alan Luo¹; ¹The Ohio State University

8:50 AM

First-principles Study of Solutes Addition on the Ideal Shear Strength of Pure Magnesium: *Pulkit Garg*¹; Mehul Bhatia¹; Kiran Solanki¹; ¹SEMTE

9:10 AM

Lattice Ordering and Microstructure of Ultra-high Strength Mg-Ca-Zn Alloys: Alok Singh¹; Althaf Dudekula¹; Naoko Ikeo²; Hidetoshi Somekawa¹; Toshiji Mukai²; ¹National Institute for Materials Science; ²Kobe University

9:30 AM

Pre-Straining Effect on Precipitation Behavior of AZ31B: *Panthea Sepehrband*¹; Matthew Lee¹; Aaron Burns¹; ¹Santa Clara University

9:50 AM Break

10:10 AM

The Effect of Ageing on the Compressive Deformation of Mg-Sn-Zn-Na Alloy: Ehsan Bahrami motlagh¹; Alireza Ghaderi¹; Sitarama Raju Kada¹; Peter Lynch¹; Matthew Barnett¹; ¹Institute for Frontier Materials, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216

10:30 AM

First-principles Study of Diffusion Coefficients of Alloy Elements in Dilute Mg Alloys: *Bi-Cheng Zhou*¹; ShunLi Shang¹; Yi Wang¹; Zi-Kui Liu¹; ¹The Pennsylvania State University, University Park

10:50 AM

Study of ZE 10 Magnesium Alloy Welded Joints Produced with Disk Laser: *Miroslav Sahul*¹; Martin Sahul¹; ¹Slovak University of Technology Bratislava, Faculty of Materials Science and Technology in Trnava

11:10 AM

Similar and Dissimilar Ultrasonic Spot Welding of a Rare-earth Containing Zek100 Magnesium Alloy: Andrew Macwan¹; Daolun Chen¹; ¹Ryeron University

11:30 AM

Effect of Filler Wires on Cracking along Edges of Magnesium Welds: Tao Yuan¹; Xiao Chai²; *Sindo Kou*³; ¹Tianjin University; ²Novelis Global Research & Technology Center; ³University of Wisconsin-Madison

Material Design Approaches and Experiences IV – Light Metals

Sponsored by:TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Akane Suzuki, GE Global Research; Ji-Cheng Zhao, The Ohio State University; Michael Fahrmann, Haynes International Inc.; Qiang Feng, University of Science and Technology Beijing

Tuesday AM Room: 208A

February 16, 2016 Location: Music City Center

Session Chairs: Mei Li, Ford Motor Company; Alan Luo, Ohio State University

8:30 AM Invited

Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications: Mei Li¹; ¹Ford Motor Company

9:00 AM Invited

ICME Design and Implementation of Recycled Cast Aluminum Alloys for Marine and Other Demanding Applications: Kevin Anderson¹; Raymond Donahue¹; Vince Rudinger²; ¹Brunswick Corporation; ²University of Wisconsin - Madison

9:30 AM

Computational Thermodynamic Facilitate Solution Heat Treatment Design for Aluminum and Magnesium Alloys: Song-Mao Liang¹; Di Wu²; Rainer Schmid-Fetzer¹; ¹Clausthal University of Technology; ²The Group of Magnesium Alloys and Their Applications, Institute of Metal Research, Chinese Academy of Sciences

9:50 AM Break

10:10 AM Invited

Alloy Design and Development: From Classical Thermodynamics to CAL-PHAD and ICME Approaches: Alan Luo¹; ¹The Ohio State University

10:40 AM

Combinatorial Approach for Precipitation Strengthening Alloy Design: Alexis Deschamps¹; De Geuser Frederic¹; ¹Grenoble Institute of Technology

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Fuels III

Sponsored by:TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Tuesday AM Room: 101A

February 16, 2016 Location: Music City Center

Session Chair: Dennis Keiser, Idaho National Laboratory

8.30 AM Invited

Advanced Nuclear Fuels and Materials Development and Philosophy of the DOE Advanced Fuels Campaign: J. Carmack¹; ¹Idaho National Laboratory

8:50 AM

Microstructural Investigation of TREAT Graphite Fuel Blocks: *Terry Holesinger*¹; Erik Luther¹; Isabella van Rooyen²; Pallas Papin¹; Amber Telles²; Scott Niedzialek³; Alvin Short³; Clay Richardson³; ¹Los Alamos National Lab-

oratory; ²Idaho National Laboratory; ³BWX Technologies, Inc.

9:10 AM

Fabrication of Mock Up LEU Fuel Elements for the TREAT Reactor: *Erik Luther*¹; Isabella van Rooyen²; Lou Valenti²; Matthew Dvornak¹; Anthony Crawford²; Ben Coryell²; ¹LANL; ²Idaho National Laboratory

9:30 AM

Additive Manufacturing of Uranium-6 Wt. Pct. Niobium: Amanda Wu¹; Gilbert Gallegos¹; Matthew Wraith¹; Stephen Burke¹; Donald Brown²; ¹Lawrence Livermore National Laboratory; ²Los Alamos National Laboratory

9:50 AM

Development of a Multi-component (Al, Am, Fe, Ga, Ni, Pu, and U) CAL-PHAD Database for Complex Actinide-based Systems: *Aurelien Perron*¹; Patrice Turchi¹; Alexander Landa¹; Benoit Oudot²; Brice Ravat²; Francois Delaunay²; ¹Lawrence Livermore National Laboratory; ²CEA-Centre de Valduc

10:10 AM Break

10:30 AM Invited

Fuel and Materials Development, Testing and Qualification for the Traveling Wave Reactor: Kevan Weaver¹; ¹TerraPower

10:50 AM

TRISO Coating Development for Uranium Nitride Kernels: *Brian Jolly*¹; Terrence Lindemer¹; Kurt Terrani¹; ¹Oak Ridge National Laboratory

11:10 AV

BISON Fuel Performance Code Examination of Coating/Clad Interfaces for Accident Tolerant Fuels Irradiation Testing: Kristine Barrett¹; Kelly Ellis¹; Christopher Glass²; ¹Idaho National Laboratory; ²ENERCON Federal Services, Inc.

11:30 AM

Thermal Conductivity of High Plutonium Content MOX Fuels: *Dragos Staicu*¹; Somers Joe¹; Wiss Thierry¹; Konings Rudy, J.M.¹; ¹European Commission, Joint Research Centre, Institute for Transuranium Elements

11:50 AM

TEM Study of Damaged Archive and Irradiated SUPERFACT Fuels: *Thierry Wiss*¹; Oliver Dieste¹; Ondrej Benes¹; Jean-Yves Colle¹; Dragos Staicu¹; Detlef Wegen¹; Rudy Konings¹; Vincenzo Rondinella¹; Damien Prieur¹; Joseph Somers¹; ¹EuropeanCommission - JRC -ITU

Materials Processing Fundamentals — Casting and Solidification Processes

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: Antoine Allanore, Massachusetts Institute of Technology; Lifeng Zhang, University of Science and Technology Beijing; Laura Bartlett, Texas State University; Jonghyun Lee, University of Massachusetts; Cong Wang, Northeastern University

Tuesday AM Room: 106B

February 16, 2016 Location: Music City Center

Session Chairs: Jonghyun Lee, University of Massachusetts; Cong Wang, Northeastern University

8:30 AM

Analysis of Second-Phase Particle Migration in Cadmium Zinc Telluride via Temperature Gradient Zone Melting

: Kerry Wang¹; Jeffrey Derby¹; ¹University of Minnesota

8:50 AM

Influence of Scale Formation on Copper Enrichment Behaviour in Continuously Cast Slab: Cuihuan Huang¹; ¹Northeastern University

9:10 AM

Influence of Thermoelectric Magnetic Effect on the Structure Formation of Near-eutectic Alloys during Magnetic Field Assisted Directional Solidification: Jiang Wang¹; Yves Fautrelle²; Xi Li¹; Yunbo Zhong¹; Zhongming Ren¹; ¹Shanghai University & State Key Laboratory of Advanced Special Steel; ²SIMAP/EPM, Grenoble Institute of Technology

9:30 AM

Multi-phase Field Modeling of Rapid Solidification in Thermal Spray Coating Deposition: *Tatu Pinomaa*¹; Sebastian Gurevich²; Anssi Laukkanen¹; Nikolas Provatas²; ¹VTT Technical Research Centre of Finland; ²McGill University

9:50 AM Break

10:10 AM

Physical Simulation of Critical Blowing Rate of Entrainment of 80t Ladle: *Rui Wang*¹; Yanping Bao²; Yihong Li³; Aichun Zhao³; Yafeng Ji³; Xiao Hu³; Qinxue Huang³; Jiansheng Li³; ¹State key laboratory of Advanced Metallurgy, University of Science and Technology Beijing; ²University of science and technology of Beijing; ³School of Materials Science and Engineering, Taiyuan University of Science and Technology

10:30 AM

Liquid Metal Modelling of Flow Phenomena in the Continuous Casting Process of Steel: Klaus Timmel¹; Bernd Willers¹; Thomas Wondrak¹; Michael Röder¹; Natalia Shevchenko¹; Gunter Gerbeth¹; Sven Eckert¹; ¹Helmholtz-Zentrum Dresden-Rossendorf

Mechanical Behavior at the Nanoscale III — Fatigue, Fracture and Dynamic Deformation of Nanomaterials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Daniel Gianola, University of California, Santa Barbara; Ting Zhu, Georgia Institute of Technology; Julia Greer, California Institute of Technology; Harold Park, Boston University; Garritt Tucker, Drexel University; Jiangwei Wang, University of Pittsburgh

Tuesday AM Room: 214
February 16, 2016 Location: Music City Center

Session Chair: Harold Park, Boston University

8:30 AM Invited

Spalling Microscale, Single-crystal Films of High-quality, High-value Semiconductors: Corinne Packard¹; ¹Colorado School of Mines

9:10 AM

Microstructural Changes in Cu-based Multilayers

under Cyclic Sliding Contact: Zhao-Ping Luo¹; Guang-Ping Zhang²; *Ruth Schwaiger*¹; ¹Karlsruhe Institute of Technology (KIT); ²Shenyang National Laboratory for Materials Science

9:30 AM

Ductile Crack Growth in Face-Centered Cubic Metal Nanosheets: Wade Lanning¹; James Collins¹; Christopher Muhlstein¹; ¹Georgia Institute of Technology

9:50 AM Break

10:10 AM

Fatigue-induced Abnormal Grain Growth and Notch Effects in Nanocrystalline Metals: Timothy Furnish¹; Brad Boyce¹; ¹Sandia National Laboratories

10:30 AM

Review: Fracture Strength of Micro- and Nano-scale Silicon Components: Robert Cook¹; Frank DelRio¹; Brad Boyce²; ¹National Institute of Standards and Technology; ²Sandia National Laboratories

10:50 AM

Accurate Characterization of Interstitial Sites and Prediction of Adsorption Energetics of Hydrogen Trapping at Grain Boundaries in FCC Transition Metals: Space Tessellation Algorithm and Mechanics Model: Xiao Zhou¹; Daniel Marchand¹; Jun Song¹; Ting Zhu¹; ¹McGill University

11:10 AN

ReaxFF Molecular Dynamic Research on Tribochemistry of Si/SiO2 Surface and Role of Water Molecules to Surface Wear Damage: Jejoon Yeon¹; Seong Kim¹; Adri van Duin¹; ¹Pennstate University

11:30 AM

Stress and Strain Controlled Fatigue Properties of Cu with Highly Oriented Nanoscale Twins: Q.S. Pan¹; Lei Lu¹; ¹Institute of Metal Research, CAS

Metal and Polymer Matrix Composites II — Nanocomposites

Sponsored by:TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizer: Nikhil Gupta, New York University

Tuesday AM Room: 110A

February 16, 2016 Location: Music City Center

Session Chair: To Be Announced

8:30 AM

Molten Salt Assisted Incorporation of High Volume Fraction Nanoparticles during Solidification Nanoprocessing of Light Metal Matrix Nanocomposites: *Weiqing Liu*¹; Jiaquan Xu¹; Lianyi Chen¹; Chezheng Cao¹; Xiaochun Li¹; ¹University of California, Los Angeles

8:50 AM

Mechanical Properties of Mechanically Alloyed Nano-Scale Reinforced Al-SiC Metal Matrix Composites: David Tricker¹; Andrew Tarrant¹; Don Hashiguchi¹; ¹Materion

9:10 AM

Enhanced Ductility with Significant Increase in Strength of As-Cast CNTs/AZ91D Nanocomposites: Wenzhen Li¹; Rongyu Feng¹; Lin Zhu¹; ¹Tsinghua University

9:30 AM

Interfacial Bonding Effect on the Strength of Nanocomposites: Seeun Shin¹; Seungwon Kang¹; Jeheon Jeon¹; Donghyun Bae¹; ¹Yonsei University

9:50 AN

Pulsed Electrodeposited Ni-W-SiC Nano Composite Coatings as an Alternative for Hard Chrome Coatings: *G Sundararajan*¹; Nitin Wasekar²; ¹International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), Hyderabad, India and Dept. of Metallurgical & Materials Engg., Indian Institute of Technology Madras, Chennai, India; ²International Advanced Research Centre for Powder Metallurgy & New Materials

10:10 AM Break

10:30 AM

Two Step Ultrasonic Casting— A Novel Method for Achieving Uniform Distribution of Nano-Dispersoids in Bulk Nanocomposite: VISHWANATHA HIRE MATH¹; Jayakumar Eravelly¹; Cheruvu Siva Kumar¹; Sudipto Ghosh¹; ¹IIT Kharagpur

10:50 AM

The Synthesis and Processing Self-Healing Structural Al/Mg Lamellar Composite Materials: Yasser Ahmed¹; Bakr Rabeeh¹; ¹German University in Cairo

11:10 AM

Silver Nanowire/ Polylactide Nanocomposite Conducting Films: Doga Doganay¹; Sahin Coskun¹; Cevdet Kaynak¹; *Husnu Unalan*¹; ¹Middle East Technical University

11:30 AM

Filler Surface Nature, Bead, Solution Viscosity and Fibre Diameter of Electrospun Particle-reinforced Poly Lactide: Samson Adeosun¹; Emmanuel Akpan²; Oluwashina Gbenebor¹; Peter Akpan¹; Samuel Olaleye¹; ¹University of Lagos; ²Ambrose Alli University

Nanostructured Materials for Nuclear Applications — Session III

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Nuclear Materials Committee, TMS: Nanomaterials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Cheng Sun, Los Alamos National Laboratory; Michael Demkowicz, Massachusetts Institute of Technology; Amit Misra, University of Michigan; Osman Anderoglu, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories

Tuesday AM Room: 101C

February 16, 2016 Location: Music City Center

Session Chairs: David Hoelzer, Oak Ridge National Laboratory; Clarissa Yablinsky, Los Alamos National Laboratory

8:30 AM Invited

Irradiation Tolerant Amorphous Silicon Oxycarbide and Crystalline Fe Nanocomposites: Michael Nastasi¹; ¹University of Nebraska-Lincoln

9:00 AM

Microstructural Stability of Various ODS Alloys under High Dose Ion Irradiation: Frank Garner¹; Julia Kupriiyanova²; Alexander Kalchenko²; Oleg Borodin²; Victor Voyevodin²; Mychailo Toloczko³; ¹Radiation Effects Consulting; ²Kharkov Institute of Physics and Technology; ³Pacific Northwest National Laboratory

9:30 AM

Experiments on Controlled Helium Release through Nanocomposite Interface Design: *Yongqiang Wang*¹; Nan Li¹; Kevin Baldwin¹; Di Chen¹; Dina Yuyev²; Michael Demkowicz²; ¹Los Alamos National Laboratory; ²Massachusetts Institute of Technology

9:50 AM

Microstructure and Mechanical Properties of High Dose Self-ion Irradiated Nanostructured Ferritic Alloys: Eda Aydogan¹; O. Anderoglu¹; S.A. Maloy¹; L. Shao²; J. Gigax²; L. Price²; D. Chen²; X. Wang²; G. Odette³; D.T. Hoelzer⁴; J.J. Lewandowski⁵; I.E. Anderson⁶; J.R. Rieken⁶; ¹Los Alamos National Laboratory; ²Texas A&M University; ³University of California, Santa Barbara; ⁴Oak Ridge National Laboratory; ⁵Case Western Reserve University; ⁶Ames Laboratory

10:10 AM Break

10:30 AM Invited

Radiation Response of Nanolayered, Nanoporous and Nanotwinned Metals: Xinghang Zhang¹; Jin Li¹; Kaiyuan Yu²; Youxing Chen³; Mark Kirk⁴; Cheng Sun³; Meimei Li⁴; Haiyan Wang¹; ¹Texas A&M University; ²China Petroleum University; ³Los Alamos National Laboratory; ⁴Argonne National Laboratory

11:00 AM

In-situ Transmission Electron Microscopy/Irradiation Studies on Nanocrystalline Iron: Defect Density, Denuded Zone Formation and Grain Boundary Structure: Osman El-Atwant¹; Asher Leff¹; James Nathaniel¹; J.Kevin Baldwin²; Brittany Muntifering³; Khalid Hattar³; Mitra Taheri¹; ¹Drexel Unviersity; ²Los Alamos National Laboratory; ³Sandia National Laboratories

11:20 AM

Characterization of Nuclear Materials Using Combined TEM and Atom Probe Tomography: Peter Wells¹; Stephan Kraemer¹; Yuan Wu¹; Soupitak Pal¹; Takuya Yamamoto¹; G. Odette¹; ¹UC Santa Barbara

11:40 AM

Understanding the Nanoscale Disordering and Morphological Uncertainties in Radiation Induced Ion Tracks of Gd2TiZrO7 by an Analytical Electron Microscopic Perspective: Ritesh Sachan¹; Matthew Chisholm¹; Yanwen Zhang¹; William Weber²; ¹Oak Ridge National Laboratory; ²University of Tennessee

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XV — Pb-free Soldering & Direct Bonding

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shih-kang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Cheng University; Jae-Ho Lee, Hongik University; Ikuo Ohnuma, National Institute for Materials Science (NIMS); Chih-Ming Chen, National Chung Hsing University; Yee-Wen Yen, National Taiwan Univ of Science & Tech; Shien Ping Feng, The University of Hong Kong; Clemens Schmetterer, Fraunhofer Institute

Tuesday AM Room: 109

February 16, 2016 Location: Music City Center

Session Chairs: Shijo Nagao, Osaka University; Chao-hong Wang, National Chung Cheng University

8:30 AM Invited

Creep-induced Voiding in Sn phase of Pb-free Solder Joint: Choong-Un Kim¹; Minyoung Kim¹; ¹University of Texas at Arlington

9:00 AM Invited

Analysis for Formation of Kirkendall Voids during Solid-state Annealing in the Cu/Sn System: *Minho O*¹; Masanori Kajihara¹; ¹Tokyo Institute of Technology

9:30 AM

Strong Inhibition of IMC Growth at the Sn/Co System by Minor Ga Addition: Chao-hong Wang¹; Kuan-ting Li¹; ¹National Chung Cheng University

9:50 AM Break

10:10 AM Invited

Rapid Formation and Phase Transformation of Intermetallic Compounds Interconnection under Stress Current at Ambient Temperature: Yanhong Tian¹; Baolei Liu¹; ¹Harbin Institute of Technology

10:40 AM Invited

Low-temperature Pressure-less Silver-to-silver Direct Bonding at Ambient Condition: Part I-Experimental Study: Shijo Nagao¹; Chulmin Oh¹; Shih-kang Lin²; Hao Zhang¹; Emi Yokoi¹; Takeshi Ishibashi¹; Katsuaki Suganuma¹; 'The Institute of Scientific and Industrial Research (ISIR) Osaka University; 'Department of Materials Science and Engineering, National Cheng Kung University

11:00 AM

Low-temperature Pressure-less Silver-to-silver Direct Bonding at Ambient Condition: Part II-Mechanistic Study: Shih-kang Lin¹; Shijo Nagao²; Chulmin Oh²; Hao Zhang²; Yu-chen Liu¹; Shih-guei Lin¹; Katsuaki Suganuma²; ¹National Cheng Kung University; ²Osaka University

11:20 AM

Low Temperature Au to Au Direct Bonding by Highly <110>-oriented Au Films: *Jia-Ming Li*¹; Chih Chen¹; ¹Department of Materials Science and Engineering, National Chiao Tung University

11:40 AM

Low Temperature Copper to Copper Direct Bonding with Different Thickness of (111) Nanotwinned Cu: Chih Han Tseng¹; Chih Chen¹; ¹National Chiao Tung University

Phase Transformations and Microstructural Evolution — Phase Transformations - Correlation to Properties and Thermal Stability

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Tuesday AM Room: 107B

February 16, 2016 Location: Music City Center

Session Chair: Eric Lass, NIST

8.30 AM

Processing and Characterization of High-Temperature Resistant Aluminum Alloys Microalloyed with Sc, Er and Zr: Dinc Erdeniz¹; Wahaz Nasim²; Jahanzaib Malik²; Sung-Il Baik¹; Bilal Mansoor³; Georges Ayoub⁴; Ibrahim Karaman²; David Seidman¹; David Dunand¹; ¹Northwestern University; ²Texas A&M University; ³Texas A&M University at Qatar; ⁴American University of Beirut

9:00 AM

Nanoscale Precipitation-Strengthened Al-Er-Sc-Zr-(V,Nb,Ta) Alloys: Keith Knipling¹; ¹Naval Research Laboratory

9:20 AM

Mechanisms Underlying Residual Stress Generation During the Oxidation of Silicon Carbide: Ramanathan Krishnamurthy¹; Pavel Mogilevsky¹; Craig Przybyla¹; Triplicane Parthasarathy¹; Randall Hay¹; ¹AirForce Research Laboratory

9:40 AM

Nano-sized Precipitate Stability and Its Controlling Factors in a NiAl-strengthened Ferritic Alloy: Zhiqian Sun¹; Gian Song¹; Jan Ilavsky²; Gautam Ghosh³; Peter Liaw¹; ¹The University of Tennessee; ²Argonne National Laboratory; ³Northwestern University

10:00 AM Break

10:20 AM

Corrosion Effects on Mechanical Properties of Sensitized AA5083-H116: Robert Mills¹; Brian Lattimer¹; Scott Case¹; ¹Virginia Tech

10:40 AM

Roles of Initial Microstructure and External Stress on the Thermal Stability of TiAl Base Intermetallics: *Jieren Yang*¹; Xuyang Wang¹; Bei Cao¹; Hongchao Kou¹; Jinshan Li¹; ¹Northwestern Polytechnical University

11:00 AM

The Effect of Initial Microstructure on the Mechanical Properties of Bi-lamellar Ti-6Al-4V: Yan Chong¹; Nobuhiro Tsuji¹; ¹Kyoto University

11:20 AM

The Effects of Micro-alloying on the High-Temperature Stability of Strengthening Precipitates in Cast Aluminum: Patrick Shower¹; ¹Oak Ridge National Laboratory

11:40 AM

Titanium Based Metal-matrix Composites via In-situ Nitridation: Microstructure and Tribological Properties: *Tushar Borkar*¹; Thomas Scharf¹; Rajarshi Banerjee¹; ¹University of North Texas

12:00 PM

Effects of Microstructure on the Selective Internal Oxidation of Multi-Phase Alloys: Stephen Kachur¹; Bryan Webler¹; ¹Carnegie Mellon University

Phase Transformations in Multi-component Systems: An MPMD Symposium Honoring Gary R. Purdy — Phase Transformations in Advanced High Strength Steels

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Hatem Zurob, McMaster University; Annika Borgenstam, KTH, Royal Institute of Technology; Tadashi Furuhara, Tohoku University; Wenzheng Zhang, Tsinghua University; Christopher Hutchinson, Monash University; Robert Hackenberg, Los Alamos National Laboratory

Tuesday AM Room: 110B

February 16, 2016 Location: Music City Center

Session Chairs: Sybrand van der Zwaag, TU Delft; Mohamed Gouné, Université de Bordeaux

8:30 AM Invited

In-situ Observation of Austenite Growth in Very Low Carbon Fe-Ni and Mn Alloys: *Masato Enomoto*¹; Xianliang Wan²; ¹Ibaraki University; ²Wuhan University of Science and Technology

9:00 AV

On the Roles of Dislocations in Austenite Reversion from Martensite: *Jiayi Yan*¹; Annika Borgenstam¹; John Ågren¹; ¹KTH Royal Institute of Technology

9:20 AM

Reversion of Austenite from Martensitic Fe-2Mn-1.5Si-0.3C Alloy during Continuous Heating Process: *Xianguang Zhang*¹; Goro Miyamoto¹; Tadashi Furuhara¹; ¹Institute for Materials Research, Tohoku University

9:40 AM

Austenite Reversion during Intercritical Annealing in a Medium-Mn Steel: Simulations and Experiments: Fei Huyan¹; Jiayi Yan¹; John Ågren¹; Annika Borgenstam¹; ¹KTH Royal Institute of Technology

10:00 AM Break

10:20 AM Invited

Reversed Austenite Transformation in Medium Manganese Steels: *Zhi-Gang Yang*¹; Chuan Zhao¹; Chi Zhang¹; Hao Chen¹; ¹Tsinghua University

10:50 AM

In Situ Investigations of Partitioning Mechanisms in Q&P Steels by Synchrotron Diffraction Experiments: Sébastien Allain¹; Guillaume Geandier¹; Jean-Christophe Hell²; Michel Soler²; Mohamed Goune³; Frédéric Danoix⁴; ¹Institut Jean Lamour; ²Arcelormittal Maizières Research SA; ³ICMCB; ⁴GPM

11:10 AM

Quenching and Partitioning of a Ductile Cast Iron: *Arthur Nishikawa*¹; André Melado¹; Anderson Ariza¹; André Tschiptschin¹; Hélio Goldenstein¹; ¹University of São Paulo

11:30 AM

Tempering Behaviour of a Quenched Microalloyed Pipeline Steel: *Lucas Nishikawa*¹; Paulo Ogata¹; Arthur Nishikawa¹; Mario Ramirez¹; Hélio Goldenstein¹; ¹University of São Paulo

11:50 AM

Grain Boundary Segregation of Nb in Fe-30%Mn Austenite Steels: Madhumanti Bhattacharyya¹; Hatem Zurob¹; ¹McMaster University

Powder Metallurgy of Light Metals — Light Metal Powder Synthesis and Titanium Aluminide

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Zhigang Fang, University of Utah; Qian Ma, RMIT University

Tuesday AM Room: 205C

February 16, 2016 Location: Music City Center

Session Chairs: Zhigang Fang, University of Utah; Iver Anderson, Ames Laboratory

8:30 AM Invited

Tuning of Close-coupled Gas Atomization for Generating Light Metal Powder for Additive Manufacturing: Iver Anderson¹; David Byrd¹; Ross Anderson¹; Emma White¹; ¹Ames Laboratory

9.00 AM

An Energy Efficient Thermochemical Process for Production of Ti Metal Powder: Ying Zhang¹; Zhigang Zak Fang¹; Yang Xia¹; Pei Sun¹; Zhe Huang¹; Hyrum Lefler¹; Tuoyang Zhang¹; Michael Free¹; ¹University of Utah

9:20 AM

Characteristics of Titanium Powders by Gas Atomization and PREP: Gang Chen¹; P. Tan²; S. Zhao²; J. Wang²; Weiwei He²; H. P. Tang²; ¹Northwest Institute for Nonferrous Metals Research; ²Northwest Institute for Nonferrous Metal Research

9:40 AM

Verification of a Predictive Strength Model for Gas-Atomized Aluminum Powder: Baillie McNally¹; Danielle Cote¹; Victor Champagne²; Richard Sisson¹; ¹Worcester Polytechnic Institute; ²U.S. Army Research Laboratory

10:00 AM

Production of Titanium Hydride Powder by Leaching of Aluminum and Silicon Impurities from Reduced Upgraded Titania Slag for Low Cost Titanium Production: Syamantak Roy¹; Jaehun Cho¹; Nathan Hamilton¹; Amarchand Sathyapalan¹; Michael Free¹; Zhigang Fang¹; ¹University of Utah

10:20 AM Break

10:40 AM

Synthesis and Densification of Large-sized TiAl Alloy Samples by Spark Plasma Sintering: *Yongjun Su*¹; Deliang Zhang¹; ¹Shanghai Jiao Tong University

11:00 AM

Development of an Efficient TiAl Alloy and Densification of Near-net Shape Blades by Spark Plasma Sintering: *Thomas Voisin*¹; Jean-Philippe Monchoux¹; Lise Durand¹; Nikhil Karnatak²; Marc Thomas³; Alain Couret¹; ¹CEMES/CNRS; ²Mecachrome; ³ONERA-The French Aerospace Lab

11:20 AM

Mechanical Properties and Microstructure of PM $Ti-Si_3N_4$ Discontinuous Fibre Composite: $Troy\ Dougherty^1$; Ying Xu^1 ; Ainaa Hanizan 1 ; $^1Nuenz\ Limited$

11:40 AM

A Porous TiAl Intermetallic Compound with Double Pore Structures Fabricated by Powder Metallurgy Using Carbamide as a Space Holder: *Hui Wang*¹; Xiongjun Liu¹; Yuan Wu¹; Zhaoping Lu¹; ¹University of Science and Technology Beijing

Rare Metal Extraction & Processing Symposium — Platinum Group Metals / Mo, Ti, V & W

Sponsored by:TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Shafiq Alam, University of Saskatchewan; Hojong Kim, Penn State University; Neale Neelameggham, Ind LLC; Takanari Ouchi, MIT; Harald Oosterhof, Umicore

Tuesday AM Room: 106A

February 16, 2016 Location: Music City Center

Session Chairs: Neale Neelameggham, Ind LLC; Hojong Kim, The Pennsylvania State University

8:30 AM Keynote

Adsorptive Recovery of Palladium and Platinum from Acidic Chloride Media Using Chemically Modified Persimmon Tannnin: Manju Gurung¹; Birendra Adhikari¹; Katsutoshi Inoue¹; Hidetaka Kawakita¹; Keisuke Ohto¹; Shafiq Alam²; ¹Saga University; ²University of Saskatchewan

9:05 AM

Investigation of Iron Removal from Reduced Upgraded Titania Slag Using Mild Acids: *Jaehun Cho*¹; Syamantak Roy¹; Amarchand Sathyapalan¹; Michael Free¹; Zhigang Fang¹; ¹University of Utah

9:30 AM

Production of Tungsten by Pulse Current Reduction of CaWO₄: Furkan Özdemir¹; Metehan Erdogan²; Ishak Karakaya¹; Mustafa Elmadagli³; ¹Middle East Technical University; ²Yildirim Beyazit University; ³Roketsan

9:55 AM Break

10:15 AM

Stripping of Fe³⁺ from P204 by Oxalic Acid: Changjun Jiang¹; Shengfan Zhou¹; Mingyu Wang¹; Xuewen Wang¹; ¹Central South University

10:40 AM

Recovery and Purification of In3+ from Zinc Hydrometallurgical Process in a T-junction Microchannel: *Chuanhua Li*¹; Feng Jiang¹; Shaohua Ju¹; Jinhui Peng¹; Libo Zhang¹; ¹Faculty of Metallurgical and Energy Engineering

REWAS 2016 — Plenary Session: Materials Matter: Deriving Value from Resource Recovery at Multiple Materials Scales

Sponsored by:

Program Organizers: Randolph Kirchain, Massachusetts Institute of Technology; Bart Blanpain, KU Leuven; Anne Kvithyld, SINTEF; Christina Meskers, Umicore Precious Metals Refining; Elsa Olivetti, Massachusetts Institute of Technology; Jeffrey S. Spangenberger, Argonne National Laboratory; Diran Apelian, Worcester Polytechnic Institute; Brajendra Mishra, Colorado School of Mines; Neale Neelameggham, Ind LLC

Tuesday AM Room: 104B

February 16, 2016 Location: Music City Center

Session Chair: To Be Announced

8:35 AM Introductory Comments

8:40 AM Invited

Gold Evolving Role in the Circular Economy: $Trevor\ Keel^1$; 1 Consultant to the World Gold Council

9:05 AM Invited

Automotive Recycling Innovations in Aluminum: Sil Colalancia¹; ¹Novelis

9:30 AM Invited

2016 EPD Distinguished Lecture: Digitalizing the Circular Economy -System-Integrated-Material-Production: *Markus Reuter*¹; ¹Helmholtz-Zentrum Dresden-Rossendorf

10:00 AM Panel Discussion

10:15 AM Break

10.30 AM Invited

Industrial Symbiosis and Materials Management: Physical Resource Sharing Among Proximate Firms: Marian Chertow¹; ¹Yale School of Forestry & Environmental Studies

10:55 AM Invited

Water at the Heart of the Circular Economy: Edwin Piñero¹; ¹Veolia North America

11:20 AM Invited

Environmental Impacts of Additive Manufacturing: *William Flanagan*¹; ¹General Electric Company

11:45 AM Panel Discussion

12:00 PM Concluding Comments

Shape Casting: 6th International Symposium — Engineering High Quality Castings I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Murat Tiryakioglu, University of North Florida; Glenn Byczynski, Nemak Canada; Mark Jolly, Cranfield University

Tuesday AM Room: 203B

February 16, 2016 Location: Music City Center

Funding support provided by: Nemak (possibly)

Session Chair: Murat Tiryakioglu, University of North Florida

8:30 AM Introductory Comments Welcome by the Symposium Organizers

8:35 AM

Bifilms and Hot Tearing of Al-Si Alloys: Muhammet Uludag¹; Remzi Cetin²; *Derya Dispinar*³; ¹Selcuk University; ²Halic University; ³Istanbul University

9:00 AM

Crack Susceptibility of Binary Aluminum Alloys: Analytical Equations: Jiangwei Liu¹; Sindo Kou¹; ¹University of Wisconsin-Madison

9-25 AM

The Unidirectional Solidification of Ti-46Al-8Nb Alloy with BaZrO3 Coated Al2O3 Mould

: Wei Chao¹; Mingyang Li¹; Guangyao Chen¹; Hongbin Wang¹; Chonghe Li¹; Xionggang Lu¹; $\,^1\!$ Shanghai University

9:45 AM

Analytical Model of Filling Fine Features and Sharp Corners in Investment Casting of CMSX-4: Logan Kroneman¹; Matthew Krane¹; Kevin Trumble¹; ¹Purdue University

10:10 AM Break

10:30 AM

Real-time Radiography and Modeling of Porosity Formation in an A356 Aluminum Alloy Wedge Casting: Vahid Khalajzadeh¹; Christoph Beckermann¹; David Goettsch²; ¹University of Iowa; ²GM

10:55 AM

Modeling of Distortion of a Steel Bracket Sand Casting: Daniel Galles¹; Christoph Beckermann¹; ¹University of Iowa

11.20 AM

SiC Particle Reinforced Al Matrix Composite by SIMA: Emirhan Aydin¹; Caglar Yuksel²; Eray Erzi¹; Derya Dispinar¹; ¹Istanbul University; ²Yildiz Technical University

11:40 AM

Evolution of Primary Fe-rich Compounds in Secondary Al-Si-Cu Alloys: Alberto Fabrizi¹; Stefano Capuzzi¹; *Giulio Timelli*¹; ¹University of Padua

Thermodynamic Applications, Optimizations and Simulations in High-Temperature Processes: An EPD Symposium in Honor of Christopher W. Bale's 70th Birthday — Steelmaking/Ferrous Applications II

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: In-Ho Jung, McGill University; Arthur Pelton, Ecole Polytechnique; Patrice Chartrand, Ecole Polytechnique; Phillip Mackey, P.J. Mackey Technology; David Robertson, Missouri S&T; P Taskinen, Alto Univ; Malin Selleby, KTH Royal Institute of Technology

Tuesday AM Room: 106C

February 16, 2016 Location: Music City Center

Session Chairs: In-Ho Jung, McGill University; Joohyun Park, Hanyang University

8:30 AM Keynote

Coupled Thermodynamic and Kinetic Fundamental Simulations of Industrial Metallurgical Processes and Reactors: L.T.I. Jonsson¹; M. Ersson¹; N.Å.I. Andersson¹; L. Höglund¹; A. Tilliander¹; S. Du¹; *Par Jonsson*²; ¹KTH; ²KTH Royal Institute of Technology

9-10 AM

Dynamic Coupling of Thermodynamics and Kinetics for Steel/Slag Reactions: *Nils Andersson*¹; Mikael Ersson¹; Anders Tilliander¹; Pär Jönsson¹; ¹KTH Royal Institute of Technology

9:30 AM

Kinetic Model of the Reaction between Slag and Matte to Extract Mn from Steelmaking Slag: Shinya Kitamura¹; Sun-joong Kim¹; Junpei Suzuki¹; ¹Tohoku University

9:50 AM

Coke Crystallite Thermodynamics Applied to Sulfur Control and Energy Balance in a Blast Furnace: Philippe Ouzilleau¹; Patrice Chartrand¹; ¹CRCT-Ecole Polytechnique de Montreal

10:10 AM Break

10:30 AM

Simulation of Ferro-alloy Smelting in DC Arc Furnaces Using Pyrosim and FactSage: Rodney Jones¹; Markus Erwee¹; ¹Mintek

10:50 AM

Modeling Steel-slag-inclusion Reactions: *P. Chris Pistorius*¹, ¹Carnegie Mellon University

11:10 AM

Effect of Slag Properties and Alloy Quality on Inclusions in Tire Cord Steels: Changbo Guo¹; Haitao Ling¹; Lifeng Zhang¹; ¹University of Science and Technology Beijing

11:30 AM

Application of Phase Diagram Software for Calculation of Physicochemical Properties in High-Temperature Processes: Youn-Bae Kang¹; ¹Pohang University of Science and Technology

1:50 AM

The Importance of Thermodynamics for Business Intelligence Tools: $Sander\ Arnout^1$; Els Nagels 1 ; 1 InsPyro

Ultrafine Grained Materials IX — Gradient and Layered Materials

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Tuesday AM Room: 209B

February 16, 2016 Location: Music City Center

Session Chairs: Yuntian Zhu, North Carolina State University; Xiaolei Wu, Institute of Mechanics, Chinese Academy of Sciences

8:30 AM Invited

Structures and Strength of Gradient Nanostructures: Niels Hansen¹; *Xiaodan Zhang*¹; Xiaoxu Huang¹; ¹Technical University of Denmark

9:00 AM

Gradient Structures: Perspectives and Properties and Problems: Xiaolei Wu¹; *Yuntian Zhu*²; ¹Chinese Academy of Sciences; ²North Carolina State University

9:20 AM

Mechanical Behavior of Ultrafine-grain Gradient Structures Produced via Ambient and Cryogenic Surface Mechanical Attrition Treatment: Heather Murdoch¹; Kristopher Darling¹; A.J. Roberts¹; Laszlo Kecskes¹; ¹Army Research Lab

9:40 AM

Extraordinary Strain Hardening by Gradient Structure: Xiaolei Wu¹; Yuntian Zhu²; ¹Institute of Mechanics, Chinese Academy of Sciences; ²North Carolina State University

10:00 AM Break

10:20 AM Invited

Slip Transmission in fcc/fcc Bilayers Using Phase Field Dislocation Dynamics (PFDD): Abigail Hunter¹; Yifei Zeng²; Irene Beyerlein¹; Marisol Koslowski²; ¹Los Alamos National Laboratory; ²Purdue University

10:50 AM

Strain Hardening and Mechanical Behavior of Gradient Structured AZ31: Lifeng Liu¹; Xiaolei Wu¹; Fuping Yuan¹; ¹Institute of mechanics, Chinese academy of sciences

11:10 AM

Influence of Length Scale on Mechanical Properties of Multilayered Nanocrystalline Ni-Fe at Elevated Temperature: *Jochen Fiebig*¹; Lilia Kurmanaeva¹; Jie Jian²; Haiyan Wang²; John McCrea³; Enrique Lavernia¹; Amiya Mukherjee¹; ¹University of California, Davis; ²Texas A & M University; ³Integran Technologies Inc.

11:30 AM

Nitriding of Nanocrystalline Metals Generated by Ultrasonic Nanocrystal Surface Modification: Jingyi Zhao¹; Zhencheng Ren¹; Guoxiang Wang¹; Yalin Dong¹; Chang Ye¹; ¹University of Akron

11:50 AM

Extreme Strengthening in Gradient Structured Aluminum Alloy: *Jordan Moering*¹; Xiaolong Ma¹; Yuntian Zhu; Suveen Mathaudhu²; ¹North Carolina State University; ²University of California Riverside

2016 Functional Nanomaterials: Emerging Nanomaterials and Techniques for 3D Architectures — Nanostructures for Environmental and Energy Applications

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Nanomaterials Committee

Program Organizers: Terry Xu, UNC Charlotte; Nitin Chopra, The University of Alabama; Jung-Kun Lee, University of Pittsburgh; Jiyoung Kim, University of Texas; V. U. Unnikrishnan, The University of Alabama

Tuesday PM Room: 211

February 16, 2016 Location: Music City Center

Session Chairs: Jung-Kun Lee, Univesity of Pittsburgh; Simona Hunyadi Murph, Savannah River National Laboratory

2:00 PM Invited

Reversible CO2 Capture from an Amidine Functionalized Polymer Thin Film: *Brad Lokitz*¹; Balaka Barkakaty¹; James Browning¹; ¹Oak Ridge National Laboratory

2:30 PM

Optimizing the Water Treatment Performance of Three-Dimensional Graphene Oxide-Based Hydrogels: *Thomas Duster*¹; Keshav Swarup¹; Lauren Greenlee¹; ¹National Institute of Standards and Technology

2:50 PM

Synergistic Effects of Graphene Quantum Dot Sensitization and Nitrogen Doping of Ordered Nanoporous TiO2 Thin Films for Water Splitting Photocatalysis: *Syed Islam*¹; Allen Reed¹; Doo-Young Kim¹; Stephen Rankin¹; ¹University of Kentucky

3:10 PM

Reduced Graphene Oxide/TiO2 Nanocomposite Based Electron Transport Layer for Perovskite Solar Cells: *Gill Sang Han*¹; Fangda Yu¹; Jung-Kun Lee¹; ¹University of Pittsburgh

3:30 PM

Energy Conversion and Storage Applications of Mesoporous Titania Thin Films with Controlled Pore Orientation: Suraj Nagpure¹; Syed Islam¹; Stephen Rankin¹; ¹University of Kentucky

3:50 PM Break

4:10 PM

Hybrid Nanostructures and Nanoarchitectures: Fundamentals and Applications: Simona Hunyadi Murph¹; ¹Savannah River National Laboratory

4:30 PM

Fabrication of Three Dimensional Carbon Nanotube - Nickel Nanofoam Heterostructures for Energy Storage Applications: *Mengya Li*¹; Rachel Carter¹; Cary Pint¹; ¹Vanderbilt University

4:50 PM

Multifunctional Self-cleaning Nanofiber Membranes for Water Filtration: Salman Arshad¹; Sobia Dilpazir¹; Mohammad Usman¹; ¹Lahore University of Management Sciences

5:10 PM

Synthesis and Characterization of Titaniumdioxide Polymer Nanocomposites and Gas Sensing Applications: *Poonam Jain*¹; Shashi Janeoo¹; Raman Chadha¹; Mamta Sharma¹; Gurinder Singh¹; S.K. Tripathi¹; J.K. Goswamy¹; ¹University Institute of Engineering and Technology

5:30 PM

Synthesis, Characterization and Sensing Properties of Palladium- Doped Tin Dioxide Nanocomposites

: Raman Chadha¹; Shashi Janeoo¹; Poonam Jain¹; Mamta Sharma¹; Gurinder Singh¹; S.K. Tripathi¹; J.K. Goswamy¹; ¹University Institute of Engineering and Technology. Panjab University .Chandigarh

7th International Symposium on High Temperature Metallurgical Processing — Fundamental Research of Metallurgical Process

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Tuesday PM Room: 105B

February 16, 2016 Location: Music City Center

Session Chairs: Gerardo Alvear, Glencore Technology; Lifeng Zhang, University of Science and Technology Beijing

2:00 PM Introductory Comments

2:05 PM

Reduction Kinetics of Hematite Concentrate Particles by CO+H₂ Mixture Relevant to a Novel Flash Ironmaking Process: Yousef Mohassab¹; Feng Chen²; Mohamed Elzohiery²; Amr Abdelghany²; Shengqin Zhang²; Hong Yong Sohn²; ¹University of Utah; ²University of Utah

2:25 PM

SO3 Formation in Copper Smelting Process: Thermodynamic Consideration: Mao Chen¹; Zhixiang Cui²; Leonel Contreras³; Chuanbing Wei²; *Baojun Zhao*¹; ¹The University of Queensland; ²Dongying Fangyuan Nonferrous Metals Co., Ltd; ³National Copper Corporation of Chile

2:45 PM

Effect of Oxidation on Wetting Behavior between Silicon and Silicaon Carbide: Yaqiong Li¹; *Lifeng Zhang*¹; Zineb Benouahmane¹; ¹University of Science and Technology Beijing

3:05 PM

Evaporation Kinetics of Tramp Elements in Liquid Steel: Sung-Hoon Jung¹; *Youn-Bae Kang*¹; ¹Pohang University of Science and Technology

3:25 PM

Heat Losses to Furnace Coolers as a Function of Process Intensity: Mark Kennedy¹; Allan MacRae²; Harald Haaland³; ¹Proval Partners SA; ²MacRae Technologies Inc; ³Elkem

3:45 PM Break

4:00 PM

Viscosity of Partially Crystallized BOF Slag: Zhuangzhuang Liu¹; Bart Blanpain¹; Muxing Guo¹; ¹KU Leuven

4:20 PM

Origin and Evolution of Non-metallic Inclusions for Al-killed Steel during EAF-LF-VD-CC Process

: Haiyan Tang1; 1University of Science and Technology Beijing

4:40 PM

The Dynamic Dissolution of Coke with Slag in Melting and Dropping Zone: Yingli Liu¹; Qingguo Xue¹; Wentao Guo¹; Haibin Zuo¹; Xuefeng She¹; Jingsong Wang¹; ¹USTB

5:00 PM

Heat Transfer Property of Gas Jet Cooling in Confined Nozzle: Yang Jin¹; Wu Chengbo¹; *Zhang Jiangbin*¹; ¹Chongqing University

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling — Ion Beam Irradiation and Comparisons between Neutron and Ion Irradiation

Sponsored by: TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California Berkeley; Todd Allen, Idaho National Laboratory; Elaine West, Knolls Atomic Power Laboratory

Tuesday PM Room: 101B

February 16, 2016 Location: Music City Center

Session Chair: Elaine West, Knolls Atomic Power Laboratory

2:00 PM Invited

On a Precipitation Damage Meter to Quantify Dose Rate and Damaging Particle Effects on Ion and Neutron Irradiated RPV Steels: *Takuya Yamamoto*¹; Peter Wells¹; Yuan Wu¹; Nathan Almirall¹; G. Robert Odette¹; Hideo Watanabe²; Kenta Murakami³; Takeshi Toyama⁴; Yasuyoshi Nagai⁴; ¹Univ. of California Santa Barbara; ²Kyushu University; ³Univ. of Tokyo; ⁴Tohoku University

2:30 PM

Comparison of Neutron, Proton, and Self-ion Irradiation of Fe-9%Cr ODS at 3 dpa, 500°C: *Matthew Swenson*¹; Janelle Wharry¹; ¹Boise State University

2:50 PM

Effect of Helium Implantation Mode on Void Formation in Ion-Irradiated T91 Steel: Stephen Taller¹; Zhijie Jiao¹; Elizabeth Getto¹; Anthony Monterrosa¹; Gary Was¹; ¹University of Michigan

3:10 PM

Influence of Microstructural Features on Void Evolution in Self-Ion Irradiated HT9 at Very High Dose: Elizabeth Getto¹; Zhijie Jiao¹; Kai Sun¹; Anthony Monterrosa¹; Gary Was¹; ¹University of Michigan

3:30 PM Break

3:50 PM

The Effect of Pre-implanted Helium on Void Incubation and Growth in Ferritic-Martensitic Steels: *Anthony Monterrosa*¹; Zhijie Jiao¹; Gary Was¹; ¹University of Michigan

4:10 PM

Direct Observation of Radiation Response in Ni and Ni-base Concentrated Solid-solution Allovs

: *Chenyang Lu*¹; Ke Jin²; Laurent Béland²; Taini Yang¹; Feifei Zhang¹; Yanwen Zhang²; Honbin Bei²; Roger Stoller²; Lumin Wang¹; ¹University of Michigan; ²Oak Ridge National Laboratory

4:30 PM

Effects of Electronic Energy Loss on Damage Evolution in Ion-irradiated Ceramics: William Weber¹; Eva Zarkadoula²; Ritesh Sachan²; Haizhou Xue¹; Ke Jin²; Yanwen Zhang²; ¹University of Tennessee; ²Oak Ridge National Laboratory

4:50 PM

Atom Probe Tomography Investigations of Reactor Pressure Vessel Steels Using High Dose Charged Particle Irradiations: *Nathan Almirall*¹; Peter Wells¹; Takuya Yamamoto¹; G. Robert Odette¹; Keith Wilford¹; Ian Edmonds²; Sosuke Kondo³; Akihiko Kimura³; ¹University of California Santa Barbara; ²Rolls-Royce; ³Kyoto University

5:10 PM

Evaluation of Developed Microstructure of Cubic SiC Post Ion Irradiation: Walid Mohamed¹; Laura Jamison¹; Sumit Bhattacharya¹; Kun Mo¹; Abdellatif Yacout¹; ¹Argonne National Laboratory

Additive Forming of Components - Tailoring Specific Material Properties in Low Volume Production — Additive Manufacturing of Graded Alloys, Steels, and Other Materials

Sponsored by:

Program Organizers: Judith Schneider, University of Alabama at Huntsville; Mark Stoudt, National Institute of Standards and Technology; Kester Clarke, Los Alamos National Laboratory; Lee Semiatin, US Air Force Research Laboratory; Mohsen Asle Zaeem, Missouri University of Science and Technology; Eric Lass, National Institute of Standards and Technology; Paul Mason, Thermo-Calc Software Inc.

Tuesday PM Room: 205B

February 16, 2016 Location: Music City Center

Session Chairs: Mohsen Asle Zaeem, MST; Eric Lass, NIST

2:00 PM

Correlating Microstructure with Processing in Gradient Alloys Fabricated through Laser Deposition: Douglas Hofmann¹; Scott Roberts¹; Clincy Cheung²; Peter Dillon¹; Bryan McEnerney¹; John-Paul Borgonia¹; ¹NASA JPL/Caltech; ²Cal Poly San Luis Obisbo

2.20 PM

Fabrication and Property Development for a Functionally Graded Austenitic to Maraging Stainless Steel Component: R. Dillon¹; John Borgonia¹; Peter Hosemann¹; Andrew Shapiro-Scharlotta¹; Bryan McEnerney¹; ¹Jet Propulsion Laboratory

2:40 PM

Precipitation Reactions Occurring during Laser Additive Manufacturing of Alloys: Eric Jaegle¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung

3:00 PM

Evaluation of Phase Transformation Kinetics in 17-4 Stainless Steel Manufactured by Direct Metal Laser Sintering: Sudha Cheruvathur¹; *Mark Stoudt*²; Eric Lass²; Maureen Williams²; Yaakov Idell²; ¹Indira Gandhi Centre for Atomic Research, Kalpakkam, tamilnadu, India; ²National Institute of standards and Technology

3:20 PM

Characterization of Microstructure and Mechanical Properties of Direct Metal Laser Sintered 15-5 PH1 Stainless Steel Powders and Components: Jing Zhang¹; Yi Zhang¹; Xingye Guo¹; Weng Hoh Lee¹; Bin Hu²; Zhe Lu³; Yeon-Gil Jung³; Je-Hyun Lee³; ¹Indiana University - Purdue University Indianapolis; ²Dartmouth College; ³Changwon National University

3:40 PM Break

4:00 PM

Irradiation Effects on Additively-Manufactured Stainless Steel and Nickel Base Alloys: C. Joseph Long¹; Peng Xu¹; William Cleary¹; Joon-Hyung Choi¹; Paula Freyer¹; ¹Westinghouse Electric Company

4:20 PM

Customisation of Metal Powders for Additive Manufacturing Applications: the Tekna Process: Jean-Francois Carrier¹; ¹Tekna Plasma Systems

4:40 PM

Reliability-Based Methods for Rapid Certification of Metal Additive Manufactured Parts: Sanjeev Kulkarni¹; Robert Tryon¹; Animesh Dey¹; ¹VEX-TEC

Additive Manufacturing: Building the Pathway towards Process and Material Qualification — Strategies for Qualification in AM I

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Powder Materials Committee, TMS: Process Technology and Modeling Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas; Reginald Hamilton, The Pennsylvania State University; Edward Herderick, GE; Rajiv Mishra, University of North Texas; James Sears, GE GRC

Tuesday PM Room: 205A

February 16, 2016 Location: Music City Center

Session Chairs: Mathieu Brochu, McGill University; Tarasankar DebRoy, Pennsylvania State University

2:00 PM Invited

Heat Transfer, Fluid Flow and Solidification in Additive Manufacturing: Tarasankar DebRoy¹; ¹The Pennsylvania State University

2:30 PM

Empirical Approach to Understanding the Fatigue Behavior of Metals Made Using Additive Manufacturing: David Witkin¹; Thomas Albright¹; Dhruv Patel¹; ¹The Aerospace Corporation

2:50 PM

Microstructural and Mechanical Characterization of □-Titanium Aluminide Manufactured by Electron Beam Melting: Mohsen Seifi¹; Ayman Salem²; Daniel Satko²; Ulf Ackelid³; John Lewandowski¹; ¹Case Western Reserve University; ²Materials Resources LLC; ³Arcam AB

3:10 PM

Microstructure Evolution of Martensitic Stainless Steel in Laser Hot Wire Cladding with Multiple Heating Passes: Shaopeng Wei¹; Gang Wang¹; Zhenguo Nie¹; Zilin Huang²; Yiming Rong¹; ¹Tsinghua University; ²Beijing Jiaotong University

3:30 PM Break

3:50 PM Invited

Difference in Microstructure and Properties of Al Alloy Parts Processed by Selective Laser Melting and Powder Deposition Processes: *Mathieu Brochu*¹; Ryan Chou¹; Jason Milligan¹; Javier Arreguin-Zavala¹; Yuan Tian¹; ¹McGill University

4:20 PM

Joining of Metallic Structures Using Powder Bed Fusion Additive Manufacturing Technology: Jorge Mireles¹; ¹The University of Texas at El Paso

4:40 PM

Linking Fatigue Life Scatter to Microstructure Variability in DMLS: *Todd Book*¹; Michael Sangid¹; ¹Purdue University

5:00 PM

Study of Internal Fatigue Crack Growth from an Additive Manufacturing Initiated Flaw: William Musinski¹; Edwin Schwalbach¹; Adam Pilchak¹; ¹US Air Force Research Lab

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session IV

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; John Carpenter, Los Alamos National Laboratory; Marko Knezevic, University of New Hampshire; Wolfgang Pantleon, Technical University of Denmark; Thomas Bieler, Michigan State University; Khalid Hattar, Sandia National Laboratories; Irene Beyerlein, Los Alamos National Laboratory

Tuesday PM Room: 103B

February 16, 2016 Location: Music City Center

Session Chairs: Gerhard Dehm, Max-Planck-Institut für Eisenforschung; Qian Yu, University of Michigan, Ann Arbor

2:00 PM Invited

In Situ TEM Characterization on Size-related Dislocation Behavior in Mg and Phase Transformation in Ti: Qian Yu¹; ¹University of Michigan, Ann Arbor

2:30 PM

Characterization of Atomistic Structures by Simulated Kikuchi Diffraction: Adam Herron¹; Eric Homer¹; Shawn Coleman²; Douglas Spearot³; ¹Brigham Young University; ²US Army Research Laboratory; ³University of Arkansas

2.50 PM

Secondary Deformation Density of a TWIP-TRIP Steel Strained at High Rates: Jake Benzing¹; Whitney Poling²; Dean Pierce²; Kip Findley²; James Wittig¹; ¹Vanderbilt University; ²Colorado School of Mines

3:10 PM

Interrupted Quasi-static and Dynamic Tensile Experiments of Fully Annealed 301 Stainless Steel: Oscar Rivera¹; Zackery McClelland²; Paola Rivera³; Wilburn Whittington⁴; David Francis⁴; Robert Moser²; Paul Allison¹; ¹The University of Alabama; ²US Army Corps of Engineers, Engineer Research and Development Center; ³University of Puerto Rico Mayaguez; ⁴Mississippi State University

3:30 PM Break

3:50 PM Invited

Unexpected Stress Induced Martensite Formation in Ultra-strong Pearlitic Steel: Soundes Djaziri¹; Yujiao Li¹; Shoji Goto²; Dierk Raabe¹; *Gerhard Dehm*¹; ¹Max-Planck-Institut für Eisenforschung; ²Akita University

4:20 PM

In-situ Investigation of Rate Dependent Material Properties under Non-ambient Conditions: Challenges, Limitations & Insights: Reinhard Fritz¹; Alexander Leitner²; Verena Maier³; Daniel Kiener¹; ¹Montanuniversität Leoben; ²Materials Center Leoben; ³Austrian Academy of Sciences

4:40 PM

A Study of Local Rate Sensitivity in Dual-phase Ti Alloys by Micropillar Compression and CPFE Modelling: *Tea-Sung Jun*¹; Zhen Zhang¹; Fionn Dunne¹; Ben Britton¹; ¹Imperial College London

5:00 PM

Grain Boundary Engineering of a Low Stacking Fault Energy Ni-base Superalloy: Joshua McCarley¹; Sammy Tin¹; 'Illinois Institute of Technology

5:20 PM

Evolution of Void Shape Anisotropy in Deformed bcc Steels: *Gregory Gerstein*¹; Florian Nürnberger¹; Hans Jürgen Maier¹; ¹Leibniz Universität Hannover

5:40 PM

Neutron Diffraction Residual Stress Measurements in Al-Cu Cold Spray Deposited Coatings: Luke Brewer¹; Lindsay Kolbus²; E. Payzant²; Jeremy Leazer³; Benjamin Bouffard⁴; ¹Other; ²Oak Ridge National Laboratory; ³Naval Postgraduate School; ⁴Naval Surface Warfare Center Carderock Division

Advanced Magnetic Materials: An FMD Symposium in Honor of Michael E. McHenry — Soft Magnetic Materials II

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Magnetic Materials Committee

Program Organizers: Raju Ramanujan, Nanyang Technological University; Matthew Willard, Case Western Reserve University; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory

Tuesday PM Room: 209C

February 16, 2016 Location: Music City Center

Session Chairs: Matthew Willard, Department of Materials Science and Engineering; M H Phan, University of South Florida

2:00 PM Invited

Recent Studies on Half Metallic Ferromagnets Belonging to the Heusler Family: KG Suresh'; 'IIT Bombay

2:30 PN

Advanced Soft Magnetic Material Enabled Devices and Components for Emerging Energy Applications: Paul Ohodnicki¹; Subhashish Bhattacharya²; Alex Leary³; Vladimir Keylin³; Michael McHenry³; ¹National Energy Technology Laboratory; ²North Carolina State University; ³Carnegie Mellon University

2:50 PM

Nanocomposite Soft Magnetic Alloys: Two Decades of Progress: Matthew Willard¹; Maria Daniil¹; ¹Case Western Reserve University

3:10 PM

High Silicon Iron Alloy Strips by Single-step Shear Deformation: Andrew Kustas¹; Srinivasan Chandrasekar¹; Kevin Trumble¹; ¹Purdue University

3:30 PM Break

3:50 PM

Low Cost Soft Magnets for High Temperature Sensing Applications: *Michael Kurniawan*¹; Vladimir Keylin¹; Ashis Panda²; Rajat Roy²; David Greve¹; Paul Ohodnicki³; Michael McHenry¹; ¹Carnegie Mellon University; ²CSIR-National Metallurgical Laboratory; ³NETL

4:10 PM

Magnetic Nanoparticle-based Solder Composites for Electronic Packaging Applications: *Siyang Xu*¹; Ashfaque Habib¹; Michael McHenry¹; ¹Carnegie Mellon University

4:30 PM

Magnetic Properties of Size-controlled Ni Nanoparticles Modified with Tri-n-octylphosphine: Kenichi Yatsugi¹; Toshitaka Ishizaki¹; Kunio Akedo¹; ¹Toyota Central R&D Labs.,Inc.

4:50 PM

Soft-Phase Engineering and Hard-Phase Engineering in Exchange-Coupled Nanocomposite Magnets: J.Ping Liu¹; ¹University of Texas-Arlington

5:10 PM

Novel Applications of Magnetic Nano-composites in Semiconductor Packaging: Raja Swaminathan¹; ¹Intel Corporation

Alloys and Compounds for Thermoelectric and Solar Cell Applications IV — Session IV

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CRISMAT laboratory; Stephane Gorsse, ICMCB-CNRS; Yoshisato Kimura, Tokyo Institute of Technology; Lan Li, Boise State University; CW Nan, Tsinghua University; G. Jeffrey Snyder, Northwestern University; Hsin-jay Wu, National Sun Yat-Sen University

Tuesday PM Room: 103C

February 16, 2016 Location: Music City Center

Session Chairs: Lan Li, Boise State University; Sinn-wen Chen, National Tsing Hua University

2:00 PM Invited

Study of Diffusion Barrier for the Interfacial Reactions in Thermoelectric Materials under Current Stressing: Albert T. Wu¹; Li-Chen Lo¹; Po-Yin Chien¹; ¹National Central University

2:20 PM Invited

Thermoelectric Mg- and Mn-Silicides: Challenges and Opportunities for Industrial Applications: Vicente Pacheco¹; ¹Fraunhofer Institute IFAM

2:40 PM

Interfacial Reactions of PbTe and Pb_{0.6}Sn_{0.4}Te Thermoelectric Materials with Ag and Cu Foils Using Rapid Hot-Pressing Method and SLID Technique: *Cheng-Chieh Li*¹; F. Drymiotis²; L. L. Liao³; H. T. Hung⁴; C. K. Liu³; C. Robert Kao⁴; G. Jeffrey Snyder¹; ¹Northwestern University; ²California Institute of Technology; ³Industrial Technology Research Institute; ⁴National Taiwan University

3:00 PM

Interfacial Reactions at the Joints in the CoSb3-based Thermoelectric Devices: *Alan Chu*¹; Sinn-wen Chen¹; David Wong¹; ¹Department of Chemical Engineering, National Tsing Hua University

3:20 PM Invited

Qualification and Opportunities of Direct Casting as an Industrialized and Scalable Manufacturing Method for Silicon Based Semi Conductor Materials: *Maarten Heijer*¹; ¹RGS Development B.V.

3:40 PM Break

4:00 PM

Iron Oxide Based Amorphous Semiconductor Thin Films with Extraordinary Optical Transmission and Electrical Conductivity: Abhinav Malasi¹; Humaira Taz¹; Annette Farah¹; Benjamin Lawrie²; Raphael Pooser²; Arthur Baddorf²; Gerd Duscher¹; *Ramki Kalyanaraman*¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

4:20 PM

Kinetics of Boron Removal from Metallurgical Grade Silicon Using High Basic Calcium Silicate Slag Refining: *Jijun Wu*¹; Min Xu¹; Wenhui Ma¹; Kuixian Wei¹; Bin Yang¹; Yongnian Dai¹; ¹Kunming University of Science and Technology

4:40 PM

Surface Passivation by AlOx in c-Si Solar Cells: *Haider Ali*¹; Kristopher Davis¹; Winston Schoenfeld¹; ¹UNIVERSITY OF CENTRAL FLORIDA

5:00 PM

Investigation of Thin Film Deposition inside Hollow Polymer Cylinders for Solar Energy Harvesting Fabric: *Mikayla Ehrsam*¹; Humaira Taz¹; Abhinav Malasi¹; Ramki Kalyanaraman¹; Connor Carr¹; ¹University of Tennessee Knoxville

5:20 PM Concluding Comments

Alumina & Bauxite — Precipitation and Innovation

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Paul McGlade, GHD

Tuesday PM Room: 203A

February 16, 2016 Location: Music City Center

Session Chair: Shannon Parks, Alcoa

2:00 PM Introductory Comments

2:05 PM

Going FAR (Floating Alumina Refinery): Bradley Hogan¹; ¹WorleyParsons

2:30 PM

Sustaining Capital of Alumina Refinery Projects – Important but Unloved: Peter-Hans ter Weer¹; ¹TWS Services and Advice

2:55 PM

Alkalinity Precipitation Measurement on Carbonation of Bauxite Residue: Luis Venancio¹; José Antonio Souza²; Emanuel Macedo²; Fernando Botelho²; ¹Federal University of Maranhao; ²Federal University of Pará

3:20 PM Break

3:35 PM

Extraction of Alumina from the Magnetic Separation Tailings Derived from Reductive Roasting of Red Mud: *Guanghui Li*¹; Bona Deng¹; Jinghua Zeng¹; Zhuoxuan Li¹; Tao Jiang¹; ¹School of Minerals Processing and Bioengineering, Central South University

4:00 PM

Reaction Behavior and Conversion of Anatase in Alumina Production Process with Calcification-carbonization Method: Wang Yanxiu¹; Zhang Ting'an¹; Lv Guozhi¹; Zhu Xiaofeng¹; Zhang Weiguang¹; ¹Northeastern University

4:25 PN

Research on Activated Alumina Obtained by Spray Pyrolysis Method: Wang Long¹, Zhang Ting'an¹; Lv Guozhi¹; Aichun Zhao²; Ma Sida¹; Weiguang Zhang¹; ¹Northeastern University; ²School of Material Science and Engineering, Taiyuan University of Science and Technology

Aluminum Alloys, Processing and Characterization — Plasticity Behavior

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Steven Long, Kaiser Aluminum Corporation

Tuesday PM Room: 201B

February 16, 2016 Location: Music City Center

Session Chair: Xiyu Wen, University of Kentucky

2:00 PM Introductory Comments

2:05 PM Invited

On Microstructures, Textures and Electric Resistivity of Hot Band Annealing of Continuous Casting AA5754 Alloy: Xiyu Wen¹; Jingwu Zhang²; Shridas Ningileri³; ¹University of Kentucky; ²Yanshan University; ³Secat Inc.

2:30 PM

New Methodology to Determine Stable Texture Components under Different Strain Paths in fcc Metals: Usman Ali¹; Abhijit Brahme¹; Raja Mishra²; Kaan Inal¹; ¹University of Waterloo; ²General Motors Research and Development Center

2:55 PM

Recrystallization in Al-Mg Alloys after Hot Compression: *Ryann Rupp*¹; Andrew Weldon¹; Trevor Watt¹; Raul Perez-Bustamante¹; Ken Takata²; Eric Taleff¹; ¹The University of Texas at Austin; ²Nippon Steel and Sumitomo Metal Corp.

3:20 PM Break

3:35 PM

Large Strain Cyclic Simple Shear Behavior of Aluminum Extrusions: An Experimental and Numerical Study: *Kaan Inal*¹; Waqas Muhammad¹; Abhijit Brahme¹; Jidong Kang²; Raja Mishra³; ¹University of Waterloo; ²Canmet-MATERIALS; ³General Motors Research and Development Center

4.00 PM

Quasi and Dynamic Compression of ECAP Processed AA 6082: Ehab El-Danaj¹; Muneer Baig¹; ¹King Saud University

4:25 PM

Study on Hot Sizing and Creep-ageing Behavior of Al-Cu-Mn Cast Alloy: Wenguang Wang¹; Gang Wang¹; Peng Du¹; Guannan Guo²; Yiming Rong²; Institute of Manufacturing Engineering, Tsinghua University; ²Department of Manufacturing Engineering, Worcester Polytechnic Institute

4:50 PM

Producing Nanostructured Aluminum Alloys for Advanced Electrotechnical Application Using Severe Plastic Deformation: Ruslan Valiev¹; Maxim Murashkin¹; Georgy Raab¹; Aleksandr Krokhin²; ¹Ufa State Aviation Technical University; ²UC Rusal

Aluminum Reduction Technology — Smelter Operation & Energy Management

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Stephan Broek, Hatch Ltd

Tuesday PM Room: 202C

February 16, 2016 Location: Music City Center

Session Chair: Till Reek, TRIMET Aluminium SE

2:00 PM

Enhancing Production Performance by Optimization All Resources at PT INALUM (Persero): Muhammad Syafri Sunardi¹; Sahala Sijabat¹; Ivan Ermisyam¹; ¹PT. Indonesia Asahan Aluminium (INALUM)

2:25 PM

A Novel Method for Processing Sodium Reduction Skimming Station Residue: Shane Polle¹; Shaikha Al Shehhi¹; Halim Khan¹; Yousuf Abdulkhaliq¹; Bharat Gadilkar¹; Deepu Ramchandran¹; ¹Emirates Global Aluminium, Al Taweela

2:50 PM

The 'Virtual Battery' – Operating an Aluminium Smelter with Flexible Energy Input: Roman Düssel¹; Till Reek¹; Pretesh Patel²; Nicholas Depree²; ¹TRIMET Aluminium SE; ²LMRC Auckland

3:15 PM Break

3:30 PM

Understanding the Basic Requirements of the Anode Set Modifier: Hershall Cotten¹; ¹RTW-Refractory, Inc.

3:55 PM

Reduction Operating Experience on Power Shading at Maaden: Abdulaziz Al Taisan¹; ¹Ma'aden Aluminium

4:20 PM

Effect of Carbon Dust on the Electrical Resistivity of Cryolite Bath: Louis Bugnion¹; Jean-Claude Fischer¹; ¹R&D Carbon Ltd.

Bio Nano Interfaces and Engineering Applications — Bio-Nano Interfaces: Fundamentals II

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Po-Yu Chen, National University of Tsing Hua University; Terry Lowe, Colorado School of Mines; John Nychka, University of Alberta; Wen Yang, Swiss Federal Institute of Technology in Zurich (ETHZ)

Tuesday PM Room: 206B

February 16, 2016 Location: Music City Center

Session Chair: Yuhei Hayamizu, Tokyo Institute of Technology

2:00 PM Invited

Mechanism of Specific Recognition of Pt Nanocrystals by Peptides and of their Formation from Seed Crystals: Hadi Ramezani-Dakhel; Yu Huang¹; Hendrik Heinz²; ¹University of California-Los Angeles; ²University of Akron

2:30 PM Invited

Computational Models of Peptide-Surface Interactions Drawn from Bacterial Display Studies: Up Close and Personal: Margaret Hurley¹; Dimitra Stratis-Cullum¹; Bryn Adams¹; Justin Jahnke¹; Deborah Sarkes¹; Hong Dong¹; ¹US Army Research Laboratory

3:00 PM Invited

Design Rules for Molecularly Interfacing Biology and Engineered Solids towards Biomimetic Devices: Mehmet Sarikaya¹; ¹University of Washington

3:40 PM Break

4:00 PM Invited

Molecular-level Understanding of Peptide Adsorption at Fluid/Solid Interfaces through Molecular Simulation and Its Exploitation in Practise: Mark Biggs¹; ¹Loughborough University

4:30 PM Invited

Novel Gyratory Methods for Forming Smart Biointerfaces: Mohan Edirisinghe¹; ¹University College London

Biological Materials Science Symposium — Biomaterials II

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Francois Barthelat, McGill University; Kalpana Katti, North Dakota State University; Paul Allison, University of Alabama; Rajendra Kasinath, DePuy Synthes Products, LLC

Tuesday PM Room: 207A

February 16, 2016 Location: Music City Center

Session Chairs: Rajendra Kasinath, DePuy Synthes; Kalpana Katti, North Dakota State University

2:00 PM Invited

Synthesis of Multifunctional Scaffolds from Natural Materials by Freeze Casting Technique: *Po-Yu Chen*¹; Haw-Kai Chang¹; Pang-Hsuan Lee¹; Wen-Kaung Liu¹; Hsin-Jui Wang¹; Chih-Hsiang Chang²; Chin-Chih Tai²; Tzer-Shen Lin²; ¹National Tsing Hua University; ²Industrial Technology Research Institute

2:40 PM

Fabrication of Polymer/Bio-based Hydroxyapatite Composite Electrospunn Fibers for Scaffold Applications: Vijay Rangari¹; Vitus Apalangya²; Shaik Jeelani¹; Tiimob Boniface¹; Samuel Temesgen¹; ¹Tuskegee University; ²Allen University

3:00 PM

Nanoclay Scaffold Testbed for Growing 3D Cancer Tumoroids: Kalpana Katti¹; MD Shahajahan Molla¹; Dinesh Katti¹; ¹North Dakota State University

3:20 PM Break

3:40 PM

The Effect on Head and Neck Cancer Cell Induced by N2/He Micro-plasma Exposure: Chih-Ying Wu¹; Jiunn-Der Liao¹; ¹Department of Materials Science and Engineering, National Cheng Kung University

4:00 PM

Atomistic-based Continuum Model of Spontaneous Self-assembly and Dynamics of Double Helix Polymers: *Helena Zapolsky*¹; Mykola Lavrskyi¹; Armen Khachaturyan¹; ¹University of Rouen

Bladesmithing Symposium 2016 — Session II

Sponsored by: No Sponsors Found!

Program Organizers: Bharat Jasthi, South Dakota School of Mines and Technology; Roxana Ruxanda, Emerson Climate Technologies; Garry Warren, University of Alabama; Michael West, South Dakota School of Mines and Technology

Tuesday PM Room: 104A

February 16, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM Introductory Comments

2:05 PM

A New Decorative Steel: Cryo-quenched Fe-Ni-Cr Alloy Single Crystals: Lynn Boatner¹; ¹Oak Ridge National Laboratory

2.25 PM

Going Berserk: The Making of a Viking Sword: David Sapiro¹; ¹Carnegie Mellon University

2:45 PM

The Creation of the Sword "Berkelium" through Authentic Saxon Sword Manufacturing Techniques: *Hi Vo*¹; David Frazer¹; Nathan Bailey¹; Rachel Traylor¹; Rachel Connick¹; William Connick¹; Jeff Bickel¹; James Austin¹; Peter Hosemann¹; ¹University of California, Berkeley

3:05 PM

Material Design, Processing, and Characterization of Hand-Forged 5160 Spring Steel Sword: Ziyin Huang¹; Christine Palmer¹; David Freiberg¹; William McDonnell¹; Travis Weiss¹; Caelyn Palmer¹; Mitra Taheri¹; Richard Knight¹; ¹Drexel University

3:25 PM

Pattern Welded Steel Using Commercially Available Steel: Michelle Hoffmann¹; ¹Colorado School of Mines

3:45 PM Break

4:00 PM

Accumulative Roll Bonding: Mary Hawgood¹; ¹Illinois Institute of Technologoy

4:20 PM

South Dakota School of Mines and Technology Bladesmithing Team: Luke Shearer¹; ¹South Dakota School of Mines and Technology

4:40 PM

University of Alberta Bladesmithing Group: *Ivan Au*¹; Neil Anderson¹; ¹University of Alberta

5:00 PM

Optimization of Mechanical and Chemical Properties of Knife Blade Alloys: Lucas Teeter¹; Cody Fast; ¹Oregon State University

5:20 PM

University of North Texas Bladesmithing Submission: Brandon Ohl¹; ¹University of North Texas

Bulk Metallic Glasses XIII — Structures and Mechanical Properties II

Sponsored by:TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Tuesday PM Room: 101E

February 16, 2016 Location: Music City Center

Session Chairs: Lindsay Greer, University of Cambridge; Do Hyang Kim, Yonsei University

2:00 PM Keynote

Manipulating the Glassy State in Metals: A. Greer¹; ¹University of Cambridge

2:30 PM

Elastic Heterogeneity in Compositionally-Varied Bulk Metallic Glasses and Their Composites: *Kelly Kranjc*¹; Peter Tsai¹; Emmanuelle Marquis²; Wolfgang Windl³; Katharine Flores¹; ¹Washington University; ²University of Michigan; ³Ohio State University

2:50 PM Invited

Designed Heterogeneities Improve the Fracture Reliability of a Zr-based Bulk Metallic Glass: *Jamie Kruzic*¹; Bosong Li¹; Hamed Shakur Shahabi²; Sergio Scudino²; Jürgen Eckert²; ¹Oregon State University; ²IFW Dresden

3:15 PM Invited

Shear-Band Stress Fields and Cavitation in Metallic Glasses: Robert Maass 1 ; 1 University of Illinois at Urbana-Champaign

3:35 PM Break

3:50 PM Invited

Effect of Composition on Mechanical Rejuvenation by HPT Deformation in Zr-Cu-Al-Ni Metallic Glass: Koichi Tsuchiya¹; Jiang Qiang²; Seiichiro II¹; Shinji Kohara¹; Koji Ohara³; Osami Sakata¹; Karin Dahmen⁴; Peter Liaw⁵; ¹NIMS; ²University of Tsukuba; ³JASRI; ⁴University of Illinois at Urabana-Champaign; ⁵Univesity of Tennessee, Knoxville

4:10 PM

Effect of Microstructure on Mechanical Properties of Cu-Zr-Ti BMG Composites: Byoung Jin Kim¹; Won Tae Kim²; Do Hyang Kim¹; ¹Yonsei university; ²Cheongju University

4:30 PM

Mechanical Properties of Micro-sized Metallic Glass Spheres: Feng Jiang¹; Xiang Zhou¹; Ke Tang¹; Jun Sun¹; ¹Xi'an Jiaotong University

4:50 PM

Formation, Structure and Dynamics of Plastic Zr-based Bulk Metallic Glasses: Xidong Hui¹; Tuo Wang¹; Yandong Wang¹; Lina Hu²; ¹University of Science and Technology Beijing; ²Shandong University

Bulk Processing of Nanostructured Powders and Nanopowders by Consolidation — Session IV

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Deliang Zhang, Shanghai Jiao Tong University; Bowen Li, Michigan Technological University; Stephen Mashl, Michigan Technological University

Tuesday PM Room: 210

February 16, 2016 Location: Music City Center

Session Chairs: Dengshan Zhou, Shanghai Jlao Tong University; Yongho Sohn, Central Florida University

2:00 PM Invited

Progress Towards Development of Nanostructured Magnesium Alloys and Composites: Understanding of Magnesium Strengthening by Solid Solutioning and Grain Size Reduction: *Kyu Cho*¹; Anit Giri¹; Franklyn Kellogg¹;

Clara Hofmeister²; Catherine Kammerer²; Le Zhou²; Esin Geller²; Abhishek Mehta²; Yongho Sohn²; ¹US Army Research Laboratory; ²University of Central Florida

2:30 PM Invited

Spark Plasma Sintering of Nano-Crystalline High Surface Systems: Eugene Olevsky¹; ¹San Diego State University

3.00 PM

Atomistic Simulation of Sintering of Nanopowders in Direct Metal Laser Sintering Process: *Yi Zhang*¹; Jing Zhang¹; Indiana University-Purdue University Indianapolis

3:20 PM

Achieving Good Mechanical Properties and High Thermal Stability with Ultrafine Grained Cu-5at%Zr Alloy Synthesized by High Energy Mechanical Milling and Spark Plasma Sintering: Wei Zeng¹; Dengshan Zhou¹; Deliang Zhang¹; ¹Shanghai Jiaotong University

3:40 PM Break

4:00 PM

The Influence of Heat Treatment Temperatue on the Bulk Cu-Al/B4C Prepared by Spark Plasma Sintering: *Jingchun Liu*¹; Xinjia Liu²; Genfu Yuan²; ¹Jiangnan university; ²Jiangnan University

4:20 PM

Fabrication of Titanium with a Novel Duplex Microstructure and High Strength: *Yifeng Zheng*¹; Xun Yao¹; Yongjun Su¹; Deliang Zhang¹; ¹Shanghai Jiao Tong University

4:40 PM

Structural and Magnetic Properties of MnBi Extrudates: *Xiujuan Jiang*¹; Mike Dahl¹; Wei Xie¹; Matthew Kramer²; Jun Cui³; ¹Pacific Northwest National Lab; ²Ames National Laboratory; ³Iowa State University

5:00 PM

Spark Plasma Heat Treated Coarse- and Nano-powder ZrB2-SiC and HfB2-SiC Composites: *Naidu Seetala*¹; Marquavious Webb¹; Lawrence Matson²; HeeDong Lee³; Carmen Carney²; Thomas Key³; ¹Gramblimg State University; ²Wright-Patterson Air Force Base; ³UES, Inc.

5:20 PM

Nanocrystalline Alumina Processing for High Pressure Sintering: Dana Kazerooni¹; Boris Feigelson¹; James Wollmershauser¹; Edward Gorzkowski¹; ¹Naval Research Laboratory

Cast Shop Technology: An LMD Symposium in Honor of Wolfgang Schneider — Furnaces and Energy Efficiency

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Mohamed Hassan, Masdar Institute of Science and Technology

Tuesday PM Room: 202A

February 16, 2016 Location: Music City Center

Session Chairs: Cynthia Belt, Consultant; Mark Jolly, Cranfield University

2:00 PM Introductory Comments

2:05 PM

Aluminum Casting Furnace Energy Efficiency: Recent Improvements in RTA Casthouses: Vincent Goutiere¹; Martin Fortier¹; ¹Rio Tinto Alcan

2:30 PM

Case Study on Round-Top Fire Rates: Cynthia Belt1; 1Consultant

2:55 PM

Increasing Holding Furnace Capacity from 30 to be 40 Tons Molten Aluminium through Modification of Lining Design: Muhammad Syafri Sunardi¹; IVAN ERMISYAM¹; Sahala Sijabat¹; ¹PT. Indonesia Asahan Aluminium (INALUM)

3:20 PM

Furnace Modelling for Efficient Combustion Gas Circulation: *Ayoola Brimmo*¹; Mohamed Hassan¹; ¹Masdar Institute of Science and Technology

3:45 PM Break

4:00 PM

Furnace Pressure Control Technology for Fuel Efficiency: Robert Voyer¹; Francis Caron²; ¹Hatch; ²Alcoa

4:25 PM

Calculated Aluminum Oxidation Rates during Rotary Furnace Melting through Flue Gas Analysis - Part Two: Stewart Jepson¹; Hwanho Kim¹; ¹Air Liquide

4:50 PM

On the Cast House Exergy Management: Mohamed Hassan¹; *Ayoola Brimmo*¹; ¹Masdar Institute of Science and Technology

CFD Modeling and Simulation in Materials Processing — Smelting, Degassing, Ladle Processing, Mechanical Mixing, and Ingot Casting

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Laurentiu Nastac, The University of Alabama; Lifeng Zhang, University of Science and Technology Beijing; Brian Thomas, University of Illinois at Urbana-Champaign; Miaoyong Zhu, Northeastern University; Andreas Ludwig, Montanuniversitaet Leoben, Dep. Metallurgy; Adrian Sabau, Oak Ridge National Laboratory; Koulis Pericleous, University of Greenwich; Hervé Combeau, Institut Jean Lamour

Tuesday PM Room: 207D

February 16, 2016 Location: Music City Center

Session Chair: Adrian Sabau, Oak Ridge National Lab

2:00 PM

CFD Modeling of a Ladle with Top Stirring Lance: Haibo Ma¹; Xia Chen¹; Hoyong Hwang²; Megan Pratt³; Russel Mulligan³; *Bin Wu*¹; Guangwu Tang¹; Chenn Zhou¹; ¹Purdue University Calumet; ²ArcelorMittal Global R&D; ³ArcelorMittal Burns Harbor

2:20 PM

Numerical Simulation of Fluid Flow in RH Degasser: *Gujun Chen*¹; Shengping He¹; ¹Chongqing University

2:40 PM

Numerical Simulation on Multiphase Flow in the Two Side-blown Oxygen-enriched Copper Smelting Furnace: Liu Guanting¹; Liu Yan¹; Li Xiaolong¹; Zhang Ting'an¹; Jiang Xiaoli¹; ¹Northeastern University

3:00 PM

3D CFD Modeling of the LMF System: *Laurentiu Nastac*¹; Daojie Zhang²; Qing Cao²; April Pitts³; Robert Williams⁴; ¹The University of Alabama; ²The University of Alabama; ³The University of Alabama, Nucor Tuscaloosa; ⁴Nucor Tuscaloosa

3:20 PM Break

3:40 PM

Application of CFD to Multi-phase Mixing in the Metals and Mining Industries: Duane Baker¹; ¹Hatch Associates

4:00 PM

Review of Air Entrainment Study in Steel Casting: $Jun~Ge^1$; Charles Monroe¹; ^1UAB

4:20 PM

Numerical Study and Experimental Validation of Multiple Pouring Processes in a 438 Ton Steel Ingot: *Duan Zhenhu*¹; Shen Houfa¹; Kang Jinwu¹; Liu Baicheng¹; ¹Tsinghua University; Beijing 100084, Chin

5:00 PM

Numerical Simulation of Effect of Different Electrodes on Magnetic Force and Flow Field of Pure Aluminum Melt: *Qixin Wang*¹; Xiang Wang¹; Zhishuai Xu¹; Ning Pei¹; Yongyong Gong¹; Qijie Zhai¹; ¹Shanghai University

4:40 PM

3D CFD Multicomponent Model for Cold Spray Additive Manufacturing of Titanium Particles: *Muhammad Faizan-Ur-Rab*¹; Saden Zahiri²; Syed Masood¹; M. Jahedi²; R. Nagarajah¹; ¹Swinburne University of Technology; ²CSIRO Manufacturing Flagship

Characterization of Minerals, Metals, and Materials — Clays & Ceramics

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Tuesday PM Room: 103A

February 16, 2016 Location: Music City Center

Session Chairs: Jiann-Yang Hwang, Michigan Technological University; Maria Silva-Valenzuela, Federal University of ABC

2:00 PM

Formulation of Ceramic Body to Produce Roofing Tiles Using Winkler Diagram: Lucas Amaral¹; Carlos Mauricio Vieira¹; Sérgio Monteiro¹; ¹State University of the North Fluminense Darcy Ribeiro

2:20 PM

FTIR Spectroscopy of Some Brazilian Clays: Maria das Graças Silva-Valenzuela¹; Wang Shu Hui²; Francisco Valenzuela Díaz²; ¹Federal University of ABC; ²University of São Paulo

2:40 PM

In-situ High Temperature X-ray Computed Micro-tomography of Ceramic Matrix Composite Processing: *Natalie Larson*¹; Alastair MacDowell²; Dilworth Parkinson²; Carlos Levi¹; Frank Zok¹; ¹University of California, Santa Barbara; ²Lawrence Berkeley National Lab

3:00 PM

Large Volume 3D Reconstruction of Metal and Ceramic Microstructures by Xe-ion Plasma FIB: *Madeleine Kelly*¹; Gregory Rohrer¹; ¹Carnegie Mellon University

3:20 PM

Mechanical Properties of Zirconium Diboride Ultra-high Temperature Ceramics in Wide Range of Strain Rates: Evgeniya Skripnyak¹; Vladimir Skripnyak¹; Anatolii Bragov¹; Andrei Lomunov¹; Irina Vaganova¹; ¹National Research Tomsk State University

3:40 PM Break

3:55 PM

Preparation and Characterization of Microcapsules from PBSL/VMF2 Nanocomposite: Maria das Graças Silva-Valenzuela¹; Guilherme Fabozzi²; Felipe Cebukin²; Helio Wiebeck²; Francisco Valenzuela Díaz²; Wang Shu Hui²; ¹Federal University of ABC; ²University of São Paulo

4:15 PM

Thermal Properties of Polypropylene Nanocomposites with Organoclay and Discarded Bond Paper: Danilo Fermino¹; Christiano Bastos Andrade¹; Duclerc Parra²; Ademar Lugão³; Francisco Valenzuela Diaz¹; ¹USP; ² IPEN/CNEN; ³IPEN/CNEN

4:35 PM

Incorporation of Waste Ceramic Blocks in Structural Ceramics: *Orley Oliveira*¹; Christiano Gianesi Bastos Andrade¹; Antonio Hortencio Munhoz Junior²; Maria das Graças Silva Valenzuela³; Francisco Valenzuela¹; ¹USP; ²Universidade Mackenzie; ³Universidade Federal do ABC

4:55 PM

Solidification of Dredged Sludge by Hydraulic Ash-slag Cementitious Materials: *Shu-Jing Zhu*¹; Jiann-Yang Hwang²; ¹WISCO R&D Center; ²Michigan Technological University

5:15 PM

Synthesis and Characteristics of Anorthite Ceramics from Steelmaking Slag: Bowen Li¹; *Mingsheng He*²; Jiann-Yang Hwang¹; ¹Wuhan Iron & Steel Company Group/Michigan Technological University; ²Wuhan Iron & Steel Company Group

Computational Materials Engineering for Nuclear Reactor Applications — Accident Tolerant Fuel Concepts

Sponsored by:

Program Organizers: Michael Tonks, Idaho National Laboratory; Julie Tucker, Oregon State University; Mark Tschopp, Army Research Laboratory; Richard Williamson, Idaho National Laboratory

Tuesday PM Room: 101D

February 16, 2016 Location: Music City Center

Funding support provided by: The symposium will be co-sponsored by the ICME

committee

Session Chair: To Be Announced

2:00 PM Invited

Development and Application of Accident Tolerant Fuel Models: *Jason Hales*¹; ¹Idaho National Laboratory

2:40 PM

Analysis of the Candidate Alternative Fuel Cladding FeCrAl during LWR Operation Using the BISON-CASL Fuel Performance Code: R. Sweet¹; N. George¹; K. Terrani²; B. Wirth¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

3:00 PM

Thermo-Mechanical Analysis of SiC/SiC Composite Cladding for LWR Application.: *Gyanender Singh*¹; Kurt Terrani¹; Yutai Katoh¹; ¹Oak Ridge National Laboratory

3:20 PM Break

3:40 PM

Role of Stoichiometry on Ordering in Ni-Cr Alloys: Fei Teng¹; Julie Tucker²; ¹Oregon State University ; ²Oregon State University

4:00 PM Invited

Long-Term Defect Evolution in Iron-based Alloys from SEAKMC Simulations: *Haixuan Xu*¹, ¹University of Tennessee

4:40 PM

Optimization of Self-interstitial Clusters in 3C-SiC Using Generic Algorithm: *Hyunseok Ko*¹; Amy Kaczmarowski¹; Izabela Szlufarska¹; Dane Morgan¹; ¹University of Wisconsin - Madison

5:00 PM

Phase-field modeling of ODS particle behavior in the metallic system.: *Ku-nok Chang*¹; Junhyun Kwon¹; ¹Korea Atomic Energy Research Institute

5:20 PM

Silicon and Vacancy Diffusion near an Edge Dislocation in Nickel under Irradiation: *Zebo Li*¹; Thomas Garnier²; Venkateswara Manga³; Maylise Nastar⁴; Pascal Bellon¹; Robert Averback¹; Dallas Trinkle¹; ¹University of Illinois, Urbana-Champaign; ²Robatel Industries; ³Univ. Arizona; ⁴CEA, DEN, Service de Recherches de Métallurgie Physique

Computational Methods for Spatio-temporal Scale-bridging: from Atomistics to Mesoscale — Mesoscale Methods

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Danny Perez, Los Alamos National Laboratory; Dallas Trinkle, University of Illinois, Urbana-Champaign; Maryam Ghazisaeidi, Ohio State University; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Tuesday PM Room: 209A

February 16, 2016 Location: Music City Center

Session Chairs: Ken Elder, Oakland University; Danny Perez, Los Alamos National Laboratory

2:00 PM

A Multi-scale Approach to Shearing of Ordered Intermetallic Phase in Multi-phase Alloys: Bridging Ab Initio Calculation and Phase Field Simulation: *Duchao Lv*¹; Pengyang Zhao¹; Donald McAllister¹; Michael Mills¹; Yunzhi Wang¹; ¹OSU MSE

2:20 PM

Quasiparticle Approach to Diffusional Atomic Scale Self-Assembly of Complex Structures: *Helena Zapolsky*¹; Mykola Lavrskyi¹; Armen Khachaturyan²; ¹University of Rouen; ²University of California, Berkeley

2.40 PM Invited

Defects in Phase-Field Crystal Models: Comparison to Molecular Dynamics: David Montiel¹; Jason Luce¹; Bradley Hodge²; Philip Goins²; Elizabeth Holm²; *Katsuyo Thornton*¹; ¹University of Michigan; ²Carnegie Mellon University

3:10 PM

Parameterization of the Structural Phase Field Crystal Model for the Simulation of Grain Boundary Structures and Energies: Jason Luce¹; Katsuyo Thornton¹; ¹University of Michigan

3:30 PM Break

3:50 PM Invited

Recent Advances and Ongoing Challenges in Phase Field Crystal Modeling: Ken Elder¹; Alain Karma²; Zhi-Feng Huang³; Nik Provatas⁴; ¹Oakland University; ²Northeastern University; ³Wayne State University; ⁴McGill University

4:20 PM

Modeling Solidification, Grain Growth, and Phase Transformation by A Modified Two-Mode Phase-Field Crystal Model: Arezoo Emdadi¹; Ebrahim Asadi²; Mohsen Asle Zaeem¹; ¹Missouri University of Science and Technology; ²University of Memphis

4:40 PM

Towards Real-time Multi Scale Modeling: Günter Gottstein¹; Markus Kuehbach¹; Luis Barrales-Mora¹; ¹RWTH Aachen University

Computational Methods for Uncertainty Quantification, Model Validation, and Stochastic Predictions — Uncertainties in Phase-field, Large Scale and Continuum Modeling

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Francesca Tavazza, National Institute of Standards and Technology; Richard Hennig, University of Florida; Mark Tschopp, Army Research Laboratory; Li Ma, NIST

Tuesday PM Room: 207C

February 16, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM Invited

Evaluation of Phase-Field Models Through Stochastic Quantification of Microstructure and Data Analytics: *Yuksel Yabansu*¹; Philipp Steinmetz²; Johannes Hötzer²; Marcus Jainta²; Britta Nestler²; Surya Kalidindi¹; ¹Georgia Institute of Technology; ²Karlsruhe Institute of Technology

2.30 PM

Bayesian Calibration of a Physical Model for Plastic Flow Behavior of TRIP Steels: *Pejman Honarmandi*¹; Raymundo Arroyave¹; ¹Texas A&M University

2:50 PM

Data Analysis in Mesoscale Model of Ductile Damage: Cristina Garcia-Cardona¹; Marian Anghel¹; Ricardo Lebensohn¹; ¹Los Alamos National Laboratory

3:10 PM Invited

Uncertainty Quantification Algorithms for Large-scale Systems: *Dongbin Xiu*¹; ¹University of Utah

3:40 PM Break

4:00 PM

Exploring the Effects of Micro-texture on Engineering-scale Performance: *John Emery*¹; Richard Field¹; Jay Carroll¹; Joseph Bishop¹; ¹Sandia National Laboratories

4-20 PM

Uncertainty Quantification and Propagation for Validation of a Microstructure Sensitive Model for Prediction of Fatigue Crack Initiation: Saikumar Reddy Yeratapally¹; Alberto Mello¹; Michael Sangid¹; Mark Hardy²; Michael Glavicic³; ¹Purdue University; ²Rolls-Royce plc; ³Rolls-Royce Corporation

4:40 PM

Uncertainty Propagation in a Computational Fatigue Model of an Airframe Structure: *Animesh Dey*¹; Robert Tryon¹; Jeremy Holmes¹; Robert McDaniels¹; ¹VEXTEC

5:00 PM

Understanding the Effect of Experimental Uncertainty on the Multistage Fatigue Model: *Justin Hughes*¹; William Williams¹; Mark Horstemeyer¹;
¹Mississippi State University

Computational Thermodynamics and Kinetics — Precipitation and Solidification

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Chemistry and Physics of Materials Committee Program Organizers: Dane Morgan, University of Wisconsin - Madison; Shawn Coleman, U.S. Army Research Laboratory; Xiang-Yang Liu, Los Alamos National Lab; Chris Wolverton, Northwestern University

Tuesday PM Room: 208B

February 16, 2016 Location: Music City Center

Session Chairs: Xiang-Yang (Ben) Liu, Los Alamos National Laboratory; Brian Wirth, University of Tennessee

2:00 PM Invited

Modeling Precipitate Evolution in Irradiated Structural Materials: *Brian Wirth*¹; ¹University of Tennessee

2:30 PM

Simulation of Precipitation Sequence and Mechanical Properties of Al-Mg-Si Casing Alloy with Cu Additions: Chang-Seok Oh¹; Hak Sung Lee¹; ¹Korea Institute of Materials Science

2:50 PM

Modeling Precipitation in Mg-RE Alloys Using First-principles Calculations: *Anirudh Raju Natarajan*¹; Ellen Sitzmann²; Brian Puchala²; Emmanuelle Marquis²; Anton Van der Ven¹; ¹University of California; ²University of Michigan

3:10 PM

Nb Precipitation in ZrNb Alloys: Maeva Cottura¹; Emmanuel Clouet¹; ¹CEA Saclav

3:30 PM Break

3:50 PM

Solidification in Metals: Insights from Nano-scale Predictive Computational Models: Ebrahim Asadi¹; ¹Missouri University of Science and Technology

4:10 PM

First-principles Study of Interfacial Stability and Solute Partitioning in Al-alloy Precipitates: Kyoungdoc Kim¹; Chris Wolverton¹; ¹Northwestern University

4:30 PM

Property Prediction of Rapidly Solidified Al Alloys by Computational Thermodynamic & Kinetic Modeling: Danielle Cote¹; Baillie McNally¹; Victor Champagne²; Richard Sisson¹; ¹Worcester Polytechnic Institute; ²U.S. Army Research Laboratory

4.50 PM

Homogeneous Nucleation and Inner Structure Evolution in Nucleus Fe from Classic Molecular Dynamics Simulation: *Jie Luo*¹; Junjiang Xiao¹; Yongquan Wu¹; ¹shanghai university

5:10 PM

Anisotropy of Crystal-melt Interface of BCC-Fe and FCC-Fe from Molecular Dynamics Simulation: *Linlin Lu*¹; Yewei Jiang¹; Yongquan Wu¹; Junjiang Xiao¹; ¹Shanghai University

5:30 PM

Effect of Solvent and van der Waals Interactions on the Morphology and Assembly of Lead Sulfide Nanocrystals: *Joshua Gabriel*¹; Kiran Mathew²; Richard Hennig¹; ¹ Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611-6400 USA; ²Department of Materials Science and Engineering, Cornell University, Ithaca New York 14853 USA

Electrode Technology — Electrode Baking and Assembly

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Angelique Adams, Alcoa Inc

Tuesday PM Room: 202B

February 16, 2016 Location: Music City Center

Session Chair: Kim Hammill, Alcoa

2:00 PM Introductory Comments

2:10 PM

Anode Baking Furnace Fluewall Design Evolution: A Return of Experience of Latest Baffleless Technology Implementation: Yann El Ghaoui¹; François Morales¹; Sandra Besson¹; Yannick Drouet¹; Alan Tomsett¹; ¹Rio Tinto Alcan

2:35 PM

Effect of Heating Rate during Baking on the Properties of Carbon Anodes Used in Aluminum Industry: Yasmine Chamam¹; Duygu Kocaefe¹; Yasar Kocaefe¹; Dipankar Bhattacharyay¹; Brigitte Morais²; ¹University of Quebec at Chicoutimi; ²Aluminerie Alouette Inc.

3:00 PM

Empirical Modeling of the Baking Furnace to Predict Baked Anode Properties: Amélie Dufour¹; Carl Duchesne¹; Jayson Tessier²; ¹Laval University; ²Alcoa Global Primary Metals

3:25 PM

In Situ Investigation of the Behavior of Anode Assemblies: Simon-Olivier Tremblay¹; Daniel Marceau¹; Duygu Kocaefe¹; Charles-Luc Lagacé²; François Laflamme²; Guy Ladouceur²; ¹University Research Centre on Aluminium (CURAL) - Aluminium Research Centre (REGAL) - University of Québec at Chicoutimi; ²Aluminerie Alouette Inc.

3:50 PM Break

4:05 PM

Low Resistance Anode Assembly Using Steel Stubhole Conductors across the Cast Iron to Carbon Interface: Will Berends¹; ¹Hatch

4.30 PM

Upgrade of the Firing and Control System at Egyptalum for Dual Fuel Firing

: Detlef Maiwald¹; *Domenico Di Lisa*¹; Amir Tharwat Henry²; Mario Mni-koleiski¹; ¹Innovatherm; ²Egyptalum

Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology — Nanosolder; Bi-containing Solder

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Albert T. Wu, National Central University; Yan Li, Intel; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Tuesday PM Room: 201A

February 16, 2016 Location: Music City Center

Session Chairs: Andre Lee, Michigan State University; Fu Guo, Beijing University of Technology

2:00 PM

Effects of Nanosized Ceramic Additions on Microstructure and Mechanical Properties of Sn3.0Ag0.5Cu Composite Solder: Yuriy Plevachuk¹; Peter Švec Sr.²; Peter Švec²; Dusan Janickovic²; Andriy Yakymovych³; Herbert Ipser³; Pavel Šebo²; ¹Ivan Franko National University of Lviv; ²Slovak Academy of Sciences; ³University of Vienna

2:20 PM

Ultrasonic Powder Consolidation of Sn/In Nanoparticles and Their Application for Low Temperature Cu-Cu Soldering: *Yang Shu*¹; Somayeh Gheybi Hashemabad²; Teiichi Ando²; Zhiyong Gu¹; ¹University of Massachusetts Lowell; ²Northeastern University

2:40 PM

Nanoparticle-Reinforced Lead-free Solder Pastes for Electronics Assembly and Packaging: Evan Wernicki¹; Fan Gao¹; Zhiyong Gu¹; ¹University of Massachusetts Lowell

3:00 PM Invited

Sn-Ag-Cu Nanosolders: Reliability of the Solder Joints: Ali Roshanghias¹; Andriy Yakymovych¹; Golta Khatibi²; *Herbert Ipser*¹; ¹University of Vienna; ²Vienna University of Technology

3:25 PM Break

3:45 PM

Electromigration and Thermomigration in Eutectic SnBi Solder Joints: Fu Guo¹; Limin Ma¹; Qian Liu¹; *Yong Zuo*¹; Jing Han¹; ¹Beijing University of Technology

4:05 PM

Effects of Bi on Microstructure Formation and Properties of Sn-Cu-Bi Based Solders: Sergey Belyakov¹; Arif Salleh²; Takatoshi Nishimura³; Keith Sweatman³; Kazuhiro Nogita²; Christopher Gourlay¹; ¹Imperial College London; ²University of Queensland; ³Nihon Superior Co., Ltd.

4:25 PM

Effect of Ag, Ni and Bi Additions on Melting and Solderability of Lead-Free Solders: *Amir Hossein Nobari*¹; Mehran Maalekian²; Karl Seelig²; Mihriban Pekguleryuz³; ¹AIM; ³McGill University

4:45 PM

The High Temperature Performance of BiAgX® As a Lead-Free Drop-In Solder: HongWen Zhang¹; Ning-Cheng Lee¹; ¹Indium Corporation

Energy Technologies and Carbon Dioxide Management — Session IV

Sponsored by:TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Li Li, Cornell University; Donna Guillen, Idaho National Laboratory; Neale Neelameggham, Ind LLC; Lei Zhang, University of Alaska Fairbanks; Jingxi Zhu, Carnegie Mellon University; Nawshad Haque, CSIRO; Dirk Verhulst, Consultant, Extractive Metallurgy; Soumendra Basu, Boston University; Tao Wang, Nucor Steel; Xuan Liu, Carnegie Mellon University

Tuesday PM Room: 104D

February 16, 2016 Location: Music City Center

Session Chairs: Donna Guillen, Idaho National Laboratory; Soumendra Basu, Boston University; Dirk Verhulst, Consultant, Extractive Metallurgy; Tao Wang, Nucor Steel

2:00 PM Invited

Solid Oxide Membrane-Based Technologies for Energy and Environmental Sustainability: Uday Pal¹; ¹Boston University

2:40 PM

Reduction of GHG Emissions through the Conversion of Dairy Waste to Value-Added Materials and Products: Caryn Wendt¹; Donna Guillen²; Chaston Ellis³; ¹Idaho State University; ²Idaho National Laboratory; ³BYU-Idaho

3:00 PM

Production of High-purity Si by Electrolysis in Molten CaCl2: Xiao Yang¹; Kouji Yasuda¹; Toshiyuki Nohira¹; Rika Hagiwara¹; Takayuki Homma²; ¹Kyoto University; ²Waseda University

3:20 PM Break

3:40 PM

Study on Preparing Ti6Al4V Alloys from V-Ti Bearing Beach Placers: Zhijiang Gao¹; Huimin Lu¹; Zegao Sun¹; ¹Beihang University

4:00 PM

Techno-Economic Analysis and Potentials of Biomass

Gasification Technology in Nigeria: Sunday Ojolo¹; *Gbeminiyi Sobamowo*¹; ¹University of Lagos

4:20 PM

Novel Thin Strip Casting Process and Its Energy Consumption: Tao Wang¹; Rama Mahapatra²; Wal Blejde²; ¹Nucor Steel; ²Castrip LLC

4:40 PM

Particles Flow Behavior around Tubes in Moving Bed: *Junxiang Liu*¹; Qingbo Yu²; Wenjun Duan²; Zongliang Zuo²; Qin Qin²; ¹Northeastern University; ²Northeastern University

5:00 PM

Wettability and Interfacial Reactions for Ag-Cu/ BaCo0.7Fe0.2Nb0.1O3-d under Different Oxygen Conditions: *Yu Chenchen*¹; Zhang Lili¹; Guo Wei¹; Zhang Yuwen¹; ¹Shanghai University

5:20 PM

Optimizing the Ex Situ Carbonation of Ophiolitic Rocks via Ball Milling: *Ioannis Rigopoulos*¹; Michalis Vasiliades¹; Ioannis Ioannou¹; Angelos Efstathiou¹; Theodora Kyratsi¹; ¹University of Cyprus

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention — Characterization and Modeling of Fatigue Crack Initiation and Growth

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky; Ashley Spear, University of Utah

Tuesday PM Room: 213

February 16, 2016 Location: Music City Center

Session Chair: Ashley Spear, The University of Utah

2:00 PM Keynote

Reexamining Opportunities in Retirement for Cause for Turbine Rotor Superalloys: James Larsen¹; Sushant Jha²; Harry Millwater³; Charles Annis⁴; Reji John¹; Dennis Buchanan⁵; William Porter⁵; Jay Jira¹; Siamack Mazdiyasni¹; Andrew Rosenberger¹; Vikas Sinha⁶; Patrick Golden¹; William Musinski¹; ¹Air Force Research Laboatory; ²Universal Technology Corp.; ³University of Texas at San Antonio; ⁴Statistical Engineering; ⁵University of Dayton Research Institute; ⁶UES, Inc.

2:40 PM Invited

High Energy X-ray Studies of Fatigue and Fracture: Robert Suter¹; ¹Carnegie Mellon University

3:00 PM Invited

Studies of Short Fatigue Cracks: Anthony Rollett¹; ¹Carnegie Mellon University

3:20 PM

Influence of Slip System Hardening on the Development of Heterogeneous Intragrain Deformation during Cyclic Loading with Correlation to Diffraction Peak Broadening: Robert Carson¹; Paul Dawson¹; ¹Cornell University

3:40 PM Break

4:00 PM Invited

Design for Fatigue Crack Growth Resistance in Structural Light Metal Alloys: Recent Developments and Steps Forward: Diana A. Lados¹; Anthony Spangenberger¹; ¹Worcester Polytechnic Institute

4:20 PM Invited

Relationship between Galvanic Corrosion and Local Plastic Deformation during Fatigue of Al Alloys: Alberto Mello¹; Andrea Nicolas¹; Michael Sangid¹; ¹Purdue University

4:40 PM

Fatigue Crack Growth Characterization Using an Integrated Full Field Deformation and Cyclic Plasticity Method: Konstantinos Baxevanakis¹; Jefferson Cuadra¹; Adrian Loghin²; Antonios Kontsos¹; ¹Department of Mechanical Engineering & Mechanics, Drexel University, Philadelphia, PA; ²Lifting Lab, Structural Materials Lab, General Electric – GRC, Niskayuna, NY

5:00 PM

Crystal Plasticity Finite Element Modelling of Fatigue Crack Nucleation from Non-metallic Inclusions in PM Nickel Based Superalloy: *Tiantian Zhang*¹; Jun Jiang¹; Barbara Shollock²; Ben Britton¹; Fionn Dunne¹; ¹Imperial College; ²University of Warwick

Frontiers in Solidification: An MPMD Symposium in Honor of Michel Rappaz — Rapid Transformation

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wilfried Kurz, Swiss Fed. Inst. of Techn.; Jon Dantzig, EPFL and University of Illnois; Alain Karma, Northeastern University; Jeffrey Hoyt, McMaster University

Tuesday PM Room: 105A

February 16, 2016 Location: Music City Center

Session Chair: William Boettinger, NIST

2:00 PM Invited

Dendrite Growth Kinetics in Undercooled Melts of Intermetallic Compounds: Dieter Herlach¹; ¹Deutsches Zentrum für Luft- und Raumfahrt

2:25 PM Invited

Microstructure and Phase Transitions under Large Undercooling Conditions: Rohit Trivedi¹; Nan Wang²; ¹Iowa State University; ²Northwestern Polytechnical University

2:50 PM Invited

Competitive Solidification Pathways and Glass Formation in Pd-Si-Cu Alloys: Ralph Napolitano¹; Yang Huo¹; ¹Iowa State University

3:15 PM Invited

Fast Crystal Growth in Glass-forming Liquids: A. Greer¹; ¹University of Cambridge

3:40 PM Break

High-Temperature Systems for Energy Conversion and Storage — Ceramic Reliability II

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Energy Conversion and Storage Committee

Program Organizers: Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Amit Shyam, Oak Ridge National Laboratory; Kyle Brinkman, Clemson University; Paul Ohodnicki, National Energy Technology Laboratory; Jung Pyung Choi, Pacific Northwest National Laboratory

Tuesday PM Room: 104E

February 16, 2016 Location: Music City Center

Session Chairs: Joseph Gladden, University of Mississippi; Jeffrey Fergus, Auburn University

2:00 PM Invited

High Temperature Resonant Ultrasound Spectroscopy Methodologies Applied to Relaxor Ferroelectrics: *Joseph Gladden*¹; Sumudu Tennakoon¹; ¹University of Mississippi

2.25 PM

Novel Approaches to Improve Cathode Contact Strength by Mechanical Interlocking and Sintering Aid for Solid Oxide Fuel Cells: *Yeong-Shyung Chou*¹; Jeff Bonnett¹; Jeffry Stevenson¹; ¹Pacific Northwest National Lab

2:45 PM

Scalable and Hierarchical Nanostructure Ensembles for High Temperature Energy and Environmental Applications: Pu-Xian Gao¹; ¹University of Connecticut

3:05 PM

Solid Composite Electrolytes for Lithium-ion Batteries with Enhanced Safety and Cycle Performance at High Temperature: *Jinfang Zhang*¹; Cheng Ma¹; Weifeng Wei¹; ¹Central South University

3:25 PM Break

3:45 PM

CMAS Resistance of Gadolinium and Samarium Zirconates for Use as Environmental Barrier Coatings: Jeffrey Fergus¹; Honglong Wang¹; Xingxing

Zhang1; 1Auburn University

4:05 PM

Combinatorial Development of Metal Hydrides for Thermal Coupling of Solid Oxide Fuel Cells: Dogancan Sari¹; Fatih Piskin¹; Volodymyr Yartys²; Yener Kuru¹; Eren Kalay¹; Tayfur Ozturk¹; ¹METU; ²Institute for Energy Technology Instituttveien

High Entropy Alloys IV — Alloy Development and Applications II

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Tuesday PM Room: 102A

February 16, 2016 Location: Music City Center

Session Chairs: Suveen Nigel Mathaudhu, University of California, Riverside; Eun Soo Park, Seoul National University

2:00 PM Invited

Nanostructured Magnetic High Entropy Alloys: Christian Roach¹; Trevor Clark¹; Suveen Mathaudhu¹; ¹University of California Riverside

2:20 PM Invited

Structure Factors of FCC High Entropy Alloys Governing Mechanical-physical Uniqueness: Hyun Seok Oh¹; Eun Soo Park¹; Cem Tasan²; Dierk Raabe²; ¹Seoul National University; ²Max-Planck Institut für Eisenforschung GmbH

2:40 PM

Theory of Strengthening in FCC High Entropy Alloys: Céline Varvenne¹; Aitor Luque¹; *William A. Curtin*¹; ¹Swiss Institute of Technology (EPFL)

3:00 PM Invited

The Origin of Alloy Compositions: *Chuang Dong*¹; ¹Dalian University of Technology

3:20 PM Break

3:35 PM Invited

Elastic to Plastic Transition in a High Entropy Alloy Investigated Using a Nanoindentation Method: T.G. Nieh¹; Dong Wu¹; ¹University of Tennessee

3:55 PM

Exploration of High Entropy Alloys for Sustainable Energy Storages: *Jingke Mo*¹; Yunzhu Shi²; Peter Liaw²; Feng-Yuan Zhang¹; ¹UT Space Institute, The University of Tennessee, Knoxville; ²The University of Tennessee, Knoxville

4:15 PM

Structure Evolution during Cooling of Al0.1CrCuFeMnNi High-entropy Alloy: *Haoyan Diao*¹; Chuan Zhang²; Louis Santodonato³; Mikhail Feygenson³; Joerg Neuefeind³; Xie Xie⁴; Fan Zhang²; Peter Liaw⁴; ¹The University of Tennessee; ²CompuTherm, LLC; ³Oak Ridge National Laboratory; ⁴The University of Tennessee

4:35 PM

Friction Stir Processed High Entropy Alloys for Biomedical Application: Karthik Alagarsamy¹; *Aleksandra Fortier*¹; Nilesh Kumar¹; Rajiv Mishra¹; ¹University of North Texas

4:55 PM

On the Optimization of the γ-γ' Morphology in Al8Co17Cr17Cu8Fe-17Ni33 Based Compositionally Complex Alloys: *Anna Manzoni*¹; Haneen Daoud²; Rainer Völkl²; Uwe Glatzel²; Nelia Wanderka¹; ¹Helmholtz-Zentrum Berlin für Materialien und Energie GmbH; ²University Bayreuth

5:15 PM

New Approaches in the Design of High Strength HEAs: Isaac Toda-Caraballo¹; Pedro Rivera-Díaz-del-Castillo¹; ¹University of Cambridge

High Entropy Alloys IV — Thermal and Other Properties

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Tuesday PM Room: 102B

February 16, 2016 Location: Music City Center

Session Chairs: Paul Jablonski, National Energy Technology Laboratory; Jeffrey Hawk, National Energy Technology Laboratory

2:00 PM Invited

High Entropy Alloy Solid Solutions: Are they Entropy Stabilized?: Srinivasa Murty Budaraju¹; ¹IIT Madras

2:20 PM

Phase Composition and Solid Solution Strengthening Effect in TiZrNbHf and TiZrNbMoV High Entropy Alloys: Xidong Hui¹; Yidong Wu¹; Yandong Wang¹; ¹University of Science and Technology Beijing

2:40 PM

Phase Decomposition of a Single-phase Nanocrystalline CoCrFeMnNi High-entropy Alloy: Benjamin Schuh¹; Francisca Mendez-Martin²; Bernhard Völker¹; Easo P. George³; Helmut Clemens²; Reinhard Pippan⁴; Anton Hohenwarter¹; ¹Department of Materials Physics, Montanuniversität Leoben; ²Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben; ³Institute for Materials, Ruhr University; ⁴Erich Schmid Institute of Materials Science, Austrian Academy of Sciences

3:00 PM

Controlling Phase Selection in High Entropy Systems: *Matthew Kramer*¹; Bryce Thoeny¹; Pratik Ray¹; Yi-ying Ye¹; Prashant Singh¹; Linlin Wang¹; Duane Johnson¹; ¹Ames Laboratory, US-DOE

3:20 PM Break

3:35 PM Invited

Enhanced Entropy Nickel Superalloys: Processing and Properties: Joseph Licavoli¹; Paul Jablonski¹; John Sears¹; Jeffrey Hawk¹; ¹Department of Energy

3:55 PM

The Structure and Mechanical Behavior of High-Entropy FeNiMnAlTi Alloys: Zhangwei Wang¹; Ian Baker¹; ¹Dartmouth College

4:15 PM

Development of High Strength Austenitic HEA Steels of CoCrFeMnNi Family: Anna Fraczkiewicz¹; Michal Mroz¹; Matthieu Lenci¹; ¹MINES St-Etienne

4:35 PM Invited

Phase Selection in Systematically Alloyed CoCrFeNiX High-entropy Alloys: Ming-Hung Tsai¹; An-Chen Fan¹; Heng-An Wang¹; Pei-Hua Tsai¹; ¹National Chung Hsing University

Hume-Rothery Award Symposium: Thermodynamics of Materials — Conductivity

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Ursula Kattner, National Institute of Standards and Technology; Michael Manley, Oak Ridge National Laboratory

Tuesday PM Room: 107A

February 16, 2016 Location: Music City Center

Session Chairs: Jorge Munoz, The Datum Institute; Vidvuds Ozolins, University of

California, Los Angeles

2:00 PM Invited

Ultrafast Dynamics of Excited Electrons in Materials: Marco Bernardi¹;
¹Caltech

2:30 PM Invited

Activation Barriers for Polaron Hopping in Phospho-olivines: Sally June Tracy¹; Lisa Mauger¹; Jane Herriman¹; Brent Fultz¹; ¹Caltech

3:00 PM

Electronic Structure and Phonon Thermodynamics of Fe-Au Alloys: *Jorge Munoz*¹; Matthew Lucas²; Lisa Mauger³; Brent Fultz³; ¹The Datum Institute; ²Air Force Research Lab; ³California Institute of Technology

3:20 PM Break

3:40 PM Invited

Orbitally-driven Giant Phonon Anharmonicity in SnSe: *Chen Li*¹; Jiawang Hong²; Andrew May²; Dipanshu Bansal²; Songxue Chi²; Tao Hong²; Jie Ma²; Georg Ehlers²; Olivier Delaire²; ¹Carnegie Institute for Science; ²Oak Ridge National Laboratory

4:10 PM

Phonon Anharmonicity in Silicon from 100 to 1500 K: *Dennis Kim*¹; Olle Hellman¹; Hillary Smith¹; Jiao Lin¹; Jennifer Niedziela²; Doug Abernathy²; Brent Fultz¹; ¹Caltech; ²ORNL

4:30 PM Invited

Vibrational Entropies of Liquids and Glasses: Hillary Smith¹; Marios Demetriou¹; Brent Fultz¹; ¹California Institute of Technology

5:00 PN

A Thermodynamic Approach to Predicting Electronic Properties of Molten Systems: Charles Rinzler¹; Antoine Allanore¹; ¹MIT - Allanore Lab

ICME Infrastructure Development for Accelerated Materials Design: Data Repositories, Informatics, and Computational Tools — Data and Informatics

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Carelyn Campbell, National Institute of Standards and Technology; Dongwon Shin, Oak Ridge National Laboratory; Jiadong Gong, QuesTek Innovations; Shengyen Li, National Institute of Standards and Technology; Francesca Tavazza, National Institute of Standards and Technology; Mark Tschopp, Army Research Laboratory

Tuesday PM Room: 207B

February 16, 2016 Location: Music City Center

Session Chairs: Ankit Agrawal , Northwestern University; Carelyn Campbell, NIST

2:00 PM Invited

Experiences with ICME Information Infrastructures for Applying Materials Models in Sequence to Give Accurate Macroscopic Property Prediction: Will Marsden¹; David Cebon¹; Steven Arnold²; Brett Bednarcyk³; Nic Austin¹; Igor Terentjev¹; ¹Granta; ²NASA Glenn Research Center; ³NASA Glenn Research Center

2:40 PM

Development of Common Materials Classification Terminology to Enhance Discoverability, Exchange, and Reuse of Data: Chandler Becker¹;

Robert Hanisch¹; Laura Bartolo²; James Warren¹; ¹NIST; ²Kent State University

3:00 PM Invited

Materials Data Curation System: Alden Dima¹; ¹National Institute of Standards and Technology

3:40 PM Break

4:00 PM

Data Structures and Algorithms for Thermodynamic and Related Data in the Open Calphad Software System: *Bo Sundman*¹; Ursula Kattner²; Mauro Palumbo³; Suzana Fries³; ¹CEA Saclay; ²NIST; ³Ruhr University Bochum

4:20 PM Invited

Towards Better Efficiency and Accuracy: Data Mining for Prediction and Optimization in Materials System Design: Ankit Agrawal¹; Alok Choudhary¹; ¹Northwestern University

5:00 PM

Assessing the State of Manufacturing Process Data and its Potential as a Shared Resource for ICME: Scott Henry¹; Larry Berardinis²; David Furrer³; ¹ASM International; ²ASM International, CMD Network; ³Pratt & Whitney

5:20 PM

Data Curation and Exchange the Easy Way: Modular Data Models and Automated Capture: Zachary Trautt¹; Sara Barron¹; Lucas Hale¹; Francesca Tavazza¹; ¹National Institute of Standards and Technology

5-40 PM

Magpie: A Materials-Agnostic Platform for Informatics and Exploration: Logan Ward¹; Chris Wolverton¹; ¹Northwestern University

In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques — In-Situ Characterization of Mechanical Properties of Materials II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sanjit Bhowmick, Hysitron Inc.; Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Vikas Tomar, Purdue University; Vikram Jayaram, Indian Institute of Science; Benjamin Morrow, Los Alamos National Laboratory; Paul Shade, Air Force Research Laboratory; Weizhong Han, Xi'an Jiaotong University; Arief Budiman, Singapore University of Technology and Design

Tuesday PM Room: 212

February 16, 2016 Location: Music City Center

Session Chairs: Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Benjamin Morrow, Los Alamos National Laboratory

2:00 PM Invited

Measurement of Stress for Dislocation Nucleation & Motion through In Situ Indentation: Nan Li¹; Jian Wang²; *Amit Misra*³; ¹Los Alamos National Lab; ²University of Nebraska; ³University of Michigan

2:30 PM

Towards Nanoscale In-situ Fatigue and Fracture Experiments in the TEM: Peter Imrich¹; Daniel Kiener¹; ¹Montanuniversität Leoben

2:50 PM

Oxygen Induced Softening of Deep-submicron Cu Nanopillars: Zhangjie Wang¹; Penghan Lu¹; Degang Xie¹; Zhiwei Shan¹; ¹Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) & Hysitron Applied Research Center in China (HARCC), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University

3:10 PM

Onset of Slip Activity in Ti6Al4V Single Colonies: Role of Alpha/Beta Interfaces: Samuel Hemery¹; Loïc Signor¹; Patrick Villechaise¹; ¹Institut Pprime

3:30 PM Break

3:50 PM Invited

In Situ TEM Dislocation Characterization and Strain Mapping of Al 5754: Josh Kacher¹; Christoph Gammer²; Raja Mishra³; Andrew Minor²; ¹Georgia Institute of Technology; ²Lawrence Berkeley National Laboratory; ³General Motors Research and Development

4.20 PM

Electromechanical Properties of Individual BiFeO3 Nanowires: *Ihor Radchenko*¹; Arief Budiman¹; Wu Ping¹; ¹Singapore University of Technology and Design

4:40 PM

Exploring the Mechanical Behavior and Microstructure Evolution of Twin-twin Junctions in Mg by In Situ Compression: *Yue Liu*¹; Nan Li¹; Jian Wang²; Rodney Mccabe¹; Yanyao Jiang³; Carlos Tomé¹; ¹Los Alamos National Lab; ²University of Nebraska-Lincoln; ³University of Nevada-Reno

5:00 PM

Deformation Mechanisms in Micro-Scale Specimens of Polycrystalline Ti-6242: *Vikas Sinha*¹; Sushant Jha²; Robert Wheeler¹; Adam Pilchak³; Reji John³; James Larsen³; ¹Air Force Research Laboratory; UES, Inc.; ²Air Force Research Laboratory; Universal Technology Corporation; ³Air Force Research Laboratory

Interface-driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry — Mechanics and Thermodynamics

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nanomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Fadi Abdeljawad, Sandia National Laboratories; Stephen Foiles, Sandia National Laboratories; Timofey Frolov, UC Berkeley; Emine Gulsoy, Northwestern university; Heather Murdoch, Army Research Lab; Mitra Taheri, Drexel University

Tuesday PM Room: 108

February 16, 2016 Location: Music City Center

Session Chair: Mitra Taheri, Drexel University

2:00 PM Invited

Interface-driven Plasticity in Two-phase Composites: Irene Beyerlein¹;

Los Alamos National Laboratory

2:40 PM

Equilibrium Fluctuations of Grain Boundary Properties in Alloy Systems: *J. Hickman*¹; Y. Mishin¹; ¹George Mason University

3:00 PM

Assessing the Effect of Hydrogen on Slip Transmission across Grain Boundaries in a-Fe: *Ilaksh Adlakha*¹; Kiran Solanki¹; ¹Arizona State University

3:20 PM

Utilizing TEM-based Techniques to Map Strain Fields near Interfaces in Metals and Ceramics: Paul Rottmann¹; Kevin Hemker¹; Kelvin Xie¹; ¹Johns Hopkins University

3:40 PM Break

4:00 PM

The Effect of Interfaces and Hierarchical Structure on the Deformation Behavior of Metallic Nanolaminates: Daniel Foley¹; Garritt Tucker¹; ¹Drexel University

4:20 PM

Structural Modifications Due to Interface Chemistry at Metal-nitride Interfaces: Satyesh Yadav¹; Shuai Shao¹; Jian Wang¹; Xiang-Yang Liu¹; ¹Los Alamos National Lab

4:40 PM

Structure, Bonding and Adhesive Strength of Interfaces between fcc Fe and Mixed Transition Metal Carbides and Nitrides $M_i M_2[C,N]$ and the Role of Misfit Dislocations: $Oleg\ Kontsevoi^1$; Arthur Freeman¹; Gregory Olson¹; ¹Northwestern University

5:00 PM

Effect of Beta Stabilizers on Stacking Faults Energies in α-Titanium: Riyadh Salloom¹; Srinivasan Srivilliputhur¹; ¹University of North Texas

Magnesium Technology 2016 — Magnesium-Rare Earth Allovs

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee Program Organizers: Alok Singh, National Institute for Materials Science; Kiran Solanki, Arizona State University; Michele Manuel, University of Florida; Neale Neelameggham, Ind LLC

Tuesday PM Room: 204

February 16, 2016 Location: Music City Center

Session Chairs: Mark Easton, RMIT University; Francesco D'Elia, Magnesium Inno-

vation Centre

2:00 PM

Hot Tearing of Magnesium-Rare Earth Based Alloys: Mark Easton¹; Serge Gavras²; Mark Gibson³; Suming Zhu¹; Jian-Feng Nie²; Trevor Abbott⁴; ¹RMIT University; ²Monash University; ³CSIRO; ⁴Magontec

2:20 PM

Hot Tearing Susceptibility of Mg-5Nd-xZn Alloys: Francesco D'Elia¹; Domonkos Tolnai¹; Chamini Mendis¹; Norbert Hort¹; ¹Magnesium Innovation Centre

2:40 PM

Effects of Homogenization on Structure Property Relations of an Indirect Extruded ZE20 Mg Alloy: Zackery McClelland¹; Bin Li²; Stephen Horstemeyer³; Mark Horstemeyer³; Andrew Oppedal³; ¹U.S. Army Engineer Research and Development Center; 2Department of Chemical and Materials Engineering, University of Nevada, Reno; 3Center for Advanced Vehicular Systems Mississippi State University

Age-hardening of Dual Phase Mg-Sc Alloy at 573 K: Yukiko Ogawa¹; Daisuke Ando¹; Yuji Sutou¹; Junichi Koike¹; ¹Department of Materials Science, Graduate School of Engineering, Tohoku University

3:20 PM Break

The Structure of B" and B' in an Aged Mg-Nd Alloy: Ellen Solomon1; Emmanuelle Marquis¹; ¹University of Michigan

Material Design Approaches and Experiences IV —

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Akane Suzuki, GE Global Research; Ji-Cheng Zhao, The Ohio State University; Michael Fahrmann, Haynes International Inc.; Qiang Feng, University of Science and Technology Beijing

Tuesday PM Room: 208A

February 16, 2016 Location: Music City Center

Session Chairs: Michael Fahrmann, Haynes International; Nack Kim, POSTECH

2:00 PM Invited

Design of High Strength Lightweight Steels with High Work Hardening Rate: Sang-Heon Kim¹; Han Soo Kim¹; Nack J. Kim¹; ¹POSTECH

Effect of Annealing Temperature on Microstructural Modification and Tensile Properties in Lean Fe-Mn-Al-C Lightweight Steels: Seok Su Sohn1; Jai-Hyun Kwak2; Sunghak Lee1; 1Pohang University of Science and Technology; ²Pohang Iron and Steel Company (POSCO)

Evolution Law of Grain Size of High Alloy Gear Steel in Hot Deformation: Haiyan Tang1; 1University of Science and Technology Beijing

3:20 PM Break

3:40 PM

1-GPa-grade Ultra-high-strength (Ferrite + Austenite) Duplex Lightweight Steels Achieved by Fine Dislocation Substructures (Taylor Lattices) : Min Chul Jo¹; Seok Su Sohn¹; Jai-Hyun Kwak²; Nack J. Kim¹; Sunghak Lee¹; ¹Pohang University of Science and Technology; ²Pohang Iron and Steel Company (POSCO)

4:00 PM Invited

Designing Nano-engineered Steels, Atom by Atom: Francisca Caballero¹; John Poplawsky²; Hung-Wei Yen³; Rosalia Rementeria¹; Lucia Morales-Rivas1; Jer-Ren Yang3; Carlos Garcia-Mateo1; 1Spanish National Research Center for Metallurgy (CENIM-CSIC); ²Oak Ridge National Laboratory (ORNL); ³National Taiwan University

4:30 PM

Design of Wear Resistant Boron-modified Supermartensitic Stainless Steel by Spray Forming Process: Guilherme Zepon¹; Ricardo Nogueira²; Claudio Kiminami³; Walter José Botta³; Claudemiro Bolfarini³; ¹Post-Graduation Program of Materials Science and Engineering (PPG-CEM/UFSCar); ²Univ. Grenoble Alpes, LEPMI/ CNRS, LEPMI; 3Department of Materials Engineering (DEMa-UFSCar)

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Fuels IV

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Tuesday PM Room: 101A

February 16, 2016 Location: Music City Center

Session Chairs: Yongho Sohn, University of Central Florida; Kevan Weaver, Terra-

Power

2:00 PM

Microstructural Development and Phase Transformations in Hot Isostatic Pressed Monolithic U-Mo Fuel Plates in AA6061 Cladding with Zr Diffusion Barrier: Youngjoo Park1; Nicholas Eriksson1; Dennis Keiser2; Yongho Sohn¹; ¹University of Central Florida; ²Idaho National Laboratory

Mechanical Properties of Materials and Phases Relevant to Monolithic U-Mo Fuel System: Ryan Newell¹; Dennis Keiser²; Yongho Sohn¹; ¹University of Central Florida; ²Idaho National Laboratory

2:40 PM

Interdiffusion and Reaction between Al vs. X (X = Zr, Mo, U) Diffusion Couples: Abhishek Mehta¹; Youngjoo Park¹; Dennis Keiser²; Yongho Sohn¹; ¹University of Central Florida; ²Idaho National Laboratory

Synchrotron Characterization of Fission Products in the SiC Containment Layer in High Burnup TRISO Fuel Particles: Rachel Seibert¹; Jeff Terry¹; Kurt Terrani²; Daniel Velazquez¹; Phil Edmondson²; Chad Parish²; Fred Montgomery²; Charles Baldwin²; Keith Leonard²; ¹Illinois Institute of Technology; ²Oak Ridge National Laboratory

Thermal Expansion of a 3-phase Ceramic Composite: An In-situ High Temperature X-ray Diffraction Study: Kevin Mathew¹; Kenta Ohtaki²; Martha Mecartney²; Maulik Patel¹; ¹The University of Tennessee, Knoxville; ²University of California, Irvine

3:40 PM Break

4:00 PM

Fabrication and Qualification of Small Scale Irradiation Experiments in Support of the Accident Tolerant Fuels Program: Connor Woolum¹; Kip Archibald¹; Glenn Moore¹; Steven Galbraith¹; ¹Idaho National Laboratory

4:20 PM

Fabrication of Graphite Composite Fuel with Controlled Thermal Transport Properties: Erik Luther¹; DV Rao¹; Igor Usov¹; Amber Telles¹; Miles Beaux¹; Douglas Vodnik¹; Kevin Hubbard¹; Pallas Papin¹; Brian Patterson¹; Andrew Nelson¹; David Hurley²; ¹LANL; ²INL

4:40 PM

Mechanical Testing of UO2 Fuel at Elevated Temperatures: *David Fraz-er*¹; Bowen Gong²; Benjamin Shaffer²; Harn Lim²; Pedro Peralta²; Peter Hosemann¹; ¹University of California, Berkeley; ²Arizona State University

5:00 PM

Thermomechanical Modeling of Triso Fuel Particles Silicon Carbide Matrix: Daniel Schappel¹; Kurt Terrani¹; Brian Wirth¹; ¹University of Tennessee

5:20 PM

CRUD Mitigation And Growth: Ittinop Dumnernchanvanit¹; ¹MIT

Materials Processing Fundamentals — Non-Ferrous Extractive Metallurgy

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: Antoine Allanore, Massachusetts Institute of Technology; Lifeng Zhang, University of Science and Technology Beijing; Laura Bartlett, Texas State University; Jonghyun Lee, University of Massachusetts; Cong Wang, Northeastern University

Tuesday PM Room: 106B

February 16, 2016 Location: Music City Center

Session Chairs: Antoine Allanore, Massachusetts Institute of Technology; Guillaume Lambotte, UMass

2:00 PM

Feasibility Demonstration and Process Modeling of Titanium Electrowinning Enabled by Specialized Diaphragms: Dai Shen¹; Mirko Antloga¹; Craig Virnelson¹; Mark De Guire¹; Uziel Landau¹; Rohan Akolkar¹; ¹Case Western Reserve University

2:20 PM

Experiment and Modeling of Aluminum Production by Solid Oxide Membrane Based Electrolysis Process: *Shizhao Su*¹; Xiaofei Guan²; Uday Pal¹; ¹Boston University; ²Harvard University

2:40 PM

A Novel Method to Measure the Solubility and Diffusion Behavior of Ceramic in Molten Salt: Shizhao Su¹; Thomas Villalon¹; Uday Pal¹; ¹Boston University

3:00 PM

The Cu-Ni-S System and Its Significance in Metallurgical Processes: Fise-ha Tesfaye¹; Daniel Lindberg¹; Pekka Taskinen²; ¹Åbo Akademi University; ²Aalto University School of Chemical Technology

3:20 PM Break

3:40 PM

Three-dimensional Isothermal Predominance Diagrams for the Cu-As-S-O System: Stanley Howard¹; Sadegh. Safarzadeh¹; ¹SDSM&T

4:00 PM

In-situ Gas Monitoring by Laser Induced Fluorescence Spectroscopy: Thor Anders Aarhaug¹; Alain Ferber¹; Pål Tetlie¹; Halvor Dalaker¹; ¹SINTEF

Mechanical Behavior at the Nanoscale III — Multilayer Thin Films, Nanolaminates and Nanoporous Foams

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Daniel Gianola, University of California, Santa Barbara; Ting Zhu, Georgia Institute of Technology; Julia Greer, California Institute of Technology; Harold Park, Boston University; Garritt Tucker, Drexel University; Jiangwei Wang, University of Pittsburgh

Tuesday PM Room: 214

February 16, 2016 Location: Music City Center

Session Chairs: Eric Chason, Brown University; Nicolas Briot, University of Kentucky

2:00 PM

Mechanistic Coupling of Dislocation and Shear Transformation Zone Plasticity in Crystalline-Amorphous Nanolaminates: Bin Cheng¹; Jason Trelewicz¹; ¹Stony Brook University

2:20 PM

Anisotropy, Size, and Aspect Ratio Effects in Micropillar Compression of Al-SiC Nanolaminate Composites: Carl Mayer¹; Yang Lingwei²; Sudhanshu Singh¹; Yu-Lin Shen³; Jon Molina-Aldareguia²; Javier LLorca²; Nikhilesh Chawla¹; ¹Arizona State University; ²IMDEA Materials Institute, Madrid, Spain; ³University of New Mexico

2:40 PM

Residual Stress in Thin Films: Effect of Growth Rate and Grain Size: Eric Chason¹; Alison Engwall¹; Zhaoxia Rao¹; ¹Div of Engineering

3:00 PM

Microstructure and Thermo-Mechanical Properties of Porous Nano-Crystalline Silver Layers: Saba Zabihzadeh¹; Steven Van Petegem¹; Joel Cugnoni²; Ana Diaz¹; Antonio Cervellino¹; Helena Van Swygenhoven¹; ¹Paul Scherrer Institut; ²École Polytechnique Fédéral de Lausanne

3:20 PM

Plastic Deformation in Metal/Ceramic Multilayer Nanolaminates: NbC/Nb and TiN/Ti Case Studies: Iman Salehinia¹; Wei Yang²; Shuai Shao³; Georges Ayoub⁴; Jian Wang⁵; Hussein Zbib⁶; ¹Northern Illinois University; ²Texas A&M University at Qatar; ³Los Alamos National Lab; ⁴American University of Beirut; ⁵University of Nebraska-Lincoln; ⁶Washington State University

3:40 PM Break

4:00 PM

Mechanical Behaviors of Cu-based Metallic Multilayers with Crystalline/ Amorphous Layer Interfaces: *Zhe Fan*¹; Sichuang Xue¹; Haiyan Wang¹; Xinghang Zhang¹; ¹Texas A&M University

4:20 PM

Mechanical Behavior of Nanoporous Gold and Silicon: *Nicolas Briot*¹; Tyler Vanover¹; John Balk¹; ¹University of Kentucky

4:40 PM

Ultimate Solution for Ultra-thin Film Systems (2nm or below): $Anqi\ Qiu^i;$ ¹Hysitron, Inc

5:00 PM

Measurement of Plasticity in Confined Metal Thin Films: Yang Mu¹; John Hutchinson²; *Wen Meng*¹; ¹Louisiana State University; ²Harvard University

Metal and Polymer Matrix Composites II — Mg, Al Matrix Composites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Commit-

tee

Program Organizer: Nikhil Gupta, New York University

Tuesday PM Room: 110A

February 16, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM Keynote

Emerging Environment Friendly Magnesium Based Composite Technology for Present and Future Generations: *Manoj Gupta*¹; ¹National University of Singapore

2:40 PM

Evaluation of Intermetallic Reaction Layer Formation within Steel Encapsulated Metal Matrix Composites: Sean Fudger¹; Eric Klier¹; Prashant Karandikar²; Chaoying Ni³; ¹U.S. Army Research Laboratory; ²M Cubed Technologies Inc.; ³University of Delaware

3:00 PM

Ultralight Metal Based Composite Materials: Design Principles and Multifunctionality: Nikhil Gupta¹; ¹New York University

3.20 PM

Development of Melt Conditioned Twin Roll Casting (MC-TRC) Process for Continuous Casting of Thin Gauge SiC Particle Reinforced Magnesium Matrix Composites Strip: Xinliang Yang¹; Sanjeev Das¹; Jayesh Patel¹; Ian Stone¹; Zhongyun Fan¹; ¹BCAST

3:40 PM Break

4:00 PM Invited

Development of a High-strength, Precipitation-strengthened Matrix for Non-quenchable Aluminum Metal Matrix Composites: Nhon Vo¹; Jim Sorensen²; David Seidman³; David Dunand³; ¹NanoAl LLC; ²CPS Technologies; ³Northwestern University

4:20 PM Invited

Characterization of Damage Evolution in SiC Particle Reinforced Al Matrix Composites by X-ray Tomography and Extended Finite Element Modeling: Peter Hruby¹; Sudhanshu Singh¹; Rui Yuan¹; Jason Williams¹; Jay Oswald¹; Xianghui Xiao²; Nikhilesh Chawla¹; ¹Arizona State University; ²Advanced Photon Source, Argonne National Laboratory

4:40 PM

Engineered Functional Metal Matrix Composite; Lamellar Structure or Shape Memory Alloy in a Hybrid Self-Healing Composite Materials: Bakr Rabeeh¹; Yasser Ahmed¹; ¹German University in Cairo, GUC

5:00 PM

Effect of Load and Grit Size on High Stress Abrasive Wear of Al-Mg-Si hybrid Composites: Kaushik N Ch¹; Narasimha Rao R¹; ¹NIT Warangal

5:20 PM

Effect of Mushy State Rolling on Microstructure, Micro Hardness and Microtexture in Al-4.5Cu-5TiB₂ In-situ Composite: Monalisa Mandal¹; Rahul Mitra¹; ¹Indian Institute of Technology, Kharagpur

Nanostructured Materials for Nuclear Applications — Session IV

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Nuclear Materials Committee, TMS: Nanomaterials Committee, TMS: Nanomaterials Behavior Committee

Program Organizers: Cheng Sun, Los Alamos National Laboratory; Michael Demkowicz, Massachusetts Institute of Technology; Amit Misra, University of Michigan; Osman Anderoglu, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories

Tuesday PM Room: 101C

February 16, 2016 Location: Music City Center

Session Chairs: Michael Demkowicz, Massachusetts Institute of Technology; Shen Dillon, University of Illinois at Urbana-Champaign

2:00 PM Invited

Non-random Walk Diffusion Enhances the Sink Strength of Semicoherent Interfaces: Aurélien Vattré¹; *Thomas Jourdan*²; Hepeng Ding³; Cosmin Marinica²; Michael Demkowicz³; ¹CEA, DAM; ²CEA, DEN; ³MIT

2:30 PM

Irradiation-induced Nanoprecipitation on Exhaustible Sinks: Pascal Bellon¹; Robert Averback¹; Dallas Trinkle¹; Thomas Schuler¹; ¹University of Illinois

2:50 PM

Phase-field Modeling of Helium Precipitates at Solid-state Interfaces: *Dina Yuryev*¹; Michael Demkowicz¹; ¹Massachusetts Institute of Technology

3:10 PM

Spatially Resolved Simulation of Damage Accumulation in Nanocrystalline Metals: *Aaron Dunn*¹; Rémi Dingreville²; Enrique Martínez-Saez³; Laurent Capolungo¹; ¹Georgia Institute of Technology; ²Sandia National Laboratories; ³Los Alamos National Laboratory

3:30 PM Break

3:50 PM Invited

Accelerated Simulations of Nanosize He-V Clusters to Experimentally Relevant Time Scale: Fei Gao¹; Ning Gao²; Li Yang³; ¹University of Michigan; ²Institute of Modern Physics; ³University of Electronic Science and Technology of China

4:20 PM

Modeling Evolution of Gas Bubbles on Grain Boundaries of Nano-crystal-line Materials under Irradiation: *Stanislav Golubov*¹; Alexander Barashev¹; Roger Stoller¹; ¹ORNL

4·40 PM

Mitigation of He Embrittlement and Swelling in Nickel by Dispersed SiC Nanoparticles: *Hefei Huang*¹; Zhijun Li¹; Jianqiang Wang¹; Ping Huai¹; ¹Shanghai Institute of Applied Physics, Chinese Academy of Sciences

5:00 PM

Point Defect Evolution in FCC Ni, NiFe and NiCr Alloys from Atomistic Simulations and Irradiation Experiments: Dilpuneet Aidhy¹; Chenyang Lu²; Ke Jin¹; Hongbin Be¹; Yanwen Zhang¹; Lumin Wang¹; William Weber³; Oak Ridge National Lab; ²University of Michigan; ³University of Tennessee

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XV — Optoelectronics & Pb-free Solders

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shih-kang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Cheng University; Jae-Ho Lee, Hongik University; Ikuo Ohnuma, National Institute for Materials Science (NIMS); Chih-Ming Chen, National Chung Hsing University; Yee-Wen Yen, National Taiwan Univ of Science & Tech; Shien Ping Feng, The University of Hong Kong; Clemens Schmetterer, Fraunhofer Institute

Tuesday PM Room: 109

February 16, 2016 Location: Music City Center

Session Chairs: Shih-kang Lin, National Cheng Kung University; Yee-wen Yen, National Taiwan University of Science and Technology

2:00 PM Invited

Kinetics of Low-temperature Copper-Germanide Formation for Applications on Flexible Substrates: Terry Alford¹; ¹Arizona State University

2:30 PM Invited

Contact-Resistance Reduction for Cu(Ti)/Conductive-Oxide-Film Junctions: Kazuhiro Ito¹; Kazuyuki Kohama¹; Takayuki Sano¹; Atsushi Nishibata¹; Toshihide Nabatame²; Akihiko Ohi²; ¹Joining and Welding Research Institute, Osaka University; ²National Institute for Materials Science

3:00 PM

An Experimental and Computational Approach to Properties of Mg-2TiO4: Mn+4 Red Emitting Phosphor: Chieh-Szu Huang¹; Yi-Da Ho¹; Cheng-Liang Huang¹; Shih-kang Lin²; ¹Department of Electrical Engineering, National Cheng Kung University, Taiwan; ²Department of Materials Science and Engineering, National Cheng Kung University, Taiwan

3:20 PM

Using Sn-Bi Solder as the LED Die-attach Material by Controlling the Sn-Bi Composition and the Roughness of the Substrate: *Yue Kai Tang*¹; Chengyi Liu¹; ¹National Central University

3:40 PM Break

4:00 PM Invited

Probing Phase Transformations at the Nanoscales – Synchrotron X-ray Microdiffraction for Advanced Applications in Microelectronics, Phase-Change Memory and Solar PV Devices: Arief Budiman¹; Ihor Radchenko¹; Nobumichi Tamura²; ¹Singapore University of Technology and Design; ²Advanced Light Source (ALS)

4:30 PM

Calorimetric Investigation of the Liquid Sn-3.8Ag-0.7Cu Alloy with Minor Co Additions: Andriy Yakymovych¹; George Kaptay²; Ali Roshanghias¹; Hans Flandorfer¹; Herbert Ipser¹; ¹University of Vienna; ²University of Miskolc

4:50 PM

Dissolution Behavior of Ni Substrate and Ni3Sn4 Phase in Molten Leadfree Solders

: Yen Wei Chang¹; Meng Han Guo¹; Yee Wen Yen¹; ¹National Taiwan University of Science and Technology

5:10 PM

Phase Equilibria of the Sn-Fe-Ni Ternary System at 270oC: *Tzu Ting Huang*¹; Jia Ying Dai²; Yee Wen Yen²; Hung Lun Liu²; Shih Wei Lin²; ¹National Taiwan University of Science and Technology; ²National Taiwan University of Science and Technology

Phase Transformations and Microstructural Evolution — Phase Transformations in Ni-Alloys

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Tuesday PM Room: 107B

February 16, 2016 Location: Music City Center

Session Chair: Gregory Thompson, U. Alabama Tuscaloosa

2:00 PM

Addendum to Correlations between Elastic Inhomogeneities and Amalgamation of γ' Precipitate Microstructures in Nickel-Base Alloys: Alan Ardell'; 'University of California

2:30 PM

Ordering Transformation and Its Kinetics in Stoichiometric Ni-Cr-Mo Alloys: Jung Singh¹; Amit Verma¹; Nelia Wanderka²; Jayanta Chakravartty¹; ¹Bhabha Atomic Research Centre; ²Helmholtz-Zentrum Berlin

2:50 PM

Formation of Precipitate Free Zones in the Vicinity of Second Phase Particles in Nickel Based Alloy 725: Miao Song¹; Jianfeng Wen²; Zhijie Jiao¹; Gary Was¹; ¹University of Michigan; ²East China University of Science and Technology

3:10 PM

Some Steps towards Modelling of Dislocation Assisted Rafting: A Coupled 2D Phase Field -- Continuum Dislocation Dynamics Approach: Ronghai Wu¹; Stefan Sandfeld¹; ¹University of Erlangen-Nuremberg

3:30 PM Break

3:50 PM

Inverse Coarsening of Gamma-prime Precipitates in Ni-base Superalloys: Subhashish Meher¹; Laura Carroll¹; Tresa Pollock²; Mark Carroll¹; ¹Idaho National Laboratory; ²University of California Santa Barbara

4:20 PM

The Effect of Composition upon the Precipitation of the Sigma Phase in a Model Nickel-base Superalloy: Paul Mignanelli¹; Nicholas Jones¹; Howard Stone¹; ¹University of Cambridge

4:40 PM

Phase Transformations and Structural Changes in Haynes 244, A New Ni Based Low CTE Alloy: *Jie Song*¹; Robert Field¹; Cody Miller¹; Raj Banerjee²; Doug Konitzer³; Michael Kaufman¹; ¹Colorado School of Mines; ²University of North Texas; ³GE-Aviation

5:00 PM

Evolution of Nanoscale Clusters in \947' Precipitates of a Ni-Al-Ti Model Alloy: Florian Vogel¹; Nelia Wanderka¹; Zoltan Balogh²; Patrick Stender²; Mohammed Ibrahim²; Guido Schmitz²; Tatiana Fedorova³; John Banhart⁴; Monica Kapoor⁵; Gregory Thompson⁵; ¹Helmholtz-Zentrum Berlin; ²University of Stuttgart; ³Technical University Braunschweig; ⁴Technical University Berlin; ⁵The University of Alabama

Phase Transformations in Multi-component Systems: An MPMD Symposium Honoring Gary R. Purdy — Phase Transformations in Non-ferrous Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Hatem Zurob, McMaster University; Annika Borgenstam, KTH, Royal Institute of Technology; Tadashi Furuhara, Tohoku University; Wenzheng Zhang, Tsinghua University; Christopher Hutchinson, Monash University; Robert Hackenberg, Los Alamos National Laboratory

Tuesday PM Room: 110B

February 16, 2016 Location: Music City Center

Session Chairs: Goro Miyamoto, Tohoku University; Joakim Odqvist, KTH, Royal Institute of Technology

2:00 PM Invited

Cellular Precipitation in Cu-3% Ti: Richard Fonda¹; Gary Shiflet²; ¹Naval Research Laboratory; ²University of Virginia

2:30 PM

Divergent Pearlite in a Fe-C-Mn-Al Quaternary System: *Martia Martin-Aranda*¹; Rosalia Rementeria¹; Robert E. Hackenberg²; Tsai S.P³; Esteban Urones-Garrote⁴; Jonathan Poplawsky⁵; J.R. Yang³; Carlos Capdevila¹; CENIM-CSIC; ²Materials Science and Technology Division, Los Alamos National Laboratory; ³National Taiwan University; ⁴Centro Nacional de Microscopía Electrónica (CNME), Universidad Complutense de Madrid; ⁵Oak Ridge National Laboratory

2:50 PM

Grain Boundary-discontinuous Precipitation Controlling Magnetic Anisotropy of Melt-spun Cu-10 at.% Co Alloy: Guillermo Solorzano¹; Natasha Suguihiro¹; ¹PUC-Rio

3-10 PM

Kinetics of Cellular Growth and Coarsening in Aged U-Nb Alloys: *Robert Hackenberg*¹; Megan Emigh²; Pallas Papin¹; Ann Kelly¹; Robert Forsyth¹; Tim Tucker¹; Kester Clarke¹; Anna Llobet¹; Heather Volz¹; Graham King¹; Alice Smith¹; ¹Los Alamos National Laboratory; ²University of Illinois (Urbana-Champaign)

3:30 PM Break

3:50 PM Invited

Diffusional Phase Transformations in Multicomponent Single-Phase/Two-Phase Diffusion couples: $John\ Morral^1$; ¹The Ohio State University

4:20 PM

Pt-Rh Failure through Distinct Phosphorus Diffusion Mechanisms: Anna Nakano¹; James Bennett¹; *Jinichiro Nakano*¹; ¹US Department of Energy National Energy Technology Laboratory

4:40 PM

Shortening a CALPHAD Approach by Understanding Parameter Relationships: *Jinichiro Nakano*¹; ¹US Department of Energy National Energy Technology Laboratory

Powder Metallurgy of Light Metals — PM Ti and PM Ti for Biomedical Applications

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Zhigang Fang, University of Utah; Qian Ma, RMIT University

Tuesday PM Room: 205C

February 16, 2016 Location: Music City Center

Session Chairs: Thomas Ebel, Helmholtz-Zentrum Geesthacht; Yong Liu, Central

South University

2:00 PM Invited

Characterization of Titanium Powder and its Consolidation by Microwave Energy

: *Benjamin Rock*¹; M. Imam²; R. Sadangi³; Tony Zahrah⁴; K Akhtar⁵; ¹U.S. Naval Research Laboratory; ²George Washington University; ³U.S Army AR-DEC; ⁴Matsys, Inc; ⁵Cristal Metals, Inc

2:30 PV

Development of Low-cost Ti-6Al-4V Fasteners through Powder Metallurgy Method: *Bin Liu*¹; Yong Liu¹; Fanpei Zeng²; Jinzhong Lu²; Yuankui Cao²; ¹Central South University; ²Fujian Longxi Bearing (Group) Corp., LTD.

2:50 PM

Fundamental Properties of PM Ti Materials with Nitrogen Solid-solution and TiN Particle Dispersion: *Katsuyoshi Kondoh*¹; Takanori Mimoto¹; Yasuhiro Yamabe¹; Junko Umeda¹; Hisashi Imai¹; ¹Osaka University

3:10 PM Invited

MIM Processing of Titanium Alloys – Achievements, Setbacks and Current Research: Thomas Ebel¹; ¹Helmholtz-Zentrum Geesthacht

3:40 PM Break

4:00 PM Invited

Development of Powder Metallurgical Ti- Ta-Mo Alloys with High Strength and Low Modulus: Yong Liu¹; Shenghang Xu¹; Hong Wu¹; Huiping Tang²; ¹Central South University; ²Northwestern Institute of Nonferrous Metals

4:30 PM Invited

Trace Carbon in Biomedical Beta-titanium Alloys by Powder Metallurgy Approaches: Dapeng Zhao¹; Thomas Ebel²; *Ming Yan*³; Ma Qian⁴; ¹Hunan University; ²Helmholtz-Zentrum Geesthacht; ³South University of Science and Technology of China; ⁴RMIT University

5:00 PM

Effect of Mo Particle Sizes on Microstructure and Mechanical Properties of Ti-Mo Alloy Prepared by Spark Plasma Sintering: *Hiroshi Izui*¹; Norika Kasai¹; Yoshiki Komiya¹; ¹Nihon University

REWAS 2016 — Designing Materials and Systems for Sustainability

Sponsored by:

Program Organizers: Randolph Kirchain, Massachusetts Institute of Technology; Bart Blanpain, KU Leuven; Anne Kvithyld, SINTEF; Christina Meskers, Umicore Precious Metals Refining; Elsa Olivetti, Massachusetts Institute of Technology; Jeffrey S. Spangenberger, Argonne National Laboratory; Diran Apelian, Worcester Polytechnic Institute; Brajendra Mishra, Colorado School of Mines; Neale Neelameggham, Ind LLC

Tuesday PM Room: 104B

February 16, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM

Industrial Symbiosis among Small and Medium Scale Enterprises: Case of Muzaffarnagar, India: Elsa Olivetti¹; ¹Massachusetts Institute of Technology

2:25 PM

Life Cycle Assessment of Metallurgical Proceses Based on Physical Flowsheet Models: Markus Reuter¹; Antti Roine¹; ¹Outotec Oyj

2:50 PM

Total Corrosion Effects of *Anthocleista djalonensis* and Na₂Cr₂O₇ on Steel-Rebar in H₂SO₄: Sustainable Corrosion-Protection Prospects in Microbial/Industrial Environment: *Joshua Okeniyi*¹; Cleophas Loto¹; Abimbola Popoola²; ¹Covenant University, Ota, Nigeria; ²Tshwane University of Technology, Pretoria

3:15 PM

Materials Research to Enable Clean Energy: Leverage Points for Risk Reduction in Critical Byproduct Material Supply Chains: *Michele Bustamante*¹; Gabrielle Gaustad¹; ¹Golisano Institute for Sustainability, Rochester Institute of Technology

3:40 PM Break

4:00 PM

Heterogeneous Materials Design for Sustainable Nuclear Waste Storage using Life Prediction by Conformal Finite Element Analysis: Fazle Rabbi¹; Kenneth Reifsnider²; Kyle Brinkman³; ¹University of South Carolina; ²University of Texas at Arlington; ³Clemson University

4:25 PM

Life-Cycle Costing Promotes Use of Corrosion-Resistant Alloys: James Rakowski¹; John Grubb¹; ¹ATI Allegheny Ludlum

4:50 PM

Healable Microstructure Design: A Novel Pathway towards Perpetual Alloys?: Cem Tasan¹; Meimei Wang¹; ¹Max-Planck Institute for Iron Research

5:15 PM

System of State Regulation of Sustainable Ore Processing and Production Waste Treatment in the Russian Arctic: Vyacheslav Tsukerman¹; Ludmila Ivanova¹; Vladimir Selin¹; ¹Kola Science Centre

REWAS 2016 — Understanding & Enabling Sustainability - Light Metals Recycling & Waste Valorization

Sponsored by:

Program Organizers: Randolph Kirchain, Massachusetts Institute of Technology; Bart Blanpain, KU Leuven; Anne Kvithyld, SINTEF; Christina Meskers, Umicore Precious Metals Refining; Elsa Olivetti, Massachusetts Institute of Technology; Jeffrey S. Spangenberger, Argonne National Laboratory; Diran Apelian, Worcester Polytechnic Institute; Brajendra Mishra, Colorado School of Mines; Neale Neelameggham, Ind LLC

Tuesday PM Room: 104C

February 16, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM

Electro Dynamic Sorting of Scrap Light Metals and Alloys: Raj Rajamani¹; James Nagel¹; Nakul Dholu¹; ¹University of Utah

2:25 PM

Scrap Characterization to Optimize the Recycling Process: Sean Kelly¹; Diran Apelian¹; ¹Metal Processing Institute

2:50 PM

The Value of Integrated Production Planning for Two-Stage Aluminum Recycling Operations: *Jiyoun Chang*¹; Elsa Olivetti¹; Randolph Kirchain¹; ¹MIT

3:15 PM

Solar Aluminum Recycling in a Directly Heated Rotary Kiln: Martina Neises-von Puttkamer¹; Martin Roeb¹; Stefania Tescari¹; Lamark de Oliveira¹; Stefan Breuer¹; Christian Sattler¹; ¹German Aerospace Center

3:40 PM Break

4:00 PM

Metal Recovery from Dross through Rotary Crushing and Separation Producing Products Instead of Waste: David Roth¹; ¹GPS Global Solutions

4:25 PM

A Laboratory Study of Electrochemical Removal of Noble Elements from Secondary Aluminium: Ole Kjos¹; Sverre Rolseth¹; Henrik Gudbrandsen¹;

Egil Skybakmoen¹; Asbjørn Solheim¹; Trond Bergstrøm¹; ¹SINTEF

4:50 PM

Production of Magnesium and Aluminum-magnesium Alloys from Recycled Secondary Aluminum Scrap Melts: Adam Gesing¹; Subodh Das¹; Raouf Loutfy²; ¹Phinix,LLC; ²MER Corporation

5:15 PM

Recovery of Aluminum from the Aluminum Smelter Baghouse Dust: Brajendra Mishra¹; Myungwon Jung¹; ¹Colorado School of Mines

Shape Casting: 6th International Symposium — Casting Performance and Innovation

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Murat Tiryakioglu, University of North Florida; Glenn Byczynski, Nemak Canada; Mark Jolly, Cranfield University

Tuesday PM Room: 203B

February 16, 2016 Location: Music City Center

Funding support provided by: Nemak (possibly)

Session Chair: Glenn Byczynski, Nemak USA/Canada

2:00 PM

Methods of Reducing Materials' Waste and Saving Energy in Investment Casting: Hamid Ahmad Mehrabi¹; Mark Jolly¹; Konstantinos Salonitis¹; ¹Cranfield University

2:25 PM

Quality Assessment of A356 Ingots from Different Suppliers in Wheel Production: *Emre Koca*¹; Caglar Yuksel²; Eray Erzi³; Derya Dispinar³; ¹Maxion Wheels; ²Yildiz Technical University; ³Istanbul University

2:50 PM

On the Relationship between Quality Index, Fatigue Life and Fracture Toughness Distributions in D357 and B201 Alloy Castings: Hüseyin Özdes¹; Murat Tiryakioglu¹; ¹University of North Florida

3:10 PM

On the Properties and Performance of Ablation Cast Components: Murat Tiryakioglu¹; John Grassi²; ¹University of North Florida; ²Alotech Limited LLC

3:35 PM Break

3:50 PM

The Reliability of Ductile Iron Casting Dependent on Runner System Design: An Example of Support Bracket of Brake Caliper: Fu-Yuan Hsu¹; Kuo-Nien Wang²; Cheng-Lung Li²; ¹National United University; ²CMW (TianJin) Industry Co., Ltd.

4:15 PM

Corrosion Resistance of Stainless Steels in Biodiesel: Alejandra Román¹; Claudia Méndez²; *Alicia Ares*¹; ¹Materials Institute of Misiones-IMAM (CON-ICET-UNAM); ²Faculty of Sciences - National University of Misiones

4:40 PM

Characterization of Tensile Deformation in AZ91D Mg Alloy Castings: Ogun Unal¹; Murat Tiryakioglu¹; ¹University of North Florida

5:00 PM

On The Mean Stress Correction in Fatigue Life Assessment in Cast Aluminum Alloys: Hüseyin Özdes¹; Murat Tiryakioglu¹; ¹University of North Florida

5:20 PM

Effects of Sr on the Microstructure of Electromagnetically Stirred Semi Solid Hypoeutectic Al-Si Alloys: *Ghasem Eisaabadi*¹; Ashkan Nouri¹; Majid Zarezadeh Mehrizi¹; Reza Beygi¹; Maryam Ebrahimi¹; ¹Arak University

Thermodynamic Applications, Optimizations and Simulations in High-Temperature Processes: An EPD Symposium in Honor of Christopher W. Bale's 70th Birthday — Non-Ferrous Applications I

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: In-Ho Jung, McGill University; Arthur Pelton, Ecole Polytechnique; Patrice Chartrand, Ecole Polytechnique; Phillip Mackey, P.J. Mackey Technology; David Robertson, Missouri S&T; P Taskinen, Alto Univ; Malin Selleby, KTH Royal Institute of Technology

Tuesday PM Room: 106C

February 16, 2016 Location: Music City Center

Session Chairs: Phillip Mackey, P.J. Mackey Technology; Patrice Chartrand, Ecole

Polytechnique

2:00 PM Keynote

Process Control in Pyrometallurgy – Coupled Reactions, Fluid Flow, and Kinetics: David Robertson¹; Simon Lekakh¹; ¹Missouri S&T

2:40 PM

From Process Modeling to Process Optimization with SimuSage: Stephan Petersen¹; ¹GTT-Technologies

3:00 PM

Hybrid Prediction Model based Simulation Software for the Optimizations of Converter Blowing System: Zhiguo Shi¹; Zhanmin Cao¹; XingJian Song¹; ¹Univ. of Sci&Tech. Beijing P.R.China

3:20 PM

Use of Thermodynamical Softwares for Development of Concepts for Innovative Metal Recovery Processes from Residues: Guozhu Ye¹; ¹Swerea MEFOS

3:40 PM Break

4:00 PM

Integrated Experimental and Thermodynamic Modelling Studies on Complex Slag/Matte/Metal Systems in Support of Non-Ferrous Primary and Recycling Pyrometallurgical Operations: Evgueni Jak¹; Taufiq Hidayat¹; Denis Shishin¹; Ata Fallah Mehrjardi¹; Jeff Chen¹; Sergei Decterov²; Peter Hayes¹; ¹The University of Queensland; ²École Polytechnique de Montréal

4:20 PM

Development of Thermodynamic Database for "Cu2O"-Containing Slag-Matte-Metal Systems for Applications in Copper Pyrometallurgical Processes: Denis Shishin¹; Taufiq Hidayat¹; Peter Hayes¹; Sergei Decterov²; Evgueni Jak¹; ¹The University of Queensland; ²École Polytechnique de Montréal

4:40 PM

Exergy Analysis of Electronic Waste Processing through Secondary Copper Recycling: *Maryam Ghodrat*¹; M Akbar Rhamdhani¹; Geoffrey Brooks¹; Markus Reuter²; ¹Swinburne University of Technology; ²Outotec

5:00 PM

Isothermal Section of the Cu-O-Al $_2O_3$ -SiO $_2$ System in Air at 1300 °C: Niko $Hellstén^1$; Pekka Taskinen 1 ; 1 Aalto University

Ultrafine Grained Materials IX — Young Scientist Competition

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Tuesday PM Room: 209B

February 16, 2016 Location: Music City Center

Session Chairs: Megumi Kawasaki, Hanyang University, Irene Beyerlein, Los Alamos National Laboratory; Timothy Rupert, University of California, Irvine

2:00 PM

Effects of Length Scale on Creep Behavior of Bulk CuNb Nanolaminates: *Jaclyn Avallone*¹; Tresa Pollock¹; Thomas Nizolek¹; Nathan Mara²; Irene Beyerlein²; ¹University of California Santa Barbara; ²Los Alamos National Laboratory

2:20 PM

Enhancement on Mechanical Biocompability of Co-Cr-Mo Alloys by High-pressure Torsion and a Short-time Solution Treatment: *Murat Isik*¹; Mitsuo Ninomi¹; Huihong Liu¹; Masaaki Nakai¹; Ken Cho²; Zenji Horita³; Takayuki Narushima¹; ¹Tohoku University; ²Osaka University; ³Kyushu University

2:40 PM

Fracture Toughness of a Duplex Steel Deformed by High Pressure Torsion: *Katharina Grundner*¹; Anton Hohenwarter²; Reinhard Pippan¹; ¹Erich Schmid Institute of Materials Science; ²Department of Materials Physics, Universitiy of Leoben

3:00 PM

Hardening by Annealing in Nanocrystalline Metals: Oliver Renk¹; Anton Hohenwarter²; Reinhard Pippan¹; ¹Erich Schmid Institute of Materials Science; ²Department of Materials Physics, Montanuniversität Leoben

3:20 PM

Microstructural Instabilities in Cyclically Loaded ufg Metals: Marlene Kapp¹; Oliver Renk¹; Martin Bärnthaler¹; Bo Yang¹; Reinhard Pippan¹; ¹Erich Schmid Institute of Materials Science

3:40 PM Break

4:00 PM

Multi-scale Investigation on Yield "Symmetry" and Reduced Strength Differential in an UFG Mg-Y Alloy: Dalong Zhang¹; Lin Jiang¹; Xin Wang¹; Irene Beyerlein²; Julie Schoenung¹; Mo Li³; Subhash Mahajan¹; Enrique Lavernia⁴; ¹University of California-Davis; ²Los Alamos National Laboratory; ³Georgia Institute of Technology; ⁴University of California-Davis, University of California-Irvine

4:20 PM

Process-mechanics-structure Framework for Surface Severe Plastic Deformation: Saurabh Basu¹; Zhiyu Wang¹; Christopher Saldana¹; ¹Georgia Institute of Technology

4·40 PM

Revisiting Fatigue Crack Growth in Various Grain Size Regimes of Ni: *Thomas Leitner*¹; Anton Hohenwarter¹; Reinhard Pippan²; ¹Montanuniversität Leoben; ²Erich Schmid Institute of Materials Science, Austrian Academy of Sciences

5:00 PM

The Formation of Growth Twins in Polycrystalline Al with High Stacking Fault Energy: Sichuang Xue¹; Fan Zhe¹; Youxing Chen²; Jin Li¹; Haiyan Wang¹; Xinghang Zhang¹; ¹Texas A&M University; ²Argonne National Laboratory

5:20 PM

Modeling Effects of Grain Boundary Sliding on Crystallographic Texture and Grain Shape Evolution Using Explicit Grain Structure Models: *Milan Ardeljan*¹; Irene Beyerlein²; Marko Knezevic¹; ¹University of New Hampshire; ²Los Alamos National Laboratory

2016 Functional Nanomaterials: Emerging Nanomaterials and Techniques for 3D Architectures — Nanomaterials General I

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Nanomaterials Committee

Program Organizers: Terry Xu, UNC Charlotte; Nitin Chopra, The University of Alabama; Jung-Kun Lee, University of Pittsburgh; Jiyoung Kim, University of Texas; V. U. Unnikrishnan, The University of Alabama

Wednesday AM Room: 211

February 17, 2016 Location: Music City Center

Session Chairs: Terry Xu, UNC Charlotte; Vinu Unnikrishnan, The University of Alabama

8:30 AM

Gas-phase Condensation of Core-Shell Nanoparticles: *Mark Koten*¹; Pinaki Mukherjee²; Jeff Shield¹; ¹University of Nebraska; ²Rutgers University

8:50 AM

Morphological, Structural and Optical Characterization of Bottom up Growth of Ag-WO3 Core Shell Nano-cube Heterostructures: *Muhammad Imam*¹; William Benton¹; Nitin Chopra¹; ¹The University of Alabama

9:10 AM

Titanium Dioxide Architects Made by Amorphous Building Blocks: *Mengkun Tian*¹; Masoud Mahjouri-Samani²; Gyula Eres²; Davide B. Geohegan²; Gerd Duscher¹; ¹University of Tennessee; ²Oak Ridge National Lab

9:30 AM

Structural Study of Kinked B4C Nanowires: *Zhiguang Cui*¹; SiangYee Chang¹; Terry Xu¹; ¹The University of North Carolina at Charlotte

9:50 AM

Characterization of Free-Standing NiTi Shape Memory Alloy Nanowires Fabricated by Nanoskiving: *Huilong Hou*¹; Reginald Hamilton¹; ¹The Pennsylvania State University

10:10 AM Break

10:30 AM

Shape Shifting Fullerene Self-Assemblies for Supercapacitor Applications: Deepak Sridhar¹; Selene Sandoval¹; Tony Gnanaprakasa¹; Srini Raghavan¹; Krishna Muralidharan¹; ¹University of Arizona

10:50 AM

Ferroplasmons: Strong Plasmonic Resonances in Magnetic Nanoparticles: *Abhinav Malasi*¹; Jingxuan Ge¹; Annette Farah¹; Hernando Garcia²; Gerd Duscher³; Ramki Kalyanaraman¹; ¹University of Tennessee, Knoxville; ²Southern Illinois University Edwardsville; ³University of Tennessee Knoxville, Oakridge National Laboratory

11:10 AM

The Influence of Shape and Surface Chemistry on Solvated Nanodiamonds as Lubricant Additives: Farshad Saberi-Movahed¹; Donald Brenner¹; Olga Shenderova²; ¹North Carolina State University; ²International Technology Center

11:30 AM

DFT Study of Au-Ti Bimetallic Nanoparticle on TiO2 Support as Highly Active CO Oxidation Catalysts: *Kihoon Bang*¹; Kihyun Shin¹; Myung Shin Ryu¹; Soon Ho Kwon¹; Hyuck Mo Lee¹; ¹KAIST

7th International Symposium on High Temperature Metallurgical Processing — Direct Reduction and Smelting Reduction

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Wednesday AM Room: 105B

February 17, 2016 Location: Music City Center

Session Chairs: Onuralp Yücel, ITU; Chenguang Bai, Chongqing University

8:30 AM Introductory Comments

8:35 AM

Experiment Research on Direct Reduction of Celestine by Rotary Hearth Furnace Process: Dongping Duan¹; Hongliang Han¹; Siming Chen¹; E Zhou¹; Li Zhong¹; ¹Key Laboratory of Green Process and Engineering, Institute of process Engineering, Chinese Academy of Sciences, Beijing, 100190

8:55 AM

Influence of Slag Basicity on the Silicon within the Stainless Steel Master Alloy Prepared by Smelting Reduction of Fe-Ni-Cr Sinters: *Yanhui Liu*¹; Xuewei Lv¹; Pingsheng Lai¹; Chenguang Bai¹; ¹School of Materials Science and Engineering, Chongqing University

9:15 AM

Reduction Behavior of Chromic Oxide in Ti –bearing BF Slag: Baohua Li¹; Lv Xuewei¹; Chen Yun¹; Liu Yanhui¹; Li Shengping¹; ¹Chongqong University

9:35 AN

Reinforcement of Self-reducing Pellets Elaborated with Cement with Cellulose Waste: Alberto Eloy Nogueira¹; Cyro Takano¹; Marcelo Mourão¹; Adolfo Zambrano¹; Litzy Catorceno¹; ¹Universidade de São Paulo

9:55 AM

Smelting Reduction of Bottom Ash in Presence of Liquid Iron Bath for Recovery of Aluminium: Arup Kumar Mandal¹; Om Prakash Sinha¹; ¹Indian Institute of Technology, (BHU)

10:15 AM Break

10:30 AM

Effects of Mineral Oxides on the Precipitation Micro-morphology of Metallic Iron in the Reduction of Iron Oxides under CO Atmosphere: *Zhancheng Guo*¹; Zhilong Zhao¹; Huiqing Tang¹; Jintao Gao¹; Lin Lin¹; ¹University of Science and Technology Beijing

10:50 AN

Influence of Operation Parameters on Mass Fraction of Sulfur in the Hot Metal in COREX Process: Laixin Wang¹; Shengli Wu¹; Minyin Kou¹; Xinliang Liu¹; Yujue Wang¹; Weidong Zhuang²; ¹University of Science and Technology Beijing; ²National Engineering Research Center for Rare Earth Materials, General Research Institute for Nonferrous Metals, Grirem Advanced Materials Co. Ltd

11:10 AM

Influence of Operation Parameters on Sticking Behavior of Pellet in COREX Shaft Furnace: Xinliang Liu¹; Shengli Wu¹; Zhe Wang¹; Laixin Wang¹; Mingyin Kou¹; ¹University of Science and Technology Beijing

11:30 AM

Relationship between Coking Properties of Lump Coal and its Pulverization in COREX Process: *Qihang Liu*¹; ¹Xi'an University of Architecture and Technology (XAUAT)

11:50 AM

Study on the Iron Resource Recovery in Nickel Slag by Melting Oxidation Roasting Process: *Shen Yingying*¹; Min Chen¹; Yong-bo Ma²; Guo-zhou Li²; ¹Northeastern University; ²LanZhou University Of Technology

Bart Blanpain¹; Muxing Guo¹; ¹KU Leuven

7th International Symposium on High Temperature Metallurgical Processing — Microwave Heating and Roasting of Materials

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Wednesday AM Room: 106A

February 17, 2016 Location: Music City Center

Session Chairs: Matthew Andriese, Michigan Technological University; Zhiwei Peng, Central South University

8:30 AM Introductory Comments

8:35 AM

Separation of Rhenium and Molybdenum from Molybdenite Concentrate by Microwave-Assisted Roasting: Tao Jiang¹; Linfeng Zhou¹; Guanghui Li¹; Rong Sun¹; Zhiwei Peng¹; ¹School of Minerals Processing and Bioengineering, Central South University

8:55 AM

Microwave Reduction of Sulfide Minerals within Peridotite Rock: Matthew Andriese¹; ¹Michigan Technological University

9·15 AM

Research on Microwave Roasting of ZnO and Application in Photocatalysis: *Qin Guo*¹; Linqing Dai¹; Shenghui Guo¹; Libo Zhang¹; Jinhui Peng¹; ¹Kunming University of Science and Technology

9:35 AM

Microwave Heating of Waste Tires: Yuzhe Zhang¹; Jiann-Yang Hwang¹; Zhiwei Peng¹; Matthew Andriese¹; ¹Michigan Technological University

9:55 AM Break

10:15 AM

Utilization of Pine Nut Shell for Preparation of High Surface Area Activated Carbon by Microwave Heating and KOH Activation: Liao Xuefeng¹; Peng Jinhui¹; Xia Hongying¹; Zang Libo¹; Chen Guo¹; Hu Tu¹; ¹State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, China

10:35 AM

Study of SnO₂ Transparent Conductive Films were Produced by Ultrasonic Spray and Microwave Pyrolysis: Jianbo Lan¹; Shenghui Guo¹; Lihua Zhang²; Libo Zhang³; Jinhui Peng¹; ¹State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology; ²State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology; ³State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology

10:55 AM

Numerical Modeling of Microwave Heating an Iron Oxide in the Muti-mode Furnace: *Liu Chenhui*¹; TianCheng Liu²; Jinhui Peng²; Lijuan Jia²; Yunnan Minzu University; Yunnan Minzu University

11:15 AM

Microwave Melting of High Carbon Ferromanganese Fines: Lei Li¹; Hongbo Zhu¹; Linqing Dai¹; ¹Kunming University of Science and Technology

11:35 AM

Composition Modification of ZnO Containing Fayalite Slag from Secondary Source Copper Smelting: Huayue Shi¹; Liugang Chen¹; Peter Tom Jones¹;

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling — Modeling and Simulation and Reactor Irradiaiton

Sponsored by: TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory, Peter Hosemann, University of California Berkeley; Todd Allen, Idaho National Laboratory; Elaine West, Knolls Atomic Power Laboratory

Wednesday AM Room: 101B

February 17, 2016 Location: Music City Center

Session Chair: Yongfeng Zhang, Idaho National Lab

8:30 AM Invited

Multiscale Modeling of Defect Cluster Evolution in Irradiated Structural Materials: Brian Wirth¹; Aaron Kohnert¹; Donghua Xu¹; ¹University of Tennessee

9.00 AN

Phase Field Modeling of Void Growth and Coarsening in Irradiated Materials: *Karim Ahmed*¹; Srujan Rokkam²; Thomas Hochrainer³; Anter El-Azab¹; ¹Purdue University; ²Advanced Cooling Technologies, Inc.; ³Bremen Institute of Mechanical Engineering, University Bremen

9:20 AM

Cluster Dynamics Modelling of Void Nucleation and Growth in Ferritic Steels: Gerrit VanCoevering¹; Gary Was¹; ¹University of Michigan

9:40 AM

Modeling Microstructural Evolution in Neutron Irradiated Tungsten during Isochronal Annealing Process: Xunxiang Hu¹; Donghua Xu²; Brian Wirth²; Yutai Katoh²; ¹ORNL; ²UT Knoxville

10:00 AM Break

10:20 AM Invited

Characterisation of Reactor Core Materials Performance Using Materials Test Reactors - A Canadian Perspective: Malcolm Griffiths¹; ¹Canadian Nuclear Laboratories

10:50 AM

Change of Slip Anisotropy in Zr Alloys Due to Irradiation: Yang Liu¹; Allan Harte¹; Zhenbo Zhang¹; Michael Preuss¹; ¹University of Manchester

11:10 AM

The Effect of Temperature on Helium Bubble Lattice Formation in hcp Zircaloy-4 and fcc Copper: Aidan Robinson¹; Philip Edmondson¹; Sergio Lozano-Perez¹; Graeme Greaves²; Jonathan Hinks²; Stephen Donnelly²; Chris Grovenor¹; ¹Oxford University; ²University of Huddersfield

11:30 AM

Evaluation of Radiation effects in FeMnNiCr High Entropy Alloy: *Congyi Li*¹; Anantha Phani Kiran Kumar Nimishakavi²; Hongbin Bei²; Brian Wirth³; G. Malcolm Stocks²; Steve Zinkle³; ¹Bredesen Center; ²Oak Ridge National Lab; ³University of Tennessee

11:50 AM

Atomic Scale Characterisation of Radiation Damage in Superconducting Perovskites for Nuclear Applications: Stella Pedrazzini¹; Mohsen Danaie¹; Gregory Brittles¹; Susannah Speller¹; Neil Young¹; Chris Grovenor¹; *Philip Edmondson*²; Paul Bagot¹; ¹University of Oxford; ²Oak Ridge National Laboratory

Additive Manufacturing: Building the Pathway towards Process and Material Qualification — Non-Metals and Feedstock Design

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Powder Materials Committee, TMS: Process Technology and Modeling Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas; Reginald Hamilton, The Pennsylvania State University; Edward Herderick, GE; Rajiv Mishra, University of North Texas; James Sears, GE GRC

Wednesday AM Room: 205A

February 17, 2016 Location: Music City Center

Session Chairs: Sudarsanam Babu, University of Tennessee - Knoxville; Kenny Dalgarno, Newcastle University

8:30 AM Invited

Fatigue and QA testing of Polymer SLS and FFF Parts: Stephen Akande¹; Javier Munguia¹; Kenneth Dalgarno¹; ¹Newcastle University

9:00 AM

Electromagnetic Thermal Management and Structure Control in High Throughput Large Area Additive Manufacturing: William Carter¹; Orlando Rios¹; Vlastimil Kunc¹; Brian Post¹; Randall Lind¹; Lonnie Love¹; ¹Oak Ridge National Laboratory

9:20 AM

Non-Invasive Evaluation of Big Area Additive Manufacturing (BAAM) Parts using Thermoplastic (ABS) Chopped Carbon Fiber Composites for Microstructure-Mechanical Property Relationship

: Stephen Young¹; Dayakar Penumadu¹; Chad Duty²; Vlastimil Kunc³; ¹University of Tennessee, Knoxville; ²Oak Ridge National Laboratory ; ³Oak Ridge National Laboratory

9:40 AM Invited

Innovative Process Controls and Qualification of Additively Manufactured Metallic Components with Tailored Microstructure and Properties: Sudarsanam Babu¹; Ryan Dehoff²; Lonnie Love²; William Peter²; ¹The University of Tennessee, Knoxville; ²Oak Ridge National Laboratory

10:10 AM Break

10:30 AM

Using Powder Cored Tubular Wire Technology to Enhance Electron Beam Freeform Fabricated Structures: *Devon Gonzales*¹; Marcia Domack²; Robert Hafley²; Stephen Liu¹; ¹Colorado School of Mines; ²NASA Langley Research Center- Advanced Materials and Processing Branch

10:50 AM

Manufacturing Process Development to Produce Depleted Uranium Wire for EBAM Feedstock: David Alexander¹; Kester Clarke¹; Daniel Coughlin¹; Jeffrey Scott¹; ¹Los Alamos National Laboratory

11:10 AM

A Novel Low Cost Process for Making Spherical Ti Alloy Powders for Additive Manufacturing and Other Applications

: Zhigang Fang¹; Pei Sun¹; Yang Xia¹; Ying Zhang¹; ¹University of Utah

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session V

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; John Carpenter, Los Alamos National Laboratory; Marko Knezevic, University of New Hampshire; Wolfgang Pantleon, Technical University of Denmark; Thomas Bieler, Michigan State University; Khalid Hattar, Sandia National Laboratories; Irene Beyerlein, Los Alamos National Laboratory

Wednesday AM Room: 103B

February 17, 2016 Location: Music City Center

Session Chairs: Joel Bernier, Lawrence Livermore National Laboratory; Samantha Daly, University of Michigan

8:30 AM Invited

High-temperature In-SEM Mapping of Early Damage Accumulation across Length Scales in CMCs: Jared Tracy¹; Kathy Sevener¹; Samantha Daly¹; ¹University of Michigan

9:00 AM

In-situ 3-D Characterization and Direct Micromechanical Modelling for Identification of Microstructural Effects on Ductile Damage in 2-phase Polycrystals: Ricardo Lebensohn¹; Reeju Pokharel¹; Bjorn Clausen¹; Chris Chen¹; Timothy Ickes¹; James Hunter¹; Darren Dale¹; ¹Los Alamos National Laboratory

9:20 AM

Experimental Micromechanics – Getting the Most out of High Resolution EBSD and DIC: Jun Jiang¹; Fionn Dunne¹; *T Ben Britton*¹; ¹Department of Materials, Imperial College

9:40 AM Invited

Quantifying the Response of Polycrystalline Materials at the Mesoscale: Measurements, Modeling and Data Mining: Joel Bernier¹; Paul Shade²; Todd Turner²; ¹Lawrence Livermore National Laboratory; ²Air Force Research Laboratory

10:10 AM Break

10:30 AM

Hydrogen-Enhanced 'Free-Volume' Effects during Deformation of Ni Alloys: Samantha Lawrence¹; Yuriy Yagodzinskyy²; Hannu Hänninen²; Esa Korhonen²; Filip Tuomisto²; Zachary Harris³; Brian Somerday¹; ¹Sandia National Laboratories; ²Aalto University; ³University of Virginia

10:50 AM

Computational and Experimental Comparison of Mechanical Deformation and Microstructure Evolution of Additively Manufactured Materials: *Tugce Ozturk*¹; Ross Cunningham¹; Robert Suter¹; Anthony Rollett¹; ¹Carnegie Mellon University

11:10 AM

Which Aggregate Complexity is Required in Full-field Polycrystalline Computations Depending on the Scale of Interest?: *Maxime Sauzay*¹; J. Liu¹; Loic Signor²; Th. Ghidossi²; Patrick Villechaise²; F. Rachdi²; ¹CEA; ²Pprime Institut

11:30 AM

A Study of Grain-level Deformation and Residual Stresses in Ti-7Al under Combined Bending and Tension

: *Kamalika Chatterjee*¹; Armand Beaudoin¹; Ajey Venkataraman²; Michael Sangid²; Tim Garbaciak¹; John Rotella²; Peter Kenesei³; Jun-Sang Park³; ¹University of Illinois at Urbana-Champaign; ²Purdue University; ³Argonne National Laboratory

Advanced Magnetic Materials: An FMD Symposium in Honor of Michael E. McHenry — Magnetocaloric Materials

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Magnetic Materials Committee

Program Organizers: Raju Ramanujan, Nanyang Technological University; Matthew Willard, Case Western Reserve University; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory

Wednesday AM Room: 209C

February 17, 2016 Location: Music City Center

Session Chairs: Robert Shull, National Institute of Standards and Technology; Rafal Dunin-Borkowski, Forschungszentrum Jülich

8:30 AM Invited

Magnetocaloric Effects in Ni-Mn-Al Type Alloys: Robert Shull¹; Daniel Lep-kowski²; Cindi Dennis¹; Adam Creuziger¹; Anit Giri³; ¹National Institute of Standards and Technology; ²Louisiana State University; ³TKC Global

9:00 AM Invited

Observation of 'Re-entrant Inverse-magnetocaloric Phenomenon' and Asymmetric Magnetoresistance Behavior in RFe5Al7 (R= Gd and Dy): Venkatesh Chandragiri¹; Kartik Iyer Iyer¹; E.V. Sampathkumaran¹; ¹Tata Institute of Fundamental Research

9:30 AM Invited

Transition Metal Based Magnetocaloric Materials: *Ekkes Brück*¹; ¹Delft University of Technology

10:00 AM Break

10:20 AM

Amorphous, Nanostructured and Composite Magnetocaloric Materials: Optimization of Properties via Materials Processing: Victorino Franco¹; Luis Moreno-Ramírez¹; Jhon Ipus¹; Javier Blázquez¹; Alejandro Conde¹; ¹Sevilla University

10:40 AM

Caloric Effects in Ni-Mn-Sn Ribbons: Christian Omar Aguilar Ortiz¹; Juan Pablo Camarillo¹; Daniel Soto-Parra¹; Pablo Álvarez-Alonso²; Elena Villa³; Daniel Salazar⁴; Horacio Flores-Zúñiga¹; *José Manuel Barandiarán*⁴; Volodymyr Chernenko⁵; ¹División de Materiales Avanzados, IPICYT; ²Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU); ³CNR IENI; ⁴BCMaterials; ⁵Ikerbasque, Basque Foundation for Science

11:00 AM

Magnetocaloric Materials: From Advanced Characterization to Industrial Application: Konstantin Skokov¹; Tino Gottschall¹; Oliver Gutfleisch¹; ¹Technische Universität Darmstadt

11:20 AM

A Study of Magnetocaloric Effect and Increased Working Temperature Range in a Heusler

Mn_{so}Ni₃₇In₁₀Co₃ Unidirectional Crystal: *Jian Ren*¹; Hongxing Zheng¹;
¹Shanghai University

11:40 AM

Magnetic Field Induced Large Strain by Reversible Phase Transformation on Metamagnetic Shape Alloys: *Ali Turabi*¹; Haluk Karaca¹; Merivan Sasmaz²; Volodymyr Chernenko²; Yury Chumlyakov³; ¹University of Kentucky; ²University of Basque Country (UPV/EHU); ³Tomsk State University

Aluminum Alloys, Processing and Characterization — Solidification

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Steven Long, Kaiser Aluminum Corporation

Wednesday AM Room: 201B

February 17, 2016 Location: Music City Center

Session Chair: Hiromi Nagaumi, Suzhou Research Institute for Nonferrous Metals

8:30 AM Introductory Comments

8:35 AM Invited

Grain Refinement Mechanism of Aluminum by Al-Ti-B Master Alloys: Xiaoming Wang¹; Qingyou Han¹; ¹Purdue University

9:00 AM

Optimization of Electrical Conductivity and Strength by Grain Refinement in Al-Mg-Si Alloys: *Xavier Sauvage*¹; Yana Nasedkina¹; Nariman Enikeev²; Elena Bobruk²; Maxim Murashkin²; Ruslan Valiev²; ¹University of Rouen, CNRS; ²IPAM-USATU

9.25 AN

Power Law Scaled Hardness of Mn Strengthened Al-Mn Solid Solutions: An Integrated Density Functional Theory and Electron Work Function Study: William Yi Wang¹; Kristopher Darling²; Yi Wang¹; Shunli Shang¹; Laszlo Kecskes²; Xidong Hui³; Zi-Kui Liu¹; ¹The Pennsylvania State University; ²U.S. Army Research Laboratory; ³University of Science and Technology Beijing

9:50 AM Break

10:05 AM

Universal Modifiers for Al-Si Casting Alloys: *Yang Lu*¹; Andre Lee¹; ¹Michigan State University

10:30 AM

Effect of the Shape of Solid Particles on the Distribution of Particles in JIS AC4CH (A356) Aluminum Alloy Semi-solid High Pressure Die Casting: *Yuichiro Murakami*¹; Kenji Miwa²; Masayuki Kito³; Takashi Honda³; Shuji Tada¹; ¹Advanced Industrial Science and Technology; ²Aichi Science and Technology Foundation; ³Aisan Industry Co., Ltd.

10:55 AM

A High Strength Aluminium Alloy for High Pressure Die Casting: *Shouxun Ji*¹; Zhongyun Fan¹; ¹Brunel University

Aluminum Reduction Technology — Fundamentals in Chemistry I

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Stephan Broek, Hatch Ltd

Wednesday AM Room: 202C

February 17, 2016 Location: Music City Center

Session Chair: Arne Ratvik, SINTEF

8:30 AM

Characterization of Bubble Behavior in Aluminum Reduction Cells: Xiaojun Lv¹; Yajing Shuang¹; Jie Li¹; Lingyun Hu¹; Jianhua Liu¹; Zhenming Xu¹; Hongliang Zhang¹; ¹Central South University

8:55 AM

Elimination of Lithium from Aluminium Electrolyte by Acid Leaching Method: *Hou Jianfeng*¹; Wang Zhaowen¹; Li Tuofu¹; SHI Zhongning¹; Hu Xianwei¹; ¹Northeastern University

9:20 AM

Impact of the Heat Flux on the Solidification of a Cryolithe Based Bath: Sandor Poncsak¹; László Kiss¹; Csilla Kaszás¹; Véronique Dassylva Raymond¹; Sébastien Guérard²; Jean François Bilodeau²; ¹Univeristy of Quebec at Chicoutimi; ²CRDA Rio Tinto Aluminium

9:45 AM

Investigation of Sodium Sulfate Additions into Cryolite-Alumina Melts: Rauan Meirbekova¹; Geir Haarberg²; Thor Aarhaug³; Gudrun Saevarsdottir¹; ¹Reykjavik University; ²Norwegian University of Science and Technology; ³SINTEF

10:10 AM Break

10:25 AM

Polyvalent Impurities and Current Efficiency in Aluminium Cells: A Model Concerning Electrochemical Short Circuiting: Asbjorn Solheim¹; ¹SIN-TEF

10:50 AM

Sodium in Aluminum Metal of Operating Prebake Cells: Confirmation and New Findings: Alton Tabereaux¹; Mike Barber¹; ¹Consultant

11:15 AM

The Performance of Aluminium Electrolysis in a Low Temperature Electrolyte System: Peng Cui¹; Asbjørn Solheim²; Geir Martin Haarberg¹; ¹Norwegian University of Science and Technology; ²SINTEF Materials and Chemistry

11:40 AM

The Role of Key Impurity Elements on the Performance of Aluminium Electrolysis - Current Efficiency and Metal Quality: *Jassim Al-Mejali*¹; Geir Martin Haarberg²; ¹Qatar Aluminium Company (Qatalum); ²NTNU

Bio Nano Interfaces and Engineering Applications – Bio-Nano Interfaces: Applications & Devices

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Po-Yu Chen, National University of Tsing Hua University; Terry Lowe, Colorado School of Mines; John Nychka, University of Alberta; Wen Yang, Swiss Federal Institute of Technology in Zurich (ETHZ)

Wednesday AM Room: 206B

February 17, 2016 Location: Music City Center

Session Chair: Hendrik Heinz, University of Colorado-Boulder

8:30 AM Invited

Biological Fabrication of Nanodevices by Protein Supramolecules: *Ichiro Yamashita*¹; ¹Nara Institute of Science and Technology

9:10 AM Invited

Stimuli Responsive and Reconfigurable Nanoparticle Biointerfaces: Marc Knecht¹; ¹University of Miami

9:40 AM Invited

Computational Strategies for Amyoloidogenic Proteins Interacting with Gold NPs: Giorgia Brancolini¹; Stefano Corni²; ¹CNR-Nano S3; ²CNR Istituto Nanoscienze

10:10 AM Break

10:30 AM

Engineered Interfaces for Dehydrogenase Based Self-Integrated Electrode System: *Brandon Tomas*¹; Banu Taktak-Karaca¹; Dwight Deay IIII¹; Deniz Yucesoy²; Mark Richter¹; Candan Tamerler¹; ¹University of Kansas; ²University of Washington

10:50 AM Invited

Engineering of Bio-Nano Interfaces on 2D Nanomaterials by Self-Assembled Peptides

: Yuhei Hayamizu¹; ¹Tokyo Institute of Technology

11:20 AM

An Electrochemical Approach to Control Surface Behavior of Peptides Self-assembling on Graphite: *Takakazu Seki*¹; Christopher So²; Tamon Page²; Yuhei Hayamizu¹; Mehmet Sarikaya²; ¹Tokyo Institute of Technology; ²University of Washington

Biological Materials Science Symposium — Mechanics of Hard Biological Materials

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Francois Barthelat, McGill University; Kalpana Katti, North Dakota State University; Paul Allison, University of Alabama; Rajendra Kasinath, DePuy Synthes Products, LLC

Wednesday AM Room: 207A

February 17, 2016 Location: Music City Center

Session Chairs: Francois Barthelat, McGill University; Kalpana Katti, North Dakota State University

8:30 AM

A Comparison of Tooth Enamel from Disparate Mammals: Yuta Ohtsuka¹; Shaoyu Zhu¹; *Dwayne Arola*¹; ¹University of Washington

8.50 AN

Competition of Elastic-plastic Deformation and Fracture in Plastic Zone Ahead Crack Tip in Dentin and Tooth Enamel: Peter Panfilov¹; Elijah Borodin¹; Elena Lyapunova¹; Anna Kabanova¹; Dmitry Zaytsev¹; Mikhail Gutkin²; ¹Ural Federal University; ²Institute of Problems of Mechanical Engineering of the RAS

9:10 AM

On the Reduction in Crack Growth Resistance of Human Enamel with Age: Dongsheng Zhang¹; Mobin Yahyazadehfar²; *Dwayne Arola*²; ¹Shanghai University; ²University of Washington

9:30 AM

Analysis of Naturally-occurring and Biomimetic Rod Like Microstructures: Enrique Escobar de Obaldia¹; Chanhue Jeong¹; Steven Herrera²; Lessa Grunenfelder²; David Kisailus²; *Pablo Zavattieri*¹; ¹Purdue University; ²University of California, Riverside

9:50 AM

Micromechanical Damage Modeling of Biological Materials: *Mei Chandler*¹; Ruth Cheng¹; Paul Allison²; Rich Martens³; Mark Hopkins¹; ¹U.S. Army Engineer Research and Development Center; ²University of Alabama, Dept. of Mechanical Engineering, Tuscaloosa; ³University of Alabama, Central Analytical Facility

10:10 AM Break

10:30 AM

Functional Design of Keratinous Materials: Pangolin Scales and the Feather Shaft: Bin Wang¹; Marc Meyers¹; ¹University of California, San Diego

10:50 AM

Mechanical Investigation of Naturally-Occurring and Biomimetic Bouligand Materials: Nobphadon Suksangpanya¹; Nicolas Guarin-Zapata¹; David Restrepo¹; Nicholas Yaraghi²; Steven Herrera²; David Kisailus²; *Pablo Zavattieri*¹; ¹Purdue University; ²University of California, Riverside

11:10 AM

The Twisted Fibrous Structure and Mechanical Behavior of Coelacanth: Haocheng Quan¹; Wen Yang²; Marc Meyers¹; ¹UCSD; ²ETH-Zurich

11:30 AV

Nanoindentation-based Mechanical Spectroscopy of Wood Cell Walls: *Joseph Jakes*¹; ¹USDA Forest Products Laboratory

Bulk Metallic Glasses XIII — Mechanical and Other Properties I

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Wednesday AM Room: 102B

February 17, 2016 Location: Music City Center

Session Chairs: Marios Demetriou, Caltech; Katharine Flores, Washington University in St. Louis

8:30 AM Invited

FeCoSiBNbCu Bulk Metallic Glass with Compressive Deformability: Mihai Stoica¹; Sergio Scudino¹; Jozef Bednarcik²; Ivan Kaban¹; Jürgen Eckert¹; ¹IFW Dresden; ²DESY Hamburg

8:50 AM Invited

Fracture and Fatigue of a Ni-based Glass: Bernd Gludovatz¹; Edwin Chang²; J. Na³; Max Launey³; Marios Demetriou⁴; William Johnson⁴; *Robert Ritchie*²; ¹Lawrence Berkeley National Laboratory; ²University of California Berkeley; ³Glassimetal Technology Inc.; ⁴California Institute of Technology

9:10 AM

On the Structural Origin of Strength and Plasticity of Metallic Glasses: *Yuan Wu*¹; Xiongjun Liu¹; Hui Wang¹; Zhaoping Lu¹; Hongbin Bei²; Yanfei Gao²; Yanli Wang²; Easo. P. George²; ¹State Key Lab for Advanced Metals and Materials, USTB; ²Oak Ridge National Lab.

9:30 AM Invited

Plastic Deformation Mechanisms in Bulk Metallic Glass Composites: Kelly Kranjc¹; Michael Gibbons²; Allen Hunter³; Stephen Niezgoda²; Emmanuelle Marquis³; Wolfgang Windl²; *Katharine Flores*¹; ¹Washington University; ²The Ohio State University; ³University of Michigan

9:50 AM Break

10:05 AM Invited

Thermodynamic Origin of Fracture Resistance in Metallic Glasses: Marios Demetriou¹; Glenn Garrett¹; Maximilien Launey¹; William Johnson¹; ¹Glassimetal Technology

10:25 AM Invited

Mechanical, Thermal and Kinetic Characterization of a Series of Zr-based Bulk Metallic Glasses as a Function of Co-concentration

: Rainer Wunderlich¹; Yue Dong¹; Hans-Jörg Fecht¹; ¹Universität Ulm

10:45 AM

Tailoring the Magnetic Properties and Mechanical Behavior of Cobalt-Iron Metallic Glasses: Santanu Das¹; Sundeep Mukherjee¹; ¹University of North Texas

11:05 AM

Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Joints Brazed with Zr-Ti-Cu-Ni Metallic Glass as Filler Metal: Yun Ji So¹; Jin Kyu Lee¹; ¹Kongju National University

11:25 AM

On the Chemistry-topology-stiffness Relationship of Co-based Metallic Glass Thin Films: A Combinatorial Approach: *Volker Schnabel*¹; Mathias Köhler²; Simon Evertz¹; Jana Michalikova³; Jozef Bednarcik³; Denis Music¹; Dierk Raabe²; Jochen Schneider¹; ¹RWTH Aachen; ²MPIE; ³DESY

Bulk Metallic Glasses XIII — Structures and Modeling

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Wednesday AM Room: 101E

February 17, 2016 Location: Music City Center

Session Chairs: Yunfeng Shi, Rensselaer Polytechnic Institute; Robert Ritchie, Lawrence Berkeley National Laboratory

8:30 AM Invited

Intrinsic and Extrinsic Ductility of Amorphous Solids: Yunfeng Shi¹; ¹Rensselaer Polytechnic Institute

8:50 AN

Determining Key Mechanical and Thermophysical Properties of Bulk Metallic Glasses from First Principles: Nicholas Hamilton¹; Reza Mahjoub¹; Kevin Laws¹; Mike Ferry¹; ¹School of Materials, UNSW Australia

9:10 AV

Mechanical and Structural Properties of Metallic Glasses in Simulation and Experiment: Mathias Koehler¹; Volker Schnabel²; Nagamani Jaya Balila¹; Christoph Kirchlechner¹; Gerhard Dehm¹; Dierk Raabe¹; Jochen M. Schneider²; ¹Max Planck Institute for Iron Research; ²RWTH Aachen University

9:30 AN

Mesoscopic Models for Amorphous and Crystalline Solids: Francisco Perez-Reche¹; ¹University of Aberdeen

9:50 AM

Thermally Activated Plastic Events and Their Underlying Structural Signature in Metallic Glasses: *Jun Ding*¹; Evan Ma²; Mark Asta³; Robert Ritchie¹; ¹Lawrence Berkeley National Laboratory; ²Johns Hopkins University; ³University of California Berkeley

10:10 AM Break

10:25 AM

Structural Evolution of Liquid Eutectic GaIn Alloy using In Situ Synchrotron X-ray Diffraction and Ab Initio Molecular Dynamics Simulation: Jianzhong Jiang¹; *Qing Yu*¹; X.D. Wang¹; Q.P. Cao¹; D.X. Zhang¹; ¹Zhejiang University

10:45 AM

Atomic Size Effect on Elastic Softening in Multicomponent Glasses Investigated by MD Simulation: Zengquan Wang¹; Takuya Iwashita¹; Wojciech Dmowski¹; Takeshi Egami²; ¹University of Tennessee, Knoxville; ²Oak Ridge National Laboratory

11:05 AM Invited

Investigation of Simulated Local Atomic Structure above and below the Melting Temperature of a Metallic Glass: Cang Fan¹; C.T. Liu²; Jingfeng Zhao¹; P.K. Liaw³; ¹Nanjing University of Science and Technology; ²City University of Hong Kong; ³University of Tennessee

11:25 AN

Kumar: Metallic Glass Janus Microstructures: $Golden \ Kumar^1$; 1 Texas Tech University

11:45 AN

Five-fold Symmetry as Indicator of Dynamic Arrest in Metallic Glass-forming Liquids: Maozhi Li¹; ¹Renmin University of China

Bulk Processing of Nanostructured Powders and Nanopowders by Consolidation — Session V

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Deliang Zhang, Shanghai Jiao Tong University; Bowen Li, Michigan Technological University; Stephen Mashl, Michigan Technological University

Wednesday AM Room: 210

February 17, 2016 Location: Music City Center

Session Chairs: Mathieu Brochu, McGill University; Jiamiao Liang, Shanghai Jiao Tong University

8:30 AM Invited

The Effect of Er on Grain Growth in Cryomilled Al-Mg-Er Powders: *Mathieu Brochu*¹; Bamidele Akinrinlola¹; Raynald Gauvin¹; Carl Blais²; ¹Mc-Gill University; ²Laval University

9:00 AM

Surface Energetics Studies of Nanomaterials: Kristina Lilova¹; Link Brown¹; ¹Setaram Inc.

9:20 AM

Controllable Preparation of Nickel Nanoparticles by Arc Discharge Method: Feng Liang¹; Yaochun Yao¹; WenHui Ma¹; Bin Yang¹; Yongnian Dai¹; Manabu Tanaka²; Takayuki Watanabe²; ¹Kunming University of Science and Technology; ²Kyushu University

9:40 AM

Synthesis and Consolidation of Nanocrystalline Fe-10Cr-3Al Alloy Powder

: *Rajiv Kumar*¹; Srinivasa Bakshi²; V. S. Raja¹; Smrutiranjan Parida¹; R. K. Singh Raman³; ¹Indian Institute of Technology Bombay; ²Indian Institute of Technology Madras; ³Monash University

10.00 AM

Synthesis of Porous Boron Nitride Nanosheets with High Pore Volume: Huazhang Zhai¹; ¹Beijing Institute of Technology

10:20 AM Break

10:40 AM

Synthesis and Morphology Characterization of Nanocrystalline ZnO Powder Fabricated by a Green Low Temperature Route: Katja Engelkemeier¹; Olexandr Grydin¹; Mirko Schaper¹; ¹Universität Paderborn

11:00 AM

Two-Stage Sintering of Nano-sized Yttria Stabilized Zirconia with Polymer Sphere Generated Porosity: Edward Gorzkowski¹; Scooter Johnson¹; James Wollmershauser¹; Stephanie Wimmer¹; ¹Naval Research Laboratory

11:20 AM

Synthesis of Quasi-Nano-sized Ni-Zn-X-Ferrites (Gd, Cu, Mg) by Using Combustion Synthesis and Improvement of Purity by Wet Process

: Man Kim¹; *Yong Choi*²; Moon Sun Gu²; Youl Baik²; Bo Kyeong Kang²; Sang Sun Han²; Sun I. Hong³; Chung T. Kim³; ¹KIMS; ²Dankook University; ³Jungwha Nano Engineering LTD

11:40 AM

TiO2-CeO2Nano Crystalline Powders and Thin Films by an Aqueous Sol-Gel Process: Effect of Ce:Ti Molar Ratio on Microstructure and Physical Properties: Mohsen Manjili¹; Morteza Shaker²; Mahan Hosseinzadeh²; ¹UWM; ²Sharif University of Technology

Cast Shop Technology: An LMD Symposium in Honor of Wolfgang Schneider — Degassing and Solidification Defects

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Mohamed Hassan, Masdar Institute of Science and Technology

Wednesday AM Room: 202A

February 17, 2016 Location: Music City Center

Session Chair: Dave Gildemeister, Alcoa

8:30 AM Introductory Comments

8:35 AM

Design of Square Induction Coils for the Electromagnetic Priming of Ceramic Foam Filters: *Robert Fritzsch*¹; Ragnhild Aune¹; Mark Kennedy¹; Norwegian University of Science and Technology

9:00 AV

Assessment of Active Filters for High Quality Aluminium Cast Products: Pierre Le Brun¹; Fabio Taina¹; Claudia Voigt²; Eva Jackel²; Christos Aneziris²; ¹Constellium Technology Center; ²Technische Universitat Bergakademie Freiberg

9:25 AM

Numerical Simulation of Degassing Phenomena in Continuous Casting Process under External Static Magnetic Field on Flow Pattern in Slab Mold: Mouhamadou Diop¹; Mohamed Hassan¹; ¹Masdar Institute of Science and Technology

9:50 AM Break

10:05 AM

The Problem of Cavities in Open Mold Conveyor Remelt Ingots: John Grandfield¹; ¹Grandfield Technology Pty Ltd

10:30 AM

Theory and Practical Application of Ultrasonic Degassing.: Dawid Smith¹; Kent Britt¹; ¹JWAluminum

10:55 AM

TiB2 Particle Detection in Liquid Aluminum Via Laser-Induced Break-down Spectroscopy: *Shaymus Hudson*¹; Diran Apelian¹; Joe Craparo²; Robert De Saro²; ¹Worcester Polytechnic Institute; ²Energy Research Company

11:20 AM

Modification of Macrosegregation Patterns in Rolling Slab Ingots by Bulk Grain Migration: Samuel Wagstaff¹; Antoine Allanore¹; ¹Massachusetts Institute of Technology

Characterization of Minerals, Metals, and Materials — Composites

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Wednesday AM Room: 103A

February 17, 2016 Location: Music City Center

Session Chairs: Juan Escobedo-Diaz, UNSW Australia; Jeongguk Kim, Korea Railroad Research Institute

8:30 AN

Tensile Strength Tests in Epoxy Composites with High Incorporation of Malva Fibers: Carolina Ribeiro¹; Ygor de Moraes¹; Jean Igor Margem²; Frederico Muylaert¹; Sergio Monteiro³; Fernanda de Paula¹; ¹State University of the Northern Rio de Janeiro; ²ISECENSA; ³IME

8:50 AM

Refractory's Cements and Composites Materials Based on Them in System BaO-AL2O3-SiO2

N.Iliukha, W.Timofeeva: *Ilyoukha Nickolai*¹; Timofeeva Valentina¹; ¹Academic Ceramic Center

9:10 AM

Photocatalytic H2 Production on Novel Heterostructure Composite CuCO3/TiO2 Photocatalyst: *Likun Li*¹; Jim Hwang¹; ¹a. Advanced Materials R&D center of WISCO

9:30 AM

Highly Electrically Conductive Polyolefin Nanocomposites Reinforced with a Low Concentration of Carbon Nanotubes

: Xingru Yan¹; Zhanhu Guo¹; Qingliang He¹; Jiang Guo¹; Xi Zhang¹; ¹University of Tennessee

9:50 AM

Mechanical Characterization of Polymer Matrix Composites with Nondestructive Evaluation Techniques: Jeongguk Kim¹; ¹Korea Railroad Research Institute

10:10 AM Break

10:25 AM

Characterization of Glassy and Partially Crystalline Cu-Zr-Al-Sm Metallic Glasses: Fatih Sikan¹; Ilkay Kalay²; Eren Kalay¹; ¹METU; ²Cankaya University

10:45 AM

Microstructural Characteristics of Reaction-bonded B₄C/SiC Composite: *Tianshi Wang*¹; Prashant Karandikar²; Chaoying Ni¹; ¹University of Delaware; ²M Cubed Technologies, Inc.

11:05 AM

Analysis of Methanol Sensitivity on SnO2-ZnO Nanocomposite: *Enobong Bassey*¹; Philip Sallis²; Krishnamachar Prasad²; ¹Coventry University; ²Auckland University of Technology

11:25 AM

Meltspun Lignin Carbon Fibers for Reinforced Polymeric Composite Applications: Stephen Young¹; *Nathan Meek*¹; Dayakar Penumadu¹; ¹University of Tennessee, Knoxville

Computational Materials Discovery and Optimization: From 2D to Bulk Materials — 2D Materials Discovery and Design

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Richard Hennig, Üniversity of Florida; Houlong Zhuang, Oak Ridge National Laboratory; Dallas Trinkle, University of Illinois, Urbana-Champaign; Eric Homer, Brigham Young University

Wednesday AM Room: 207D

February 17, 2016 Location: Music City Center

Session Chair: Houlong Zhuang, Princeton University

8:30 AM Invited

High-Throughput Screening of Substrates for Synthesis and Functionalization of Two-Dimensional Materials: *Arunima Singh*¹; Kiran Mathew²; Richard Hennig³; Albert Davydov¹; Francesca Tavazza¹; ¹National Institute of Standards and Technology; ²Cornell University; ³University of Florida

9:00 AM

Prediction of Entropy Stabilized Incommensurate Phases in the System MoS_2-MoTe_2: Benjamin Burton¹; Arunima Singh¹; ¹NIST

9:20 AN

ReaxFF Force Field Development and Simulations of Two Classes of 2-Dimensional Structures: MoS2 and MXenes: Alireza Ostadhossein¹; Adri C.T. van Duin¹; ¹Pennsylvania State University

9:40 AM Invited

Turbostratically Disordered Compounds as a Template for Computational Materials Discovery: Sven Rudin¹; ¹Los Alamos National Lab

10:10 AM Break

10:25 AM

Stability of Combined Depositions of Graphene and Gallium Nitride on Silicon Carbide: Interfacial Energies and Phonons: Yi Wang¹; Rafael Vila¹; Yu-Chuan Lin¹; Joshua Robinson¹; Zakaria Al Balushi¹; Joan Redwing¹; Zi-Kui Liu¹; Long-Qing Chen¹; ¹the Pennsylvania State University

10:45 AM

Structure-mechanical Property Relationships for a Wide Range of 2D Materials: Chandra Veer Singh¹; ¹University of Toronto

11:05 AM Invited

Computational Discovery of New 2D and 3D Topological Materials: $Arun\ Bansil^1$; $\ ^1$ Northeastern University

11:35 AM

Computational Discovery of Novel Single-Layer Group-IV Oxides with an Evolutionary Algorithm: Rohit Ramanathan¹; Benjamin Revard¹; Arunima Singh²; Richard Hennig³; ¹Cornell University; ²National Institute of Standards and Technology; ³University of Florida

11:55 AM

Computational Discovery of Novel Magnetic 2D Materials: Richard Hennig¹; Ziyu Zhou²; Ran Duan²; Houlong Zhuang³; Arunima Singh⁴; Benjamin Revard²; ¹University of Florida; ²Cornell University; ³Princeton University; ⁴NIST

Computational Methods for Spatio-temporal Scale-bridging: from Atomistics to Mesoscale — Novel Coupling Strategies

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Danny Perez, Los Alamos National Laboratory, Dallas Trinkle, University of Illinois, Urbana-Champaign; Maryam Ghazisaeidi, Ohio State University; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Wednesday AM Room: 209A

February 17, 2016 Location: Music City Center

Session Chairs: Richard Hennig, University of Florida; Srujan Rokkam, Advanced Cooling Technologies, Inc.

8:30 AM

Computation of the Lattice Green Function of a Dislocation: Anne Marie Tan¹; Dallas Trinkle¹; ¹Univ. Illinois, Urbana-Champaign

8:50 AM

Concurrent Atomistic-continuum Simulations of Sequential Slip Transfer of Curved Dislocations across Grain Boundaries: *Shuozhi Xu*¹; Liming Xiong²; Youping Chen³; David McDowell¹; ¹Georgia Tech; ²Iowa State University; ³University of Florida

9:10 AM Invited

Coupling of Density-Functional Theory with Continuum Methods for Solid/Liquid Interfaces and Electrochemistry: Richard Hennig¹; Kiran Mathew²; ¹University of Florida; ²Cornell University

9:40 AM

Comprehensive Kinetic Characterization of Clusters from the Atomic Scale: Thomas Schuler¹; Maylise Nastar¹; ¹CEA/SRMP

10:00 AM Break

10:20 AM

Continuum Modeling of Coherent Reference States in Semicoherent Interfaces: *Niaz Abdolrahim*¹; Michael Demkowicz²; ¹Department of Mechanical Engineering, University of Rochester, Rochester NY, 14604; ²MIT Department of Materials Science and Engineering, Cambridge MA, 02139

10:40 AM

Scale-Bridging Modeling of Helium Segregation to Surfaces of Plasma-Exposed Tungsten: Sophie Blondel¹; Dimitrios Maroudas²; Lin Hu²; Karl Hammond³; Brian Wirth⁴; ¹Oak Ridge National Laboratory; ²University of Massachusetts; ³University of Missouri; ⁴University of Tennessee

11:00 AM

Multiscale Model for Interlayer Dislocations in Bilayer Material: *Shuy-ang Dai*¹; Yang Xiang²; David Srolovitz¹; ¹University of Pennsylvania; ²Hong Kong University of Science and Technology

11:20 AM

Anharmonic Flexural Modes in Free-Standing Graphene: Hengjia Wang¹; Murray Daw¹; ¹Clemson University

Computational Thermodynamics and Kinetics — Phase Diagrams and Phase Stability

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Chemistry and Physics of Materials Committee Program Organizers: Dane Morgan, University of Wisconsin - Madison; Shawn Coleman, U.S. Army Research Laboratory; Xiang-Yang Liu, Los Alamos National Lab; Chris Wolverton, Northwestern University

Wednesday AM Room: 208B

February 17, 2016 Location: Music City Center

Session Chairs: Blas Pedro Uberuaga, Los Alamos National Laboratory; Adri van Duin, Penn State University

8:30 AM Invited

Applications of the ReaxFF Force Field for Identifying Reactive Properties for Complex Materials and Interfaces: Adri van Duin¹; Chowdhury Ashraf¹; Abhishek Jain¹; Alireza Ostadhossein¹; Mahbub Islam¹; Yuan Xuan¹; Oleg Borodin²; ¹Penn State; ²US Army Research Laboratory

9:00 AM

Understanding Thermodynamics and Kinetics at the Electrolyte-Electrode Interfaces in All-Solid-State Li-ion Batteries: Insight from First-Principles Computation: Yifei Mo¹; ¹University of Maryland, College Park

9:20 AM

Computational Investigation of Enhanced Activity and Stability in Modoped Pt-Ni Octahedral Nanoparticles Using a Cluster Expansion: Liang Cao¹; Tim Mueller¹; ¹Johns Hopkins University

9:40 AM

Phase Stability of Nano-sized Yttria Stabilized Zirconia System: Mohammad Asadikiya¹; Yu Zhong¹; ¹MME Department of Florida International University

10:00 AM Break

10:20 AM Invited

A Generalized View of Amorphization Resistance in Complex Oxides: Blas Uberuaga¹; ¹Los Alamos National Laboratory

10:50 AN

Phase Stability and Kinetics in Ni-superalloys from First Principles: *John Goiri*¹; Anton Van der Ven¹; ¹UCSB

11:10 AM

Defect Formation in Aqueous Environment: Theoretical Assessment of Boron Incorporation in Nickel Ferrite under Conditions of an Operating Pressurized-water Nuclear Reactor (PWR): Zsolt Rak¹; Donald Brenner¹; ¹North Carolina State University

11:30 AV

Thermal Decomposition Kinetics of Manganese Carbonate in the Process of MnZn Ferrite Preparation: Lin Wang¹; ¹University of Science and Technology Liaoning

11:50 AM

Solid-liquid Phase Transitions of FCC-Al and HCP-Mg Nanoparticles: Yewei Jiang¹; Linlin Lv¹; Yongquan Wu¹; ¹Shanghai University

12:10 PM Invited

Predicting Novel Pressure-Stabilized Materials Using Evolutionary Algorithms: Eva Zurek¹; ¹University at Buffalo, SUNY

Electrode Technology — Electrode Operations and Control

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Angelique Adams, Alcoa Inc

Wednesday AM Room: 202B

February 17, 2016 Location: Music City Center

Session Chair: Duygu Kocaefe, University of Quebec at Chicoutimi

8:30 AM Introductory Comments

8:40 AM

MIREA: An On-line Quality Control Equipment Integration in an Operational Context: Marc Gagnon¹; ¹Aluminerie Alouette

9:05 AM

Journey towards World-Class Operational Effectiveness at DUBAL (EGA Jebel Ali Operations) Paste Plant: Bienvenu Ndjom¹; Muhammad Shafiq Malik¹; Amer Abdul Rahman Al Marzouqi¹; Mohamed Fazal Ismail¹; Tapan Kumar Sahu¹; Saleh Ahmed Rabbaa¹; ¹Emirates Global Aluminium

9.30 AM

The Start up & the Operation Performance of the Twin Green Anode Plant at Ma'aden Aluminium Smelter in Saudi Arabia: Christophe Bouche¹; Pasquale Calo¹; Abdulrahman H. Al Shammari²; Nitin Yadav²; Michel Gendron²; Subah Al Shammari²; Fabienne Virieux¹; ¹Fives Solios; ²Maaden Aluminium

9:55 AM

Simulation-Based Decision Support in Cathode Relining Facility Scaling: Laszlo Tikasz¹; Wesam Alghamdi²; *Jacques Caissy*¹; Robert McCulloch¹; ¹Bechtel Canada Co.; ²MA'ADEN Aluminium Co.

Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology — Electrochemical Behavior; Intermetallic Compound II

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Albert T. Wu, National Central University; Yan Li, Intel; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Wednesday AM Room: 201A

February 17, 2016 Location: Music City Center

Session Chairs: John Elmer, Lawrence Livermore National Laboratory; Yan Li, Intel

8:30 AM Invited

Influence of Corrosive Electrolyte on the Electrochemical Behavior of Cu(Pd)-Al IMCs: Yuelin Wu¹; Andre Lee¹; ¹Michigan State University

8:55 AM

Electrochemical Migration of Fine Pitch Ag Interconnects: *Chia-Hung Tsou*¹; Heng-Tien Lin²; Fan-Yi Ouyang¹; ¹Dept. of Engineering and System Science, National Tsing Hua University, Hsinchu, TAIWAN; ²Industrial Technology Research Institute, Hsinchu, TAIWAN

9:15 AM

The Intermetallic Compound Formation for the Wire Bond between Al pad and Ag-xPd Alloy Wire: Wei-hsiang Huang¹; Kwang-Lung Lin¹; Yu-Wei Lin²; Yun-Kai Cheng²; ¹Department of Materials Science and Engineering, National Cheng Kung University; ²Precision Packaging Materials Corp

9:35 AM

Fracture Reliability Concern of (Au,Ni)Sn4 Phase in 3D IC Microbumps Using ENIG Surface Finishing: *Yingxia Liu*¹; Yi-Ting Chen¹; Sam Gu²; Dong Wook Kim²; King-Ning Tu¹; ¹UCLA; ²Qualcomm

9:55 AM

Interfacial Sliding due to Stress, Electromigration and Thermal Gradient and Effect on Through-Silicon Via Structures: Hanry Yang¹; Lutz Meinshausen¹; *Indranath Dutta*¹; Tae-Kyu Lee²; ¹Washington State University; ²Cisco Systems

10:15 AM Break

10:35 AM

New Concept Solders/Interconnects for 3D Packaging: Kazuhiro Nogital; Christopher Gourlay²; Mohd Arif Mohd Salleh¹; Guang Zeng¹; Yueqin Wu¹; Stuart McDonald¹; ¹The University of Queensland; ²Imperial College London

10:55 AM

Effect of Kirkendall Void Formation in Cu3Sn on Mechanical Properties of IMCs-based Microbumps: Yaodong Wang¹; King-Ning Tu¹; ¹University of California at Los Angeles

11·15 AM

Mechanical Properties of Ni3Sn4 by Micropillar Compression and Nanoindentation: *Li-Jen Yu*¹; J. J. Yu¹; J. Y. Wu¹; C. R. Kao¹; ¹National Taiwan University

11:35 AM

Growth Kinetic of Ni3Sn4 Intermetallic Compounds in Pb-free Interconnect under a Temperature Gradient: Yu - Fang Lin¹; Yi - Shan Yang¹; Fan -Yi Ouyang¹; National Tsing Hua University

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention — Microstructure-sensitive and Multiscale Modeling of Fatigue

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky; Ashley Spear, University of Utah

Wednesday AM Room: 213

February 17, 2016 Location: Music City Center

Session Chair: Ashley Spear, The University of Utah

8:30 AM Keynote

Modeling 3D Microstructurally Small Crack Growth in 7075-T6 Al: Conor Hennessey¹; Paul Kern¹; *David McDowell*¹; ¹Georgia Institute of Technology

9:10 AM Invited

Probability of Life-Limiting Fatigue Failures in the Titanium Alloy Ti-6Al-2Sn-4Zr-2Mo: Sushant Jha¹; Robert Brockman²; Vikas Sinha³; Adam Pilchak⁴; Reji John⁴; James Larsen⁴; ¹US Air Force Research Laboratory/Universal Technology Corporation; ²University of Dayton Research Institute; ³UES, Inc.; ⁴US Air Force Research Laboratory

9:30 AM

Microstructural Small Flaw Fracture Mechanics for Improved Design Analysis: Robert Tryon¹; Robert McDaniels¹; Animesh Dey¹; ¹VEXTEC

9:50 AM

Investigating Microstructural Features in Ti-6Al-4V Using CPFEM (Note: This presentation will also appear in the poster session.): Kartik Kapoor¹; Michael Sangid¹; ¹Purdue University

10:10 AM Break

10:30 AM Invited

Intergranular Strain Evolution near Fatigue Crack Tips in Polycrystalline Materials: *Yanfei Gao*¹; Rozaliya Barabash²; Peter Liaw¹; ¹Univ of Tennessee; ²Oak Ridge National Laboratory

10:50 AM

Effect of Pore Voxel Size on Driving Forces for Fatigue Crack Initiation in a Single Crystal Ni-Base Superalloy: William Musinski¹; Michael Groeber¹; Michael Uchic¹; ¹US Air Force Research Lab

11:10 AM

Simulation of Grain Boundary/Slip Band Interaction in Polycrystalline Metallic Materials: *Julien Genee*¹; Patrick VILLECHAISE¹; Loïc Signor¹; ¹PPRIME Institute CNRS ENSMA

11:30 AM

A 3-D Model for Quantification of Fatigue Weaklink Strength in an A713 Cast Aluminum Alloy (Note: This presentation will also appear in the poster session.): *Lin Yang*¹; Zhiqiang Xu²; Yan Jin¹; Tongguang Zhai¹; ¹University of Kentucky; ²Yanshan University

Frontiers in Solidification: An MPMD Symposium in Honor of Michel Rappaz — Processing/Interfaces

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wilfried Kurz, Swiss Fed. Inst. of Techn.; Jon Dantzig, EPFL and University of Illnois; Alain Karma, Northeastern University; Jeffrey Hoyt, McMaster University

Wednesday AM Room: 105A

February 17, 2016 Location: Music City Center

Session Chairs: Zhongyun Fan, Brunel University; Dieter Herlach, Deutsches Zentrum für Luft- und Raumfahrt

8:30 AM Invited

Multiphysics and Multiscale Modeling and Simulation of Solidification Processes: Hervé Combeau¹; Miha Založnik¹; ¹Institut Jean Lamour

8:55 AM Invited

Simulation of Crystal Sedimentation and Viscoplastic Behavior of Sedimented Equiaxed Mushy Zones: *Andreas Ludwig*¹; Alexander Vakhrushev¹; Menghuai Wu¹; Tobias Holzmann¹; Abdellah Kharicha¹; ¹Montanuniversitaet Leoben

9:20 AM Invited

Thermal-Fluid Model of Meniscus Behavior during Mold Oscillation in Steel Continuous Casting: Xiaolu Yan¹; ASM Jonayat¹; Brian Thomas¹; ¹University of Illinois at Urbana-Champaign

9:45 AM Invited

Inverse Methods and Temperature Gradients – An Expedient Combination for the Determination of Thermophysical Properties: *Markus Rettenmayr*¹; ¹Friedrich Schiller University Jena

10:10 AM Break

10:30 AM

Microstructure Evolution in Containerless Solidification: Jonas Valloton¹; Abdoul-Aziz Bogno¹; Dieter Herlach²; Hani Henein¹; ¹University of Alberta; ²Deutsches Zentrum für Luft- und Raumfahrt

10:50 AM

Single-Phase Filamentary Cellular Breakdown via Laser-Induced Solute Segregation: Austin Akey¹; Daniel Recht²; James Williams³; *Michael Aziz*²; Tonio Buonassisi¹; ¹Massachusetts Institute of Technology; ²Harvard John A. Paulson School of Engineering and Applied Sciences; ³The Australian National University

11:10 AN

Autogenous Interface Modulations: Martin Glicksman¹; ¹Florida Institute of Technology

11:30 AM Invited

Spreading of Liquid Pb Droplets on an Al Surface Exhibiting Solid-liquid Interfacial Premelting: *Brian Laird*¹; Yang Yang²; ¹University of Kansas; ²East China Normal University

High-Temperature Systems for Energy Conversion and Storage — Systems for Energy Conversion and Storage I

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Energy Conversion and Storage Committee

Program Organizers: Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Amit Shyam, Oak Ridge National Laboratory; Kyle Brinkman, Clemson University; Paul Ohodnicki, National Energy Technology Laboratory; Jung Pyung Choi, Pacific Northwest National Laboratory

Wednesday AM Room: 104E

February 17, 2016 Location: Music City Center

Session Chairs: Ritesh Sachan, ORNL; Swathi Manivannan, University of Hyderabad

8:30 AM

Carbon Deposition Behavior on Chromium Oxides Heated Directly in Low S/C Environments: *Takuya Ito*¹; Shinji Amaha¹; Mitsutoshi Ueda²; ¹TO-KYO GAS CO.,LTD.; ²Tokyo Institute of Technology

8:50 AM

CH4 Reforming by CO2 and O2 Using Ni-M (M= Cu, Fe, Co, Mn, Zn, Cr) Bimetallic Aerogel Catalysts: Tianzu Yang¹; Wei Chen¹; Lin Chen¹; Weifeng Liu¹; Duchao Zhang¹; ¹Central South University

9:10 AM

Effect of Additives on Densification and Thermal Conductivity of Barium Zinc Tantalate Ceramics: Swathi Manivannan¹; P.Kumar Sharma²; Tanjore V. Jayaraman³; *Dibakar Das*¹; ¹University of Hyderabad; ²Institute for Plasma Research; ³University of Michigan - Dearborn

9:30 AM

Electro-spraying and Combustion of Ethanol in a Micro-scale Combustor under Combined Electric Field: *Yunhua Gan*¹; Yang Tong¹; Xiaowen Chen¹; ¹South China University of Technology

9:50 AM Invited

Strain Assisted Fast Ionic Conduction in Ion Irradiation Induced Nanofibers in Pyrochlore Structure Complex Oxide Matrix: Ritesh Sachan¹; D. Aidhy¹; Yanwen Zhang¹; Matthew Chisholm¹; William Weber²; ¹Oak Ridge National Laboratory; ²University of Tennessee

High Entropy Alloys IV — Structures and Mechanical Properties I

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Wednesday AM Room: 102A

February 17, 2016 Location: Music City Center

Session Chairs: Takeshi Egami, The University of Tennessee; Yong Zhang, University of Science and Technology Beijing

8:30 AM Invited

Electronic Effects in High-Entropy Alloys: *Takeshi Egami*¹; Odbadrakh Khorgolkhuu¹; George Stocks²; ¹University of Tennessee; ²Oak Ridge National Laboratory

8:55 AM

Stress-strain Response and Microstructure of High Entropy Alloy (Fe₂₀Mn₂₀Ni₂₀Co₂₀Cr₂₀) Deformed Micro-pillars: Daniel Janda¹; Hyokyung Sung¹; Alexander Kauffmann²; Martin Heilmaier²; Sharvan Kumar¹; ¹Brown University; ²Karlsruhe Institute of Technology

9:15 AM

Structure and Mechanical Properties of Fe40Mn28Ni32-xCrx Alloys with Different Cr Content: Nikita Stepanov¹; Dmitry Shaysultanov¹; Mikhail Tikhonovsky²; Gennady Salishchev¹; ¹Belgorod State University; ²National Sci-

ence Center "Kharkov Institute of Physics and Technology" NAS of Ukraine

9:35 AM Invited

High Entropy Alloy Materials for Naval Applications: Thanh Tran¹; ¹NSWC Carderock

9:55 AM Break

10:10 AM Invited

Tensile Properties of Refractory High-entropy HfNbTaTiZr Alloy: Che-Wei Tsai¹; Chien-Chang Juan¹; Jien-Wei Yeh¹; ¹National Tsing Hua University

10:30 AM

Structure and Mechanical Properties of the AlNbTiVCrx (x = 0, 0.5, 1, 1.5) High Entropy Alloys: *Nikita Yurchenko*¹; Nikita Stepanov¹; Gennady Salishchev¹; Mikhail Tikhonovsky²; ¹Belgorod National Research University, Laboratory of Bulk Nanostructured Materials; ²National Science Center, Kharkov Institute of Physics and Technology

10:50 AM Invited

Influence of Cryogenic Prestraining on Tensile Properties of a High-entropy Alloy: G. Laplanche¹; O. Horst¹; A. Kostka¹; G. Eggeler¹; E. P. George¹; Ruhr University Bochum

11:15 AM Invited

Serration Behaviors and Structural Flow Units in High Entropy Alloys: *Yong Zhang*¹; ¹University of Science and Technology Beijing

Hume-Rothery Award Symposium: Thermodynamics of Materials — Temperature Effects

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Ursula Kattner, National Institute of Standards and Technology; Michael Manley, Oak Ridge National Laboratory

Wednesday AM Room: 107A

February 17, 2016 Location: Music City Center

Session Chairs: Winfried Petry, Technische Universität München; Dane Morgan, University of Wisconsin-Madison

8:30 AM Invited

Mixed-space Approach to Phonons Involving Vibration-Induced Dipole-Dipole Interactions: Yi Wang¹; Zikui Liu¹; Long Qing Chen¹; ¹Penn State University

9:00 AM Invited

Non-harmonic Modelling of Materials

: Olle Hellman¹; ¹California Institute of Technology

9:30 AM

Ab Initio Molecular Dynamics Study of Speciation in AlCl3-ZnCl2-based Network Forming Liquids: *Venkateswara Rao Manga*¹; Krishna Muralidharan¹; Pierre Lucas¹; Pierre Deymier¹; ¹University of Arizona

9:50 AM

Reduced Elastic Anisotropy of Cementite at Moderate Temperatures from Nonharmonic Effects: Jane Herriman¹; Lisa Mauger¹; Olle Hellman¹; Sally Tracy¹; Matt Lucas²; Jorge Munoz¹; John Horwath²; Jackie Li³; Brent Fultz¹; ¹Caltech; ²AFRL; ³University of Michigan

10:10 AM Break

10:40 AM Invited

Inclusion of Phonon-Phonon and Magnon-Phonon Couplings in the Thermodynamic Description of Materials: An Ab Initio Approach: *Jörg Neugebauer*¹; Albert Glensk¹; Fritz Kormann²; Blazej Grabowski¹; Tilmann Hickel¹; ¹Max-Planck-Institut für Eisenforschung GmbH; ²Delft University of Technology

11:10 AM Invited

Temperature Dependent Phonon Anharmonicity in Elementary and Martensite Systems: Winfried Petry¹; Michael Leitner¹; Pascal Neibecker¹; Jürgen Neuhaus¹; ¹Heinz Maier-Leibnitz Zentrum (MLZ) - Technische Universität München

11:40 AM

Phonon-Induced Charge Transfer and Electron-Phonon Interaction in FeTi: Fred (Chae-Reem) Yang¹; Jorge Muñoz²; Lisa Mauger¹; Olle Hellman¹; Matthew Lucas³; Brent Fultz¹; ¹California Institute of Technology; ²The Datum Institute; ³Air Force Research Laboratory

In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques — Nano- and Micro-mechanical Characterization of Materials at Elevated Temperatures

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sanjit Bhowmick, Hysitron Inc.; Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Vikas Tomar, Purdue University; Vikram Jayaram, Indian Institute of Science; Benjamin Morrow, Los Alamos National Laboratory; Paul Shade, Air Force Research Laboratory; Weizhong Han, Xi'an Jiaotong University; Arief Budiman, Singapore University of Technology and Design

Wednesday AM Room: 212

February 17, 2016 Location: Music City Center

Session Chairs: Vikram Jayaram, Indian Institute of Science; Vikas Tomar, Purdue University

8:30 AM Invited

Shape Memory Properties and Martensitic Transformation in Shape Memory Ceramics at the Micro- and Nanoscale: Christopher Schuh¹; Zehui Du²; Chee-Lip Gan²; ¹MIT; ²NTU Singapore

9:00 AM

Temperature and Dislocation Density Effects on Size Dependent Plasticity Mechanisms: David Bahr¹; Michael Maughan¹; ¹Purdue University

9.20 AM

In Situ Nanomechanical Properties of Diffusion Aluminide Bond Coating at Elevated Temperature: Sanjit Bhowmick¹; Douglas Stauffer¹; S.A. Syed Asif¹; ¹Hysitron, Inc.

9:40 AM

Measurement of Localized Deformation in Superalloys with Heterogeneous Microstructures: Connor Slone¹; Michael Mills¹; ¹The Ohio State University

10:00 AM Break

10:20 AM Invited

In-situ Testing in the Electron Microscope at High and Low Temperatures: Jeffrey Wheeler¹; ¹ETH Zurich

10:50 AM

In-situ Fracture Testing of Microscale Silicon at Elevated Temperatures: *Eric Hintsala*¹; Sanjit Bhowmick²; William Gerberich¹; Douglas Stauffer²; ¹University of Minnesota; ²Hysitron, Inc.

11:10 AM

Benchmarking Multi-scale Models through Micro-mechanical Testing and Characterization of Ni-base Superalloys: David Eastman¹; Zafir Alam¹; Paul Shade²; Michael Uchic²; Will Lenthe³; Tresa Pollock³; Kevin Hemker¹; ¹Johns Hopkins University; ²Air Force Research Lab; ³University of California, Santa Barbara

Interface-driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry — Microstructural Evolution I

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nanomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Fadi Abdeljawad, Sandia National Laboratories; Stephen Foiles, Sandia National Laboratories; Timofey Frolov, UC Berkeley; Emine Gulsoy, Northwestern university; Heather Murdoch, Army Research Lab; Mitra Taheri, Drexel University

Wednesday AM Room: 108

February 17, 2016 Location: Music City Center

Session Chair: Begum Gulsoy, Northwestern University

8:30 AM Invited

Exploring the Causes and Effects of Fast Grain Boundary Motion: *Elizabeth Holm*¹; Brian DeCost¹; Jonathan Humberson¹; Taichong Ma¹; Philip Goins¹; ¹Carnegie Mellon University

9.10 AN

Migration Mechanisms of Flat S3 Grain Boundaries: Jonathan Priedeman¹; *Eric Homer*¹; David Olmsted²; ¹Brigham Young University; ²University of California, Berkeley

9:30 AV

Twin Boundary Energy as a Driving Force for Microstructural Instability in Thin Films; Shefford Baker¹; Elizabeth Ellis¹; ¹Cornell University

9:50 AM

Abnormal Grain Growth-The Role of Curvature in Pinned Microstructures: *Catherine Sahi*¹; Steven Chiu¹; David Graniero¹; Robert DeHoff¹; Burton Patterson¹; ¹University of Florida

10:10 AM Break

10:30 AM Invited

Thermodynamic High-temperature Stability in Nano Metallic Multilayers: Andrea Hodge¹; ¹University of Southern California

11:10 AN

Grain Growth and Segregation in Hf-Ti Nanometallic Multilayers: *Juan Riaño Zambrano*¹; Mikhail Polyakov¹; Andrea Hodge¹; ¹University of Southern California

11:30 AM

Coarsening of a Two-Phase System with Asymmetric Bulk Mobilities: *William Andrews*¹; Chal-Lan Park¹; Peter Voorhees²; Katsuyo Thornton¹; ¹University of Michigan; ²Northwestern University

11:50 AM

Molecular Dynamics Simulation of B2-B33 Transformation in Ni-Zr Alloy: Seth Wilson¹; Mikhail Mendelev¹; ¹Ames Laboratory

Magnesium-based Biodegradable Implants — Materials and Processing / Surface Modification and Corrosion

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Light Metals Division, TMS Structural Materials Division, TMS: Biomaterials Committee, TMS: Magnesium Committee

Program Organizers: Wim Sillekens, European Space Agency; Martyn Alderman, Magnesium Elektron; Patrick Bowen, Michigan Technological University; Jaroslaw Drelich, Michigan Technological University; Petra Maier, University of Applied Sciences Stralsund

Wednesday AM Room: 206A

February 17, 2016 Location: Music City Center

Session Chairs: Petra Maier, Fachhochschule Stralsund; Jaroslaw Drelich, Michigan Technological University

8:30 AM Introductory Comments Wim Sillekens

8:40 AM Invited

Fabrication, Testing and Performance of Rare Earth-containing Magnesium Biodegradable Metals: Yufeng Zheng¹; ¹Peking University

9:10 AM

Manufacturing of Osteosynthesis Systems Made of Magnesium Alloy AZ91: Britta Hering¹; *Andi Wippermann*¹; Tobias Mörke¹; Thilo Grove¹; Berend Denkena¹; ¹Leibniz University of Hannover

9:30 AM

Magnesium Powder Injection Molding (MIM) of Orthopedic Implants for Biomedical Applications: Martin Wolff¹; Johannes Schaper¹; Marc Suckert¹; Michael Dahms¹; Thomas Ebel¹; Regine Willumeit-Römer¹; Thomas Klassen¹; ¹Helmholtz-Zentrum Geetshacht

9:50 AM Invited

Absorbable Filament Technologies: Wire-drawing to Enable Next-generation Medical Devices: Adam Griebel¹; Jeremy Schaffer¹; ¹Fort Wayne Metals

10:20 AM Break

10:40 AM Invited

Plasma Surface Modification of Magnesium-Based and Related Biomaterials: Paul Chu¹; ¹City University of Hong Kong

11:10 AN

Degradation of MgF2-coated and Uncoated MgNd2 Specimens in Contact with Nasal Mucosa: *Rainer Eifler*¹; Martin Durisin²; Christian Klose¹; Thomas Lenarz²; Hans Jürgen Maier¹; ¹Leibniz Universitaet Hannover; ²Medical School of Hanover

11:30 AM

Influence of Precipitation Hardening in Mg-Y-Nd on Mechanical and Corrosion Properties: Petra Maier¹; Raimund Peters¹; Chamini Mendis²; Sören Müller³; Norbert Hort²; ¹University of Applied Sciences Stralsund; ²Helmholtz-Zentrum Geesthacht; ³Extrusion Research and Development Center TU Berlin

Magnesium Technology 2016 — LPSO Alloys and Composites

Sponsored by:TMS Light Metals Division, TMS: Magnesium Committee Program Organizers: Alok Singh, National Institute for Materials Science; Kiran Solanki, Arizona State University; Michele Manuel, University of Florida; Neale Neelameggham, Ind LLC

Wednesday AM Room: 204

February 17, 2016 Location: Music City Center

Session Chairs: Manoj Gupta, National University of Singapore; Hyunkyu Lim, Korea Institute of Technology KITECH

8:30 AM

Solid Solution Hardening in Mg-Gd-TM (TM=Ag, Zn and Zr) Alloys: An Integrated Density Functional Theory and Electron Work Function **Study**: *William Yi Wang*¹; Shunli Shang¹; Yi Wang¹; Hongyeun Kim¹; Kristopher Darling²; Laszlo Kecskes²; Suveen Mathaudhu³; Xidong Hui⁴; Zi-Kui Liu¹; ¹The Pennsylvania State University; ²U.S. Army Research Laboratory; ³University of California; ⁴University of Science and Technology Beijing

8:50 AM

Microstructure and Mechanical Properties New Magnesium-Zinc-Gadolinium Alloys: Sankaranarayanan Seetharaman¹; Sravya Tekumalla¹; Bhavesh Lalwani²; Hardik Patel²; Quy Bau Nguyen¹; Manoj Gupta¹; ¹National University of Singapore, Singapore; ²National Institute of Technology, Karnataka

9:10 AM

Effects of Alloying Elements on Microstructures and Mechanical Properties of Mg-Gd-Zn-Ca Alloys: *Hyunkyu Lim*¹; Youngkyun Kim¹; Bonghwan Kim¹; Daeguen Kim²; Young-Ok Yoon¹; Shae K. Kim¹; ¹KITECH; ²GI tech

9:30 AM

Creep of a Mg-Zn-Y Alloy at Elevated Temperatures: Weiwei Hu¹; *Zhiqing Yang*¹; Jianfang Liu¹; Hengqiang Ye¹; ¹Institute of Metal Research

9:50 AM Break

10:10 AM Invited

An Insight into Use of Hollow Fly Ash Particles on the Properties of Magnesium: Vyasaraj Manakari¹; Gururaj Parande¹; *Manoj Gupta*¹; ¹National University of Singapore

10:30 AM

Role of SiC in Grain Refinement of Aluminum-free Mg-Zn Alloys: *Jian Gu*¹; Yuanding Huang¹; Karl Ulrich Kainer¹; Norbert Hort¹; ¹Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, D-21502 Geesthacht, Germany

10:50 AM

Hot Deformation and Processing Map in an Mg-Zn-Mn-Y Alloy: *Nabila Tahreen*¹; Dingfei Zhang²; Fusheng Pan²; Xianquan Jiang³; Dongyang Li⁴; Daolun Chen¹; ¹Ryerson University; ²Chongqing University; ³Southwest University; ⁴University of Alberta

Magnesium Technology 2016 — Solidification and Casting

Sponsored by:TMS Light Metals Division, TMS: Magnesium Committee Program Organizers: Alok Singh, National Institute for Materials Science; Kiran Solanki, Arizona State University; Michele Manuel, University of Florida; Neale Neelameggham, Ind LLC

Wednesday AM Room: 205B

February 17, 2016 Location: Music City Center

Session Chairs: Nobert Hort, Helmholtz-Zentrum Geesthacht; Tracy Berman, University of Michigan

8:30 AN

In Situ Synchrotron Radiation Diffraction of the Solidification of Mg-Dy(-Zr) Alloys: Domonkos Tolnai¹; Peter Staron¹; Andreas Staeck¹; Helmut Eckerlebe¹; Norbert Schell¹; Martin Müller¹; Joachim Gröbner²; Norbert Hort¹; ¹Helmholtz-Zentrum Geesthacht; ²Institute of Metallurgy, Clausthal University of Technology

8:50 AM

As Solidified Microstructure Investigation of Mg15Y and MgxYyGd (x+y=15 wt.%) Ternary Alloys: Gabor Szakacs¹; Chamini Mendis¹; Norbert Hort¹; Karl Kainer¹; Norbert Schell¹; Domonkos Tolnai¹; Ivana Stuliková²; Marian Vlcek²; Frantisek Lukác²; Bohus Smola²; Rainer Fetzer³; ¹Helmholtz-Zentrum Geesthacht; ²Charles University in Prague; ³Clausthal University of Technology

9:10 AM

Development of the New High Shear Technology for Continuous Processing of Mg-alloys for Ingot Casting: *Jayesh Patel*¹; Peter Lloyd¹; Guosheng Peng¹; Zhongyun Fan¹; ¹BCAST

9:30 AM

Dendritic Morphology and Growth Orientation of Magnesium Alloys: 3-D Characterization by Synchrotron X-ray Tomography and Simulation by

Phase-field: Manhong Yang¹; Shou-Mei Xiong¹; Zhi-Peng Guo¹; ¹Tsinghua University

9:50 AM Break

10:10 AM

Influence of Hot Isostatic Processing on the Microstructure and Tensile Behavior of HPDC AM50: Erin Deda¹; John Allison¹; ¹University of Michigan

10:30 AM

Microsegregation in High Pressure Die Cast AM70: *Tracy Berman*¹; Erin Deda¹; Jiashi Miao¹; Mei Li²; John Allison¹; ¹University of Michigan; ²Ford Motor Company

10:50 AM

Predicting Solidification Properties of Magnesium by Molecular Dynamics Simulations: Ebrahim Asadi¹; Mohsen Asle Zaeem¹; ¹Missouri University of Science and Technology

Material Behavior Characterization via Multi-Directional Deformation of Sheet Metal — Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: John Carsley, General Motors Research & Development; Daniel Coughlin, Los Alamos National Laboratory; Myoung-Gyu Lee, Korea University; Youngung Jeong, National Institute of Standards and Technology; Piyush Upadhyay, Pacific Northwest National Laboratory

Wednesday AM Room: 104A

February 17, 2016 Location: Music City Center

Session Chairs: John Carsley, General Motors Co.; Daniel Coughlin, Los Alamos National Laboratory

8:30 AM Invited

A Novel In-situ Planar Biaxial Experiment: Aaron Stebner¹; ¹Colorado School of Mines

9:00 AM Invited

Advanced Cruciform Testing at the NIST Center for Automotive Lightweighting: Adam Creuziger¹; Mark Iadicola¹; Tim Foecke¹; Dilip Banerjee¹; ¹National Institute of Standards and Technology

9:30 AM Invited

Biaxial Loading of Anisotropic Al-6022-T4 Sheets Using Cruciform Specimens: Nengxiu Deng¹; Ian Gagnon¹; Vojtech Kubec¹; Brad Kinsey¹; Yannis Korkolis¹; ¹University of New Hampshire

10:00 AM Break

10:30 AM

Optimization of Biaxial Tensile Test Specimen Design: *Dilip Banerjee*¹; Mark Iadicola¹; Adam Creuziger¹; Timothy Foecke¹; ¹NIST

11:00 AM

Hardening Behavior of 316L SS Subject to Biaxial Strain Path Change: Multiscale Modeling for Guiding Experiments: Manas Upadhyay¹; Tobias Panzner¹; Steven Van Petegem¹; Helena Van Swygenhoven²; ¹Paul Scherrer Institut; ²Paul Scherrer Institute and École polytechnique fédérale de Lausanne

11:30 AM

On the Non-proportional Deformation of Sheet Steel Using In-situ Diffraction and Modelling Methods: David Collins¹; Tomiwa Erinosho²; Fionn Dunne³; Richard Todd¹; Angus Wilkinson¹; ¹University of Oxford; ²University of Bristol; ³Imperial College London

Material Design Approaches and Experiences IV — TiAl, Ti Alloys and Functional Materials

Sponsored by:TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Akane Suzuki, GE Global Research; Ji-Cheng Zhao, The Ohio State University; Michael Fahrmann, Haynes International Inc.; Qiang Feng, University of Science and Technology Beijing

Wednesday AM Room: 208A

February 17, 2016 Location: Music City Center

Session Chairs: Akane Suzuki, GE Global Research; Dongsheng Xu, Institute of Metal Research

8:30 AM Invited

TiAl Alloy Design: Principles, Processing, Properties, and Applications: *B. P. Bewlay*¹; ¹GE Global Research

9:00 AM Invited

Application-specific R&D Pathway to Higher-Temperature Gamma (TiAl) Alloy Materials and Processes: Young-Won Kim¹; Sang-Lan Kim²; ¹Gamteck, Inc.; ²UES., Inc.

9:30 AM Invited

Alloy Design Concept for High Nb-TiAl Alloy for High Temperature Application: *Junpin Lin*¹; Xiangjun Xu²; Yongfeng Liang¹; Laiqi Zhang¹; Guojian Hao¹; ¹University of Science and Technology Beijing; ²Zhongyuan University of Technology

10:00 AM Break

10:20 AM Invited

Multi-scale Simulation towards the Understanding of the Microstructure Evolution and Fracture Behavior in Titanium Alloys: *Dongsheng Xu*¹; Jinhu Zhang¹; Chunyu Teng¹; Hao Wang¹; Jianke Qiu¹; Jiafeng Lei¹; Rui Yang¹; ¹Institute of Metal Research, Chinese Academy of Sciences

10:50 AM

Interface Materials Design of Nanoscale Multi-layered Composite Materials and Its Mechanical Properties: Hashina Parveen Anwar Ali¹; Ihor Radchenko¹; Arief Budiman¹; Nan Li²; Nathan Mara²; Irene Beyerlein²; ¹Singapore University of Technology and Design; ²Los Alamos National Laboratory

11:10 AN

Experimental Investigation of the Sm-rich Side in Sm-Zr System: *Tian Yin*¹; Shuqiang Zhang¹; Zhihong Zhang²; Jieyu Zhang¹; ¹State Key Laboratory of Advanced Special Steel; ²Baotou Research Institute of Rare Earths

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Structural Materials III

Sponsored by:TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Wednesday AM Room: 101A

February 17, 2016 Location: Music City Center

Session Chairs: Brian Cockeram, Bechtel-Bettis; Brad Baker, United States Naval Academy

8:30 AM

Oxidation Behavior of Accident-Tolerant FeCrAl Cladding Alloys: Bruce Pint¹; Yukinori Yamamoto¹; Kinga Unocic¹; Kurt Terrani¹; Oak Ridge National Laboratory

8:50 AM

Ferritic Steels Cladding for Accident Tolerant Fuel in Light Water Power Reactors: Raul Rebak¹; Yang-Pi Lin²; Russell E. Stachowski²; Kurt A. Terrani³; ¹GE Global Research; ²Global Nuclear Fuels; ³Oak Ridge National Laboratory

9:10 AM

Nanostructured Vanadium Carbide Coating on the F/M Stainless Steel for Mitigating Fuel Cladding Chemical Interaction: Kookhyun Jeong¹; Yong Yang¹; ¹University of Florida

9-30 AM

Deposition of Compatibility Films on SiC for Environmental Barrier Coatings: Caen Angl'; Jim Kiggans¹; Craig Kemery²; Jeffery Thomson¹; Yutai Katoh¹; Kurt Terrani¹; ¹ORL; ²NEO Industries

9:50 AM

Processbility Assessment of Accident-Tolerant FeCrAl Cladding Alloys: *Yukinori Yamamoto*¹; Kevin Field¹; Bruce Pint¹; Kurt Terrani¹; ¹Oak Ridge National Laboratory

10:10 AM Break

10:30 AM

Down Selection of Clad Material for LEU Fuel Elements for the TREAT Reactor: Isabella van Rooyen¹; Darryl Butt²; Randy Lloyd¹; Jordan Vandegrift²; Patrick Price²; ¹Idaho National Laboratory; ²Boise State University

10:50 AM

Effect of Cold Rolling on the Integrity and SCC Susceptibility of Twin Boundaries of Alloy 690: Wenjun Kuang¹; Cody Miller²; Mike Kaufman²; Talukdar Aman³; Bharat Gwalani³; Rajarshi Banerjee³; Gary Was¹; ¹UNIVERSITY OF MICHIGAN; ²Colorado Schools of Mines; ³University of North Texas

11:10 AM

Effect of Heat Treatment and Chemical Composition on the Precipitation Behavior in Commercialized Age Hardening Nickel Based Alloys: *Miao Song*¹; Zhijie Jiao¹; Mi Wang¹; David Woodley¹; Gary Was¹; ¹University of Michigan

11:30 AM

Elevated Temperature Deformation Behaviour of an Alloy 693: *Jung Singh*¹; Shabana Khan¹; Amit Verma¹; Jayanta Chakravartty¹; ¹Bhabha Atomic Research Centre

Materials in Clean Power Systems IX: Durability of Materials — Materials for Supercritical CO2 Applications

Sponsored by:TMS Extraction and Processing Division, TMS Structural Materials Division, TMS Light Metals Division, TMS: Energy Committee, TMS: High Temperature Alloys Committee

Program Organizers: Sebastien Dryepondt, Oak Ridge National Laboratory; Peter Hosemann, University of California Berkeley; Kinga Unocic, ORNL; Paul Jablonski, US Department of Energy; Joseph Licavoli, Department of Energy; Donna Guillen, Idaho National Laboratory

Wednesday AM Room: 104D

February 17, 2016 Location: Music City Center

Session Chairs: Sebastien Dryepondt, ORNL; Donna Guillen, Idaho National Laboratory

8:30 AM Introductory Comments

8:35 AM Invited

Corrosion of Supercritical CO₂ Turbomachinary Components: *Voramon Dheeradhada*¹; Azam Thatte¹; ¹GE Global Research

9:05 AM

Corrosion of Energy System Materials in Supercritical Carbon Dioxide (sCO2): Lucas Teeter¹; Benjamin Adam¹; Marco Teeter¹; Bjorn Westman¹; Shannon Bragg-Sitton²; Julie Tucker¹; ¹Oregon State University; ²INL

9:25 AM

Effect of Temperature and Pressure on Supercritical CO₂ Compatibility of Structural Alloys: *Robert Brese*¹; ¹Oak Ridge National Lab/University of Tennessee

9:45 AM Invited

Corrosion Behaviour of 9-12Cr Ferritic Steels and 18-25Cr Austenitic Steels in Supercritical CO2: F. Rouillard¹; T. Furukawa²; B. Duprey¹; ¹Uni-

versite Paris Saclay; 2Japan Atomic Energy Agency

10:15 AM Break

10:35 AM Invited

Materials Issues for Supercritical CO₂ **above 700°**C: *Bruce Pint*¹; ¹Oak Ridge National Laboratory

11:05 AM Invited

Corrosion of Nickel-base Alloys by Supercritical CO2: Rene Olivares¹; Wes Stein¹; Thuan Nguyen²; David Young²; CSIRO; University of New South Wales

11:35 AM

High-Temperature Corrosion of Diffusion Bonded Haynes 230 in Supercritical CO₂ Cycle Conditions: *Omer Dogan*¹; Casey Carney²; Gordon Holcomb¹; Lucas Teeter³; Julie Tucker³; ¹DOE National Energy Technology Laboratory; ²AECOM; ³Oregon State University

Materials Innovation — Keynote Session: Multidisciplinary Materials Design Optimization Under Uncertainty

Sponsored by: TMS: Materials Innovation Committee Program Organizer: TMS2016 Administration

Wednesday AM Room: 207B

February 17, 2016 Location: Music City Center

Session Chair: To Be Announced

8:30 AM Introductory Comments

8:35 AM Keynote

Generative Structural Design: Rick Barto¹; ¹Lockheed Martin

9:05 AM Keynote

Model-Based Materials Definitions for Design and Structural Analysis: David Furrer¹; ¹Pratt & Whitney

9:35 AM Keynote

Statistical Rigor Versus Statistical Confidence in the Optimal Design of Materials: Michael McKerns¹; ¹California Institute of Technology

10:05 AM Keynote

A Set-Based Approach for Hierarchical Materials Design: Carolyn Seepersad¹; ¹University of Texas at Austin

10:35 AM Concluding Comments

Materials Processing Fundamentals — Iron and Steelmaking - Thermodynamic, Reduction and Physical Metallurgy

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: Antoine Allanore, Massachusetts Institute of Technology; Lifeng Zhang, University of Science and Technology Beijing; Laura Bartlett, Texas State University; Jonghyun Lee, University of Massachusetts; Cong Wang, Northeastern University

Wednesday AM Room: 106B

February 17, 2016 Location: Music City Center

Session Chairs: Laura Bartlett, Texas State University; Lifeng Zhang, University of Science and Technology Beijing

8:30 AM

Reduction Kinetics of Magnetite Concentrate Particles with Hydrogen at 1150 – 1600°C Relevant to a Novel Flash Ironmaking Process: Mohamed Elzohiery¹; *Yousef Mohassab*²; Amr Abdelghany¹; Shengqin Zhang¹; Feng Chen¹; Hong Yong Sohn¹; ¹University of Utah; ²University of Utah

8:50 AM

Hydrogen Reduction Kinetics of Mechanically Activated Magnetite Concentrate: Juan Ruiz-Ornelas¹; Noemi Ortiz-Lara¹; Yousef Mohassab²; Ricar-

do Morales-Estrella¹; Hong Yong Sohn³; ¹Universidad Michoacana de San Nicolás de Hidalgo; ²University of Utah ; ³University of Utah

9:10 AM

Thermodynamics of Rare Earth Elements in Nodular Cast Iron: Kok Long Ng¹; Hideaki Sasaki²; Hisao Kimura²; Masafumi Maeda²; ¹University of Tokyo ; ²University of Tokyo

9:30 AM

Influences of Thermomechanical Processing on the Microstructure and Mechanical Properties of a HSLA Steel: Yu Zhao¹; Songsong Xu¹; Hao Guo¹; Yun Zou¹; Jinhui Li¹; Junpeng Li¹; Zhongwu Zhang¹; ¹Harbin Engineering University

9:50 AM Break

10:10 AM

Behaviors and Evolutions of MgO•Al2O3 in Non-oriented Silicon Steel during Calcium Treatment: *Yong Zhao*¹; Yan-hui Sun¹; ¹University of Science and Technology Beijing

Materials Research in Reduced Gravity — Material Science Research Rack (MSRR)

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Douglas Matson, Tufts University; Hani Henein, University of Alberta; Robert Hyers, Boston Electrometallurgical Corp.; Ivan Egry, DLR

Wednesday AM Room: 104C

February 17, 2016 Location: Music City Center

Session Chairs: Robert Hyers, Boston Electrometallurgical Corp.; Louise Strutzen-

berg, NASA

8:30 AM

Analysis of Particle Engulfment Dynamics during Solidification: Yutao Tao¹; Jeffrey Derby¹; ¹University of Minnesota

9:00 AM

Analysis of a Rotating Magnetic Field on the THM growth of CZT in Microgravity: Zaoyang Li¹; Jeff Peterson¹; Jeffrey Derby¹; ¹University of Minnesota

9:20 AM

Modeling of Gravitational Effects on Particle Settling and Shape Distortion During Liquid-Phase Sintering of Tungsten Heavy Alloys: Eugene Olevsky¹; Jose Alvarado-Contreras¹; Randall German¹; ¹San Diego State University

9:40 AM

Directional Solidification of Metals and Alloys under Low Gravity - Cartridge Design and Processing Conditions of the Solidification and Quenching Furnace: Petra Neuhaus¹; Harald Lenski¹; ¹Airbus DS

10:00 AM Break

10:20 AM

Evaluation of the MICAST#2-12 Al-7wt%Si Sample Directionally Solidified Aboard the International Space Station: Surendra Tewari¹; Masoud Ghods¹; Samuel Angart²; Mark Lauer²; Richard Grugel³; David Poirier²; ¹Cleveland State University; ²The University of Arizona; ³Marshall Space Flight Center

10:50 AM

Coarsening of Dendrites in Solid-Liquid Mixtures: The Low Volume Fraction Limit.: *Thomas Cool*¹; Peter Voorhees¹; ¹Northwestern University

11:10 AM

Dynamics of Eutectic Solidification Patterns in Diffusive Conditions: Silvere Akamatsu¹; Sabine Bottin-Rousseau¹; ¹CNRS - UPMC

11:30 AN

Phase-field Modeling of Cellular and Dendritic Microstructure Formation during Directional Solidification of Binary Alloys under Diffusive Growth Conditions: Dynamical Selection of the Primary Spacing: Younggil Song¹; Jean-Marc Debierre²; Damien Tourret³; Fatima Lisboa Mota²; Nathalie Ber-

geon²; Rohit Trivedi⁴; Rahma Guérin²; Bernard Billia²; Alain Karma¹; ¹Northeastern University; ²Aix-Marseille University and CNRS; ³Los Alamos National Laboratory; ⁴Iowa State University

11:50 AM

Dynamics of Microstructure Formation in 3D Directional Solidification of Transparent Model Alloys under Microgravity: Analysis of the Primary Spacing Evolution: Jorge Pereda¹; Fatima Mota¹; Nathalie Bergeon¹; Younggil Song²; Damien Tourret²; Jean-Marc Debierre¹; Rahma Guerin¹; Alain Karma²; Rohit Trivedi³; Bernard Billia¹; ¹IM2NP Aix Marseille Université, CNRS UMR 7334; ²Northeastern University Boston; ³Ames Laboratory, Iowa State University

12:10 PM

Effect of Thermal Drift on the Initial Transient Behavior in Directional Solidification of a Bulk Transparent Model Alloy: Fatima Mota¹; Nathalie Bergeon¹; Damien Tourret²; Alain Karma²; Rohit Trivedi³; Bernard Billia¹; ¹IM2NP Aix Marseille Université, CNRS UMR 7334; ²Northeastern University Boston; ³Ames laboratory, Iowa State University

Mechanical Behavior at the Nanoscale III — Mechanical Behavior of Materials with Twins, Grains and Other Interfaces

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Daniel Gianola, University of California, Santa Barbara; Ting Zhu, Georgia Institute of Technology; Julia Greer, California Institute of Technology; Harold Park, Boston University; Garritt Tucker, Drexel University; Jiangwei Wang, University of Pittsburgh

Wednesday AM Room: 214

February 17, 2016 Location: Music City Center

Session Chair: Garritt Tucker, Drexel University

8:30 AM Invited

Nucleation and Evolution of Dynamic Damage at Bimetal Interfaces Using Molecular Dynamics: Saryu Fensin¹; Ellen Cerreta¹; George Gray¹; ¹Los Alamos National Laboratory

9:10 AM

Dynamic Behavior of a Nanocrystalline Cu-Ta Alloy: *Scott Turnage*¹; Kristopher Darling²; Mansa Rajagopalan¹; Mark Tschopp²; Kiran Solanki¹; ¹Arizona State University; ²Army Research Laboratory

9:30 AM

A Fast Fourier Transform Based-approach for the Modeling and Simulation of Grain Boundary Defects: Stephane Berbenni¹; Vincent Taupin¹; Claude Fressengeas¹; ¹CNRS, University of Lorraine

9:50 AN

Microstructural Evolution of Nanocrystalline Copper-tantalum Alloy: *Mansa Rajagopalan*¹; Scott Turnage¹; Kristopher Darling²; Mark Tschopp²; Kiran Solanki¹; ¹Arizona State University; ²Army Research Laboratory

10:10 AM Break

10:30 AM

Effect of Annealing on Grain Boundary Character and Attendant Tensile Behavior of Nanocrystalline Nickel Thin Films: Suman Dasgupta¹; Nora Hassan¹; Daniel Gianola²; Kevin Hemker¹; ¹Johns Hopkins University, ²University of Pennsylvania

10:50 AM

A High Temperature In-situ Nanoindentation Study of Nanotwinned Silver Films: *Hakan Yavas*¹; Matthew Besser¹; Ryan Ott¹; Huan Zhang¹; Matthew Kramer¹; Krishna Rajan²; Richard LeSar²; ¹The Ames Laboratory; ²Iowa State University

11:10 AM

Spall of Tantalum Bicrystals and Nanocrystals: *Eric Hahn*¹; Tim Germann²; Eduardo Bringa³; Marc Meyers¹; Saryu Fensin²; ¹University of California San Deigo; ²Los Alamos National Laboratory; ³Universidad Nacional de Cuyo

11:30 AM

Atomic-scale Investigation on the Nucleation of Twinning-like Lattice Reorientation in Hexagonal Close-packed Metals: *Hao Wang*¹; ¹Institute of Metal Research, Chinese Academy of Sciences

Metal and Polymer Matrix Composites II — Iron Based Composites and Porous Composites

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Commit-

tee

Program Organizer: Nikhil Gupta, New York University

Wednesday AM Room: 110A

February 17, 2016 Location: Music City Center

Session Chair: To Be Announced

8:30 AM Invited

A Novel Manufacturing Approach to Fabricate Near-Net Shape Femoral Head ZrO2-toughened-Al2O3: *Bikramjit Basu*¹; Srimanta Barui¹; ¹Indian Institute of Science

8:50 AM

The Corrosion of 30% Mo-ZrO2 Cerment about Molten Slag of CaO-MgO-Al2O3: *Xiaopeng Li*¹; Ziming Wang¹; Yang Yang¹; Yanling Guo¹; Wende Dan¹; Jieyu Zhang¹; ¹Shanghai University

9:10 AM

Matrix Tailoring by Mn Addition in In-situ Liquid Metallurgy Synthesized Fe-TiB2 High Modulus Steels: Christian Baron¹; Hauke Springer¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH

9:30 AM

Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-reinforced Fe-36Ni Alloy: David Tricker¹; Andrew Tarrant¹; Timothy Stephenson²; ¹Materion; ²NASA

9:50 AM

Reinforcing 440B Stainless Steels by In Situ Synthesized Niobium Carbides: Wen Hao Kan¹; Jack Zi Jie Ye¹; Yue Zhu¹; Vijay Bhatia¹; Kevin Dolman²; Xin Hu Tang²; Tim Lucey²; Gwénaëlle Proust¹; Julie Cairney¹; ¹The University of Sydney; ²Weir Minerals Australia Ltd.

10:10 AM Break

10:30 AM Invited

Hollow Fly Ash Composite Foams – Thermal and Mechanical Properties: Dinesh Pinisetty¹; Vasanth Shunmugasamy²; ¹California Maritime Academy, CSU; ²Texas A&M University

10:50 AM Invited

Forming of Open Cell Aluminum Foams at High Temperatures: Vasanth Chakravarthy Shunmugasamy¹; Bilal Mansoor¹; ¹Texas A&M University at Qatar

11:10 AM

Influence of Gas Component on Foaming Behavior and Cell Structure of Aluminum Foams Produced under Reduced Pressure Foaming: *Zhuokun Cao*¹; Yang Yu¹; Hongjie Luo¹; Cong Wang¹; ¹Northeastern University, China

Nanostructured Materials for Nuclear Applications — Session V

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Nuclear Materials Committee, TMS: Nanomaterials Committee, TMS: Nanomaterials Behavior Committee

Program Organizers: Cheng Sun, Los Alamos National Laboratory; Michael Demkowicz, Massachusetts Institute of Technology; Amit Misra, University of Michigan; Osman Anderoglu, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories

Wednesday AM Room: 101C

February 17, 2016 Location: Music City Center

Session Chairs: Michael Demkowicz, Massachusetts Institute of Technology; Kaiyuan Yu, China University of Petroleum

8:30 AM Invited

Multiscale Modeling of Radiation Induced Segregation in Nanostructured Materials: *Blas Uberuaga*¹; Samrat Choudhury¹; Richard Zamora¹; Enrique Martinez¹; David Andersson¹; Alfredo Caro¹; Arthur Voter¹; ¹Los Alamos National Laboratory

9:00 AM Invited

Mechanisms of Defect Interactions on Grain Boundaries of Pure Fe: *Lin Shao*¹; Di Chen¹; Tianyi Chen¹; Jonathan Gigax¹; ¹Texas A&M University

9:30 AM

Nanoprecipitation in Immiscible Alloy Systems: *John Beach*¹; Xuan Zhang²; Pascal Bellon¹; Robert Averback¹; ¹University of Illinois at Urbana-Champaign; ²Argonne National Laboratory

9:50 AM

Investigation of He Implanted Fe-Y2Ti2O7 Bilayers: Surrogate Interfaces to Further NFA Understanding: *Tiberiu Stan*¹; Yuan Wu¹; Stephan Kraemer¹; George Odette¹; ¹University of California Santa Barbara

10:10 AM Break

10:30 AM Invited

Spatial Scales for Designing Radiation-resistant Materials: Steven Zinkle¹; Chad Parish²; Daniel Clark¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

11:00 AM Invited

Stabilization Mechanisms of Nanocrystalline Iron-Chromium Alloys with Hafnium Addition: Weizong Xu¹; Lulu Li¹; Mostafa Saber¹; Carl Koch¹; Ronald Scattergood¹; *Yuntian Zhu*¹; ¹North Carolina State University

11:30 AM

Radiation Response of Nanostructured Apatite as a Nuclear Waste Form: Fengyuan Lu¹; ¹Louisiana State University

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XV — Electrochemistry & UBM

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shih-kang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Cheng University; Jae-Ho Lee, Hongik University; Ikuo Ohnuma, National Institute for Materials Science (NIMS); Chih-Ming Chen, National Chung Hsing University; Yee-Wen Yen, National Taiwan Univ of Science & Tech; Shien Ping Feng, The University of Hong Kong; Clemens Schmetterer, Fraunhofer Institute

Wednesday AM Room: 109

February 17, 2016 Location: Music City Center

Session Chairs: Jae-Ho Lee, Hongik University; Shien Ping Tony Feng, The University of Hong Kong

8:30 AM Invited

Tunable Surface Wettability and Adhesivity of Nitrogen-doped Graphene Foam: Shien Ping Fengl'; Peng Zhail; The University of Hong Kong

9:00 AM

Effects of Electroplating Formula on the Void Formation at the Sn/Electroplated Cu Interface: Tai-Yi Yu¹; Chih-Ming Chen¹; ¹National Chung Hsing University

9:20 AM

The Development of Alumina Nanofluid-based Electrolyte for Thermogal-vanic Cells: Chang Liu¹; Shien Feng¹; ¹The University of Hong Kong

9:40 AM

Comparison of Electrotroless and Electroplating of Nickel Iron Alloy for the Diffusion Barrier of UBM: Ja-Kyung Koo¹; Sung Kang²; *Jae-Ho Lee*¹; ¹Hongik University; ²IBM Watson Research Center

10:00 AM Break

10:20 AM

Effects of Electroless Copper Bath Compositions on the Adhesion of Cu/Substrates in PCB: Ju-Seok Kang¹; Jinuk Lee²; *Jae-Ho Lee*¹; ¹Hongik University; ²Samsung Electro-Mechanics

10:40 AM

Electrochemical Evaluation of Copper Etchant to Reduce the Galvanic Etching in Cu/Au Coupled Pads: Jong-Chan Choi¹; Young-Hwan Bae¹; Jinuk Lee²; *Jae-Ho Lee*¹; ¹Hongik University; ²Samsung Electro-Mechanics

11:00 AM

Kinetic Study of Silver Electrocrystallization on Silane-grafted Flexible Indium-oxide Substrate: *Hau Nga Yu*¹; Ya-Huei Chang¹; Shien Ping Feng¹; ¹The University of Hong Kong

11:20 AM

Effect of Cu Surface Microstructure on Surface Oxidation and Soldering Wettability: Yi Chun Hsu¹; Cheng-Yi Liu¹; ¹National Central University

Phase Transformations and Microstructural Evolution — Phase Transformations during Non-Equilibrium Processing - Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Wednesday AM Room: 107E

February 17, 2016 Location: Music City Center

Session Chair: ANTONIO RAMIREZ, The Ohio State University

8:30 AM

Coupling CALPHAD to Phase-field Modeling:

A Pathway to the Prediction of Microstructures in Additive Manufacturing?: Aurelien Perron¹; John Roehling¹; Patrice Turchi¹; Jean-Luc Fattebert¹; Joseph McKeown¹; ¹Lawrence Livermore National Laboratory

9:00 AM

Role of Cyclic Solid-Solid Phase Transformations in Microstructure Evolution during Thermal Gyrations during Additive Manufacturing: Ryan Dehoff¹; Niyanth Sridharan²; Avinash Prabhu²; Naren Raghavan²; Michael Kirka¹; Anil Chaudhary³; Sudarsanam Babu²; ¹ORNL; ²The University of Tennessee, Knoxville; ³Applied Optimization

9:20 AM

Solid-liquid Transformations during Powder-bed Additive Manufacturing: Rainer Hebert¹; ¹University of Connecticut

9:40 AM

In-situ SEM Observation of Surface Diffusion and Intermetallic Compound Growth in Lead-free Solder Joints: $Yang\ Li^1$; Choong Un Kim 1 ; Minyoung Kim 1 ; 1 University of Texas at Arlingotn

10:00 AM

Microstructure Evolution of Uranium-6wt.% Niobium During Deformation Processing: Kester Clarke¹; Daniel Coughlin¹; Jeffrey Scott¹; David Alexander¹; Rodney McCabe¹; Robert Hackenberg¹; Amy Clarke¹; ¹Los Alamos National Laboratory

10:30 AM Break

10:50 AM

Effect of Friction Welding Parameters on Microstructural Development and Mechanical Properties in Dissimilar 304L to 1018 Steel: Nathan Switzner¹; Zhenzhen Yu¹; Michael Eff²; Thomas Lienert³; Stephen Liu¹; ¹Colorado School of Mines; ²Edison Welding Institute; ³Los Alamos National Laboratory

11:10 AM

Effect of Time and Temperature on Microstructural Evolution for Improved Braze Joint Strength in Oil and Gas Drill Bits: Gagan Saini¹; William Atkins¹; ¹Halliburton Energy Services

11:30 AM

Microstructure evolution of undercooled Co-Sn alloy melts solidified in Strong Magnetic Field: *Jun Wang*¹; Jinshan LI¹; Eric Beaugnon²; ¹Northwestern Polytechinal University; ²University Grenoble Alpes, CNRS-LNCMI

Phase Transformations in Multi-component Systems: An MPMD Symposium Honoring Gary R. Purdy — Phase Transformations in Steels

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Hatem Zurob, McMaster University; Annika Borgenstam, KTH, Royal Institute of Technology; Tadashi Furuhara, Tohoku University; Wenzheng Zhang, Tsinghua University; Christopher Hutchinson, Monash University; Robert Hackenberg, Los Alamos National Laboratory

Wednesday AM Room: 110B

February 17, 2016 Location: Music City Center

Session Chairs: Tadashi Furuhara, Tohoku University; Wenzheng Zhang, Tsinghua University

8:30 AM Invited

Atomistic Simulations of the Interaction of Alloying Elements with Interfaces: *Matthias Militzer*¹; ¹The University of British Columbia

9:00 AM Invited

An Integrated Model for Microstructure Development in the Heat Affected Zone of Linepipe Steels: Warren Poole¹; Matthias Militzer¹; Thomas Garcin¹; ¹The University of British Columbia

9:30 AN

Atomistic Modeling and Experiments of Spinodal Decompostion in Fe-Ni-C Martensite: *Helena Zapolsky*¹; Mykola Lavrskyi¹; Frederic Danoix²; Sophie Cazotte³; Sergui Curelea³; Renaud Patte¹; Armen Khachaturyan²; ¹University of Rouen; ²Department Material Science & Engineering Rutgers University; ³INSA de Lyon Laboratoire Mateis et Département SGM

9:50 AM

Molecular Dynamics Simulation of fcc/bcc Interface Migration in Pure Iron: *Zhipeng Sun*¹; Fu-Zhi Dai²; Ben Xu¹; Wen-Zheng Zhang¹; ¹Tsinghua University; ²Aerospace Research Institute of Materials and Processing Technology

10:10 AM Break

10:30 AM Invited

Formation of Widmanstätten Ferrite by the Dynamic Transformation of Austenite at Temperatures Well above the Ae3 $\,$

: John Jonas1; 1McGill University

11:00 AM Invited

Who Cares About Phase Transformations? A Tribute to Gary Purdy: *Yves Brechet*¹; Christopher Hutchinson²; Hatem Zurob³; ¹INP Grenoble; ²Monash University; ³McMaster University

11:30 AM

Hidden Pathway and Defects Generation during Structural Phase Transformations: Yipeng Gao¹; Yunzhi Wang¹; ¹The Ohio State University

11:50 AM

Kinetics and Mechanism of Austenite Isothermal Transformation in Carbonitrided Low-alloy Steel: *Hugo Van Landeghem*¹; Simon Catteau¹; Julien Teixeira¹; Jacky Dulcy¹; Abdelkrim Redjaïmia¹; Sabine Denis¹; ¹Institut Jean Lamour

Powder Metallurgy of Light Metals — Powder Metallurgy Aluminum and Other Light Metals

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Zhigang Fang, University of Utah; Qian Ma, RMIT University

Wednesday AM Room: 205C

February 17, 2016 Location: Music City Center

Session Chairs: Qian Ma, Royal Melbourne Institute of Technology; James Paramore, University of Utah

8:30 AM Invited

Light Weight Automotive Trends Impact on Powder Metallurgy: Ian Donaldson¹; ¹GKN Sinter Metals

9:00 AM

Enhanced Sintering Kinetics in AA5083 Powder Processed Using DC Electric Fields: *Brandon McWilliams*¹; Jian Yu¹; Steven Kilczewski²; ¹US Army Research Laboratory; ²TKC Global

9:20 AM

Field Effects during Spark Plasma Sintering of AA5083 Powder: Frank Kellogg¹; Brandon McWilliams²; Kyu Cho²; ¹Bowhead Science and Technology; ²US Army Research Laboratory

9:40 AM

Microstructure Evolution and Mechanical Properties Investigation of Friction Stir Welded AlMg5-Al2O3 Nanocomposites: N. Kishore Babu¹; Kaspar Kallip¹; Marc Leparoux¹; Khaled A. AlOgab¹; G.M. Reddy¹; Mahesh Kumar Talari¹; ¹Empa (Swiss Federal Laboratories for Materials Science and Technology)

10:00 AM

Processing-Microstructure Relationships during Cold Spray Deposition of Aluminum-Copper Alloys: *Tian Liu*¹; Luke Brewer¹; Jeremy Leazer²; E.S.K. Menon²; B.D. Bouffard³; J.A. Christophersen⁴; F.A. Lancaster⁴; J.N. Wolk³; ¹University of Alabama; ²Naval Postgraduate School; ³Naval Surface Warfare Center; ⁴Naval Air Systems Command

10:20 AM Break

10:40 AM

Titanium Foam for Cancellous Bone Implant Prepared by Space Holder Technique: *Xiao Jian*¹; Cui Hao¹; Qiu Guibao¹; Yang Yang¹; ¹Chongqing University

11:00 AM

Microstructural Evolution and Mechanical Responses of Solid Solution Strengthened Titanium Materials with Ubiquitous Light Elements: *Takanori Mimoto*¹; Junko Umeda²; Katsuyoshi Kondoh²; ¹Osaka University; ²JWRI, Osaka University

11:20 AN

Room Temperature Viability of NiMnCoSn as Magnetic Shape Memory Sensory Particle in an SPS Consolidated Al7075 Composite: Nick Barta¹; Ibrahim Karaman¹; Jacob Hochhalter²; John Newman²; ¹Texas A&M University; ²NASA Langley Research Center

REWAS 2016 — Understanding & Enabling Sustainability - Education Research Innovation + Electronic Equipment

Sponsored by:

Program Organizers: Randolph Kirchain, Massachusetts Institute of Technology; Bart Blanpain, KU Leuven; Anne Kvithyld, SINTEF; Christina Meskers, Umicore Precious Metals Refining; Elsa Olivetti, Massachusetts Institute of Technology; Jeffrey S. Spangenberger, Argonne National Laboratory; Diran Apelian, Worcester Polytechnic Institute; Brajendra Mishra, Colorado School of Mines; Neale Neelameggham, Ind LLC

Wednesday AM Room: 104B

February 17, 2016 Location: Music City Center

Session Chair: To Be Announced

8:30 AM

Sustainability: Opportunities for Teaching Old Concepts via New Problems: Gabrielle Gaustad¹; ¹Rochester Institute of Technology

8:55 AM

3d Printed ABS and Carbon Fiber Reinforced Polymer Specimens for Engineering Education: *Michael Golub*¹; Jing Zhang¹; ¹Indiana University Purdue University Indianapolis

9:20 AN

Improvement in Resource Productivity by Life Extension through Corrosion Control: An Educational Perspective: *Brajendra Mishra*¹; ¹Worcester Polytechnic Institute

9:45 AM Break

10:05 AM

Waste Management of Printed Wiring Boards: A Life Cycle Assessment of the Metals Recycling Chain from Liberation through Refining: *Julie Schoenung*¹; Mianqiang Xue²; Alissa Kendall¹; Zhenming Xu²; ¹University of California, Davis; ²Shanghai Jiao Tong University

10:30 AM

Utilizing Economic Value, Resource Availability, and Environmental Impact Metrics to Improve the WEEE and Battery Directives and Promote Alignment with the European Commission Circular Economy Strategy: Patrick Ford¹; Eduardo Santos²; Paulo Ferrão³; Fernanda Margarido³; Krystyn Van Vliet¹; Elsa Olivetti¹; ¹MIT; ²3 Drivers – Engenharia, Inovação e Ambiente, Lda; ³Instituto Superior Técnico

10:55 AM

High Temperature Characterization and Techno-economics of E-waste Processing: Michael Somerville¹; Paul Koltun¹; Kathie McGregor¹; ¹CSIRO

11:20 AN

Enabling Energy Efficient Electronics through Thermally Conductive Plastic Composites: Novel Surface Modification Techniques for Boron Nitride in Epoxy: *Alex Bruce*¹; Holly Avins¹; Inez Hua¹; John Howarter¹; ¹Purdue University

11:45 AM

Environmental and Economic Evaluation of Cathode Ray Tube (CRT) Funnel Glass Waste Management Options in the United States: *Julie Schoenung*¹; Qingbo Xu²; Mengjing Yu¹; Alissa Kendall¹; Wenzhi He²; Guangming Li²; ¹University of California, Davis; ²Tongji University

Shape Casting: 6th International Symposium — Engineering High Quality Castings II

Sponsored by TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Murat Tiryakioglu, University of North Florida; Glenn Byczynski, Nemak Canada; Mark Jolly, Cranfield University

Wednesday AM Room: 203B

February 17, 2016 Location: Music City Center

Funding support provided by: Nemak (possibly)

Session Chair: Mark Jolly, Cranfield University

8:30 AM

Grain Refinement of Al-Si Hypoeutectic Alloys by Al3Ti1B Master Alloy and Ultrasonic Treatment: Gui Wang¹; Eric Qiang Wang¹; Arvind Prasad¹; Matthew Dargusch¹; David St.John¹; ¹University of Queensland

8:55 AM

Influence of Process Parameters on the Microstructure and Casting Defects of a LPDC Engine Block: *Giulio Timelli*¹; Daniele Caliari¹; ¹University of Padua

9-20 AM

Preliminary Investigation of the Grain Refinement Mechanism in Cu Alloys: Andreas Cziegler¹; Peter Schumacher¹; ¹Montanuniversitaet Leoben

9:45 AM

Solidification Analysis of Magnesium Alloys Using In-situ Neutron Diffraction: Abdallah Elsayed¹; Dimitry Sediako²; Ravi Ravindran³; ¹Nemak Canada; ²Canadian Neutron Beam Centre; ³Ryerson University

10:10 AM Break

10:30 AM

Change in Si Morphology with Time and Temperature in Sr Modified A356: Sadik Ipek¹; Caglar Yuksel²; Eray Erzi¹; Derya Dispinar¹; ¹Istanbul University; ²Yildiz Technical University

10:50 AM

Effects of Casting Conditions on End Product Defects in Direct Chill Casted Hot Rolling Ingots: Arda Yorulmaz¹; Caglar Yuksel²; Eray Erzi¹; Derya Dispinar¹; ¹Istanbul University; ²Yildiz Technical University

11·10 AM

A Coupled Thermal-stress Model of A319 Alloy Chilled Sand Casting: Farzaneh Farhang Mehr¹; Steve Cockcroft¹; ¹UBC

11:30 AM

Effect of Duration on Ti Grain Refinement of A356 and Melt Quality: Ozen Gursoy¹; Caglar Yuksel²; Eray Erzi¹; Derya Dispinar¹; ¹Istanbul University; ²Yildiz Technical University

Strip Casting of Light Metals — Strip Casting Process

Sponsored by:

Program Organizers: Kai Karhausen, Hydro Aluminium Rolled Products GmbH; Dietmar Letzig, MagIC - Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht; Jan Bohlen, Helmholtz-Zentrum Geesthacht; Murat Dundar, Assan Aluminium

Wednesday AM Room: 203A

February 17, 2016 Location: Music City Center

Session Chairs: Kai Karhausen, Hydro Aluminium Rolled Products; Jan Bohlen, Helmholtz-Zentrum Geesthacht

8:30 AM Introductory Comments

8:35 AM Keynote

Liquid Metal Feeding Technology for Twin-roll Casting of Magnesium and Aluminium: Frederic Basson¹; ¹Novelis PAE

8:55 AM

Twin-roll Casting of Carbon Fiber-reinforced and Glass Fiber-reinforced Aluminum Strips: Olexandr Grydin¹; Mykhailo Stolbchenko¹; Mirko Schaper¹; ¹Universität Paderborn

9:15 AM

Productivity Improvements in Industrial TRC by Heat Loss Analysis along the Process Chain: Christian Schmidt¹; Kai Karhausen¹; ¹Hydro Aluminium Rolled Products GmbH

9:35 AM

Development and Numerical Simulation of a Compound Belt Casting Process: Stefan Heugenhauser¹; Erhard Kaschnitz¹; Tim Mittler²; Manuel Pintore²; Peter Schumacher³; ¹Österreichisches Gießerei-Institut; ²Technische Universität München; ³Montanuniversität Leoben

9:55 AM Break

10:25 AM

Microstructure Investigations of Inverse Segregations in Twin-roll Cast AZ31 Strips: Christina Krbetschek¹; Franz Berge¹; Matthias Oswald¹; Madlen Ullmann¹; Rudolf Kawalla¹; ¹Tu Bergakademie Freiberg

10:45 AM

Effect of Twin-Roll Casting Parameters on Mechanical and Microstructural Properties of AA5083-H321 Sheet: Mehdi Soltan Ali Nezhad¹; Ali Hoseinifar²; Sina Salari²; ¹ Ferdowsi University of Mashhad, Mashhad, Iran; ²Ferdowsi University of Mashhad, Mashhad, Iran

11:05 AM Poster Previews

Thermodynamic Applications, Optimizations and Simulations in High-Temperature Processes: An EPD Symposium in Honor of Christopher W. Bale's 70th Birthday — Energy, Nuclear and Other Applications

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: In-Ho Jung, McGill University; Arthur Pelton, Ecole Polytechnique; Patrice Chartrand, Ecole Polytechnique; Phillip Mackey, P.J. Mackey Technology; David Robertson, Missouri S&T; P Taskinen, Alto Univ; Malin Selleby, KTH Royal Institute of Technology

Wednesday AM Room: 106C

February 17, 2016 Location: Music City Center

Session Chairs: Evgueni Jak, The University of Queensland; John Gisby, NPL

8:30 AM Keynote

Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior: *Theodore Besmann*¹; ¹University of South Carolina

9:10 AM

An Overview of Thermochemical Modelling of CANDU Fuel and Applications in the Nuclear Industry: Emily Corcoran¹; *Matthew Kaye*²; Markus Piro³; ¹The Royal Military College of Canada; ²University of Ontario Institute of Technology; ³Canadian Nuclear Laboratories

9:30 AN

Development of Thermodynamic Databases in the System U-Zr-Ce-Cs-Fe-B-C-I-O-H for Application to Simulating Phase Equilibria in Severe Nuclear Accidents: Masanori Suzuki¹; Ken Kurosaki¹; Shinsuke Yamanaka¹; Toshihiro Tanaka¹; Masayoshi Uno²; Yukihiro Murakami²; Tatjana Jantzen³; Stephan Petersen³; Klaus Hack³; ¹Osaka University; ²Univeristy of Fukui; ³GTT-Technologies

9:50 AM

Application of Computational Thermodynamics to Understand the Venusian Atmosphere: *Nathan Jacobson*¹; Gustavo Costa¹; Michael Kulis¹; Brandon Radoman-Shaw²; Ralph Harvey²; Dwight Myers³; ¹NASA Glenn Research Center; ²Case Western Reserve University; ³East Central University

10:10 AM Break

10:30 AM

Thermodynamic Models for Chemical Reactions Involving Cokes: Patrice Chartrand¹; Philippe Ouzilleau¹; Daniel Lindberg²; ¹Ecole Polytechnique; ²Abo Akademi

10:50 AM

Thermodynamics of Portland Cement Clinker Formation: Alexander Pisch¹; ¹Lafarge LCR

11:10 AM

Calculation of Portland Cement Clinker Phase Diagrams: Daniel Jiménez¹; Oscar Restrepo Baena¹; María Antonia Sainz Trigo²; Sara Serena Palomares²; ¹Universidad Nacional de Colombia; ²Instituto de Cerámica y Vidrio (CSIC)

11:30 AM

Effect of Gas-slag Interactions during Plasma Gasification of Refuse Derived Fuel from Enhanced Landfill Mining: Lieven Pandelaers¹; Pengcheng Yan¹; Sander Arnout²; Lieven Machiels¹; Bart Blanpain¹; ¹KU Leuven; ²InsPyro

11:50 AM

CALPHAD Modeling of Thermochemical Interactions of Thermal Barrier Coatings (TBCs) with Molten Calcium-Magnesium-Aluminum-Silicon Oxides (CMAS): Lina Kjellqvist¹; Huahai Mao¹; *Qing Chen*¹; Johan Bratberg¹; Anders Engström¹; Nicholas Hatcher²; Weiwei Zhang²; Jason Sebastian²; ¹Thermo-Calc Software AB; ²QuesTek Innovations LLC

Ultrafine Grained Materials IX — Equal Channel Angular Pressing/Extrusion Studies

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Wednesday AM Room: 207C

February 17, 2016 Location: Music City Center

Session Chairs: Roberto Figueiredo, Federal University of Minas Gerais; Edgar Garcia-Sanchez, Universidad Autonoma de Nuevo Leon - Facultad de Ingeniería Mecánica y Eléctrica

8:30 AM Invited

Synchrotron X-Ray Microbeam Diffraction Measurements of Full Elastic Strain and Stress Tensors in Commercial-Purity Aluminum Processed by Multiple Passes of Equal-Channel Angular Pressing: Michael Kassner¹; Thien Phan¹; Lyle Levine²; Terence Langdon¹; ¹University of Southern California; ²NIST

9:00 AM

Creating Bulk Ultrafine-grained Laminated Structures by Equal-Channel Angular Pressing: *Philipp Frint*¹; Martin F.-X. Wagner¹; ¹Technische Universität Chemnitz

9:20 AM

Introducing Superplastic Properties in a ZK10 Magnesium Alloy by ECAP: Roberto Figueiredo¹; Terence Langdon²; ¹Federal University of Minas Gerais; ²University of Southampton

9:40 AM

Microstructural Refinement, Rate Sensitivity and Structural Stability of Cu-X Solid Solutions after Severe Plastic Deformation: Karsten Durst¹; Enrico Bruder¹; ¹Technical University Darmstadt

10:00 AM Break

10:20 AM Invited

Examining the Paradox of Strength and Ductility in Ultrafine-grained Materials

: Praveen Kumar¹; Megumi Kawasaki²; Terence Langdon³; ¹Indian Institute of

Science; ²Hanyang University; ³University of Southern California

10:50 AM

Microstructure and Mechanical Behavior of Ultrafine-grained Al-Mg-Si-(Cu) Alloys Fabricated by Severe Plastic Deformation: Hans Roven¹; Manping Liu²; Yingda Yu¹; Pål Skaret¹; ¹Norwegian University of Science and Technology; ²Jiangsu University

11:10 AM

Comparative Study of the Wear Properties in Ultrafine-grained 5083 and 2024 Aluminum Alloys: M. G. Orozco -Sandoval¹; M. A. L. Hernandez-Rodriguez¹; R. Deaquino-Lara²; E. Garcia-Sanchez¹; ¹Universidad Autónoma de Nuevo León -Facultad de Ingeniería Mecánica y Eléctrica; ²Centro de Investigación y de Estudios Avanzados del IPN

11:30 AM

Relationship between Microstructural Parameters Measured by X-Ray, TEM and EBSD: Alexander Zhilyaev¹; ¹Institute for Metals Superplasticity Problems, Russian Academy of Science

11:50 AM

Thermal Stability of Ultra-fine Grained Microstructure of Biomedical Ti-6Al-7Nb Alloy: *Josef Stráský*¹; Kristina Vaclavova¹; Petr Harcuba¹; Pavel Zhanal¹; Jakub Cizek¹; Veronika Polyakova¹; Irina Semenova¹; Milos Janecek¹; Charles University

Ultrafine Grained Materials IX — Roll Processing Studies

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Wednesday AM Room: 209B

February 17, 2016 Location: Music City Center

Session Chairs: Sergey Dobatkin, A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences; Werner Skrotzki, Dresden University of Technology

8:30 AM Invited

Bulk Texture Evolution of Nanolamellar Zr–Nb Composites Processed via Accumulative Roll Bonding: John Carpenter¹; Thomas Nizolek²; Rodney McCabe¹; Marko Knezevic³; Shijian Zheng⁴; Benjamin Eftink⁵; Jeffrey Scott¹; Sven Vogel¹; Tresa Pollock²; Nathan Mara¹; Irene Beyerlein¹; ¹Los Alamos National Laboratory; ²University of California Santa Barbara; ³University of New Hampshire; ⁴Institute of Metal Research; ⁵University of Illinois at Urbana-Champaign

9:00 AM

Effect of Shear Strain on the Evolution of Microstructure and Microtexture in Cu/Ta multilayer during Accumulative Roll-Bonding at High Temperature: *Tarang Mungole*¹; Bilal Mansoor²; Georges Ayoub³; David Field¹; ¹Washington State University; ²Texas A and M University; ³American University of Beirut

9:20 AM

Microstructure, Texture and Mechanical Properties of ARB Processed Aluminium Laminates: Viswanadh Gowtham Arigela¹; Juliane Scharnweber²; Laura Lienshoeft²; Paul Chekhonin²; Rolf Schaarschuch²; Satish Kumar Kolli¹; Nageswara Rao Palukuri¹; Jayaganthan Rengaswamy¹; Werner Skrotzki²; Indian Institute of Technology Roorkee; ²Dresden University of Technology

9:40 AM Invited

Mechanical Anisotropy and Kink Banding in Bulk Accumulative Roll Bonded Cu-Nb Nanolaminates: *Thomas Nizolek*¹; Nathan Mara²; Irene Beyerlein³; Jaclyn Avallone¹; Tresa Pollock¹; ¹Materials Department, University of California Santa Barbara; ²Institute for Materials Science and the Center for Integrated Nanotechnologies, Los Alamos National Laboratory; ³Theoretical Division, Los Alamos National Laboratory

10:10 AM Break

10:30 AM

Mechanical Properties of Duplex Stainless Steels with Laminated Structure: Lin Xie¹; Tianlin Huang¹; *Guilin Wu*¹; Xiaoxu Huang¹; ¹Chongqing University

10:50 AM

Hall-Petch Relation in Ultrafine Grained Al-0.3Cu Alloy: *Tianlin Huang*¹; Aneela Wakeel¹; Zongqiang Feng¹; Guilin Wu¹; ¹Chongqing University

11:10 AM

Structure, Texture and Mechanical Properties of Ultrafine Grained Mg-Al-Zn-Mn Alloy after Radial-shift Rolling: Sergey Dobatkin¹; Yuri Estrin²; Sergey Galkin³; Vladimir Serebryany⁴; Mathilde Diez⁵; Natalia Martynenko⁶; ¹A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia; National University of Science and Technology "MISIS", Laboratory of Hybrid Nanostructured Materials, Moscow, Russia; ²Monash University, Centre for Advanced Hybrid Materials, Department of Materials Engineering, Clayton, Australia; National University of Science and Technology "MISIS", Laboratory of Hybrid Nanostructured Materials, Moscow, Russia; ³National University of Science and Technology "MISIS", Moscow, Russia; ⁴A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia; ⁵Seoul National University, Department of Materials Science and Engineering, Seoul, Republic of Korea; ⁶ National University of Science and Technology "MISIS", Laboratory of Hybrid Nanostructured Materials, Moscow, Russia

11:30 AM

Effect of Cryorolling on the Precipitation Evolution and Properties of Al Alloys: Nageswararao Palukuri¹; Jayaganthan R¹; ¹IIT Roorkee

2016 Functional Nanomaterials: Emerging Nanomaterials and Techniques for 3D Architectures — Nanomaterials General II

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Nanomaterials Committee

Program Organizers: Terry Xu, UNC Charlotte; Nitin Chopra, The University of Alabama; Jung-Kun Lee, University of Pittsburgh; Jiyoung Kim, University of Texas; V. U. Unnikrishnan, The University of Alabama

Wednesday PM Room: 211

February 17, 2016 Location: Music City Center

Session Chair: Terry Xu, UNC Charlotte

2:00 PM

Effect of SPD Surface Treatments on Corrosion and Environmental Cracking Susceptibility of Oilfield Alloys: Ting Chen¹; ¹SET Labs

2:20 PM

Preparation of MWCNT-supported Mo2C Nanocomposite Materials by Microwave Method for Applying in Direct Methanol Fuel Cells: *Jinlin Lu*¹; Zhe Ning¹; Zhuo Li¹; Hua Song¹; Lu Han¹; ¹University of Science and Technology Liaoning

2:40 PM

Controlled Synthesis of TiC Nanoparticles using Solid Oxide Membrane Technology in Molten CaCl2: Kai Zheng¹; Xingli Zou¹; Xionggang Lu¹; Qian Xu¹; Hongwei Cheng¹; ¹shanghai university

3:00 PM

Hydrothermal Growth of ZnO Nanorod Arrays via Microsphere Self-assembled Monolayer for Nanocapacitor Application: *Bo-Cheng Lin*¹; Ching-Shun Ku²; Hsin-Yi Lee²; Albert T. Wu¹; ¹National Central University Taiwan; ²National Synchrotron Radiation Research Center

3:20 PM

A Facile Fabrication of Fe2O3/C Composite as Anode for Lithium Ion Batteries: *Mingru Su*¹; Aichun Dou¹; Yunjian Liu¹; Fagen Peng¹; ¹Jiangsu University

3:40 PM Break

4:00 PM

An Aluminum Based Amorphous/Nanocrystal Foil Composites Preparation: *Jitai Niu*¹; Dongfeng Cheng¹; ¹Henan Polytechnic University

1.20 PM

Synthesis and Hydrothermal Method with Enhanced Photocatalytic Performance Optimization of Bi2S3 Nanorods Prepared by a

: Tarek Abdelhamid¹; Ahmed Helal¹; Adel Ismaill¹; Ibrahim Ibrahim¹; Ahmed Harraza¹; ¹Tabbin Institute for Metallurgical Studies

4:40 PM

Simple Green Synthesis of Amino Acid Functionalised CdTe/CdSe/ZnSe Core-multi Shell with Improved Cell Viability for Cellular Imaging

: Vuyelwa Ncapayi¹; *Oluwafemi Oluwatobi*¹; Sandile Songca²; Tetsuya Kodama³; ¹University of Johannesburg; ²Walter Sisulu University; ³Tohoku University

5:00 PM

Size Tunable Synthesis of HDA and TOPO Capped ZnSe Nanoparticles via a Facile Non-organometallic Method: Oluwafemi Oluwatobi¹; Vuyelwa Ncapayi¹; Sandile Songca²; ¹University of Johannesburg; ²Walter Sisulu University

7th International Symposium on High Temperature Metallurgical Processing — Sintering and Pelletizing of Iron Ores

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Wednesday PM Room: 105B

February 17, 2016 Location: Music City Center

Session Chairs: Liyuan Cai, Central South University; Deqing Zhu, Central South University

2:00 PM Introductory Comments

2:05 PM

Enhancing the Removal of Sodium and Potassium of Sinter by CO-Containing Flue Gas Circulation Sintering Process: *Guanghui Li*¹; Chen Liu¹; Ruijun Wang¹; Zhengwei Yu¹; Qian Li¹; Zhao Jing¹; Yuanbo Zhang¹; ¹School of Minerals Processing and Bioengineering, Central South University

2:25 PM

Chemical, Physical and Morphological Changes of Sintering Dust by Mechanical Activation: Feng Chang¹; Shengli Wu¹; Jianliang Zhang¹; Mingyin Kou¹; Hua Lu¹; Laixin Wang¹; ¹School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing

2:45 PM

Cohering Behavior of Scrap Powder in Kiln by a Novel Natural Stacking Method: *Yong-bin Yang*¹; Yan Zhang¹; jiang tao¹; qian li¹; bin xu¹; ¹Central South University

3:05 PM

The Preheating and Roasting Properties of Fluorine-bearing Iron Concentrate Pellets and Main Influence Factors: Lu Yang¹; Shuai Wang¹; Ganghua Fu¹; Yufeng Guo¹; *Tao Jiang*¹; ¹CENTRAL SOUTH UNIVERSITY

3:25 PM

Thermogravimetric Analysis of Coal Used in Rotary Kiln of Iron Ore Oxide Pellet: *Qiang Zhong*¹; Yongbin Yang²; Qian Li²; Tao Jiang²; ¹Central South University; ²Central South University

3:45 PM Break

4:05 PM

Ringing Mechanism and Prevention of Ringing in Kiln: Yong-bin Yang¹; Yan Zhang¹; qian li¹; bin xu¹; Xiaoliang Liu¹; ¹Central South University

4.25 PM

Performance Monitoring of Grate-kiln-cooler Process Based on Quality Prediction and Statistical Analysis: *Gui Yang*¹; Xiao Fan¹; Xiao Huang¹; Xu Chen¹; ¹School of Minerals Processing and Bioengineering, Central South University, Changsha, China

4:45 PM

Mechanisms of Strengthening the Reduction of Fine Hematite in High Silicon Coal-contianing Mini-pellets by Sodium Additives: *Zhucheng Huang*¹; Liangming Wen²; Ronghai Zhong²; Tao Jiang²; ¹Central South University; ²central south university

5:05 PM

Sintering Test Research of High Proportion Limonite: Zhao Qiang¹;
¹Changsha Research Institute of Mining and Metallurgy

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling — Neutron Irradiation and Mechanical Properties

Sponsored by: TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California Berkeley; Todd Allen, Idaho National Laboratory; Elaine West, Knolls Atomic Power Laboratory

Wednesday PM Room: 101B

February 17, 2016 Location: Music City Center

Session Chair: Peter Hosemann, University of California, Berkeley

2:00 PM Invited

Microstructural Characterization of ATR Irradiated Cu/Nb Nanolayered Composites: Osman Anderoglu¹; Jon Baldwin¹; Amit Misra²; Michael Nastasi³; Stuart Maloy¹; James Cole⁴; George Odette⁵; ¹Los Alamos National Laboratory; ²University of Michigan; ³University of Nebraska; ⁴Idaho National Laboratory; ⁵University of California

2:30 PM

Energy Dissipation and Defect Evolution in Concentrated Solid-solution Alloys: Yanwen Zhang¹; G. Malcolm Stocks¹; Ke Jin¹; Hongbin Bei¹; Chenyang Lu¹; Lumin Wang¹; Brian Sales¹; Laurent Beland¹; Roger Stoller¹; William Weber¹; Oak Ridge National Laboratory

2:50 PM

Solute Redistribution Processes in Neutron-irradiated Model FeCrAl Alloys: Samuel Briggs¹; Philip Edmondson²; Ken Littrell²; Yukinori Yamamoto²; Kumar Sridharan¹; Kevin Field²; ¹University of Wisconsin-Madison; ²Oak Ridge National Laboratory

3:10 PM

TEM Characterization of Neutron-irradiated Cast Austenitic Stainless Steel at 320°C to 0.08 dpa: Wei-Ying Chen¹; Yiren Chen¹; Xuan Zhang¹; Chi Xu²; Mark Kirk¹; Meimei Li¹; ¹Argonne National Laboratory; ²University of Florida

3:30 PM Break

3:50 PM

Thermal Aging and Low Dose Neutron Irradiation Effect on the Microstructural Stability of Delta Ferrite in a 308L Weld: Zhangbo Li¹; *Yang Yang*¹; Yiren Chen²; ¹University of Florida; ²Argonne National Laboratory

4:10 PM

Structural Characterization of Nanoscale Intermetallic Precipitates in Highly Neutron Irradiated Reactor Pressure Vessel Steels: David Sprouster¹; E Dooryhee¹; S Ghose¹; P Wells²; T Stan²; N Almirall²; G. Odette²; L Ecker¹; ¹Brookhaven National Laboratory; ²University of California, Santa Barbara

4:30 PM

Production of Microstructure to Mimic Key Effects of Neutron Irradiation Damage in Core Materials: Ram Bajaj¹; Justin Cook¹; Gene Lucadamo¹; Jesse Carter¹; Clinique Brundidge¹; Richard Smith¹; ¹Bettis Atomic Power Laboratory

4:50 PM

A Comparison of Methods for Measurement of Ion Irradiation Induced Hardening in Metallic Materials: *Dhriti Bhattacharyya*¹; Mihail Ionescu¹; Zain Zaidi²; Christopher Hurt²; Ashley Reichardt³; Peter Hosemann³; Robert Harrison¹; John Daniels²; Lyndon Edwards¹; ¹ANSTO; ²UNSW; ³University of California Berkeley

5:10 PM

Nanoindentation and In Situ Microcompression Testing in Various Dose Regimes of Proton-beam Irradiated 304 SS: Ashley Reichardt¹; David Frazer¹; Cameron Howard¹; Amanda Lupinacci¹; Peter Chou¹; Peter Hosemann¹; ¹University of California, Berkeley

Acta Materialia Symposium — Award Session

Program Organizer: Carolyn Hansson, University of Waterloo

Wednesday PM Room: 103C

February 17, 2016 Location: Music City Center

Session Chair: Carolyn Hansson, University of Waterloo

3:15 PM Introductory Comments

3:20 PM Invited

2016 Acta Materialia Gold Medal Award: Sungho Jin: Sungho Jin¹; ¹University of California San Diego

3:50 PM Question and Answer Period

4:00 PM Invited

Acta Materialia Inc. Hollomon Award for Materials and Society: Julie Schoenung: Julie Schoenung: 'University of California Davis

4:30 PM Question and Answer Period

4:40 PM Reception

Additive Forming of Components - Tailoring Specific Material Properties in Low Volume Production — Emerging Additive Manufacturing Technologies and Applications

Sponsored by:

Program Organizers: Judith Schneider, University of Alabama at Huntsville; Mark Stoudt, National Institute of Standards and Technology; Kester Clarke, Los Alamos National Laboratory; Lee Semiatin, US Air Force Research Laboratory; Mohsen Asle Zaeem, Missouri University of Science and Technology; Eric Lass, National Institute of Standards and Technology; Paul Mason, Thermo-Calc Software Inc.

Wednesday PM Room: 205B

February 17, 2016 Location: Music City Center

Session Chairs: Judy Schneider, University of Alabama in Huntsville; Tom Stockman, University of Alabama in Huntsville

2:00 PM Invited

Developing 3D Printed Heat Exchangers: Vinod Narayanan¹; Samikshya Subedi²; Erfan Rasouli³; Eric Truong³; Colt Montgomery²; *Anthony Rollett*²; ¹UC Davis; ²Carnegie Mellon University; ³Oregon State University

2:30 PM

Microstructure and Mechanical Characterization of Hybrid Materials Fabricated Using Ultrasonic Additive Manufacturing: Niyanth Sridharan¹; Maxim Gussev²; Kurt Terrani³; Mark Norfolk⁴; Sudarsanam Babu¹; ¹University of Tennessee Knoxville; ²Fusion Materials and Nuclear Structures Group, Oak Ridge National Lab; ³Nuclear Fuels Materials Group, Oak Ridge National Laboratory; ⁴Fabrisonic

2:50 PM

Additive Friction Stir Deposition of Functionally Gradient Al-Fe Composite: Nanci Hardwick¹; Kumar Kandasamy¹; Jianqing Su¹; James Donnelly¹; Dietrich Linde¹; ¹Aeroprobe Corporation

3:10 PM

Lightweight, Strong and Ductile Hierarchical Architected Materials Fabricated from Additive Manufacturing: Xiaoyu "Rayne" Zheng¹; ¹Virginia Tech/Lawrence Livermore National Lab

3:30 PM Break

3:50 PM Invited

Constitutive Modeling and Experimental Verification of Aqueous–based Freeform Extrusion Fabrication Processes: Ming Leu¹; Mingyang Li¹; Robert Landers¹; ¹Missouri University of Science and Technology

4.20 PM

Flexible Heat Treatment of AM Material in a HIP: Anders Eklund¹; *Magnus Ahlfors*²; ¹Quintus Technologies, LLC.; ²Avure Technologies AB

4:40 PM

Additive Manufacturing from the Gaseous State: Vicki Barbur¹; Michael Tims¹; Juan Valencia¹; Melissa Klingenberg¹; ¹CTC

Additive Manufacturing: Building the Pathway towards Process and Material Qualification — Emerging Technologies

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Process Technology and Modeling Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas; Reginald Hamilton, The Pennsylvania State University; Edward Herderick, GE; Rajiv Mishra, University of North Texas; James Sears, GE GRC

Wednesday PM Room: 205A

February 17, 2016 Location: Music City Center

Session Chairs: Lyle Levine, NIST; Michael Maguire, Sandia National Laboratory

2:00 PM Invited

Microstructure and Mechanical Property Relationships in Additively Manufactured 304L: Michael Maguire¹; Jeffrey Rodelas¹; Jay Carroll¹; Dave Adams¹; Benjamin Reedlunn¹; Joseph Bishop¹; Bo Song¹; Jack Wise¹; ¹Sandia National Laboratories

2:30 PM

Linkage between FEA Thermal Modeling of Laser Powder Bed Fusion and Microstructure Evolution Simulations: Li Ma¹; Jeffrey Fong¹; Brandon Lane¹; Shawn Moylan¹; Lyle Levine¹; 'NIST

2:50 PM

Powder Bed Layer Characteristics – The Overseen First Order Process Input: Mustafa Megahed¹; Hans-Wilfried Mindt¹; Nicholas Lavery²; Mark Holmes²; Stephen Brown²; ¹ESI Group; ²Swansea University

3:10 PM Invited

Additive Manufacturing of Metals: Building Unreliable Microstructures 20 Micross at a Time: Lyle Levine¹; ¹National Institute of Standards and Technology

3:40 PM Break

4:00 PM

Power Bed Fusion-based Additive Manufacturing in Turbine Engine Hot-section Alloys Through Scanning Laser Epitaxy: Amrita Basak¹; Andriy Dotsenko¹; Yunpei Yang¹; Arpit Patel¹; Suman Das¹; ¹Georgia Institute of Technology

4:20 PM

In-Space Manufacturing Baseline Property Development: Tom Stockman¹; Judith Schneider¹; Quincy Bean²; Tracie Prater²; Nicki Werkheiser²; ¹Missis-

sippi State University; 2NASA

4:40 PM

Kinetic Monte-Carlo: A Tool for Examining Microstructural Evolution in Materials Processing: *Jonathan Madison*¹; Theron Rodgers¹; Veena Tikare¹; Sandia National Laboratories

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session VI

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; John Carpenter, Los Alamos National Laboratory; Marko Knezevic, University of New Hampshire; Wolfgang Pantleon, Technical University of Denmark; Thomas Bieler, Michigan State University; Khalid Hattar, Sandia National Laboratories; Irene Beyerlein, Los Alamos National Laboratory

Wednesday PM Room: 103B

February 17, 2016 Location: Music City Center

Session Chairs: Fionn Dunne, Imperial College; Grethe Winther, Technical University of Denmark

2:00 PM Invited

Crystal Plasticity and HR-DIC Studies of Slip and Strain Localisation in Single and Polycrystal Ni Alloys under Cyclic Bending: Yongjun Guan¹; Ben Britton¹; Jun Jiang¹; Fionn Dunne¹; ¹Imperial College

2:30 PM Invited

Intragranular Orientation Spread Induced by Grain Interaction: *Grethe Winther*¹; Jette Oddershede¹; ¹Technical University of Denmark

3:00 PM

Quantitative Analysis of Dislocation Densities from Electron Backscatter Diffraction and Precession Electron Diffraction Data: Asher Left; Austin Nye¹; Evan Kahl¹; Greg Vetterick¹; Mitra Taheri¹; ¹Drexel University

3:20 PM

Using Conventional EBSD for Dislocation Structure Quantification: $David Field^{\dagger}$; ¹Washington State University

3:40 PM Break

4:00 PM Invited

Slip Localisation in Ti Alloys Studied by High-resolution Digital Image Correlation: *Michael Preuss*¹; David Lunt¹; Joao Quinta da Fonseca¹; ¹University of Manchester

4:30 PM

Continuous Yielding Investigated by Concurrent Mapping of Microstructure, Micro-strain and Micro-stress Evolution: Cem Tasan¹; Dingshun Yan¹; Dierk Raabe¹; ¹Max-Planck Institute for Iron Research

4:50 PM

Slip Band Development in Aluminium: Measurements and CPFEM Predictions: Joao Fonseca¹; ¹The University of Manchester

5:10 PM

3D Analysis of Dislocations near Grain Boundary Using Nonlocal Plasticity Model: Chen Zhang¹; Philip Eisenlohr¹; Thomas Bieler¹; Martin Crimp¹; Carl Boehlert¹; ¹Michigan State University

5-30 PM

Three Dimensional Orientation Characterization of Metals Tested in Tension: *Jonathan Ligda*¹; Nick Lorenzo¹; Emily Huskins²; Tomoko Sano¹; Brian Schuster¹; ¹Army Research Laboratory; ²United States Naval Academy

5:50 PM

Effects of Stretch Forming on Microstructure and Corrosion of Al-Cu-Li Alloys: *Ellen Wright*¹; Michael Kaufman¹; Gary Weber²; ¹Colorado School of Mines; ²Boeing

Advanced Magnetic Materials: An FMD Symposium in Honor of Michael E. McHenry — Permanent Magnets I

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Magnetic Materials Committee

Program Organizers: Raju Ramanujan, Nanyang Technological University; Matthew Willard, Case Western Reserve University; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory

Wednesday PM Room: 209C

February 17, 2016 Location: Music City Center

Session Chairs: George Hadjipanayis, University of Delaware; Rajarshi Banerjee, University of North Texas

2:00 PM Invited

Dy-free High Coercivity Nd-Fe-B Permanent Magnets: *Kazuhiro Hono*¹; Taisuke Sasaki¹; Hossein Sepehri-Amin¹; Tadakatsu Ohkubo¹; ¹NIMS

2:30 PM Invited

Synthesis of Submicron R-Co and R-Fe-B Particles by the Mechanochemical Process: *George Hadjipanayis*¹; Alexander Gabay¹; Ozlem Koylu-Alkan¹; Manu Barandiaran¹; Daniel Salazar¹; ¹University of Delaware

3:00 PM

Co-based Rare Earth Free Permanent Magnet Materials: Meiyu Wang¹; Michael Lucis¹; *Jeff Shield*¹; ¹University of Nebraska

3:20 PM Break

3:40 PM

Developing Permanent Magnet Alloys via Rapid Assessment Methodologies: *Ryan Ott*¹; Jie Geng²; Ikenna Nlebedim²; Emrah Simsek²; Matthew Besser²; Valentin Taufour²; Matthew Kramer²; ¹Ames Laboratory (USDOE); ²Ames Laboratory (USDOE)

4:00 PM

Enhanced Powder-processed Alnico Magnets by Thermal Gradient Control: Emma White¹; Aaron Kassen²; Kevin Dennis¹; Wei Tang¹; Andriy Palasyuk¹; Lin Zhou¹; R. William McCallum¹; Iver Anderson¹; ¹Ames Laboratory; ²Iowa State University

4:20 PM

Heavy Rare Earths at Grain Boundaries to Achieve Maximum Coercivity in Industrial Magnetic Materials: Spomenka Kobe¹; ¹Jožef Stefan Institute

4:40 PM

A Solid-State Approach to Alnico-based Permanent Magnets: Aaron Kassen¹; Emma White²; Wei Tang²; Andriy Palasyuk²; Lin Zhou²; Iver Anderson²; Iowa State University; ²Ames Laboratory

5:00 PM

Microstructural Effects of Thermomagnetic Treatments in Sintered Nd-Fe-B Magnets: Catherine Smith¹; Michael Kaufman¹; John Speer¹; Michael McGuire²; ¹Colorado School of Mines; ²Oak Ridge National Laboratory

Aluminum Alloys, Processing and Characterization — Thermal Mechanical Processing

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Steven Long, Kaiser Aluminum Corporation

Wednesday PM Room: 201B

February 17, 2016 Location: Music City Center

Session Chair: Tongguang Zhai, University of Kentucky

2:00 PM Introductory Comments

2:05 PN

A Study of the Formation Mechanism of Mn Containing Precipitates during Homogenization in a 6xxx Series Aluminum Alloy: Gongwang Zhang¹; Tongguang Zhai¹; Yi Han²; Yi Xu²; Hiromi Nagaumi²; Gang Sha³; Chad Parish⁴; Donovan Leonard⁴; ¹University of Kentucky; ²Suzhou Research

Institute for Nonferrous Metals; ³Nanjing University of Science and Technology; ⁴Oak Ridge National Laboratory

2:30 PM

Precipitation of Al₃Zr Dispersoids during Homogenization of Al-Zn-Cu-Mg-Zr Alloys: *Pikee Priya*¹; Matthew Krane¹; David Johnson¹; ¹Purdue University

2:55 PM

Characterization and Simulation of Microstructure Evolution of 7075 Aluminium Alloy during Homogenization: Siamak Rafiezadeh¹; Ahmad Falahati¹; Ernst Kozeschnik¹; ¹Vienna University of Technology

3:20 PM Break

3:35 PM

Application of Secondary Shear Effects in the Extrusion-Machining Process to Explore Recrystallization Mechanics during Conventional Extrusion of 7050 Aluminum: Daniel Klenosky¹; David Johnson¹; Kevin Trumble¹; ¹Purdue University

4:00 PM

Fatigue Crack Growth in Structural Cast Aluminum Alloys: Microstructural Mechanisms, Modeling Strategies, and Integrated Design: Anthony Spangenberger¹; Diana Lados¹; ¹Worcester Polytechnic Institute, Integrative Materials Design Center

4:25 PM

Large Strain Extrusion Machining on 6013 Aluminum Alloy: *Xiaolong Bai*¹; Andrew Kustas¹; Srinivasan Chandrasekar¹; Kevin Trumble¹; ¹Purdue University

Aluminum Reduction Technology — Environment II

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Stephan Broek, Hatch Ltd

Wednesday PM Room: 2028

February 17, 2016 Location: Music City Center

Session Chair: Michael Gershenzon, Alcoa

2:00 PM

Assessing the Role of Smelter Grade Alumina Porosity in the HF Scrubbing Mechanism: Gordon Agbenyegah¹; Grant McIntosh²; Margaret Hyland³; Jim Metson⁴; ¹Chemical and Material Engineering Dept., University of Auckland / Light Metals Research Center; ²School of Chemical Sciences, University of Auckland/Light Metal Research Center; ³Faculty of Engineering, University of Auckland / Light Metals Research Center; ⁴Faculty of Science, University of Auckland / Light Metals Research Center

2·25 PM

The Competitive Adsorption of HF and SO2 on Smelter Grade Alumina: Neal Dando¹; *Stephen Lindsay*¹; ¹Alcoa

2:50 PM

Evaluation of Gas Composition from Laboratory Scale Electrolysis Experiments with Anodes of Different Sulphur Content: *Thor Anders Aarhaug*¹; Ole Sigmund Kjos¹; Henrik Gudbrandsen¹; Alain Ferber¹; Arne Petter Ratvik¹; ¹SINTEF

3:15 PM

Sustainable Reduction of Anode Effect and Low Voltage PFC Emissions: Eliezer Batista¹; Dando Neal¹; Nicola Menegazzo¹; Luis Espinoza-Nava¹; ¹Alcoa

3:40 PM Break

3:55 PM

QCL-based Perfluorocarbon Emission Monitoring: *Luis Espinoza-Nava*¹; Nicola Menegazzo¹; Neal Dando¹; Peter Geiser²; ¹Alcoa Technical Center; ²NEO

4:20 PM

Using Artificial Neural Network to Predict Low Voltage Anode Effect PFCs at the Duct End of an Electrolysis Cell: Lukas Dion¹; Charles-Luc Lagacé²; László Kiss¹; Sándor Poncsák¹; ¹Université du Québec à Chicoutimi;

²Aluminerie Alouette inc.

4:45 PM

Anode Effect Initiation during Aluminium Electrolysis in a Two-compartment Laboratory Cell: Henrik Åsheim¹; Ole Kjos²; Espen Sandnes¹; Thor Aarhaug²; Asbjørn Solheim²; Steinar Kolås³; Geir Haarberg¹; ¹NTNU; ²SINTEF; ³Hydro

Aluminum Reduction Technology — Materials & Equipment

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Stephan Broek, Hatch Ltd

Wednesday PM Room: 202C

February 17, 2016 Location: Music City Center

Session Chair: Olivier Martin, Rio Tinto Alcan

2:00 PM

Alumina Handling in the Smelter- from Port to Pot: *Anders Sorhuus*¹; Sivert Ose¹; Morten Karlsen²; Are Dyrhaug²; ¹Alstom; ²Hydro Aluminium AS

2:25 PM

Recent Developments in Hyper-Dense Phase Alumina Handling Systems: *Guillaume Girault*¹; Philippe Godde¹; Jean-Philippe Laine¹; Mehrdji Hemati²; ¹Rio Tinto Alcan; ²Université de Toulouse

2:50 PM

The Challenge to Supply Consistent Alumina Quality to All Pots on the Increasing Longer and Higher Capacity Potlines: Shane Polle¹; Shaikha Al Shehhi¹; Sunny Mathew¹; Bharat Gadilkar¹; Deepu Ramchandran¹; ¹Emirates Global Aluminium, Al Taweela

3:15 PM Break

3:30 PM

Design and Demonstration of an Improved Automated Pot Tapping Method and Equipment: *Jean-Francois Desmeules*¹; Martin Tremblay²; Jean-Benoit Neron¹; ¹Dynamic Concept; ²Aluminerie Alouette

3:55 PM

Evolution of Crust Breaker Control for DX+ and DX+ Ultra Technologies: *Konstantin Nikandrov*¹; Abdalla Zarouni¹; Sergey Akhmetov¹; Nadia Ahli¹; Michel Reverdy¹; ¹Emirates Global Aluminium (EGA)

4:20 PM

SiC in Electrolysis Pots: An Update: Rudolf Pawlek¹; ¹TS+C

Bio Nano Interfaces and Engineering Applications — Bio-Nano Interfaces: Medical Applications

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Po-Yu Chen, National University of Tsing Hua University; Terry Lowe, Colorado School of Mines; John Nychka, University of Alberta; Wen Yang, Swiss Federal Institute of Technology in Zurich (ETHZ)

Wednesday PM Room: 206B

February 17, 2016 Location: Music City Center

Session Chair: Mohan Edirisinghe, University College London

2:00 PM Invited

Green Nanotechnology Approach Towards Water-soluble Iron Oxide MRI Contrast Agents: Sanjay Mathur¹; ¹University of Cologne

2:40 PM Invited

Gene Expression Profiling of Preosteoblasts on Conventional and Nanostructured Bulk Titanium: Rebecca Reiss¹; Terry Lowe²; ¹New Mexico Tech; ²Colorado School of Mines

3:10 PM Invited

Implantable Magnetic Nanocompsites for Cancer Treatment: $Nima\ Rahbar^1$; 1 Worcester Polytechnic Institute

3:40 PM Break

4:00 PM Invited

Modeling the Organic-Inorganic Nano Interface in Nanocomposites in Bone Tissue Engineering: *Kalpana Katti*¹; Dinesh Katti¹; Anurag Sharma¹; ¹North Dakota State University

4:40 PM Invited

How Do Nano and Microscale Surface Topographies Affect Bacterial Attachment? Designing a New Generation of Antimicrobial Surfaces: Benjamin Hatton¹; Nicolas Lavielle¹; Dalal Asker¹; ¹University of Toronto

5:10 PM

Rules of Induction Towards Chimeric Antimicrobial Peptide Design as Implant Biocoatings: *Kyle Boone*¹; Sarah VanOosten¹; Marcos Simoes¹; Candan Tamerler¹; ¹University of Kansas

5:30 PM

Self-reinforced Fibro-porous 3D Tubes for Vascular Graft Applications: *Vinoy Thomas*¹; Paloma Coelho¹; Siddhartha Patel²; Andrew Wood¹; ¹University of Alabama at Birmingham; ²University of North Georgia

Biological Materials Science Symposium — Biomaterials III

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Francois Barthelat, McGill University; Kalpana Katti, North Dakota State University; Paul Allison, University of Alabama; Rajendra Kasinath, DePuy Synthes Products, LLC

Wednesday PM Room: 207A

February 17, 2016 Location: Music City Center

Session Chairs: Paul Allison, University of Alabama; Rajendra Kasinath, DePuy Synthes

2:00 PM Invited

Towards Computer-aided, Rational Design of Ceramic Biomaterials: Combining Micro-Computed Tomography, Nanoindentation, Ultrasonic, and Micromechanical Theory: Christian Hellmich¹; ¹Vienna University of Technology

2:40 PM

Microstructure and Tribological Behaviors of Laser Clad Ti-based Metallic Glass Composite Coatings: *Hong Wu*¹; Xiaodong Lan¹; Xiongfei Zai¹; Yong Liu¹; ¹Central South University

3:00 PM

The Effects of Closed-Cell Metallic and Polymeric Foams on the Dynamic Mechanical Response of Bone and Brain Simulants via Impact Testing: Andrew Brown¹; Paul Hazell¹; Juan P. Escobedo-Diaz¹; ¹UNSW Australia

3:20 PM Break

3:40 PM

Monotonic and Cyclic Response of Austenitic and Martensitic NiTi wires for Medical Device Applications: *Elizabeth Gurin*¹; Yiyi Yang¹; Hyunmin Kim¹; Sharvan Kumar¹; ¹Brown University

4:00 PM

Micropillar Cyclic Compression Study of a Nitinol Tube Intended for Medical Devices: Hyunmin Kim¹; Hyokyung Sung¹; Sharvan Kumar¹; ¹Brown University

4:20 PM

Transient Simulation of Low Volume Gravity Driven Flow in a Human Organ Mimicking Microfluidic Platform: Kazi Tasneem¹; Christopher Long¹; James Hickman¹; ¹University of Central Florida

4:40 PM

Detecting Bacterial Pathogens and Antibiotic Resistance Genes in Wastewater

Treatment Plants Using Annotations and Bioinformatics: Aziza Al Sawafi¹; Andreas Henschel¹; ¹Masdar Institute

Bulk Metallic Glasses XIII — Hidden Orders in Structures and Deformation

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Wednesday PM Room: 101E

February 17, 2016 Location: Music City Center

Session Chairs: Karin Dahmen, University of Illinois at Urbana Champaign; Xie Xie, The University of Tennessee

2:00 PM Invited

Temperature Dependent slip Avalanche Statistics in Bulk Metallic Glasses - Experiments and Model: Corey Fyock¹; Peter Thurnheer²; Robert Maass¹; Michael LeBlanc¹; Peter Liaw³; Jonathan Uhl⁴; Joerg Loeffler²; Karin Dahmen⁵; ¹University of Illinois at Urbana Champaign; ²ETH Zuerich; ³University of Tennessee Knoxville; 4private; 5 University of Illinois at Urbana Champaign

2:20 PM Invited

Universal Scaling of the Viscosity of Metallic Liquids: Ken Kelton¹; ¹Washington University

2:40 PM

Local Structure Orders in Metallic Liquids and Glasses and Their Influence on the Phase Selection: Cai-Zhuang Wang¹; Yue Zhang¹; Feng Zhang¹; Yang Sun¹; Zhou Ye¹; Kai-Ming Ho¹; M. I. Memdelev¹; M. J. Kramer¹; ¹Ames Laboratory

3:00 PM Invited

Jerky Flow Dynamics in Bulk Metallic Glasses: Junwei Qiao1; Zhong Wang¹; Huijun Yang¹; ¹Taiyuan University of Technology

3:20 PM Break

3:35 PM Invited

Insights into B-Relaxation-Mediated Performance of Metallic Glasses: An Integrated Density-Functional-Theory and Electron-Work-Function Study: William Yi Wang¹; Shunli Shang¹; Yi Wang¹; Kristopher Darling²; Laszlo Kecskes²; Peter Liaw³; Xidong Hui⁴; Zi-Kui Liu¹; ¹The Pennsylvania State University; ²U.S. Army Research Laboratory; ³University of Tennessee; ⁴University of Science and Technology Beijing

The 2.5 Power Law: A General Rule of Metallic Glasses: Qiaoshi Zeng1; ¹Carnegie Institution of Washington

4:15 PM Invited

Toughen and Harden Metallic Glass through Designing Statistical Heterogeneity: Yongwei Wang¹; Mo Li²; ¹University of Science and Technology Beijing; 2Georgia Institute of Tech

4:35 PM Invited

Time-dependent Mechanical Properties of Metallic Glass via Molecular **Dynamics Simulations**: Yunche Wang¹; Nai-Hua Yeh¹; Peter Liaw²; ¹National Cheng Kung University; ²University of Tennessee

Constraint Effects on the Serrated Behavior in the Compression and Nanoindentation for Bulk Metallic Glasses: Xie Xie¹; Guangfeng Zhao²; Peizhen Li²; Shuying Chen¹; Fuqian Yang²; Karin Dahmen³; Peter Liaw¹; ¹The University of Tennessee; ²University of Kentucky; ³University of Illinois at Urbana Champaign

Local Ordering in Molten State and Its Legacy on Abnormal Primary Crystallization in Al-RE Metallic Glasses: Mustafacan Kutsal¹; Eren Kalay¹;

Cast Shop Technology: An LMD Symposium in Honor of Wolfgang Schneider — Metal Treatment and **Metal Quality**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizer: Mohamed Hassan, Masdar Institute of Science and Technology

Wednesday PM Room: 202A

February 17, 2016 Location: Music City Center

Session Chair: Mark Badowski, Hydro Aluminium Rolled Products GmbH

2:00 PM Introductory Comments

2:05 PM

Inline Melt Treatment for Low to Medium Metal Flow Rates: Arild Hakonsen1; Terje Haugen1; John Fagerlie1; 1Hycast AS

Effect of Soaking Treatment on the Microstructure and Wear Behavior of the Ultrasonic Melt-treated B390 Hypereutectic Al-Si Alloy: Mona Fadl¹; Waleed Khalifa¹; Shimaa El-Hadad²; ¹Cairo University; ²Central Metallurgical Research and Development Institute

Influence of Oxidation on Contact Angle between Liquid Aluminum and Al2O3: Ping Shen¹; Lifeng Zhang¹; Yi Wang¹; ¹University of Science and Technology Beijing

Optimization of the Ultrasonic Processing in a Melt Flow: Iakovos Tzanakis¹; Gerard Lebon²; Dmitry Eskin¹; Koulis Pericleous²; ¹Brunel University; 2Greenwich University

3:45 PM Break

Assessment of Settling Behavior of Particles with Different Shape Factors by LiMCA Data Analysis: Mertol Gökelma¹; Pierre Le Brun²; Thien Dang³; Mark Badowski⁴; Johannes Morscheiser⁵; Bernd Friedrich¹; Sebastian Tewes⁶; ¹RWTH Aachen University; ²Constellium Technology Center; ³TRIMET Aluminium SE; 4Hydro Aluminium Rolled Products GmbH; 5Aleris Rolled Products Germany GmbH; 6NEMAK Europe GmbH

4:50 PM

Modeling of Inclusion Behaviour in an Aluminium Induction Furnace: Emmanuel Waz1; Akshay Bansal2; Pierre Chapelle2; Yves Delannoy3; Jean-Pierre Bellot²; Pierre Le Brun¹; ¹Constellium Technology Center; ²Université de Lorraine; 3Grenoble-INP

A Comparison of Cold and Hot PoDFA Procedure for Particle Monitoring in Liquid Aluminium: Mark Badowski1; Roland Schmoll1; 1Hydro Alumin-

111

5:15 PM

Inclusion Measurement with PoDFA / Prefil — On-site and Off-site: Volker Ohm¹; Anand Santhanam²; Arun Kumar Ghosala²; ¹HOESCH Metallurgie GmbH: ²Aluminium Bahrain

Characterization of Minerals, Metals, and Materials — Extraction

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Wednesday PM Room: 103A

February 17, 2016 Location: Music City Center

Session Chairs: Li Qian, Central South University; Mingming Zhang, ArcelorMittal

Global R&D

2:00 PM Invited

Experimental Study on Quality Evaluation of Calcium-based Agents for Desulfurization of Sinter Gas on SDA: Lu Lj¹; Huang Jianyang¹; ¹Wisco

2:20 PN

Recovery of Palladium from Spent Pd/Al2O3 Catalyst by Hydrochloric Acid Leaching: Yang Yong-bin¹; Hu Long¹; Li Qian¹; Xu Bin¹; Rao Xue-fei¹; Jiang Tao¹; ¹Central South University

2:40 PM

Prevention of Airborne Dust from Petroleum Coke Stockpiles: *Robert Kozicki*¹; George Wrightson¹; ¹Andrew S. McCreath & Son, Inc.

3:00 PM

Experimental Analysis of Interlocking Pavement of Concrete with Addition of Waste Glass Applied in Construction: *Victor Souza*¹; Niander Cerqueira²; Andre Jardim³; ¹Universidade Federal Fluminense; ²Universidade Estadual do Norte Fluminense; ³Sociedade Universitária Redentor

3:20 PM Break

3:35 PM

Ligand Selection Model for Leaching of Low Grade Zinc Oxide Ores: Yang Tianzu¹; Rao Shuai¹; Zhang Duchao¹; Chen Lin¹; Liu Weifeng¹; ¹Central South University

3:55 PM

Using of Combined Electrochemical Reactions for the Extraction of Metals from Different Raw Materials: Bagdaulet Kenzhaliyev¹; ¹Kazakh-British Technical University

4:15 PM

Effect of Ferric Ions on Bioleaching of Pentlandite Concentrate: Li Qian¹; Lai Hui-min¹; Yang Yong-bin¹; Xu Bin¹; Jiang Tao¹; Zhang Ya-ping²; ¹Central South University; ²jimei university

4:35 PM

Characterization and Stoichiometry of the Cyanidation Reaction in NaOH, of Argentian Waste Tailings of Hidalgo, México: Mizraim Flores¹; Francisco Patiño²; Iván Reyes³; Martín Reyes²; Julio Juárez²; Ister Mireles²; Juán Hernández²; ¹Universidad Tecnológica de Tulancingo; ²Universidad Autónoma del Estado de Hidalgo; ³Universidad Autónoma de San Luis Potosí

Computational Materials Discovery and Optimization: From 2D to Bulk Materials — Bulk Materials Discovery and Design

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Richard Hennig, University of Florida; Houlong Zhuang, Oak Ridge National Laboratory; Dallas Trinkle, University of Illinois, Urbana-Champaign; Eric Homer, Brigham Young University

Wednesday PM Room: 207D

February 17, 2016 Location: Music City Center

Session Chair: Richard Hennig, University of Florida

2:00 PM Invited

Machine Learning in Chemical Space: Anatole von Lilienfeld¹; ¹University of Basel

2:30 PM

A General-Purpose Toolkit for Predicting the Properties of Materials using Machine Learning: Logan Ward¹; Amar Krishna¹; Rosanne Liu¹; Vinay Hegde¹; Ankit Agrawal¹; Alok Choudhary¹; Chris Wolverton¹; ¹Northwestern University

2:50 PM

Exploring the Structure-composition Design Space in Multi-component Alloy Systems Using Nature Inspired Optimization Algorithms: Aayush Sharma¹; Rahul Singh¹; Peter Liaw²; Ganesh Balasubramanian¹; ¹Iowa State University; ²The University of Tennessee, Knoxville, TN

3:10 PM

Proving the Exact Ground State of a Generalized Ising Model by Convex Optimization and MAX-SAT: Wenxuan Huang¹; Daniil Kitchaev¹; Stephen Dacek¹; Ziqin Rong¹; Alexander Urban¹; Alexander Toumar¹; Shan Cao¹; Chuan Luo²; Gerbrand Ceder¹; ¹MIT; ²Key Laboratory of High Confidence Software Technologies of Ministry of Education, Peking University

3:30 PM Break

3-45 PM

Effect of Charge on Point Defect Size Misfits from Ab Initio: Aliovalently Doped SrTiO₃: *Hyojung Kim*¹; Dallas Trinkle¹; ¹University of Illinois at Urbana-Champaign

4:05 PM

Electronic Structures of Ferromagnetic Fe_{Lx}TM_xPt Alloys (TM = Mn, Fe, Co, Ni, Cu): *Jihoon Park*¹; Yang-Ki Hong¹; Woncheol Lee¹; Seong-Gon Kim²; Chul-Jin Choi³; ¹The University of Alabama; ²Mississippi State University; ³Korea Institute of Materials Science

4:25 PM

First Principles Investigation On TiAl3 Alloys Substitutively Doped With Si: *Qing Du*¹; WeiDong Hu¹; WangJun Peng¹; GuangXin Wu¹; Wende Dan¹; JieYu Zhang¹; ¹Shanghai University

4:45 PM

A Fast Algorithm for the Discovery of Optimal Nickel-based Superalloys: Edern Menou¹; Gérard Ramstein²; Emmanuel Bertrand¹; Franck Tancret¹; ¹Institut des matériaux Jean Rouxel; ²Laboratoire d'informatique de Nantes Atlantique

5:05 PM

Computational Exploration of Rare-earth Zirconate Pyrochlores for Thermal Barrier Coatings: Accurate Prediction of Thermal Conductivities and Thermal Expansion Coefficients from First-principles Calculations: Guoqiang Lan¹; Jun Song¹; ¹McGill University

Computational Methods for Uncertainty Quantification, Model Validation, and Stochastic Predictions — Uncertainty Quantification and Effects in Coarse Grain, Finite Element and Crystal Plasticity Modeling

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Francesca Tavazza, National Institute of Standards and Technology; Richard Hennig, University of Florida; Mark Tschopp, Army Research Laboratory; Li Ma, NIST

Wednesday PM Room: 207C

February 17, 2016 Location: Music City Center

2:00 PM Invited

Accuracy of Kinetics in Coarse-Grained Molecular Dynamics: Andrew Binder¹; Mitchell Luskin²; Arthur Voter³; *Danny Perez*³; ¹University of Minnesota; ²University of Minnesota; ³Los Alamos National Laboratory

2:40 PM

How Important are the Smallest Grains on Grain Aggregate Mechanics?: *Tias Maiti*¹; Philip Eisenlohr¹; ¹Michigan State University

3:00 PM

Grain Deformation in a Cast Ni Superalloy: Comparing Experimental and Modelling Results: Mohammed Fazal¹; Wei Li²; Michael Preuss¹; João Quinta Da Fonseca¹; ¹University of Manchester; ²Rolls-Royce plc.

3:20 PM Break

3:40 PM Invited

Probabilistic Homogenization of Crystal Plasticity Modeling for Ti Alloys: Somnath Ghosh¹; *Shravan Kumar Kotha*¹; Deniz Ozturk¹; ¹Johns Hopkins University

4:20 PM

Microstructure-Uncertainty Propagation in Sheet Metal Forming FE-Simulations: Stephen Niezgoda¹; Ayman Salem²; Joshua Shaffer²; Daniel Satko²; ¹The Ohio State University; ²Materials Resources LLC

4:40 PM

Functional Uncertainty Quantification for Multi-fidelity and Multi-scale Simulations: Sam Reeve¹; Alejandro Strachan¹; ¹Purdue University

5:00 PM

Computational Simulation and Physical Validation of Welded Aluminum Structures: Charles Fisher¹; Matthew Sinfield¹; Gary Margelowsky¹; Yared Amanuel¹; Jazalyn Dukes¹; Ken Nahshon¹; ¹Naval Surface Warfare Center

Computational Thermodynamics and Kinetics – CALPHAD, Multiscale Modeling, and ICME

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Chemistry and Physics of Materials Committee Program Organizers: Dane Morgan, University of Wisconsin - Madison; Shawn Coleman, U.S. Army Research Laboratory; Xiang-Yang Liu, Los Alamos National Lab; Chris Wolverton, Northwestern University

Wednesday PM Room: 208B

February 17, 2016 Location: Music City Center

Session Chairs: David McDowell, Georgia Institute of Technology; Nicholas Hatcher, QuesTek Innovations LLC

2:00 PM Invited

Density Functional Theory (DFT) Methods for Integrated Computational Materials Engineering (ICME): Jeff Doak¹; James Saal¹; Jason Sebastian¹;

Greg Olson¹; Nicholas Hatcher¹; ¹QuesTek Innovations LLC

2:30 PM

Revisiting Thermodynamic Models for TCP Phases Utilizing DFT Calculations: *Ursula Kattner*¹; Mauro Palumbo²; Jörg Koßmann²; Suzana Fries²; Thomas Hammerchmidt²; Ralf Drautz²; ¹National Institute of Standards and Technology; ²ICAMS, Ruhr-University Bochum

2:50 PM

Revisiting Thermodynamics of The Co-Al-W System: Peisheng Wang¹; Wei Xiong¹; Oleg Kontsevoi¹; Ursula Kattner²; Carelyn Campbell²; Gregory Olson¹; ¹Northwestern University; ²National Institute of Standards and Technology

3:10 PM

First-principles Thermodynamic Modeling of μ Phase in the Co-W Alloy System: Oleg Kontsevoi¹; Wei Xiong¹; Gregory Olson¹; ¹Northwestern University

3:30 PM Break

3:50 PM

Thermodynamics of L1₂-containing Co-Al-W Alloys from First-Principles: *Robert Rhein*¹; Tresa Pollock¹; Anton Van der Van¹; ¹University of California Santa Barbara

4:10 PM

Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the Al-rich Portion of the Al-Mn-Ce Ternary System: Francisco Coury¹; Andre Luiz Costa e Silva²; Walter Botta¹; Claudio Kiminami¹; Michael Kaufman³; ¹Universidade Federal de São Carlos; ²Universidade Federal Fluminense; ³Colorado School of Mines

4:30 PM

The Application Software Interface to the Open Calphad Software and Some Examples: Bo Sundman¹; Matthias Stratmann²; Mauro Palumbo²; Suzana Fries²; Ursula Kattner³; ¹CEA Saclay; ²Ruhr University Bochum; ³NIST

4:50 PM Invited

Considering the Role of Kinetics in Computational Materials Discovery and Development: David McDowell¹; Laurent Capolungo¹; Ting Zhu¹; ¹Georgia Institute of Technology

5:20 PM

A Discrete Dislocation Model of Creep in Single Crystals: M. Rajaguru¹; Shyam Keralavarma¹; ¹Indian Institute of Technology Madras

Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology — Wetting Behavior; Solders for New Applications

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Albert T. Wu, National Central University; Yan Li, Intel; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Wednesday PM Room: 201A

February 17, 2016 Location: Music City Center

Session Chair: Tae-kyu Lee, Cisco Systems

2:00 PM

Solder Wetting Behavior of Plasma Organic Surface Finish with Multiple Heat-Treatment: Kyoung-Ho Kim¹; Sehoon Yoo¹; Junichi Koike²; ¹Korea Institute of Industrial Technology; ²Tohoku University

2:20 PM

The Early Stage Wetting Behaviors between Solder and Cu: Wei-Chih Huang'; Kwang-Lung Lin¹; ¹National Cheng Kung University

2:40 PM

Grain-structure Engineering in Copper TSVs: Q. Zhu¹; H. Ma¹; J. Guo¹; J. Shang²; ¹Shenyang National Laboratory for Materials Science; ²University of Illinois

3:00 PM

Effect of Bump Height on Grain Size and Orientation of Solder Microbumps Bonded by Thermal Compression: Yu-An Shen¹; Chih Chen¹; 'Na-

tional Chiao Tung University

3:20 PM Break

3:40 PM

In Situ Mechanical Testing of Micro-Scale Solder Joints: Leila Ladani¹; Soud Choudhury²; ¹University of Connecticut; ²University of Connecticut

4:00 PM

Estimation of Constitutive Parameters in beta-Sn by Instrumented Nanoindentation and Crystal Plasticity Simulation: Aritra Chakraborty¹; Zhuowen Zhao¹; Philip Eisenlohr¹; Thomas Bieler¹; ¹Michigan State University

4:20 PM

Study of Low Melting Solder Alloys: Chih-Hao Chen¹; Albert T. Wu¹; ¹National Central University

4:40 PM

Using Sn-Bi-Zn Solder as the LED Die-attach Material by Controlling the Sn-Bi-Zn Composition and the Roughness of the Substrate: Yue Kai Tang¹; Chengyi Liu¹; ¹National Central University

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention — Fatigue Properties of Engineering Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky; Ashley Spear, University of Utah

Room: 213

Wednesday PM

February 17, 2016 Location: Music City Center

Session Chair: Tongguang (Tony) Zhai, University of Kentucky

2:00 PM Invited

What Causes the Formation of Crack Initiation Characteristic Region for Very-High-Cycle Fatigue of Metallic Materials?: Youshi Hong¹; Xiaolong Liu¹; Zhengqiang Lei¹; Chengqi Sun¹; ¹LNM, Institute of Mechanics, Chinese Academy of Sciences

2:20 PM Invited

Statistical Characterization of Multimodal Behavior in Material Properties: D Gary Harlow¹; ¹Lehigh University

2:40 PM Invited

Creep-fatigue of Steels with Cyclic Softening: *Jarir Aktaa*¹; Ulrich Führer¹; ¹Karlsruhe Institute of Technology

3:00 PM Invited

Ultra Small Scale High Cycle Fatigue Testing by Micro-cantilevers: *Jicheng Gong*¹; Angus Wilkinson¹; ¹University of Oxford

3:20 PM

Thermal Fatigue as the Origin of Rock Break-up on Asteroids (Note: This presentation will also appear in the poster session.): *Kavan Hazeli*¹; Stefanos Papanikolaou¹; Charles El Mir¹; Marco Delbo²; K. T. Ramesh¹; ¹Johns Hopkins University; ²UNS-CNRS-Observatoire de la Cote d'Azur

3:40 PM Break

4:00 PM

Fatigue Monitoring of Metals Based on Physical Data Like Electrical Resistance, Temperature and Electromagnetic Ultrasound: Dietmar Eifler¹; ¹University of Kaiserslautern

4:20 PM

Microstructure-Sensitive Probabilistic Prediction of Small Fatigue Crack Growth Behavior in a Ni-Base Superalloy: Patrick Golden¹; ¹Air Force Research Laboratory

4:40 PM

Hydrogen Influences on Notched Fatigue Life of Stainless Steels: *Paul Gibbs*¹; Jonathan Zimmerman¹; Kyle Karlson¹; Xiaoli Tang²; Samuel Kerni-

on³; Kevin Nibur⁴; Christopher San Marchi¹; ¹Sandia National Laboratories; ²Swagelok Company; ³Carpenter Technology Corporation; ⁴Hy-Performance Materials

5:00 PM

Short Crack Growth and Very High Cycle Fatigue Behavior of Magnesium Alloy WE43: *Jacob Adams*¹; J. Wayne Jones¹; John Allison¹; ¹University of Michigan

5:20 PM

Microstructural Effects on Small-Fatigue Crack Growth in Resistance Spot Welded Sheet 5754 and 6111 Aluminum and Durability Modeling of Eyebrow Cracking in Resistance Spot Welds (Note: This presentation will also appear in the poster session.): Vir Nirankari¹; ¹University of Michigan

Frontiers in Solidification: An MPMD Symposium in Honor of Michel Rappaz — Defects/Conclusions

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wilfried Kurz, Swiss Fed. Inst. of Techn.; Jon Dantzig, EPFL and University of Illnois; Alain Karma, Northeastern University; Jeffrey Hoyt, McMaster University

Wednesday PM Room: 105A

February 17, 2016 Location: Music City Center

Session Chairs: Hervé Combeau, Institut Jean Lamour; Jon Dantzig, Univ of Illinois

2:00 PM Invited

Atomistic Modeling of Grain Boundary Melting and Pre-melting in Alloys: J. Hickman¹; Y. Mishin¹; ¹George Mason University

2:25 PM Invited

Hot Tearing: After the Rappaz-Drezet-Gremaud Criterion, Where Are We?: Jean-Marie Drezet¹; Nicolas Chobaut¹; Michael Drakopoulos²; Thilo Pirling³; ¹Ecole Polytechnique Federale Lausanne; ²I12 (JEEP) Diamond Light Source Ltd; ³Salsa, Institut Laue Langevin

2:50 PM Invited

Grain Structures and Segregations: Charles-Andre Gandin¹; ¹MINES Paris Tech

3:15 PM Invited

Granular Modelling of Solidification and Semi-solid Defect Formation: Andre Phillion¹; Fariba Sheykh-Jaberi¹; Hamid Reza Zareie Rajani¹; Steve Cockcroft¹; Daan Maijer¹; ¹University of British Columbia

3:40 PM Break

4:00 PM Invited

Hot Tear Criterion Accounting for the Last Stage Precipitation Phenomena in the Solidification Path: A Refinement of the Rappaz Drezet Gremaud Approach: Philippe Jarry¹; ¹Constellium

4:25 PM Invited

Dendrite Arm and Grain Boundary Coalescence: William Boettinger¹; ¹NIST

4:50 PM Invited

Future Challenges in Solidification: Michel Rappaz¹; ¹EPFL

High-Temperature Systems for Energy Conversion and Storage — Systems for Energy Conversion and Storage II

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Energy Conversion and Storage Committee

Program Organizers: Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Amit Shyam, Oak Ridge National Laboratory; Kyle Brinkman, Clemson University; Paul Ohodnicki, National Energy Technology Laboratory; Jung Pyung Choi, Pacific Northwest National Laboratory

Wednesday PM Room: 104E

February 17, 2016 Location: Music City Center

Session Chairs: Jung Pyung Choi, PNNL; William Chueh, Stanford University

2:00 PM Invited

Molecular View of High Temperature Oxygen Reduction & Evolution Reactions: William Chueh¹; ¹Stanford University

2:25 PM Invited

Solid Acid Electrolytes Applied to Electricity Generation and Gas Separation: Alexander Papandrew¹; Ramez Elgammal¹; Ondrej Dyck¹; David Wilson¹; Wesley Tennyson²; Gabriel Veith²; Thomas Zawodzinski²; ¹University of Tennessee; ²Oak Ridge National Laboratory

2:50 PM

The Role of Fe-O Complex in Determining Oxygen Nonstoichiometry in the Lanthanum Strontium Ferrite (LSF) System: Tridip Das¹; Jason Nicholas¹; Yue Qi¹; ¹Michigan State University

3:10 PM Invited

Two-Dimensional Transition Metal Carbides and Carbonitrides Derived from MAX Phases for Electrochemical Energy Storage Systems: *Michael Naguib*¹; ¹Oak Ridge National Laboratory

3:35 PM Break

3:55 PM Invited

Understanding the Mechanisms of Electrode Degradation in Solid Oxide Fuel Cells by Phase-field Modeling: *Jiamian Hu*¹; Liang Hong¹; Linyun Liang¹; Kirk Gerdes²; Long-Qing Chen¹; ¹Pennsylvania State University; ²National Energy Technology Laboratory

4:15 PM

(Co,Mn)304 and (Co,Mn)3O4-perovskite Composites for SOFC Cathode-side Contact Application: *Yutian Yu*¹; Jiahong Zhu¹; ¹Tennessee Tech University

4:35 PM Invited

In-Operando XRD Tests of LSCF and LSM/YSZ SOFC Cathodes: *John Hardy*¹; Christopher Coyle¹; Jared Templeton²; Nathan Canfield¹; Jeffry Stevenson¹; ¹Pacific Northwest National Laboratory; ²WRPS

High Entropy Alloys IV — Mechanical and Other Properties I

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Wednesday PM Room: 102B

February 17, 2016 Location: Music City Center

Session Chairs: Rajiv Mishra, University of North Texas; Nilesh Kumar, University of North Texas

2:00 PM Invited

Lattice Strain Framework for Plastic Deformation in Complex Concentrated Alloys Including High Entropy Alloys: *Rajiv Mishra*¹; Nilesh Kumar¹; Mageshwari Komarasamy¹; ¹University of North Texas

2:20 PM

From Pure Element to High-entropy Alloy: Limits of the Concept: Lola Lilensten¹; Jean-Philippe Couzinié¹; Ivan Guillot¹; Loïc Perrière¹; Guy Dirras²; ¹CNRS - ICMPE; ²CNRS - LSPM

2:40 PM

Microstructures of Annealed and Oxidized Al8(NiCoCrFe)92, Al15(NiCo-CrFe)85, and Al30(NiCoCrFe)70 High-Entropy Alloys: *Todd Butler*¹; Mark Weaver¹; ¹University of Alabama

3:00 PN

Precipitation Kinetics in High Entropy Alloy Al0.5CrFeCoNiCu: *Nicholas Jones*¹; Kathy Christofidou¹; Edward Pickering¹; Roberto Izzo¹; Howard Stone¹; ¹University of Cambridge

3:20 PM Break

3:35 PM Invited

Atomic and Electronic Basis for Viscous Flow Mediated Avalanches of Ultrastrong Refractory High Entropy Alloys: William Yi Wang¹; Shunli Shang¹; Yi Wang¹; Yidong Wu²; Kristopher Darling³; Xie Xie⁴; Oleg Senkov⁵; Laszlo Kecskes³; Karin Dahman⁶; Xidong Hui²; Peter Liaw⁴; Zi-Kui Liu¹; ¹The Pennsylvania State University; ²University of Science and Technology Beijing; ³U.S. Army Research Laboratory; ⁴University of Tennessee; ⁵Air Force Research Laboratory; ⁶University of Illinois at Urbana Champaign

3:55 PM

Trace Elements and Processing of High Entropy Alloys: Paul Jablonski¹; Joseph Licavoli¹; John Sears¹; Jeffrey Hawk¹; ¹US Department of Energy

4:15 PN

Tailoring the Microstructure and Mechanical Properties of a CoCrFeNi High Entropy Alloy by Supercooling Method: *Jinshan Li*¹; Wenjuan Jia¹; Jun Wang¹; Hongchao Kou¹; ¹Northwestern Polytechnical University

4:35 PM

Vacancy Formation and Migration Energy of High Entropy Alloy: Congvi Li¹; Artur Tamm²; G. Malcolm Stocks³; Brian Wirth⁴; Steve Zinkle⁴; Alfredo Caro²; Alvo Aabloo⁵; Mattias Klintenberg⁶; ¹Bredesen Center; ²Los Alamos National Lab; ³Oak Ridge National Lab; ⁴University of Tennessee; ⁵University of Tartu; ⁶Uppsala University

4:55 PM

Thin Film Approach to Optimize Structure and Composition of High Entropy Alloys: Azin Akbari¹; Artashes Ter-Isahakyan²; Julia Lehmann²; Thomas Balk²; ¹University of Kentucky; ²University of Kentucky

High Entropy Alloys IV — Structures and Mechanical Properties II

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Wednesday PM Room: 102A

February 17, 2016 Location: Music City Center

Session Chairs: Oleg Senkov, Air Force Research Laboratory; Gong Li, The University of Tennessee

2:00 PM

A Thermodynamic Parameter to Predict Formation of Solid Solution or Intermetallic Phases in High Entropy Alloys: Oleg Senkov¹; Dan Miracle; ¹Air Force Research Laboratory

2:20 PM Invited

Mechanical Study of a Refractory bcc High Entropy Solid Solution: Deformation Mechanisms and Strain Rate Effect: Jean-Philippe Couzinie¹; Lola Lilensten¹; Guy DIRRAS²; David Tingaud²; Loïc Perriere¹; Jeno Gubicza³; Ivan GUILLOT¹; Hervé Couque⁴; ¹CNRS/UPEC; ²Université Paris 13 - Sorbonne Paris Cité; ³Eötvös Loránd University; ⁴Nexter Munitions

2:40 PM

A Non-equiatomic, Dual-phase, TRIP-assisted HEA: Cem Tasan¹; Zhiming Li¹; Dierk Raabe¹; ¹Max-Planck Institute for Iron Research

3:00 PM

Mechanical Properties of Refractory High Entropy Alloys Fabricated by the Powder Metallurgy Process: Seoungwoo Kuk¹; Woojin Lim¹; Hojin Ryu¹; Soon Hyung Hong¹; ¹Korea Advanced Institute of Science and Technology

3:20 PM Invited

Solute Effects in High-Entropy FeNiMnAlCr Alloys: *I. Baker*¹; Zhangwei Wang¹; ¹Dartmouth College

3:40 PM Break

3:55 PM Invited

Microstructure and Mechanical Properties of YxCoCrFeNi High Entropy Alloys: *Gong Li*¹; Huan Zhang²; Lijun Zhang³; Pengfei Yu³; Hu Cheng³; Qin Jing³; Mingzhen Ma³; P. K Liaw³; Riping Liu³; ¹University of Tennessee; ²State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China; ³State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

4:15 PM

Nanomechanical Behavior and Dislocation Nucleation in FCC High Entropy Alloys: Sanghita Mridha¹; Sundeep Mukherjee¹; ¹University of North Texas

4.35 PM

Microstructure and Mechanical Behavior of Equiatomic CoCuFeMnNi High-entropy Alloy: Anna Fraczkiewicz¹; Michal Mroz¹; MINES St-Etienne

4:55 PM

Precious Metal High Entropy Alloys - Microstructure, Phase Evolution and Properties: Caitlin Healy¹; Allison Lim²; Lucia Kaye²; Lorri Bassman²; Jörg Löffler³; Michael Ferry¹; Kevin Laws¹; ¹University of New South Wales; ²Harvey Mudd College; ³ETH Zürich

Hume-Rothery Award Symposium: Thermodynamics of Materials — High Throughput Methods

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Ursula Kattner, National Institute of Standards and Technology; Michael Manley, Oak Ridge National Laboratory

Wednesday PM Room: 107A

February 17, 2016 Location: Music City Center

Session Chairs: Jörg Neugebauer, Max-Planck-Institut für Eisenforschung GmbH; Olle Hellman, California Institute of Technology

2:00 PM Invited

Lattice Excitations in Magnetic Alloys: Recent Advances in Ab Initio Modeling of Coupled Spin and Atomic Fluctuations: Fritz Körmann¹; Blazej Grabowski¹; Tilmann Hickel¹; Jörg Neugebauer¹; ¹Max-Planck-Institut für Eisenforschung GmbH

2:30 PM Invited

Thermodynamics of Multicomponent Alloys: Beyond the Binary Approximation: Marcel Sluiter¹; ¹TU Delft

3:00 PM

Information is Not Knowledge: Suzana Fries¹; ¹ICAMS, Ruhr University Bochum

3:20 PM Break

3:40 PM

Comments on Thermodynamic Instability: *John Morris*¹; ¹University of California Berkeley

4:00 PM Invited

Genetic Algorithm Structure Optimization Applied to Defect Clusters and Nanoparticles with Integrated Experimental Data: Dane Morgan¹; Min Yu¹; Amy Kaczmarowski¹; Hyunseok Ko¹; Paul Voyles¹; ¹University of Wis-

consin - Madison

4:30 PM Invited

First-principles Studies of Strongly Anharmonic Crystalline Solids: Fei Zhou¹; Weston Nielson²; Yi Xia²; *Vidvuds Ozolins*²; ¹Lawrence Livermore National Laboratory; ²University of California, Los Angeles

5:00 PM Concluding Comments

In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques — In-Situ Characterization of Mechanical Properties of Materials III

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sanjit Bhowmick, Hysitron Inc.; Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Vikas Tomar, Purdue University; Vikram Jayaram, Indian Institute of Science; Benjamin Morrow, Los Alamos National Laboratory; Paul Shade, Air Force Research Laboratory; Weizhong Han, Xi'an Jiaotong University; Arief Budiman, Singapore University of Technology and Design

Wednesday PM Room: 212

February 17, 2016 Location: Music City Center

Session Chairs: Arief Budiman, Singapore University of Technology and Design; Weizhong Han, Xi'an Jiaotong University

2:00 PM Invited

In-situ Micromechanical Testing Using Correlated 3-D X-ray and 2-D Electron Microscopy Analyses: Robert Wheeler¹; ¹MicroTesting Solutions LLC

2:30 PM

Cyclic Electro-mechanical Behaviour of Ductile Films Examined with In-situ Methods: Megan Cordill¹; Oleksandr Glushko¹; ¹Erich Schmid Institute of Materials Science

2:50 PM

In Situ Corrosion-Fatigue of 7075 Aluminum in 3.5 wt% NaCl: Tyler Stannard¹; Jason Williams¹; Sudhanshu Singh¹; Xianghui Xiao²; *Nikhilesh Chawla*¹; ¹Arizona State University; ²Advanced Photon Source, Argonne National Laboratory

3:10 PM

Investigation of Deformation Twinning under Complex Stress States in a Rolled Magnesium Alloy: Wei Wu¹; Chih-Pin Chuang²; Yang Ren²; Ke An¹; ¹Oak Ridge National Laboratory; ²Argonne National Laboratory

3:30 PM Break

3:50 PM Invited

Direct Imaging of Mechanically or Thermally Induced Grain Structure Changes in Nanocrystalline Metals: Christian Kuebel¹; Aaron Kobler¹; Krishna Kanth¹; Horst Hahn¹; ¹KIT

4:20 PM

In-situ High-energy X-ray Investigation of Plastic Deformation and Damage Evolution in Polycrystalline Cu-5%W Composite: Reeju Pokharel¹; Timothy Ickes¹; Bjorn Clausen¹; Ching-Fong Chen¹; Darren Dale²; Ricardo Lebensohn¹; ¹Los Alamos National Laboratory; ²Cornell High Energy Synchrotron Source

4:40 PM

An In Situ Load Stage to Combine 3D X-ray Tomography with Nanomechanical Testing: William Harris¹; Benjamin Hornberger¹; Arno Merkle¹; Hrishikesh Bale¹; Leah Lavery¹; Roberty Bradley²; Xuekun Lu²; Philip Withers²; Nikolaus Cordes³; Brian Patterson³; ¹Carl Zeiss X-ray Microscopy, Inc.; ²University of Manchester; ³Los Alamos National Laboratory

5:00 PM

Understanding the Ultra High Strength of Ni Micro-wires from In-situ Deformation Study under X-rays: Soham Mukherjee¹; Ludovic Thilly¹; *Celine Gerard*¹; Atul Chokshi²; Satyam Suwas²; ¹Institut Pprime, CNRS - ENSMA - Université de Poitiers; ²Indian Institute of Science

5:20 PM

Novel In-situ Mechanical Test within an X-ray Microscope: Jürgen Gluch¹; Kristina Kutukova²; Ehrenfried Zschech¹; ¹Fraunhofer IKTS; ²Dresden International University

Interface-driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry — Microstructural Evolution II

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nanomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Fadi Abdeljawad, Sandia National Laboratories; Stephen Foiles, Sandia National Laboratories; Timofey Frolov, UC Berkeley; Emine Gulsoy, Northwestern university; Heather Murdoch, Army Research Lab; Mitra Taheri, Drexel University

Wednesday PM Room: 108

February 17, 2016 Location: Music City Center

Session Chair: Timofey Frolov, University of California at Berkeley

2.00 PM

Microstructure Evolution and Consolidation Kinetics Prediction in Powder Materials during Field Assisted Sintering Technique: Sudipta Biswas¹; Vikas Tomar¹; ¹Purdue University

2:20 PM

Interface Mediated Formation of Monatomic Metallic Glasses: Scott Mao¹; Li Zhong¹; Jiangwei Wang¹; Ze Zhang²; Hongwei Sheng³; ¹University of Pittsburgh; ²Zhejiang University; ³George Mason University

2:40 PM

Grain Network Connectivity in 3D Copper Microstructures Resulting from Disparate Processing Routes: *J. Lind*¹; S. F. Li¹; M. Kumar¹; ¹Lawrence Livermore National Laboratory

3:00 PM

Nanostructures Formation from Pulsed-laser Induced Rayleigh-Taylor Instabilities at Metal/fluid Interfaces: Venkatanarayana prasad Sandireddy¹; Sagar Yadavali¹; Ramki Kalyanaraman¹; ¹University of Tennessee Knoxville

3:20 PM Break

3:40 PM Invited

Zener Pinning of Grain Boundary Migration in Immiscible Nano-crystalline Alloys: Raj K. Koju¹; K. A. Darling²; L. J. Kecskes²; *Y. Mishin*¹; ¹George Mason University; ²U.S. Army Research Laboratory

4:20 PM

The Development of Large Twin Related Domains in Grain Boundary Engineered Cu: David Bober¹; Rupalee Mulay¹; Mukul Kumar¹; ¹Lawrence Livermore National Laboratory

4:40 PM

The Influence of Temperature in the Formation of Highly Nanotwinned Cu Alloys: Varying the Twin Thickness: Leonardo Velasco¹; Andrea Hodge¹; ¹University of Southern California

5:00 PM

Watching the Growth of Si Particles in a Liquid:

The Role of Twin Defects on Microstructural Evolution: *Ashwin Shahani*¹; E. Gulsoy¹; Michael Chapman²; Xianghui Xiao³; Marc De Graef²; Peter Voorhees¹; ¹Northwestern University; ²Carnegie Mellon University; ³Argonne National Laboratory

Magnesium-based Biodegradable Implants — Corrosion / Market and Clinic

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Light Metals Division, TMS Structural Materials Division, TMS: Biomaterials Committee, TMS: Magnesium Committee

Program Organizers: Wim Sillekens, European Space Agency; Martyn Alderman, Magnesium Elektron; Patrick Bowen, Michigan Technological University; Jaroslaw Drelich, Michigan Technological University; Petra Maier, University of Applied Sciences Stralsund

Wednesday PM Room: 206A

February 17, 2016 Location: Music City Center

Session Chairs: Pat Bowen, Michigan Technological University; Martyn Alderman, Magnesium Elektron

2:00 PM Invited

Understanding Corrosion-assisted Cracking of Magnesium Alloys for Bioimplant Applications: RK Singh Raman¹; Shervin Eslami Harandi¹; ¹Monash University

2:30 PM

In Vitro Corrosion and Cytocompatibility Properties of Mg-2Gd-X(Ag, Ca) Alloys: *Yiyi Lu*¹; Yuanding Huang¹; Frank Feyerabend¹; Regine Willumeit-Römer¹; Karl-Ulrich Kainer¹; Norbert Hort¹; ¹Helmholtz-Zentrum Geesthacht

2:50 PM

Appropriate Corrosion-FatigueTesting of Magnesium Alloys for Temporary Bio-implant Applications: Shervin Eslami Harandi¹; RK Singh Raman¹; ¹Monash University

3:10 PM Invited

Computer Simulation of the Mechanical Behaviour of Implanted Biodegradable Stents in a Remodelling Artery: Peter McHugh¹; Enda Boland¹; ¹NUI Galway

3:40 PM Break

4:00 PM Invited

Standardized Guidance for the Preclinical Evaluation of Absorbable Metal Implants: Byron Hayes¹; ¹W.L. Gore and Associates, Inc

4:30 PM Invited

The Industrial Challenges of Manufacturing Bioabsorbable Magnesium: Robert Thornton¹; Paul Lyon¹; ¹Magnesium Elektron

5:00 PM Invited

Monitoring Biodegradation of Magnesium Implants with Sensors: Daoli Zhao¹; Tingting Wang¹; Xuefei Guo¹; Julia Kuhlmann¹; Amos Doepke¹; Zhongyun Dong¹; Vesselin Shanov¹; *William Heineman*¹; ¹University of Cincinnati

5:30 PM Invited

Magnesium-based Compression Screws: Jan Seitz¹; ¹Syntellix AG

Magnesium Technology 2016 — Corrosion

Sponsored by:TMS Light Metals Division, TMS: Magnesium Committee Program Organizers: Alok Singh, National Institute for Materials Science; Kiran Solanki, Arizona State University; Michele Manuel, University of Florida; Neale Neelameggham, Ind LLC

Wednesday PM Room: 203B

February 17, 2016 Location: Music City Center

Session Chair: Michele Manuel, University of Florida

2:00 PM

Numerical Investigation of the AE44-mild Steel Galvanic Structural Joint: Nitin Muthegowda¹; Kiran Solanki¹; Benyamin Bazehhour¹; ¹Arizona State University

2:20 PM

Fabrication of a Superhydrophobic Films with Self-cleaning Property on Magnesium Alloy and its Corrosion Resistance Properties: Meng Zhou¹; Xiaolu Pang¹; Kewei Gao¹; ¹University of Science and Technology Beijing

2:40 PM

The Surface Films and their Possible Roles in Mg Corrosion: Guang-Ling Song¹; ¹Oak Ridge National Lab

3:00 PM

Micro-arc Oxide Film of Aluminum Coating Pre-sprayed on a Magnesium Alloy: Suyuan Yang¹; Lin Zhou¹; Xingwang Cheng¹; ¹Beijing Institute of Technology

Magnesium Technology 2016 — Twinning and Plasticity

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee Program Organizers: Alok Singh, National Institute for Materials Science; Kiran Solanki, Arizona State University; Michele Manuel, University of Florida; Neale Neelameggham, Ind LLC

Wednesday PM Room: 204

February 17, 2016 Location: Music City Center

Session Chairs: Tyrone Jones, US Army Research Laboratory; Peifeng Li, Nanyang Technological University

2:00 PM

What is a Strain Hardening "Plateau"?: Sean Agnew¹; Chris Calhoun¹; Jishnu Bhattacharyya¹; ¹University of Virginia

2.20 PM

Asymmetric Growth of Tensile Twins in Magnesium: *Zhe Li*¹; Ben Xu¹; ¹Tsinghua University

2:40 PM

Non-dislocation Based Room Temperature Plastic Deformation Mechanism in Magnesium: *Bo-Yu Liu*¹; Zhi-Wei Shan¹; Evan Ma²; ¹Xi'an Jiaotong University; ²Johns Hopkins University

3:00 PM

Investigation of the Plastic Flow Field in Magnesium Alloy AZ31B in Three Orientations for Empirical Penetration Models: *Tyrone Jones*¹; John Riegel²; Christopher Meredith¹; Kris Darling¹; Jim Catalano¹; Anthony Roberts¹; ¹US Army Research Laboratory; ²R3 Technology, Inc

3:20 PM Break

3:40 PM

Deformation Behavior of Mg Single Crystals Compressed Along c-axis: *Kelvin Xie*¹; Zafir Alam¹; Alex Caffee¹; Kevin Hemker¹; ¹Johns Hopkins University

4:00 PM

The Use of Acoustic Emission and Neutron Diffraction to Reveal the Active Deformation Mechanisms in Polycrystalline Magnesium and Comparison to Theoretical Modeling: *Jan Capek*¹; Kristian Mathis¹; Tomáš Krajnák¹; ¹Charles University in Prague

4:20 PM

Strain Rate Dependent Deformation and Failure Process of Magnesium Foams: Peifeng Li¹; ¹Nanyang Technological University

4:40 PM

Exploration of Thin-walled Magnesium Alloy Tube Extrusion for Improved Crash Performance: Bruce Williams¹; Robert Klein²; Jonathan McKinley¹; Sean Agnew²; ¹CanmetMATERIALS, Natural Resources Canada; ²University of Virginia

5:00 PM

High Temperature Tensile Behaviors and Deformation Mechanisms of Mg-x%Al Alloys: Jiaxing Ji¹; Fubo Bian¹; Tiangang Niu¹; Min He¹; Jun Qiao¹; ¹The University of Science and Technology Liaoning

Material Behavior Characterization via Multi-Directional Deformation of Sheet Metal — Session II

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: John Carsley, General Motors Research & Development; Daniel Coughlin, Los Alamos National Laboratory; Myoung-Gyu Lee, Korea University; Youngung Jeong, National Institute of Standards and Technology; Piyush Upadhyay, Pacific Northwest National Laboratory

Wednesday PM Room: 104A

February 17, 2016 Location: Music City Center

Session Chairs: Myoung-Gyu Lee, Korea University; Youngung Jeong, NIST

2:00 PM Invited

An Experimentally Validated, Microstructure Based Model for Forming of Low-symmetry Alpha-uranium: Rodney McCabe¹; Miroslav Zecevic²; Daniel Coughlin¹; Andrew Richards¹; Kester Clarke¹; Irene Beyerlein¹; Marko Knezevic²; ¹Los Alamos National Laboratory; ²U. of New Hampshire

2:30 PM

Dilational Response of Voided Polycrystals: Daniel Savage¹; Marko Knezevic¹; Oana Cazacu²; ¹University of New Hampshire; ²University of Florida, REEF

3:00 PM

Effect of Complex Strain Paths on Microstructure Evolution Studied by In-situ Neutron Diffraction: Steven Van Petegem¹; Tobias Panzner¹; Manas Upadhyay¹; Helena Van Swygenhoven¹; ¹Paul Scherrer Institut

3:30 PM Break

4.00 PM

Predicting Cyclic Deformation of AA6022-T4 and DP590 Using Polycrystal Plasticity: *Milovan Zecevic*¹; Marko Knezevic¹; ¹University of New Hampshire

4:30 PM

The Influence of Deformation Mechanisms on Forming of Commercially Pure Titanium Sheets: Feng Li¹; ¹The University of Manchester

5:00 PM

Inflation of Stainless Steel 304L Microtubes under Axial Tension and Internal Pressure to Assess the Plastic Anisotropy: Peter Ripley¹; *Yannis Korkolis*¹; ¹University of New Hampshire

Material Design Approaches and Experiences IV — Steels II

Sponsored by:TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Akane Suzuki, GE Global Research; Ji-Cheng Zhao, The Ohio State University; Michael Fahrmann, Haynes International Inc.; Qiang Feng, University of Science and Technology Beijing

Wednesday PM Room: 208A

February 17, 2016 Location: Music City Center

Session Chairs: Qiang Feng, University of Science & Technology Beijing; Kip Findley, Colorado School of Mines

2:00 PM Invited

Hydrogen Embrittlement Susceptibility in Tension and Fatigue of Austenitic Stainless Steels: *Kip Findley*¹; Alex Ly¹; Brian Somerday²; ¹Colorado School of Mines; ²Sandia National Laboratory

2:30 PM Invited

Flash Processing of Steels: Alternative Pathway to Develop Advanced High Strength Steels for Automotive Applications: Gary Cola¹; T. Lolla²; B. Hanhold²; D. Tung³; Sudarsanam Babu⁴; ¹SFP Works, LLC; ²Formerly at The Ohio State University; ³The Ohio State University; ⁴The University of Tennessee, Knoxville

3:00 PM

Design and Development of Cast Alumina-forming Austenitic Stainless Steels: Govindarajan Muralidharan¹; Yukinori Yamamoto¹; Michael Brady¹; Donovan Leonard¹; ¹Oak Ridge National Laboratory

3:20 PM Break

3:40 PM Invited

Design Approaches Using TCP Sigma Phase as a Promising Strengthener in Austenitic Heat Resistant Steels: *Masao Takeyama*¹; Yoshiki Kumagai¹; ¹Tokyo Institute of Technology

4:10 PM Invited

Development of a New Alloy Family - High Performance Ferrite: *Bernd Kuhn*¹; M. Talik¹; L. Singheiser¹; ¹Forschungszentrum Juelich GmbH

4:40 PM

Alloy Design for Promoting Creep Resistance of Austenitic Cast Steels for Exhaust Component Applications: Yinhui Zhangl; Mei Li²; Larry Godlewski²; Jacob Zindel²; *Qiang Feng*l; ¹University of Science and Technology Beijing; ²Ford motor company

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Structural Materials IV

Sponsored by:TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Wednesday PM Room: 101A

February 17, 2016 Location: Music City Center

Session Chairs: Thak Sang Byun, Pacific Northwest National Laboratory; Walter Luscher, Pacific Northwest National Laboratory

2:00 PM

Microstructure and Phase Stability of Oxide Dispersion Strengthened Steels: *Brad Baker*¹; Keith Knipling²; ¹U.S. Naval Academy; ²U.S. Naval Research Laboratory

2:20 PM

Development of Fe-12Cr-5.6Al ODS Alloys for Nuclear Applications: *Calleb Massey*¹; David Hoelzer²; Kinga Unocic²; Sebastien Dryepondt²; Chad Parish²; Bruce Pint²; ¹Virginia Commonwealth University; ²Oak Ridge National Laboratory

2:40 PM

Development of ODS FeCrAl Alloys for Accident-tolerant Fuel Cladding: *Sebastien Dryepondt*¹; Caleb Massey²; Kinga Unocic¹; Dave Hoelzer¹; Chad Parish¹; Bruce Pint¹; Kurt Terrani¹; ¹Oak Ridge National Laboratory; ²Virginia Commonwealth University

3:00 PM

Laser Shock Peening of Oxide-Dispersion-Strengthened Austenitic Stainless Steels: *Bai Cui*¹; Qiaofeng Lu¹; Chenfei Zhang¹; Dawei Li¹; Yongfeng Lu¹; Qing Su¹; Michael Nastasi¹; ¹University of Nebraska–Lincoln

3:20 PM Break

3:40 PM

Bulk Extraction and XAS Characterization of Oxides in Nanostructured Ferritic Alloy MA957: *Tiberiu Stan*¹; David Sprouster²; Avishai Ofran²; Lynne Ecker²; George Odette¹; ¹University of California Santa Barbara; ²Brookhaven National Laboratory

4:00 PM

Temperature Effect of Microstructural Evolution in Advanced Nanostructured Alloys by in-situ Synchrotron X-ray Diffraction: *Yingye Gan*¹; Huijuan Zhao¹; Di Yun²; Kun Mo²; David Hoelzer³; Xiang Liu⁴; Kuan-Che Lan⁴; Yinbin Miao⁴; ¹Clemson University; ²Argonne National Lab; ³Oak Ridge National Laboratory; ⁴UIUC

4:20 PM

Texturing, Microcracking and Delamination in 14YWT

Nanostructured Ferritic Alloys: Soupitak Pal¹; Md Ershadul Alam¹; David

Gragg¹; G. Odette¹; Stuart Maloy²; David Hoelzer³; John Lewandowski⁴; ¹University of California Santa Barbara; ²Los Alamos National Laboratory; ³Oak Ridge National Laboratory; ⁴Case Western Reverse University

4:40 PM

Thermal Stability of Nanoscale Hardening Features in Irradiated Reactor Pressure Vessel Steels: Peter Wells¹; Nathan Almirall¹; Yuan Wu¹; David Gragg¹; G. Odette¹; Takuya Yamamoto¹; ¹UC Santa Barbara

Materials in Clean Power Systems IX: Durability of Materials — Materials Development for Clean Power Systems

Sponsored by:TMS Extraction and Processing Division, TMS Structural Materials Division, TMS Light Metals Division, TMS: Energy Committee, TMS: High Temperature Alloys Committee

Program Organizers: Sebastien Dryepondt, Oak Ridge National Laboratory; Peter Hosemann, University of California Berkeley; Kinga Unocic, ORNL; Paul Jablonski, US Department of Energy; Joseph Licavoli, Department of Energy; Donna Guillen, Idaho National Laboratory

Wednesday PM Room: 104D

February 17, 2016 Location: Music City Center

Session Chairs: Paul Jablonski, NETL; Peter Tortorelli, ORNL

2:00 PM Invited

Precipitation Dynamics and the Role of Microstructural Changes in the Development of Alumina-Forming Austenitic Stainless Steels: Geneva Trotter¹; Ian Baker¹; ¹Thayer School of Engineering, Dartmouth College

2:30 PM Invited

Development of Creep Resistant High Cr containing FeCrAl Ferritic Alloys for Fossil Energy Applications: *Yukinori Yamamoto*¹; Bruce Pint¹; Benjamin Shassere²; Sudarsanam Babu²; ¹Oak Ridge National Laboratory; ²The University of Tennessee

3:00 PM

High Temperature Oxidation and Mechanical Properties of Novel Al-containing Fe-based ODS Alloys: *Tyler Slinger*¹; Iver Anderson¹; ¹Ames Lab/ Iowa State University

3:20 PM Invited

Heat Resistant Alloy Development for Fossil Energy Power Generation: Jeffrey Hawk¹; Paul Jablonski¹; Gordon Holcomb¹; ¹U.S. Department of Energy, National Energy Technology Laboratory

3:50 PM Break

4:10 PM

Electrodeposition of MCrAlY and Pt-Modified MCrAlY Coatings for Gas-Turbine Engine Applications: Jason Witman¹; Brian Bates¹; *Ying Zhang*¹; Sebastien Dryepondt²; Bruce Pint²; ¹Tennessee Technological University; ²Oak Ridge National Laboratory

4:30 PM

Characterization of Titanium Thin-Film Liquid/Gas Diffusion Layer in Clean and Renewable Power Systems: *Zhenye Kang*¹; Jingke Mo¹; Bo Han¹; Feng-Yuan Zhang¹; ¹UT Space Institute, The University of Tennessee, Knoxville

4:50 PM

Mechanical Characterization of Solid Acid Materials for Intermediate Temperature Fuel Cells: Ryan Ginder¹; George Pharr²; ¹University of Tennessee at Knoxville; ²University of Tennessee at Knoxville & Oak Ridge National Laboratory

5:10 PM

Development of HfB2-ZrB2 Based Ceramics as High Temperature Electrode Materials for MHD Direct Power Extraction System: Cody Hill¹; Steven Sitler¹; Krishnan Raja¹; *Indrajit Charit*¹; ¹University of Idaho

Materials Processing Fundamentals — Forming, Joining, Sensing: Devices and Applications

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: Antoine Allanore, Massachusetts Institute of Technology; Lifeng Zhang, University of Science and Technology Beijing; Laura Bartlett, Texas State University; Jonghyun Lee, University of Massachusetts; Cong Wang, Northeastern University

Wednesday PM Room: 106B

February 17, 2016 Location: Music City Center

Session Chairs: Cong Wang, Northeastern University,; Jonghyun Lee, University of Massachusetts

2:00 PM

Multiscale Modelling of Hydrogen Transport in Martensitic Steels: *Andrej Turk*¹; David Bombac¹; Enrique Galindo-Nava¹; Pedro Rivera-Diaz-del-Castillo¹; ¹University of Cambridge

2:20 PM

Contactless Inductive Flow Tomography for Industrially Relevant Applications: *Thomas Wondrak*¹; Matthias Ratajczak¹; Frank Stefani¹; Josef Pal¹; Klaus Timmel¹; Sven Eckert¹; ¹Helmholtz-Zentrum Dresden-Rossendorf

2:40 PM

Ultrasonic Vibration-assisted Laser Surface Drilling: Experimental and Finite Element Analysis: Seyyed Habib Alavi¹; Sandip Harimkar¹; ¹Oklahoma State University

3:00 PM

Evaluation of Joint Performance on High Nitrogen Stainless Steel which is Expected to Have Higher Allergy Resistance: *Kouichi Nakano*¹; ¹Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology

3:20 PM Break

3:40 PM

Mechanical Characterization and Microstructure Formation when Joining Stainless Steels with Amorphous Brazing Foils: David Kemmenoe¹; Eric Theisen²; Shefford Baker³; ¹Cornell University Mechanical Engineering; ²Metglas Incorporated; ³Cornell University Department of Material Science

4:00 PM

Co-spray Forming Process of Supermartensitic Stainless Steel Based Bimetallic Pipes: *Guilherme Zepon*¹; Nils Ellendt²; Volker Uhlenwinkel²; Claudemiro Bolfarini³; ¹Post-Graduation Program of Materials Science and Engineering (PPG-CEM/UFSCar); ²Foundation Institute of Materials Science (IWT- Bremen University); ³Departament of Materials Engineering (DEMa/ UFSCar)

4-20 PM

Graphite Enhanced Workability of Aluminum 6061: Lourdes Salamance-Riba¹; Xiaoxiao Ge¹; Iftekhar Jaim¹; Marc Zupan¹; Rick Everett¹; Mitch Zavala¹; *Manfred Wuttig*¹; ¹University of Maryland

Materials Research in Reduced Gravity — Groundbased/Parabolic Aircraft/Sounding Rocket Testing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Douglas Matson, Tufts University; Hani Henein, University of Alberta; Robert Hyers, Boston Electrometallurgical Corp.; Ivan Egry, DLR

Wednesday PM Room: 104C

February 17, 2016 Location: Music City Center

Session Chairs: Douglas Matson, Tufts University; Jonghyun Lee, University of Massachusetts

2:00 PM Invited

Crystal Nucleation and Growth from Levitated Aqueous Solutions Using Electrostatic Levitation: Geun Woo Lee¹; Sooheyong Lee¹; Haeng Sub Wi¹;

Wonhyuk Jo¹; Yong Chan Cho¹; Hyun Hwi Lee²; Se-Young Jeong³; Yong-Il Kim¹; ¹Korea Research Institute of Standards and Science; ²Pohang Accelerator Laboratory; ³Pusan National University

2:30 PM

Rapid Quench in an Electrostatic Levitator: Michael SanSoucie¹; Jan Rogers¹; Douglas Matson²; ¹NASA MSFC; ²Tufts University

2:50 PN

Metastable Phase Formation from Undercooled Melt in Peritectic Systems under Terrestrial and Microgravity Conditions: Fe-Co vs. Ti-Al: Olga Shuleshova¹; Wolfgang Löser¹; Thomas Volkmann²; Christian Karrasch²; Douglas Matson³; Mikhail Krivilyov⁴; Stepan Lomaev⁵; Jan Fransaer⁵; ¹IFW Dresden; ²German Aerospace Center; ³Tufts University; ⁴Udmurt State University; ⁵KU Leuven

3:20 PM

Numerical Simulation of the Oscillation and Damping of Core-Shell-Structured Iron-Slag Droplets for the Measurements of Surface Tension and Viscosity in Reduced Gravity: *Jonghyun Lee*¹; Eli Baldwin¹; Kyle Mooney¹; Robert Hyers¹; ¹University of Massachusetts

3:40 PM Break

4:00 PM

Simulation of Shrinkage-induced Segregation in Multicomponent Multiphase Alloys during Reduced-gravity Solidification: Ali Saad¹; Charles-André Gandin¹; Michel Bellet¹; Thomas Volkmann²; Dieter Herlach²; ¹ARMINES CEMEF; ²German Aerospace Center (DLR)

4:20 PM

In Situ Investigation of the Effects of Gravity Level Variations on the Directional Solidification Microstructures during Parabolic Flights: Lara Abou-Khalil¹; Georges Salloum-Abou-Jaoude²; Guillaume Reinhart¹; Christph Pickmann³; Ylva Houltz⁴; Jianning Li⁴; Olle Janson⁴; Henri Nguyen-Thi¹; Gerhard Zimmermann³; ¹IM2NP & Aix Marseille university; ²BCAST; ³ACCESS e.V; ⁴Swedish Space Corporation

4:40 PM

Microstructure Evolution in Undercooled Al-Fe Melts: *Jonas Valloton*¹; Abdoul-Aziz Bogno¹; Dieter Herlach²; Hani Henein¹; ¹University of Alberta; ²Deutsches Zentrum für Luft- und Raumfahrt

5:00 PM

Reduced-gravity Measurements of the Effect of Oxygen on Properties of Zirconium: *Jie Zhao*¹; Jonghyun Lee¹; Rainer Wunderlich²; Hans Fecht²; Stephan Schneider³; Michael SanSoucie⁴; Jan Rogers⁴; Robert Hyers⁵; ¹University of Massachusetts; ²Universität Ulm; ³DLR / Institut für Materialphysik im Weltraum; ⁴NASA MSFC; ⁵University of Massachussetts - Amherst

Mechanical Behavior at the Nanoscale III — Dislocation Plasticity and Dislocation-Defects Interactions

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Daniel Gianola, University of California, Santa Barbara; Ting Zhu, Georgia Institute of Technology; Julia Greer, California Institute of Technology; Harold Park, Boston University; Garritt Tucker, Drexel University; Jiangwei Wang, University of Pittsburgh

Wednesday PM Room: 214

February 17, 2016 Location: Music City Center

Session Chairs: Joshua Crone, US Army Research Laboratory; Lucas Hale, National Institute of Standards and Technology

2:00 PM Invited

Ab Initio Modeling of Dislocation Core Properties in BCC and HCP Metals: David Rodney¹; Lucile Dezerald²; Emmanuel Clouet³; Nermine Chaari³; Lisa Ventelon³; François Willaime³; ¹Université de Lyon; ²Massachusetts Institute of Technology; ³Commissariat à l'Energie Atomique

2:40 PM

Is the Anomalous Slip in BCC Transition Metals a Consequence of the Transformations of the Core of Screw Dislocations by Applied Stresses?:

Vaclav Vitek1; Yi-Shen Lin1; 1University of Pennsylvania

3:00 PM

Effect of Solutes on Dislocation Nucleation from Grain Boundaries in fcc Metals: Valery Borovikov¹; Mikhail Mendelev¹; Alexander King¹; ¹The Ames Laboratory

3:20 PM

Stress Statistics and Universal Scaling Exponent Determining Strengthsize Scaling at Small Scales: *Robert Maass*¹; Peter Derlet²; ¹University of Illinois at Urbana-Champaign; ²Paul Scherrer Institute

3:40 PM Break

4:00 PM

On the Relationship among Lattice Misorientation Field, Strain Gradient Effects, and Indentation Size Effects: *Yanfei Gao*¹; Lucia Nicola²; Bennett Larson³; George Pharr¹; ¹Univ of Tennessee; ²Delft University of Technology; ³Oak Ridge National Laboratory

4:20 PM

Capturing the Collaborative Strengthening Effects of Dislocations and Nanoscale Obstacles: Joshua Crone¹; ¹US Army Research Laboratory

4.40 PM

Simulations of Orientation Dependence of Strain-Hardening Characteristics and Dislocation Microstructure Evolution in 20, 6 micron Size Ni Microcrystals: Satish Rao¹; Dennis Dimiduk²; Michael Uchic²; triplicane parthasarathy³; Jaafar El-Awady⁴; Ahmed Hussein⁴; William Curtin¹; ¹EPFL; ²AFRL; ³UES Inc.; ⁴Johns Hopkins University

5:00 PV

Dynamic Investigations of Dislocation-Self Point Defect Interactions in BCC Metals: *Lucas Hale*¹; Yuri Mishin²; Zachary Trautt Trautt¹; Chandler Becker¹; ¹National Institute of Standards and Technology; ²George Mason University

Metal and Polymer Matrix Composites II — Processing of Composites

Sponsored by:TMS Structural Materials Division, TMS: Composite Materials Commit-

Program Organizer: Nikhil Gupta, New York University

Wednesday PM Room: 110A

February 17, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM Invited

Laser Processing of Hybrid Materials for Biomedical Applications: Roger Narayan¹; ¹UNC/NCSU Joint Department of Biomedical Engineering

2:20 PM

Polytetrafluoroethylene-based Composites Containing Multi-walled Carbon Nanotubes Fabricated via Solid-state Mixing and Hot-pressing: *Jiyeon Suh*¹; Seungwon Kang¹; Donghyun Bae¹; ¹Yonsei University

2:40 PM

Surface Characterization of Carbon Fiber Polymer Composites and Aluminum Alloys after Laser Interference Structuring: *Adrian Sabau*¹; Clayton Greer²; Jian Chen¹; Charles Warren¹; Claus Daniel¹; ¹Oak Ridge National Laboratory; ²University of Tennessee

3:00 PM

Simulation of Ultrasonic Processing to Fabricate Carbon Nanotube-reinforced Magnesium Composite: Yuansheng Yang¹; Fuze Zhao¹; ¹Institute of Metal Research, Chinese Academy of Sciences

Nanostructured Materials for Nuclear Applications — Session VI

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Nuclear Materials Committee, TMS: Nanomaterials Committee, TMS: Nanomaterials Behavior Committee

Program Organizers: Cheng Sun, Los Alamos National Laboratory; Michael Demkowicz, Massachusetts Institute of Technology; Amit Misra, University of Michigan; Osman Anderoglu, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories

Wednesday PM Room: 101C

February 17, 2016 Location: Music City Center

Session Chairs: Khalid Hattar, Sandia National Laboratory; Osman Anderoglu, Los Alamos National Laboratory

2:00 PM Invited

Phase Stability and Solute Redistribution at Metal-oxide Interface under Ion Irradiation: Nan Lt¹; Yun Xu¹; Satyesh Yadav¹; Jeffery Aguiar¹; Osman Anderoglu¹; Yongqiang Wang¹; Amit Misra²; Hongmei Luo³; Blas Uberuaga¹; ¹Los Alamos National Laboratory; ²University of Michigan, Ann Arbor; ³New Mexico State University, Las Cruces

2:30 PN

Surface and Interface Effects on Zinc Oxide Nanowires due to Ionizing Radiation: Daniel Mayo¹; Ryan Nolen²; Richard Haglund¹; ¹Vanderbilt Univerity; ²David Lipscomb University

2:50 PM

Behavior of Twin Boundaries in Nanotwinned Metals under In Situ Heavy Ion Radiation: Kaiyuan Yu¹; Jin Li²; Daniel Bufford³; Youxing Chen⁴; Mark Kirk⁵; Meimei Li⁵; Haiyang Wang²; Xinghang Zhang²; ¹China University of Petroleum-Beijing; ²Texas A&M University; ³Sandia National Laboratories; ⁴Los Alamos National Laboratory; ⁵Argonne National Laboratory

3:10 PM

Evolution of Helium Bubbles in Nano-engineered SiC under Irradiation: *Chien-Hung Chen*¹; Yongqiang Wang²; Miguel Crespillo¹; Cristiano Fontana³; Joseph Graham¹; Steven Shannon⁴; Yanwen Zhang³; William Weber¹; ¹University of Tennessee; ²Los Alamos National Laboratory; ³Oak Ridge National Laboratory; ⁴North Carolina State University

3:30 PM Break

3:50 PM Invited

Synergistic Effects in Multi-Ion Irradiated Nano-Oxide Dispersed Ferritic Alloys: Luke Hsiung¹; Michael Fluss¹; ¹Lawrence Livermore National Laboratory

4:20 PM

TEM Characterization of Irradiated and Unirradiated Fe-Cr Steels, Nibased and ODS Fe-12Cr-5Al Alloys: Kinga Unocic¹; David Hoelzer¹; Chad Parish¹; Mark Bannister¹; Kevin Field¹; ¹ORNL

4:40 PM

Preparation and Characterization of Nanostructured UO2 for LWR Fuel Safety Assessment: Vaclav Tyrpekl¹; Marco Cologna¹; Joseph Somers¹; ¹EC JRC ITU

5:00 PM

Nanoprecipitates with High Coarsening Resistance in Irradiated Cu-Mo-Si Thin Films: *Jae Yel Lee*¹; John Beach¹; Pascal Bellon¹; Robert Averback¹; ¹University of Illinois at Urbana-Champaign

Phase Transformations and Microstructural Evolution — Phase Transformations - Titanium Alloys

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Wednesday PM Room: 109

February 17, 2016 Location: Music City Center

Session Chair: Raj Banerjee, University of North Texas

2:00 PM

Integrated Experimental and Computational Investigation of Omega Phase and Omega Phase Assisted Super-refined Alpha Precipitation: *Nufeng Zheng¹*; Robert Williams¹; Talukder Alam²; Deep Choudhuri²; Rongpei Shi¹; Niraj Gupta²; Srinivasan Srivilliputhur²; Yunzhi Wang¹; Rajarshi Banerjee²; Hamish Fraser¹; ¹The Ohio State University; ²University of North Texas

2:30 PM

Efficient Experimental Determination of Diffusion Coefficients and Elastic Modulus for the Ti-Mo-Nb-Ta-Zr System: Zhangqi Chen¹; Ji-Cheng Zhao¹; ¹The Ohio State University

2.50 PM

Alpha Phase Precipitation in Metastable Beta Ti-Nb-Fe Alloys: Fernando Costa¹; Eder Lopes¹; *Rubens Caram*¹; ¹University of Campinas

3:10 PM

There and Back Again: Microstructural Investigations of Forward and Reverse α- ω Phase Transformations in HCP Metals: Benjamin Morrow¹; Carl Trujillo¹; Francis Addessio¹; Curt Bronkhorst¹; Turab Lookman¹; George Gray¹; Ellen Cerreta¹; ¹Los Alamos National Laboratory

3:30 PM Break

3:50 PM

Study of Phase Transitions Occurring in \946-Titanium Alloy Ti-15Mo: Pavel Zhánal¹; Petr Harcuba¹; Michal Hájek¹; Jana Šmilauerová¹; Josef Veselý¹; ¹Charles University in Prague

4:10 PM

The Influence of Aluminum Content on Recrystallization and Grain Growth in a-titanium Alloys: Anna Trump¹; John Allison¹; ¹University of Michigan

4:30 PM

In-situ Small-angle Scattering Study of ω Particles Growth in Metastable β **Titanium Alloys**: *Jana Šmilauerová*¹; Petr Harcuba¹; Dominik Kriegner¹; Miloš Janecek¹; Václav Holý¹; ¹Charles University

4:50 PM

Thermal Stability of ω-phase in Pure Ti Formed by High-pressure Torsion Process: Nozomu Adachi¹; Yoshikazu Todaka¹; Minoru Umemoto¹; ¹Toyohashi university of technology

5:10 PM

Observation of All 12 Alpha Variants and Strip Microstructure in Multi-component Titanium Alloys: *Hongchao Kou*¹; Yi Chen¹; Jiangkun Fan¹; Yudong Zhang²; Bin Tang¹; Jinshan Li¹; ¹Northwestern Polytechnical University; ²Laboratoire d'Étude des Microstructures et de Mécanique des Matériaux (LEM3), CNRS UMR 7239, Université de Lorraine

5:30 PM

Assessment of Tribological Properties of Cast and Forged Ti-6Al-7Nb and Ti-6Al-4V Implants for Dental Application: Ahmed Zaki¹; Shimaa El-Hadad¹; Waleed Khalifa²; ¹Central Metallurgical Research and Development Institute; ²Cairo University

Phase Transformations and Microstructural Evolution — Phase Transformations during Non-Equilibrium Processing - Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Wednesday PM Room: 107B

February 17, 2016 Location: Music City Center

Session Chair: Monica Kapoor, U. Alabama Tuscaloosa

2:00 PM

Effect of Velocity Change on Ternary Eutectic Morphology: Amber Genau¹; Subhojit Chakraborty¹; ¹University of Alabama at Birmingham

2:20 PN

Mechanical Properties of 5000 Series Aluminum Alloys Following Fire Exposure: *Jillian Free*¹; Patrick Summers¹; Brian Lattimer¹; Scott Case¹; ¹Virginia Polytechnic Institute and State University

2.40 PM

Effect of Concurrent Microstructure Evolution and Hydrogen Level on Flow Behavior of Near Alpha Ti-alloy: *Jagadeesh Babu S M*¹; B. P. Kashyap¹; N. Prabhu¹; R. Kapoor²; R. N. Singh²; Bhupendra K Kumawat²; J. K Chakravartty²; ¹Indian Institute of Technology Bombay; ²Bhabha Atomic Research Centre

3:00 PM

Isothermal Annealing of Shocked Zirconium: Stability of the \945-\969 2-phase Microstructure: *Thaddeus Song En Low*¹; Donald Brown²; Brian Welk¹; Ellen Cerreta²; John Okasinski³; Stephen Niezgoda¹; ¹The Ohio State University; ²Los Alamos National Laboratory; ³Argonne National Laboratory

3:20 PM

Microstructure Evolution and Stability of Nanostructured Electrodeposited Al-Mn Alloys upon Heating: *Ting-Yun Huang*¹; Christopher Schuh¹; ¹MIT

3:40 PM Break

4:00 PM

Phase Field Modelling of Microstructural Evolution in Titanium Alloy Welds: David Wu¹; Nathaniel Ng¹; Adele Lim¹; Mark Wong¹; Siu Sin Quek¹; Rajeev Ahluwalia¹; ¹Institute of High Performance Computing, A*STAR

4:20 PM

The Effect of Cooling Rate on the Microstructure and Mechanical Properties of Thin Wall Ductile Iron Castings: Alexander Reinl¹; ¹Michigan Technological University

4:40 PM

Using Temporary Hydride Formation in Metastable Beta Titanium Alloys to Improve the Microstructure: *Hans-Juergen Christ*¹; Vitali Macin¹; ¹University of Siegen

5:00 PM

Numerical Simulation of Solidification Microstructure with Active Fiber Cooling for Making Fiber-Reinforced Aluminum Matrix Composites: *Zhiliang Yang*¹; Bo Wang¹; Shupei Liu¹; Jie Ma¹; Wanping Pan¹; Shuai Feng¹; Liang Bai¹; Jieyu Zhang¹; ¹shanghai university

5:20 PM

Interplay of Substrate Interaction, Electric Field and Confinement on Microphase Separation of Diblock Copolymers: *Arnab Mukherjee*¹; Rajdip Mukherjee²; Kumar Ankit³; Avisor Bhattacharya¹; Britta Nestler³; ¹Karlsruhe University of Applied Sciences; ²Indian Institute of Technology Kanpur; ³Karlsruhe Institute of Technology

Phase Transformations in Multi-component Systems: An MPMD Symposium Honoring Gary R. Purdy — Use of Advanced Tools to Understand Phase Transformations

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Hatem Zurob, McMaster University; Annika Borgenstam, KTH, Royal Institute of Technology; Tadashi Furuhara, Tohoku University; Wenzheng Zhang, Tsinghua University; Christopher Hutchinson, Monash University; Robert Hackenberg, Los Alamos National Laboratory

Wednesday PM Room: 110B

February 17, 2016 Location: Music City Center

Session Chairs: Robert Hackenberg, Los Alamos National Laboratory; Hatem Zurob, McMaster University

2:00 PM

A Correlative Six-dimensional Study of Phase Separation: Atom-probe Tomographic Measurements and Vacancy-mediated Lattice Kinetic Monte Carlo Simulations: David Seidman¹; ¹Northwestern University

2:20 PM

An In-situ TEM Investigation of a Reverse Martensite Transformation in an Fe-20Ni-5.4Mn Alloy: Frédéric Mompiou¹; Jing Wu²; Wenzheng Zhang²; ¹CEMES-CNRS; ²Tsinghua University

2:40 PM

Analyzing Internal Interfaces Chemistry down to the Atomic Scale: Frederic Danoix¹; Xavier Sauvage¹; Mohamed Goune²; Claire Debreux¹; Fabien Cuvilly¹; Thomas Sourmail³; ¹CNRS - Université de Rouen; ²ICMCB Bordeaux; ³CREAS - AscoIndustries

3:00 PM

Evolution of Mn/Cr Composition Gradients in Cementite during Annealing of DP Steels: *Marc Moreno*¹; Hugo Van Landeghem¹; Jaafar Ghanbaja¹; Julien Teixeira¹; Frédéric Bonnet²; Sébastien Allain¹; ¹Institut Jean Lamour; ²Arcelormittal

3:20 PM Break

3:40 PM Invited

Kinetics of Decomposition in Fe-Cr Alloys and Refractory Carbides: Joakim Odqvist¹; ¹KTH Royal Institute of Technology

4:10 PM

Segregation and Nanoscale Precipitation in Multi-component Fe-Cu Based Steel: Zhongwu Zhang¹; ¹Harbin Engineering University

4:30 PM

Effects of Internal Oxidation on Microstructure in Ni Alloy 600: Brian Langelier¹; Suraj Persaud²; Roger Newman²; Gianluigi Botton¹; ¹McMaster University; ²University of Toronto

4:50 PM

High Throughput Screening of Phase Transformation in Multi-component Ti Alloys: Kinetic Diffusion Multiple: Bin Tang¹; ¹Northwestern Polytechnical University

5:10 PM Concluding Comments

Powder Metallurgy of Light Metals — Additive Manufacturing of Ti and Mg and Ti Powder Metallurgy — Microstructure and Mechanical Properties

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Zhigang Fang, University of Utah; Qian Ma, RMIT University

Wednesday PM Room: 205C

February 17, 2016 Location: Music City Center

Session Chairs: Rajiv Tandon, Magnesium Elektron Powders; Ian Donaldson, GKN Sinter Metals LLC

2:00 PM Invited

Microstructure and Mechanical Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting: Huiping Tang¹; Shenglu Lu¹; Jian Wang¹; ¹Northwest Institute for Non-ferrous Metal Research

2:30 PM Invited

Advances in Additive Manufacturing of Magnesium: *Rajiv Tandon*¹; ¹Magnesium Elektron Powders

3:00 PM

Processing-structure-property Relations in Powder Metallurgy Mg97Z-n1Y2 Alloys: *R Sadangi*¹; D Kapoor²; T Zahrah³; R Tandon⁴; D Madan⁴; ¹ Armament Research Development Engineering Center; ²Armament Research Development Engineering Center; ³MATSYS, Inc.; ⁴Magnesium Electron Powder Products

3:20 PM Break

3:40 PM Invited

Implementation of Titanium Powder Metallurgy for Airframe Applications: *Kathleen Chou*¹; James Cotton¹; Kevin Slattery¹; ¹The Boeing Company

4:10 PM

High Performance Titanium Alloys with Wrought-like Microstructures and Mechanical Properties Produced by Hydrogen Sintering and Phase Transformation (HSPT): James Paramore¹; Brady Butler²; Matt Dunstan¹; Z. Zak Fang¹; Pei Sun¹; Mark Koopman¹; ¹University of Utah; ²United States Army Research Laboratory

4:30 PM

Mechanism of Microstructural Refinement of Ti-6Al-4V during Hydrogen Sintering and Phase Transformation (HSPT): Pei Sun¹; Zhigang Fang¹; Mark Koopman¹; James Paramore¹; K.S. Ravi Chandran¹; ¹University of Utah, Dept of Metallurgical Engineering

4:50 PM

Dehydrogenation Kinetics of Hydrogen Sintered Titanium: *Matt Dunstan*¹; James Paramore¹; Z. Zak Fang¹; Mark Koopman¹; Pei Sun¹; ¹University of Utah

REWAS 2016 — Understanding & Enabling Sustainability - Education Research Innovation

Sponsored by:

Program Organizers: Randolph Kirchain, Massachusetts Institute of Technology; Bart Blanpain, KU Leuven; Anne Kvithyld, SINTEF; Christina Meskers, Umicore Precious Metals Refining; Elsa Olivetti, Massachusetts Institute of Technology; Jeffrey S. Spangenberger, Argonne National Laboratory; Diran Apelian, Worcester Polytechnic Institute; Brajendra Mishra, Colorado School of Mines; Neale Neelameggham, Ind LLC

Wednesday PM Room: 104B

February 17, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM To be announced.

2:25 PM

The Material Life Cycle: A Steering Wheel for Europe's Raw Materials Academy: Eric Pirard¹; Jenny Greberg²; ¹Universite de Liege; ²Lulea University of Technology

2:50 PM

Teaching Sustainable Development and Recycling to First-Year Students -- The Ignition Point in the Academic Journey: Diran Apelian¹; ¹Worcester Polytechnic Institute

3:15 PM

The Educational Aspects of Sustainability Related on Japan: Toyohisa Fujita¹; ¹The University of Tokyo

3:40 PM Break

4:25 PM

Towards a Resource Resilient Society via the Triple Helix Concept: A Story of Transition, Collaboration and Innovation: Tom Hennebel¹; Diran Apelian²; Christina Meskers³; Karolien Vasseur¹; Marleen Esprit¹; *Maurits Van Camp*¹; ¹Umicore Group Research & Development; ²Worcester Polytechnic Institute; ³Umicore Precious Metals Refining

4:50 PM

Current State of Sustainability Education and Research for Materials Science and Engineering in Korea: Il Sohn¹; ¹Yonsei University

Strip Casting of Light Metals — Strip Casting: Properties

Program Organizers: Kai Karhausen, Hydro Aluminium Rolled Products GmbH; Dietmar Letzig, MagIC - Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht; Jan Bohlen, Helmholtz-Zentrum Geesthacht; Murat Dundar, Assan Aluminium

Wednesday PM Room: 203A

February 17, 2016 Location: Music City Center

Session Chairs: Murat Dundar, Assan Aluminum; Dietmar Letzig, MagIC - Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht

2:00 PM Introductory Comments

2:05 PM

Substitution of Rare Earth Elements in Magnesium Alloys for the Sheet Production via Twin Roll Casting: Gerrit Kurz¹; Tom Petersen¹; Ibai Portugal Gonzales¹; Roland Hoppe¹; Dietmar Letzig¹; Helmholtz-Zentrum Geesthacht

2:25 PM

Crystallographic Texture Development of As-cast 3105 Alloy Produced by St/Cu Shell Pair: *Hatice Mollaoglu Altuner*¹; Cemil Isiksaçan¹; Onur Birbasar¹; Mert Günyüz¹; Onur Meydanoglu¹; ¹Assan Alüminyum San. Tic. AS

2:45 PM

Annealing Curve of 3105 Alloy Produced by Twin Roll and Belt Casting Method: *Dionisios Spathis*¹; John Tsiros¹; Andreas Mavroudis¹; ¹Hellenic Aluminium Industry (ELVAL SA)

3:05 PM

Effect of Heat Treatment on Tensile and Fatigue Properties of Al 3527K Alloy Manufactured by Twin Roll Strip Casting: Min-Seok Baek¹; Gi-Su Ham¹; Kwang-Jun Euh²; Young-Mok Rhyim²; Kee-Ahn Lee¹; ¹Andong National University; ²Korea Institute of Materials Science

3:25 PM Break

3:55 PM

Effect of As-cast Strip Thickness and Reduction Prior to Soft Annealing on the Formability of Twin-roll Cast 5754 Sheets: *Onur Meydanoglu*¹; Cemil Isiksaçan¹; Mert Günyüz¹; Onur Birbasar¹; Hatice Mollaoglu Altuner¹; ¹Assan Alüminyum San. Tic. AS

4:15 PM

Microstructure and Mechanical Properties of Ca Containing AZX310 Alloy Sheets Produced via Twin Roll Casting Technology: Sangbong Yi¹; Junho Park²; Dietmar Letzig¹; Oh Duck Kwon²; Karl Ulrich Kainer¹; Jae Joong Kim²; ¹Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung; ²POSCO

4:35 PM Poster Previews

Thermodynamic Applications, Optimizations and Simulations in High-Temperature Processes: An EPD Symposium in Honor of Christopher W. Bale's 70th Birthday — Database Development and Experimental Measurements

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: In-Ho Jung, McGill University; Arthur Pelton, Ecole Polytechnique; Patrice Chartrand, Ecole Polytechnique; Phillip Mackey, P.J. Mackey Technology; David Robertson, Missouri S&T; P Taskinen, Alto Univ; Malin Selleby, KTH Royal Institute of Technology

Wednesday PM Room: 106A

February 17, 2016 Location: Music City Center

Session Chairs: Pekka Taskinen, Aalto University; Stephan Petersen, GTT-Technologies

2:00 PM

Thermodynamic Assessments of the Nd-Fe-B-C and Nd2O3-SiO2-CaO-Al2O3 Systems: *Kai Tang*¹; Yuyang Bian¹; Thu Hoai Le¹; ¹SINTEF Materials and Chemistry

2:20 PM

Measurement of the Thermodynamic Properties

of Rare Earth Oxide Melts: Bradley Nakanishi¹; Guillaume Lambotte²; Antoine Allanore¹; ¹Massachusetts Institute of Technology; ²University of Massachusetts Amherst

2:40 PM

An Experimental and Thermodynamic Investigation of the Iron Saturated FeO-B₂O₃-Nd₂O₃ System: Lars Klemet Jakobsson¹; Gabriella Tranell¹; In-Ho Jung²; ¹Norwegian University of Science and Technology; ²McGill University

3:00 PM

Thermodynamics of Gaseous Metal Hydroxides: A Review: Elizabeth Opila¹; ¹University of Virginia

3:20 PM

Searching L12 phase in Ternary and Quaternary Super Alloy Compositions (Ni-Al-Co-Ti): Surendra Saxena¹; Selva Vennila Raju¹; Krishna Rajan²; Rupa Dumpala³; Scott Broderick³; ¹Florida Int University; ²University at Buffalo-State University of New York; ³Iowa State University

3:40 PM Break

4:00 PM Keynote

MTDATA and the Prediction of Phase Equilibria in Oxide Systems: Thirty Years of Industrial Collaboration: *John Gisby*¹; Pekka Taskinen²; Hugh Davies¹; Zushu Li³; Jonathan Pearce¹; Jouni Pihlasalo⁴; Jim Robinson¹; Mark Tyrer⁵; ¹National Physical Laboratory; ²Aalto University; ³Tata Steel R&D; ⁴Outotec Research Center, Pori; ⁵Mineral Industry Research Organisation

4:40 PM

A New FactSage Optimization Tool and Its Application in the Assessment of Multicomponent Alkali-containing Oxide Systems: Evgenii Nekhoro-shev¹; Sergei Decterov¹; ¹CRCT

5:00 PM

Prediction of the Thermal Conductivity of Oxide Microstructures by a New Self Consistent Thermodynamics Method Supported by First Principle Calculations: *Aimen Gheribi*¹; Chartrand Patrice¹; ¹Ecole Polytechnique de Montreal

Thermodynamic Applications, Optimizations and Simulations in High-Temperature Processes: An EPD Symposium in Honor of Christopher W. Bale's 70th Birthday — Non-Ferrous Applications II

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: In-Ho Jung, McGill University; Arthur Pelton, Ecole Polytechnique; Patrice Chartrand, Ecole Polytechnique; Phillip Mackey, P.J. Mackey Technology; David Robertson, Missouri S&T; P Taskinen, Alto Univ; Malin Selleby, KTH Royal Institute of Technology

Wednesday PM Room: 106C

February 17, 2016 Location: Music City Center

Session Chairs: John Morral, The Ohio State University; Alexander Pisch, Lafarge

LCR

2:00 PM Keynote

Thermochemical Modeling in Industry – A 30-Year Perspective: R. Diemer¹; ¹University of Delaware

2:40 PM

Use of Thermodynamic Modelling for Selection of Electrolyte for Electrorefining of Mg from Al Alloy Melts: Adam Gesing¹; Subodh Das¹; Raouf Loutfy²; ¹Phinix,LLC; ²MER Corporation

3:00 PM

Application of Thermodynamic Calculations on the Pyro-refining Process of High Purity Bismuth: *Mohammad-Mezbahul Islam*¹; Patrice Chartrand²; Frederic Belanger¹; In-Ho Jung³; Pascal Coursol¹; ¹5N Plus Inc.; ²École Polytechnique de Montréal; ³McGill University

3:20 PM Break

Ultrafine Grained Materials IX — High Pressure Torsion Studies I

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Wednesday PM Room: 209B

February 17, 2016 Location: Music City Center

Session Chairs: Zenji Horita, Kyushu University; Julian Rosalie, Erich Schmid Insti-

tute for Materials Science

2:00 PM Invited

High-Pressure Torsion from 1935 to 1988: *Kaveh Edalati*¹; Zenji Horita¹; ¹Kyushu University

2:30 PM Invited

Microstructure Evolution, Phase Stability and Mechanical Behavior of Ultra-fine Grained AlFeNiCuCoCr High Entropy Alloy Processed by Severe Plastic Deformation: Baolong Zheng¹; Zhiqiang Fu¹; Lilia Kurmanaeva²; Yaojun Lin³; Julia Ivanisenko⁴; Yizhang Zhou¹; Fei Chen³; Horst Hahn⁴; Lianmeng Zhang³; Enrique Lavernia¹; ¹University of California, Irvine; ²University of California, Davis; ³Wuhan University of Technology,; ⁴Karlsruhe Institute of Technology (KIT)

3:00 PM

New Advances in High Pressure Torsion Processing: Anton Hohenwarter¹; Reinhard Pippan²; ¹Department of Materials Physics, Montanuniversität Leoben, Austria; ²Erich Schmid Institute of Materials Science, Austrian Academy of Sciences

3:20 PM

Mechanical Alloying of Magnesium-manganese Alloys via High-pressure Torsion: *Julian Rosalie*¹; Zaoli Zhang¹; ¹Erich Schmid Institute for Materials Science

3:40 PM Break

4:00 PM Invited

Work-Hardening Induced Tensile Ductility of Bulk Metallic Glasses via

High-Pressure Torsion: Hyoung Seop Kim¹; Soo Hyun Joo¹; ¹POSTECH

4:30 PM

Peculiar Mechanical Properties and Microstructures of CoCrFeNiMn High Entropy Alloy after High Pressure Torsion at 300 K and 77 K: Aleksey Podolskiy¹; Elena Tabachnikova¹; Erhard Schafler²; Christian Rentenberger²; Bertalan Joni³; Stefan Maier²; M. Tikhonovsky⁴; A. Tortika⁴; Tamas Ungar³; Michael Zehetbauer²; ¹B. Verkin Institute for Low Temperature Physics & Engineering; ²University of Vienna; ³Eötvös Lorand University Budapest; ⁴Kharkov Institute of Physics and Technology

4:50 PM

Substantially Reduced Elastic Modulus in Nanocrystalline Tantalum Processed by High Pressure Torsion: Jonnathan Ligda¹; Brian Schuster¹; Laszlo Kecskes¹; *Qiuming Wei*²; ¹US-ARL; ²University of North Carolina at Charlotte

Ultrafine Grained Materials IX — Powder Processing Studies

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Wednesday PM Room: 209A

February 17, 2016 Location: Music City Center

Session Chairs: Raj Sadangi, U.S. Armament Research Development Engineering Center; Deliang Jiang, Shanghai Jiao Tong University

2:00 PM Invited

Recrystallization during Thermomechanical Consolidation of Nanostructured Metallic and Metal Matrix Nanocomposite Powders: *Deliang Zhang*¹; Dengshan Zhou¹; Jiamiao Liang¹; Xun Yao¹; Yifeng Zheng¹; ¹Shanghai Jiao Tong University

2·30 PM

Deformation Behavior of Ultrafine Grained Tungsten from Powder Metal- lurgy Processes: *Brady Butler*¹; Tomoko Sano¹; Jonathan Ligda¹; ¹U.S. Army Research Laboratory

2:50 PM

Microstructure and Mechanical Properties of AA5083 Produced through Cryogenic Attrition and HIP: Clara Hofmeister¹; Le Zhou¹; Frank Kellogg²; Anit Giri³; Tony Zahrah⁴; Kyu Cho⁵; Yongho Sohn¹; ¹University of Central Florida; ²Bowhead Science and Technology; ³TKC Global; ⁴Matsys Inc; ⁵U.S. Army Research Laboratory

3:10 PM

Consolidation of Copper/Copper Oxide Nanoparticles by Spark Plasma Sintering

: *Takahiro Kunimine*¹; Hisashi Sato²; Motoko Yamada²; Yoshimi Watanabe²; Nobuhiro Tsuji¹; ¹Kyoto University; ²Nagoya Institute of Technology

3:30 PM Break

3:50 PM Invited

Elevated Temperature Mechanical Behavior of Cryomilled UFG Al-Cu-Mg-Ag Alloys: *Troy Topping*¹; Lilia Kurmanaeva²; Hanry Yang³; Julie Schoenung⁴; Enrique Lavernia⁴; ¹California State University, Sacramento; ²University of California, Davis; ³Washington State University; ⁴University of California, Irvine

4:20 PM

Study of Sm-Fe Alloy Powders Prepared by Cryomilling in Liquid Nitrogen: *Bin Yang*¹; ¹University of Science and Technology Beijing

4:40 PM

Solid Hydrocarbon Assisted Reduction: A Novel Approach to Generation of Sub-micron and Nano-metal Particles: Jonathan Phillips¹; ¹Naval Postgraduate School

5:00 PM

Mechanical Behavior of UFG-Al/B4C Composites Tubes Produced by Severe Plastic Deformation Consolidation of Powders: Hamid Alihosseini¹; Kamran Dehghani¹; ¹amirkabir university of technology

5-20 PM

Effect of Process Control Agents on Composition, Structure, and Properties of Mechanically Alloyed Powders: R Sadangi¹; D Kapoor²; T Zahrah³; ¹ Armament Research Development Engineering Center; ²Armament Research Development Engineering Center; ³MATSYS Inc

7th International Symposium on High Temperature Metallurgical Processing — Characterization and Simulation of High Temperature Process

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Thursday AM Room: 105B

February 18, 2016 Location: Music City Center

Session Chairs: Baojun Zhao, The University of Queensland; Tarasankar DebRoy, The Pennsylvania State University

8:30 AM Introductory Comments

8:35 AM

Heat and Fluid Flow Modeling to Examine 3D-Printability of Alloys: Tuhin Mukherjee¹; James Zuback¹; Amitava De¹; *Tarasankar DebRoy*¹; ¹The Pennsylvania State University

8:55 AM

Characterization of Iron-bearing Dust Pellet in Composite Agglomeration Process (CAP): Zhuyin Chen¹; Bingbing Liu¹; Chen Liu¹; Xiao Kang¹; *Yuanbo Zhang*¹; ¹Central South University

9:15 AM

Evaluation of Heat Flow and Thermal Stratification in a Steelmaking Ladle through Mathematical Modelling: *Varadarajan Seshadri*¹; Izabela Duarte²; Itavahn Alves da Silva²; Carlos Antonio da Silva²; ¹Universidade Federal de Minas Gerais; ²Universidade Federal de Ouro Preto

9:35 AM

Viscous and Crystallization Characteristics of CaO-SiO2-MgO-Al2O3-FetO-P2O5-(CaF2) Steelmaking Slags: Zhanjun Wang¹; Zuotai Zhang²; Yongqi Sun²; Min Guo¹; Mei Zhang¹; ¹University of Science and Technology Beijing; ²Peking University

9:55 AM

Microstructure and Texture Evolution of Different High Manganese Cast Steels during Hot Deformation and Subsequent Treatment: Mohammad Masoumi¹; Waydson Ferreira¹; Hamilton de Abreu¹; ¹Universidade Federal do Ceara

10:15 AM Break

10:30 AM

Online Temperature Measurement System for Process Control and Endpoint Detection: Goran Vukovic¹; *Klaus Gamweger*¹; Bojan Zivanovic¹; Bob Drew¹; ¹RHI AG

10:50 AM

Dynamic Thermal Simulation Study of Copper Slag Dilution under Direct Current Field: *Zhang Jing*¹; Sun Ying¹; Li Qiuju¹; ¹Shanghai University

1.10 AM

Analysis of Turbulence at the Metal / Slag Interface in the Meniscus Region of a Continuous Casting Mold through Physical and Mathematical Modelling: *Varadarajan Seshadri*¹; Jose de Arruda²; Amanda Arruda²; Samuel de Souza²; Carlos Antonio da Silva²; Itavahn Alves da Silva²; ¹Universidade Federal de Minas Gerais; ²Universidade Federal de Ouro Preto

11:30 AM

Computer Simulation of Copper Smelting with FCS Slags: Chen Wang¹; ¹Central South University

11:50 AN

Study on the Properties and Damage Analysis on the Lining Used in Cooling Section of Coke Dry Quench Furnaces: Guotao Xu¹; ¹Wuhan Iron and Steel Group Company

7th International Symposium on High Temperature Metallurgical Processing — Utilization of Complex Organ

Sponsored by:TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Thursday AM Room: 105A

February 18, 2016 Location: Music City Center

Session Chairs: Varadarajan Seshadri, Universidade Federal de Minas Gerais; Guanghui Li, Central South University

8:30 AM Introductory Comments

8:35 AM

Characterization of Sulfidation Roasting of an Iron-rich Manganese Oxide Ore with Elemental Sulfur: Tao Jiang¹; Li Qin¹; Zhixiong You¹; Yuanbo Zhang¹; *Guanghui Li*¹; ¹School of Minerals Processing and Bioengineering, Central South University

8:55 AM

Research on Recovering Iron Oxide from the Iron, Tin-bearing Tailings: Jun Chen¹; Zijian Su¹; *Yuanbo Zhang*¹; Yingming Chen¹; Bingbing Liu¹; ¹Central South University

9:15 AM

A Study on the Characterization of Nickel Laterites of Central Anatolia: Ender Keskinkilic¹; Saeid Pournaderi²; Ahmet Geveci³; Yavuz A. Topkaya³; ¹Atilim University; ²Karadeniz Technical University; ³Middle East Technical University

9:35 AM

Recovery of Powdered Metallic Iron from Ludwigite Ore via Reductive Roasting with Sodium Salts-Magnetic Separation: *Guanghui Li*¹; Huanpeng Mi¹; Binjun Liang¹; Zhiwei Peng¹; Yuanbo Zhang¹; Tao Jiang¹; ¹School of Minerals Processing and Bioengineering, Central South University

9:55 AM

Selective Reduction of TiO2-SiO2 in the Preparation of Titanium Oxycarbide through Carbothermal Reduction of Titanium Raw Materials: *Jiusan Xiao*¹; Bo Jiang¹; Kai Huang¹; Shuqiang Jiao¹; Hongmin Zhu¹; ¹University of Science and Technology Beijing

10:15 AM Break

10:30 AM

Kinetic Study on the Pyrolysis of Low Grade Coals: Ruiling Du¹; ¹University of Science and Technology Beijing

10:50 AM

Salt Roasting of Nickel Sulfide Concentrate Using KCl: Changyuan Lu¹; xingli zou¹; Xionggang Lu¹; ¹Shanghai University

11:10 AM

Research on Leaching of Zinc Sulfide Ores through Synergistic Coordination: Kun Yang¹; Shiwei Li¹; Jinhui Peng¹; Libo Zhang¹; Aiyuan Ma¹; Weiheng Chen¹; Feng Xie¹; ¹Kunming University of Science and Technology

11:30 AM

Effect of Compound Additives on Synthetic Magnesium Aluminate Spinel under Low Temperature: Xiaoyan Xiang¹; Wentang Xia¹; ¹University of Science and Technology

11:50 AM

Microwave Thermal Prereduction with Carbon and Leaching of Chromite Ore Fines: *Qin Guo*¹; Linqing Dai¹; Lei Li¹; Shenghui Guo¹; Jinhui Peng¹; Libo Zhang¹; ¹Kunming University of Science and Technology

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling — Fuels

Sponsored by: TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California Berkeley; Todd Allen, Idaho National Laboratory; Elaine West, Knolls Atomic Power Laboratory

Thursday AM Room: 101B

February 18, 2016 Location: Music City Center

Session Chair: Dennis Keiser, Idaho National Laboratory

8:30 AM Invited

Observed U-Mo Alloy Microstructures After Irradiation in the Advanced Test Reactor: Dennis Keiser¹; Jan-Fong Jue¹; Jian Gan¹; Brandon Miller¹; Adam Robinson¹; ¹Idaho National Laboratory

9:00 AM

High-energy Synchrotron Radiation Study of Heavy Ion Irradiated U-Mo/ Al Dispersion Fuel: Kun Mo¹; Bei Ye¹; Sumit Bhattacharya²; Di Yun¹; Yinbin Miao³; Walid Mohamed¹; Jonathan Almer¹; Laura Jamison¹; Michael Pellin¹; Abdellatif Yacout¹; ¹Argonne National Laboratory; ²Northwestern University; ³University of Illinois at Urbana-Champaign

9:20 AM

Noble Gas Behavior in Nuclear Fuel and Ceramic Nuclear Waste Forms: Caitlin Taylor¹; Maulik Patel¹; Yanwen Zhang²; Yongqiang Wang³; Haizhou Xue¹; Chien-Hung Chen¹; Ke Jin²; Miguel Crespillo¹; William Weber¹; ¹The University of Tennessee-Knoxville; ²Oak Ridge National Laboratory; ³Los Alamos National Laboratory

9:40 AM

Mechanical Behavior of UO2 at Sub-Grain Length Scales: A Quantification of Creep Properties via High Temperature Mechanical Testing: Benjamin Shaffer¹; Bowen Gong¹; Harn Chyi-Lim¹; Robert McDonald¹; Pedro Peralta¹; ¹Arizona State University

10:00 AM

Initial Post Irradiation Examination Results of a Novel Fuel Concept with Enhanced Thermal Properties: Andrew Casella¹; David Senor¹; Edgar Buck¹; Mehdi Balooch²; Peter Hosemann²; ¹Pacific Northwest National Laboratory; ²University of California, Berkeley

10:20 AM Break

10:40 AM Invited

In-Situ Measurement of Tritium Released from Gamma-LiAlO2 Pellets Irradiated in the Advanced Test Reactor: Walter Luscher¹; David Senor¹; Kevin Clayton²; ¹Pacific Northwest National Laboratory; ²Idaho National Laboratory

11:10 AM

Finite Element Analysis of Micro-cantilever Beam Experiments in UO2: Bowen Gong¹; David Frazer²; Harn Chyi Lim¹; Shaffer Benjamin¹; Peter Hosemann²; Pedro Peralta¹; ¹Arizona State University; ²University of California,

Berkeley

11:30 AM

An Experimental Study to Elucidate Stage IV Recovery Mechanism of Heavy Ion Irradiated High Purity Molybdenum: Di Yun¹; Jeffrey Terry²; Yinbin Miao³; Joshua Wright⁴; Kevin Logan²; Zhigang Mei⁴; Kun Mo⁴; Walid Mohamed⁴; Bei Ye⁴; Michael Pellin⁴; Abdellatif Yacout⁴; ¹Xi¹an Jiao Tong University; Argonne National Laboratory; ²Illinois Institute of Technology; ³University of Illinois at Urbana-Champaign; ⁴Argonne National Laboratory

11:50 AM

Correlative and Dynamic S/TEM Characterization of Heavily Irradiated Pyrochlores and Fluorites: Terry Holesinger¹; Sanchita Dey²; Jeffrey Augiar³; Pallas Papin¹; James Valdez¹; Yongqiang Wang¹; Blas Uberuaga¹; Ricardo Castro²; ¹Los Alamos National Laboratory; ²University of CA-Davis; ³National Renewable Energy Laboratory

Additive Manufacturing: Building the Pathway towards Process and Material Qualification — Strategies for Qualification in AM II

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Powder Materials Committee, TMS: Process Technology and Modeling Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas; Reginald Hamilton, The Pennsylvania State University; Edward Herderick, GE; Rajiv Mishra, University of North Texas; James Sears, GE GRC

Thursday AM Room: 205A

February 18, 2016 Location: Music City Center

Session Chairs: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University

8:30 AM

Study of Material Consolidation at Higher Throughput Parameters in Selective Laser Melting of Inconel 718: Tracie Prater¹; ¹NASA

8:50 AM

Applying Knowledge from Multi-pass Welding to Selective Electron Beam Melting: Curtis Frederick¹; Michael Kirka²; Surdarsanam Babu¹; Ryan Dehoff²; Michael Massey¹; Michael Haines¹; Edwin Schwalbach³; Lee Semiatin³; Jonathan Miller³; ¹University of Tennessee Knoxville; ²Oak Ridge National Lab; ³Air Force Research Lab

9:10 AM

The Effect of Powder Characteristics on the Properties of Powder-bed Binder-jet Printed Inconel 625 Samples: Amir Mostafaet¹; Eamonn Hughes¹; Shannon Biery¹; Colleen Hilla¹; Markus Chmielus¹; ¹University of Pittsburgh

9:30 AM

Study of Internal Channels Surface Roughness Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys: *Jukka Pakkanen*¹; Flaviana Calignano²; Francesco Trevisan¹; Massimo Lorusso²; Elisa Ambrosio²; Diego Manfredi²; Paolo Fino¹; ¹Politecnico di Torino; ²Istituto Italiano di Tecnologia

9:50 AM

Constitutive and Failure Behaviour in Selective Laser Melted Stainless Steel for Microlattice Structures: *Peifeng Li*¹; ¹Nanyang Technological University

10:10 AM Break

10:30 AM

Microstructural Characterization and Process Mapping in Beam-Based Additive Manufacturing of Inconel 718: *Luke Sheridan*¹; John Thompson¹; Nathan Klingbeil¹; Gregory Loughnane²; ¹Wright State University; ²Mound Laser & Photonics Center, Inc.

10:50 AM

Microstructural Characterization of Functionally Graded Transition Joints between Dissimilar Metals Obtained with Laser-based Additive Manufacturing: Ercan Cakmak¹; Niyanth Sridharan²; Sudarsanam Babu¹;

William Peter¹; Ryan Dehoff¹; Thomas Watkins¹; David Gandy³; ¹Oak Ridge National Laboratory; ²University of Tennessee; ³Electric Power Research Institute Inc

11:10 AM

Analysis of Microstructure Manipulation of the Parts Fabricated by Additive Manufacturing with the Help of Numerical Modeling Aided by High Performance Computing: Narendran Raghavan¹; Ryan Dehoff²; Sudarsanam Babu¹; Srdjan Simunovic²; Neil Carlson³; John Turner²; ¹University of Tennessee Knoxville; ²Oak Ridge National Laboratory; ³Los Alamos National Laboratory

11:30 AM

Optimizing Laser Melting Additive Manufacturing Process for Inconel 718: Magda Sadowski¹; Leila Ladani¹; ¹University of Connecticut

11:50 AM

High Temperature Mechanical and Electrical Properties of Additively Manufactured Metal Nanoparticle Films: Md Taibur Rahman¹; Amy Wo¹; C. V. Ramana²; Rahul Panat¹; ¹Washington State University; ²University of Texas at El Paso

Advanced Magnetic Materials: An FMD Symposium in Honor of Michael E. McHenry — Permanent Magnets II

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Magnetic Materials Committee

Program Organizers: Raju Ramanujan, Nanyang Technological University; Matthew Willard, Case Western Reserve University; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory

Thursday AM Room: 209C

February 18, 2016 Location: Music City Center

Session Chairs: Mariappan Paranthaman, Oak Ridge National Laboratory; J.Ping Liu, University of Texas-Arlington

8:30 AM

Magnetic Phases in the Systems Mn-Bi, Mn-Sb, and Mn-Bi-Sb: *Peter Kainzbauer*¹; Martin Marker²; Ipser Herbert²; ¹Inst. f. anorg. chem. (Materialchemie) / University of Vienna; ²Inst. f. anorg. chem. (Materialchemie) / University of Vienna

8:50 AM

Optimizing Process Parameters for Additive Manufacturing of Bonded Permanent Magnets: Mariappan Paranthaman¹; Orlando Rios¹; Huseyin Ucar¹; Michael McGuire¹; William Carter¹; Brett Compton¹; Cajetan Nlebedim²; William McCallum²; Scott McCall³; Oak Ridge National Laboratory; Ames Laboratory; Lawrence Livermore National Laboratory

9:10 AM

Processes for the Recycling of Rare Earth Permanent Magnets: Roland Gauss¹; Oliver Diehl¹; Eva Brouwer¹; Alex Buckow¹; Konrad Güth¹; Oliver Gutfleisch¹; ¹Fraunhofer ISC-IWKS

9:30 AM

Comparison of Grain Boundary Diffusion Processes (GBDP) in Nd-Fe-B Permanent Magnets: Oliver Gutfleisch¹; Simon Sawatzki¹; Konrad Löwe¹; Christoph Schwöbel¹; Tim Helbig¹; ¹TU Darmstadt

9:50 AM Break

10:10 AM

Rapid Crystallization of Non-equilibrium

Rare-earth and Non-rare-earth Permanent Magnet Materials: Orlando Rios¹; Michael McGuire¹; Benjamin Conner¹; William Carter¹; William McCallum²; Cajetan Nlebedim²; Matthew Kramer²; ¹Oak Ridge National Laboratory; ²Ames Laboratory

10:30 AM

Rare Earth Lean Nanocrystalline Permanent Magnets: Zafer Turgut¹; AFRL

Aluminum Alloys, Processing and Characterization — Precipitation Behavior

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Steven Long, Kaiser Aluminum Corporation

Thursday AM Room: 201B

February 18, 2016 Location: Music City Center

Session Chair: Ramasis Goswami, Naval Research Laboratory

8:30 AM Introductory Comments

8:35 AM Invited

Effect of Ag and Mg Additions on the Nature of Grain Boundary Precipitates and Fracture Behavior of Al-Cu-Li Alloys

: Ramasis Goswami¹; Noam Bernstein¹; ¹Naval Research Laboratory

9.00 AM

Characterization of Intragranular Mg-rich Precipitates Formed in Al 5xxx Alloys Aged at 343 K: *Gaosong Yi*¹; Ken Littrell²; Michael Free¹; ¹University of Utah; ²Oak Ridge National Laboratory

9.25 AN

The Influence of Low Temperature Clustering on Strengthening Precipitation in Al-Mg-Si Alloys: *Alex Poznak*¹; Paul Sanders¹; ¹Michigan Technological University

9:50 AM Break

10:05 AM

Synthesis of Al-TiC Nanocomposites by an In-Situ Gas-Liquid Method: Inigo Anza¹; Mahklouf Mahklouf¹; ¹Advanced Casting Research Center, Worcester Polytechnic Institute

10·30 AM

Precipitation in the Gradient Nanostructrured Al-Cu-Mg Alloy: Zongqiang Feng¹; Xuan Luo¹; Tianlin Huang¹; Guilin Wu¹; ¹Chongqing University

10:55 AM

Orientation Relationships of Precipitates with the Matrix in an Aluminium Quasicrystalline Alloy: Franc Zupanic¹; Tonica Boncina¹; Christian Gspan¹; ¹University of Maribor

Aluminum Reduction Technology — Fundamentals in Chemistry II

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Stephan Broek, Hatch Ltd

Thursday AM Room: 202B

February 18, 2016 Location: Music City Center

Session Chair: Guðrún Sævarsdóttir, Reykjavik University

8:30 AM

Alcoa STARProbeTM – Update in Further Development for Measuring Cryolite Properties: Xiangwen Wang¹; ¹Alcoa, Inc.

8·50 AM

Analysis and Visualization of Aluminum Reduction Cell Noise Based on Wavelet Transform: Anton Verdenik¹; ¹TALUM Kidricevo

9:10 AN

Study on Effect of Al-O-C Compound in Alumina Carbonthermal Reduction: Jun Yang¹; Yang Tian¹; ¹Kunming University of Science and Technology

9:30 AM

The Impact of Alumina Quality on Current Efficiency and Energy Efficiency in Aluminum Reduction: Grant McIntosh¹; James B. Metson¹; *Pascal Lavoie*²; Thomas Niesenhaus³; Till Reek³; Linus Perander⁴; ¹Light Metals Research Centre, the University of Auckland; ²LMRC; ³TRIMET Aluminium SE; ⁴Outotec GmbH & Co

9:50 AM Break

10:05 AM

Sideledge Facing Metal in Aluminium Electrolysis Cells: Preliminary Modelling Study of Bath Film Formation: Nils-Håvard Giskeødegård¹; Asbjørn Solheim²; Nancy Jorunn Holt¹; ¹HYDRO; ²SINTEF Materials and Chemistry

10:25 AM

Pilot Test of Aluminum Electrolysis by the NiFe2O4-M Inert Anodes: Biao Wang¹; Feng Liang¹; Yudong Wang¹; Kun Peng²; ¹Kunming University of Science and Technology; ²Limited Company of Earth Environmental Protection Materials of Yunnan

Aluminum Reduction Technology — Process Control in Reduction

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Stephan Broek, Hatch Ltd

Thursday AM Room: 202C

February 18, 2016 Location: Music City Center

Session Chair: Abdalla Zarouni, Emirates Global Aluminium

8:30 AM

Detection of Local Cell Conditions Based on Individual Anode Current Measurements: *Yuchen Yao*¹; Cheuk-Yi Cheung¹; Jie Bao¹; Maria Skyllas-Kazacos¹; Barry Welch¹; Sergey Akhmetov²; ¹University of New South Wales; ²Emirates Global Aluminum

8:55 AM

Dynamic Response of Cryolitic Bath and Influence on Cell Heat and Mass Balance with Large Scale Potline Power Shifts: *Jingjing Liu*¹; Mark Taylor¹; Mark Dorreen²; ¹University of Auckland; ²Light Metals Research Center, The University of Auckland

9:20 AM

Simulations on the Bath Chemistry Variables using Neural Networks: Patrizia Chermont¹; Fabio Soares²; Roberto De Oliveira¹; ¹UFPA; ²Exodus

9:45 AM Break

10:00 AM

Technology Research on Decreasing the Aluminum Surface Waves and Reducing the Cathode Voltage Drop in Aluminum Electrolysis Cells: Zhirong Shi¹; Dengpeng Chai¹; Haibo Huang¹; Yanan Zhang¹; Bin Fang¹; ¹Zhengzhou Research Institute of CHALCO

10:25 AM

Hall-Héroult Cell Simulator: A Tool for the Operation and Process Control: Jacques Antille¹; Louis Bugnion¹; René von Kaenel¹; ¹KAN-NAK SA

10:50 AM

Studies on Anode Preheating Using Individual Anode Current Signals in Hall-Héroult Reduction Cells: *Ali Jassim*¹; Sergey Akmetov¹; Barry Welch²; Jie Bao²; Maria Skyllas-Kazacos²; Yuchen Yao²; ¹EGA Dubai Aluminium; ²The University of New South Wales

Bio Nano Interfaces and Engineering Applications — Bio-inspired Interfaces: Structure to Mechanics

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Po-Yu Chen, National University of Tsing Hua University; Terry Lowe, Colorado School of Mines; John Nychka, University of Alberta; Wen Yang, Swiss Federal Institute of Technology in Zurich (ETHZ)

Thursday AM Room: 206B

February 18, 2016 Location: Music City Center

Session Chair: Wen Yang, Swiss Federal Institute of Technology in Zurich (ETHZ)

8:30 AM Invited

The Structure and Mechanics of the Interfaces within Biological and Bio-inspired Materials: Francois Barthelat¹; ¹McGill University

9.10 AN

Analytical Study on the Effect of Interface Properties in Brick and Mortar Structured Composites: Sina Askarinejad¹; Nima Rahbar¹; ¹Worcester Polytechnic Institute

9:30 AM

Nonuniform Breaking of Molecular Bonds, Peripheral Morphology, and Releasable Adhesion by Elastic Anisotropy in Bio-adhesive Contacts: Yan Liu¹; Yanfei Gao¹; ¹Univ of Tennessee

9:50 AM

Effect of Water on the Mechanical Properties of Lignin Carbohydrate Complex: Sina Youssefian¹; Nima Rahbar¹; ¹Worcester Polytechnic Institute

10:10 AM Break

10:30 AM Invited

Graphite Oxide/Cellulose Composites as Innovative Solid Support Material for DNA Extraction Applications: *Helena Li*¹; G. Akceoglu¹; N. Saito¹; ¹Nagoya University

11:00 AM

Coarse-Grained Modeling of Interaction between Vesicle and Active Rotational Nanotube: Xianqiao Wang¹; Liuyang Zhang¹; ¹University of Georgia

11:20 AN

Graphene Oxide Reinforced Double Network Hydrogel: *Jilong Wang*¹; Junhua Wei¹; Jingjing Qiu¹; ¹Texas Tech University

11:40 AM

Engineering of Biodegradable Boron-Based, Carbon Enriched Nano Fiber in A Hybrid Composite Via DIMOX, Rheocasting and Thixocasting: Bakr Rabeeh¹; ¹German University in Cairo, GUC

12:00 PM

Synthesis of Self-cleaning, Transparent and Superhydrophobic/Oleophobic Metal Oxide Coatings by Atmospheric Pressure Plasma Technique: Ching-Yu Yang¹; Shang-I Chuang¹; Yu-Hsiang Lo¹; Hsin-Ming Cheng²; Po-Yu Chen¹; Jenq-Gong Duh¹; ¹Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; ²Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan

Bulk Metallic Glasses XIII — Mechanical and Other Properties II

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Thursday AM Room: 101E

February 18, 2016 Location: Music City Center

Session Chairs: Hans-J. Fecht, University of Ulm; Jianzhong Jiang, Zhejiang University

8:30 AM Invited

Role of Alloy Chemistry and Free Volume on the Corrosion Behavior of Bulk Metallic Glasses: Ayyagari Aditya¹; Sundeep Mukherjee¹; ¹University of North Texas

8:55 AM Invited

Properties of BMG Nanoglasses Prepared by Thin Film Deposition in Comparison with Mechanical Methods: Hans Fecht¹; Pierre Denis¹; ¹Ulm University

9.20 AM

Saving the Environment from Toxic Chemicals Using Amorphous Metals: Santanu Das¹; Seth Garrison¹; Sundeep Mukherjee¹; ¹University of North Texas

9:40 AM Invited

The Mechanism of Structural Rejuvenation in Recovery Annealed Metallic Glasses: Rui Yamada¹; Naoyuki Tanaka¹; Junji Saida¹; ¹Tohoku University

10:00 AM Break

10:15 AM Invited

Multifunctional Thin Film Metallic Glasses as Potential Coating Materials: *Jinn Chu*¹; Chia-Chi Yu¹; Wahyu Diyatmika¹; Cheng-Min Lee¹; Chia-Lin Li¹; Yusuke Tanatsugu¹; ¹National Taiwan University of Science and Technology

10:35 AM

An Improved Method for Calculation of Elastic Constants of Metallic Glasses: *Henry Neilson*¹; J Carter¹; John Lewandowski¹; ¹Case Western Reserve University

10:55 AM

Development of Bio-inspired Hybrid Composite with Ceramic Brick and BMG Mortar Structure: *Je In Lee*¹; Eun Soo Park¹; Amy Wat²; Robert Ritchie³; ¹Seoul National University; ²University of California Berkeley; ³Lawrence Berkeley National Laboratory

11:15 AM

Protocols for Multi-step Thermoplastic Processing of Metallic Glasses: *Punnathat Bordeenithikasem*¹; Sungwoo Sohn¹; Ze Liu¹; Jan Schroers¹; ¹Yale University

11:35 AM

String-like Cooperative Motion in Supercooled Cu-Zr Metallic Liquids: Hao Zhang¹; ¹University of Alberta

Cast Shop Technology: An LMD Symposium in Honor of Wolfgang Schneider — General Cast Shop

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizer: Mohamed Hassan, Masdar Institute of Science and Technology

Thursday AM Room: 202A

February 18, 2016 Location: Music City Center

Session Chair: Daniel Choi, Masdar Institute of Science and Technology

8:30 AM Introductory Comments

8:35 AM

Weibull Analysis for the Repeatability of Die-castings Made by an Al-Mg-Si-Mn Alloy: Shouxun Ji¹; Hailin Yang¹; Douglas Watson¹; Zhongyun Fan¹; ¹Brunel University

9.00 A N

Thermo-Mechanical Properties of Wrought Aluminium Alloys produced from Scrap Mixing: Adesola Ajayi¹; Mohamed Ali¹; Daniel Choi¹; ¹Masdar Institute of Science and Technology

9.25 AN

History and Development of Slag and Dross Pressing: $David Roth^1$; 1GPS Global Solutions

9:50 AM

Testing PPE for Molten Aluminum Splash Resistance: *John Zeh*¹; J.T. Major¹; Jason Sparks¹; ¹Logan Aluminum Inc.

Characterization of Minerals, Metals, and Materials — Electronic, Magnetic, Environmental, and Advanced Materials

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Thursday AM Room: 103B

February 18, 2016 Location: Music City Center

Session Chairs: Shadia Ikhmayies, Al Isra University; Eren Kalay, METU

8:30 AM

Survey of Mechanical Properties of Cardboard Tubes for Engineering Application: Victor Souza¹; *Juvenil Junior*²; Vinicius Barbosa³; ¹Universidade Federal Fluminense; ²Instituto Federal Fluminense; ³Sociedade Universitária Redentor

8:50 AM

The Influence of Heat Treatment on the Optical Parameters of Spray-deposited CdS:In Thin Films: Shadia Ikhmayies¹; ¹Al Isra University

9:10 AM

Structural Characterizations of Black TiO₂ Nanoparticles Made from Amorphous Precursors: *Mengkun Tian*¹; Masoud Mahjouri-Samani²; Gyula Eres²; Kai Wang²; David B. Geohegan²; Gerd Duscher¹; ¹University of Tennessee; ²Oak Ridge National Lab

9:30 AN

The Characterization of Photo and Thermal Dual Sensitive Behavior of Azo-substituted Polyrotaxane Nano-micelle: Lin Ye¹; ¹Beijing Institute of Technology

9:50 AM

Crystal Structures and Conductivity of Lanthanum Gallate Doped with Strontium and Magnesium Synthesized by Different Methods: *Xiuhua Chen*¹; Jie Xing¹; Bo Yuan¹; Min Wang¹; Wenhui Ma²; Rui Li¹; Jie Yu²; ¹Yunnan University; ²Kunming University of Science and Technology

10:10 AM Break

10:25 AM

HRTEM Analysis of Crystallographic Defects in Cd-Zn-Te Single Crystals: Eren Kalay¹; Yasin Ergunt¹; Merve Kabukcuoglu¹; Mehmet Parlak¹; Rasit Turan¹; Bengisu Yasar¹; ¹METU

10.45 AN

Determination of the Stability Constants for Mixed-ligand Coordination Compounds in the Zn(II)-nitrilotriacetic Acid-ammonia System: Chen Lin¹; Hao Zhandong¹; Yang Tianzu¹; Zhang Duchao¹; Liu Weifeng¹; ¹Central South University

11:05 AM

Resonances of Microwave Power Absorption in Alumina and Silicon Carbide: *Zhiwei Peng*¹; Xiaolong Lin¹; Jiann-Yang Hwang²; Yuzhe Zhang²; Yuanbo Zhang¹; Guanghui Li¹; Tao Jiang¹; ¹Central South University; ²Michigan Technological University

11:25 AM

Physical and Chemical Properties of MSWI Fly Ash: *Xinghua He*¹; Shujing Zhu²; Jiann-Yang Hwang³; ¹Wuhan Polytechnic University; ²WISCO R&D Center; ³Michigan Technological University

11:45 AM

The Adsorption Properties of Porous Boron Nitride Nanosheets: *Huazhang Zhai*¹; ¹Beijing Institute of Technology

Characterization of Minerals, Metals, and Materials — Soft Materials

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Thursday AM Room: 103A

February 18, 2016 Location: Music City Center

Session Chairs: Sergio Monteiro, IME; Zhiwei Peng, Central South University

8:30 AM

Tensile Strength of Polyester Composites Reinforced with Thinner Ramie Fibers: Lucas Pontes¹; Pedro Netto¹; Jordana Ferreira¹; Frederico Margem¹; Sergio Monteiro²; Jean Margem³; Raphael Veloso⁴; ¹Uenf; ²IME; ³Isecensa; ⁴Faculdade Redentor

8:50 AM

Charpy Impact Tests of Polyester Composites Reinforced with PALF Fibers: Gabriel Glória¹; Giulio Altoé¹; Maycon Gomes¹; Carlos Maurício Vieira¹; Frederico Margem¹; Sérgio Neves¹; Glenio Daniel¹; Maria Carolina Teles¹; State University of the Northern Rio de Janeiro

9:10 AM

Dynamic-Mechanical Characterization of Polyester Matrix Composites Reinforced With Eucalyptus Fibers: Caroline Gomes de Oliveira¹; Noan Tonini Simonassi¹; Artur Camposo Pereira¹; Sérgio Neves Monteiro²; Frederico Muylaert Margem¹; Anderson Barbosa¹; Anna Cerqueira Neves¹; ¹UENF - Universidade Estadual do Norte Fluminense; ²IME - Instituto Militar de Engenharia

9:30 AM

Flexural Mechanical Characterization of Polyester Composites Reinforced with Continuous Ramie Fibers Stalk: Lucas Pontes¹; Pedro Netto¹; Jordana Ferreira¹; Frederico Margem¹; Sergio Monteiro²; Jean Margem³; ¹Uenf; ²IME; ³Isecensa

9:50 AM

Synchrotron X-ray Tomographic Quantification of Microstructural Evolution in Multi-phase Soft Material: *Enyu Guo*¹; Guang Zeng¹; Peter Rockett¹; Julian Bent²; Joan Vila-Comamala³; Peter Lee¹; ¹University of Manches-

ter; 2Unilever; 3Diamond Light Source Ltd.

10:10 AM Break

10:25 AM

Tensile Strength of Epoxy Composites Reinforced with Fique Fibers: *Maria Carolina Teles*¹; Frederico Margem¹; Sergio Monteiro²; Giulio Altoé¹; Pedro Neto¹; Luiz Gustavo Borges³; ¹State University of the Northern Rio de Janeiro; ²Instituto Militar de Engenharia; ³Faculdade Redentor

10:45 AN

Thermal Analysis of Curaua Fiber Reinforced Epoxy Matrix Composites: Mariana Barcelos¹; Carolina Ribeiro¹; *Frederico Margem*²; Sergio Monteiro³; Janaina Vieira¹; Jordana Vieira¹; Natalia Maciel¹; ¹UENF; ²Redentor; ³IME

11:05 AM

Characterization of Thermal Behavior of Epoxy Composites Reinforced with Curaua Fibers by Differential Scanning Calorimetry: Mariana Barcelos¹; Sergio Monteiro²; Frederico Margem³; Carolina Ribeiro¹; Janaina Vieira¹; Jordana Ferreira¹; Natália Maciel¹; ¹UENF; ²IME; ³Redentor

11:25 AM

Comparative Study of the Effects of Cellulose Nanowhiskers and Microcrystalline Cellulose Addition as Reinforcement in Flexible Films Based on Biopolymer Blends: Douglas Paiva¹; Rene Oliveira¹; Wilson Maia²; Maria Auad³; Vijaya Rangari⁴; Esperidiana Moura¹; ¹Instituto de Pesquisas Energéticas e Nucleares; ² University of São Paulo; ³Auburn University; ⁴Tuskegee University

11:45 AM

Flexural Test in Epoxy Matrix Composites Reinforced with Hemp Fiber: Lázaro Rohen¹; Anna Neves¹; Carlos Vieira¹; Frederico Margem¹; Sérgio Monteiro²; ¹State University of Northern of Rio de Janeiro; ²Military Institute of Engineering

Computational Materials Discovery and Optimization: From 2D to Bulk Materials — Microstructure and Mechanical Properties

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Richard Hennig, University of Florida; Houlong Zhuang, Oak Ridge National Laboratory; Dallas Trinkle, University of Illinois, Urbana-Champaign; Eric Homer, Brigham Young University

Thursday AM Room: 207D

February 18, 2016 Location: Music City Center

Session Chair: To Be Announced

8:30 AM

A Differential-Exponential Hardening Model for Crystal Plasticity Modeling of Single Crystals

: Aboozar Mapar¹; Farhang Pourboghrat¹; Thomas Bieler¹; ¹Michigan State University

8:50 AM

Atomistic Modeling of Structure-Property Relationships in Grain Boundaries: *Mark Tschopp*¹; Shawn Coleman¹; Jenn Synowczynski-Dunn¹; Kiran Solanki²; David McDowell³; ¹Army Research Laboratory; ²Arizona State University; ³Georgia Institute of Technology

9:10 AM Invited

Combined DFT, MD and Hybrid MD/FEM Simulations to Investigate Realistic Mechanical Deformations during Nanoindentation: Francesca Tavazza¹; Li Ma¹; Dilip Banerjee¹; Lyle Levine¹; ¹National Institute of Standards and Technology

9:30 AN

Microstructural Evolution of High Temperature Ni-Cr ODS Alloy: Genetic Algorithm Approach: Aniket Dutt¹; Somayeh Pasebani²; Indrajit Charit²; Rajiv Mishra¹; ¹University of North Texas; ²University of Idaho

9:50 AM

Applying Graph Kernels to the Transgranular Network for Microstructure Data Mining: Brian DeCost¹; Elizabeth Holm¹; ¹Carnegie Mellon Uni-

10:10 AM Break

10:30 AM

Non-destructive Boundary Migration Tracking during

Coarsening and Subsequent Quantification of Boundary Dynamics: Siddharth Maddali¹; Robert Suter¹; Shlomo Ta'asan¹; ¹Carnegie Mellon University

10:50 AM

Multi Scale Modeling of Deformation Behavior in Near Beta Ti-5553 Alloy: *Sudipto Mandal*¹; Shanoob Balachandran²; Dipankar Banerjee²; Anthony Rollett¹; ¹Carnegie Mellon University; ²Indian Institute of Science Bangalore

11:10 AM

Developing Physically-based Three Dimensional Microstructures: Bridging Phase Field and Crystal Plasticity Models: Hojun Lim¹; Fadi Abdeljawad¹; Steven Owen¹; Byron Hanks¹; Corbett Battaile¹; ¹Sandia National Laboratories

11:30 AM

Fatigue Crack Growth Modeling and Microstructural Mechanisms in Engine Materials under Hot Compressive Dwell Conditions: Xiang Chen¹; Diana Lados¹; Richard Pettit²; David Dudzinski³; ¹Worcester Polytechnic Institute, Integrated Materials Design Center; ²FractureLab; ³Derivation Research Laboratory Inc.

11:50 AM

Hydrogen-induced Core Structures Change of Screw and Edge Dislocations in Tungsten: *Yinan Wang*¹; Chengliang Li²; Ben Xu¹; Wei Liu¹; ¹Tsinghua University; ²China Nuclear Power Engineering Co.,Ltd

Computational Thermodynamics and Kinetics — Models and Methods

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Chemistry and Physics of Materials Committee Program Organizers: Dane Morgan, University of Wisconsin - Madison; Shawn Coleman, U.S. Army Research Laboratory; Xiang-Yang Liu, Los Alamos National Lab; Chris Wolverton, Northwestern University

Thursday AM Room: 208B

February 18, 2016 Location: Music City Center

Session Chairs: Shawn Coleman, U.S. Army Research Laboratory; Atsuto Seko, Kyoto University

8:30 AM Invited

First Principles Interatomic Potentials via Compressed Sensing: Atsuto Seko¹; Isao Tanaka¹; ¹Kyoto University

9:00 AM

A Scalable Parallel Clustering Algorithm for Molecular Dynamics: *Yang Hao Lau*¹; Ramanarayan Hariharaputran¹; David Wu¹; ¹Institute of High Performance Computing

9:20 AM

Cluster Variation Method in Computational Thermodynamics: $Tetsuo\ Mohri$ ¹; ¹Tohoku University

9:40 AM

The Origin of Anharmonicity in fcc Solids: *Albert Glensk*¹; Blazej Grabowski¹; Tilmann Hickel¹; Jörg Neugebauer¹; ¹Max-Planck-Institut, Duesseldorf, Germany

10:00 AM Break

10:20 AM

Mesoscopic Simulations of Electric-Field-Aligned Bijel Films for Functionalized Porous Membranes: Paul Millett¹; Joseph Carmack¹; ¹University of Arkansas

10:40 AM

Thermotransport of a Liquid Metal Alloy: Computational Approach: *Graeme Murch*¹; Alexander Evteev¹; Elena Levchenko¹; ¹The University of Newcastle

11:00 AM

Transport and Stokes-Einstein Behavior in Molten Mixtures of Network-formers and Network-modifiers: Venkateswara Rao Manga¹; Nichlas Swinteck¹; Stefan Bringuier¹; Pierre Deymier¹; Krishna Muralidharan¹; ¹University of Arizona

11:20 AM

Study of the Temperature Effects on Solid-liquid Anisotropic Interfacial Energy: Lingkang Wu¹; Chengliang Li¹; Ben Xu¹; Qiulin Li¹; Wei Liu¹; School Of Materials Science And Engineering, Tsinghua University

11:40 AM

Application of MIVM for Sn-Ag and Sn-In alloys in Vacuum Distillation: Lingxin Kong¹; Junjie Xu¹; Baoqiang Xu¹; Shuai Xu¹; Bin Yang¹; Yifu Li¹; Dachun Liu¹; Ruibo Hu²; ¹The National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093; Key Laboratory for Nonferrous Vacuum Metallurgy of Yunnan Province, Kunming 650093; ²Guizhou Normal University

Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology — Intermetallic Compound III; Electromigration

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Albert T. Wu, National Central University; Yan Li, Intel; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Thursday AM Room: 201A

February 18, 2016 Location: Music City Center

Session Chairs: Albert Wu, National Central University; Fan-Yi Ouyang, National Tsing Hua University

8:30 AM

Lead Free Solder Joint Open Failures Post Multiple Reflows due to Void Generation and Accumulation: Yan Li¹; Olen Hatch¹; Pilin Liu¹; Deepak Goyal¹; ¹Intel

8:50 AM

Marker Analysis to Determine Dominant Diffusing Species in Ni3Sn4: Yi-Ting Chen¹; King-Ning Tu¹; Yingxia Liu¹; ¹UCLA

9:10 AM

Enhanced Stabilization of □ **Cu6Sn5 in Pb-free Solder Joints**: *Takatoshi Nishimura*¹; Mohd Salleh²; Guang Zeng²; Keith Sweatman¹; Stewart McDonald²; Kazuhiro Nogita²; ¹Nihon Superior; ²The University of Queensland

9:30 AM

Investigation of Anisotropic Micromechanical Behaviors of Cu6Sn5 by In-Situ Micropillar Compression: *Jui-Yang Wu*¹, J. J. Yu¹, L. J. Yu¹, C. R. Kao¹, ¹Department of Materials Science and Engineering, National Taiwan University

9:50 AM Break

10:10 AM Invited

Effect of Electromigration on Crystal Orientation in Wafer Level Chip Scale Package Using Synchrotron X-ray Diffraction: *Quan Zhao*¹; Choong-un Kim²; Thomas Bieler¹; Tae-kyu Lee³; ¹Michigan State University; ²University of Texas Arlington; ³Cisco Systems, Inc.

10:35 AM

Failure Mechanism of Ag Alloy Wire Bonding for Electronic Packaging under Electromigration Test: *Jui-Nung Wang*¹; Tzu-Yu Hsu¹; Fan-Yi Ouyang¹; Jing-Yao Chang¹; Fang-Jun Leu¹; Hsiao-Min Chang¹; ¹National Tsing Hua University

10:55 AM

Electromigration in Ni/SnAg/Ni Microbumps with 15 μ m Solder Height: Li Yu-Jin¹; Chen Chih¹; ¹National Chiao Tung Unirversity

11:15 AM

Electromigration Failure in Microbumps with Different Grain Sizes: *Meng Wei Chiang*¹; Chih Chen¹; Chau Jie Zhan²; Yu Wei Huang²; ¹National Chiao Tung University; ²Industrial Technology Research Institute.

11:35 AV

Interactions between Electromigration and Thermal Fatigue of Pb-free Interconnects: *Yong Zuo*¹; Limin Ma¹; Fu Guo¹; ¹Beijing University of Technology

High Entropy Alloys IV — Mechanical and Other Properties II

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Thursday AM Room: 102A

February 18, 2016 Location: Music City Center

Session Chairs: John Lewandowski, Case Western Reserve University; Ralph Spolenak, ETH Zurich

8:30 AM Invited

Fracture Toughness and Fatigue Crack Growth Behavior of High Entropy Alloys: Mohsen Seifi¹; Dongyue Li²; Zhang Yong²; Peter Liaw³; *John Lewandowski*¹; ¹Case Western Reserve University; ²University of Science and Tech-

nology; ³University of Tennessee

Microstructures and Properties of CoFeMnNiX (X = Al, Ga, Sn) High Entropy Alloys: *Ting Ting Zuo*¹; Xiao Yang¹; Michael Gao²; Shu Ying Chen³; Peter Liaw³; Yong Zhang¹; ¹University of Science and Technology Beijing; ²National Energy Technology Laboratory; ³The University of Tennessee

9:10 AM

8:50 AM

A Statistical Study of the Potential-scan-rate and Al-content Dependent Metastable Pitting (Serration) Behavior of AlxFeCoCrNi High-entropy Alloys: *Yunzhu Shi*¹; Bin Yang¹; Xie Xie²; Zhi Tang³; Karin Dahmen⁴; Peter Liaw²; ¹University of Science and Technology, Beijing; ²University of Tennessee, Knoxville; ³Virginia Tech; ⁴University of Illinois at Urbana-Champaign

9:30 AM

Serrated Plastic Flow in CoFeMnNi, CoCrFeMnNi, and CoCrFeNi High Entropy Systems: *Joseph Licavoli*¹; Karin Dahmen²; Paul Jablonski¹; Michael Gao³; Peter Liaw⁴; Jeffrey Hawk¹; ¹Department of Energy; ²University of Illinois at Urbana Champaign; ³AECOM/Department of Energy; ⁴University of Tennessee

9:50 AM Invited

On the Microstructural Stability of Nanocrystalline HEA Thin Films and Its Effect on Mechanical Properties: *Jeff Wheeler*¹; Ralph Spolenak¹; ¹ETH Zurich

10:10 AM Break

10:25 AM

Serrated Flows in High Entropy Alloys (HEAs): Shuying Chen¹; Peter Liaw¹; Xie Xie¹; Karin Dahmen²; Yong Zhang³; Junwei Qiao⁴; ¹University of Tennessee, Knoxville; ²The University of Illinois at Urbana Champaign; ³The University of Science and Technology Beijing; ⁴Taiyuan University of Science and Technology

10:45 AM

Deformation and Structural Modeling of a Quenched Al0.1CrCoFeNi Multi-principal Element Alloy under High Strains: *Aayush Sharma*¹; Peter Liaw²; Ganesh Balasubramanian¹; ¹Iowa State University; ²The University of Tennessee, Knoxville, TN

11:05 AM Invited

Corrosion Behavior and Passivation Mechanisms in FCC High Entropy Alloys: Ayyagari Aditya¹; Sundeep Mukherjee¹; ¹University of North Texas

11:25 AM

Slip nucleation in Single Crystal FeNiCoCrMn Entropy Alloy: Luca Patriarca¹; Avinesh Ojha¹; Huseyin Sehitoglu¹; ¹University of Illinois at Urbana-Champaign

11:45 AM

Fabrication and Tensile Behavior of Bulk High Entropy Alloys Derived from Thin Film Combinatorial Approach

: Artashes Ter-Isahakyan¹; Azin Akbari¹; John Balk¹; ¹University of Kentucky

High Entropy Alloys IV — Structures and Characterization

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Thursday AM Room: 102B

February 18, 2016 Location: Music City Center

Session Chairs: Michael Widom, Carnegie Mellon University; E-Wen Huang, National Chiao Tung University

8:30 AM Invited

Entropy Calculation for High Entropy Alloys: Michael Widom¹; ¹Carnegie Mellon University

8:50 AM Invited

Short-range Disorder and Long-range Order Transitions of a High-entropy Alloy Subjected to Deformation at Different Temperatures: *E-Wen Huang*¹; Jien-Wei Yeh²; ¹National Chiao Tung University; ²National Tsing Hua University

9:10 AM

Characterization of a High Strength, Refractory High Entropy Alloy Al-Mo0.5NbTa0.5TiZr using STEM-HAADF and Super-XTM XEDS Tomography: *Jacob Jensen*¹; John Sosa¹; Daniel Huber¹; Gopal Viswanathan¹; Robert Williams¹; Adam Pilchak²; Hamish Fraser¹; ¹The Ohio State University; ²Air Force Research Lab

9:30 AM Invited

High Energy X-ray Diffraction Measurements during Tensile Loading and Hydrogen Embrittlement of a High Entropy Alloy, Al0.1CoCrFeNi: *Matthew Connolly*¹; Elizabeth Drexler¹; Andrew Slifka¹; ¹National Institute of Standards and Technology

9:50 AM Break

10:05 AM

Microstructural Characterization and Phase Evolution of Al1.5CrFeMnTi and Al2CrFeMnTi: Rui Feng¹; Chanho Lee¹; Peiyong Chen¹; Michael Gao²; Chuan Zhang³; Fan Zhang³; Peter Liaw¹; ¹Department of Materials Science and Engineering, The University of Tennessee, Knoxville; ²National Energy Technology Laboratory/AECOM; ³CompuTherm, LLC

10:25 AM Invited

The Use of Diffusion Multiples to Explore the Phase Equilibria, Diffusion, and Nano-Mechanical Behavior of CoCrFeMnNi High Entropy Alloys: Paul Wilson¹; Michael Kaufman¹; Andre Costa e Silva²; Robert Field¹; ¹Colorado School of Mines; ²Universidade Federal Fluminense

10:45 AM Invited

Ordering in Refractory High-entropy Alloys: *Walter Steurer*¹; Soumyadipta Maiti¹; ¹ETH Zurich

11:05 AM

Novel Single BCC Solid Solution High Entropy Alloys: A Combinatorial Approach Assisted by Quantum Mechanical Calculations: *Pradeep Konda Gokuldoss*¹; ¹Materials Chemistry RWTH Aachen University, Kopernikusstr.10, 52074, Aachen

11:25 AM

Diffusion in Equiatomic FCC High Entropy Alloys: *Mayur Vaidya*¹; Simon Trubel²; B.S. Murty¹; Gerhard Wilde²; Sergiy Divinski²; ¹IIT Madras; ²University of Muenster

11:45 AM Invited

High Strength High Entropy Alloys Prepared by Powder Metallurgy: Yong Liu¹; Bin Liu¹; Jingshi Wang¹; ¹Central South University

ICME Infrastructure Development for Accelerated Materials Design: Data Repositories, Informatics, and Computational Tools — Microstructure

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Carelyn Campbell, National Institute of Standards and Technology; Dongwon Shin, Oak Ridge National Laboratory; Jiadong Gong, QuesTek Innovations; Shengyen Li, National Institute of Standards and Technology; Francesca Tavazza, National Institute of Standards and Technology; Mark Tschopp, Army Research Laboratory

Thursday AM Room: 207B

February 18, 2016 Location: Music City Center

Session Chairs: Sheng Yen Li, NIST; Stefan Sandfeld, Friedrich-Alexander-Universität Erlangen-Nürnberg

8:30 AM Invited

D2C – Converting and Compressing Discrete Dislocation Microstructure **Data**: Stefan Sandfeld¹; Dominik Steinberger¹; Manuel Leimberger¹; ¹University of Erlangen (FAU)

9:00 AM

Microstructural Modeling of Dynamic Intergranular and Transgranular Fracture Modes in Crystalline Alloys: S. Ziaei¹; Mohammed Zikry¹; ¹North Carolina State University

9:20 AM

Spectral Database Solutions to Elasto-viscoplasticity within Finite Elements: *Marko Knezevic*¹; Miroslav Zecevic¹; Daniel Savage¹; Rodney McCabe²; ¹University of New Hampshire; ²Los Alamos National Laboratory

9:40 AM

Statistical Characterization of Microstructure-sensitive Models Applied to Engineering Components: Gustavo Castelluccio¹; Joseph Bishop¹; Richard Field¹; John Emery¹; Matthew Brake¹; ¹Sandia National Laboratories

10:00 AM Break

10:20 AM

Analytics on Large Microstructure Datasets Using 2-pt Statistics: Ahmet Cecen¹; John Gibbs²; Peter Voorhees²; Surya Kalidindi¹; ¹Georgia Institute of Technology; ²Northwestern University

10:40 AM

Evaluating Image Texture Recognition Algorithms for Generic Microstructure Characterization: *Brian DeCost*¹; Long Qing Chen²; Elizabeth Holm¹; ¹Carnegie Mellon University; ²Penn State University

In Operando Nano- and Micro-mechanical Characterization of Materials with Special Emphasis on In Situ Techniques — In-Situ Characterization of Mechanical Properties of Materials IV

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sanjit Bhowmick, Hysitron Inc.; Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Vikas Tomar, Purdue University; Vikram Jayaram, Indian Institute of Science; Benjamin Morrow, Los Alamos National Laboratory; Paul Shade, Air Force Research Laboratory; Weizhong Han, Xi'an Jiaotong University; Arief Budiman, Singapore University of Technology and Design

Thursday AM Room: 212

February 18, 2016 Location: Music City Center

Session Chairs: Sanjit Bhowmick, Hysitron, Inc.; Benjamin Morrow, Los Alamos National Laboratory

8:30 AM Invited

In Situ TEM Investigation on the Mechanical Behaviour of Micronanoscaled Single Crystal Titanium and Magnesium: Zhiwei Shan¹; Boyu Liu¹; ¹Xi'an Jiaotong University

9:00 AM

In Situ High Strain Rate Tensile Testing in the Dynamic TEM: *Thomas Voisin*¹; Michael Grapes¹; Yong Zhang¹; Nicholas Lorenzo²; Jonathan Ligda²; Brian Schuster²; Melissa Santala³; Geoffrey Campbell³; Timothy Weihs¹; ¹Johns Hopkins University; ²Army Research Laboratory; ³Lawrence Livermore National Laboratory

9:20 AM

Deformation of Nanoscale Composite Structures and Heterophase Interfaces: *Shen Dillon*¹; Shimin Mao¹; Rui Hao¹; ¹University of Illinois at Urbana-Champaign

9:40 AM

Measurement of Micro Strains in Amorphous Ti₄₅Al₅₅ Thin Films using Selected Area Diffraction during in situ TEM Straining: Rohit Sarkar¹; Christian Ebner²; Christian Rentenberger²; Jagannathan Rajagopalan¹; ¹Arizona State University; ²University of Vienna

10:00 AM Break

10:20 AM Invited

Local Strain Measurements during In Situ TEM Deformation with Nanobeam Electron Diffraction: Andrew Minor¹; *Jim Ciston*²; ¹UC Berkeley & LBL; ²Lawrence Berkeley National Laboratory

10:50 AM

In Situ Observation of Plastic Deformation in Single Grains of Ti6Al4V Fabricated Using E-beam Melting Technology: Leila Ladani¹; Samantha Brown¹; John Sypek¹; Seok Woo Lee¹; ¹University of Connecticut

11:10 AV

A Novel in Situ Bending Test in the micro/nano-Scale: Mohamed Elhebeary¹; Taher Saif¹; ¹University of Illinois Urbana-Champaign

11:30 AM

An Experimental Investigation of Deformation Mechanisms in FCC Thin Films: Marissa Linne¹; Samantha Daly¹; ¹University of Michigan

11:50 AN

Size and Strain Rate-dependent Deformation Behavior of Metallic Glass Nanoparticles: *Jinwoo Kim*¹; Eun Soo Park¹; Qi Zhang²; Mo Li²; ¹Seoul National University; ²Georgia Institute of Technology

Interface-driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry — Interfacial Segregation

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nanomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Fadi Abdeljawad, Sandia National Laboratories; Stephen Foiles, Sandia National Laboratories; Timofey Frolov, UC Berkeley; Emine Gulsoy, Northwestern university; Heather Murdoch, Army Research Lab; Mitra Taheri, Drexel University

Thursday AM Room: 108

February 18, 2016 Location: Music City Center

Session Chair: Heather Murdoch, US Army Research Lab

8:30 AM

Mitigating Radiation-Induced Segregation and Radiation-Induced Precipitation via Materials Nanoengineering: Enrique Martinez Saez¹; Oriane Senninger²; Alfredo Caro¹; Frédéric Soisson³; Maylise Nastar³; Blas Uberuaga¹; ¹LANL; ²Northwestern University; ³CEA-Saclay

8:50 AM

Atomic Investigation of the Role of Alloying Elements on the Thermodynamics of Vacancies and Vacancy-Hydrogen Clusters at Symmetric Tilt Boundaries in Nickel: Xiao Zhou¹; Jun Song¹; ¹McGill University

9:10 AM

Atomic-Level Mechanisms of Grain Boundary Segregation and Embrittlement in Nickel-Sulfur: *Tao Hu*¹; Shengfeng Yang¹; Naixie Zhou¹; Yuanyao Zhang¹; Jian Luo¹; ¹University of California San Diego

9:30 AM

Cr Segregation on Grain Boundary Character and Intrinsic Stress Evolution in Fe(Cr) Nanocrystalline Films: Xuyang Zhou¹; Tyler Kaub¹; Richard Martens¹; Gregory Thompson¹; ¹The University of Alabama

9:50 AM Break

10:10 AM Invited

Microstructure Design of Mechanically Alloyed Materials: Zachary Corde-ro¹; Christopher Schuh¹; ¹MIT

10.50 AM

Wetting of Three Different Cu-Nb Interfaces by He Precipitates: Sanket Navale¹; Irene Beyerlein²; Michael Demkowicz¹; ¹Massachusetts Institute of Technology; ²Los Alamos National Laboratory

11:10 AM

Atomistic Parameterization of Analytical Descriptions of H Segregation: Christopher O'Brien¹; Stephen Foiles¹; ¹Sandia National Laboratories

11:30 AM

The Influence of Local Stress States on Hydrogen Segregation at Grain Boundaries in FCC Metals: Xiao Zhou¹; Jun Song¹; ¹McGill University

Magnesium Technology 2016 — Texture and Formability

Sponsored by:TMS Light Metals Division, TMS: Magnesium Committee Program Organizers: Alok Singh, National Institute for Materials Science; Kiran Solanki, Arizona State University; Michele Manuel, University of Florida; Neale Neelameggham, Ind LLC

Thursday AM Room: 204

February 18, 2016 Location: Music City Center

Session Chairs: Jan Bohlen, Helmholtz-Zentrum Geesthacht; Nitin Chandola, University of Florida

8:30 AM

In-situ EBSD Observations of Recrystallization and Texture Evolution in Cold Rolled Mg-2Zn-xCe (wt%): Ajith Chakkedath¹; David Escobar²; Jan Bohlen³; Sangbong Yi³; Dietmar Letzig³; Carl Boehlert⁴; ¹Michigan State

University; ²Technical University of Madrid, Spain; ³Magnesium Innovation Centre MagIC; ⁴ Michigan State University; IMDEA Materials Institute, Spain

8:50 AM

Non-basal Texture Evolution during Annealing of Cold-worked Magnesium Alloy: *Abu Syed Humaun Kabir*¹; Jing Su¹; In-Ho Jung¹; Stephen Yue¹; ¹McGill University

9:10 AM

On Modeling the Mechanical Behavior and Texture Evolution of Rolled AZ31 Mg for Complex Loadings Involving Strain Path Changes: *Nitin Chandola*¹; Crystal Pasiliao²; Oana Cazacu¹; Benoit Revil-Baudard¹; ¹University of Florida; ²Air Force Research Laboratory

9:30 AM

Formability of Extruded Magnesium Sheet Alloys with Different Textures: Jan Bohlen¹; Oliver Schlung¹; Sven Gall²; Sören Müller²; Dietmar Letzig¹; ¹Helmholtz-Zentrum Geesthacht; ²TU Berlin

9:50 AM Break

10:10 AM

Prediction of Magnesium Alloy Formability: The Role of Texture: *Victoria Miller*¹; Tracy Berman²; Irene Beyerlein³; Tresa Pollock¹; ¹University of California Santa Barbara; ²University of Michigan; ³Los Alamos National Laboratory

10:30 AM

Texture Evolution and Mechanical Properties of Mg-Li Alloy during Thermo-mechanical Process: Yun Zou¹; Yang Zhang¹; Yu Zhao¹; Songsong Xu¹; Hao Guo¹; Milin Zhang¹; Zhongwu Zhang¹; ¹Harbin Engineering University

10:50 AM

Effect of Dynamic Recrystallization on Microstructure Evolution and Texture Weakening During Annealing of High Speed Rolled AZ31 Magnesium Alloy Sheets: Jing Su¹; Mehdi Sanjari¹; Abu Syed Humaun Kabir¹; In-Ho Jung¹; Stephen Yue¹; ¹McGill

11:10 AM

Tailored Hybrid Magnesium Profiles Produces by Direct Extrusion: Rene Nitschke¹; Sven Gall¹; *Soeren Mueller*¹; ¹TU Berlin

Material Behavior Characterization via Multi-Directional Deformation of Sheet Metal — Session III

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: John Carsley, General Motors Research & Development; Daniel Coughlin, Los Alamos National Laboratory; Myoung-Gyu Lee, Korea University; Youngung Jeong, National Institute of Standards and Technology; Piyush Upadhyay, Pacific Northwest National Laboratory

Thursday AM Room: 104A

February 18, 2016 Location: Music City Center

Session Chairs: Piyush Upadhyay, Pacific Northwest National Laboratory; John Carsley, General Motors Co

8:30 AM

Modeling Anisotropic Hardening and Nonlinear Elasticity under Loading Path Change: Myoung-Gyu Lee¹; Jeong-Yeon Lee¹; F. Barlat²; Jinwoo Lee³; ¹Korea University; ²POSTECH; ³Korea Institute of Materials Sicnece

9:00 AM

An Experimental and Microstructural Investigation of Biaxial Bauschinger Effects in Sheet Metals: Markus Härtel¹; Martin Wagner¹; ¹Technische Universität Chemnitz

9:30 AM

Multi-scale Analysis of Springback in Microforming of Thin Nickel Sheets: Ziwei Zeng¹; Mitica Afteni²; Kaifeng Wang¹; *Mihaela Banu*¹; ¹University of Michigan; ²University Dunarea de Jos of Galati

10:00 AM Break

10:30 AM

Evalution of Formability in Aluminum Alloys across Strain Rates Using Digital Image Correlation Technique: Piyush Upadhyay¹; Aashish Rohatgi¹; Yuri Hovanski¹; Elizabeth Stephens¹; David Catalini¹; Rich Davies¹; ¹Pacific Northwest National Laboratory

11:00 AM

Determination of Bending Limit Curves for Aluminium Alloy AA6014-T4: An Experimental Approach: *Ipsita Das*¹; Krishna Saxena¹; Jyoti Mukhopadhyay¹; ¹Indian Institute of Technology Gandhinagar, Ahmedabad, India

11:30 AM

Sensitivity Analysis of the Bauschinger Behavior on Bending Springback for Prestrained Sheets: Shun-lai Zang¹; ¹Xi'an Jiaotong University

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Structural Materials V

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Thursday AM Room: 101A

February 18, 2016 Location: Music City Center

Session Chairs: Kumar Sridharan, University of Wisconsin - Madison; Indrajit Charit, University of Idaho

8:30 AM

The Status of a Quantitative Multiscale Master Model of Helium-Displacement Damage Interaction Effects on Cavity Evolution in Fusion Structural Alloys: *Takuya Yamamoto*¹; G. Robert Odette¹; Yuan Wu¹; ¹Univ. of California Santa Barbara

8:50 AM

Simulation of Hafnium-Aluminum Thermal Neutron Absorber Material: Donna Guillen¹; William Harris²; ¹Idaho National Laboratory; ²North Carolina State University

9:10 AM

Microstructure Characterization of P91 and P92 Steels and Weld Metals: Mustafa Acarer¹; Fikret Kabakci²; Selcuk Keskinkilic³; Filiz Kumdali Acar⁴; Ismail Hakki Kara⁵; ¹Selcuk University; ²Bulent Ecevit University; ³Gedik Kaynak; ⁴Gedik Kaynak; ⁵Karabuk University

9:30 AM

Solid-state Diffusion Bonding of Ni-base Hastelloy-X: Injin Sah¹; Chan Soo Kim¹; Yong-Wan Kim¹; Eung-Seon Kim¹; Min-Hwan Kim¹; ¹KAERI

9:50 AM Break

10:10 AM

Fracture Criteria for Liquid Sodium Embrittlement in T91 Martensitic Steel: Samuel Hemery¹; Clotilde Berdin²; Thierry Auger³; ¹Institut Pprime; ²Univ. Paris - Sud; ³CNRS

10:30 AM

Thermal Oxidation Behavior of Nuclear Graphite Powder: Eung-Seon Kim¹; In-Jin Sah¹; Min-Hwan Kim¹; ¹Korea Atomic Energy Research Institute

10:50 AM

The Study of Irradiation Resistance Behavior of the New Generation Reactor Pressure Vessel Steel A508-IV: Xue Bai¹; Sujun Wu¹; Peter Liaw²; ¹Beihang University; ²University of Tennessee, Knoxville

Materials in Clean Power Systems IX: Durability of Materials — Material Characterization and Degradation Mechanisms

Sponsored by:TMS Extraction and Processing Division, TMS Structural Materials Division, TMS Light Metals Division, TMS: Energy Committee, TMS: High Temperature Alloys Committee

Program Organizers: Sebastien Dryepondt, Oak Ridge National Laboratory; Peter Hosemann, University of California Berkeley; Kinga Unocic, ORNL; Paul Jablonski, US Department of Energy; Joseph Licavoli, Department of Energy; Donna Guillen, Idaho National Laboratory

Thursday AM Room: 104D

February 18, 2016 Location: Music City Center

Session Chairs: Unocic Kinga, ORNL; Joseph Licavoli, NETL

8:30 AM Invited

High Pressure Steam Oxidation of Boiler and Turbine Alloys: *Gordon Holcomb*¹; Joseph Tylczak¹; Casey Carney²; ¹National Energy Technology Laboratory; ²AECOM and NETL

9:00 AM Invited

High Temperature Corrosion in Molten Salts & Molten Salts Technology: Past, Present and Future: Francisco Perez Trujillo¹; ¹Universidad Complutense de Madrid

9:30 AN

Computational Modeling of Metal Oxidation: Youhai Wen¹; ¹National Energy Technology Laboratory

9:50 AM

Weldability of Gradient Tubes for High Temperature Application: *Peter Brziak*¹; ¹Welding Research institute - institute industrial of SR

10:10 AM Break

10:30 AM

Long-term Microstructural Stability in Haynes 282 after High Temperature Exposure: *Jeffrey Hawk*¹; John Sears¹; Paul Jablonski¹; ¹U.S. Department of Energy, National Energy Technology Laboratory

10:50 AM

Evaluation of the Creep-Rupture Behavior of Haynes Alloy 282® for Advanced Ultrasupercritical Boiler Service: Peter Tortorelli¹; Kinga Unocic¹; H. Wang¹; Michael Santella¹; ¹Oak Ridge National Laboratory

11:10 AM

Cyclic Behavior and Fatigue Properties for Haynes 282: *Kyle Rozman*¹; John Sears¹; Jeffrey Hawk¹; Paul Jablonski¹; ¹U.S. Department of Energy, National Energy Technology Laboratory

Materials Research in Reduced Gravity — Electromagnetic Levitation (EML)

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee

Program Organizers: Douglas Matson, Tufts University; Hani Henein, University of Alberta; Robert Hyers, Boston Electrometallurgical Corp.; Ivan Egry, DLR

Thursday AM Room: 104C

February 18, 2016 Location: Music City Center

Session Chairs: Ivan Egry, RWTH Aachen University; James Patton Downey, NASA

8:30 AM

Installation and Operation of the Electromagnetic Levitator EML on ISS and Experiment Preparation: Stephan Schneider¹; Angelika Diefenbach²; Julianna Schmitz¹; Sandra Schumann²; ¹DLR / Institut für Materialphysik im Weltraum; ²DLR / MUSC

9:00 AM

The Electromagnetic Levitator on-board the ISS: Capabilities, On-Orbit Performance and Future Enhancements.: Achim Seidel¹; Wolfgang Soellner¹; ¹Airbus Defence and Space

9:20 AM

Electromagnetic Levitation Processing on the International Space Station: Douglas Matson¹; ¹Tufts University

9:40 AM

Thermophysical and Kinetic Properties of Fe60Cr21Ni19 - Measurements under Reduced Gravity Conditions: *Douglas MATSON*¹; Robert Hyers²; Jonghyun LEE²; Rada Novakovic³; Enrica Ricci⁴; Jacqueline Etay⁵; Rainer Wunderlich⁶; Hans-Jörg Fecht⁵; ¹Tufts University; ²University of Massachusetts; ³IENI-CNR; ⁴IENI-CNR; ⁵CNRS, SIMAP-EPM; ⁶Universität Ulm

10:00 AM Break

10:20 AM

A Review on Thermophysical Property Measurements of Liquid Metallic Drops on Parabolic Flights, Texus Rocket Flights and the International Space Station

: Hans Fecht1; Rainer Wunderlich1; 1Ulm University

10:50 AM

Influence of Convection on the Dendrite/Eutectic Growth Velocity in Cu-Zr Alloys (project MULTIPHAS): Stefanie Koch¹; Jan Gegner²; *Peter Galenko*¹; Markus Rettenmayr¹; Dieter Herlach³; ¹Friedrich-Schiller-University; ²German Aerospace Center; ³Ruhr-University

11.10 AM

Growth Morphology and Velocity of Undercooled Fe-B Alloys under Different Fluid Flow Conditions: Christian Karrasch¹; Thomas Volkmann²; Matthias Kolbe²; Jianrong Gao³; Dieter Herlach²; ¹Ruhr-University Bochum; ²German Aeroscpace Center DLR; ³Northeastern University

11:30 AM

Dendritic Growth Kinetics in Undercooled Melts of Pure Fe under Static Magnetic Fields: *Jianrong Gao*¹; Weina Zhao¹; Andrew Kao²; Koulis Pericleous²; Peter Galenko³; Dmitri Alexandrov⁴; ¹Northeastern University; ²University of Greenwich; ³Friedrich Schiller University of Jena; ⁴Ural Federal University

11:50 AM

Metallic Liquid Structures, Properties, and Phase Transitions – Ground-Based Studies for ISS Experiments: Ken Kelton¹; Anup Gangopadhyay¹; Matthew Blodgett¹; ¹Washington University

Mechanical Behavior at the Nanoscale III — Mechanical Behavior of Nanoscale Structures

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Daniel Gianola, University of California, Santa Barbara; Ting Zhu, Georgia Institute of Technology; Julia Greer, California Institute of Technology; Harold Park, Boston University; Garritt Tucker, Drexel University; Jiangwei Wang, University of Pittsburgh

Thursday AM Room: 214

February 18, 2016 Location: Music City Center

Session Chairs: Jiangwei Wang, University of Pittsburgh; Jonathan Zimmerman, Sandia National Laboratories

8:30 AM

Dislocation Dynamics in Nanopillars: Strengthening and Abrupt Plastic Event Statistics: Stefanos Papanikolaou¹; ¹Johns Hopkins University

8:50 AM

Modeling Strain Softening and Failure of Single Wall Carbon Nanotube (SWCNT) Membranes: Ankit Gupta¹; Elizabeth Holm¹; ¹Carnegie Mellon University

9:10 AM

Structure-mechanical Property-deformation Mechanism Relationship in Nanotwinned FCC Metallic Nanowires: *Jiangwei Wang*¹; Frederic Sansoz²; Ting Zhu³; Ze Zhang⁴; Scott X. Mao¹; ¹University of Pittsburgh; ²The University of Vermont; ³Georgia Institute of Technology; ⁴Zhejiang University

9:30 AM

The Effect of Pre-existing Defects on the Strength and Deformation Behavior of a-Fe Nanopillars: *Kelvin Xie*¹; Xiaozhou Liao²; Julie Cairney²; Simon Ringers²; ¹Johns Hopkins University; ²The University of Sydney

9:50 AM

Approaching the Theoretical Elasticity Limit and Liquid-drop Behaviors in Nano-Scale Metals: Xiaodong Han¹; ¹Beijing University of Technology

10:10 AM Break

10:30 AM

Measuring the Adhesion Energy of Carbon Nanotube Films to Substrates via Microscratch Testing: Andrew Westover¹; Naoki Hayakawa²; Rong Xiang²; Kehang Cui²; Kensuke Tsuchiya²; Shigeo Maruyama²; Cary Pint¹; ¹Vanderbilt University; ²University of Tokyo

10:50 AM

How Microstructure and Temperature Influence the Small Scale Deformation Behavior of Au: Verena Maier¹; Alexander Leitner²; Reinhard Pippan¹; Daniel Kiener²; ¹Austrian Academy of Science; ²Montanuniversität Leoben

11:10 AM

Nanolamellar Tantalum Carbides: Structure and Properties: Christopher Weinberger¹; Bradford Schultz²; Hang Yu¹; HeDong Lee³; Lawrence Matson⁴; Gregory Thompson²; ¹Drexel University; ²University of Alabama; ³UES, Inc.; ⁴Wright Patterson Air Force Base

11:30 AM

A Direct Comparison of Length Scale Strengthening from Different Dimensions: Xiaodong Hou¹; ¹National Physical Lab, UK

Nanostructured Materials for Nuclear Applications — Session VII

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Nuclear Materials Committee, TMS: Nanomaterials Committee, TMS: Nanomaterials Behavior Committee

Program Organizers: Cheng Sun, Los Alamos National Laboratory; Michael Demkowicz, Massachusetts Institute of Technology; Amit Misra, University of Michigan; Osman Anderoglu, Los Alamos National Laboratory; Khalid Hattar, Sandia National Laboratories

Thursday AM Room: 101C

February 18, 2016 Location: Music City Center

Session Chairs: Cheng Sun, Los Alamos National Laboratory; Amit Misra, University of Michigan

8:30 AM Invited

Modeling Extreme Levels of Helium Implantation into Tungsten Divertors for Fusion Reactors: Brian Wirth¹; ¹University of Tennessee

9:00 AM

Effect of Tube Processing Methods on Microstructure and Mechanical Properties of Nanostructured Ferritic Alloys: Eda Aydogan¹; O. Anderoglu¹; S.A. Maloy¹; S.C Vogel¹; G. Odette²; D.T. Hoelzer³; J.J. Lewandowski⁴; I.E. Anderson⁵; J.R. Rieken⁵; ¹Los Alamos National Laboratory; ²University of California, Santa Barbara; ³Oak Ridge National Laboratory; ⁴Case Western Reserve University; ⁵Ames Laboratory

9:20 AM

Response of Equal Channel Angular Extrusion Processed Ultrafine Grained T91 Steel Subjected to High Temperature Heavy Ion Irradiation: *Miao Song*¹; Di Chen¹; Yuedong Wu²; Youxing Chen¹; Lin Shao¹; Yong Yang²; Karl Hartwig¹; Xinghang Zhang¹; ¹Texas A&M University; ²University of Florida

9:40 AM

Effect of Annealing on Microstructure and Mechanical Properties of Fe-14Cr-YWT Nanostructured Ferritic Alloy: Md Ershadul Alam¹; Soupitak Pal¹; David Hoelzer²; Stuart Maloy³; G. Odette¹; ¹University of California, Santa Barbara; ²Oak Ridge National Laboratory; ³Los Alamos National Laboratory, Los Alamos, NM

Phase Transformations and Microstructural Evolution — Phase Transformations - Extreme Conditions

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Thursday AM

Room: 107B

February 18, 2016

Location: Music City Center

Session Chair: MOHSEN ASLE ZAEEM, Missouri University of Science and Tech-

nology

8:30 AM Invited

An Overview of Lower Temperature Precipitation under Irradiation: Mechanisms, Models, Consequences and Applications: G. Robert Odette¹; ¹University of California Santa Barbara

9:00 AM

Effect of Non-wetting Nanoparticles on Precipitation Evolution: *Shipeng Shu*¹; Xuan Zhang²; Pascal Bellon¹; Robert S. Averback¹; ¹University of Illinois at Urbana-Champaign; ²Argonne National Lab

9:20 AM

In Situ Characterization and Phase Field Modeling of Irradiation-Induced Grain Growth: Daniel Bufford¹; Fadi Abdeljawad¹; Stephen Foiles¹; Khalid Hattar¹; ¹Sandia National Laboratories

9:40 AM Invited

Japan Institute of Metals International Scholar: Effective Utilization of e-martensite in Fe-high Mn Austenitic Steels: Aspects of Deformation-induced Reverse Transformation: *Motomichi Koyama*¹; T. Sawaguchi²; Kaneaki Tsuzaki³; ¹Kyushu University; ²National Institute for Materials Science; ³Kyushu University; National Institute for Materials Science

10:00 AM Break

10:20 AM

Shear-induced Phase Transition in Zr via Severe Plastic Deformation: *Hui Wang*¹; Wojciech Dmowski¹; Yoshihiko Yokoyama²; Koichi Tsuchiya³; Takeshi Egami¹; ¹University of Tennessee, Knoxville; ²Tohoku University; ³National Institute for Materials Science

10:40 AM

Shock-Induced Phase and Microstructural Changes in Metallic Glass: Alex Bryant¹; Christopher Wehrenberg²; Faisal Alamgir¹; Samson Lai¹; Karren More³; Jonathan Poplawsky³; Bruce Remington²; Naresh Thadhani¹; ¹Georgia Institute of Technology; ²Lawrence Livermore National Laboratory; ³Oak Ridge National Laboratory

11:00 AM

Shock Induced Amorphization and Nanocrystallization in Silicon: *Shiteng Zhao*¹; Bimal Kad¹; Eric Hahn¹; Tane Remington¹; Bruce Remington²; Christopher Wehrenberg²; Karren More³; Marc Meyers¹; ¹University of California, San Diego; ²Lawrence Livermore National Laboratory; ³Oak Ridge National Laboratory

11:20 AM

Shot Peening Induced Microstructural Stability of a High Nb Containing TiAl Alloy during High Temperature Exposure: Lu Fang¹; Xian Fei Ding¹; Junpin Lin¹; ¹University of Science and Technology Beijing

11:40 AM Invited

Titanium Aluminides and Steels under Extreme Conditions: *Klaus-Dieter Liss*¹; Ayumi Shiro²; Ken-ichi Funakoshi³; Mark Reid⁴; Hiroshi Suzuki²; Takahisa Shobu²; Yuji Higo⁵; Hiroyuki Saitoh²; Shuoyuan Zhang³; Yo Tomota⁶; Koichi Akita²; ¹Australian Nuclear Science and Technology Organisation + University of Wollongong; ²Japan Atomic Energy Agency; ³CROSS-Tokai; ⁴University of Wollongong + Australian Nuclear Science and Technology Organisation; ⁵Japan Synchrotron Radiation Research Institute; ⁶Ibaraki Univ.

Phase Transformations and Microstructural Evolution — Phase Transformations in Shape Memory and Magnetic Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Thursday AM Room: 109

February 18, 2016 Location: Music City Center

Session Chair: Peter Anderson, The Ohio State University

8-30 AM

H-phase Precipitation and its Influence on Shape Memory Properties in Ni-Ti-Zr and Ni-Ti-Hf Alloys: Suzanne Kornegay¹; Monica Kapoor¹; Ronald Noebe²; Gregory Thompson¹; ¹The University of Alabama; ²NASA Glenn Research Center

8:50 AM

Magnetic Domain Structure Studies in Ferromagnetic Alloys: Isha Kashyap¹; Marc De Graef¹; ¹Carnegie Mellon University

9:10 AM

Mechanical Properties of NiMnGa Alloys as a Function of Composition and Phase Transformations Measured by Nanoindentation: Le Zhou¹; Anit Giri²; Kyu Cho³; Yongho Sohn¹; ¹University of Central Florida; ²TKC Global ; ³US Army Research Laboratory

9.30 AM

Microscale Studies of Transformation Mechanisms in SMAs: Michael Kimiecik¹; J Wayne Jones¹; Samantha Daly¹; ¹University of Michigan

10:00 AM Break

10:20 AM

Thermomechanical Characterization of Shape Memory Alloy Mode I Fracture: William LePage¹; John Shaw¹; Samantha Daly¹; ¹University of Michigan

10:40 AM

Transformation and Deformation Characterization of NiTiHf and NiTiAu High Temperature Shape Memory Alloys: Lee Casalena¹; Daniel Coughlin²; Fan Yang¹; Xiang Chen¹; Santo Padula³; Glen Bigelow³; Darrell Gaydosh³; Othmane Benafan³; Ronald Noebe³; Yunzhi Wang¹; Peter Anderson¹; Michael Mills¹; ¹The Ohio State University; ²Los Alamos National Laboratory; ³NASA Glenn Research Center

11·10 AN

The Influence of Nanoscale Precipitates on Phase Transformations in Shape Memory Alloys: *Peter Anderson*¹; Harshad Paranjape²; Kathryn Esham¹; Lee Casalena¹; Xiang Chen¹; Michael Mills¹; Yunzhi Wang¹; Ronald Noebe³; ¹The Ohio State University; ²Colorado School of Mines; ³NASA Glenn Research Center

Ultrafine Grained Materials IX — High Pressure Torsion Studies II

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Thursday AM Room: 209B

February 18, 2016 Location: Music City Center

Session Chairs: Ruslan Valiev, Ufa State Aviation Technical University; Milos Janecek. Charles University

8:30 AM Invited

High-Pressure Torsion and Nanoindentation: *Jae-il Jang*¹; In-Chul Choi²; Dong-Hyun Lee¹; Megumi Kawasaki¹; Terence Langdon³; ¹Hanyang University; ²Karlsruhe Institute of Technology; ³University of Southern California

9:00 AM Invited

Recent Findings in Paradox of Severe Plastic Deformation: Ruslan Valiev¹;
¹Ufa State Aviation Technical University

9:20 AM

Mechanical Properties of Pure Titanium and a Ti-45Nb Alloy: A Comparative Study: Bernhard Völker¹; Nikolaus Jäger¹; Ajit Panigrahi²; Michael Zehetbauer²; Reinhard Pippan³; Anton Hohenwarter¹; ¹Department of Materials Physics, Montanuniversität Leoben; ²Physics of Nanostructured Materials, Faculty of Physics, University of Vienna; ³Erich Schmied Institute of Materials Science, Austrian Academy of Sciences

9:40 AM

Microstructural Evolution and Mechanical Properties of a Titanium Alloy Processed by High-pressure Torsion: Shima Sabbaghianrad¹; Terence Langdon¹; ¹University of Southern California

10:00 AM Break

10:20 AM Invited

Production of Nanograined Ge Using Severe Plastic Deformation under High Pressure: *Yoshifumi Ikoma*¹; Takamitsu Toyota¹; Katsuhiko Saito²; Qixin Guo²; Zenji Horita¹; ¹Kyushu University; ²Saga University

10:50 AM

Synthesis of a Metal Matrix Nanocomposite through the Application of High-pressure Torsion: *Megumi Kawasaki*¹; Byungmin Ahn²; Han-Joo Lee¹; Alexander Zhilyaev³; Terence Langdon⁴; ¹Hanyang University; ²Ajou University; ³Institute for Metals Superplasticity Problems; ⁴University of Southern California

11:10 AM

Microstructure Evolution, Defect Structure and Mechanical Properties in Ultrafine-grained MgGd Alloy Processed by High Pressure Torsion: Miloš Janecek¹; Michaela Poková¹; Jitka Stráská¹; Jakub Cížek¹; Radomír Kužel¹; Jung Gi Kim²; Hyoung Seop Kim²; ¹Charles University; ²POSTECH Pohang

11:30 AM

Effect of Hydrostatic Extrusion and High Pressure Torsion on Grain Refinement and High-angle Grain Boundaries in Al5Mg Alloy: Peter Bazarnik¹; Malgorzata Lewandowska¹; Yi Huang²; Terence Langdon³; ¹Warsaw University of Technology, Faculty of Materials Science; ²Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK; ³Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California

11:50 AM

Hydrogen Diffusion in Ultrafine-Grained Iron Processed by High-Pressure Torsion: *Hideaki Iwaoka*¹; Makoto Arita¹; Zenji Horita¹; ¹Kyushu University

Ultrafine Grained Materials IX — Thin Films and Functional Properties

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Thursday AM Room: 209A

February 18, 2016 Location: Music City Center

Session Chairs: Indranil Roy, Schlumberger; Nicole Overman, Pacific Northwest National Laboratory

8:30 AM Invited

Study of Dynamic Recovery in Nanocrystalline Metals Using In-situ X-ray Diffraction and MD Simulations: Zhen Sun¹; Steven Van Petegem¹; Christian Brandl²; Manas Upadhyay¹; Karsten Durst³; Wolfgang Blum⁴; Helena Van Swygenhoven¹; ¹Paul Scherrer Institut; ²Karlsruhe Institute of Technology; ³Technische Universität Darmstadt; ⁴University Erlangen-Nürnberg

9:00 AV

Sputter Deposited Nickel-Molybdenum-Tungsten Thin Films with High Strength and Ductility for Use in Metal MEMS Applications: *Gi-Dong Sim*¹; K.Madhav Reddy¹; Gianna Valentino¹; Jessica Krogstad¹; Timothy Weihs¹; Kevin Hemker¹; ¹Johns Hopkins University

9:20 AM

Insights into the Thermal Stability of Nanocrystalline Pt(Au,Pd) films: Christopher O'Brien¹; Blythe Clark¹; Stephen Foiles¹; ¹Sandia National Laboratories

9:40 AM

Nanostructured Al and Cu Alloys with Superior Strength and Electrical Conductivity: *Maxim Murashkin*¹; Ilchat Sabirov²; Xavier Sauvage³; Ruslan Valiev¹; ¹Ufa State Aviation Technical University; ²IMDEA Materials Institute; ³Université et INSA de Rouen

10:00 AM Break

10:20 AM

Sensitization and Corrosion Properties of Sputtered Al-Mg Alloy: *Jianfeng Yan*¹; Andrea Hodge¹; ¹University of Southern California

10.40 AM

Engineering High Strength Nanostructured Water Reactive Alloys for Multi Stage Stimulation: *Indranil Roy*¹; Gregoire Jacob¹; Rashmi Bhavsar¹; ¹Schlumberger

7th International Symposium on High Temperature Metallurgical Processing — Treatment and Recycling of Solid Slag/Wastes

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Thursday PM Room: 105B

February 18, 2016 Location: Music City Center

Session Chairs: Tao Jiang, Central South University; Matthew Andriese, Michigan Technological University

2:00 PM Introductory Comments

2:05 PM

Development of Reliable Viscosity Model for Iron Silicate Slags: Mao Chen¹; Zhixiang Cui²; Leonel Contreras³; *Baojun Zhao*¹; ¹The University of Queensland; ²Dongying Fangyuan Nonferrous Metals Co., Ltd; ³National Copper Corporation of Chile

2:25 PM

Removal of Iron Impurity from Zinc Calcine after Magnetization Roasting: *Junwei Han*¹; Wei Liu¹; Wenqing Qin¹; Fen Jiao¹; Dawei Wang¹; ¹Central South University

2:45 PM

The Electrochemical Synthesis of TiC Reinforced Fe Based Composite Powder from Titanium-rich Slag: Qian Xu¹; ¹Shanghai University

3:05 PM

Preparation of High-quality Titanium-rich Material from Titanium Slag with High Ca and Mg Content by Activation Roasting Process: Wenting Duan¹; Feng Chen¹; Fuqiang Zheng¹; Tao Jiang¹; Yufeng Guo¹; ¹Central South University

3:25 PM Break

3:40 PM

Preparation of TiC from Titanium Bearing Blast Furnace Slag By Carbothermal Reduction in Vacuum: Fangqing Yin¹; Zhengfeng Qu¹; Mengjun Hu¹; Qingyu Deng¹; *Meilong Hu*¹; ¹Chongqing University

4:00 PM

Study on Preparation of Activated Carbon from Hawaii Nut Shell via Steam Physical Activation: *Jianbo Lan*¹; Shenghui Guo¹; Hongying Xia¹; Libo Zhang¹; Jinhui Peng¹; ¹State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan, China

4:20 PM

New EAF Dust Treatment Process by Lime Addition and Ammonia-Leaching: Zeqiang Xie¹; Yufeng Guo¹; Tao Jiang¹; Feng Chen¹; Yujia Tan¹; ¹School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling — Characterization Techniques, Environmental Interaction and Materials Development

Sponsored by: TMS: Nuclear Materials Committee

Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California Berkeley; Todd Allen, Idaho National Laboratory; Elaine West, Knolls Atomic Power Laboratory

Thursday PM Room: 101B

February 18, 2016 Location: Music City Center

Session Chair: James Cole, Idaho National Laboratory

2:00 PM

Accelerating Post-irradiation Examination with Latest-generation Electron Microscopy Hardware and Software: Chad Parish¹; Kevin Field¹; Philip Edmondson¹; Jeremy Busby¹; Keith Leonard¹; Yutai Katoh¹; David Hoelzer¹; Sebastien Dryepondt¹; Kurt Terrani¹; ¹Oak Ridge National Laboratory

2:20 PM

A Synchrotron Peak Broadening and Modelling Study of Proton-Irradiated Zircaloy-2: Thomas Seymour¹; Rory Hulse¹; Allan Harte¹; Philipp Frankel¹; Levente Balogh²; Mark Daymond²; Claire Murray³; Antoine Ambard⁴; Javier Romero⁵; Lars Hallstadius⁶; Christopher Race¹; Michael Preuss¹; ¹School of Materials, The University of Manchester; ²Department of Mechanical and Materials Engineering, Queen's University; ³Diamond Light Source; ⁴Electricite de France; ⁵Westinghouse Electric Company; ⁶Westinghouse Electric Sweden AB

2:40 PM

In-situ High-Energy X-ray Study of Neutron Irradiation Effect on Tensile Deformation Behavior of an Fe-Cr Model Alloy: Xuan Zhang¹; Chi Xu²; Meimei Li¹; Jun-Sang Park¹; Peter Kenesei¹; Jonathan Almer¹; Kun Mo¹; Carolyn Tomchik³; James Stubbins³; Jian Gan⁴; ¹Argonne National Lab; ²University of Florida; ³University of Illinois at Urbana-Champaign; ⁴Idaho National Lab

3:00 PM

Non-contact Determination of Ion Irradiation Effects in Pure Polycrystalline Copper: Cody Dennett¹; Sara Ferry¹; Vikash Mishra¹; Jeffrey Eliason¹; Alexei Maznev¹; Keith Nelson¹; Michael Short¹; ¹MIT

3:20 PM Break

3:40 PM

Non-contact Analysis of Dislocation Effects in Single Crystal Niobium and Vacancy Effects in Intermetallic NiAl: Sara Ferry¹; Cody Dennett¹; Michael Short¹; ¹MIT

4:00 PM

In Situ Corrosion Studies of Nuclear Claddings in Extreme Environments: Simerjeet Gill¹; Mohamed Elbakhshwan¹; Randy Weidner¹; Thomas Anderson¹; Arthur Motta²; Lynne Ecker¹; ¹Brookhaven National Lab; ²The Pennsylvania State University

4:20 PM

Evidence of Accelerated Oxide Dissolution during Irradiation-Corrosion of 316L Stainless Steel in Primary Water: Stephen Raiman¹; Gary Was¹; ¹University of Michigan

4:40 PM

Optimization of the Composition of FeCrAl Alloys for Radiation Environments: Kevin Field¹; Yukinori Yamamoto¹; Samuel Briggs²; Maxim Gussev¹; Kenneth Littrell¹; Xunxiang Hu¹; Richard Howard¹; Philip Edmondson¹; Kumar Sridharan²; Bruce Pint¹; Kurt Terrani¹; ¹Oak Ridge National Laboratory; ²University of Wisconsin - Madison

5:00 PM

Oxide Dispersion Strengthened Steel and Silicon Carbide Composite Cladding Materials: *Kathy Lu*¹; Zhihao Hu¹; Zhi Tang¹; ¹Virginia Tech

Aluminum Alloys, Processing and Characterization — Joining Technologies

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Steven Long, Kaiser Aluminum Corporation

Thursday PM Room: 201B

February 18, 2016 Location: Music City Center

Session Chair: Yuri Hovanski, Pacific Northwest National Laboratory

2:00 PM Introductory Comments

2:05 PM

Dissimilar Alloy Aluminum Tailor Welded Blanks: *Yuri Hovanski*¹; Piyush Upadhyay¹; Ayoub Soulami²; John Carsley³; Blair Carlson³; Susan Hartfield-Wunsch³; Mark Eisenmenger⁴; Tom Luzanski⁴; Dustin Marshall⁴; Brandon Landino⁵; Glenn Jarvis⁵; ¹Pacific Northwest National Laboratory; ²Pacific Northwest National Laboratories; ³General Motors; ⁴TWB Company; ⁵Alcoa

2:30 PM

Fusion Weld Joint Properties of Aluminum Base Metal 7020 and Filler Metals 5087, 5556A, and Al-Mg6-Zr: *John Chinella*¹; Nick Kapustka²; Seth Shira²; ¹U.S. Army Research Laboratory; ²Edison Welding Institute

2:55 PM

Finite Element and Neutron Diffraction Analysis of Self-piercing Riveting in Dissimilar Metal Sheets: Li Huangl; J. C. Moraes²; Dimitry Sediako³; J. Jordon²; Haiding Guo¹; Xuming Su⁴; ¹Nanjing University of Aeronautics and Astronautics; ²The University of Alabama; ³Canadian Neutron Beam Centre; ⁴Ford Motor Company

3:20 PM

Microstructure Evolution, Tensile Properties, and Thermo-Mechanical Modeling in Wrought and Cast Aluminum Alloys Fabricated by Friction Stir Processing and Welding: Yi Pan¹; Diana Lados¹; ¹Worcester Polytechnic Institution

3:45 PM

Important Considerations for Laser Marking an Identifier on Aluminum: Alex Fraser¹; Vincent Brochu¹; Daniel Gingras¹; Xavier Godmaire¹; ¹Laserax Inc

Aluminum Reduction Technology — Investigations and Design Using Computer Modelling

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Stephan Broek, Hatch Ltd

Thursday PM Room: 202C

February 18, 2016 Location: Music City Center

Session Chair: Vinko Potocnik, Vinko Potocnik Consultant Inc.

2:00 PM

Alumina Dissolution Modeling in Aluminium Electrolysis Cell Considering MHD Driven Convection and Thermal Impact: *Benoit Bardet*¹; Thomas Foetisch²; Steeve Renaudier¹; Jacques Rappaz²; Michel Flueck²; Marco Picasso²; ¹Rio Tinto Alcan; ²EPFL

2:25 PM

Numerical Investigation on the Impact of Anode Change on Heat Transfer and Fluid Flow in Aluminum Smelting Cells: *Qiang Wang*¹; Meijia Sun¹; Baokuan Li¹; Jianping Peng¹; Yaowu Wang¹; ¹Northeastern University of China

2:50 PM

On the Importance of Field Validation in the Use of Cell Thermal Balance Modeling Tools: *Marc Dupuis*¹; Richard Jeltsch²; ¹GéniSim Inc; ²Richard Jeltsch Consulting

3:15 PM Break

3:30 PM

Sideledge Facing Metal in Aluminium Reduction Cells: Freezing and Melting in the Presence of a Bath Film

: Asbjorn Solheim¹; Nils-Haavard Giskeodegard²; Nancy Holt²; ¹SINTEF; ²Hydro Aluminium

3:55 PM

Modelling of Metal Flow and Metal Pad Heaving in a Realistic Reference Aluminium Reduction Cell: *Jinsong Hua*¹; Magne Rudshaug¹; Christian Droste²; Robert Jorgensen³; Nils-Haavard Giskeodegard³; ¹Institute for Energy Technology; ²Hydro Aluminium Deutschland GmbH; ³Hydro Aluminium

Bulk Metallic Glasses XIII — Mechanical and Other Properties III

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Thursday PM Room: 101E

February 18, 2016 Location: Music City Center

Session Chairs: Dan Miracle, AF Research Laboratory; Dong Ma, Oak Ridge National Laboratory

2:00 PM Invited

Non-equilibrium Phase Transformation in Bulk Metallic Glasses: Dong Ma¹; Alexandru. D. Stoica¹; ¹ORNL

2:20 PM

Amorphization of Fe-6.25 at% C Alloy by Mechanical Alloying: A. Aning¹; Ibrahim Khalfallah¹; ¹Virginia Tech

2:40 PN

Comparison of the Entropy in Cu₅₀Zr₅₀ and Cu₄₆Zr₄₆Al₈: Hillary Smith¹; Andrew Hoff¹; Chen Li²; Tabitha Swan-Wood³; Chae-Reem Yang¹; Sarah Randolph³; Marios Demetriou¹; Brent Fultz¹; ¹California Institute of Technology; ²Oak Ridge National Laboratory; ³California State University Channel Islands

3:00 PM Invited

Monatomic Metallic Glasses and Their Deformation through Ultrafast Liquid Quenching: Scott Mao¹; Li Zhong¹; Jiangwei Wang¹; Ze Zhang²; Hongwei Sheng³; ¹University of Pittsburgh; ²Zhejiang University; ³George Mason University

3:20 PM Break

3:35 PM

Predictive Modeling of Glass-Forming Ability in the Ternary Fe-Nb-B System: David Dominikus Brennhaugen¹; Huahai Mao²; Lars Arnberg¹; Ragnhild Aune¹; ¹Norwegian University of Science and Technology; ²Royal Institute of Technology

3:55 PM

Role of Niobium Concentration on Glass Forming Ability and Crystallization Behavior of Zr-Ni-Al-Cu-Nb Bulk Metallic Glasses with Low Cu Concentration: Kevin Cole¹; Donald Kirk¹; Chandra Veer Singh¹; Steven Thorpe¹; ¹University of Toronto

4:15 PM Invited

Simultaneous Efficient Atomic Packing in Metallic Glass Structures: Kevin Laws¹; *Dan Miracle*²; Michael Ferry¹; ¹School of Materials Science and Engineering; ²AF Research Laboratory

4:35 PM

The Effect of Cooling Rate on the Local Elastic Fluctuations in Metallic Glass Alloys: *Peter Tsai*¹; Kelly Kranjc¹; Katharine Flores¹; ¹Washington University in St. Louis

4:55 PM

Enhanced Plasticity in Zr-Cu-Ag-Al-Be Bulk Metallic Glasses: Jianzhong Jiang¹; Q.P. Cao¹; J.B. Jin¹; X.D. Wang¹; D.X. Zhang¹; ¹Zhejiang University

5:15 PM

Microstructure and Wear Behavior of Laser Clad Multi-layered Fe-based Amorphous Coatings on Steel Substrates: *Tanaji Paul*¹; S. Habib Alavi¹; Sourabh Biswas¹; Sandip Harimkar¹; ¹Oklahoma State University

Characterization of Minerals, Metals, and Materials — Welding and Solidification

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Thursday PM Room: 103A

February 18, 2016 Location: Music City Center

Session Chairs: Yuanbo Zhang, Central South University; Ece Kosmaz, TEI-TUSAS Engine Industries, Inc.

2:00 PM

Humectation Kinetics of a Quasi-ceramic Matrix Destined to Fluxes for Submerged Arc Welding: Jesús Hernández Ruiz¹; Rafael Quintana Puchol¹; Lázaro Pino Rivero¹; ¹Universidad Central de Las Villas

2:20 PM

The Effect of Post-weld Heat Treatment on the Properties of TIG Welded Inconel 718 alloy: *Ece Canan Kosmaz*¹; Hüseyin Çimenoglu²; Rabia Günay¹; ¹TEI-TUSAS Engine Industries, Inc.; ²Istanbul Technical University

2:40 PM

Influence of Al and C Content on Mechanical Properties of Sub-rapidly Solidified Fe–20Mn–xAl–yC Low-density Steels: Libing Liu¹; Zheng Shen¹; Yang Yang¹; Chang Song¹; Qi Zhai¹; ¹Shanghai University

3.00 PM

Dynamic Deep Etching and Particle Extraction for High-strength Aluminium Alloys: *Tonica Boncina*¹; Franc Zupanic¹; ¹UNIVERSITY OF MARIBOR

3:20 PM

Optimization of TiNp/Ti Content for Si₃N₄/42CrMo Joints Brazed with Ag-Cu-Ti+TiNp Composite Filler: *Tianpeng Wang*¹; Jie Zhang¹; Chunfeng Liu¹; ¹harbin institute of technology

3:40 PM Break

3:55 PM

Effect of Interlayer Material on the Mechanical Properties of Diffusion Bonded Aluminum Joints: Sila Atabay¹; Arcan Dericioglu¹; ¹Middle East Technical University

4:15 PM

Preparating Magnetic Iron Ore from Copper Slag at Intermediate Temperature: Zhenya Xu¹; ¹Shanghai University

4:35 PM

Interface Analysis of Solid State Welded AA7075 to Ti64 Joints: Frank Balle¹; ¹University of Kaiserslautern

Computational Materials Discovery and Optimization: From 2D to Bulk Materials — Multiscale Modeling of Materials Properties

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Richard Hennig, University of Florida; Houlong Zhuang, Oak Ridge National Laboratory; Dallas Trinkle, University of Illinois, Urbana-Champaign; Eric Homer, Brigham Young University

Thursday PM Room: 207D

February 18, 2016 Location: Music City Center

Session Chair: To Be Announced

2:00 PM

Lithiation Kinetics of Crystalline Silicon Nanowires Regulated by Native Oxide Layer: A Molecular Dynamics Simulation Using ReaxFF.: Alireza Ostadhossein¹; Adri C.T. van Duin¹; ¹Pennsylvania State University

2:20 PN

Three-Dimensional Simulation of Intercalation-Induced Stress in LiCoO2 Cathode Reconstructed by Focused Ion Beam Tomography: Linmin Wu¹; Jing Zhang¹; ¹Indiana University-Purdue University Indianapolis

2:40 PM

A Machine Learning Approach to Bulk Property Prediction for the Laser Assisted Cold Spray Process: Aaron Birt¹; Joseph Dallarosa²; Diran Apelian¹; ¹Worcester Polytechnic Institute; ²IPG Photonics

3:00 PM

Development of First Principles Methods for the Thermal Characterization of Materials: Patrick Hermet¹; Philippe Jund¹; ¹Université Montpellier 2

3:20 PM Break

3:40 PM

Monte Carlo Simulation of Two-phase Film Growth on a Patterned Substrate: *Xiao Lu*¹; Boya Lai¹; David Laughlin²; Jian-Gang Zhu²; Jingxi Zhu¹; ¹Sun Yat-sen University-Carnegie Mellon University Joint Institute of Engineering,; ²Carnegie Mellon University

4:00 PM

Ionization Induced by Swift Heavy Ions in Metals and Strength of the Coulomb Explosion: Magda Caro¹; Alfredo Correa²; Artur Tamm¹; Alfredo Caro¹; ¹Los Alamos National Laboratory; ²Lawrence Livermore National Laboratory

4:20 PM

Modeling the Hydroforming of a Large Grain Niobium Tube: *Aboozar Mapar*¹; Thomas Bieler¹; Farhang Pourboghrat¹; ¹Michigan State University

High Entropy Alloys IV — Compositional Effect

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Thursday PM Room: 102B

February 18, 2016 Location: Music City Center

Session Chairs: Steven Zinkle, Oak Ridge National Laboratory; Hongbin Bei, Oak Ridge National Laboratory

2:00 PM Invited

Alloying Effects on the Microstructures and Mechanical Properties of Compositionally Complex Alloys: Zhenggang Wu¹; Hongbin Bei¹; ¹Oak Ridge National Laboratory

2:20 PM Invited

An Oxide Doped High Temperature High Entropy Alloy: *Shizhong Yang*¹; Liuxi Tan¹; Shengmin Guo¹; Yan Yang¹; ¹Southern University and A&M College

2:40 PM Invited

The Role of Extreme Compositional on the Physical Properties of High Entropy Alloy: Malcolm Stocks¹; Suffian Khan¹; German Samulyuk¹; Claudia Troparevsky¹; Markus Daene²; Julie Staunton³; Sebastian Wimmer⁴; ¹ORNL; ²Lawrence Livermore National Laboratory; ³University of Warwick; ⁴Ludwig-Maximilian-Universitaet

3:00 PM

Effects of Chemical Composition on Mechanical Behavior of CoCrFeMn-Ni Alloys: The Origins of High Strength of A3S Grade of Alloys: *Anna Fraczkiewicz*¹; Michal Mroz¹; Matthieu Lenci¹; Andras Borbely¹; Xavier Sauvage²; ¹MINES St-Etienne; ²Université et INSA de Rouen

3:20 PM Invited

High Entropy Brasses and Bronzes - Microstructure, Phase Evolution and Properties: Kevin Laws¹; Cody Crosby²; Aarthi Sridhar²; Patrick Conway¹; Leah Kolaodin¹; Mo Zhao²; Shifrah Aron-Dine²; Michael Ferry¹; Lori Bassman²; ¹University of New South Wales; ²Harvey Mudd College

3:40 PM Break

3:55 PM

Influence of Cr Removal on Alloying Behavior, Microstructure and Mechanical Behavior of Ultra-fine Grained Al0.8Ti0.2CoNiFeCr High Entropy Alloy: Zhiqiang Fu¹; Weiping Chen²; Baolong Zheng¹; Yaojun Lin³; Fei Chen³; Yizhang Zhou¹; Lianmeng Zhang³; Enrique Lavernia¹; ¹University of California, Irvine; ²South China University of Technology; ³Wuhan University of Technology

4:15 PM

Ion Irradiation Effects on Microstructure and Mechanical properties of a High Entropy Alloy: Anantha Phani Nimishakavi¹; Congyi Li²; Hongbin Bei¹; Keith Leonard¹; Steven Zinkle²; ¹Oak Ridge National Laboratory; ²University of Tennessee

4:35 PM

Ion Irradiation Induced Swelling in Ni-Based FCC Equiatomic Alloys: *Ke Jin*¹; Hongbin Bei¹; Yanwen Zhang¹; William Weber²; ¹Oak Ridge National Laboratory; ²University of Tennessee

4:55 PM Invited

High-Entropy Alloys Including 3d, 4d and 5d Transition Metals from the Same Group in the Periodic Table: *Akira Takeuchi*¹; Kenji Amiya¹; Takeshi Wada¹; Kunio Yubuta¹; ¹Tohoku University

5:15 PM Invited

Effect of Zr and Si Addition on Microstructure and Properties of AlFeNi-CuCrTi High Entropy Alloys: *Dai-hong Xiao*¹; P.F. Zhou¹; Peter K. Liaw²; ¹Central South University; ²University of Tennessee

High Entropy Alloys IV — Structures and Modeling

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Thursday PM Room: 102A

February 18, 2016 Location: Music City Center

Session Chairs: Karin Dahmen, University of Illinois at Urbana Champaign; Xie Xie, The University of Tennessee

2:00 PM Invited

A Model for the Deformation Mechanisms and the Serration Statistics of High Entropy Alloys: *Karin Dahmen*¹; Robert Carroll²; Xie Xie³; Shuying Chen³; Michael LeBlanc²; Jien Wei Yeh⁴; Chi Lee⁴; Che Wei Tsai⁴; Peter Liaw³; Jonathan Uhl⁵; ¹ University of Illinois at Urbana Champaign; ²University of Illinois at Urbana Champaign; ³University of Tennessee Knoxville; ⁴National Tsing Hua University, Hsinchu; ⁵private

2:25 PM Invited

Computational-Thermodynamics-Aided Development of Lightweight High Entropy Alloys: Chuan Zhang¹; Jun Zhu¹; Fan Zhang¹; Shuanglin Chen¹;

Chuan Zhang¹; Rui Feng²; Shuying Chen²; Haoyan Diao²; Peter Liaw²; ¹Computherm; ²University of Tennessee

2:45 PM Invited

Computational High-Entropy Alloy Design and Phase Equilibria of an Al-Co-Cr-Fe-Ni System: *Zhi Tang*¹; Oleg Senkov²; Jonathon Poplawsky³; Chuan Zhang⁴; Fan Zhang⁴; Carl Lundin¹; Peter Liaw¹; ¹The University of Tennessee; ²Air Force Research Laboratory; ³Oak Ridge National Laboratory; ⁴CompuTherm LLC

3:05 PM Invited

Computational Modeling of High-Entropy Alloys: Entropy Sources, Enthalpy, Elasticity, Electronic and Magnetic Properties: *Michael Gao*¹; Mike Widom²; Jeff Hawk¹; David Alman¹; ¹National Energy Technology Lab; ²Carnegie Mellon University

3:25 PM Invited

Thermally Activated Processes in a Crystal Plasticity Model for Deformation in Equiatomic Alloys: *Yanfei Gao*¹; Hongbin Bei²; Zhenggang Wu¹; George Pharr¹; ¹Univ of Tennessee; ²Oak Ridge National Laboratory

3:45 PM Break

4:00 PM Invited

Understanding High-Entropy Alloys Using a Cluster-based Structural Model: *Qing Wang*¹; Wen Lu¹; Chuang Dong¹; Peter K. Liaw²; ¹Dalian University of Technology; ²The University of Tennessee

4:20 PM Invited

Predicting the Formation of Single-phase High Entropy Alloys: A First Principles Approach: M. Claudia Troparevsky¹; ¹Oak Ridge National Laboratory

4:40 PM

First Principles Calculations of the Lattice Distortions and Elastic Constants of the HfNbTaTiZr Alloy: Maryam Ghazisaeidi¹; ¹Ohio State University

5:00 PM

Magnetic Treasure Maps for CoFeNi-based High-entropy-alloys from First-principles: Fritz Körmann¹; Duancheng Ma²; Blazej Grabowski²; Marcel Sluiter¹; ¹Delft University of Technology; ²Max-Planck-Institut für Eisenforschung GmbH

5:20 PM

A Novel, Single Phase, Refractory CrMoNbV High-entropy Alloy: Rui Feng¹; Michael Widom²; Michael Gao³; Peter Liaw¹; ¹Department of Materials Science and Engineering, The University of Tennessee, Knoxville; ²Department of Physics, Carnegie Mellon University; ³URS at National Energy Technology Laboratory (NETL)

Interface-driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry — Phase Transitions

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nanomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Fadi Abdeljawad, Sandia National Laboratories; Stephen Foiles, Sandia National Laboratories; Timofey Frolov, UC Berkeley; Emine Gulsoy, Northwestern university; Heather Murdoch, Army Research Lab; Mitra Taheri, Drexel University

Thursday PM Room: 108

February 18, 2016 Location: Music City Center

Session Chair: Fadi Abdeljawad, Sandia National Laboratories

2:00 PM Invited

Grain Boundary Adsorption Transition and Their Influence on Mass Transport and Microstructural Evolution: $Shen\ Dillon^1$; 1 University of Illinois at Urbana-Champaign

2:40 PM

The Temperature Dependence of Grain Boundary Energy in Yttria-doped Alumina: Effect of a Complexion Transition: *Madeleine Kelly*¹; Gregory Rohrer¹; ¹Carnegie Mellon University

3:00 PM

HREM Studies on the Nature of Morphological Changes in (110) Grain Boundaries of Silicon Phase Found in Sr-induced Al-Si Eutectic Alloys: Mohammad Shamsuzzoha¹; ¹University of Alabama

3:20 PM

Kinetics of Phase Transformation during Lithiation of Sn Electrode Materials: *Eric Chason*¹; Chun-Hao Chen¹; Srivatsan Hulikal¹; Allan Bower¹; Pradeep Guduru¹; ¹Div of Engineering

3:40 PM Break

4:00 PM

The Atomistic Mechanism of Interface Migration during a Diffusional Structural Phase Transition: Tao Yang¹; *Yipeng Gao*²; Dong Wang¹; Zhen Chen³; Yunzhi Wang²; ¹Xi'an Jiaotong University; ²The Ohio State University; ³Northwestern Polytechnical University

4:20 PM

The Role of Interfaces for Structural Transformations Among Austenite, Ferrite and Cementite in Fe-C Alloys: Xie Zhang¹; Tilmann Hickel¹; Jutta Rogal²; Joerg Neugebauer¹; ¹Max-Planck-Institut fuer Eisenforschung GmbH; ²Interdisciplinary Centre for Advanced Materials Simulation

4:40 PM

Allotropic HCP to BCC Ti Transitions in Ti/BCC Multilayered Thin Films: Li Wan¹; Xiao-xiang Yu¹; Gregory Thompson¹; ¹The University of Alabama

5:00 PM

Periodic Layers Structure in Mg/SiO₂ System Created in the Solid State: *Joanna Wojewoda-Budka*¹; Anna Wierzbicka-Miernik¹; Lidia Litynska-Dobrzynska¹; Boguslaw Onderka¹; ¹Polish Academy of Sciences

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Structural Materials VI

Sponsored by:TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Thursday PM

Room: 101A

February 18, 2016 Location: Music City Center

Session Chair: Isabella Van Rooyen, Idaho National Laboratory

2:00 PM

Characterization of Thermal Aging Embrittlement of Cast Duplex Stainless Steels by Mechanical Testing and FEM Modeling: Samuel Schwarm¹; R. Prakash Kolli¹; Sarah Mburu¹; Daniel Perea²; Sreeramamurthy Ankem¹; ¹University of Maryland, College Park; ²Pacific Northwest National Laboratory

2:20 PM

Development of Engineering Parameters for Low Pressure Diffusion Bonds of 316 SS Tube-to-Tube Sheet Joints for FHR Heat Exchangers: *Nils Haneklaus*¹; Rony Reuven; Cristian Cionea¹; Peter Hosemann¹; Per F. Peterson¹; ¹University of California, Berkeley

2:40 PM

SiC/SiC Composites for Current and Advanced Reactors: David Frazer¹; Joanna Szornel¹; Julie Tucker²; David Cahill³; Christian Deck⁴; Christina Back⁴; Kurt Terrani⁵; Steve Roberts⁶; David Armstrong⁷; Peter Hosemann¹; ¹University of California, Berkeley, ²Oregon State University; ³University of Illinois, Urbana Champaign; ⁴General Atomics; ⁵Oak Ridge National Laboratory; ⁶University of Oxford; ⁷University of Oxford

3:00 PM

Helium Behavior after Thermal Treatment in V and Fe-based Systems: Sofia Maria Gorondy Novak¹; François Jomard²; Michael Walls³; Nathalie Brun³; Frédéric Prima⁴; Hélène Lefaix-Jeuland¹; ¹CEA; ²Groupe d'Etude de la Matière Condensée (CNRS and Université de Versailles Saint-Quentin-en-Yvelines); ³Laboratoire de Physique des Solides (Université Paris-Sud); ⁴Institut de Recherche de Chimie Paris, CNRS – Chimie ParisTech

3:20 PM Break

3:40 PM

Microstructural Characterization of Creep-Fatigue Interactions in 9Cr-1MoV Steel and Welds: *Harrison Whitt*¹; Tyler Payton¹; Wei Zhang¹; Michael Mills¹; ¹The Ohio State University

4:00 PM

Thermomechanical Processing and Microstructural Evolution of Alloy 690, and Its Effects on Stress Corrosion Cracking: Cody Miller¹; Michael Kaufman¹; ¹Colorado School of Mines

4:20 PM

Investigation of Thermal Conductivity in Ion Irradiated Samples Using Laser Based Thermoreflectance Methods: M Faisal Riyad¹; Vinay Chauhan¹; Ahmed Gashgash¹; Xinpeng Du¹; Changdong Wei¹; Marat Khafizov¹; The Ohio State University

4:40 PM

Mitigation of IASCC Susceptibility in a BWR-irradiated 304L Stainless Steel Utilizing Post-irradiation Annealing: Justin Hesterberg¹; Zhijie Jiao¹; Maxim Gussev²; Jeremy Busby²; Gary Was¹; ¹University of Michigan; ²Oak Ridge National Laboratory

5:00 PM

Mechanical and Microstructural Characterization of Some High Fluence Intermediate Flux Neutron Irradiated Reactor Pressure Vessel Steels: *Nathan Almirall*¹; Peter Wells¹; Takuya Yamamoto¹; David Gragg¹; Kirk Fields¹; G. Robert Odette¹; Randy Nanstad²; Keith Wilford³; Ian Edmonds³; ¹University of California Santa Barbara; ²Oak Ridge National Laboratory; ³Rolls-Royce

Phase Transformations and Microstructural Evolution — Phase Transformations - Characterization and Modeling

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Thursday PM Room: 107B

February 18, 2016 Location: Music City Center

Session Chair: Michael Mills, The Ohio State University

2:00 PM

High Temperature Microstructural Evolution of Ni-Co-Al-Ti-Cr Alloys Studied by In-situ Neutron Diffraction: *Katerina Christofidou*¹; Nicholas Jones¹; Roxana Flacau²; Mark Hardy³; Howard Stone¹; ¹University of Cambridge; ²Canadian Neutron Beam Centre; ³Rolls Royce plc

2:30 PM

A Study of Phase Equilibria and Interdiffusion in Iron-based Alloy Systems Using Diffusion Multiples: Christopher Eastman¹; Ji-Cheng Zhao²; ¹TimkenSteel Corporation, The Ohio State University; ²The Ohio State University

3:00 PM

Application of Dual-anneal Diffusion-multiple (DADM) Approach to Studies of Phase Transformations: Changdong Wei¹; Siwei Cao¹; Ji-cheng Zhao¹; ¹The Ohio State University

3:20 PM

In Situ Analysis of Microstructural Evolution during the Devitrification of Amorphous Tantalum Films: Olivia Donaldson¹; Khalid Hattar²; *Jason Trelewicz*¹; ¹Stony Brook University; ²Sandia National Laboratories

3:40 PM Break

4:00 PM

Atomic Resolution Energy Dispersive Spectroscopy of η Phase Formation Along SESFs in a Ni-Based Disk Alloy: Tim Smith!; Robert Williams!; Bryan

Esser¹; Nikolas Antolin¹; Wolfgang Windl¹; David McComb¹; Hamish Fraser¹; Michael Mills¹; ¹The Ohio State University

4:30 PM

Determine Crystallographic Orientation Relationship and Orientation of Planar and Linear Features by Electron Microscopy: Qingfeng Xing¹; Thomas Lograsso¹; ¹Ames Laboratory

Ultrafine Grained Materials IX — Novel Thermomechanical Processing

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Thursday PM Room: 209B

February 18, 2016 Location: Music City Center

Session Chairs: Enrico Bruder, TU Darmstadt; Seok-Woo Lee, University of Connecti-

2:00 PM Invited

Grain Refinement and Post Processing Phenomena in Hydrostatically Extruded Materials: Malgorzata Lewandowska¹; Witold Chrominski¹; Agnieszka Krawczynska¹; Piotr Bazarnik¹; ¹Warsaw University of Technology

2:20 PM

Friction Consolidation Processing of n-Type Bismuth-Telluride Thermoelectric Material: Scott Whalen¹; ¹Pacific Northwest National Laboratory

2:40 PM

SPD of Binary Al-Mg Alloys Pre-processed by Continuous Screw Extrusion: Kristian Skorpen¹; Hans Jørgen Roven¹; Oddvin Reiso²; ¹The Norwegian University of Science and Technology (NTNU); ²Hydro Aluminium AS

3:00 PM

Two Different Pathways to Produce Novel Cu-based Nanostructured Alloys with Enhanced Strength and Ductility: Keith Dusoe¹; Thomas Bissell¹; Sriram Vijayan¹; Mark Aindow¹; Seok-Woo Lee¹; ¹University of Connecticut

3:20 PM Break

3:40 PM

Beneficial and Detrimental Effects of Heat Treatments on the Formability of Ultrafine Grained Steel: Enrico Bruder¹; Vanessa Kaune²; Anton Hohenwarter³; Clemens Müller¹; ¹TU Darmstadt; ²Dr. Robert-Murjahn-Institut GmbH; ³Erich Schmid Institute of Materials Science

4:00 PM

Scaling-up of High-pressure Sliding: Production of High Strength and Superplasticity of Metallic Materials: *Yoichi Takizawa*¹; Kazushige Fujimitsu¹; Takahiro Masuda¹; Takahiro Kajita¹; Kyohei Watanabe¹; Manabu Yumoto²; Yoshiharu Otagiri²; Zenji Horita¹; ¹Kyushu University; ²Nagano Forging Co., Ltd

4:20 PM

Roadmap for Tailoring the Strength and Ductility of Ferritic/Martensitic T91 Steel via Thermo-mechanical Treatment: *Miao Song*¹; Cheng Sun²; Zhe Fan¹; Youxing Chen¹; Ruixian Zhu¹; Kaiyuan Yu³; Karl Hartwig¹; Haiyan Wang¹; Xinghang Zhang¹; ¹Texas A&M University; ²Los Alamos National Laboratory; ³China University of Petroleum-Beijing

4:40 PM

Review of Bake Hardening Mechanisms of Ultra Fine Grained and Coarse Grained Low Carbon Steel Sheets: *Uma Gupta*¹; V.K. Sharma¹; M.K. Banerjee¹; ¹MNIT Jaipur

Ultrafine Grained Materials IX — Student Oral Session

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Thursday PM Room: 209A

February 18, 2016 Location: Music City Center

Session Chairs: Malgorzata Lewandowska, Warsaw University of Technology; Kaveh Edalati, Kyushu University

2:00 PM

Hydrogen Generation Behavior of Ultrafine Grained Al Alloys in Pure Water after Processing by High-pressure Torsion: Fan Zhang¹; Kaveh Edalati¹; Makoto Arita¹; Zenji Horita¹; ¹Kyushu University

2.20 PN

Deformation Mechanisms and Microstructural Evolution in Cu-Ag Alloys Produced by High-pressure Torsion: *Karoline Kormout*¹; Zaoli Zhang¹; Bo Yang; Reinhard Pippan¹; ¹Erich Schmid Institute of Materials Science, Austrian Academy of Sciences

2:40 PM

Development of Dislocation Structures in Hydrostatically Extruded Pure Aluminium: *Witold Chrominski*¹; Malgorzata Lewandowska¹; ¹Warsaw University of Technology

3:00 PM

Effects of Severe Plastic Deformation on the Grain and Precipitate Structures in Beta Ti Alloys: *Ahmad Zafari*¹; Wei Xu²; Kenong Xia¹; ¹The University of Melbourne; ²RMIT University

3:20 PM Break

3:40 PM

Tungsten Processed by ECAE: Zachary Levin¹; K. Ted Hartwig¹; ¹Texas A&M University

4:00 PM

Twinning and Spall of Nanocrystalline Tantalum: *Eric Hahn*¹; Diego Tramontina²; Eduardo Bringa²; Marc Meyers¹; ¹UCSD; ²Universidad Nacional de Cuyo

4:20 PM

Mechanical Behavior of Ultrafine Grained High-Mn Steels Containing Nano-scale Oxides: *Jonggyu Jeon*¹; Seungjin Nam¹; Hyunjoo Choi¹; ¹Kookmin University

4:40 PM

Flow Characteristics of Ultrafine Grained Zircaloy-4 Processed by Mutiaxial Forging: Devasri Fuloria¹; Nikhil Kumar¹; R. Jayaganthan¹; S. Jha²; D. Srivastava³; ¹IIT Roorkee; ²NFC, Hyderabad; ³Materials Science Division, Bhabha Atomic Research Centre

5:00 PM

Mechanical Properties and Deformation Behavior of High-Mn Austenitic Steels with Fully Recrystallized Ultrafine Grained Structure: *Hiroki Kitamura*¹; Yu Bai¹; Yanzhong Tian²; Rajib Saha³; Akinobu Shibata¹; Nobuhiro Tsuji¹; ¹Kyoto University; ²Chinese Academy of Science; ³Tata Steel

2016 Functional Nanomaterials: Emerging Nanomaterials and Techniques for 3D Architectures — Poster Session

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Nanomaterials Committee

Program Organizers: Terry Xu, UNC Charlotte; Nitin Chopra, The University of Alabama; Jung-Kun Lee, University of Pittsburgh; Jiyoung Kim, University of Texas; V. U. Unnikrishnan, The University of Alabama

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chairs: Terry Xu, UNC Charlotte; Jiyoung Kim, UT Dallas; Jung-Kun Lee, University of Pittsburgh; Vinu Unnikrishnan, The University of Alabama; Nitin Chorpa, The University of Alabama

A New Method to Produce CQDs by a One-step Thermal Decomposition: Li Dong¹; Hong-Yi Li¹; ¹Chongqing University

Facile Synthesis of Water-soluble Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Photodetector: J. Walden¹; Sanju Gupta¹; ¹Western Kentucky University

Laser-Assisted Purification of Electron-Beam-Induced Deposits: Michael Stanford¹; Brett Lewis¹; Joo Hyon Noh¹; Jason Fowlkes¹; Philip Rack¹; ¹University of Tennessee

Study of Radiation Grafting Polymerization of Poly (Acrylic Acid) onto Carbon Nanotubes Yarns Surface: Maria Cecilia Evora¹; Xinyi Lu²; Namgoo Kang²; Kunlun Hong³; Roberto Uribe⁴; Jimmy Mays²; ¹Instituto de Estudos Avançados; ²University of Tennessee; ³Oak Ridge National Laboratory; ⁴Kent State University

Thermal Enhancement with Multi-Walled Carbon Nanotubes in Transient Heating Applications: *Karen Supan*¹; Celeste Robert¹; Stephen Bartolucci²; ¹Norwich University; ²US Army Benet Laboratories - ARDEC

Effect of Calcinating Temperature on the Structure and Performance of Fayalite@C Nanocomposites as Anode for Lithium Ion Battery: *Qingtang Zhang*¹; Langlang Liu¹; Songwang Ge¹; ¹School of Petrochemical Engineering, Lanzhou University of Technology

2016 Technical Division Student Poster Competition — Extraction and Processing Division (EPD) Graduate Students

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Isothermal Reduction Behavior of CF(calcium ferrite) with Addition of Al2O3: Cheng Yi Ding¹; ¹Chongqing University

Low Energy Method to Separate Magnetite Generated By Reduction of Bauxite Residue: Sumedh Gostu¹; Brajendra Mishra²; ¹Colorado School of Mines; ²Worcester Polytechnic Institute

Non-isothermal Crystallization Behavior of CF with Addition of SiO2: Cheng Yi Ding¹; ¹Chongqing University

On the Effect of Mo on Austenite-ferrite Transformation Kinetics: *Jianing Zhu*¹; Hao Chen¹; Kangying Zhu²; Zhigang Yang¹; Chi Zhang¹; ¹Tsinghua University; ²Acelor Mittal

Solvent Extraction of Lanthanum (III) Using PC-88A Extractant Diluted in Kerosene: Vivek Agarwal¹; Jennifer Galvin¹; Mohammad Sadegh Safarzadeh¹; John Bendler¹; ¹South Dakota School of Mines and Technology

Synthesis of Nanocrystalline Tungsten Carbide (WC) via Carburization of WO₄²⁻ on an Activated Carbon Matrix: Grant Wallace¹; Jerome Downey¹; David Hutchins¹; Jannette Chorney¹; ¹Montana Tech of the University of Montana

Synthesis of Stable and Metastable Phases in the Ni-Si System by Mechanical Alloying: Ahmed Al-Joubori¹; ¹University of Central Florida

2016 Technical Division Student Poster Competition — Extraction and Processing Division (EPD) Undergraduate Students

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Characterization of Inclusions in High Strength Interstitial Free (IF) Steel: David Sartor¹; Marvin Ambrosio¹; ¹University of Toronto - St. George Campus

Separation and Recovery of Rare Earth Elements Using Ion Exchange: *Maureen Chorney*¹, ¹Montana Tech

Synthesis of Aluminum Multiwalled Carbon Nanotubes by Mechanical Alloying and Sintering: *Johnny Lopez*¹; Oscar Marcelo¹; Hector Colon¹; Alfer Castro¹; ¹University Of Puerto Rico

2016 Technical Division Student Poster Competition — Functional Materials Division (FMD) Graduate Students

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

A Novel Effect of Ag3Sn: Effective Suppression of Thermomigration-induced Cu Dissolution in Micro-scale Pb-free Interconnects: Yu - Fang Lin¹; Wei-Neng Hsu¹; Fan-Yi Ouyang¹; ¹National Tsing Hua University

An Eco-friendly Red Phosphor with Very High Intensity: Chieh-Szu Huang¹; Shih-kang Lin¹; Cheng-Liang Huang¹; ¹National Cheng Kung University

Comparison on Electrochemical Migration Behavior of Fine-pitch Ag Interconnects Prepared by Screen Printing and Lithography Methods: Chia-Hung Tsou¹; Heng-Tien Lin²; Fan-Yi Ouyang¹; ¹Dept. of Engineering and System Science, National Tsing Hua University, Hsinchu, TAIWAN; ²Industrial Technology Research Institute, Hsinchu, TAIWAN

High-Performance Anode Material Using Hierarchical Micro-Lamella-Structured 3D Porous Copper Current Collector for Advanced Lithium-Ion Batteries: *Hyeji Park*¹; Jihyun Um²; Myounggeun Choi¹; Yung-Eun Sung²; Heeman Choe¹; ¹Kookmin University; ²Seoul National University/ School of chemical and biological engineering

Interfacial Reaction in Cu/Pb-free Solders during Solid-state Aging Process: Chieh-Fu Chen¹; Fan-Yi Ouyang¹; ¹National Tsing Hua University

Interfacial Reactions at the Joints of Bi2Te3-based Thermoelectric Devices: Sinn-wen Chen¹; Tz-wen Liou¹; Alan Chu¹; Hsu-shen Chu²; Jenn-dong Huang²; ¹Department of Chemical Engineering, National Tsing Hua University; ²Material & Chemical Research Laboratory, Industrial Technology Research Institute

Liquidus Projection of the Bi-In-Te Thermoelectric Material System: Sinn-wen Chen¹; Shi-Ting Lu¹; *Po-Han Lin*¹; ¹National Tsing Hua University

Mechanical, Ferroelastic and Piezoelectric Behavior of Highly Textured PZT Films: *Debashish Das*¹; Luz Sanchez²; Joel Martin²; Brian Power²; Steven Isaacson²; Ronald Polcawich²; Ioannis Chasiotis¹; ¹University of Illinois at Urbana-Champaign; ²U.S. Army Research Laboratory

Morphology and Microstructure of Ag Alloy Wire for Electronic Packaging under Electromigration: *Jui-Nung Wang*¹; Tzu-Yu Hsu¹; Fan-Yi Ouyang¹; ¹National Tsing Hua University

Oxide-coated Fe Powders for SMC Applications: $Katie\ Jo\ Sunday^{1};\ ^{1}Drexel\ University$

Ultrathin Tantalum Based Power Capacitors with Low Leakage and High Operating Frequency: Parthasarathi Chakraborti¹; Himani Sharma¹; Markondeya Raj Pulugurtha¹; Rao Tummala¹; ¹Georgia Institute of Technology

Why Does Electromigration Occur? - A Combinatorial Study Using Ab

Initio Calculations and Synchrotron Radiation Diffractometry

: *Yu-chen Liu*¹; Yung-si Yu¹; Shang-Jui Chiu²; Yen-Ting Liu²; Hsin-Yi Lee²; Shih-kang Lin¹; ¹National Cheng Kung University; ²National Synchrotron Radiation Research Center

Why Does Li-rich Layered Oxide Cathode Material Degrade in Lithium Ion Batteries?: Yu-cheng Chuang¹; Ping-chun Tsai¹; Shih-kang Lin¹; ¹National Cheng Kung University

2016 Technical Division Student Poster Competition — Functional Materials Division (FMD) Undergraduate Students

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Crosslinked Poly(Ethylene Oxide) Solid Polymer Electrolytes for Lithium-Metal Batteries: Ziyin Huang¹; Qiwei Pan¹; Christopher Li¹; ¹Drexel University

First Principles Study of Lattice Disordering in CuNiMnAl and CuNiMnSn Heusler Alloys: Shifrah Aron-Dine¹; Greg Pomrehn²; Aurora Pribram-Jones³; Kevin Laws⁴; Michael Ferry⁴; Lori Bassman¹; ¹Harvey Mudd College; ²Boeing Corporation; ³Lawrence Livermore National Laboratory; ⁴School of Materials Science and Engineering, University of New South Wales

Nanofabrication and Characterization of Quasi-Crystal Metasurfaces Using Shadow-Sphere Lithography: Caroline Zellhofer¹; Emily MacDonald²; Alex Nemiroski³; George Whitesides³; ¹UMBC; ²Whitworth University; ³Harvard University

Processing, Microstructure, and Oxidation Behavior of Iron Foam: *Kiche-ol Hong*¹; Hyeji Park¹; Hyelim Choi¹; Yoonsook Noh¹; Heeman Choe¹; ¹Kookmin University

2016 Technical Division Student Poster CompetitionLight Metals Division (LMD) Graduate Students

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

A Study On Recrystallization and Grain Growth in Pure Magnesium: Aeriel Murphy¹; John Allison¹; ¹University of Michigan

Application of Computational Thermodynamics & Kinetics to Rare Earth Reduction in Magnesium Alloys: Kyle Fitzpatrick-Schmidt¹; Danielle Cote¹; Diran Apelian¹; ¹Worcester Polytechnic Institute

Coupled Infrared Thermography and Digital Image Correlation for Advanced Characterization of Material Behavior during Hot Stamping: Nan Zhang¹; Fadi Abu-Farha¹; ¹Clemson University

Dissimilar Metal Casting: Carl Soderhjelm¹; ¹Worcester Polytechnic Institute

Effect of Milling Time on Morphology and Properties of a New Mechanical Alloyed Fe-base ODS Alloy Powder: Xu Haijian¹; Lu Zheng¹; Wang Dongmei¹; Liu Chunming¹; 'Northeastern University

Effect of NbB₂ Nanoparticles on the Portevin-Le Chatelier Phenomenon in Al-Mg Alloys: *David Florian-Algarin*¹; Michelle Marrero-García¹; Javier Martínez¹; Rafael Martínez¹; Oscar Marcelo Suárez¹; ¹University of Puerto Rico Mayaguez(UPRM)

Influence of Processing on the Microstructure and Tensile Behavior of HPDC Mg AM Series Alloys: Erin Deda¹; John Allison¹; ¹University of Michigan

On the Microstructure and Properties of Supersaturated Al-Zn-Mg Alloy Fabricated by Friction Stir Processing: *Qu Liu*¹; Gaoqiang Chen¹; Qingyu Shi¹; ¹Tsinghua University

Thermodynamic & Kinetic Model Application to Strengthening Mechanisms of Aluminum Allovs for Additive Manufacturing: Derek Tsaknopou-

los¹; Danielle Cote¹; Victor Champagne²; Richard Sisson¹; ¹Worcester Polytechnic Institute; ²U.S. Army Research Laboratory

2016 Technical Division Student Poster Competition — Light Metals Division (LMD) Undergraduate Students

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Study of Thermomechanical Properties of an Al-Zn Matrix Reinforced with Dodecaboride Particles: Marivic Hernández-Quezada¹; José Colón¹; Sujeily Soto¹; Oscar Suárez¹; ¹University of Puerto Rico - Mayaguez Campus

2016 Technical Division Student Poster Competition — Materials Processing and Manufacturing Division (MPMD) Graduate Students

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

A Study of the Microstructural Evolution of Powder Aluminum Alloys after Thermal Processing: Caitlin Walde¹; Danielle Cote¹; Victor Champagne²; Richard Sisson¹; ¹WPI; ²US Army Research Laboratory

Carbon Nanotube Reinforced Aluminum Composites with Enhanced Mechanical and Electrical Properties: Daron Spence¹; Baratunde Cola¹; ¹Georgia Institute of Technology

Dissolution Behavior of Ni Substrate and Ni3Sn4 Phase in Molten Leadfree Solders: Yen Wei Chang¹; Meng Han Guo¹; Yee Wen Yen¹; ¹National Taiwan University of Science and Technology

Experimental Design Analysis of Stir Casting of Enhanced Aluminum Filler Reinforced with NbB2 Nanoparticles: Andres Calle¹; Christian vazquez¹; Jorge de jesus¹; Oscar Marcelo suarez¹; ¹University of Puerto Rico at Mayagüez

Grain Texture Manipulation & its Effect on the Tribological Response of Carbides: Sagar Patel¹; Mathew Kuttolamadom¹; ¹Texas A&M University

Joining 1018 Steel to 304L Stainless Steel by Friction and Fusion Welding: *Nathan Switzner*¹; Zhenzhen Yu¹; ¹Colorado School of Mines

Mechanical Characterization of Free Form Cold Spray Al 1100 Deposits: Benjamin White¹; William Story¹; Brian Jordon¹; Luke Brewer¹; ¹University of Alabama

Nano-Strength Testing of Additive Manufactured Parts Using Atomic Force Microscopy: Robert DelSignore¹; Danielle Cote¹; Victor Champagne²; Richard Sisson¹; ¹Worcester Polytechnic Institute; ²U.S. Army Research Labratical

On the Atomistic Mechanism of Solid State Bonding Between Aluminum by Severe Thermal Plastic Deformation: A Molecular Dynamics Study: Gaoqiang Chen¹; Zhili Feng²; Yucan Zhu¹; Qingyu Shi¹; ¹Tsinghua University; ²Oak Ridge National Laboratory

Phase Equilibria of the Sn-Fe-Ni Ternary System at 270oC: *Tzu Ting Huang*¹; Dai Jia Ying²; Yen Yee Wen²; Liu Hung Lun²; Lin Shih Wei²; ¹National Taiwan University of Science and Technology; ²National Taiwan University of Science and Technology

Predicting the Stagnant Zone of Material Flow during Friction Stir Welding by Using a Novel Computational Fluid Dynamics Model: Yucan Zhu¹; Qingyu Shi¹; ¹Tsinghua University

Printing of Graphene-coated Copper Nano-ink on Flexible Substrate Using Light Sintering Method: YeonHo Son¹; Min Kyu Kang¹; Young Jun Pyo¹; Eric H Yoon¹; Seung-Boo Jung¹; Yongil Kim¹; Caroline Sunyong Lee¹;

2016 Technical Division Student Poster Competition — Materials Processing and Manufacturing Division (MPMD) Undergraduate Students

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Microstructural Evolution and Aging Behavior In a Ni-21Ti-25Hf-4Al Alloy: Brittani Maskley¹; Michael Kesler¹; Michael Manuel¹; ¹University of Florida

Selective Dissolution of Al-Cu-Mg Alloys for Porous Metals Applications: Abel Urbán Ríos¹; Juan Vargas Martínez¹; Oscar Marcelo Suárez¹; ¹University of Puerto Rico at Mayaguez

2016 Technical Division Student Poster Competition — Structural Materials Division (SMD) Graduate Students

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Choice of Intermetallic Compounds for Structural Applications in Near Submicron Joints: *Jen-Jui Yu*¹; Jui-Yang Wu²; Li-Jen Yu²; C. Robert Kao²; ¹UCLA; ²National Taiwan University

Cross Polarization for Enhanced Digital Image Correlation Fidelity: William LePage¹; John Shaw¹; Samantha Daly¹; ¹University of Michigan

Cross Slip at a Screw Dislocation Pile-up: A Concurrent Atomistic-continuum Study: Shuozhi Xu¹; Liming Xiong²; Youping Chen³; David McDowell¹; ¹Georgia Tech; ²Iowa State University; ³University of Florida

Differential Responses of Head and Neck Cancer Cell Lines Induced by N2/He Micro-plasma Exposure: Chih-Ying Wu¹; ¹Department of Materials Science and Engineering, National Cheng Kung University

Effect of Annealing Temperature on Tensile Properties and Hole Expansion Behavior of Fe-Mn-Al-C Dual Phase Light-weight Steel: *Jae Hyung Kim*¹; Taekyung Lee²; Chong Soo Lee¹; ¹Pohang University of Science and Technology; ²Northwestern University

Effect of Chemistry and Microstructure on the Toughness of C-½ Mo Steel: Maneel Bharadwaj¹; Carl Lundin¹; Martin Prager²; ¹University of Tennessee; ²Welding Research Council

Effect of Friction Stir Processing on Microstructure and Mechanical Properties of Cast Eglin Steel (ES-1): *Vedavyas Tungala*¹; Amit Arora²; Rajiv Mishra¹; Kyu Cho³; Raymond Brennan³; ¹University of North Texas; ²IIT Gandhinagar; ³Army Research Laboratory

Effect Of Increasing Temperature On Cracking Behavior of Titanium Alloys During Hot Salt Stress Corrosion Cracking (HSSCC): Kavisha Tekade¹; Mangesh Pustode²; V Raja²; ¹University of Texas at Arlington; ²Indian Institute of Technology Bombay

Effects of Friction Stir Processing on Toughness of WE43 Thin Sheets: Shamiparna Das¹; Rajiv Mishra¹; Kevin Doherty²; Kyu Cho²; Bruce Davis³; ¹University of North Texas; ²Army Research Laboratory; ³Magnesium Elektron

Friction Stir Welding of Thick Aluminum 7449 Alloys: Nelson Martinez¹; Rajiv Mishra¹; Kevin Doherty²; ¹University of North Texas; ²U.S. Army Research Laboratory

Investigations on the Combustion Behavior of Ti-6Al-4V Alloy Exposed to Atmospheric Re-entry Environments: Jessica Buckner¹; Stephen Stafford¹; Darren Cone¹; ¹University of Texas at El Paso

Nanomechanical Study of Mechanical Properties: Claire Teresi¹; ¹University of Minnesota

New Developments in the Rolling Contact Fatigue of M50 Bearing Steel:

Gael Guetard¹; Pedro Rivera-Díaz-del-Castillo¹; ¹University of Cambridge

Purification of Metallurgical-Grade Silicon Prepared from Rice Husk Ash Using Tin as Impurity Getter: Benedict Ayomanor¹; ¹Sheffield Hallam University

Synchrotron Study on the Thermal Stability of Retained Austenite in High-carbon Chromium Steels: Wen Cui¹; David San Martín²; Pedro Rivera-Díaz-del-Castilloa¹; ¹Cambridge University; ²Centro Nacional de Investigaciones Metalurgicas (CENIM-CSIC)

Strength Prediction in NiCo Alloys - The Role of Composition and Nanotwins: *Piyas Chowdhury*¹; Huseyin Sehitoglu¹; Hans Maier²; Richard Rateick³; ¹University of Illinois at Urbana-Champaign; ²Leibniz Universität Hannover; ³Honeywell Aerospace

2016 Technical Division Student Poster Competition — Structural Materials Division (SMD) Undergraduate Students

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Biomimetic Narce Composite Synthesis: Michael Sabatini¹; *Olivia Yalnizyan-Carson*¹; ¹University of Toronto

Effect of Heat Treatment and Chemical Composition on the High Temperature Hydrogen Attack (HTHA) Resistance of C-1/2 Mo Steels: Will Hoskins¹; Maneel Bharadwaj¹; Carl Lundin¹; Martin Prager²; ¹University of Tennessee; ²Welding Research Council

Generalized Stacking Fault Energies of Multicomponent Alloys: *Jonas Kaufman*¹; Josh Sanz¹; Greg Pomrehn²; Aurora Pribram-Jones³; Reza Mahjoub⁴; Kevin Laws⁴; Michael Ferry⁴; Lori Bassman¹; ¹Harvey Mudd College; ²Boeing Corporation; ³Lawrence Livermore National Laboratory; ⁴School of Materials Science and Engineering, University of New South Wales

High Strength Air-entrained Concrete with Partial Replacement of Fly Ash and Nanostructured Silica: Marivette Rullán~Semidey¹; O. Marcelo Suárez¹; Hildelix Soto¹; Carlos Medina¹; ¹UPR at Mayaguez

Micro-Tensile Testing on Proton Beam-Irradiated 304 SS: Hi Vo¹; Ashley Reichardt¹; David Frazer¹; Peter Chou²; Peter Hosemann¹; ¹University of California, Berkeley; ²Electric Power Research Institute

2016 Technical Division Young Professional Poster Competition — Extraction and Processing Division (EPD)

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Removal of Iron from Cu Ore for the Production of Copper Sulfide: *Jung-shin Kang*¹; Jin-Young Lee¹; ¹Korea Institute of Geoscience and Mineral Resources

The Effects of Quartz Amount on the Physical and Microstructural Properties of Tile Bodies: Pelin Karadeniz¹; Yildirim Karadeniz¹; Nermin Demirkol¹; ¹Kocaeli University

2016 Technical Division Young Professional Poster Competition — Functional Materials Division (FMD)

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Optimization of the Morphology of Volatile Organic Compound Sensors Based on Polymer-metal Nanocomposites: Nega Alemayehu Zerihun¹; Franz Faupel²; Vladmir Zaporjchenko²; ¹Addis Ababa Institute of Technology; ²CAU Kiel

2016 Technical Division Young Professional Poster Competition — Light Metals Division (LMD)

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

A Study on Mechanical Properties of Particulate Reinforced 6063 Aluminium Alloy: Lawrence Osoba¹; ¹Universit of Lagos

DIC In-Situ of Tensile Deformation and Synchrotron Diffraction for the Accurate Investigation of Austenite-to-Martensite Transformation in AHSSs: Fadi Abu-Farha¹; ¹Clemson University

Refinement of Primary and Eutectic Silicon in Hypereutectic Al-Si Alloys with Electromagnetic Stirring: *Jong Ho Kim*¹; Myoung Gyun Kim¹; Joonpyo Park¹; ¹Research Institute of Industrial Science and Technology

2016 Technical Division Young Professional Poster Competition — Materials Processing and Manufacturing Division (MPMD)

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Novel Conductive Scanning Probe Microscopy (SPM) Probes with Reduced Capacitive Coupling: *Yigezu Mulugeta Birhane*¹; Joan Bausells²; Jordi Otero³; Gabriel Gomila³; ¹Addis Ababa Institute of Technology; ²Barcelona Microelectronics Institute, IMB-CNM (CSIC); ³Institut de Bioenginyeria de Catalunya (IBEC), Universitat de Barcelona

Study of Reduction of Zinc Ferrite Contained in Electric Arc Furnace Dusts by CO - CO2 Gas Mixtures: Mery Gómez-Marroquín¹; ¹Universidad Nacional de Ingenieria

2016 Technical Division Young Professional Poster Competition — Structural Materials Division (SMD)

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Effect of Neutron Irradiation on Friction Stir Processed ODS Alloys: Ramprashad Prabhakaran¹; Yaqiao Wu²; Jatu Burns²; James Cole³; Indrajit Charit⁴; Rajiv Mishra⁵; KL Murty⁶; ¹Pacific Northwest National Laboratory; ²Boise State University; ³Idaho National Laboratory; ⁴University of Idaho; ⁵University of North Texas; ⁶North Carolina State University

Understanding of Deformation Twinning Characteristics in HCP Materials: *Arul Mariyappan*¹; Irene Beyerlein¹; Carlos Tome¹; ¹Los Alamos National Laboratory

Accelerated Materials Evaluation for Nuclear Application Utilizing Test Reactors, Ion Beam Facilities and Integrated Modeling — Poster Session

Sponsored by TMS: Nuclear Materials Committee Program Organizers: James Cole, Idaho National Laboratory; Peter Hosemann, University of California Berkeley; Todd Allen, Idaho National Laboratory; Elaine West, Knolls Atomic Power Laboratory

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

A Combined Radiation and Corrosion Experiment for Molten Salt Reactor (MSR): Weiyue Zhou¹; Michael Short¹; ¹Massachusetts Institute of Technology

Comparison of Nanoindentation, Microhardness, and Tensile Testing on Neutron Irradiated Ferritic/Martensitic Steels: David Krumwiede¹; Manuel

Abad¹; Takuya Yamamoto²; Stuart Maloy³; Tarik Saleh³; George Odette²; Peter Hosemann¹; ¹University of California, Berkeley; ²University of California, Santa Barbara; ³Los Alamos National Laboratory

Effects of Neutron Irradiation on Zr52.5Cu17.9Ni14.6Al10Ti5 (BAM-11) Bulk Metallic Glass: *Jamieson Brechtl*¹; N.A.P. Kiran Kumar²; Hongbin Bei²; Steven Zinkle¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

Grain Boundary Character Effect on Radiation Induced Defect Distribution in Nanocrystalline Nickel and Nickel-Chromium Thin Films: James Nathaniel¹; Osman El-Atwani¹; Asher Leff¹; Mitra Taheri¹; Jon Baldwin²; Khalid Hattar³; ¹Drexel University; ²Los Alamos National Laboratory; ³Sandia National Laboratory

Kinetics of Defect Formation in Advanced F/M Steels Under Ion-Beam Irradiation Using In-situ TEM: Djamel Kaoumi¹; Jordan Huygue¹; ¹The University of South Carolina

Preliminary Experiments to Develop a He-W Calibration Standard for Laser Induced Breakdown Spectroscopy: *Guinevere Shaw*¹; Nicolas Andre¹; Mark Bannister²; Theodore Biewer²; Madhavi Martin²; Fred Meyer²; Brian Wirth¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

Reexamination of the "Temperature-shift" Arising from Increases in dparate during Ion Bombardment: Frank Garner¹; Alexander Kalchenko²; Michael Short³; Lin Shao⁴; Stuart Maloy⁵; ¹Radiation Effects Consulting; ²Kharkov Institute of Physics and Technology; ³Massachusetts Institute of Technology; ⁴Texas A&M University; ⁵Los Alamos National Laboratory

Room Temperature Au2+ Irradiation of Ni, Ni-Co and Ni-Fe Single Phase Alloys: *Taini Yang*¹; Chenyang Lu¹; Ke Jin²; Yanwen Zhang²; Lumin Wang¹; ¹University of Michigan; ²Oak Ridge National Laboratory

Study of Thermal Aging on Corrosion Fatigue of Z3CN20.09M Duplex Stainless Steel in High Temperature Water: *Bin Yang*¹; ¹University of Science and Technology Beijing

Swift Heavy Ion Irradiation Damage in Ti-6Al-4V:

Characterization of the Microstructure and Mechanical Properties: *Aida Amroussia*¹; Carl Boehlert¹; Florent Durantel²; Clara Grygriel²; Wolfgang Mittig³; Isabelle Monnet²; Frederique Pellemoine⁴; ¹Michigan State University; ²CIMAP-GANIL; ³FRIB-NSCL-MSU; ⁴FRIB-MSU

X-ray Micro-computed Tomography for Nondestructive Examination of Nuclear Materials: Chinthaka Silva¹; Yutai Katoh¹; Eliot Specht¹; John Hunn¹; Kurt Terrani¹; Keith Leonard¹; ¹Oak Ridge National Laboratory

Additive Manufacturing: Building the Pathway towards Process and Material Qualification — Poster Session

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Powder Materials Committee, TMS: Process Technology and Modeling Committee

Program Organizers: John Carpenter, Los Alamos National Laboratory; Allison Beese, Pennsylvania State University; David Bourell, University of Texas; Reginald Hamilton, The Pennsylvania State University; Edward Herderick, GE; Rajiv Mishra, University of North Texas; James Sears, GE GRC

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Additive Manufactured Material Physical Property Variations and Measurements: Roger England¹; Thomas Watkins²; Ryan DeHoff²; ¹Cummins, Inc.; ²ORNL

Additive Manufacturing of Metals: Testing Durability: Roberta Beal¹; Veronica Livescu¹; George Gray¹; Manny Lovato¹; ¹Los Alamos National Laboratory

Characterization of Ti-6Al-4V to 304L SS Gradient Components Fabricated with Laser Deposition: Hayden Horan¹; Ashley Reichardt¹; Theresa Green¹; Douglas Hofmann²; Scott Roberts²; Richard Otis³; R. Peter Dilon²; An-

drew Shapiro-Scharlotta²; Zi-Kui Liu³; John Paul Borgonia²; Peter Hosemann¹; ¹University of California, Berkeley; ²Jet Propulsion Laboratory; ³Pennsylvania State University

Comparing Micro-computed X-ray Tomography with Various Methods to Characterize Differently Atomized Inconel 625 Powders for Additive Manufacturing: Shannon Biery¹; Colleen Hilla¹; Eamonn Hughes¹; Amir Mostafaei¹; Markus Chmielus¹; ¹University of Pittsburgh

Computational Modeling and Experimental Validation of Melting and Solidification in Single-Crystal and Equiaxed Superalloys Processed Through Scanning Laser Epitaxy (SLE) for Additive Manufacturing: Amrita Basak¹; Ranadip Acharya¹; Suman Das¹; Georgia Institute of Technology

In Situ Monitoring of Ceramic Materials Manufactured Using Binder Jetting Additive Manufacturing Technology: Jorge Mireles¹; ¹The University of Texas at El Paso

Inconsistent Mechanical Performance of Additively Manufactured 17-4PH: Bradley Salzbrenner¹; Brad Boyce¹; Jeff Rodelas¹; John Laing¹; ¹Sandia National Labs

Investigation and Quality Control of the Effect of Multiple Compounding Operations on Recycled 3D Printer Feedstock: *Derek Thomas*¹; Michael Snyder¹; Jan Clawson¹; Todd Letcher²; ¹Made In Space, Inc.; ²South Dakota State University

Effect of Printing Orientation on Strength of 3D Printed ABS Plastics: *Jing Zhang*¹; Yi Zhang¹; Michael Golub¹; ¹Indiana University - Purdue University Indianapolis

Micromechanical Modeling of Additively Manufactured Ti-6Al-4V from 3D PFIB Serial Sectioned EBSD Datasets: Ross Cunningham¹; Tugce Ozturk¹; Anthony Rollett¹; ¹Carnegie Mellon University

Microstructural Response of Additively Manufactured 316L Stainless Steel in Forced Shear: Emily Walker¹; Carl Trujillo¹; Ellen Cerreta¹; John Carpenter¹; Thomas Lienert¹; Saryu Fensin¹; Curt Bronkhorst¹; ¹Los Alamos National Laboratory

Microstructure Based Fatigue Modeling of IN 718 Produced by DMLS: Veerappan Prithivirajan¹; Michael Sangid¹; ¹Purdue University

Modeling and Characterization of the Deposition Stability in the Highly Efficient Laser Hot-wire Additive Manufacturing: *Zhenguo Nie*¹; Gang Wang¹; James Cawley²; Yiming (Kevin) Rong¹; ¹Tsinghua University; ²CWRU

Sulfuric Acid Corrosion to Simulate Microbial Influenced Corrosion on Stainless Steel 420: *Jacob Miller*¹; Holly Martin¹; Brett Conner²; ¹Department of Chemical Engineering, Youngstown State University; ²Department of Mechanical Engineering, Youngstown State University

Surface Morphology Analysis and Microstructure Evolution for Selective Laser Melting NiCrBSi Powder under a Vacuum Environment: Baicheng Zhang¹; ¹Simtech

The Effect of Thermal History on Porosity, Surface Feature and Mechanical Properties of LENS Printed Ti-64: Colleen Hilla¹; Jakub Toman²; Erica Stevens²; Qingcheng Yang²; Pu Zhang²; Albert To²; Markus Chmielus²; ¹University of Pittsburgh; ²University of Pittsburgh

The Effects of Porosity and Infiltrated Metal on the Corrosion Behavior and Tensile Strength of Binder Jet Printed Stainless Steel 420: *Luke Johnson*¹; Holly Martin¹; Brett Conner²; ¹Department of Chemical Engineering, Youngstown State University; ²Department of Mechanical Engineering, Youngstown State University

Verification of Numerically Calculated Cooling Rates of Powder Bed Additive Manufacturing: Mustafa Megahed¹; Hans-Wilfried Mindt¹; Nicholas Lavery²; Stephen Brown²; ¹ESI Group; ²Swansea University

EBSD Study of Ti-6Al-4V Alloy Fabricated by Powder-Bed Electron Beam Additive Manufacturing: Xiaoqing Wang¹; Kevin Chou¹; ¹The University of Alabama

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Poster Session

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee, TMS: Shaping and Forming Committee

Program Organizers: Rodney McCabe, Los Alamos National Laboratory; John Carpenter, Los Alamos National Laboratory; Marko Knezevic, University of New Hampshire; Wolfgang Pantleon, Technical University of Denmark; Thomas Bieler, Michigan State University; Khalid Hattar, Sandia National Laboratories; Irene Beyerlein, Los Alamos National Laboratory

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

3D Crystal Plasticity based Modeling of Deformation Behavior in Commercial Purity Titanium: *Harsha Phukan*¹; Chen Zhang¹; Thomas Bieler¹; Philip Eisenlohr¹; Carl Boehlert¹; Martin Crimp¹; Ruqing Xu²; Wenjun Liu²; ¹Michigan State University; ²Argonne National Laboratory

A First Prediction of Dislocation Patterns in Single Crystals Using Continuum Dislocation Dynamics Theory: Shengxu Xia¹; Anter El-Azab¹; ¹Purdue University

Delayed Cracking in Deep-drawn Duplex Stainless Steels: The Role of Plastic Anisotropy, Transformation Kinetics, and Stress Partitioning: *Peijun Houl*; Yuan Lil; Dongchul Chae²; Yang Ren³; Hahn Chool; ¹University of Tennessee; ²POSCO Technical Research Laboratory; ³Argonne National Laboratory

Effect of Cold Rolling on the Microstructure and Properties of Cr-Ni-Mo-Ti Maraging Stainless Steel: Yong Lian¹; Jin Zhang¹; Jinfeng Huang²; Chao Zhao¹; Wen Gao¹; Cheng Zhang²; Zunjun Zhang²; ¹Institute of Advanced Materials and Technology, University of Science and Technology Beijing; ²State Key Laboratory for Advanced Metals and Materials; University of Science and Technology Beijing

Effect of Grain Boundary on the Surface Roughness in Single-point Diamond Turning Annealed Copper: *Jianchao Yu*¹; Gang Wang¹; Yiming Rong²; ¹Tsinghua University; ²Worcester Polytechnic Institute

Experimental Research and Modeling of the Material Behavior in the Creep Feed Grinding: Zhenguo Nie¹; Gang Wang¹; Dehao Liu¹; Yiming (Kevin) Rong¹; ¹Tsinghua University

In Situ Characterization of Nanoscale Precipitate Nucleation and Growth in Aluminum Alloys Using Transmission X-Ray Microscopy (TXM): C. Shashank Kaira¹; Sudhanshu Singh¹; Vincent De Andrade²; Francesco De Carlo²; Nikhilesh Chawla¹; ¹Arizona State University; ²Advanced Photon Source, Argonne National Laboratory

Influence of Dominant Deformation Mechanism, Strain, and Temperature on the Recrystallization Kinetics of AZ31B Mg Alloy: *Yuan Li*¹; Peijun Hou¹; Yang Ren²; Hahn Choo¹; ¹University of Tennessee; ²Argonne National Laboratory

Investigation of Slip Behavior in Al-Li 2195 Using In Situ High-resolution Digital Image Correlation: Wesley Tayon¹; Roy Crooks²; Jacob Hochhalter¹; John Newman¹; Ashley Spear³; ¹NASA Langley Research Center; ²Black Laboratories, L.L.C.; ³University of Utah

Microstructurally-Short Crack Growth Driving Force Identification: Combining DCT, PCT, Crystal Plasticity Simulations and Machine Learning Technique

: Andrea Rovinelli¹; Michael Sangid¹; Ricardo Lebensohn²; Wolfgang Ludwig³; Yoann Guilhem⁴; Henry Proudhon⁵; ¹Purdue University; ²Los Alamos National Lab; ³European Synchrotron Radiation Facility; ⁴ENS de Cachan; ⁵MINES Paris Tech

Multi-scale Modeling of Hydrogen Embrittlement: *Burak Bal*¹; Demircan Canadinc²; ¹Purdue University; ²Koç University

Optimized Mechanical Properties of Thermomechanically-processed HSLA-100 Steel Plates: Mehdi Soltan Ali Nezhad¹; Alireza Hoseinifar²; ¹ Fer-

dowsi University of Mashhad, Mashhad, Iran; 2shiraz university

The Effect of Temperature and Thermomechanical Processes on the Tensile Deformation Behavior of Beta Titanium Alloys: *Vahid Khademi*¹; Carl Boehlert¹; ¹Michigan State University

The Role of Texturing and Recrystallization during Grain Boundary Engineering of Advanced Ni-base Superalloys: Martin Detrois¹; Robert Goetz²; Randolph Helmink²; Sammy Tin¹; ¹Illinois Institute of Technology; ²Rolls-Royce Corporation

Using EBSD to Characterized Deformation under Scratches in Inconel 690 Heat Exchanger Tube: William Roes¹; Tatiana Allen²; ¹Tennessee Valley Authority; ²UT_Chattanooga

Efficient Modeling of Continuum Deformation Variables in Atomistic Simulations: Doyl Dickel¹; ¹Mississippi State University

Advanced Magnetic Materials: An FMD Symposium in Honor of Michael E. McHenry — Poster Session

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Magnetic Materials Committee

Program Organizers: Raju Ramanujan, Nanyang Technological University; Matthew Willard, Case Western Reserve University; Francis Johnson, GE Global Research; Paul Ohodnicki, National Energy Technology Laboratory

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chairs: Raju Ramanujan, NTU; Matthew Willard, Case Western Reserve University

Direct Measurements of Magnetoelastic Coupling in Shape Memory Alloy: Paul Stonaha¹; *Mike Manley*¹; Nick Bruno²; Ibrahim Karaman²; Raymundo Arroyave²; Navdeep Singh³; ¹Oak Ridge National Lab; ²Texas A&M University; ³University of Houston

FeCo Alloys to Cobalt Ferrite: Synthesis Considerations, Structural Characterization and Magnetic Properties: Dustin Clifford¹; Carlos Castano¹; Amos Lu¹; Everett Carpenter¹; ¹Virginia Commonwealth University

Effect of Processing Route and Alloying Substitutions on the Microstructure and Magnetic Properties of Ferrite Magnets: Waleed Khalifa¹; Mohannad Al Jarrah²; Omayma Elkady³; Mohammad Al Harahsheh²; ¹Cairo University; ²Jordan University of Science & Technology; ³Central Metallurgical Research and Development Institute

Structural, Microstructure and Magnetic Properties of Superparamagnetic MnxMg1-xFe2O4 Powders Prepared through Co-precipitation Method: *Tarek Abdelhamid*¹; Mohamed Rashad¹; Moataz Fayed¹; EL Said Fayed¹; ¹Tabbin Institute for Metallurgical Studies

Tailoring of Magnetic Softness of Fe-Ni Based Magnetic Microwires: Valentina Zhukova¹; Margarita Churyukanova²; Sergei Kaloshkin³; Vera Sudarchikova³; Mihail Ipatov¹; Ahmed Talaat¹; Juan Blanco¹; *Arcady Zhukov*⁴; ¹Basque Country University, UPV/EHU, San Sebastian, Spain; ²National University of Science and Technology «MISIS», Moscow,; ³National University of Science and Technology «MISIS», Moscow,; ⁴Basque Country University and Ikerbasque

Synthesis and Characterization of CFO/BCZT Core-shell Structure for Magnetoelectric Application: Venkata Sai Sriram Mosali¹; Vinitha Reddy Monaji¹; Mohd Qasim¹; Paul Praveen¹; *Tanjore Jayaraman*²; Dibakar Das¹; ¹University of Hyderabad, SEST; ²University of Michigan - Dearborn

Infiltration Process in Permanent Magnets for Coercivity Enhancement: Daniel Salazar¹; Andrés Martín-Cid¹; Rajasekhar Madugundo²; José Manuel Barandiarán¹; *George C. Hadjipanayis*²; ¹BCMaterials; ²Department of Physics and Astronomy, University of Delaware

Advanced Materials in Dental and Orthopedic Applications — Poster Session

Sponsored by:TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Luis Rocha, UNESP, Univ. Estadual Paulista, Faculdade de Ciências; Grant Crawford, South Dakota School of Mines and Technology; Terry Lowe, Colorado School of Mines; Ana Ribeiro, National Institute of Metrology Quality and Technology; Reginald Hamilton, The Pennsylvania State University

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chairs: Holly J. Martin, Youngstown State University; Sweetu Patel, Michigan Technological University

DMP1 Peptides Surface Modification of Titanium Implants: *Luciana Tri-no*¹; Anne George²; Mathew Mathew³; Paulo Lisboa-Filho¹; ¹State university of São Paulo; ²University of Illinois at Chicago; ³Rush University Medical Center

Evaluation of Dental Archwires Following Flex Bending Fatigue: Janet Gbur¹; Kimaya Gupte¹; Brian Benini¹; John Lewandowski¹; ¹Case Western Reserve University

Fatigue Performance of New Developed Biomedical Ti-15Mo Alloy with Surface Modified by TiO2 Nanotubes Formation: Nilson Oliveira¹; Leonardo Campanelli¹; Carolina Borlolan¹; Claudemiro Bolfarini¹; ¹Federal University of São Carlos – UFSCar

Nanoscale M23C6 Carbides Formation in Co-Cr-Mo-C Implant Alloy during Martensite Transformation: Shahab Zangeneh¹; ¹Razi University

Surface Chemistry Examination and Adhesion Testing of Chitosan Bonded to Titanium Using Biologically Compatible Solvents: Kathryn Shields¹; Holly Martin¹; Snjezana Balaz²; ¹Department of Chemical Engineering, Youngstown State University; ²Department of Physics and Astronomy, Youngstown State University

Understanding Dental Pulp Stem Cells Response to Spider Silk: Katherine Hafner¹; Sam Caruso¹; Delpine Dean¹; *Marian Kennedy*²; ¹Clemson University; ²Clemson University

Alloys and Compounds for Thermoelectric and Solar Cell Applications IV — Student Poster

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CRISMAT laboratory; Stephane Gorsse, ICMCB-CNRS; Yoshisato Kimura, Tokyo Institute of Technology; Lan Li, Boise State University; CW Nan, Tsinghua University; G. Jeffrey Snyder, Northwestern University; Hsin-jay Wu, National Sun Yat-Sen University

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: Sinn-wen Chen, National Tsing Hua University

Fabrication of CrSi₂/NbSi₂ Nanocomposite by Melt Spinning Technique and

Thermoelectric Properties

: *Takahito Kurimoto*¹; Yuji Ohishi¹; Hiroaki Muta¹; Ken Kurosaki¹; Shinsuke Yamanaka¹; ¹Osaka University

Interfacial Reactions at the Joints of Bi2Te3-based Thermoelectric Devices: Sinn-wen Chen¹; Tz-wen Liou¹; Alan Chu¹; Hsu-shen Chu²; Jenn-dong Huang²; ¹Department of Chemical Engineering, National Tsing Hua University; ²Material & Chemical Research Laboratory, Industrial Technology Research Institute

Liquidus Projection of the Bi-In-Te Thermoelectric Material System:

Sinn-wen Chen¹; Shi-Ting Lu¹; Po-Han Lin¹; ¹National Tsing Hua University

Thermoelectric Properties of Si/SiB₃ sub-microcomposite Prepared by Melt Spinning Technique: Jun Xie¹; Yuji Ohishi¹; Yoshinobu Miyazaki²; Aikebaier Yusufu¹; Hiroaki Muta¹; Ken Kurosaki¹; Shinsuke Yamanaka¹; Osaka University; ²National Institute of Advanced Industrial Science and Technology

Aluminum Alloys, Processing and Characterization — Poster Session

Sponsored by:TMS Light Metals Division, TMS: Aluminum Committee Program Organizer: Steven Long, Kaiser Aluminum Corporation

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Corrosion Resistance of Different Aluminum Alloys in Ethanol: Gustavo Kramer¹; Claudia Méndez²; Alicia Ares¹; ¹Materials Institute of Misiones-IMAM (CONICET-UNaM); ²Faculty of Sciences - National University of Misiones

Effects of Alloying Elements on Microstructure, Mechanical Properties and Formability of Al-Si-Fe-Cu-Mn Based Alloys for Micro-channel Tube of Heat Exchanger: Hyeon-Taek Son¹; Yong-Ho Kim¹; Hyo-Sang Yoo¹; ¹Korea Institute of Industrial Technology

Hot Deformation Behavior of Al₂Ca Modified AA6082 Alloy Using Dynamic Material Model: Sangmin Lee¹; Hyun-Jin Choi¹; Ji-Woon Lee¹; Taek-Kyun Jung¹; Soong-Keun Hyun¹; Young-OK Yoon¹; Shae K Kim¹; ¹Inha University

Refinement of Primary Silicon Crystals by Novel Al-ZnS Master Alloy in Solidification of Hypereutectic Al-Si Alloys: Kawther Al-Helal¹; Ian Stone¹; Zhongyun Fan¹; ¹Brunel University

Bio Nano Interfaces and Engineering Applications — Poster Session

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Po-Yu Chen, National University of Tsing Hua University; Terry Lowe, Colorado School of Mines; John Nychka, University of Alberta; Wen Yang, Swiss Federal Institute of Technology in Zurich (ETHZ)

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: Wen Yang, Swiss Federal Institute of Technology in Zurich (ETHZ)

Elucidation of Sequence-Dependent Structure/Function Relationships for Bimetallic CoPt Nanoparticles: *Hunter Jacobs*¹; Nicholas Bedford²; ¹Virginia Tech; ²NIST

High Affinity Surface Attachment of F1 Rotary Motors for Nanodevice Fabrication: Mark Richter¹; ¹The University of Kansas

Selection of Peptide Aptamer with Ultrahigh Affinity for TiO₂ by Combination of Phage Display and Electroporation: *Ippei Inoue*¹; Yasuaki Ishikawa²; Yukiharu Uraoka²; Ichiro Yamashita²; Hisashi Yasueda¹; ¹Ajinomoto Co., Inc.; ²Nara Institute of Science and Technology

Self-healing in Super-tough Double Network Hydrogels: *Siheng Su*¹; Junhua Wei¹; Jilong Wang¹; Jingjing Qiu¹; ¹Texas Tech University

Biological Materials Science Symposium — Poster Session

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Francois Barthelat, McGill University; Kalpana Katti, North Dakota State University; Paul Allison, University of Alabama; Rajendra Kasinath, DePuy Synthes Products, LLC

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chairs: Rajendra Kasinath, DePuy Synthes; Kalpana Katti, North Dakota

State University

A Comparative Analysis of Biological and Not Biological Cardiac Valves Replacement in the Brazilian Health Care System: Frederico Margem¹; Martha Marcelle Bastos Margem²; Ligia Maria Muylaert³; ¹UENF; ²UNIG - Universidade Iguaçu; ³FMC Faculdade Medicina de Campos

Analyses and Characterization of Nanofiber Coating Layers of Implant Biomaterials: James Sun¹; Liang Chen¹; Wei-Ping Ren¹; Xin Wu¹; ¹Wayne State University

Biological Response of Interconnected Ti-6Al-4V Foam Constructs for Biomedical Implants: A Vascularization Issue: *Victor Correa*¹; Kristine Garza¹; Lawrence Murr¹; ¹University of Texas at El Paso

Structure and Mechanical Behavior of Human Hair: *Yang Yu*¹; Bin Wang¹; Marc Meyers¹; ¹University of California, San Diego

Synthesis of Polymeric Hydrogels Containing Nano-silver and Antibiotic for Wound Healing Applications: *Angélica Zafalon*¹; Vinicius dos Santos²; Duclerc Parra¹; Vijaya Rangari³; Ademar Lugão¹; ¹Nuclear and Energy research institute; ²Nuclear and Energy research institute; ³Tuskegee University

The Effects of Obesity on the Shear Strength of Murine Growth Plates: *Moriah Smoot*¹; Patrick Estep²; Shawn Gilbert²; Alan Eberhardt²; ¹The University of Alabama; ²University of Alabama at Birmingham

Bladesmithing Symposium 2016 — Poster Session

Sponsored by: No Sponsors Found!

Program Organizers: Bharat Jasthi, South Dakota School of Mines and Technology; Roxana Ruxanda, Emerson Climate Technologies; Garry Warren, University of Alabama; Michael West, South Dakota School of Mines and Technology

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Experimenting with Damascus Steel: Forging and Metallurgical Characterization: *Alexander Lark*¹; Brandon Anglesey¹; Travis Willhard¹; ¹University of Utah

Novel Plasma Nitriding Technique for Case Hardening Cutting Edge of Blade: Daniel Peppler¹; ¹University of Wisconsin-Milwaukee

Bulk Metallic Glasses XIII — Poster Session

Sponsored by:TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Hahn Choo, Univ of Tennessee; Yanfei Gao, Univ of Tennessee; Jianzhong Jiang, Zhejiang University; Gongyao Wang, Alcoa Technical Center

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Designing of Ti-Fe-Si Ternary Amorphous Alloys via a Themodynamic Approach: *Guohua Zhao*¹; Huahai Mao²; Sergey Ketov³; Zhi Wang³; Vla-

dislav Zadorozhnyy³; Dmitri Louzguine³; Ragnhild E. Aune⁴; ¹KTH Royal Institute of Technology; ²Thermo-Calc Software AB; ³WPI Advanced Institute for Materials Research (WPI-AIMR); ⁴NTNU Norwegian University of Science and Technology

Effect of Ni and Cu on the Thermal and Mechanical Properties of High Strength CoCrMoCB-based Bulk Metallic Glasses: David Ehinger¹; David Geißler¹; Mihai Stoica¹; Jürgen Eckert¹; ¹IFW Dresden

Electrochemical Corrosion and Passivation Behavior of Zr42Cu5Ag8 Bulk Metallic Glass in Artificial Physiological Solutions: Nidhi Singh¹; Jatin Bhatt²; Jagannath Nayak¹; Shashi Arya¹; ¹National Institute of Technology Karnataka, Surathkal; ²VNIT Jaipur

Mechanical Properties of FeSiB Amorphous/Nanocrystalline Alloys Using Nanoindentation Technique: Hamid Lashgari¹; J.M. Cadogan¹; Dewei Chu¹; Sean Li¹: ¹UNSW

Shape Memory Bulk Metallic Glass Composites Studied by Molecular Dynamics Simulations: Daniel Sopu¹; Mihai Stoica¹; Jurgen Eckert¹; ¹IFW Dresden

CFD Modeling and Simulation in Materials Processing — Poster Session

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Laurentiu Nastac, The University of Alabama; Lifeng Zhang, University of Science and Technology Beijing; Brian Thomas, University of Illinois at Urbana-Champaign; Miaoyong Zhu, Northeastern University; Andreas Ludwig, Montanuniversitaet Leoben, Dep. Metallurgy; Adrian Sabau, Oak Ridge National Laboratory; Koulis Pericleous, University of Greenwich; Hervé Combeau, Institut Jean Lamour

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chairs: Laurentiu Nastac, The University of Alabama; Daojie Zhang, The University of Alabama

Finite Element Simulation of Die Forging Process of High Alloy Chromium-cobalt Bearing Steel: *Haiyan Tang*¹; ¹University of Science and Technology Beijing

Gas-solid Flow and Injected Gas Distribution in Oxygen Blast Furnace Analyzed by DEM-CFD Coupling Model: Zeshang Dong¹; Jingsong Wang¹; Jinzhou Liu¹; Xuefeng She¹; Qingguo Xue¹; Lin Lin¹; ¹University of Science and Technology Beijing

Improving Current Efficiency through Optimizing Electrolyte Flow in Zinc Electrowinning Cell: *Hongdan Wang*¹; Wentang Xia¹; Wenqiang Yang¹; Bingzhi Ren¹; ¹Chongqing University of Science and Technology

Influence of Heavy Reduction(HR) on Internal Quality of Continuous Casting Bloom: *Cheng Ji*¹; Chenhui Wu¹; Miaoyong Zhu¹; ¹Northeastern University of China

Numerical Simulation of Transient Flow in Continuous Casting Mold Based on Lattice Boltzmann Method: *Peng Zhao*¹; Qiang Li¹; Zongshu Zou¹; ¹Northeastern University

Numerical Study of Flow Behavior and Optimization of Nozzle Ports in Continuous Casting Slab Mold: Shuai Feng¹; LingXiang Hong¹; Bo Wang¹; Shupei Liu¹; Zhiliang Yang¹; Kongfang Feng¹; Liang Bai¹; Jieyu Zhang¹; ¹shanghai Uiniversity

The Effect of Pulse Width on the Characteristic of Discharge and Flow for Pure Aluminum: Xiang Wang¹; Zhishuai Xu¹; Qixin Wang¹; Qijie Zhai¹; Ning Pei¹; Yongyong Gong¹; ¹Shanghai University

A Simulation Study on the Spreading and Heat Transfer during Fabrication of Ruthenium Target by Spark Plasma Sintering (SPS): *Hyo Eun Nam*¹; Jun-Ho Jang¹; Hyun-Kuk Park¹; Ik-Hyun Oh¹; ¹KITECH

Computational Materials Discovery and Optimization: From 2D to Bulk Materials — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Richard Hennig, University of Florida; Houlong Zhuang, Oak Ridge National Laboratory; Dallas Trinkle, University of Illinois, Urbana-Champaign; Eric Homer, Brigham Young University

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

A Theoretical Study on the Origin of Mg-based LPSO Structures: Daisuke Matsunaka¹; Yoji Shibutani²; ¹Shinshu University; ²Osaka University

Strain Induced Tuning of Band Gap of Bismuth Monolayer and Its Nonlinear Elastic Properties: Zhe Shi¹; Chandra Singh¹; ¹University of Toronto

Computational Materials Engineering for Nuclear Reactor Applications — Poster Session

Sponsored by:

Program Organizers: Michael Tonks, Idaho National Laboratory; Julie Tucker, Oregon State University; Mark Tschopp, Army Research Laboratory; Richard Williamson, Idaho National Laboratory

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Funding support provided by: The symposium will be co-sponsored by the ICME committee

Session Chair: To Be Announced

A Spatially Resolved Stochastic Cluster Dynamics Approach for Simulating Radiation Damage Accumulation in a-Fe: Aaron Dunn¹; Rémi Dingreville²; Enrique Martínez-Saez³; Laurent Capolungo¹; ¹Georgia Institute of Technology; ²Sandia National Laboratories; ³Los Alamos National Laboratory

Ab initio Study of Native Defects near the Stacking Faults of 3C-SiC: *Jian-qi Xi*¹; Bin Liu¹; Yanwen Zhang²; William J. Weber¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

Beryllium Segregation to Zr(0001) Surface by First Principles: *Abhinav Jain*¹; Dallas Trinkle¹; ¹University of Illinois, Urbana-Champaign

Cluster Dynamics Modeling of Coupling of Cu-rich and Mn-Ni-Si Precipitates in RPV Steels: *Huibin Ke*¹; Leland Barnard¹; Peter Wells²; G. Odette²; Dane Morgan¹; ¹University of Wisconsin-Madison; ²University of California-Santa Barbara

Computational Modeling of the Structure of Jogged Screw Dislocations Responsible for Zircaloy Creep: Jesse Carter¹; Ken Anderson¹; Richard Smith¹; ¹Bettis Atomic Power Laboratory

Dislocation Loop Sink Strengths: A 3D Phase-field Modelling Including Realistic Anisotropic Effects: Ludovic Thuinet¹; Hadrien Rouchette¹; Alexandre Legris¹; Christophe Domain²; Antoine Ambard²; ¹Université de Lille; ²EDF R&D

Gas Bubble Kinetics in an Irradiated U-Mo Using a Multistate Simulation Approach: Linyun Liang¹; Zhi-Gang Mei¹; Mihai Anitescu¹; Abdellatif M. Yacout¹; Yeon Soo Kim¹; ¹Argonne National Laboratory

Phase Field Model of Multiphase Hydrides in Zirconium Fuel Rod Claddings: *Jake Bair*¹; Mohsen Asle Zaeem¹; Michael Tonks²; Daniel Schwen³; ¹Missouri University of Science and Technology; ²Penn State University; ³Idaho National Laboratory

Sensitivity Analysis of Rate Equations and Kinetic Monte Carlo Models: Richard Hoffman III¹; ¹Georgia Institute of Technology

Texture Measurement and Prediction of Rolled a-uranium Foil: Robert Klein¹; Elena Garlea²; Sean Agnew¹; ¹University of Virginia; ²Y-12 National

Security Complex

Using Phase Field Modelling to Investigate the Bubble Lattice Phenomenon in Nuclear Fission Materials: *Matthew Noble*¹; Steve Fitzgerald¹; Michael Tonks²; Chris Grovenor¹; ¹The University of Oxford; ²Idaho National Laboratory

Computational Methods for Spatio-temporal Scale-bridging: from Atomistics to Mesoscale — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Danny Perez, Los Alamos National Laboratory; Dallas Trinkle, University of Illinois, Urbana-Champaign; Maryam Ghazisaeidi, Ohio State University; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Study of the Structure and Deformation Pathways of Ti-7Al Using Atomistic Simulations, Experiments and Characterization: *Ajey Venkataraman*¹; Paul Shade²; G. Viswanathan³; Michael Mills³; Michael Sangid¹; ¹Purdue University; ²Wright-Patterson Air Force Base; ³The Ohio State University

Computational Thermodynamics and Kinetics — Poster Session

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division (formerly EMPMD), TMS: Chemistry and Physics of Materials Committee Program Organizers: Dane Morgan, University of Wisconsin - Madison; Shawn Coleman, U.S. Army Research Laboratory; Xiang-Yang Liu, Los Alamos National Lab; Chris Wolverton, Northwestern University

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: Chris Wolverton, Northwestern University

Computational Modeling for High Temperature Materials: Youhai Wen¹;
¹National Energy Technology Laboratory

Quantitative Calculation on Sr Segregation of La0.8Sr0.2MnO3±d Perovskite as a Result of Atmospheric CO2 and H2O: Shadi Darvish¹; Yu Zhong¹; ¹Florida International University

Thermodynamic Modelling of Long Periodic Stacking Ordered Structures in Mg-Gd-Al: An Integrated First-principles Calculations and CALPH-AD Modeling Study: Hongyeun Kim¹; William Wang¹; Xuan Liu²; Yi Wang¹; ShunLi Shang¹; Zi-Kui Liu¹; Kristopher Darling³; Laszlo Kecskes³; ¹Penn state Univ.; ²Penn State Univ.; ³US Army Research Laboratory

Experiments and Kinetics Modeling for Gasification of Biomass Char and Coal Char under CO2 and Steam Condition: Guangwei Wang¹; Jianliang Zhang¹; JiuGang Sao²; *Pengcheng Zhang*¹; ¹School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing; ²Handan Steel Co.LTD, Handan, 056000, China.

Effect of Particle and Interfacial Energy on Morphology of Phases during Spinodal Decomposition: Naveen Kumar¹; T. A. Abinandanan¹; ¹Indian Institute of science, Bangalore

Effect of Differential Diffusivities of Solutes on Coarsening in Ternary Two Phase Alloys: *Mithipati Bhaskar*¹; T.A. Abinandanan¹; ¹Indian Institute of Science

Rayleigh Instability of Cylindrical Pores: Chaitanya Joshi¹; T.A. Abinandanan¹; Abhik Choudhury¹; ¹Indian Institute of Science, Bangalore

Emerging Interconnect and Pb-free Materials for Advanced Packaging Technology — Poster Session

Sponsored by: TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Albert T. Wu, National Central University; Yan Li, Intel; Kazuhiro Nogita, The University of Queensland; Christopher Gourlay, Imperial College London

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: Christopher Gourlay, Imperial College London

Density, Surface Tension and Viscosity of ZnAl+X (X= Li, Na, Si) Alloys: Tomasz Gancarz¹; ¹Institute of Metallurgy and Material Science PAS

Development of a Microwave Sintered TiO2 Reinforced Sn-0.7wt%Cu-0.05wt%Ni Solder Alloy: M. A. A. Mohd Salleh¹; S. D. McDonald¹; H. Yasuda²; K. Nogita¹; ¹School of Mechanical and Mining Engineering, University of Queensland; ²Kyoto University

Effect of Bi on Mechanical Properties and CTE of Pb-free Solders: Selena Smith¹; Yueqin Wu¹; Mohd Arif Mohd Salleh¹; Christopher Gourlay²; Sergay Belyakov²; Stuart McDonald¹; *Kazuhiro Nogita*¹; ¹The University of Queensland; ²Imperial College London

Effects of Trace Addition of Phosphorus in Sn-Cu-Ni Solders: M. A. A. Mohd Salleh¹; J. Read¹; Z. I. Abdullah¹; S. D. McDonald¹; K. Nogita¹; ¹School of Mechanical and Mining Engineering, University of Queensland

Joint Properties of Sn-Cu-(X)Al(Si) for Automotive Electronics Modules: Dong-Yurl Yu¹; Yong-Ho Ko¹; Junghwan Bang¹; Chang-Woo Lee¹; ¹Korea Institute of Industrial Technology

Microstructural Evolution during Processing of Sintered Joints: *Govinda-rajan Muralidharan*¹; Donovan Leonard¹; Chad Parish¹; Harry Meyer¹; ¹Oak Ridge National Laboratory

Microstructure and Properties of BGA Joints Soldered with Sn-Cu-Ni-Bi: Sergey Belyakov¹; Arif Mohd Salleh²; Takatoshi Nishimura³; Keith Sweatman³; Kazuhiro Nogita²; Christopher Gourlay¹; ¹Imperial College London; ²University of Queensland; ³Nihon Superior Co., Ltd.

The Effect of Aging Temperature on the Phenomena Occurring at the Interface of Solder SnZn with Na on Cu Substrate: *Tomasz Gancarz*¹; ¹Institute of Metallurgy and Material Science PAS

Energy Technologies and Carbon Dioxide Management — Poster Session

Sponsored by:TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Li Li, Cornell University; Donna Guillen, Idaho National Laboratory; Neale Neelameggham, Ind LLC; Lei Zhang, University of Alaska Fairbanks; Jingxi Zhu, Carnegie Mellon University; Nawshad Haque, CSIRO; Dirk Verhulst, Consultant, Extractive Metallurgy; Soumendra Basu, Boston University; Tao Wang, Nucor Steel; Xuan Liu, Carnegie Mellon University

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Effect of Microwave Irradiation on Graphitization of Carbon Matrix in Pulverized Coal: *Qinghai Pang*¹; ¹University of Science and Technology Liaoning

Effect of Microwave Irradiation on Improving Coal Grindability: Zhijun He¹; ¹University of Science and Technology Liaoning

Effect of Microwave Irradiation on Magnetic Properties of Pulverized Coal: Zhijun He¹; ¹University of Science and Technology Liaoning

Study on the Reaction Characteristics of Compound Sulfur Fixing Agent with Inorganic Constituents in Coal Ash: Zhu Guangjun¹; Zhang Qianying¹; Yang Yanhua¹; *Qin Yuelin*¹; ¹Chongqing University Of Science and Technol-

Thermodynamic Analysis in the System of Ca(II)-NH3-NH4Cl-H2O: *Zhi-Bo Tong*¹; Guojun Ma¹; Xiang Zhang¹; Baoping Zhang¹; ¹Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, P.R. China

Fatigue in Materials: Fundamentals, Multiscale Modeling and Prevention — Poster Session

Sponsored by:TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Antonios Kontsos, Drexel University; Tongguang Zhai, University of Kentucky; Ashley Spear, University of Utah

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

A Microscopic Study of Polyether Ether Ketone (PEEK) under Mean Strain Fatigue Loadings

: Rakish Shrestha¹; Jutima Simsiriwong¹; Nima Shamsaei¹; ¹Mississippi State University

Effect of UNSM and LSP on the Fatigue Behavior of IN718+ at Room and Elevated Temperatures: *Micheal Kattoura*¹; Vijay Vasudevan¹; Seetha Ramaiah Mannava¹; Dong Qian²; Abhishek Telang¹; ¹University of Cincinnati; ²University of Texas at Dallas

Experimental High Throughput Screening Using Micro Resonant Experiments as a Fundament for Fatigue Life Time Prediction: Michael Buck¹; Thomas Straub²; Chris Eberl²; ¹University of Freiburg; ²Fraunhofer Institute for Mechanics of Materials - IWM

Experimental Investigation of Crack Initiation in FCC Materials in the High and Very High Cycle Fatigue Regime: *Thomas Straub*¹; Michael Buck¹; Chris Eberl¹; ¹Fraunhofer Institute for Mechanics of Materials (IWM)

Investigation of Corrosion Fatigue of Duplex Steel X2CrNiMoN22-5-3 Exposed to the Geothermal Environment under Different Electrochemical Conditions: *Marcus Wolf*¹; Roman Afanasiev¹; Thomas Boellinghaus¹; Anja Pfennig²; ¹Federal Institute for Materials Research and Testing; ²Hochschule für Technik und Wirtschaft Berlin – University of Applied Sciences

Tensile and Fatigue Deformation Behaviors of Extruded Hyper-eutectic Al-Si Alloy: *Gi-Su Ham*¹; Min-Seok Baek¹; Jong-Ho Kim²; See-Woo Lee³; Kee-Ahn Lee¹; ¹Andong National University; ²RIST; ³Bowon Light Metal

Evaluating Fatigue Performance and Residual Stresses Effect on Crack Initiation in High Speed Helical Gears Using Modelling and Experimentation: Ali Jammal¹; Hui Wang¹; Yiming Rong¹; ¹Tsinghua University

Fracture and Fatigue Crack Growth Behavior of As-cast Ti48Al-2Nb-2Cr and Ti 43Al-4Nb-1Mo

: *Matthew Dahar*¹; Sesh Tamirisakandala²; John Lewandowski¹; ¹Case Western Reserve University; ²RTI International Metals, Inc.

Martensite Phase Transformation for Type 304L Stainless Steel under Cyclic Loading: Jonathan Pegues¹; Michael Roach²; Judy Schneider¹; Nima Shamsaei¹; ¹Mississippi State University; ²The University of Mississippi Medical Center

Cyclic Deformation, Degradation, and Failure of Paper: Yoon Joo Na¹; James Collins¹; Christopher Muhlstein¹; ¹Georgia Institute of Technology

Effects of Corrosion Damage on the Fatigue Behavior of Dissimilar Friction Stir Welded Aluminum Alloys: Rogie Rodriguez 1 ; J Jordon 1 ; Paul Allison 1 ; 1 The University of Alabama

High Temperature Fatigue of Dissimilar Metal Joints of IN718:IN713LC by Linear Friction Welding: *Ruoru Ye*¹; H. Li¹; T. Doel¹; S. Bray²; A. Walpole²; P. Bowen¹; ¹University of Birmingham; ²Rolls-Royce plc.

Physically-based Simulation of Surface Microcrack Initiation and Com-

parison with Experimental Data: Maxime Sauzay¹; J. Liu¹; ¹CEA

Microstructural Properties and Four-point Bend Fatigue Characteristic of Ti-6.5Al-2Zr-1Mo-1V Welded Joints by Electron Beam Welding: *Peng Liu*¹; Tongguang Zhai²; Yuanbin Zhang¹; ¹Shandong Jianzhu University, P. R. China; ²University of Kentucky

Separating the Influence Factors Resulting from Production Processes on the Fatigue Strength in the HCF/VHCF Regime: *Martina Zimmermann*¹; Martin Cremer²; Davi Pessoa¹; Hans-Jürgen Christ³; ¹TU Dresden; ²Hydro Aluminium Rolled Products GmbH; ³Universität Siegen

Surface Roughness Evolution and Point Defect Generation in FCC Single Crystals Loaded Cyclically: Ahmed Hussein¹; Jaafar Elawady¹; ¹Johns Hopkins University

Toward the Use of Machine Learning to Understand the Mechanisms of Complex, Microstructurally Small, Fatigue-Crack Evolution: Stuart Childs¹; Ashley Spear¹; Jacob Hochhalter²; P. Thomas Fletcher¹; Brian Phung¹; ¹University of Utah; ²NASA Langley Research Center

High-Temperature Systems for Energy Conversion and Storage — Poster Session

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Energy Conversion and Storage Committee

Program Organizers: Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Amit Shyam, Oak Ridge National Laboratory; Kyle Brinkman, Clemson University; Paul Ohodnicki, National Energy Technology Laboratory; Jung Pyung Choi, Pacific Northwest National Laboratory

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Graphene-inorganic Hybrids with Cobalt Oxides for Electrochemical Energy Storage and Conversion Applications: S. Carrizosa¹; B. McDonald¹; Sanju Gupta¹; ¹Western Kentucky University

Thermal and Mechanical Properties of $(La_{1x}Bi_y)_2Mo_2O_q$: Yusuke Mitazono¹; Yuji Ohishi¹; Hiroaki Muta¹; Ken Kurosaki¹; Shinsuke Yamanaka¹; ¹Osaka University

Effect of Heating Rate on the Sintering and Performance of MnCo2O4 Contact Layer with Metallic Powder Precursors: Joseph Simpson¹; J. Zhu¹; ¹Tennessee Technological University

High Entropy Alloys IV — Poster Session

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Lab; Suveen Mathaudhu, University of California Riverside; Gongyao Wang, Alcoa Technical Center

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Ab Initio Thermodynamics of the CoCrFeMnNi High Entropy Alloy: Importance of Entropy Contributions beyond the Configurational One: Duancheng Ma¹; Blazej Grabowski¹; Fritz Körmann²; Jörg Neugebauer¹; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung GmbH; ²Delft University of Technology

Alloy Design Strategy of High Entropy Alloys based on Mechanical Thermophysical Properties: *Je In Lee*¹; Hyun Seok Oh¹; Jun Hyuk Kim¹; Eun Soo Park¹; ¹Seoul National University

Compressive Behavior of CoCrFeMnNi High Entropy Alloy: Min Ji Jang¹; Soo-Hyun Joo¹; Jien-Wei Yeh²; Che-Wei Tsai²; Hyoung Seop Kim¹; ¹POS-

TECH; 2NTHU

Effect of Cooling Rate on Mechanical Properties of MnAlFeNiCo HEAs: Tolga Ulucan¹; Serkan Koylan¹; Seyma Koc¹; Eren Kalay¹; ¹METU

Effects of Processing Conditions on Microstructure and Mechanicals Properties of Selected HEA Alloys from CoCrFeMnNi Family: Anna Fraczkiewicz¹; *Julia Olszewska*¹; Julia Olszewska²; Jean-Denis Mithieux²; ¹MINES St-Etienne; ²APERAM

Microstructural Characterization and Mechanical Experiments of Lightweight AlxCrFeMn High-Entropy Alloys: Peiyong Chen¹; Chanho Lee¹; Rui Feng¹; Michael Gao²; Fan Zhang³; Chuan Zhang³; Peter Liaw¹; ¹University of Tennessee Knoxville; ²URS at National Energy Technology Laboratory (NETL); ³CompuTherm, LLC

Microstructural Characterization in AlxCrFeMnTix advanced Light Weight High-Entropy Alloys: Chanho Lee¹; Peiyong Chen¹; Rui Feng¹; Michael Gao²; Fan Zhang³; Chuan Zhang³; Peter Liaw¹; ¹University of Tennessee; ²URS at National Energy Technology Laboratory (NETL); ³CompuTherm, LLC

Microstructures and Mechanical Properties of Compositionally Complex Co-free FeNiMnCr18 Alloy with Simple Microstructure: *Zhenggang Wu*¹; Hongbin Bei²; ¹University of Tennessee; ²oak ridge national laboratory

Dynamic Recrystallization Behaviour of AlxCoCrFeNi High Entropy Alloys during High Temperature Deformation Process: Murugesan Annasamy¹; Daniel Fabijanic¹; Adam Taylor¹; Peter Hodgson¹; ¹Deakin University

Magnesium Technology 2016 — Poster Session

Sponsored by:TMS Light Metals Division, TMS: Magnesium Committee Program Organizers: Alok Singh, National Institute for Materials Science; Kiran Solanki, Arizona State University; Michele Manuel, University of Florida; Neale Neelameggham, Ind LLC

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chairs: Kiran Solanki, Arizona State University; Eric Nyberg, Pacific Northwest National Laboratory; Martyn Alderman, Magnesium Elektron

Effect of the Volume Fraction of I-phase on Hot Workability in Mg-xZn-xY Alloys: *Tae-yang Kwak*¹; Young-ok Yoon¹; Shae k. Kim¹; Hyunkyu Lim¹; Woo Jin Kim²; ¹.Korea Institute of Industrial Technology; ²Hong-Ik University

Investigation on Plastic Deformability of Mg-Y Alloys by Vickers and Newly Designed In-situ Brinell Indentation Methods: *Takahiro Mineta*¹; Seiji Miura¹; Ken-ichi Ikeda¹; ¹Hokkaido University

Mechanical Response of a Gravity Cast Mg-9Al-1Zn-0.2Sc Alloy at Strain Rates from 10⁻⁴ to 10³/s: Richard Blessington¹; *Andrew Brown*¹; Andrea Lock¹; Juan P. Escobedo-Diaz¹; Paul Hazell¹; Daniel East²; Md Zakaria Quadir¹; ¹UNSW Australia; ²CSIRO

Study on Fatigue Mechanism of Mg-0.6at%Y Alloy by Cyclic Tensile Test: *Qinghuan Huo*¹; Daisuke Ando¹; Junichi Koike¹; Yuji Sutou¹; ¹Tohoku University

Study of Stress Relaxation Behavior in AZ31 Magnesium Alloy: *Chaitanya Paramatmuni*¹; Anand Kanjarla¹; ¹Indian Institute of Technology, Chennai

A High Specific Strength and Corrosion Resistant Magnesium Alloy: Realizing the Nexus: Wanqiang Xu¹; Michael Ferry¹; ¹University of New South Wales

Additive Friction Stir Deposition of Mg Alloys Using Powder Filler Materials: Nanci Hardwick¹; *Kumar Kandasamy*¹; Jianqing Su¹; Dietrich Linde¹; James Donnelly¹; ¹Aeroprobe Corporation

DSC Investigation of Recrystallization Mechanism in AZ31 Mg Alloy: *Özgün Köse*¹; Bensu Tunca¹; Elif Bor¹; Sakir Bor¹; ¹METU

Effect of Aging Treatment on Texture Evolution of Magnesium Alloy Sheets: Jae H. Kim¹; Byeong-Chan Suh²; Jihyun Hwang¹; Myeong-Shik Shim¹; Nack J. Kim¹; ¹Pohang University of Science and Technology (POS-

TECH); 2National Institute for Materials Science

Electrochemical Corrosion Behavior of Acid Pretreated and Plasma Electrolytic Oxide Film over AM50 Mg Alloy in 3.5% NaCl: Bhavana Rikhari¹; Periyathambi Dhaiveegan²; Hwa Chul Jung¹; Nallaiyan Rajendran²; kwang Seon Shin¹; ¹Seoul National University; ²Anna University

Grain Refinement Mechanism of Magnesium by Addition of Calcium: Guosheng Peng¹; *Yun Wang*¹; Zhongyun Fan¹; ¹Brunel University

Heterogeneous Nucleation Mechanism of Mg by Inoculation of MgO Particles: Yun Wang¹; Guosheng Peng¹; Zhongyun Fan¹; ¹Brunel University

Investigation of Corrosion Behavior of Mg-Zn and Mg-Sn-Zn Alloys in NaCl Solution: *Jie Yang*¹; Chang Dong Yim²; Bong Sun You²; ¹University of Science and Technology (UST); ²Korea Institute of Materials Science (KIMS)

Mg-Ni Hydrogen Storage Alloys for Metal Hydride Electrodes: Gokce Hapci¹; Gökhan Orhan¹; ¹Istanbul University

Microstructure and Mechanical Properties of ARB Processed Mg-3%Gd Alloy: Xuan Luo¹; Zongqiang Feng¹; Tianlin Huang¹; Shuai Huang¹; Guilin Wu¹; ¹Chongqing University

Preparation, Microstructure and Mechanical Properties of Mg/Ti and Mg/Zr Nanolaminates: Yuanyuan Lu¹; Jonnathan Ligda²; Sergey Yarmolenko³; Brian Schuster²; *Qiuming Wei*¹; ¹University of North Carolina at Charlotte; ²US-ARL; ³NC A&T SU

Quantification of Solid Solution Strengthening by Al, Zn, Gd and Y in Mg Alloys Investigated by Solid-to-Solid Diffusion Couples and Nanoindentation: Catherine Kammerer¹; Kyu Cho²; Yongho Sohn¹; ¹University of Central Florida; ²US Army Research Laboratory

Texture and Microstructure Study on Cold Rolled AZ31 Alloy: *Litzy Lina Catorceno*¹; Mohammad Masoumi¹; Hamilton de Abreu¹; ¹UFC - Universidade Federal do Ceará

Enhanced Mechanical Properties of Mg-Gd and Mg-Al Alloys Processed by Simple Shear Extrusion: Nazanin Bayat Tork¹; Seyyed hossein Razavi¹; Hasan Saghafian¹; Reza Mahmudi²; ¹Iran University of Science and Technology; ²University of Tehran

Effect of Alloying Element on Deformation Behavior of Magnesium Alloys: *Jihyun Hwang*¹; Byeong-Chan Suh²; Jae H. Kim¹; S. Y. Lee³; B.J. Lee¹; Nack J. Kim¹; ¹Pohang University of Science and Engineering (POSTECH); ²National Institute for Materials Science; ³Chungnam National University

Effect of Increased Strain Rate on the Deformation Mechanism of AZ31 Magnesium Alloy under a Triaxial Stress State: Chaitanya Kale¹; Scott Turnage¹; Mansa Rajagopalan¹; Kiran Solanki¹; Suveen Mathaudhu²; ¹Arizona State University; ²University of California - Riverside

Study on Biodegradable Mg-Zn-Nd Alloy and Its Application: *Ke Yang*¹; Lili Tan¹; Junlei Li¹; ¹Institute of Metal Research, Chinese Academy of Sciences

Effects of Alloying Elements on Deformation Behavior of Twin Roll Cast Mg-Al-X Alloys: Sang Jun Park¹; Hwa Chul Jung¹; Kwang Seon Shin¹; ¹Magnesium Technology Innovation Center / Seoul National University

The Use of In-situ Methods in the Research and Development of Magnesium-based Nanocomposites: Wim Sillekens¹; ¹European Space Agency

Materials and Fuels for the Current and Advanced Nuclear Reactors V — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee Program Organizers: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Dennis Keiser, Idaho National Laboratory; Raul Rebak, GE Global Research; Clarissa Yablinsky, Los Alamos National Laboratory

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Influence of Zirconium Hydride on the Biaxial Thermal Creep Behavior of Zircaloy-4 Cladding at 573 K and 773 K: Kuan-Che Lan'; Hsiao-Ming

Tung²; Yinbin Miao¹; Xiang Liu¹; Giuseppe Brunetti¹; Huan Yan¹; Di Yun³; Kun Mo³; James Stubbins¹; ¹University of Illinois at Urbana-Champaign; ²Institute of Nuclear Energy Research; ³Argonne National Laboratory

Fractography of Neutron-irradiated Alloy 690: Joo-Hag Kim¹; Han-Bum Surh¹; Jong-Wook Kim¹; ¹KAERI

Fabrication of Interconnected SiC Reinforced ZrO2 Composites by the Coat-mix Process and Spark Plasma Sintering: Qusai Mistarihi¹; *Hojin Ryu*¹; ¹Korea Advanced Institute of Science and Technology

Formation of Silicide Coatings on Refractory Alloy Substrates for Accident Resistant Nuclear Fuel Cladding: Woojin Lim¹; Faris Sweidan¹; Hojin Ryu¹; ¹Korea Advanced Institute of Science and Technology

Thermal and Mechanical Properties of Bulk Fe₂B: Fumihiro Nakamori¹; Yuji Ohishi¹; Masaya Kumagai¹; Hiroaki Muta¹; Ken Kurosaki¹; Ken-ichi Fukumoto²; Shinsuke Yamanaka¹; Osaka University; ²Research Institute of Nuclear Engineering, University of Fukui

Thermodynamic Assessment of U-Eu-O System: Atsuhiro Yoneda¹; Yuji Ohishi¹; Hiroaki Muta¹; Ken Kurosaki¹; Shinsuke Yamanaka¹; Masahiko Osaka²; Shuhei Miwa²; Akihiro Ishimi²; Kozo Katsuyama²; ¹Osaka University; ²Japan Atomic Energy Agency

Thermophysical Properties of Molten Zr-Ni Alloys Measured by Electrostatic Levitation: *Yuji Ohishi*¹; Toshiki Kondo¹; Hiroaki Muta¹; Ken Kurosa-ki¹; Shinsuke Yamanaka¹; Junpei Okada²; Takehiko Ishikawa²; ¹Osaka University; ²Japan Aerospace Exploration Agency

A Study on the Diffusion of Volatile Fission Products in the Graphite Matrix of HTGR: Je-Kyun Baek¹; Qusai Mistarihi¹; Sunghwan Yeo¹; Young-Woo Lee¹; Hojin Ryu¹; ¹Korea Advanced Institute of Science and Technology

Characterization of Bubbles Formation in Xenon Irradiated Metallic Fuels with X-Ray Tomography (XTM): Walid Mohamed¹; De Andrade Vincent¹; Sumit Bhattacharya¹; Kun Mo¹; Michael Pellin¹; Abdellatif Yacout¹; ¹Argonne National Laboratory

Effects of β-decay on Ceramic Nuclear Waste Forms: *Kalie Knecht*¹; Caitlin Taylor¹; William Weber¹; Maulik Patel¹; ¹The University of Tennessee-Knoxville

Low Temperature Friction Stir Welding (FSW) of Cr-Mo Steels

: Prasad Rao Kalvala¹; Javed Akram¹; R Damodaram²; Mano Misra¹; ¹University of Utah; ²SSN College of Engineering

Effects of Irradiation on the Interfacial Reaction between SiC and ODS Steels: Masego Lepule¹; Janelle Wharry¹; ¹Boise State University

Materials in Clean Power Systems IX: Durability of Materials — Poster Session

Sponsored by:TMS Extraction and Processing Division, TMS Structural Materials Division, TMS Light Metals Division, TMS: Energy Committee, TMS: High Temperature Alloys Committee

Program Organizers: Sebastien Dryepondt, Oak Ridge National Laboratory; Peter Hosemann, University of California Berkeley; Kinga Unocic, ORNL; Paul Jablonski, US Department of Energy; Joseph Licavoli, Department of Energy; Donna Guillen, Idaho National Laboratory

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Effect of High Temperature Cyclic Oxidation on the Deformation of ODS and Cast FeCrAlY Alloys: *Josh Turan*¹; Sebastien Dryepondt¹; Michael Lance¹; Bruce Pint¹; ¹Oak Ridge National Laboratory

Effect of Mechanical Loading on Galvanic Corrosion Using Electrochemical Characterization Techniques and Depth Profiling: Sreekamal Balijepalli¹; Scott Turnage¹; Kiran Solanki¹; ¹ARIZONA STATE UNIVERSITY

Electrodeposition of Amorphous/Nanocrystalline Ni-Mo Alloy for Hydrogen Evolution Reaction: Mert Manazoglu¹; Gokce Hapci¹; Gökhan Orhan¹;

¹Istanbul University

Phyllanthus Muellerianus and Triethanolamine Synergistic Effects on Steel-reinforced Concrete in 0.5 M H2SO4: Implication for Clean Corrosion-protection of Wind-energy Structures in Industrial Environment: Joshua Okeniyi¹; Olugbenga Omotosho¹; Cleophas Loto¹; Abimbola Popoola²; ¹Covenant University, Ota, Nigeria; ²Tshwane University of Technology, Pretoria

Mechanical Behavior at the Nanoscale III — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Daniel Gianola, University of California, Santa Barbara; Ting Zhu, Georgia Institute of Technology; Julia Greer, California Institute of Technology; Harold Park, Boston University; Garritt Tucker, Drexel University; Jiangwei Wang, University of Pittsburgh

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

A Tale of Two Mechanisms: Strain-softening Versus Strain-hardening in Single Crystals under Small Stressed Volumes: *Yanfei Gao*¹; Hongbin Bei²; ¹Univ of Tennessee; ²Oak Ridge National Laboratory

Analysis of Plastic Anisotropy in Nanotwinned Copper by a Statistical Dislocation Source Model: Caizhi Zhou¹; Rui Yuan¹; Irene Beyerlein²; ¹Missouri University of Science and Technology; ²Los Alamos National Laboratory

Characterization of Grain Boundary Strain Transfer in High Purity Tantalum: *Bret Dunlap*¹; Philip Eisenlohr¹; Claudio Zambaldi²; David Mercier²; Yang Su¹; Thomas Bieler¹; Martin Crimp¹; ¹Michigan State University; ²Max-Planck-Institut Für Eisenforschung GmbH

Characterization of Interface Dislocations at the Ferrite/Cementite Interface: *Jaemin Kim*¹; Keonwook Kang²; Seunghwa Ryu¹; ¹KAIST; ²Yonsei University

Competing Twinning Mechanisms during Mechanical Deformation of BCC Metals at Nanoscale: Zhe Shi¹; Chandra Singh¹; ¹University of Toronto

Computational Evaluation of Adhesion and Mechanical Properties of Nanolayered Diffusion Barrier Coating for Nuclear Applications: *Zhi-Gang Mei*¹; Abdellatif Yacout¹; Sumit Bhattacharya²; Walid Mohamed¹; Mike Pellin¹; Hee Roh¹; ¹Argonne National Laboratory; ²Northwestern University

Coupled Atomistic-Continuum Framework of Developing Constitutive Relations of Crack Propagation: *Jiaxi Zhang*¹; Subhendu Chakraborty¹; Somnath Ghosh¹; ¹Johns Hopkins University

Crystal Size Effect on Twinning of Magnesium Microcrystals: *Gi-Dong Sim*¹; Kelvin Xie¹; Steven Lavenstein¹; Kevin Hemker¹; Jaafar El-Awady¹; ¹Johns Hopkins University

Cyclic Response of Candidate Engineering Alloy Micro-beams: *Cameron Howard*¹; Daniel Kiener²; Peter Hosemann¹; ¹UC Berkeley; ²Montanuniversität Leoben

Dislocation Core Reconstruction Induced by Solute Atom Segregation in BCC Metals: Bérengère Lüthi¹; Lisa Ventelon¹; *David Rodney*²; François Willaime¹; ¹CEA Saclay; ²Université Lyon 1

Effect of Texture and Plastic Anisotropy on Stress-strain Response of Nanoscale Aluminum Films: Ehsan Izadi¹; Harn Lim¹; Robert McDonald¹; Pedro Peralta¹; Jagannathan Rajagopalan¹; ¹Arizona State University

Influence of Grain Refinement by Severe Plastic Deformation on Corrosion Behavior of Al5083: Ting Chen¹; ¹SET Labs

Investigating Structural, Physical and Mechanical Properties of Graphene/Polymer Hybrid Nanocomposites: B. McDonald¹; Sanju Gupta¹; ¹Western Kentucky University

Localized Hardness and Modulus Distribution within SiC Grain of a Reaction Bonded SiC/Si Ceramic Matrix Composite: Chun-yen Hsu¹; Fei Deng¹; Bo Yuan¹; Prashant Karandikar¹; Robert Opila¹; Chaoying Ni¹; ¹Uni-

versity of Delaware

Mechanical Behavior of a Two Phase Oxide on a Commercial Aluminum Alloy: Raheleh Mohammad Rahimi¹; David F. Bahr¹; ¹Purdue University

Mechanical Study on Nanocomposites using Nonlocal Differential Quadrature Method: S. Thamaraikannan¹; S.C. Pradhan¹; ¹Department of Aerospace Engineering, Indian Institute of Technology Kharagpur

Micromechanisms Governing Plastic Instability in Al-Li based Alloys: *Henry Ovri*¹; Eric Jägle²; Andreas Stark¹; Erica Lilleodden¹; ¹Helmholtz Zentrum Geesthacht, Germany; ²Max-Planck-Institut für Eisenforschung GmbH, Germany

Microstructure and Strengthening Mechanisms of Ag/Fe Multilayers: *Jin Li*¹; Youxing Chen²; Sichuang Xue¹; Haiyan Wang¹; Xinghang Zhang¹; ¹Texas A&M University; ²Los Alamos National Laboratory

Modelling and Calibration of a MEMS Tensile Stage for Elevated Temperature Experiments on Freestanding Metallic Thin Films: Suhas E P¹; Rohit Sarkar²; Jagannathan Rajagopalan²; ¹Arizona State University; ²Arizona State University

Nonlocal Crystal Plasticity Simulations of the Size-dependent Mechanical Response of fcc/bcc Multilayers: Jason Mayeur¹; ¹Los Alamos National Lab

Phase Transformation of Sub-Micrometer Shape Memory Alloys Thin Films Synthesized by Biased Target Ion Beam Deposition: Huilong Hou¹; Reginald Hamilton¹; ¹The Pennsylvania State University

Spherical Indentation Response of Ti64, Ni49.9Ti50.1 and Ni50. 3Ti29.7Hf20 Shape Memory Alloys at Elevated Temperature: Peizhen Li¹; Haluk Karaca¹; Yang-Tse Cheng¹; ¹University of Kentucky

Stress Generation and Localization during Thin Film Coalescence Processes: Murat Al¹; Edmund Webb¹; ¹Lehigh University

Structure and Mechanical Properties of Nickel Nanoparticles And Their Epoxy Composites

: Claudia Luhrs¹; Sarath Menon¹; Rene de la Fuente¹; ¹Naval Postgraduate School

The Effect of a Strut Size on the Strength of Nanoporous Cu Foams: Seungjin Nam¹; Junyeon Hwang²; Hyunjoo Choi²; ¹Kookmin University; ²Korea Institute of Science and Technology

Strain Rate Dependent Failure of Interfaces in Glass/Epoxy and Energetic Materials at Nano-Microscale via Dynamic Indentation: *Devendra Verma*¹; Vikas Tomar¹; ¹Purdue University

The Microstructure and Mechanical Properties of Nanometer Al₂O₃/Cu Composite Fabricated by Internal Oxidation: *Lei Guo*¹; Shuqiang Guo¹; Shuai Ma¹; Jie Liu¹; Weizhong Ding¹; ¹ShangHai University

Evaluation of Mechanical Properties of Fe-Gd Alloys by Dynamic-Nano Indentation Method: *Yong Choi*¹; Youl Baik¹; Bo Kyeong Kang¹; Sang Sun Han¹; Moon Sun Gu¹; Byung M. Moon²; Dong S. Sohn³; Sung H. Cho⁴; ¹Dankook University; ²KIECH; ³UNIST; ⁴HANSCO

Beam Induced Artifacts during in situ Transmission Electron Microscopy Deformation of Nanocrystalline and Ultrafine-grained Metals: Rohit Sarkar¹; Christian Rentenberger²; Jagannathan Rajagopalan¹; ¹Arizona State University; ²Univeristy of Vienna

Understanding the Relationship between Interface and Mechanical Properties of Cu/Nb Nanoscale Multilayers through In-situ Electromechanical Measurements: Hashina Parveen Anwar Ali¹; Ihor Radchenko¹; Nan Li²; Nathan Mara²; Irene Beyerlein²; Arief Budiman¹; ¹Singapore University of Technology and Design; ²Los Alamos National Laboratory

In Situ Nanoindentation of Fluorinated Ethylene Propylene Copolymers as Polyethylene Tetrafluoride Alternative: Steven Lee¹; Rahmi Ozisik¹; Alexander Yin¹; ¹Rensselaer Polytechnic Institute

Deformation Behavior and Shear Band Evolution of Phase Separating Metallic Glass: *Jinwoo Kim*¹; Eun Soo Park¹; Andrew Minor²; ¹Seoul National University; ²Lawrence Berkeley National Laboratory

Suppression of Plastic Instability in Submicron FCC Crystals with Ultrahigh Strength: *Tao Hu*¹; Lin Jiang¹; Hanry Yang¹; Kaka Ma¹; Troy Topping²; Amiya Mukherjee¹; Enrique Lavernia¹; Julie Schoenung¹; ¹University of California Davis; ²California State University, Sacramento

Role of In-situ Mechanical Testing in Building 3D Structure of Nanomaterials: *Chandra Tiwary*¹; Sanjit Bhaoumik²; Syed Asif²; P Ajayan¹; ¹Rice University; ²Hysitron, Inc., Minneapolis, Minnesota 55344

Determination of Unknown Single-crystal Orientation Using Transient Grating Spectroscopy and Molecular Dynamics Simulations: Cody Dennett¹; Penghui Cao¹; Alejandro Vega-Flick¹; Jeffrey Eliason¹; Alexei Maznev¹; Keith Nelson¹; Michael Short¹; ¹MIT

Plastic Deformation in Nanocrystalline TiN at Ultra-low Stress: An In Situ Nanoindentation Study: *Jie Jian*¹; Haiyan Wang¹; Xinghang Zhang¹; ¹Texas A&M University

Metal and Polymer Matrix Composites II — Poster Session

Sponsored by:TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizer: Nikhil Gupta, New York University

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Fracture Behavior of Ni-graphene Nanocomposites under Mode I Loading: Scott Muller¹; Arun Nair¹; ¹University of Arkansas

Microhardness Analysis in MMCs Directionally Solidified: Alicia Ares¹;
¹Materials Institute of Misiones-IMAM (CONICET-UNAM)

Natural Aging Effects in HMS-Polypropylene Synthesized by Gamma Radiation in Acetylene Atmosphere: Washington Oliani¹; Luiz Gustavo Komatsu¹; Duclere Parra¹; Ademar Lugao¹; Vijaya Rangari²; ¹Nuclear Energy Research Institute – IPEN/USP; ²Center for Advanced Materials Science and Engineering Tuskegee University, AL 36088, USA.

Reinforcing Efficiency of CNTs in Transition Metal Matrix Composites to Improve Mechanical Properties with Superior Interface: Miran Joo¹; Donghyun Bae¹; ¹Yonsei university

Study of Carbon Dioxide Adsorption/Desorption on Fluorelastomer/Multi Walled Carbon Nanotubes Nanocomposites: Cristina Pozenato¹; Sandra Scagliusi¹; Ademar Lugão¹; ¹IPEN

Super Aligned Carbon Nanotubes Reinforced Copper Nanocomposites with Enhanced Strength and Electric Conductivity: Wenzhen Li¹; Jing Shuai¹; Yu Jin¹; Lin Zhu¹; ¹Tsinghua University

Fabrication of Gamma-irradiated Polypropylene and AgNPs Nanocomposite Films and their Antimicrobial Activity: Isabelle Berenguer¹; Washington Oliani¹; Luis Gustavo Komatsu¹; Vinicius dos Santos¹; Duclerc Parra¹; Ademar Lugao¹; Vijaya Rangari²; ¹Nuclear and Research Energetic Institute; ²Tuskegee University

Phase Transformations and Microstructural Evolution — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Sudarsanam Babu, The University of Tennessee, Knoxville; Dhriti Bhattacharyya, ANSTO; Yunzhi Wang, Ohio State University; Osman Anderoglu, Los Alamos National Laboratory; Juan P. Escobedo-Diaz, UNSW Australia; Jessica Krogstad, University of Illinois, Urbana-Champaign; Long Qing Chen, Penn State University; Monica Kapoor, University of Alabama; Amy Clarke, Los Alamos National Laboratory; Gregory Thompson, University of Alabama

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: Kester Clarke, LANL

Precipitation of Scorodite in Arsenic Containing Acidic Solution: Zixiu Yu¹; Cunxiong Li¹; Minting Li¹; ¹Kunming university of science and technology

Phase Stability in the Group IVB and VB Transition Metal Carbides:

Chase Smith¹; Xiao-xiang Yu¹; Christopher Weinberger²; Gregory Thompson¹; ¹The University of Alabama; ²Drexel University

Transmission Electron Microscopy Study of Deformation-Induced Martensitic Transformation in 304 Stainless Steel using In-situ and Ex-situ characterization.: Djamel Kaoumi¹; *Junliang Liu¹*; ¹The University of South Carolina

The Effect of Aluminum Content on Recrystallization and Grain-Growth of Magnesium: Aeriel Murphy¹; John Allison¹; ¹University of Michigan

Mapping Dislocation Densities Resulting from Machining-Relevant High Rate Severe Plastic Deformation: Sepideh Abolghasem Ghazvini¹; ¹University of Pittsburgh

Phase Transformations in Multi-component Systems: An MPMD Symposium Honoring Gary R. Purdy — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Hatem Zurob, McMaster University; Annika Borgenstam, KTH, Royal Institute of Technology; Tadashi Furuhara, Tohoku University; Wenzheng Zhang, Tsinghua University; Christopher Hutchinson, Monash University; Robert Hackenberg, Los Alamos National Laboratory

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Modeling of Acicular Ferrite Growth: Lindsay Leach¹; Mats Hillert¹; Lars Höglund¹; John Ågren¹; Annika Borgenstam¹; ¹KTH Royal Institute of Technology

Phase Equilibria of Vanadium Bearing Slags: *Jinichiro Nakano*¹; James Bennett¹; Anna Nakano¹; ¹US Department of Energy National Energy Technology Laboratory

Solid State Reaction of Nd₂Fe₁₄B and Carbon: *Jie Liu*¹; Shuqiang Guo¹; Yuyang Bian¹; Lei Guo¹; Lan Jiang¹; Man Zhang¹; Shuai Ma¹; Weizhong Ding¹; Shanghai University

Effect of Room Temperature Aging on the Mechanical Properties of Carbide Free Bainite: Xiaoxu Zhang¹; Gary Purdy¹; Hatem Zurob¹; ¹McMaster University

Rare Metal Extraction & Processing Symposium — Poster Session

Sponsored by:TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Shafiq Alam, University of Saskatchewan; Hojong Kim, Penn State University; Neale Neelameggham, Ind LLC; Takanari Ouchi, MIT; Harald Oosterhof, Umicore

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: Takanari Ouchi, MIT

Thermal Decomposition of Acid Strontium Oxalate: Mert Zoraga¹; *Cem Kahruman*¹; Ibrahim Yusufoglu¹; ¹Istanbul University

Treatment of a Complex Rare Earth-niobium-iron Associated Ore by a Novel Metallurgical Process: *Mudan Liu*¹; Yong Liu¹; Zhenzhen Liu¹; ¹Guangzhou Research Institute of Nonferrous Metals

Upgrading Platinum from Spent Alumina-supported Catalyst by a Roast-leaching Process: Haigang Dong¹; ¹Kunming Institute of Precious Metals

Recent Advancement on Stretchable and Wearable Electronics — Poster Session

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Electronic Packaging and Interconnection Materials Committee, TMS: Nanomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Pooran Joshi, ORNL; Amit Pandey, Rolls Royce LG Fuel Cell Systems Inc.; Jiahua Zhu, The University of Akron; Nuggehalli Ravindra, New Jersey Institute of Technology; Catherine Dubourdieu, CNRS - INL; Madan Dubey, US Army Research Lab

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Printing of Graphene-coated Copper Nano-ink on Flexible Substrate Using Light Sintering Method: YeonHo Son¹; Young Jun Pyo¹; Eric H Yoon¹; Seung-Boo Jung¹; Yongil Kim¹; Caroline Sunyong Lee¹; ¹Multi-Functional Materials & Devices Lab

Recent Developments in Biological, Structural and Functional Thin Films and Coatings — Poster Session

Sponsored by:TMS Functional Materials Division (formerly EMPMD), TMS: Thin Films and Interfaces Committee

Program Organizers: Nancy Michael, University of Texas at Arlington; Adele Carradò, IPCMS; Heinz Palkowski, TU Clausthal; Nuggehalli Ravindra, New Jersey Institute of Technology; Chintalapalle Ramana, Univ of Texas at El Paso

Monday PM Room: Poster Area
February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Block Copolymers as Phase Change Materials for Mitigating Heat Spikes in Handheld Consumer Electronics: Alex Bruce¹; Yash Ganatra¹; Amy Marconnet¹; John Howarter¹; ¹Purdue University

Effects of Aminopropyltriethoxysilane Percentages on Surface Chemistry and Coating Adhesion of Chitosan Bonded to Steel: Stephen Cornich¹; Holly Martin¹; Snjezana Balaz²; ¹Department of Chemical Engineering, Youngstown State University; ²Department of Physics and Astronomy, Youngstown State University

Effects of Solvent on the Surface Chemistry of APTES Deposition and Coating Adhesion of Chitosan Bonded to Steel: *Jacob Millerleile*¹; Holly Martin¹; Snjezana Balaz²; ¹Department of Chemical Engineering, Youngstown State University; ²Department of Physics and Astronomy, Youngstown State University

Low Emissive Properties of Amorphous Oxides/Ag/Amorphous Oxides Multilayer for Energy Conservation: Sang Yeol Lee¹; ¹Cheongju University

Nanostructured Ti-Si Metallic Glass Thin Film for Biological Applications: *Guohua Zhao*¹; Sergey Ketov²; Dmitri Louzguine²; Huahai Mao³; Ragnhild E. Aune⁴; ¹KTH Royal Institute of Technology; ²WPI Advanced Institute for Materials Research (WPI-AIMR); ³Thermo-Calc Software AB; ⁴NTNU Norwegian University of Science and Technology

REWAS 2016 — Poster Session

Sponsored by:

Program Organizers: Randolph Kirchain, Massachusetts Institute of Technology; Bart Blanpain, KU Leuven; Anne Kvithyld, SINTEF; Christina Meskers, Umicore Precious Metals Refining; Elsa Olivetti, Massachusetts Institute of Technology; Jeffrey S. Spangenberger, Argonne National Laboratory: Diran Apelian, Worcester Polytechnic Institute; Brajendra Mishra, Colorado School of Mines; Neale Neelameggham, Ind LLC

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Green Structural Ceramic with Addition of Raw Clay Waste: Alessandra Savazzini Reis¹; Viviana Della Sagrillo²; Francisco Valenzuela Diaz³; ¹USP/ IFES: 2IFES: 3USP

Electropolymerized Polyaniline/Manganese Iron Oxide Hybrids with Enhanced Color Switching Response and Electrochemical Energy Storage: Yiran Wang¹; Jiang Guo¹; Zhanhu Guo¹; Suying Wei²; ¹University of Tennessee Knoxville; 2Lamar University

Magnetic FePd Nanoalloys Decorated Multiwalled Cabon Nanotubes toward Enhanced Ethanol Oxidation Reaction: Yiran Wang¹; Qingliang He¹; Jiang Guo¹; Zhanhu Guo¹; ¹University of Tennessee Knoxville

Reaction between LiBH4 and MgH2 Induced by High-energy Ball Milling: Zhao Ding¹; Leon L. Shaw¹; ¹Illinois Institute of Technology

A Life-cycle Assessment Framework Approach to Quantifying Substitutability of Critical Materials: Gabrielle Gaustad¹; Michele Bustamante¹; ¹Rochester Institute of Technology

Recovering of Carbon Fiber Present in an Industrial Polymeric Composite Waste through Pyrolysis Method while Studying the Influence of Resin Impregnation Process: Prepreg: Thiago Abdou¹; Denise Espinosa¹; Jorge Tenório¹; ¹Department of Chemical Engineering of the Polytechnic School of the University of São Paulo

Study of Cu Ions Uptake in HDX 100 Cationic Membrane: Daniella Buzzi¹; Jorge Tenório¹; ¹Universidade de São Paulo

Evaluation of Adding Grits in the Manufacture of Soil-cement Bricks: Rita Alvarenga¹; Délio Fassoni¹; Márcia Pinheiro¹; Larissa Miranda¹; ¹Universidade Federal de Viçosa

□he Experience in Development of Technique and Technology of Electric Pulse Disintegration of Rocks and Ores: Anatoly Usov¹; Vyacheslav Tsukerman¹; Alexander Potokin¹; Daniil ilin¹; ¹Kola science centre of Russian Academy of Science

Precipitation of Metals from Liquor Obtained in Nickel Mining: Mónica Jimenez Correa¹; Paula Aliprandini¹; Jorge Alberto Soares Tenório¹; Denise Crocce Romano Espinosa¹; ¹Polytechnic School of University of São Paulo

Nitrogen Doped Magnetic Carbon Nanocomposits Synthesized from Waste Plastic as Unique Absorbant for Highly Efficient Cr(VI) Removal: Yonghai Cao¹; Jiangnan Huang¹; Xiangfang Peng²; Zhanhu Guo¹; ¹University of Tennessee; 2South China University of Technology

Strip Casting of Light Metals — Poster Session Sponsored by

Program Organizers: Kai Karhausen, Hydro Aluminium Rolled Products GmbH; Dietmar Letzig, MagIC - Magnesium Innovation Centre, Helmholtz-Zentrum Geesthacht; Jan Bohlen, Helmholtz-Zentrum Geesthacht; Murat Dundar, Assan Aluminium

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

Continuous Fabrication of Direct Recycling Mg Alloy Strip by Melt Conditioned Twin Roll Casting (MC-TRC) Process: Xinliang Yang¹; Jayesh Patel¹; Sanjeev Das¹; Ian Stone¹; Zhongyun Fan¹; ¹BCAST

Quality Assurance System for TRC Strips: Claudia Kawalla¹; Michael Hoeck¹; Matthias Oswald¹; ¹TU Bergakademie Freiberg

Microstructure and Properties of SiCp/Al Matrix Composite Strip Fabricating by Twin-roll Casting Process: Huagui Huang¹; Ce Ji¹; Wei Wang¹; Fengshan Du¹; ¹Yanshan University

Ultrafine Grained Materials IX — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee, TMS: Shaping and Forming Committee Program Organizers: Suveen Mathaudhu, University of California Riverside; Irene Beyerlein, Los Alamos National Laboratory; Roberto Figueiredo, Federal University of Minas Gerais; Zenji Horita, Kyushu University; Megumi Kawasaki, Hanyang University; Qizhen Li, Washington State University; Hans Roven, Norwegian University of Science and Technology (NTNU); Timothy Rupert, University of California, Irvine

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: To Be Announced

BNM: Through Science to Innovations: Natalia Reshetnikova¹; ¹Ufa State Aviation Technical University

Characterization of Microstructure and Mechanical Properties of 1350 Aluminium Alloy Processed by Equal-Channel Angular Pressing with Parallel Channels: Marta Lipinska¹; Lech Olejnik²; Malgorzata Lewandowska¹; ¹Warsaw University of Technology Faculty of Materials Science and Engineering; ²Warsaw University of Technology, Institute of Manufacturing Processes

Corrosion Behavior of Type 316 SS in 3.5 wt% NaCl Solution under Surface Mechanical Attrition Treatment: Samrat Tamuly¹; Atul Gatey Gatey²; Santosh Hosamani²; Shashi Arya¹; ¹National Institute of Technology Karnataka, Surathkal; 2COEP Pune

Dynamic Deformation and Failure Mechanisms of Nanocrystalline Titanium Processed by ECAP + Conform: Zezhou Li¹; Marc Meyers¹; ¹University of California, San Diego

Effect of Deformation Temperature on Cyclic Loading on 6082 Al Alloy in Strain Controlled Mode: Nikhil Kumar¹; Sunkulp Goel¹; Devasri fuloria¹; R. Jayaganthan¹; ¹IIT Roorkee

Excessive Generation of Defects in Nano/Ultrafine Grained Bulk Produced by Shock Wave Consolidation Process and Analysis on the Process through Finite Element Method: Dong-Hyun Ahn¹; Hyoung Seop Kim¹; Lee Ju Park²; Wooyeol Kim¹; ¹POSTECH; ²Agency for Defense Development (ADD)

Flame Retardant Polypropylene Nanocomposites: Qingliang He¹; Xingru Yan¹; Jiang Guo¹; Zhanhu Guo¹; ¹University of Tennessee

Influence of Deformation Temperature on Mechanical and Corrosion Behaviour of 6082-Al Alloy: Nikhil Kumar¹; Devasri fuloria¹; Sunkulp Goel¹; R. Jayaganthan1; 1IIT Roorkee

Mechanical and Microstructural Properties of Commercial Twinning-induced Plasticity (TWIP) Steel Processed by High-pressure Torsion (HPT): Jung Gi Kim¹; Byoung Ho Park¹; Ho Yong Um¹; Dong Jun Lee²; Sunghak Lee¹; Hyoung Seop Kim¹; ¹Pohang University of Science and Technology; ²Korea Institute of Materials Science (KIMS)

Microstructural Evolution and Properties of a ZK60 Magnesium Alloy Processed by High-pressure Torsion: Seyed Alireza Torbati Sarraf1; Shima Sabbaghianrad¹; Terence G. Langdon¹; ¹University of Southern California

Detailed microstructure investigation of LAE442 magnesium alloy processed by EX-ECAP: Klaudia Horváth¹; Jitka Stráská¹; Peter Minárik¹; Robert Král¹; Josef Pešicka¹; Stanislav Daniš¹; ¹Charles University in Prague

Microstructure Refinement and Strain Hardening of Beta-titanium Alloys Prepared by High Pressure Torsion: Kristina Václavová¹; Josef Stráský¹; Petr Harcuba¹; Jitka Stráská¹; Veronika Polyakova²; Irina Petrovna Semenova²; Miloš Janecek1; 1Charles University in Prague; 2UFA State Aviation Technical

University

Microstructures and Tensile Properties of Ultrafine Structured Cu-5vol.%Al2O3 Nanocomposites Fabricated by Powder Compact Extrusion at Different Temperatures: Dengshan Zhou¹; Deliang Zhang¹; Paul Munroe²; Charlie Kong²; Gang Sha³; Zakaria Quadir²; Wei Zeng¹; ¹Shanghai Jiao Tong University; ²University of New South Wales; ³Nanjing University of Science and Technology

Non-contact CTE Testing of Thin Film Nickel-base Superalloys for Use in High Temperature Metal MEMS Applications: Gianna Valentino¹; Gidong Sim¹; Jessica Krogstad²; Timothy Weihs¹; Kevin Hemker¹; ¹Johns Hopkins University; ²University of Illinois at Urbana-Champaign

Simultaneously Enhanced Strength and Ductility and Corrosion Resistance in 316L Stainless Steel with Well Dispersed Nanograins in Microcrystallines Austenite: Fuan Wei¹; *Peiqing La*¹; ¹Lanzhou University of Technology

The Effect of Grain Structure on the Formation of Nitrided Layers in an Austenitic Stainless Steel: *Malgorzata Lewandowska*¹; Agnieszka Krawczynska¹; Ryszard Sitek¹; ¹Warsaw University of Technology

Young Professional "Meet the Candidate" Interactive Session — "Meet the Candidate" Interactive Session

Sponsored by: TMS: Young Professionals Committee

Program Organizer: Ramprashad Prabhakaran, Pacific Northwest National Laboratory

Monday PM Room: Poster Area February 15, 2016 Location: Music City Center

Session Chair: Ramprashad Prabhakaran, Pacific Northwest National Laboratory

Seeking Broader Applications of Materials Science: Dalong Zhang¹; ¹University of California-Davis

Controlling Microstructure for Smart Applications through FSP Advisor - Dr. Rajiv Mishra: Shamiparna Das¹; ¹University of North Texas

Experimental Micro and Nanoscale Mechanics with Microsecond Temporal Resolution for MEMS Applications: Debashish Das¹; ¹University of Illinois at Urbana-Champaign

A engineer fighting for 3D IC development - Jen-Jui Yu: $\textit{Jen-Jui Yu}^1$; 1UCLA

Physical metallurgist with expertise in computational and experimental techniques: *Mithipati Bhaskar*¹, ¹Indian Institute of Science

Nanomaterials for Energy Applications: Suraj Nagpure¹; ¹University of Kentucky

Metallugical Studies of Dr. Takahiro KUNIMINE: Takahiro Kunimine¹; ¹Kyoto University

Modeling of microstructural evolution accompanying phase transformations: *Pikee Priya*¹; David Johnson¹; Matthew Krane¹; ¹Purdue University

Thermoelectric Materials and Power Generation Modules: Cheng-Chieh Li^{\dagger} ; Northwestern University

Texture Control of Tungsten Carbide Composites

: Sagar Patel1; 1Texas A&M University

Sivanesh Palanivel: Expertise in processing, additive manufacturing, characterization, and computation: Sivanesh Palanivel¹; ¹University of North Texas

Understanding fatigue mechanisms through microstructural control: *Phalgun Nelaturu*¹; ¹University of North Texas

Nano-mechanical behavior of high entropy alloy and bulk metallic glass: Sanghita Mridha¹; ¹University of North Texas

Microstructural evolution and mechanical response by 'design and modeling': Aniket Dutt¹; ¹University of North Texas

Achieving exceptional properties in high temperature materials using fric-

tion stir processing (FSP): Vedavyas Tungala¹; ¹University of North Texas

Friction Stir Welding of Aluminum 7000 Series Alloys: Nelson Martinez¹; ¹University of North Texas

Frontiers in Solidification: An MPMD Symposium in Honor of Michel Rappaz — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Extraction and Processing Division, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wilfried Kurz, Swiss Fed. Inst. of Techn.; Jon Dantzig, EPFL and University of Illnois; Alain Karma, Northeastern University; Jeffrey Hoyt, McMaster University

Tuesday PM Room: 105A

February 16, 2016 Location: Music City Center

Session Chair: To Be Announced

Real-time Radiographic Observation of Equiaxed Dendrite Growth in Al-Ge Alloys: Maike Becker¹; Stefan Klein¹; Florian Kargl¹; ¹German Aerospace Center

A Multi-scale Multi-component As-cast Grain Size Prediction Model for Inoculated Aluminium Alloys Melt Solidified under Non-isothermal Conditions: *Qiang Du*¹; Yanjun Li²; Yijiang Xu²; ¹SINTEF; ²Norwegian University of Science and Technology

Macrosegregation and Grain Formation Caused by Convection Associated with Directional Solidification through Cross-Section Increase.: *Masoud Ghods*¹; Mark Lauer²; Surendra Tewari¹; David Poirier²; Richard Grugel³; ¹Cleveland State University; ²University of Arizona; ³NASA

Atomistic Experimental and Simulation Investigation on the Modification of Al-Si Alloys: *Jiehua Li*¹; Peter Schumacher¹; ¹University of Leoben

In-situ Synchrotron X-ray Radiography Measurement of the Diffusion Zones during Equiaxed Solidification of Al-Cu Alloys: Enzo Liotti¹; Andrew Lui¹; Sundaram Kumar¹; *David StJohn*²; Patrick Grant¹; ¹University of Oxford; ²The University of Queensland

Physically Consistent Multiphase Field Theory of First Order Phase Transitions: *Gyula Toth*¹; Tamas Pusztai²; Laszlo Granasy²; Bjorn Kvamme¹; ¹University of Bergen; ²Wigner Research Centre for Physics

Phase-field Simulation Study of Dendritic Grain Growth Competition during Directional Solidification of Alloys: Damien Tourret¹; Younggil Song²; Amy Clarke¹; Alain Karma²; ¹Los Alamos National Laboratory; ²Northeastern University

A Multivariate Statistics Based Approach to Microsegregation Analysis in Multicomponent Alloys: Joshua Miller¹; *Nils Warnken*¹; ¹University of Birmingham

The Model of Peritectic Phases Crystallization in the Zinc Coating: Dariusz Kopycinski¹; ¹AGH University of Science and Technology

Computer Simulation of Freckle Formation Using a Three-Dimensional Micro-scale Model: Mohammad Hashemi¹; Mohsen Eshraghi²; Sergio Felicelli¹; ¹The University of Akron; ²California State University, Los Angeles

Anomalous Growth Behaviour in the Undercooled Al-Ni Alloy System: Christian Karrasch¹; Matthias Kolbe²; Stefan Klein²; Georg Ehlen²; Reeti Singh²; Dieter Herlach²; ¹Ruhr-University Bochum; ²German Aeroscpace Center DLR

Upscaling from Mesoscopic to Macroscopic Solidification Models by Volume Averaging: *Miha Založnik*¹; Youssef Souhar¹; Christoph Beckermann²; Hervé Combeau¹; ¹Institut Jean Lamour; ²The University of Iowa

The Application of Oriented Alloy Single Crystals to the Study of Solidification, Mass Transport, and Related Phenomena: Prior Progress and Future Potential: Lynn Boatner¹; Michel Rappaz²; ¹Oak Ridge National Laboratory; ²Ecole Polytechnique Federale de Lausanne, Laboratoire de Simula-

tion des Matériaux

Anisotropic Crystal Growth in bcc Metals: From Phase-field Crystal to Conventional Phase-field: *Gyula Toth*¹; Nikolas Provatas²; ¹University of Bergen; ²McGill University

7th International Symposium on High Temperature Metallurgical Processing — Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Jiann-Yang Hwang, Michigan Technological University; Tao Jiang, Central South University; P. Chris Pistorius, Carnegie Mellon University; Gerardo Alvear Flores, Xstrata Technology; Onuralp Yücel, ITU; Liyuan Cai, Central South University; Baojun Zhao, The University of Queensland; Dean Gregurek, RHI AG; Varadarajan Seshadri, Universidade Federal de Minas Gerais

Wednesday PM Room: Poster Area
February 17, 2016 Location: Music City Center

Session Chair: Yuanbo Zhang, Central South University

Central Segregation of High-carbon Steel Billet and Its Heredity to the Hot-rolled Wire Rods: Yuan Ji¹; Yujun Li¹; Shaoxiang Li¹; Xiaofeng Zhang¹; Jiaquan Zhang¹; ¹University of Science and Technology Beijing

Effect of CaO/SiO2 on the Crystallization Behavior of Blast Furnace Slag: *Qin Yuelin*¹; Yang Yanhua¹; Zhang Qianying¹; Zhu Guangjun¹; ¹Chongqing University Of Science and Technology

Effects of Alkali Metals on Sinter Metallurgical Properties: Zhiwu Yan¹; ¹ University of Science and Technology Beijing

A Review of Microwave Treatment on Coal: Haibin Zuo¹; Siyang Long¹; Cong Wang¹; Pengcheng Zhang¹; ¹State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing

Influence of CaO on Non-isothermal Crystallization Kinetics of Vanadium Spinel in Vanadium Slag: Wang Zhou¹; Bing Xie¹; Wen-Feng Tan¹; Jiang Diao¹; Hong-Yi Li¹; Tao Zhang¹; ¹Chongqing University

Recent Research Progress and Application Status of Cooling Stave in China: Fengguang Li¹; ¹University of Science and Technology Beijing

Recovery of Nickel and Copper from Polymetallic Sulfide Concentrate through Salt Roasting Using NH4Cl: Cong Xu¹; Hongwei Cheng¹; Guangshi Li¹; Changyuan Lu¹; Xingli Zou¹; Xionggang Lu¹; Qian Xu¹; ¹Shanghai University

Reflux Reaction Behavior of Phosphorus under Non-equilibrium Condition of Casting Ladle between Slag and Hot Metal: Wang Zhenyang¹, ¹University of Science and Technology Beijing

Reduction Behavior of Magnetite Pellets by CO-CO2 Mixtures Using Direct Reduction Process: *Guihong Han*¹; Tao Jiang²; Yanfang Huang¹; ¹Zhengzhou University; ²Central South University

Studying on Softening and Melting Behavior of Lump Ore in Blast Furnace: Zhennan Qi¹; Shengli Wu¹; Mingyin Kou¹; Xinliang Liu¹; Laixin Wang¹; Yujue Wang¹; ¹University of Science and Technology Beijing

Research on the Influence of Specific Cooling Area of Cooling Stave in Blast Furnace Heat Transfer System: $Fengguang Li^1$; 1 University of Science and Technology Beijing

Study on Compressive Strength of Coke after Gasified with CO2 and Steam: Wentao Guo¹; Qingguo Xue¹; Xuefeng She¹; Jingsong Wang¹; ¹University of Science and Technology Beijing

Indirect Experimental Study on the Oxidation of Hot Metal Bearing Vanadium and Chromium: Xuan Liu¹; Jiang Diao¹; Yong Qiao¹; Tao Zhang¹; Bing Xie¹; ¹Chongqing University

Effect of Different Cooling System on the Solidification of the Sinters: Haibin Zuo¹; *Jiangwei Shen*¹; Cong Wang¹; ¹State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing

Effect of CaO/SiO2 and P2O5 on the Viscosity of FeO-SiO2-V2O3-CaO-

P2O5 Slags: Zhen Zhang¹; Bing Xie¹; Pan Gu¹; Jiang Diao¹; Hongyi Li¹; ¹Chongqing University

Characterization of Minerals, Metals, and Materials — Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Shadia Ikhmayies, Al Isra University; Bowen Li, Michigan Technological University; John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University; Sergio Monteiro, Military Institute of Engineering; Jian Li, CanmetMATERIALS; Donato Firrao, Politecnico di Torino - DISAT; Mingming Zhang, ArcelorMittal Global R&D; Zhiwei Peng, Central South University; Juan P. Escobedo-Diaz, UNSW Australia; Chenguang Bai, Chongqing University

Wednesday PM Room: Poster Area
February 17, 2016 Location: Music City Center

Session Chairs: Eren Kalay, METU; Jian Li, CanmetMATERIALS

Tribological Testing, Analysis and Characterization of DC Magnetron Sputtered

Ti-Nb-N Thin Film Coatings on Stainless Steel Substrate: *Prathmesh Joshi*¹; ¹Visvesvaraya National Institute of Technology (V.N.I.T.)

Assimilation Reaction Characteristic Number for Evaluating the Assimilation of Iron Ore in Sintering: *Yong Zhao*¹; ¹university of science and technology beijing

Study on Oxide Inclusions at Each Process of Steel Production: Sha $Lv^{\rm I}$; ¹Central South University

Characterization of Duplex Stainless Steel Casting with Gadolinium as Neutron Absorbers for Spent Fuel Storage Applications: *Byung-Moon Moon*¹; YONG CHOI²; Dong-Seong Sohn³; ¹Korea Institute of Industrial Technology; ²Dankook University; ³UNIST

Experimental Study of Advanced Treatment of Coking Wastewater Using MBR-RO Combined Process: Lei Zhang¹; ¹Wuhan iron and steel company

Small Punch Creep Test in a 316 Austenitic Stainless Steel: Maribel Sauce-do-Muñoz¹; Shin-Ichi Komazaki²; Arturo Ortiz-Mariscal¹; *Victor Lopez-Hira-ta*¹; ¹Instituto Politecnico Nacional (ESIQIE); ²Kagoshima University

Structural Stabilities of β -Ti alloys in Relation to a New Mo Equivalent Derived from $\beta/(\alpha+\beta)$ Phase-Boundary Slopes: Qing Wang¹; Wen Lu¹; Chuang Dong¹; Peter K. Liaw²; ¹Dalian University of Technology; ²The University of Tennessee

Characterization of a Mineral of the District Of Zimapan, Mina Concordia, Hidalgo, for the Viability of the Recovery of Tungsten: Martin Reyes Pérez¹; Miguel Pérez Labra¹; Julio Juárez Tapia¹; Aislinn Teja Ruiz¹; Francisco Patiño Cardona²; Mizraim Uriel Flores G.³; Ivan Reyes D.⁴; ¹Universidad Autónoma del Estado de Hidalgo; ²Universidad Politécnica Metropolitana de Hidalgo; ³Universidad Tecnológica de Tulancingo; ⁴Universidad Autónoma de San Luis Potosí

Characterization of Incorporation the Glass Waste in Adhesive Mortar: *Afonso Azevedo*¹; Diogo Pereira Santos²; Jonas Alexandre²; Gustavo Xavier²; Luana Hespanhol²; Thales Mendonça²; Niander Aguiar²; ¹IFF; ²UENF

Preparation of Polymeric Phosphate Ferric Sulfate Flocculant and Application on Coking Wastewater Treatment: Lina Wang¹; ¹Wuhan Iron and Steel Co.

Effect of Phase Transformations on Hardness in Zn–Al–Cu Alloys: Jose Villegas-Cardenas¹; *Victor Lopez-Hirata*²; Maribel Saucedo-Muñoz²; Jorge Gonzalez-Velazquez²; Erika Avila-Davila³; ¹Universidad Politecnica del Valle de Mexico; ¹Instituto Politecnico Nacional (ESIQIE); ³Instituto Tecnologico de Pachuca

Effects of Heat Treatment on the Mechanical Properties of CrMo Steel Contained Nb: Yang Xu¹; Jie Xu¹; Xiangru Chen¹; ¹Shanghai University

Effect of the Paper Industry Residue on Properties in the Fresh Mortar: Afonso Azevedo¹; Jonas Alexandre²; Carlos Maurício Vieira²; Gustavo Xavier²;

Euzebio Zanelato²; Lucas Oliveira²; ¹IFF; ²UENF

Mechanical Properties and Microstructure of K418 Using Master Alloy Technique and Mechanical Alloying: *Xiaowei Chen*¹; Lin Zhang¹; Chi Chen¹; Xuanhui Qu¹; ¹University of Science and Technology Beijing

Passive Films Formed on Stainless Steels in Phosphate Buffer Solution: Claudia Méndez¹; Rodrigo Burgos¹; Florencia Bruera¹; *Alicia Ares*²; ¹Faculty of Sciences - National University of Misiones; ²Materials Institute of Misiones-IMAM (CONICET-UNAM)

Analysis of Absorption in Cardboard Tubes: Victor Souza¹; *Amanda Camerini*²; Niander Cerqueira³; ¹Universidade Federal Fluminense; ²Sociedade Universitária Redentor; ³UENF

Analysis of the Importance of Heat Treatment Surface of Steel Gear SAE 1045 Transmission Motorcycle to Increase Hardness and Resistance to Wear: Victor Souza¹; Niander Cerqueira²; Gean Neiva³; ¹Universidade Federal Fluminense; ²UENF; ³Sociedade Universitária Redentor

Angle Dependence of Optical Plasmonic Response of Concave Bow-tie Sliver Nanoparticle: *Jingxuan Ge*¹; Gerd Duscher¹; Ramakrishnan (Ramki) Kalyanaraman¹; Abhinav Malasi¹; Annette Farah¹; ¹University of Tennessee

Assessment of Concrete Degradation Submitted to the Attack of Magnesium Sulfate through Non-destructive Testing: Gustavo Lima¹; Leonardo Pedroti¹; José Luiz Paes¹; Roseli Martins¹; ¹Universidade Federal de Viçosa - LIFV

Brillouin Scattering Spectroscopy on Mg-Nd Alloy in Different Aging Time: Xinyi He¹; Wenjian Meng¹; Yongquan Wu¹; ¹Shanghai University

Characterization Mechanics and Copper in Application Cooling Industry: *Victor Souza*¹; Matheus Torres do Santos²; Niander Cerqueira³; ¹Universidade Federal Fluminense; ²Sociedade Universitária Redentor; ³Universidade Estadual do Norte Fluminense

Characterization Mortar Mechanics Using in their Waste Composition of Stone Extraction Italva -RJ City: Victor Souza¹; Niander Cerqueira²; Amanda Camerini³; Anna Carolina Rabello³; Caio Araujo³; ¹Universidade Federal Fluminense; ²UENF; ³Sociedade Universitária Redentor

Characterization of Boron in Boron Containing Steels: Kara Luitjohan¹; Volkan Ortalan¹; David Johnson¹; ¹Purdue University

Characterization of Irradiated and Non-irradiated Rubber from Automotive Scrap Tires: Clécia Souza¹; Leonardo Silva¹; ¹IPEN-CNEN?SP

Characterization of Mesoscale Materials with Secondary Signal Imaging Electron Tomography (SSI-ET) in a Transmission Electron Microscope: Chang Wan Han¹; Volkan Ortalan¹; ¹Purdue University

Characterization of Waste Molding Sands, for Their Possible Use as Building Material: Mauricio Guerrero Rodríguez¹; Juan Hernández Ávila¹; Javier Flores Badillo¹; Eleazar Salinas Rodríguez¹; Isauro Rivera Landero¹; María Isabel Reyes Valderrama¹; Eduardo Cerecedo Sáenz¹; Víctor Esteban Reyes Cruz¹; Carmen Cortés López¹; ¹Universidad Autónoma del Estado de Hidalgo

Construction Waste of Civil Use in Concrete Structural: Victor Souza¹; Anna Carolina Rabello¹; Niander Cerqueira²; Renan Tavares³; ¹Universidade Federal Fluminense; ²UENF; ³Sociedade Universitária Redentor

Development of Bio-based Foams Prepared from PBAT/PLA Reinforced with Bio-calcium Carbonate Compatibilized by Electron-beam Radiation: Elizabeth Cardoso¹; Marcus Seixas²; Helio Wiebeck²; Glauson Machado¹; Rene Oliveira¹; Esperidiana Moura¹; ¹Instituto de Pesquisas Energéticas e Nucleares; ²Universidade de São Paulo

Direct Synthesis of Carbon Nanotubes at Low Temperature by the Reaction of CCl4 and Ferrocene: Wei Luo¹; Yan Tang²; Mingsheng He¹; Degang Ouyang¹; Cuijiao Ding¹; Bin Han¹; Shanhe Zhu¹; Minghui Li¹; ¹Research and Development Center of Wuhan Iron & Steel (Group) Corporation; ²Wuhan University of Science and Technology

Properties of Ceramic Pigment Zn0.5Cu0.5Cr2O4 Synthesized by Solution Combustion Method: Edgar Chavarriaga Miranda¹; Juan Fernando Montoya Carvajal¹; Alex Sepulveda Lopera¹; Juan Camilo Restrepo Gutiérrez¹; Oscar Jaime Restrepo Baena¹; ¹Universidad Nacional de Colombia

Evaluation of Porosity and the Carbonation Grout Applied In Structural

Masonry: Roseli Martins¹; Gustavo Emílio Lima¹; *Leonardo Pedroti*¹; Rita de Cássia Alvarenga¹; ¹Universidade Federal de Viçosa

Fabrication and Mechanical Behavior of Carbon Nanofiber Foam Core -Polymeric Shell Structures: Chanman Park¹; C. Dominguez¹; M. Sanchez¹; J. Gomez¹; C.C, Luhrs¹; ¹Naval Postgraduate School

Green Synthesis, Characterization and Stabilization of AgNPs with Thuja Orientalis Extract: Pedro Ramirez Ortega¹; Laura García Hernández¹; Diana Arenas Islas¹; Mizraim Flores Guerrero¹; Damian Neri Enriquez¹; ¹Universidad Tecnológica de Tulancingo

Incorporation of Glass Waste Into Mortar: Rafaela Gomes¹; *Gustavo Xavier*¹; Jonas Alexandre¹; Afonso Azevedo²; Sergio Monteiro³; Leonardo Pedroti⁴; ¹UENF; ²IFF; ³IME; ⁴UFV

Incorporation of Ornamental Rock Waste into Mortar: Giovani Mori¹; *Gustavo Xavier*¹; Jonas Alexandre¹; Afonso Azevedo²; Sergio Monteiro³; Carlos Mauricio Vieira¹; ¹UENF; ²IFF; ³IME

Influence of Inoculation on Structure of Chromium Cast Iron: *Dariusz Kopycinski*¹; Sylwester Piasny²; ¹AGH University of Science and Technology; ²HARDKOP

Influence of the Dispersant System on the Coloristic Performance of Pigments Applied to Plastic Materials: Patricia Poveda¹; Leonardo Gondim de Andrade e Silva¹; ¹Instituto de Pesquisas Energéticas e Nucleares - IPEN/CNEN-SP

Investigation of Medium-Range Correlations in Marginal Glass Forming Alloys: Mustafacan Kutsal¹; Ryan Ott²; Matthew Kramer²; *Eren Kalay*¹; ¹METU; ²Ames Laboratory

Magnetic and Structural Properties of Sodium Substituted La1-xNaxM-nO3 Hole Doped Lanthanum Manganites: *Imaddin Al-Omari*¹, N. Sethulakshmi²; A.N. Unnimaya³; Salim Al – Harthi¹; S. Sagar⁴; Senoy Thomas⁵; G. Srinivasan⁶; M.R. Anantharaman²; ¹Sultan Qaboos University; ²Cochin University of Science and Technology, Cochin; ³3Centre for Materials for Electronic Technology; ⁴Government College for Women; ⁵National Institute of Interdisciplinary Science and Technology; ⁶Oakland University

Microstructural Characterization of a Ni2HfAl-Precipitate-Strengthened Ferritic Alloy: Shao-Yu Wang¹; Gian Song¹; Peter K. Liaw¹; ¹The University of Tennessee

Miracema Clay Characterization, in Northwest Fluminense for Making Structural Masonry Blocks Ceramic: Niander Aguiar¹; Victor Souza¹; Afonso Azevedo²; Gustavo Xavier¹; Jonas Alexandre¹; Euzebio Zanelato¹; ¹UENF; ²IFF

Monitoring Dislocation Characteristics of Steels during Deformation by TOF Neutron Diffraction: *Takuro Kawasaki*¹; Stefanus Harjo¹; Wu Gong¹; Kazuya Aizawa¹; ¹Japan Atomic Energy Agency

Clinker Production from Wastes of Cellulose and Granite Industries: Delio Fassoni¹; Rita Alvarenga¹; Leonardo Pedroti¹; Beatryz Mendes¹; ¹Universidade Federal de Vicosa

Properties of Clay for Ceramics with Rock Waste for Production Structural Block by Pressing and Firing: Niander Cerqueira¹; Victor Souza²; Daniel Choe¹; Jonas Alexandre¹; Gustavo Xavier¹; Mairyanne Souza¹; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF; ²Universidade Federal Fluminense

Properties of Mortars with Partial and Total Replacement of Conventional Aggregate by Waste Construction: Niander Cerqueira¹; Victor Souza²; Daniel Choe¹; Gustavo Xavier¹; Jonas Alexandre¹; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF; ²Universidade Federal Fluminense

Research of the Extraction of Valuable Metals from Nickel Laterite by the Ammonium Sulfate Roasting-Water Leaching Process: Yangyang Li¹; *Jinhui Li*¹; Yan Gao²; Yunfang Zhang¹; Zhifeng Chen¹; ¹School of Metallurgy and Chemical Engineering; ²Henan Institute of Metallurgy Co., Ltd

Synthesis of Spinel ZnCr2-xFexO4 by Combustion Method: Juan Fernando Montoya¹; Edgar Andrés Chavarriaga²; Oscar Jaime Restrepo²; ¹Corporación Universitaria Lasallista; ²Universidad Nacional de Colombia

The Characterization of the Desulfurization Powder in the Semi-dry De-SO2 Process of the Sintering Machine Exhaust Gas and the Interaction with the Soil Particles: Ling-Chen Kang¹; Li-jun Lu¹; Gai-Feng Xue¹; Ji-ann-Yang Hwang²; ¹The R&D center of WISCO; ²Michigan Technological University

Effects of Carbon Black Incorporation on Morphological, Mechanical and Thermal Properties of Biodegradable Films: *Julio Harada*¹; José Macedo²; Glauson Machado¹; Francisco Valenzuela-Díaz³; Esperidiana Moura¹; Derval Rosa²; ¹Instituto de Pesquisas Energéticas e Nucleares; ²Universidade Federal do ABC - UFABC; ³Universidade de São Paulo

Evaluation of Physico-Chemical Properties when Adding Boiler Ashes to Mortar: Marina Caetano¹; Roseli Martins¹; Gustavo de Lima¹; Andre Araujo¹; Leonardo Pedroti¹; Ana Augusta Rezende¹; Rita Alvarenga¹; ¹Universidade Federal de Viçosa

Influence of the Brazilian Nanoclay "Branca de Cubati" Incorporation on Properties of Acrylonitrile Butadiene Styrene(ABS): Jorge Sales¹; Francisco R. Valenzuela-Diaz²; Vijaya K. Rangari³; Esperidiana A. B. Moura¹; ¹Instituto de Pesquisas Energéticas e Nucleares; ²Universidade de São Paulo, Escola Politécnica, Dep. de Eng. Metalúrgica e de Materiais; ³Department of Materials Science and Engineering, Tuskegee University

Mechanical Characterization of Mortar Using in its Composition of Waste Wood Processing: Victor Souza¹; Niander Cerqueira²; *Caio Araujo*³; ¹Universidade Federal Fluminense; ²UENF; ³Sociedade Universitária Redentor

Effect of Magnesium Aluminate Spinel Content on Properties of BN Based Composites: *Meng Liu*¹; ¹Research and Development Center of Wuhan Iron and Steel (group) Corporation

Microstructure Analysis of Buildups Embedded in Carbon Sleeve in Continuous Annealing Furnace for Non-oriented Silicon Steel: Mingsheng He¹; ¹Research and Development Center of WISCO

Significance of Graphitic Surfaces in Aurodicyanide Adsorption by Activated Carbon: Experimental & Computational Approach

: Dhiman Bhattacharyya¹; Tolga Depci²; Keith Prisbrey¹; Jan Miller¹; ¹University of Utah; ²Inonu University

Optimization of Vector Field Electron Tomography Using Model Based Iterative Reconstructions: KC Prabhat¹; Charles Bouman²; Marc De Graef¹; Charudatta Phatak³; K. Aditya Mohan²; ¹Carnegie Mellon University; ²Purdue University; ³Argonne National Laboratory

Effects of Graphene Oxide Addition on Mechanical and Morphological Properties of EVOH Films: Jesús González-Ruíz¹; Lourdes Yataco-Lazaro¹; Sueli Virginio¹; Maria das Graças Valenzuela¹; Esperidiana Moura¹; Francisco Valenzuela-Díaz¹; ¹Instituto de Pesquisas Energéticas e Nucleares

Examining the Stability and Electron Emission Properties of Vacuum Plasma Sprayed Lanthanum Hexaboride Coatings: *Thomas Burton*¹; Gregory Thompson¹; Daniel Butts²; Alan Joly³; ¹University of Alabama; ²Plasma Processes, LLC; ³Pacific Northwest National Laboratory

Recovery of Palladium and Aluminum from Spent Catalysts by Roasting-leaching: Li Qian¹; Rao Xue-fei¹; Yang Yong-bin¹; Xu Bin¹; Hu Long¹; Jiang Tao¹; ¹Central South University

Improvement of Mechanical Properties in Natural Rubber with Fillers Organics

: *Marcos Fernandes*¹; Christiano Andrade¹; Fábio Esper²; Francisco Diaz¹; Hélio Wiebeck¹; ¹Universidade de São Paulo/PMT; ²ESTÁCIO

5-Parameter Grain Boundary Measurement from a Single 2-Dimensional EBSD Scan: *Michael Chapman*¹; Marc DeGraef¹; ¹Carnegie Mellon University

Silver Cementation with Zinc from Residual X Ray Fixer, Experimental and Thermochemical Study: Miguel Perez-Labra¹; Martin Reyes Pérez²; J. Antonio Romero Serrano³; E. O. Ávila-Dávila⁴; F. R. Barrientos Hernández²; Pandiyan Thangarasu⁵; ¹UAEH MEXICO; ²UAEH MEXICO; ³IPN ESIQIE; ⁴ITP; ⁵UNAM

Confocal Microscopy Studies on Oxide Inclusions in Ca Treated Steels: Digvijay Kumar¹; Kateryna Hechu²; Jay Warnett²; MBV Rao³; Mark Williams²;

Sridhar Seetharaman²; GG Roy¹; *Prakash Srirangam*²; ¹Indian Institue of Technology; ²University of Warwick; ³Visakhapatnam Steel Plant

Speciation and Characterization of E-waste, Using Analytical Techniques: Carmen Cortés López¹; Víctor Esteban Reyes Cruz¹; María Aurora Veloz Rodríguez¹; Juan Hernández Ávila¹; *Javier Flores Badillo*¹; José Ángel Cobos Murcia¹; ¹Universidad Autónoma del Estado de Hidalgo

Characterization Methodologies for Investigating Surface Integrity in Microelectronics Packaging: Marion Branch Kelly¹; Bethany Smith¹; Cruz Hernandez¹; Kimberly McGuinness¹; Amaneh Tasooji¹; ¹Arizona State University

Characterization of Gamma-alumina Obtained from Aged Pseudoboehmites: *Antonio Munhoz Jr*¹; Leonardo Andrade e Silva²; Leila Miranda¹; Raphael Andrades¹; ¹U.P.Mackenzie; ²IPEN

Deformation and Annealing Behavior of OFHC Copper and GLIDCOP Al-15: *Daudi Waryoba*¹; Julie Anderson²; Nathan Stiles¹; ¹Penn State University, DuBois; ²The Pennsylvania State University, University Park

Densification Behavior and Dielectric Properties of Gel Cast Barium Zinc Tantalate Ceramics: Swathi Manivannan¹; P.Kumar Sharma²; *Dibakar Das*¹; ¹University of Hyderabad; ²Institute for Plasma Research

Effect of Alloying Elements on the High Temperature Oxidation of Ti-Al-Fe Alloys: Jiwon Park¹; Do-Heon Kim¹; Yong-Taek Hyun¹; ¹Korea Institute of Materials Science

Evaluation of Environmental Aging of Polypropylene Irradiated Versus Pristine: *Rebeca Romano*¹; Washington Oliani¹; Duclerc Parra¹; Ademar Lugao¹; ¹Nuclear Energy Research Institute – IPEN/USP

In Situ Transmission Electron Microscopy Studies on Solid-state Formation of Quasicrystals in a Mg Alloy: *Zhiqing Yang*¹; Jianfang Liu¹; Hengqiang Ye¹; ¹Institute of Metal Research

Microstructure, Mechanical and Oxidation Behavior of Niobium Modified 9% Chromium Steel: Anup Mandal¹; Tapas Bandyopadhay¹; ¹Indian Institute of Technology

Failure Analysis of Steel Fasteners Used in Anchoring Details: Necip Ünlü¹; Hakan Nuri Atahan²; Burak Türkel²; Onuralp Yücel¹; ¹ISTANBUL TECHNICAL UNIVERSITY FACULTY OF CHEMISTRY-METALLURGY; ²ISTANBUL TECHNICAL UNIVERSITY CIVIL ENGINEERING DEPARTMENT

How to Manage and Use Material Property Data – in Education, Research and Industry: Claes Fredriksson¹; ¹Granta Design

 $\label{thm:condition} \begin{tabular}{ll} Hydration Resistance of Y2O3 Doped CaO Refractory and Its Application to Melting Titanium Alloys: Fanlong Meng!; $$^1Shanghai university$$$

Interface Reaction between Y2O3 Doped BaZrO3 and TiNi Melt: ZhiWei Cheng¹; Chonghe Li¹; ¹Shanghai University

Investigation of the Passivation Mechanism of Copper-based Anodes from In-situ Observations: *Yuma Ninomiya*¹; Hideaki Sasaki¹; Masafumi Maeda¹; ¹The University of Tokyo

Mechanical Behaviour of Multiaxially Forged Mg-2Zn-2Gd: *sunkulp Goel*¹; Nikhil Kumar²; I V Singh¹; A Srinivasan¹; R Jayaganthan¹; ¹indian institute of technology Roorkee India; ²Indian Institute of Technology Roorkee India

Microstructural Characterization of Boron-rich Boron Carbide by Transmission Electron Microscopy: *Kelvin Xie*¹; Vlad Domnich²; Jim McCauley¹; Rich Haber²; Kevin Hemker¹; ¹Johns Hopkins University; ²Rutgers University

Shear Displacement and Actual Strain during Chip Segmentation when Cutting Aerospace Alloy Ti-5553: David Yan¹; Tim Hilditch²; Hossam Kishawy³; Guy Littlefair²; ¹University of Wisconsin-Green Bay; ²Deakin University; ³University of Ontario Institute of Technology

Zinc Chloride Influence on the Resins Furan Polymerization to Foundry Moulds: Leila Miranda¹; *Leonardo Andrade e Silva*²; Antônio Munhoz Junior¹; Marcus Vale¹; ¹Universidade Presbiteriana Mackenzie; ²Instituto de Pesquisas Energéticas e Nucleares -IPEN

Optimization of Polishing Parameters of Chemical Mechanical Planarization (CMP) for c-plane (0001) GaN Using Taguchi Method: Durga Nelabhotla¹; *Tanjore Jayaraman*²; Dibakar Das¹; ¹University of Hyderabad, India;

²University of Michigan - Dearborn

Plasmonic Behavior and Optical Transmission of Silver-Cobalt Thin Film Hole Arrays: Annette Farah¹; Roderick Davidson²; Benjamin Lawrie²; Raphael Pooser²; Ramki Kalyanaraman¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

Powder Processing of Bulk Fe-3 wt. %C Alloy: *Ibrahim Khalfallah*¹; Alex Aning¹; ¹Virginia Tech

Quasi-static and Dynamic Compression of a Single Phase Ti-7Al Alloy: *Emily Huskins*¹; Lynn Nguyen²; Alexandria Will-Cole²; Adam Pilchak³; Brian Schuster²; ¹United States Naval Academy; ²US Army Research Laboratory; ³US Air Force Research Laboratory

Role of Microstructural Anisotropy in Shear Response of Materials: Olivia Dippo¹; George Gray¹; V Livescu¹; C Bronkhorst¹; M Lovato¹; ¹Los Alamos National Laboratory

Surface Behavior of Iron Sulfide Ore during Grinding with Alumina Media: Martin Reyes Perez¹; Elia Guadalupe Beas²; Francisco Cardona¹; Ramiro García³; Mizraim Uriel Guerrero⁴; Ivan Alejandro Dominguez⁵; Laura Patricia Palazuelos¹; ¹Universidad Autónoma del Estado de Hidalgo; ²Instituto Politécnico Nacional ESIQuIE; ³Universidad Michoacana de San Nicolas de Hidalgo UMSNH; ⁴Área de Electromecánica Industrial, Universidad Tecnológica de Tulancingo; ⁵Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí

Synchrotron X-Ray Characterization of Inconel 625 Manufactured Through Direct Metal Laser Sintering Technique of Additive Manufacturing: *Yaakov Idell*¹; Lyle Levine¹; Andrew Allen¹; Fan Zhang¹; Carelyn Campbell¹; ¹National Institute of Standards and Technology

Texture and Anisotropy Studies in the API 5L X70 Pipeline Steel during Hot Rolling and Various Heat Treatments: Mohammad Masoumi¹; Hamilton de Abreu¹; ¹Universidade Federal do Ceara

Microstructure, Phase Composition and Shear Strength of the TiAlV/TiCuZrPd/TiAlV Brazed Joints: Anna Sypien¹; Joanna Wojewoda-Budka¹; Lidia Litynska-Dobrzynska¹; Kamil Badura¹; ¹Institute of Metallurgy and Materials Science

Mineralogical Analysis of Nickel/Copper Polymetallic Sulfide Ore by X-ray Diffraction Using Rietveld Method: Guangshi Li¹; Hongwei Cheng¹; Cong Xu¹; Changyuan Lu¹; Xingli Zou¹; Xionggang Lu¹; Qian Xu¹; ¹Shanghai University

Unraveling the Role of Mo in the Aqueous Corrosion of Ni-Cr-Mo Alloys by Combining Electrochemical Passivation Studies with Nanoscale Characterization: *Petra Reinke*¹; Gopalakrishnan Ramalingam¹; Kathleen Lutton¹; Kateryna Gusieva¹; Brendy Rincon Troconis¹; John Scully¹; ¹University of Virginia

The Effects of Carbon on the Rare Earth Elements Distribution in NdFeB Magnet: Yuyang Bian¹; Shuqiang Guo¹; Kai Tang²; Weizhong Ding¹; ¹Shanghai University; ²SINTEF Materials and Chemistry

Ionizing Radiation Effects on Properties of Polyamide Composites with Colloidal Silicon Dioxide (Aerosil) and Talc: Camila Amorim¹; Leonardo Silva¹; ¹IPEN-CNEN/SP

Biodegradable Composite Development Reinforced with Acai Seed Coal: Celio Hitoshi Wataya¹; Leonardo Silva²; ¹INSTITUTO FEDERAL DO PARÁ; ²IPFN

General Poster Session — Poster Session

Wednesday PM Room: Poster Area February 17, 2016 Location: Music City Center

A Novel Process for Treating with Low Grade Zinc Oxide Ores in Hydrometallurgy: Dou Aichun¹; ¹Jiangsu University, China

A Study of Taguchi Method to Optimize 6060 series Aluminum Anodic Oxide Film's Hardness and Investigation of Corrosion Behaviors of Oxide Films: Deniz Polat¹; Burcin Bilici²; Can Akyil³; B. P. Afsin²; Ozgul Keles¹;

¹ITU; ²Istanbul Technical University; ³Politeknik Metal San Tic AS

Anisotropic Effects of the Bi2Te3 Crystal Orientations on the Bi2Te3/Sn Interfacial Reactions: Chih-Ming Chen¹, ¹National Chung Hsing University

Anticorrosion Performance of Solanum aethiopicum on Steel-Reinforcement in Concrete Immersed in Industrial/Microbial Simulating-Environment: Joshua Okeniyi¹; Olugbenga Omotosho¹; Elizabeth Okeniyi¹; Adebanji Ogbiye¹; ¹Covenant University, Ota, Nigeria

Anticorrosive Zr and Zn Coatings on a Pre-Oxidized 304L Steel Surface: Victor Flores¹; Luis Longoria²; Francisco Patiño³; Eliazar Salinas³; Elia Palacios¹; Mizraim Flores⁴; Iván Reyes⁵; Sayra Ordonez³; ¹Instituto Politécnico Nacional; ²Instituto Nacional de Investigaciones Nucleares; ³Universidad Autónoma del Estado de Hidalgo; ⁴Universidad Tecnológica de Tulancingo; ⁵Universidad Autónoma de San Luis Potosí

Applications of Infrared Thermography Technology in Railway Components for Advanced Characterization: Jeongguk Kim¹; ¹Korea Railroad Research Institute

Behavior of Tire Derived Pre-Functionalized Carbon Black for Uranium Adsorption: *Travis Willhard*¹; Dhiman Bhattacharyya¹; Mano Misra¹; ¹University of Utah

Bulk Metallic Glass Composite with Good Tensile Ductility, High Strength and Large Elastic Strain Limit: Fufa Wu¹; ¹Liaoning University of Technology, China

Computational Thermodynamics Assisted Process Design of T-B-X Materials: *Vikas Jindal*¹; Anthony Sanders²; K. S. Chandran³; ¹Indian Institute of Technology (Banaras Hindu University); ²Ortho Development Corp.; ³University of Utah

Current Status of Characterization of RPV Material from Decommissioned Zion NPP: Mikhail Sokolov¹; Thomas Rosseel¹; Randy Nanstad¹; ¹ORNL

Damping Capacity of TiCuNiSiSn Super-elastic Alloy: *Wook Ha Ryu*¹; Eun Soo Park¹; ¹Seoul National University, Dept of Materials Science & Engrg

Development of Innovative Barrierless Cu-Alloy Films for Various Applications: *Chon-Hsin Lin*¹; ¹Asia-Pacific Institute of Creativity/Biotechnology

Development of the Non-contact Surface Make with the Inorganic Binder Using on the Low Melting Point Molten Metal Reaction: Min Seok Moon¹; Myeong Han Yoo¹; Joon Hyuk Song¹; Je Ha Oh¹; Shin Jae Kang²; Kee Do Woo²; ¹Korea Institute of Carbon Convergence Technology; ²Chonbuk National University

Effect of Composition on the High-Temperature Strength of Several Model Ni-Base Alloys: *Govindarajan Muralidharan*¹; ¹Oak Ridge National Laboratory

Effect of Dopants on Barium Calcium Zirconate Titanate Piezoelectric Ceramics: Elugu Chandrakala¹; Paul Praveen¹; Tanjore Jayaraman²; *Dibakar Das*¹; ¹University of Hyderabad, SEST; ²University of Michigan - Dearborn

Effect of Pulsed Magnetic Field on Microstructure of Grain-Oriented Silicon Steel during Primary Recrystallization Process: *Lihua Liu*¹; Lijuan Li²; Qijie Zhai²; ¹School of Mechanical Technology Electronic of Shanghai Jian Qiao University; ²Shanghai University

Effect of Temperature on the Mechanical Behaviour of NiTi Shape Memory Sheets: *Girolamo Costanza*¹; Maria Elisa Tata¹; Riccardo Libertini¹; ¹University of Rome "Tor vergata"

Effects of Laser Heating on HY80 Steel: Maxwell Wiechec¹; Brad Baker¹; ¹US Naval Academy

Effects of Resistance Spot Welding on the Mechanical Properties in High Strength Steels: JaeHwang Kim¹; EuiPyo Kwon¹; KwangJin Lee¹; ¹Korea Institute of Industrial Technology

Evaluation of Forged Aluminum Matrix Composites Reinforced with Carbon Nanotubes (CNTs) Fabricated by Composite Gas Generator (CGG) Process: Young-sek Yang¹; Myeong-hak Kang¹; Geun-woo Lee¹; ¹Foosung

Precision Ind. Co., Ltd

Gamma and Neutron Shielding Behavior of Spark Plasma Sintered Boron Carbide-Tungsten Based Composites: Salih Ozer¹; Bulent Buyuk²; A. Tugrul²; Servet Turan¹; Onuralp Yucel²; Gultekin Goller²; Filiz Sahin²; ¹Anadolu University; ²Istanbul Technical University

Grain Boundary Mechanics in Nickel-based Superalloys: *John Rotella*¹; Martin Detrois²; Sammy Tin²; Michael Sangid¹; ¹Purdue University; ²Illinois Institute of Technology

Green Synthesis of Fe Nanoparticles Using Ruta Graveolens Leaf Extracts for Possible Treatment of Wastewater: *Mizraim Flores*¹; Iván Reyes²; Francisco Patiño³; Laura García¹; Pedro Ramírez¹; Diana Arenas¹; Luis García¹; Lesly Villaseñor¹; Victor Flores⁴; ¹Universidad Tecnológica de Tulancingo; ²Universidad Autónoma de San Luis Potosí; ³Universidad Autónoma del Estado de Hidalgo; ⁴Instituto Politécnico Nacional

High Strength Aluminum Alloy Applied Development of the Explosion-proof Lamp Housing through a Vacuum Die Casting Process: Min Seok Moon¹; Myeong Han Yoo¹; Je Ha Oh¹; Joon Hyuk Song¹; Shin Jae Kang²; Korea Institute of Carbon Convergence Technology; ²Chonbuk National University

Image Analysis Investigating Porous Structures of Carbon Cathodes Materials and Melts Penetration: Xiang Li¹; Jilai Xue¹; Jun Zhu¹; Shihao Song¹; University of Science and Technology Beijing

Inhibition of Stainless Steel Corrosion in 0.5 M H₂SO₄ in the Presence of C₆H₅NH₂: *Olugbenga Omotosho*¹; Joshua Okeniyi¹; Emmanuel Obi¹; Oluwatobi Sonoiki¹; Segun Oladipupo¹; Timi Oshin¹; ¹Covenant University, Ota

Investigation of Process Parameters for the Nickel Coatings from Sulphamate Baths: Mertcan Baskan¹; Metehan Erdogan²; Ishak Karakaya¹; ¹Middle East Technical University; ²Yildirim Beyazit University

Investigation of the Corrosion Behavior of Selected Steel Types and Aluminum Alloys in Marine Environment: Rauf Aksu¹; Onur Uguz²; Metehan Erdogan³; Halim Meço²; Mustafa Aras¹; Ishak Karakaya¹; ¹Middle East Technical University; ²FNSS; ³Yildirim Beyazit University

Investigation of the Impact of Grain Size on the Oxidation Behavior of NiCrAIY Alloys: Brett Hunter¹; Todd Butler¹; Mark Weaver¹; ¹University of Alabama

Investigation of the Influence of Grain Refinement on the Oxidation Behavior of NiAl-Hf Alloys: Rachel Handel¹; Isabela Aguiar²; Todd Butler¹; Mark Weaver¹; ¹University of Alabama; ²Federal University of Minas Gerais

Micro-truncated Cone Arrays for Light Extraction of Organic Light-emitting Diodes: Wei-Chu Sun¹; ¹National Dong Hwa University

Microstructural Analysis of Zn-Mg Alloy Coated Steel Plate Fabricated by PVD Method: Su-Ryong Bang¹; Jong Min Byun¹; Tae-Yeob Kim²; Soek-Jun Hong²; Young Do Kim¹; ¹Hanyang University; ²POSCO

Microstructure and Mechanical Properties of TiC-reinforced Steel Matrix Composite: Seong Hoon Kim¹; Dong Woo Suh¹; ¹Pohang University of Science and Technology

Microstructure of Heat Treated Selective Laser Melting Manufactured Ti-6Al-4V: Dennis Malka-Markovitz¹; Menachem Bamberger¹; ¹Technion Israel Institute of Technology

Mould Filling Ability Characterisation of SIMA Produced 6063 Alloy: *Omer Vardar*¹; Izzettin Ergun¹; Caglar Yuksel²; Eray Erzi¹; Derya Dispinar¹; ¹Istanbul University; ²Yildiz Technical University

Multi-layer Resistance Spot Welding in Advanced High Strength Steel: KwangJin Lee¹; EuiPyo Kwon¹; JaeHwang Kim¹; ¹Korea Institute of Industrial Technology

Non-stoichiometry of Uranium Oxides: Thomas Meek¹; *Christopher Shaver*¹; ¹University of Tennessee

One-step Preparation of TiB2-C Composite by DC Arc Furnance: Kuanhe Li¹; ¹Northeastern University

Preparation of Core-sheath Eletrospinning Polyacrylonitrile Fibers: Jiangnan Huang¹; *Zhanhu Guo*¹; Xiangfang Peng²; ¹The University of Tennessee;

²South China University of Technology

Preventing Molten Metal Explosions: Alex Lowery¹; ¹WISE CHEM LLC

Production and Characterization of Fe-based Glassy Composite: *Hamdi Ekici*¹; Eray Erzi¹; Derya Dispinar¹; ¹Istanbul University

Property Evaluation and Fabrication of L7L3Z2O12 Compacts for Solid Electrolyte by a Spark Plasma Sintering Method: *Junho Jang*¹; Ik-Hyun Oh¹; Hyun-Kuk Park¹; Hyo-Eun Nam¹; Jae-Won Lim¹; Ho-Sung Kim¹; ¹KI-TECH

Recycling System of Waste Home Appliances in Korea: Soo-Kyung Kim¹; Jeongsoo Sohn¹; Donghyo Yang¹; Kyungjoong Kwon²; ¹Korea Institute of Geoscience and Mineral Resources; ²Sejong University

Role of Chelating Ligands in Electrochemical Recovery of Rare Earth Elements from Mining Wastewater: Sunjung Kim¹; Sumin Lee¹; ¹University of Ulsan

Semiconductor Core Optical Fiber for Mid IR Wavelength Transmission: Mustafa Ordu¹; Jicheng Guo¹; James Bird¹; Siddharth Ramachandran¹; Soumendra Basu¹; ¹Boston University

Si and SiCu Three Dimensional Sculptured Films as Negative Electrodes for Rechargeable Lithium Ion Batteries: Deniz Polat¹; Burcin Bilici²; Ozgul Keles¹; ¹ITU; ¹Istanbul Technical University

Software for Materials Science and Engineering Teaching: Claes Fredriksson¹; ¹Granta Design

Studies on Corrosion Characteristics of Superalloys in Different Environment: *Muideen Bodude*¹; Olanrewaju Ojo²; Harrison Onovo¹; R. Nnaji¹; ¹University of Lagos; ²University of Manitoba

Sustainability of Alumina: Plácido García Pérez¹; ¹Oviedo, Spain Univ. PhD candidate

Tape Casting of Uranium Dioxide: *Christopher Shaver*¹; Thomas Meek¹; ¹University of Tennessee

The Effect of Additive V2O5 on Sinter Mechanism and Properties of Inert Anode of NiFe2O4 Spinel: Yihan Liu¹; ¹Northeastern University

The Physico-mechanical Properties of Mg Alloy Reinforced with AlN Nanoparticles: Sergey Vorozhtsov¹; Ilya Zhukov¹; Dmitry Eskin¹; Vladimir Promakhov¹; Anton Khrustalyov¹; Alexander Vorozhtsov¹; Vladislav Dammer¹; ¹Tomsk State University

Thickness Effect on the Three-Dimensional Sculptured SiCu Thin Films Used as Negative Electrodes in Lithium Ion Batteries: Deniz Polat¹; Ceren Yagsi¹; Ozgul Keles¹; ¹Istanbul Technical University

Fabrication of Electrochromic Window Using Nano Particle Deposition System (NPDS) with Ionic Liquid Electrolyte: *Dahyun Choi*¹; Hyungsub Kim¹; Kwangmin Kim¹; Won-shik Chu²; Dooman Chun³; Sunghoon Ahn²; Caroline Sunyong Lee¹; ¹Hanyang university; ²Seoul National University; ³University of Ulsan

Topology of the Decomposition of Ammonium Arsenojarosite in Alkaline Medium: *Victor Flores*¹; Francisco Patiño²; Elia Palacios¹; Mizraim Flores³; Iván Reyes⁴; Sayra Ordoñez²; Eliecer Mendez²; Hernan Islas²; ¹Instituto Politécnico Nacional; ²Universidad Autónoma del Estado de Hidalgo; ³Universidad Tecnológica de Tulancingo; ⁴Universidad Autónoma de San Luis Potosí

Partial Repair and Restart of a Damaged Aluminium Reduction Cell: Khalid Youssif¹; ¹Aluminium Company Of Egypt "EGYPTALUM"

Tribological Properties of Aluminium-Clay Composites for Brake Disc Rotor Applications: Ademola Agbeleye¹; David Esezobor¹; S. Balogun¹; J. Agunsoye¹; J. Solis²; Anne Neville²; ¹University of Lagos; ²University of Leeds

Development of Die-casting Aluminum Alloy with High Thermal Conductivity for Cylinder Head: Kyung-Moon Lee¹; Byung-Ho Min¹; Hoo-Dam Lee¹; Jong Kook Lee¹; ¹Hyundai Motor

Variation of Emotional Color of Copper Alloys with Its Surface Morphology and Reflectivity of the Wavelength: Shin Hyeong-won¹; Hyo-Soo Lee¹;

Late News Posters — Poster Session

Wednesday PM Room: Poster Area
February 17, 2016 Location: Music City Center

A Monte Carlo Approach for Efficient Inclusion of Interface and Grain Boundary Scattering in the Prediction of Effective Thermal Conductivity: Aarthi Ramesh¹; Nick Roberts¹; ¹Utah State University

A Novel Approach to Synthesize Cu-Ni-Al Thin Films by Electrodeposition with Potential Shape Memory Properties: *Jordina Fornell*¹; Doga Bilican¹; Pau Solsona¹; Santiago Suriñach¹; Dolors Baró¹; Eva Pellicer¹; Jordi Sort²; ¹Universitat Autònoma de Barcelona; ²Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Autònoma de Barcelona

A Systematic First-principles Study of Diffusion Mechanisms in 26 Dilute Ni-X Alloy Systems: *Chelsey Hargather*¹; ShunLi Shang²; Zi-Kui Liu²; ¹New Mexico Institute of Mining and Technology; ²The Pennsylvania State University

Antimony Volatilization by Chloridizing Roasting: *Rafael Padilla*¹; Ilitch Moscoso¹; Maria Ruiz¹; ¹University of Concepcion

Characterization and Optimization of Bulk Ni-Fe Spinels for Solid Oxide Fuel Cell Applications: David Chesson¹; ¹Tennessee Technological University

Characterization of Oxide Structure of Sr-modified Al-Si Alloys: *Ugur Alev*¹; Derya Dispinar¹; Cem Kahruman¹; ¹Istanbul University

Compressive Behavior and Modeling of Ti Foams Processed by Freeze-casting: *Hyelim Choi*¹; Serge Shilko²; Heeman Choe¹; ¹Kookmin University; ²V.A. Belyi Metal-Polymer Research Institute of National Academy of Sciences of Belarus

Copper Extraction from Sulfate-chloride Media using Ketoxime and Salicylaldoxime Extractants: *Maria Ruiz*¹; Ivan Gonzalez¹; Javier Salgado¹; Rafael Padilla¹; ¹University of Concepcion

Direct Comparison between High Temperature Nanoindentation Creep and Uniaxial Creep Measurements: Kurt Johanns¹; Warren Oliver¹; P. Sudharshan Phani¹; ¹Nanomechanics, Inc.

Dispersion of Carbon Nanotubes in Aluminum Improves Radiation Resistance: Kangpyo So¹; Akihiro Kushima¹; Mingda Li¹; Ju Li¹; ¹Massachusetts Institute of Technology

Dissimilar Metal Casting: Carl Soderhjelm¹; ¹Worcester Polytechnic Institute

Effect of Boron Addition on High Manganese Steel: Bashir Rabiu¹; *Mehmet Kelestemur*¹; Cemal Carboga²; Hasan Yesilyurt¹; ¹Meliksah University; ²Nevsehir Haci Bektas Veli University

Effects of Microstructure and Mechnical Properties of High Strength Alumiunm Alloy Billet & Slab on Low Frequency Electromagnetic Casting: Myoung-Gyun Kim¹; Jonho Kim¹; Jonpyo Park¹; Woosuk Yoon²; ¹Research Institute of Industrial Science and Technology(RIST); ²POSTECH

Electrochemical Studies of Inert Anodes for the CaCl2-CaO Melts Deoxidation: Olivier Lemoine¹; Jerome Serp¹; Mathieu Gibilaro²; Pierre Chamelot²; Gilles Bourgès¹; ¹CEA; ²UPS

Electrodeposited Tin-Antimony-Copper Alloy Negative Electrode for Lithium Ion Batteries: Srijan Sengupta¹; Arijit Mitra¹; Manila Mallik¹; Prem Prakash Dahiya¹; Karabi Das¹; Subhasis Basu Majumder¹; Siddhartha Das¹;

¹IIT Kharagpur

End Product Defects in Direct-Chill Casted Hot Rolling Slabs and Melt Treatment: Arda Yorulmaz¹; Eray Erzi¹; Caglar Yuksel²; Derya Dispinar¹; ¹Istanbul University; ²Yildiz Technical University

Fabrication of a Functionally Graded Tungsten-Steel Laminate Plasma-Facing Material: Lauren Garrison¹; Evan Ohriner¹; Yutai Katoh¹; ¹Oak Ridge National Lab

High Temperature in Caustic Pretreatment of Gold Locked in the Residue after Filtration from Gold Cyanidation Leaching: *Luc Kabemba*¹; R.F. Sandenbergh¹; ¹University of Pretoria

Influence of Thallium Oxide on Formation of Stable Phase of Mullite: Oleg Chizhko¹; ¹Foreign department of Association for German Engineers

Investigation of Phase Stability and Grain Growth in Nanostructured 316L Stainless Steel Produced by High-energy Mechanical Milling at Cryogenic Temperature: *Hasan Kotan*¹; Kris Darling²; ¹Konya NEU; ²Army Research Laboratory

Investigation of Phase Transformation and Phase Stability of Stainless Steels as a Function of Milling Time and Annealing Temperature: Ahmet Batibay¹; Hasan Kotan¹; Kris Darling²; Hakan Gungunes³; ¹Necmettin Erbakan University; ²U.S Army Research Laboratory; ³Corum Hitit University

Long-period Martensitic Phases in Co-Al System: *Nataliya Kazantseva*¹; Sergei Demakov²; Nina Vinogradova¹; Denis Davidov¹; Pavel Terent'ev¹; Denis Shishkin¹; ¹Institute of Metal Physics; ²Ural Federal University

Modified Rayleigh Plateau Distribution of Dewet Metal Nanoparticles by Varied Solid-Liquid-Vapor and Solid-Liquid-Solid Interactions: Benjamin White¹; Nicholas Roberts¹; ¹Utah State University

Optimization of Welding Techniques on Accident Tolerant Alloys for Nuclear Reactor Applications: *Emmanuel Perez*¹; Nathan Jerred²; Jian Gan¹; ¹Idaho National Laboratory; ²Universities Space Research Association

Oxidation-Induced Ferromagnetism in Nickel Gas Turbine Blades: *Mihkael Rigmant*¹; Nataliya Kazantseva¹; Denis Davidov¹; Sergei Demakov²; Maxim Karabanalov²; Denis Shishkin¹; ¹Institute of Metal Physics; ²Ural Federal University

Phonon Wave-packet Simulations for the Prediction of Thermal Boundary Conductance: ChangJin Choi¹; Nick Roberts¹; ¹Utah State University

Rapid Solidification Microstructures in Light Metal Alloys Produced by Melt Spinning: Nicole Overman¹; Jens Darsell¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

Reduction Behavior of Carbon Composite Iron Ore Briquette: *Jeong Han*¹; Ki-woo Lee¹; Kang-min Kim¹; Jae-hong Kwon¹; Byung-chul Kim¹; ¹Inha University

Role of Alloying Elements on Thermal Stability of Duplex Stainless Steel: David Garfinkel¹; Jonathan Poplawsky²; Wei Guo²; George Young³; Julie Tucker¹; ¹Oregon State University; ²Oak Ridge National Laboratory; ³Knolls Atomic Power Laboratory

Role of Chemical Dispersion and Functionalization on Mechanical Properties in Carbon Nanotube-Polymer Composites: Sai Praveen Kumar Medisetti¹; Nick Roberts¹; ¹Utah State University

Role of Negative Strain Rate Sensitivity(NSRS) in Failure of Aluminum Alloy 2024: Experiments and Constitutive Modeling: Satyapriya Gupta¹; Armand Beaudoin¹; ¹University of Illinois

Role of Stoichiometry on Ordering in Ni-Cr Alloys: Fei Teng¹; Julie Tucker²; ¹Oregon State University; ²Oregon State University

Scandium Extraction from Nickel Processing Waste with Cyanex 923 in Sulphuric Media: *Ariane Souza*¹; Jorge Tenorio¹; ¹University of Sao Paulo

Simulation of Natural Gas Pipeline Structure in Response to External Loads: Finite Element Analysis: Yousef Alobaid¹; Tariq Al-Sarfaf¹; ¹Kuwait

Oil Company

Size Dependent Thermal Conductivity of Single-Wall Carbon

Nanotubes from Molecular Dynamics Simulations: William Yorgason¹; Nicholas Roberts¹: ¹USU

Statistics of High Purity Nb Properties for SRF Cavities: Mijoung Joung¹; Yoochul Jung¹; ¹IBS

Study of Powder Metallurgy on Low Melting Temperature Al Alloys for Brazing by Gas Atomizer Process: *Yong-Ho Kim*¹; Hyo-Sang Yoo¹; Jung-Han Kim¹; Hyeon-Taek Son¹; ¹Korea Institute of Industrial Technology

Synthesis of Creep Resistant Pulse Electrodeposited Sn-Cu-Y2O3 Lead Free Nanocomposite Solder: Manila Mallik¹; Karabi Das¹; Rabindra Ghosh¹; Siddhartha Das¹; ¹IIT Kharagpur

Synthesis of Functionally Graded (Cu, Cu-SiC) Nanocomposite Coating on Copper Substrate by Pulse Electrodeposition: Swastika Banthia¹; Srijan Sengupta¹; Arijit Mitra¹; Siddhartha Das¹; Karabi Das¹; ¹IIT Kharagpur

The Effects of Heat Treatments on Microstructure and Mechanical Properties of Blade Steel: Cody Fast¹; Sidi Lian¹; Hector Vergara¹; David Kim¹; Martin Mills²; Julie Tucker¹; ¹Oregon State University; ²Benchmade Knife Co.

The Influence of Processing Parameters on Aluminium Alloy A357 Manufactured by Selective Laser Melting: *Heng Rao*¹; Stéphanie Giet¹; Chris Davies¹; Xinhua Wu¹; ¹Monash University

Thermal Diffusivity for Cu-based Composite Materials Using the Cu-RGO Flake: Sangwoo Kim¹; *Hyo-Soo Lee*¹; ¹Korea Institute of Industrial Technology

Thermal Diffusivity & Conductivity Measurement of Very Thin and Highly Conductive Materials by the Laser Flash Technique: Bob Fidler¹; Tony Thermitus¹; Juergen Blumm¹; Andre Lindemann¹; Martin Brunner¹; NETZSCH Instruments N.A. LLC

Thermal Phosphorus Recovery from Sewage Sludge: Sander Arnout¹; Els Nagels¹; ¹InsPyro

Thermodynamic Interpretation of Ti, Re and V Precipitates in Dilute Tungsten Alloys from First Principles Calculations: *Leili Gharaee*¹; Paul Erhart¹; Jaime Marian²; ¹Chalmers University; ²University of California

Thermomechanics of Nanostructured II-VI Semiconductors: Sevil Sarikurt¹; Tahir Cagin¹; ¹Texas A&M University

Towards Engineering the Electronic Structure of Lightweight Structural Alloys: Deep Choudhuri¹; Rajarshi Banerjee¹; ¹University of North Texas

Ultrathin Tantalum Based High-density Power Capacitors with Low Leakage and High Operating Frequency: Parthasarathi Chakraborti¹; Himani Sharma¹; Markondeya Raj Pulugurtha¹; Rao Tummala¹; ¹Georgia Institute of Technology

Understanding Laser-Matter Interactions: An Integrated Approach for Laser Welding Characterization and Optimization

: Stephanie Miller¹; Ann Chiaramonti Debay¹; Jeff Sowards¹; Jim Fekete¹; Erik Pfeif¹; John Lehman¹; Paul Williams¹; Marla Dowell¹; ¹National Institute of Standards and Technology

Additive Manufacturing and Architected Materials: Eric Duoss¹; ¹Lawrence Livermore National Laboratory

Wear Behavior in Lubricant Environment of Chopped Fiber Reinforced C/C Composite Fabricated in Activated Carbon Bed: Hasan Yesilyurt¹; Mehmet Kelestemur¹; ¹Meliksah University

China ENFI: Turn a stone of resource into a gem of fortune: Cheng Liu¹; Ruijun Zhu¹; *Haikuo Sun*¹; ¹China ENFI Engineering Corporation

Influence of Titania on the Hydroxyapatite-Wollastonite-Magnesia Composites: Nermin Demirkol¹; ¹Kocaeli University

Investigation of Microstructural Variation on Yield Strength of X-70M Spiral Welded Line Pipe Steel: Ashish Singh¹; Pushpendra Mahida¹; Pankaj Mittal¹; ¹Welspun Pipes Inc.

Discovery/Invention of Superdielectric Materials: Jonathan Phillips¹; ¹Na-

val Postgraduate School

Carbon Fibers from Sustainable Biomass for Energy Applications: *Ryan Paul*¹; Deanna Burwell¹; Xuliang Dai¹; Andrew Haunser¹; Amit Naskar²; Kokouvi Akato²; Nidia Gallego²; ¹GrafTech International Holdings Inc.; ²Oak Ridge National Laboratory

Effectiveness of Single and Composited Stabilizers on Enhancing Stability of Multiple Metals in Mine Soil: Youze Xu¹; Jin Zhang¹; Yingxiang Cheng¹; Yuanyuan Zhao¹; Mengying Si¹; ¹Hunan Research Academy of Environmental Science

Fabrication of Bulk Nanostructured Materials in Ti-Al-Ni System By Mechanical Alloying and Shock-Wave Consolidation: *Mikheil Chikhradze*¹; ¹Georgian Technical University

Grain Texture Manipulation & its Effect on the Tribological Response of Carbides: Sagar Patel¹; Mathew Kuttolamadom¹; ¹Texas A&M University

Simulation of Molten Sn-3.0Ag-0.5Cu Wetting on cylindrical and V-shaped Substrates: Yan Wu¹; Zhangfu Yuan¹; Bingsheng Xu¹; ¹Peking University

Simulation Study on Wettability of Sn-3.5Ag on the Inclined Cu Substrate: *lina zhang*¹; Zhangfu Yuan¹; Bingsheng Xu¹; ¹peking university

Towards Engineering the Electronic Structure of Lightweight Structural Alloys: Deep Choudhuri¹; Rajarshi Banerjee¹; ¹University of North Texas

Crystallization Kinetics of K2O and Li2O Modified Na2O-P2O5 Glasses as Solid Electrolyte: *Paramjyot Jha*¹; O. Pandey²; K. Singh²; ¹TMS; ²Thapar University, Patiala

Materials Processing Fundamentals — Poster Session

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: Antoine Allanore, Massachusetts Institute of Technology; Lifeng Zhang, University of Science and Technology Beijing; Laura Bartlett, Texas State University; Jonghyun Lee, University of Massachusetts; Cong Wang, Northeastern University

Wednesday PM Room: Poster Area February 17, 2016 Location: Music City Center

Session Chair: To Be Announced

Behavior of Quartz and Carbon Black Pellets at Elevated Temperature: Fei Li¹; Merete Tangstad¹; ¹Norwegian University of Science and Technology

Characterization and Heat Treatment of Ti-6Al-4V Powders for Use in Cold Spray Deposition: Satish Bhattiprolu¹; Grant Crawford¹; Christian Widener¹; ¹South Dakota School of Mines and Technology

Determination of Total Iron Content in Iron Ore and DRI:

Titrimetric Method versus ICP-OES Analysis: *Yousef Mohassab*¹; Mohamed Elzohiery²; Feng Chen²; Hong Yong Sohn²; ¹University of Utah; ²University of Utah

Direct Visualization of Ultrashort-pulse Laser-based Materials Processing with Ultrafast Transmission Electron Microscopy: Chang Wan Han¹; Volkan Ortalan¹; ¹Purdue University

Effective Inoculation of Grey Cast Iron

: Dariusz Kopycinski¹; Józef Dorula²; ¹AGH University of Science and Technology ; ²Vesuvius Poland - Foseco Plant in Gliwice

Experimental Correlations in Electromagnetic Induction Melting Stations Suitable for Die Casting: Carlos Larrazabal¹; Charles Monroe¹; ¹UAB

Impact of Different Deoxidizers on the Total Oxygen Contents and Inclusions Composition of 50Cr5MoV Steel during LF Refining: *Sha Lv*¹; Guangliang Wu¹; ¹Central South University

Influence of Different Cooling Microstructure on Surface Cracks of HSLA Steel Plate by DHCR: Banglun Wang¹; Fenglian Wang¹; Anhui Polytechnic

University

Obtaining Multiple Metals through Electron Beam Melting of Refractory Metal Wastes: Katia Vutova¹; Vania Vassileva¹; ¹Institute of electronics, Bulgarian Academy of Sciences

Planar Flow Casting: Crystalline and Noncrystalline Ribbon Formation: *Joseph Mattson*¹; Paul Steen¹; Eric Theisen²; ¹Cornell University; ²Metglas Inc.

Research and Application Progress of High-strength and High-conductivity Cu-Cr-Zr Alloys: Wang Liqiang¹; Yin Jiancheng¹; Chen Yegao¹; Liu Ying-li¹; Yang Huan¹; Liu Lina¹; Zhong Yi¹; ¹KMUST

Solidification and Evaluation of Thermal Parameters of Sn-Zn Eutectic Alloys Horizontally Solidified: Alex Kociubczyk¹; Roberto Rozicki²; Verónica Scheiber²; *Alicia Ares*³; ¹Materials Institute of Misiones-IMAM (CONICET-UNaM); ²Faculty of Sciences - National University of Misiones; ³CONICET/FCEQyN-UNaM

Study on the Infrared Spectral Range for Radiation Temperature Measurement of Continuous Casting Slab: *Yunwei Huang*¹; Dengfu Chen¹; Lin Bai¹; Mujun Long¹; Kui Lv¹; Pei Xu¹; ¹Chongqing University

The Cooling Ability Study on CO2 and O2 Mixed Injection in Vanadium Extraction Process

: Pengcheng Li¹; Yu Wang¹; Wei-Tong Du¹; Gang Wen¹; ¹College of Materials Science and Engineering; Chongqing University

Effect of MnO Addition on Sintering and Microstructure of Al2O3-MgO-CaO Refractories: *Xue-liang Yin*¹; Lei Liu¹; Xiang Shen¹; Mei-le He¹; Min Chen¹; Nan Wang¹; ¹School of materials and metallurgy, Northeastern University

The Principle and Application Prospection of Microwave Sintering in Preparing Ti Matrix Composites: Qiu Guibao¹; Cui Hao¹; Yang¹; Liao Yilong¹; ¹Chongqing university

Theoretical Determination of Tool-Chip Contact Length in Cylindrical Machining: Sunday Ojolo¹; Patricia Thomas¹; ¹University of Lagos

Variation of the real Density of Petroleum Coke during High Temperature Calcined Process: *Tao Liu*¹; Mujun Long¹; Xinghong Du¹; Shikai Gong²; Dengfu Chen¹; Yi Yang²; Junhao Sheng¹; Chunmei Chen¹; ¹Chongqing University; ²Guiyang Aluminium Magnesium Design & Research Institute Co., Ltd

Influence of ZrO2 Incorporation into Coating Layer on Electrochemical Response of Low-carbon Steel Processed by Electrochemical Plasma Coating: *Gye-Won Kim*¹; Ki-Ryong Shin²; Yeon-Sung Kim²; Young-Gun Ko³; Dong-Hyuk Shin²; ¹Hanyang University ; ²Hanyang University; ³Yeungnam University

Thermodynamic Applications, Optimizations and Simulations in High-Temperature Processes: An EPD Symposium in Honor of Christopher W. Bale's 70th Birthday — Poster Session

Sponsored by:TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee Program Organizers: In-Ho Jung, McGill University; Arthur Pelton, Ecole Polytechnique; Patrice Chartrand, Ecole Polytechnique; Phillip Mackey, P.J. Mackey Technology; David Robertson, Missouri S&T; P Taskinen, Alto Univ; Malin Selleby, KTH Royal Institute of Technology

Wednesday PM Room: Poster Area February 17, 2016 Location: Music City Center

Session Chair: In-Ho Jung, McGill University

Experimental and Numerical Investigation of Tantalum Recycling by Electron Beam Melting: Katia Vutova¹; Vania Vassileva¹; Elena Koleva¹; Nagegownivari Munirathnam²; ¹Institute of electronics, Bulgarian Academy

of Sciences; ²Centre for Materials for Electronics Technology

Experimental and Numerical Investigation of Thermal Plasma Synthesis of Silicon: Yudong Li¹; Ramana Reddy¹; ¹The University of Alabama

Determination of Phase Equilibria and Thermodynamic Properties of Metal-doped Magnesium Silicides: *Ramana Reddy*¹; Mallikharjuna Bogala¹; ¹The University of Alabama

Effect Mechanism of Sodium Carbonate on Carbothermic Reduction of Ilmenite Concentrate: Bing Song¹; ¹Panzhihua Iron & Steel Research Institute

Determination of Stability Constants of Zinc(□) Complex with Iminodiacetic Acid at Different Temperatures: Dou Aichun¹; ¹Jiangsu University, China

Central Segregation of High-carbon Steel Billets and Its Heredity to the Hot-rolled Wire Rods: Yuan Ji¹; Yujun Li¹; Shaoxiang Li¹; Xiaofeng Zhang²; Jiaquan Zhang¹; ¹University of Science and Technology Beijing; ²Beijing Metallurgical Technology Research Institute

Phase Equilibria and Calorimetric Studies of the Ternary Ag-Cu-S System: Fiseha Tesfaye¹; Daniel Lindberg¹; ¹Åbo Akademi University

Measurement of the Standard Free Energy Change of a Chemical Reaction by the Chemical Equilibration Technique using a Thermo Gravimetric Analyzer (TGA): A Novel Approach: Aniket Dutt¹; Dinabandhu Ghosh¹; ¹Jadavpur University

Physical Simulation on Electrical Properties in the Electric Slag Cleaning Furnace of Copper Slag: Liu Yan¹; Fang Yu¹; Liu Guanting¹; Li Xiaolong¹; Zhang Ting'an¹; Northeastern University

Physical Simulation of Copper Side-blown Smelting Process: Li Xiaolong¹; Liu Yan¹; Wang Dongxing¹; Liu Guanting¹; *Zhang Ting'an*¹; ¹Northeastern University

The Confirmation of Simulation Parameter and Analysis of Temperature Field of 430 Ferrite Stainless Steel in Water-cooling Condition with 3D-CAFE Method: *Peixiao Liu*¹; Yanxiang Li¹; Hanjie Guo¹; Ruipeng Pang¹; University of Science and Technology Beijing

Thermodynamic and Ab-initio Investigations of the Os-Th and Os-Y Systems: Aissam Hidoussi¹; Aissa Belgacem-Bouzida¹; Fiseha Tesfaye²; Said Kardellass³; ¹University Hadj Lakhdar Batna; ²Åbo Akademi University; ³Université Ibn-Zohr

Thermodynamic Modeling of Ti-Fe-Cr Ternary System: Wang Shusen¹; Lin Chongmao¹; Li Baotong¹; Wang Hongbin¹; Lu Xionggang²; Li Chonghe¹; ¹State Key Laboratory of Advanced Special Steel; ²Shanghai Special Casting engineering technology research center

Thermodynamic Modeling of Hot Metal Desulfurization Using Na₂O-Based Fluxes; Elmira Moosavi-Khoonsari¹; In-Ho Jung¹; ¹McGill University

Thermodynamic Assessment of the PbO-V2O5 System: Nai Wang¹; Wei Xie¹; Zhiyu Qiao¹; Zhanmin Cao¹; ¹University of Science and Technology Beijing

Thermodynamics and Kinetics of Salt Deposition for Burner Rig Hot Corrosion Studies: Crescent Islam¹; Elizabeth Opila¹; ¹University of Virginia

Multi-Phase Flow Simulation in Blast Furnace by MPS-SMAC Model: *Tatsuya Kon*¹; Nobuhiro Maruoka¹; Hiroshi Nogami¹; ¹Tohoku University

Thermodynamic Equilibrium in Zn2+-Ida2--CO32--H2O System: The Influence of Solid Phase on the Solubility of Zn (□) in the System: Dou Aichun¹; ¹Jiangsu University, China

Thermodynamic Equilibrium in Zn2+-Ida2--CO32--H2O System at Different Temperatures: Dou Aichun¹; ¹Jiangsu University, China

•	A C 25 45 56 110 154	A1 A_:-: A
A	Agnew, S	Al-Azizi, A
Aabloo, A115	Agrawal, A	Al Balushi, Z
Aagesen, L		
Aarhaug, T 79, 89, 109, 110	Ågren, J	Alderman M 34 07 117 156
Abad, M	Aguiar, I	Alax II
Abbott, T	Aguiar, J	Alexy U
Abd El Aziz, A50	Aguiar, N	Alexander, D
Abd Elfattah, A	Aguilar Ortiz, C	Alexandre, J
Abdelghany, A	Agunsoye, J	Alexandrov, D
Abdelhak, K	Ahli N	Alford, T
Abdelhamid, T	Ahli, N	Alghamdi, W
Abdeljawad, F17, 56, 77, 96, 117,	Ahl, S	Al Harahsheh, M
	Ahluwalia, R	Al – Harthi, S
Abd El Majid, S	Ahmad Mehrabi, H83	Al-Helal, K
Abdolrahim, N	Ahmed, K	Ali, E27
Abdou, T	Ahmed, T	Alieninov, P
Abdulkhaliq, Y 68	Ahmed, Y58, 80	Ali, H
Abdullah, Z	Ahmmed, K14	Alihosseini, H
Abdulla, M	Ahn, B	Ali, M
Abdulrahman, N	Ahn, D	Aliprandini, P160
Abedrabbo, S	Ahn, J12	Ali, U
	Ahn, S	Aliyu, Z27
About 13	Aichun, D	Al Jarrah, M151
Abornathy, D	Aidhy, D80, 95	Al-Joubori, A146
Abernathy, D	Aindow, M145	Alkan, M
Abirardana T	Aitkaliyeva, A35	Alkan, S
Abalah and Chamini S	Aizawa, K	Allain, S
Abolghasem Ghazvini, S159	Ajayan, P	Allanore, A 57, 76, 79, 91, 99,
Abouaf, M	Ajayi, A	120, 124, 169
Abou-Khalil, L	Akamatsu, S	Allard, F
Abrikosov, I	Akande, S	Allen, A
Abu-Farha, F147, 149	Akato, K	Allen, F
Abu Samah, Z	Akbari, A115, 133	Allen, K
Acarer, M	Akceoglu, G129	Alleno, E
Acar, O	Akedo, K66	Allen, T8, 43, 64, 86, 107, 127,
Acharya, R	Akey, A94	140, 149, 151
Ackelid, U	Akhmetov, S	Allison, J 12, 33, 54, 98, 114, 122,
Adachi, N	Akhtar, K	147, 159
Adam, B	Akinrinlola, B	Allison, P3, 5, 25, 48, 66, 68,
Adams, A30, 52, 73, 93	Akin, T31	89, 110, 152, 155
Adams, B	Akita, K	Allison, T9
Adams, D	Akmetov, S	Al, M158
Adams, J	Akolkar, R79	Alman, D55, 143
Addessio, F	Akpan, E58	AlMangour, B
Addou, R	Akpan, P58	AlMarzooqi, K47
Adeosun, S	Akram, J	Al Marzouqi, A93
Adhikari, B61	Aksu, R166	Al-Mejali, J89
Aditya, A	Aktaa, J	Almer, J
Adlakha, I77	Aktulga, M29	Almirall, N 64, 107, 119, 144
Adriaens, D5	Akyil, C	Alobaid, Y
Afanasiev, R	Alagarsamy, K	AlOgab, K
Afsar, Y	Al Ali, I	Al-Omari, I
Afsin, B	Alamgir, F	Alp, E
Afteni, M	Alam, M11, 119, 138	Alpugan, E39
Agarwal, R9	Alam, S 17, 38, 39, 61, 159	Al-Sarfaf, T168
Agarwal, V146	Alam, T	Al Sawafi, A111
Agbeleye, A	Alam, Z	Al Shammari, A
Agbenyegah, G 109	Alavi, S	Al Shammari, S
	,,,	

	A ·1 · T7	ACLE ZAFENCAC
Al Shehhi, S	Anikin, V47	ASLE ZAEEM, M
Al-Taher, A	Aning, A 6, 37, 141, 165	Asta, M 9, 11, 12, 14, 33, 52, 90
Al Taisan, A	Anitescu, M154	Atabay, S
Altoé, G	An, K	Atahan, H
Alvarado-Contreras, J 100	Ankem, S38, 144	Atkins, W102
		Atwood, R
Alvarenga, R 160, 163, 164	Ankit, K	
Álvarez-Alonso, P	Annasamy, M	Auad, M
Alvear Flores, G 2, 21, 43, 64, 85,	Annis, C74	Auger, T
86, 106, 126, 140, 162	Antille, J53, 129	Augiar, J
Alvear, G64	Antloga, M79	Au, I
Al-Zahrani, B47	Antolin, N	Aune, R18, 20, 25, 41, 91, 141,
Al Zarouni, A	Antonov, S	153, 160
Amaha, S	Antrekowitsch, J	Austin, J
Aman, T	Anwar Ali, H98, 158	Austin, N
Amanuel, Y	Anza, I	Avallone, J
Amaral, L71	Apalangya, V68	Averback, R 56, 71, 80, 101, 122, 138
Ambard, A140, 154	Apelian, D 19, 40, 41, 42, 61, 82,	Avila-Davila, E
Ambrosio, E	83, 91, 103, 124, 142, 147, 160	Ávila-Dávila, E
Ambrosio, M146	Appleby-Thomas, G7	Avins, H
Amirouche, F4	Aras, M	Awad, I53
Amiya, K	Araujo, A	Aydin, E
	· ·	•
Amorim, C	Araujo, C	Aydiner, C
Amroussia, A	Araújo, R	Aydogan, E 37, 43, 59, 137
Amstad, E26	Archibald, K	Ayers, T
Ananthakrishnan, R33	Ardeljan, M	Ayomanor, B
Anantharaman, M164	Ardell, A81	Ayoub, G
An, B39	Areias, I	Aytug, T
Anderoglu, O 15, 16, 17, 36, 37,	Arenas, D166	Azcatl, A2
	Arenas Islas, D	Azeem, M9
107, 121, 122, 137, 138, 144, 159	Ares, A	Azevedo, A
Anderson, B	Arfaei, B	Azimi, G
1 1 7 10 50 50 (1 100	4 11 37	4 1 36
Anderson, I 10, 53, 59, 61, 109,	Argibay, N	Aziz, M94
119, 137	Arigela, V105	
		Aziz, M
119, 137	Arigela, V105	В
	Arigela, V	B Babu, S16, 17, 22, 35, 37, 38, 60,
	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144	B Babu, S 16, 17, 22, 35, 37, 38, 60,
	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141	B Babu, S16, 17, 22, 35, 37, 38, 60,81, 87, 102, 107, 119, 122,127, 128, 138, 144, 159
	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76	B Babu, S16, 17, 22, 35, 37, 38, 60,81, 87, 102, 107, 119, 122,
	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. .76 Arnout, S. .62, 105, 168	B Babu, S16, 17, 22, 35, 37, 38, 60,81, 87, 102, 107, 119, 122,127, 128, 138, 144, 159
	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S76 Arnout, S. 62, 105, 168 Arola, D5, 89	B Babu, S16, 17, 22, 35, 37, 38, 60,81, 87, 102, 107, 119, 122,
	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147	Babu, S
	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148	Babu, S
	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147	Babu, S
	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148	Babu, S
119, 137 Anderson, J 165 Anderson, K 57, 154 Anderson, N 69 Anderson, P 29, 35, 138, 139 Anderson, R 61 Anderson, T 141 Andersson, D 8, 101 Andersson, N 20, 62 Ando, D 78, 156 Andoh, M	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65	Babu, S 16, 17, 22, 35, 37, 38, 60,
119, 137 Anderson, J Anderson, K Anderson, N Anderson, P 29, 35, 138, 139 Anderson, R Anderson, T Anderson, D Andersson, N 20, 62 Ando, D Andoh, M Ando, T Andrade, C	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R. 72, 151 Arruda, A. 126	Babu, S
Anderson, J	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R. 72, 151 Arruda, A. 126 Arshad, S. 63	Babu, S
Anderson, J	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R. 72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45	Babu, S
Anderson, J	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R. 72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161	Babu, S
Anderson, J 165 Anderson, K 57, 154 Anderson, N 69 Anderson, P 29, 35, 138, 139 Anderson, R 61 Anderson, T 141 Andersson, D 8, 101 Andersson, N 20, 62 Ando, D 78, 156 Andoh, M 30 Ando, T 73 Andrade, C 164 Andrade e Silva, L 165 Andrades, R 165 Andre, N 149	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R. 72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161 Asadi, E. 72, 73, 98	Babu, S
119, 137 Anderson, J Anderson, K Anderson, N Anderson, P 29, 35, 138, 139 Anderson, R Anderson, T 141 Andersson, D Andersson, N Ando, D Ando, D Ando, T Andrade, C Andrade e Silva, L Andrades, M Andrede, N Andrews, W	Arigela, V. 105 Arita, M. 139, 145 Arita, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161 Asadi, E. 72, 73, 98 Asadikiya, M. 9, 93	Babu, S
119, 137 Anderson, J Anderson, K Anderson, N Anderson, P Anderson, R Anderson, T Andersson, D Andersson, N Ando, D Ando, D Ando, T Andrade, C Andrade e Silva, L Andrades, R Andrews, W Andriese, M Andriese, M	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161 Asadi, E. 72, 73, 98 Asadikiya, M. 9, 93 Åsheim, H. 110	Babu, S
Anderson, J	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161 Asadi, E. 72, 73, 98 Asadikiya, M. 9, 93 Åsheim, H. 110 Ashraf, C. 93	B Babu, S 16, 17, 22, 35, 37, 38, 60, 81, 87, 102, 107, 119, 122, 127, 128, 138, 144, 159 Babu S M, J 122 Bachhav, M 35 Back, C 144 Backman, M 51 Baddorf, A 67 Badowski, M 111 Badura, K 165 Bae, D 49, 50, 58, 121, 159 Baek, J 157 Baek, M 124, 155 Bae, S 4 Baeumer, A 51 Bae, Y 102 Bagot, P 32, 86
119, 137 Anderson, J Anderson, K Anderson, N Anderson, P Anderson, R Anderson, T Andersson, D Andersson, N Ando, D Ando, D Ando, T Andrade, C Andrade e Silva, L Andrades, R Andrews, W Andriese, M Andriese, M	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161 Asadi, E. 72, 73, 98 Asadikiya, M. 9, 93 Åsheim, H. 110	B Babu, S .16, 17, 22, 35, 37, 38, 60, .81, 87, 102, 107, 119, 122, .127, 128, 138, 144, 159 Babu S M, J .122 Bachhav, M .35 Back, C .144 Backman, M .51 Baddorf, A .67 Badowski, M .111 Badura, K .165 Bae, D .49, 50, 58, 121, 159 Baek, J .157 Baek, M .124, 155 Bae, S .4 Baeumer, A .51 Bae, Y .102 Bagot, P .32, 86 Bahrami motlagh, E .56
Anderson, J	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161 Asadi, E. 72, 73, 98 Asadikiya, M. 9, 93 Åsheim, H. 110 Ashraf, C. 93	B Babu, S. .16, 17, 22, 35, 37, 38, 60, .81, 87, 102, 107, 119, 122, .127, 128, 138, 144, 159 Babu S M, J. .122 Bachhav, M. .35 Back, C. .144 Backman, M. .51 Baddorf, A. .67 Badowski, M. .111 Badura, K. .165 Bae, D. .49, 50, 58, 121, 159 Baek, J. .157 Baek, M. .124, 155 Bae, S. .4 Baeumer, A. .51 Bae, Y. .102 Bagot, P. .32, 86 Bahrami motlagh, E. .56 Bahr, D. .96, 158
Anderson, J	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R. 72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161 Asadi, E. 72, 73, 98 Asadikiya, M. 9, 93 Åsheim, H. 110 Ashraf, C. 93 Asif, S. 11, 14, 34, 96, 158	Babu, S
Anderson, J	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R. 72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161 Asadi, E. 72, 73, 98 Asadikiya, M. 9, 93 Åsheim, H. 110 Ashraf, C. 93 Asif, S. 11, 14, 34, 96, 158 Askarinejad, S. 129 Asker, D. 110	Babu, S
Anderson, J	Arigela, V. 105 Arita, M. 139, 145 Arita, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R. 72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161 Asadi, E. 72, 73, 98 Asadikiya, M. 9, 93 Åsheim, H. 110 Ashraf, C. 93 Asif, S. 11, 14, 34, 96, 158 Askarinejad, S. 129 Asker, D. 110 Aslam, I. 51	Babu, S
Anderson, J	Arigela, V. 105 Arita, M. 139, 145 Ariza, A. 60 Armstrong, D. 144 Arnberg, L. 141 Arnold, S. 76 Arnout, S. 62, 105, 168 Arola, D. 5, 89 Aron-Dine, S. 143, 147 Arora, A. 148 Arreguin-Zavala, J. 65 Arroyave, R. 72, 151 Arruda, A. 126 Arshad, S. 63 Arul Kumar, M. 29, 45 Arya, S. 153, 161 Asadi, E. 72, 73, 98 Asadikiya, M. 9, 93 Åsheim, H. 110 Ashraf, C. 93 Asif, S. 11, 14, 34, 96, 158 Askarinejad, S. 129 Asker, D. 110	Babu, S

Baig, M	Banthia, S	Battaile, C
Bai, H	Banu, M	Bauer, E
Baik, S 60	Bao, F	Bausells, J
Baik, Y	Bao, J	Baxevanakis, K
Bai, L 123, 153, 169	Baotong, L	Bayat Tork, N157
Bailey, N15, 69	Bao, Y	Bazan, G
Bair, J	Barabash, R	Bazarnik, P
Bai, X	Barandiarán, J	Bazehhour, B118
Bai, Y146	Barandiaran, M109	Beach, J
Bajaj, R107	Barashev, A	Beall, G
Baker, A	Barber, M	Beal, R
Baker, B	Barbero, E	Bean, Q108
Baker, D	Barbier, T5	Beas, E
Baker, E 4	Barbosa, A131	Beaudoin, A87, 168
Baker, I	Barbosa, V	Beaugnon, E
Baker, K	Barbur, V	Beaux, M
Baker, S	Barcelos, M	Becker, C
Bakshi, S	Bardet, B	Becker, M
Baksi, A	Barkakaty, B	Beckermann, C 27, 32, 54, 62, 162
Balachandran, S	Barlat, F	Bedford, N
Balasubramanian, G55, 112, 133	Barnard, L	Bednarcik, J90
Balaz, S 4, 39, 152, 160	Barnes, P	Bednarcyk, B
Bal, B	Barnett, M	Beese, A 3, 22, 44, 65, 87, 108, 127,
Balch, D	Bärnthaler, M	
Balden, M	Baró, D	Beghini, L
Baldwin, C	Baró, M 6	Be, H
Baldwin, E	Baron, C	Beheshti, R
Baldwin, J 14, 32, 59, 107, 149	Barrales-Mora, L	Behnken, H
Baldwin, K	Barreteau, C5	Bei, H 43, 49, 55, 64, 86, 90, 107,
Bale, C	Barrett, K	
Bale, H	Barrientos Hernández, F164	Beland, L
Balijepalli, S	Barron, S	Béland, L
Balila, N	Barrows, W	Belanger, F
Balk, J	Barta, N	Belgacem-Bouzida, A170
Balk, T	Barthelat, F 5, 25, 48, 68, 89, 110,	Belisle, E
Balle, F142	129, 152	Bellet, M
Balogh, L	Bartlett, L 57, 79, 99, 120, 169	Bellon, P 4, 71, 80, 101, 122, 138
Balogh, Z81	Bartolo, L	Bellot, J
Balogun, S	Bartolucci, S	Belousov, S
Balomenos, E	Barton, N	Belova, I
Balooch, M	Barto, R99	Belt, C70
Baltic, E	Baruchel, J	Belyakov, S 10, 53, 73, 154, 155
Bamberger, M	Barui, S	Benafan, O139
Banadaki, A56	Basag, S	Bendler, J
Bandyopadhay, T 165	Basak, A108, 150	Benedek, N
Banerjee, D 54, 98, 132	Baskan, M166	Benes, O
Banerjee, M145	Bassey, E	Benini, B
Banerjee, R .4, 60, 81, 99, 109, 122, 168,	Bassman, L 116, 143, 147, 149	Benjamin, S127
169	Basson, F	Bennett, J 10, 40, 82, 159
Banerjee, S	Bastos Andrade, C	Benouahmane, Z64
Bang, J	Bastos Margem, M	Bent, J131
Bang, K85	Basu, B101	Benton, W
Bang, S40, 166	Basu Majumder, S	Benzesik, K
Banhart, J81	Basu, R	Benzing, J66
Bannister, M	Basu, S 10, 31, 53, 74, 84, 155, 167	Berardan, D5
Bansal, A	Bates, B	Berardinis, L
Bansal, D	Batibay, A168	Berbenni, S
Bansil, A92	Batista, E	Berche, A

D 11 0	D	P 10 0
Berdin, C	Biewer, T	Bolfarini, C
Berends, W	Bi, G	Bollhalder, A
Berenguer, I	Bigelow, G	Böllinghaus, T31
Berge, F	Biggs, M	Bomarito, G
•	BILGIN, G	
Bergeon, N	-	Bombac, D
Bergstrøm, T83	Bilheux, H	Bonafede, I
Berke, R	Bilican, D	Boncina, T128, 142
Berman, T	Bilici, B	Boniface, T
Bernard-Granger, G5	Billia, B	Bönisch, M
Bernardi, M	Bilodeau, J	Bonnand, V54
Bernier, J	Binder, A	Bonnefont, G6
Bernstein, N	Biner, S	Bonnet, F
Beroš, A	Binnemans, K	Bonnett, J
Bertrand, E112	Bin, X	Book, T
Besmann, T	Birbasar, O124	Boone, K
Besser, M	Bird, J	Borbely, A
Besson, R	Birhane, Y	Bordeenithikasem, P
Besson, S	Birry, L	Bor, E
Beuth, J	Birt, A142	Borgenstam, A 17, 38, 60, 82, 102,
Bewlay, B	Bi, S	123, 159
	Bishop, J	
Beyerlein, I 3, 4, 14, 20, 23, 29,	* *	Borges, L
	Bissell, T	Borgonia, J
87, 98, 105, 108, 118, 125, 135,	Biswas, S	Borkar, T
	Björling, G	Borlolan, C152
Beygi, R	Black, P	Borodin, E
Bhaoumik, S	Blair, S	Borodin, O59, 93
Bharadwaj, M148	Blais, A	Borovikov, V
Bhaskar, M	Blais, C	Bor, S
Bhassyvasantha, S	Blaiszik, B	Bota, G
Bhatia, M29, 56	Blanco, J	Botelho, F
Bhatia, V	Blanpain, B 19, 40, 41, 61, 64, 82,	Botta, W
Bhattacharjee, A 16	83, 86, 103, 105, 124, 160	Bottin-Rousseau, S54, 100
Bhattacharya, A52, 123	Blázquez, J	Botton, G123
Bhattacharya, K29	Blejde, W	Bouaziz, O
Bhattacharya, S13, 64, 66, 127, 157,	Blessington, R	Bouchard, P50
	Blodgett, M	Bouche, C
	•	
Bhattacharyay, D	Blondel, S	Bouffard, B
Bhattacharyya, A	Blumenthal, W	Bouman, C
Bhattacharyya, D 16, 17, 35, 37,	Blumm, J	Boundy, T
	Blum, W139	Bourell, D 3, 22, 44, 65, 87, 108, 127,
122,138, 144, 159, 164, 166	Boaro, L	150
Bhattacharyya, J118	Boatner, L	Bourgès, C5
Bhattacharyya, M 60	Bober, D117	Bourgès, G167
Bhatta, E5	Bobruk, E	Bourgon, J6
Bhattiprolu, S	Bodude, M	Bowen, P
Bhatt, J	Boehlert, C 23, 108, 135, 150, 151	Bower, A
Bhavsar, R50, 140	Boellinghaus, T	Bowers, M
Bhosle, S	Boesenberg, U	Boyce, B 3, 4, 11, 36, 58, 150
Bhowmick, S 11, 34, 55, 77, 96,	Boesl, B 6	Boyle, C
116, 134	Boettinger, W	Bradley, R116
Bian, F118	Bogala, M169	Brady, M119
Bian, L	Bogdanov, Y47	Bragg-Sitton, S
Bian, Y 124, 159, 165	Boge, M	Bragov, A
Bickel, J	Bogno, A	Brahme, A
	=	
Bieler, T 3, 4, 19, 23, 33, 45, 66,	Bogomol, I	Brake, M
87, 108, 114, 131, 133,	Bohlen, J 104, 124, 135, 160	Branch Kelly, M
	Bojarevics, V	Brancolini, G89
Biery, S127, 150	Boland, E	Branco Lopes, E

Brandl, C	Brziak, P	Cagin, T168
Bratberg, J	Buchanan, D	Cahill, D
Braun, P	Buchenauer, D	Cai, L 2, 21, 43, 64, 85, 86, 106,
Bray, S	Buchheit, T 4	126, 140, 162
Brechet, Y	Buck, E	Cai, P
Brechtl, J	Buck, M	Cairney, J
Breen, D	Buckner, J	Cai, S
Breitkreutz, H	Buckow, A	Caissy, J
Brennan, R148	Budai, J	Cai, Z
Brenner, D85, 93	Budaraju, S	Cakmak, E128
Brennhaugen, D	Budiman, A34, 55, 77, 81, 96,	Calhoun, C
Brese, R	98, 116, 134, 158	Caliari, D104
Brett, D	Buffiere, J	Calignano, F
Breuer, S	Bufford, D121, 138	Calin, M
Brewer, L	Bugdayci, M	Calle, A148
Briggs, S107, 141	Bugnion, L53, 68, 129	Calo, P
Brimmo, A70	Bulatov, V52	Camarillo, J
Brindle, R	Bulgakova, K46	Camerini, A163
Bringa, E42, 101, 146	Buljeta, I	Campanelli, L
Bringuier, S	Buonassisi, T94	Campbell, C12, 22, 33, 52, 76,
Brinkman, K 11, 33, 54, 75, 83,	Bureau, J	113, 134, 165
95, 115, 156	Burgos, R163	Campbell, G134
Briot, N	Buric, M33	Campbell, P
Brito, A27	Burke, R	Campbell, T21
Britt, K	Burke, S	Campos, L
Brittles, G86	Burkes, D	Camposo Pereira, A131
Britton, B 32, 66, 74, 108	Burnes, R8	Canadinc, D
Britton, T87	Burns, A56	Canepa, P
Brochu, M65, 91	Burns, J	Canfield, N
Brochu, V141	Burroughs, J3	Cao, B60
Brock, A	Burton, B	Cao, C36, 58
Brockman, R	Burton, T164	Cao, D6
Brodarac, Z	Burwell, D	Cao, L93
Broderick, S	Busby, J	Cao, P
Broek, S 25, 47, 68, 88, 109, 110,	Bush, R48	Cao, Q 6, 49, 70, 90, 142
128, 129, 141	Bustamante, M	Cao, S112, 145
Bronkhorst, C 45, 122, 150, 165	Butler, B	Cao, W
Brooks, G	Butler, T	Cao, Y82, 160
Brouwer, E	Butt, D	Cao, Z
Brown, A 7, 22, 110, 156	Butts, D	Capdevila, C82
Brown, D	Buyuk, B	Capek, J
Browne, D	Buzunov, V	Capolungo, L80, 113, 154
Browning, C	Buzzi, D	Capps, N
Browning, J	Bychinskii, V	Capuzzi, S
Brown, L	Byczynski, G	Caram, R
Brown, S 108, 135, 150	Byler, D	Carboga, C
Brown, T	Byrd, D	Cardinal, S
Bruce, A	Byun, J	Cardona, F
Bruckard, W	Byun, T	Carlborg T
Brück, E	Byun, Y2	Carlberg, T
	С	Carloni, J
Bruera, F		Carlson, M
Brunetti, G	Caballero, F	Carlson, N
Brun, N	Cadogan, J	Carmack, J
Brunner, M	Cady, C	Carney, C
Bruno, N	Caetano, M	Caro, A
Bryant, A	Caffee, A118	Caro, M
21, 4110, 21		Caro, 111

Caron, F	Chae, D	121, 127, 133, 144, 147, 163,
Caron, J	Chai, D	
Carpenter, E	Chai, W	Chenchen, Y
Carpenter, J	Chai, X	Chen, D
28, 44, 45, 51, 65, 66,	Cha, J	
	Chakkedath, A	
		Chen, F 21, 33, 64, 99, 125, 140,
	Chalmahanta A	
Carrado, A	Chalcook and P	Chen, G 61, 62, 70, 147, 148
Carradò, A18, 39, 160	Chakraborty, P	Cheng, B
Carr, C	Chakraborty, S	Chengbo, W
Carrez, P	Chakravartty, J	Cheng, C
Carrier, J	Chamam, Y	Cheng, D
Carrizosa, S	Chamanfar, A	Cheng, H 2, 106, 116, 130, 162, 165
Carr, J	Chamelot, P	Cheng, L
Carroll, J	Chamlagain, B2	Cheng, R
Carroll, L81	Champagne, V 54, 61, 73, 147, 148	Cheng, X
Carroll, M	Champion, Y	Cheng, Y 32, 93, 158, 169
Carroll, R143	Chandler, M	Cheng, Z165
Carsley, J 98, 118, 135, 141	Chandola, N	Chen, H 10, 38, 60, 146
Carson, R	Chandragiri, V	Chenhui, L
Carter, E51	Chandrakala, E166	Chen, J
Carter, J 51, 107, 130, 154	Chandran, K	Chen, L 16, 17, 21, 36, 37, 38,
Carter, R22, 63	Chandrasekar, S	46, 52, 58, 60, 81, 86,
Carter, W87, 128	Chandross, M	92, 95, 102, 115, 122, 134,
Caruso, S	Chang, C	
Carvalho, R	Chang, E90	Chen, M 16, 64, 85, 140, 169
Carvillo, P	Chang, F	Chen, P 5, 48, 68, 89, 110, 129,
Casalena, L	Chang, H	
Casella, A14, 127	Chang, J	Chen, Q
Case, S	Chang, K	Chen, S 5, 13, 24, 37, 41,
Castano, C45, 151	Chang, S	
Castelluccio, G	Chang, Y 5, 81, 102, 147	
Castin, N	Chan, H	Chen, T 37, 43, 101, 106, 158
Castro, A	Chan, M	Chen, W 9, 21, 33, 95, 107, 127, 143
Castro, R	Chao, W	Chen, X 4, 8, 70, 95, 107, 131,
Catalano, J	Chapelle, P	
Catalini, D	Chapman, M	Chen, Y
Catoor, D	Chapman, T	
Catorceno, L	Chard, K	126, 132, 138, 145, 148, 158
Catteau, S	Charit, I 43, 120, 132, 136, 149	Chen, Z 10, 122, 126, 144, 164
Cawley, J	Chartand, P	Cheon, J
Cazacu, O	Chartrand, P 20, 41, 62, 84, 104, 105,	Chermont, P
Cazotte, S		Chernenko, V
Cazottes, S	Chasiotis, I	Chertow, M
Cebon, D	Chason, E	Cheruvadhur, S
Cebukin, F		
	Chatteriee, A	Cherwathur, S
Cecen, A	Charles I	Chesson, D
Ceder, G	Chaubey, I	Cheung, C
Cepeda-Jiménez, C	Chaudhary, A	Chiang, H
Cerecedo Sáenz, E	Chauhan, V	Chiang, M
Cerqueira, N	Chavarriaga, E	Chiaramonti Debay, A168
Cerqueira Neves, A	Chavarriaga Miranda, E	Chiba, A
Cerreta, E 4, 7, 100, 122, 150	Chawla, N 4, 9, 10, 15, 30, 34,	Chien, P
Cervellino, A		Chih, C
Cetin, D	Chekhonin, P	Chikhradze, M
Cetin, R	Chen, B	Childs, S
Chaari, N121	Chen, C 8, 16, 37, 43, 59, 81, 87, 101,	Chinella, J141
Chadha, R		Chin, M

Chintalapalle, R18	Chuang, C	Colle, J
Chinthaka, S	Chuang, H	Collins, D
Chi, S	Chuang, S	Collins, J
Chisholm, M	Chuang, Y	Cologna, M
Chiu, S	Chu, D	Colombo, T
Chiu, W	Chudnenko, K	Colon, H
Chizhko, O	Chueh, W	Colón, J
Chmielus, M	Chu, H	Colorado, H
Chobaut, N	Chu, J	Combeau, H 6, 27, 50, 70, 94,
Choe, D	Chumlyakov, Y	
Choe, H	Chun, D	
		Compton, B
Choi, C	Chung, Y	Compton, C
Choi, D	Chunming, L	Comstock, R
Choi, H 21, 146, 147, 152, 158, 167	Characher and M. 151	Conde, A
Choi, I	Churyukanova, M	Cone, D
Choi, J	Chushkin, Y	Conner, B
	Chu, W	Connick, R
Choi, M	Chu, Y	Connick, W69
Choi, Y91, 158	Chyi-Lim, H	Connolly, M
CHOI, Y163	Çimenoglu, H	Constant, K
Cho, J	Cionea, C144	Conti, S
Cho, K 6, 36, 69, 84, 103, 126,	Ciston, J	Contreras, L
	Cizek, J105	Conway, P
Chokshi, A117	Cížek, J	Cook, J
Chonghe, L	Clark, A	Cook, R
Chongmao, L	Clark, B 17, 36, 42, 140	Cooksey, M
Chong, Y	Clark, D	Cool, T
Choo, H 6, 26, 49, 69, 90, 111,	Clarke, A 15, 16, 17, 32, 37,	Cooper, B
		Copp, R
Chopra, N 2, 21, 42, 63, 85, 106, 146		Corcoran, E
Choquette, S	Clarke, K 3, 13, 15, 17, 22, 38,	Cordero, Z
Chorney, J	44, 65, 82, 87, 102, 107,	Cordes, N
•		Cordier, P
Charman N		· · · · · · · · · · · · · · · · · · ·
Chorpa, N	Clark, T	Cordill, M
Cho, S	Clausen, B	Cormier, J
Chotoli, F	Clawson, J	Cornich, S
Choudhary, A	Clayton, K	Corni, S
Choudhary, G40	Cleary, W65	Correa, A142
Choudhuri, D 122, 168, 169	Clemens, H	Correa, D24
Choudhury, A154	Clifford, D	Correa, V
Choudhury, S	Clouet, E	Cortés López, C
Chou, K 3, 20, 123, 150	Cloutier, B	Coryell, B
Chou, M54	C. Moraes, J141	Coskun, S39, 58
Chou, P	Cobos Murcia, J	Costa, B
Chou, R65	Cockcroft, S104, 114	Costa e Silva, A113, 134
Chou, Y	Cocke, D	Costa, F
Chowdhury, P11, 148	Cockeram, B	Costa, G104
Cho, Y	Coelho, P110	Costanza, G166
Christe, D	Cola, B	Cote, D 61, 73, 147, 148
Christ, H	Cola, G119	Cotten, H68
Christiansen, D	Colalancia, S	Cottenier, S
Christodoulou, P	Colby, R	Cotton, J
Christofidou, K	Cole, D	Cotts, E
Christophersen, J	Cole, J 43, 64, 86, 107, 127, 140, 149	Cottura, M
Chromik, R	Cole, K	Coughlin, D
Chrominski, W145	Coleman, J	•
Chrzan, D	Coleman, S	Course A
Chu, A	72, 93, 113, 132, 154	Couret, A61

Coursol, P	Dai, X	Dean, D
Courtois, L	Dai, Y	De Andrade, V
Coury, F	Dalaker, H	Deang, J
Couzinie, J	Dale, D	Deaquino-Lara, R
Couzinié, J	Dalgarno, K	de Arruda, J
Coyle, C	Dallarosa, J	Deay III, D
Craparo, J	Daly, S 33, 87, 135, 138, 139, 148	Debierre, J
Crawford, A	Dammer, V	Debreux, C
Crawford, G 4, 5, 23, 45, 151, 169	Damodaram, R	DebRoy, T
Creedy, S	Danaie, M	De Carlo, F
Cremer, M	Dando, N	Deck, C
Crespillo, M121, 127	Dang, D	DeCost, B
Creuziger, A	Dang, T111	Decterov, S
Crimp, M 4, 108, 150, 158	Dang, V	Deda, E
Crocce Romano Espinosa, D 160	Daniel, C	De Graef, M
Crone, J120, 121	Daniel, G	DeGraef, M
Crooks, R151	Daniels, J	De Guire, M
Croom, B34	Daniewicz, S	Dehghani, K
Crosby, C143	Daniil, M	Dehm, G34, 66, 90
Cross, P	Daniš, S	Dehoff, R 3, 22, 87, 102, 127, 128
Crowell, C	Danoix, F	DeHoff, R22, 96, 150
Cruzado, A 4	Dantzig, J 11, 32, 54, 75, 94, 114, 162	de jesus, J148
C.T. van Duin, A92, 142	Dan, W	de Jong, M
Cuadra, J	Daoud, H	de la Fuente, R
Cugnoni, J	Daou, R 5	Delaire, O
Cui, B	Dargusch, M	Delannoy, Y
Cui, J	Darling, K 21, 36, 63, 88, 97, 100,	Delaunay, F
Cui, K		Delbo, M
Cui, P	Darsell, J	D'Elia, F
Cui, W	Darvish, S	de Lima, G
Cui, Z	Das, D	Della Sagrillo, V
Cunningham, R 3, 22, 87, 150		DelRio, F
Curelea, S	Dasgupta, S	DelSignore, R
Curtarolo, S	Das, I	del Val, J
Curtin, W	da Silva, C	Demakov, S
Cusentino, M	da Silva, I	Demetriou, M 6, 76, 90, 141
Cuvilly, F	Das, K	Demir, E
Czerwinski, F	Das, S 18, 80, 83, 90, 108, 125, 1	Demirkol, N
		Demkowicz, M 15, 36, 59, 80, 92,
Cziegler, A104	30, 148, 150, 160, 161, 167,	
D		
_	· · · · · · · · · · · · · · · · · · ·	De Moor, E
Dacek, S112	Das, T	de Moraes, Y
Daene, M143	Dauda, M	DenBaars, S
Dagel, D22	Davidov, D	Deng, B
Dahar, M	Davidson, R	Deng, F
Dahiya, P	Davies, C	Deng, N
Dahlberg, K25	Davies, H	Deng, Q
Dahl, M	Davies, R	Deng, X
Dahmen, K 69, 111, 115, 133, 143	Davila, D	Denis, P
Dahmen, U	Davis, B	Denis, S
Dahms, M	Davis, J	Denkena, B
Dahotre, N	Davis, K	Dennett, C140, 158
Dai, F	Davydov, A92	Dennis, C45, 88
Dai, J	Daw, M	Dennis, K109
Dai, L	Dawson, P	Dennis-Koller, D
Dai, M	Daymond, M14, 140	de Oliveira, L83
Dai, S	De, A126	De Oliveira, R
•	de Abreu, H 126, 157, 165	de Paula, F91

Depci, T164	DIRRAS, G116	Drexler, E
Depree, N	Dispinar, D 62, 83, 104, 166, 167	Drezet, J114
Derby, J27, 57, 100	Divinski, S	Driver, S
Dericioglu, A	Divinsky, S	Droste, C
Derlet, P	Diyatmika, W	Drouet, Y
Desai, T	Djambazov, G	Dryepondt, S 99, 119, 136, 140, 157
De Saro, R	Djaziri, S	Drymiotis, F
Deschamps, A	Dmowski, W	Duan, D
Désilets, M	Doak, J	Duan, R
Desmeules, J	Dobatkin, S	Duan, W
de Souza, S	Doddamani, M	Duan, Y
Detrois, M	Dodds, R	Duarte, I
Devaraj, A	Doel, T	Dubey, M
Devarapalli, R	Doepke, A	Dubourdieu, C
Devuri, V	Doerner, R	Dubrovinskaia, N
Dey, A	Doganay, D	Dubrovinsky, L
Deymier, P	Dogan, N	Duchao, Z
Dey, S	Dogan, O	Duchesne, C
Dezerald, L	Dogan, S	Dudekula, A
Dhaiveegan, P	Doherty, K	Dudzinski, D
Dheeradhada, V	Dolman, K	Du, F
Dholu, N	Domack, M	Dufour, A
Dianhua, Z	Domain, C	Dugger, M
Diao, H	Dominguez, C	Dughiero, F
Diao, J	Dominguez, I	Dugic, I
Diaz, A	Domnich, V	Duh, J
Diaz, F	Donahue, R	Du, K
Díaz-Marcos, J	Donaldson, I	Dukes, J
Diaz Michelena, M	Donaldson, O	Dulcy, J
Dickel, D	Donegan, S	Dumnernchanvanit, I
Dickey, M	Dong, C	Dumpala, R124
Diefenbach, A	Dong, H	Dunand, D
Diehl, M	Dong, L	Duncanson, P
Diehl, O	Dongmei, W	Dundar, M
Diemer, R	Dongxing, W	Dunin-Borkowski, R
Dieste, O	Dong, Y 5, 63, 90	Dunlap, B
Diez, M	Dong, Z	Dunn, A
Di Lisa, D	Donnelly, J	Dunne, F 28, 32, 66, 74, 87, 98, 108
Dillon, G	Donnelly, S	Dunn, J
Dillon, P	Dooryhee, E	Dunstan, M
Dillon, R	Doran, M	Duoss, E
Dillon, S	Dorofievich, I	Du, P
Dilon, R	do Rosário, J	Dupain, J
Dilpazir, S	Dorreen, M	Dupon, E
Dima, A	Dorula, J	Duprey, B
Dimiduk, D	dos Santos, V	Dupuis, M
Ding, C146, 163	Dotsenko, A	Du, Q
Ding, H	Dou, A	Du, R
Ding, J	Dougherty, T	Durand, L
Dingreville, R 29, 43, 56, 80, 154	Dowell, M	Durantel, F
Ding, W 53, 158, 159, 165	Downey, J	Durisin, M
Ding, X	Dragoe, N	Durrenberger, K
Ding, Z	Drakopoulos, M	Durst, K
Dion, G	Drautz, R	Du, S
Dion, L	Dregia, S	Duscher, G 67, 85, 131, 163
Diop, M	Dreisinger, D	Dusoe, K
Dippo, O	Drelich, J	Düssel, R 68
Dirras, G	Drew, B	Duster, T
,	,	,

Dutt, A 132, 161, 170	Ekholm, M	ERMISYAM, I
Dutta, I	Ekici, H	Ersson, M 62
Duty, C87	Ekiz, E 4	Erwee, M 62
Du, W	Eklund, A108	Erzi, E 62, 83, 104, 166, 167
Du, X	Elahinia, M	Escobar, D
Du, Z	El-Atwani, O	Escobar de Obaldia, E 89
Dvornak, M	Elawady, J	Escobedo-Diaz, J 7, 16, 17, 27, 28,
Dyachenko, P	El-Awady, J 11, 19, 121, 158	37, 38, 51, 60, 71, 81,
Dyck, O	El-Azab, A	
Dye, D	Elbakhshwan, M14, 141	
Dykhuis, A	El-Bealy, M	
Dyrhaug, A	El-Danaf, E	Esen, Z
<i>D</i> / 11 mag, 11	Elder, K	Esezobor, D
E	El Djemai, B	Esham, K
	Elgammal, R	Eshraghi, M
Earthman, J24	Elgeti, S	Eskin, D
East, D	El Ghaoui, Y	Esmaeili, S
Eastman, C	El-Hadad, S	Esola, S
Eastman, D	El-Hady, M 50	Esper, F
Easton, M	Elhebeary, M	Espinosa, D
Eaton, A	Eliason, J	Espinoza-Nava, L
Ebel, T82, 97	Elkady, O	Esprit, M
Eberhardt, A	Ellendt, N	Esquivel, J
Eberl, C34, 155	Ellis, C	Esser, B
Ebner, C	Ellis, E	Estep, P
Ebrahimi, M83	Ellis, K	Estrin, Y
Echlin, M54	Ellis, T	Estroff, L
Ecker, L 14, 107, 119, 141	Elmadagli, M 61	Etay, J
Eckerlebe, H97	Elmer, J	Etter, T
Eckert, J 26, 46, 49, 69, 90, 153	El Mir, C	Euh, K
Eckert, K32	Elmkharram, H 6	Everett, R
Eckert, S54, 58, 120	El Rayes, M	Evertz, S90
Edalati, K125, 145	Elsayed, A	Evora, M
Edirisinghe, M	Elzohiery, M	Evteev, A
Edmonds, I	Emdadi, A	Ewalts, W
Edmondson, P 14, 78, 86, 107, 140,	Emery, J	Lwaits, w4/
141	Emigh, M	F
Edmondsson, P	Engel, E	
Eduafo, P	Engeli, R	Fabijanic, D
Edwards, L56, 107	Engelkemeier, K	Fabozzi, G
Eff, M		Fabrizi, A
Efstathiou, A	England, R	Fadl, M111
Eftink, B105	Engström, A	Faerber, J
Egami, T 49, 90, 95, 138	Engwall, A	Fagerlie, J111
Eggeler, G	Enikeev, N	Fahrmann, M 13, 34, 57, 78, 98, 118
Egry, I 100, 120, 137	Enomoto, M 60	Faivre, G
E. Hackenberg, R82	E P, S	Faizan-Ur-Rab, M71
Ehinger, D	Eravelly, J	Falahati, A
Ehlen, G162	Erdeniz, D 60	Falkenberg, G
Ehlers, G	Erdogan, M	Fallah, V56
Ehrsam, M67	Eres, G	Fan, A
Eich, M	Ergun, I	Fan, C90
Eifler, D	=	Fan, D6
Eifler, R	Ergunt, Y	Fanetti, M
Eisaabadi, G83	Eriksson, G	Fan, G
Eisenlohr, P3, 4, 108, 113, 114, 150,	Eriksson, N	Fang, B129
158	Erinosho, T	Fang, L
Eisenmenger, M	Ermisyam, I	Fang, T54
	L	

Fang, Z 19, 61, 82, 87, 103, 123	Fiebig, J63	Fowlkes, J
Fan, J	Field, D	Fraczkiewicz, A 76, 116, 143, 156
Fan, X	Field, K	Francis, D
Fan, Y		Franco, V
Fan, Z	Field, R	Frankel, P
	Fields, K	Fransaer, J
	Figueiredo, R 20, 42, 63, 84, 105,	Fraser, A141
Farah, A		Fraser, H 4, 44, 122, 133, 145
Farahani, H	Findley, K	Frazer, D15, 69, 79, 107, 127,
Farhang Mehr, F104	Fine, M	144, 149
Farkoosh, A	Finnegan, D9	Fredericci, C
Farrow, A	Fino, P	Frederic, D
Fassoni, D	Fiory, A40	Frederick, C127
Fast, C69, 168	Firrao, D	Fredriksson, C165, 167
Fatollahi-Fard, F2		Freedy, K
Fattebert, J	Fischer, C	Free, J
Faudou, J	Fischer, J	Free, M
Faupel, F	Fisher, C113	Freeman, A
Fautrelle, Y	Fitzgerald, S	Freiberg, D
Fayed, E	Fitzpatrick-Schmidt, K	Freitas, R
Fayed, M	Flacau, R	Fressengeas, C100
Fazal, M	Flanagan, W	Freyer, P
Fecht, H	Flandorfer, H	Friedman, L
Fedorova, T	Fletcher, P	Friedrich, B
		Friedrich, C4
Feigelson, B	Florando, J	
Fekete, J	Flores-Arias, M	Fries, S
Felicelli, S	Flores Badillo, J	Frint, P
Fellinger, M	Flores G., M	Frishkoff, J
Feng, K	Flores Guerrero, M	Fritz, R
Feng, Q 12, 13, 34, 57, 78,	Flores, K	Fritzsch, R
98, 118, 119	Flores, M 112, 166, 167	Frolov, T 56, 77, 96, 117, 135, 144
Feng, R 58, 133, 143, 156	Flores, V	Frostell, C
Feng, S 7, 16, 37, 59, 81,	Flores-Zúñiga, H88	Fudger, S
101, 102, 123, 153	Florian-Algarin, D	Fu, G106
Feng, Y6	Flueck, M141	Fu, H53
Feng, Z 106, 128, 148, 156	Fluss, M	Führer, U
Fensin, S	Foecke, T	Fu, J
Ferber, A	Foetisch, T141	Fujieda, T44
Fergus, J	Foiles, S	Fujimitsu, K145
Fermino, D71		Fujita, T
Fernandes Gonzales, M28	Foley, D	Fukasawa, T
Fernandes, M164	Foley, R	Fukumoto, K
Ferrão, P	Fonda, R82	fuloria, D
Ferreira, C 4	Fong, H25	Fuloria, D
Ferreira, H	Fong, J	Fultz, B 12, 55, 76, 95, 96, 141
Ferreira, J	Fonseca, J	Funakoshi, K
Ferreira Neto, J 40	Fontana, C121	Furnish, T
Ferreira, W	Ford, P	Furrer, D
Ferry, M	Forest, S	Furuhara, T
	Fornell, J	
Ferry, S	Forsmark, J	Furukawa, T
Feser, M	Forsyth, R	Furukawa, Y
Fetzer, R	Fortier, A	Fu, Z
Feyerabend, F117	Fortier, M	Fyock, C111
Feygenson, M	Fortner, J	C
Fezi, K	Forzan, M19	G
Fezzaa, K	Fossum, M	Gabay, A109
Fidler, B	Foster, I	,

Gabb, T	García Pérez, P	Gerberich, W
Gabriel, J	García, R	Gerbeth, G
Gadaud, P	Garcia-Sanchez, E 105	Gerbig, Y
Gadilkar, B	Garcin, T	Gerczak, T14, 35
Gagnon, I	Gardner, L	Gerdes, K
Gagnon, M	Gardonio, S	Germann, T101
Gaies, J	Garfinkel, D	German, R
Gaillard, G5	Garg, P	Gershenzon, M
Gaines, L	Garikipati, K	Gerstein, G
Galadari, Q	Garkida, A	Ge, S
Galarraga, H	Garlea, E	Gesing, A
Galbraith, S	garner, F	Geslin, P
Galenko, P	Garner, F	Getto, E
Galindo-Nava, E120	Garnier, T	Geveci, A
Galkin, S	Garrett, G	Ge, X
Gallagher, K	Garrison, L	Ghaderi, A
Gallego, N	Garrison, S	Ghanbaja, J
Gallegos, G	Garza, K	Gharaee, L
Galles, D 62	Gascoin, F 5, 24, 46, 67, 152	Ghazisaeidi, M 8, 29, 51, 72, 92,
Gall, S	Gashgash, A144	143, 154
Galvin, J	Gaston, D	Gheribi, A
Gammer, C	Gatey, A	Gheybi Hashemabad, S
Gamst, A	Gaudreault, C	Ghidossi, T
Gamweger, K	Gauss, R	Ghodrat, M
Ganatra, Y	Gaustad, G	Ghods, M
Gan, B	Gautam, A	Ghosala, A
Gan, C	Gauvin, R	Ghose, S
Gancarz, T	Gavini, V	Ghosh, D
Gandin, C	Gavras, A	Ghosh, G 60
Gandy, D	Gavras, S	Ghosh, R
Gang, F	Gaydosh, D	Ghosh, S
Gangopadhyay, A	Gbenebor, O	Gianesi Bastos Andrade, C28
Gan, J	Gbur, J	Gianola, D
Gan, Y	Geandier, G60	
Gänz, J	Gebarowski, W	Gibbons, M
Gao, F	Gebert, A	Gibbs, J
Gao, J	Gegner, J	Gibbs, P
Gao, K	Geiger, F	Gibilaro, M
Gao, M	Geiser, P	Gibson, M
	Geißler, D	Giebeler, L
Gao, N	Ge, J	Giet, S
Gao, P	Gelb, J	Gigax, J
Gao, W151	Geller, E	Gikling, H
Gao, Y	Ge, M	Gilbert, S
	Gemini-Piperni, S	Gildemeister, D91
121, 129, 130, 141, 143, 144,	Genau, A	Gil-Duran, S
	Genc, A	Gill, J
Gao, Z	Gendelberg, N	Gill, S
Garbaciak, T	Gendron, M	Ginder, R
Garcia-Cardona, C	Genee, J	Gingras, D141
Garcia Faria, J	Geng, J	Giouse, J
Garcia, H	Geng, S	Giraudel, M
García Hernández, l	Geohegan, D	Girault, G
García Hernández, L	George, A	Giri, A 6, 45, 69, 88, 126, 138
García, L	George, E	Gisby, J
García Lechuga, L	George, N	Giskeodegard, N
García-Lecina, E	Géraldine, K	Giskeødegård, N
Garcia-Heema, E	Gerard, C	Gladden, J
Guicia 1410100, O	Gorard, C11/	Giuddell, J

Glamm, R	Gorsse, S 5, 24, 46, 67, 152	Grundner, K
Glass, C	Gorzkowski, E	Grunenfelder, L
Glatzel, U	Gossage, J	Grydin, O
Glavicic, M72	Gostu, S	Grygriel, C150
Glaws, P6	Goswami, R32, 128	Grzesiak, D
Glensk, A95, 132	Goswamy, J	Gspan, C
Glicksman, M	Goto, S	Guangjun, Z155, 162
Gloe, K	Gottschall, T	Guanting, L
Glória, G	Gottstein, G72	Guan, X
Gluch, J117	Gottwik, L	Guan, Y
Gludovatz, B	Goune, M	Guarin-Zapata, N89
Glushko, O	Gouné, M60	Guarriello, R
Gnanaprakasa, T85	Gourlay, C 10, 31, 53, 73, 93,	Gubicza, J
Godart, C		Gudbrandsen, H83, 109
Godde, P	Goutiere, V	Guduru, P
Godeth, S	Goyal, D	Guérard, S
Godlewski, L	•	Guerin, R
	Goyal, R	
Godmaire, X	Grabowski, B 95, 116, 132, 143, 156	Guérin, R
Goel, s	Graef, M	Guerrero, M
Goel, S	Gragg, D	Guerrero Rodríguez, M163
Goettsch, D	Graham, J	Guest, J30
Goetz, R	Graham, S	Guetard, G148
Goin, M	Granasy, L	Gu, G
Goins, P	Grande, T52	Guibao, Q 8, 27, 103, 169
Goiri, J	Grandfield, J91	Guilhem, Y151
Gökelma, M	Grandini, C	Guillen, D 10, 31, 53, 74, 99,
Gol'Dberg, M	Graniero, D	
Golden, P	Granjeiro, J	Guillot, I
Goldenstein, H 60	Grant, P	Guilmeau, E
Goller, G	Grapes, M	Guimond, L
Golub, M	Grassi, J	Guitton, A
Golubov, S	Gray, G 3, 100, 122, 150, 165	Gu, J
Golumbfskie, W	Greaves, G	
		Gulsoy, B
Gomes, A	Greberg, J	Gulsoy, E 9, 30, 56, 77, 96,
Gomes de Oliveira, C	Greenlee, L	
Gomes, M	Green, T	Gu, M91, 158
Gomes, R164	Greer, A	Günay, R142
Gomez, J	Greer, C	Gungunes, H168
Gómez-Marroquín, M149	Greer, J	Gunjal, P
Gomila, G	120, 137, 157	Günyüz, M124
Gondim de Andrade e Silva, L 164	Greer, L69	Guo, C
Gong, B	Gregory, J40	Guo, E
Gong, C	Gregory, T	Guo, F
Gong, J 12, 22, 33, 76, 114, 134	Gregurek, D 2, 20, 21, 43, 64,	Guo, G
Gong, S	85, 86, 106, 126, 140, 162	Guo, H 100, 135, 141, 170
Gong, W164	Greve, D	Guo, J
Gong, X	Griebel, A	
Gong, Y	Griffiths, M	Guo, L
Gonzales, D	Gröbner, J	Guo, M 41, 64, 81, 86, 126, 147
Gonzalez, I	Groeber, M	Guo, Q
González-Ruíz, J	Groger, R	Guo, S
Gonzalez-Velazquez, J163	Grolimund, D	
Goodwin, F	Grovenor, C	Guo, W
Goodwin, J	Grove, T	Guo, X
Gopalan, S	Grubb, J	Guo, Y 21, 101, 106, 140
Gordillo, M	Gruber, J	Guo, Z
Gornostyrev, Y40	Gruen, G	98, 160, 161, 166
Gorondy Novak, S	Grugel, R	Guozhi, L24, 46, 67

C D 162	11 11 17 72	TT T 41
Gu, P	Hammill, K	Harvey, J
Gupta, A	Hammond, K	Harvey, R104
Gupta, M	Han, B119, 163	Ha, S54
Gupta, N	Han, C163, 169	Hasemann, G40
121, 122, 159	Handel, R166	Hashemi, M
Gupta, R	Handwerker, C	Hashiguchi, D58
Gupta, S 42, 146, 156, 158, 168	Hanejko, F	Hassan, M 26, 50, 70, 91, 111, 130
Gupta, U	Haneklaus, N	
•		Hassan, N
Gupte, K	Han, G 24, 28, 63, 162	Hatcher, N
Gurevich, S	Hangen, U	Hatch, O
Guria, A43	Han, H	Hathaway, K45
Gurin, E110	Hanhold, B119	Hattar, K.3, 15, 23, 36, 43, 45, 56, 59, 66,
Gursoy, D	Hanisch, R	80, 87, 101, 108, 121, 137, 138, 145, 149,
Gursoy, O104	Hanizan, A61	150
Gurung, M	Han, J	Hatton, B
Gu, S		Hatton, R
	Hanks, B	
Gusieva, K	Han, L	Haugen, T111
Gussev, M 35, 107, 141, 144	Hänninen, H	Haunser, A168
Gutfleisch, O	Han, Q	Havrilla, G37
Güth, K	Han, S	Hawgood, M
Gutkin, M40, 89	Hansen, N	Hawk, J55, 76, 115, 119,
Gu, Z	Hansson, C	
Guziewski, M	Han, W 34, 35, 55, 77, 96, 116, 134	Hayakawa, N
Gwalani, B99	Han, X	Hayamizu, Y
Н	Han, Y24, 109	Hayes, B
п	Hao, C	Hayes, P
Haag, F49	Hao, G	Hayes, S
Haaland, H	Hao, R134	Hay, R60
	Hao-Yen, C	Hazeli, K114
Haarberg, G53, 89, 110	Hapci, G156, 157	Hazell, P
Haber, R165		
	Hague N 10 31 41 53 74 155	Healy C 116
Habib, A66	Haque, N 10, 31, 41, 53, 74, 155	Healy, C
Habib, A	Harada, J164	He, B38
Habtour, E	Harada, J .164 Haranczyk, M .9	He, B. 38 Hebert, R. 102
Habtour, E	Harada, J	He, B. .38 Hebert, R. .102 Hecht, M. .17
Habtour, E	Harada, J 164 Haranczyk, M 9 Harandi, S 117 Harcuba, P 105, 122, 161	He, B. 38 Hebert, R. 102
Habtour, E .11 Hackenberg, R .17, 38, 60, 82, 102, .123, 159 Hack, K	Harada, J	He, B. .38 Hebert, R. .102 Hecht, M. .17
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, 123, 159 Hack, K 104 Hadjipanayis, G 109, 151	Harada, J 164 Haranczyk, M 9 Harandi, S 117 Harcuba, P 105, 122, 161 Hardwick, N 108, 156	He, B. .38 Hebert, R. .102 Hecht, M. .17 Hechu, K. .164
Habtour, E	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9
Habtour, E	Harada, J	He, B. .38 Hebert, R. .102 Hecht, M. .17 Hechu, K. .164 Hector Jr, L. .12 Hector Jr., L. .9 He, D. .53
Habtour, E	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33
Habtour, E	Harada, J 164 Haranczyk, M 9 Harandi, S 117 Harcuba, P 105, 122, 161 Hardwick, N 108, 156 Hardy, J 115 Hardy, M 34, 72, 145 Hardy, V 5 Hargather, C 167	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112
Habtour, E	Harada, J 164 Haranczyk, M 9 Harandi, S 117 Harcuba, P 105, 122, 161 Hardwick, N 108, 156 Hardy, J 115 Hardy, M 34, 72, 145 Hardy, V 5 Hargather, C 167 Hariharaputran, R 132	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, . 123, 159 Hack, K 104 Hadjipanayis, G 109, 151 Hafley, R 87 Hafner, K 152 Haggard, N 24 Hagiwara, R 74 Haglund, R 21, 121	Harada, J 164 Haranczyk, M 9 Harandi, S 117 Harcuba, P 105, 122, 161 Hardwick, N 108, 156 Hardy, J 115 Hardy, M 34, 72, 145 Hardy, V 5 Hargather, C 167 Hariharaputran, R 132 Harimkar, S 36, 120, 142	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, . 123, 159 Hack, K 104 Hadjipanayis, G 109, 151 Hafley, R 87 Hafner, K 152 Haggard, N 24 Hagiwara, R 74 Haglund, R 21, 121 Hahn, E 42, 101, 138, 146	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117
Habtour, E	Harada, J 164 Haranczyk, M 9 Harandi, S 117 Harcuba, P 105, 122, 161 Hardwick, N 108, 156 Hardy, J 115 Hardy, M 34, 72, 145 Hardy, V 5 Hargather, C 167 Hariharaputran, R 132 Harimkar, S 36, 120, 142	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95
Habtour, E	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117
Habtour, E	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, . 123, 159 Hack, K 104 Hadjipanayis, G 109, 151 Hafley, R 87 Hafner, K 152 Haggard, N 24 Hagiwara, R 74 Haglund, R 21, 121 Hahn, E 42, 101, 138, 146 Hahn, H 116, 125 Haijian, X 147 Haines, M 127 Hájek, M 122	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, . 123, 159 Hack, K 104 Hadjipanayis, G 109, 151 Hafley, R 87 Hafner, K 152 Haggard, N 24 Hagiwara, R 74 Haglund, R 21, 121 Hahn, E 42, 101, 138, 146 Hahn, H 116, 125 Haijian, X 147 Haines, M 127 Hájek, M 122 Hakonsen, A 27, 111	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, L. 9
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, . 123, 159 Hack, K 104 Hadjipanayis, G 109, 151 Hafley, R 87 Hafner, K 152 Haggard, N 24 Hagiwara, R 74 Haglund, R 21, 121 Hahn, E 42, 101, 138, 146 Hahn, H 116, 125 Haijian, X 147 Haines, M 127 Hájek, M 122 Hakonsen, A 27, 111 Hale, L 77, 120, 121	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, L. 9 Helal, A. 106
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, . 123, 159 Hack, K 104 Hadjipanayis, G 109, 151 Hafley, R 87 Hafner, K 152 Haggard, N 24 Hagiwara, R 74 Haplund, R 21, 121 Hahn, E 42, 101, 138, 146 Hahn, H 116, 125 Haijian, X 147 Haines, M 127 Hájek, M 122 Hakonsen, A 27, 111 Hale, L 77, 120, 121 Hales, J 71	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, L. 9 Helal, A. 106 Helbig, T. 128
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, . 123, 159 Hack, K 104 Hadjipanayis, G 109, 151 Hafley, R 87 Hafner, K 152 Haggard, N 24 Hagiwara, R 74 Haglund, R 21, 121 Hahn, E 42, 101, 138, 146 Hahn, H 116, 125 Haijian, X 147 Haines, M 127 Hájek, M 122 Hakonsen, A 27, 111 Hale, L 77, 120, 121	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, L. 9 Helal, A. 106 Helbig, T. 128 Hell, J. 60
Habtour, E	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, L. 9 Helal, A. 106 Helbig, T. 128 Hell, J. 60 Hellman, O. 76, 95, 96, 116
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, 123, 159 Hack, K 104 Hadjipanayis, G 109, 151 Hafley, R 87 Hafner, K 152 Haggard, N 24 Hagiwara, R 74 Haglund, R 21, 121 Hahn, E 42, 101, 138, 146 Hahn, H 116, 125 Haijian, X 147 Haines, M 127 Hájek, M 122 Hakonsen, A 27, 111 Hale, L 77, 120, 121 Hales, J 71 Hallstadius, L 140 Ham, G 124, 155	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, L. 9 Helal, A. 106 Helbig, T. 128 Hell, J. 60 Hellman, O. 76, 95, 96, 116 Hellmich, C. 110
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, 123, 159 Hack, K 104 Hadjipanayis, G 109, 151 Hafley, R 87 Hafner, K 152 Haggard, N 24 Hagiwara, R 74 Haglund, R 21, 121 Hahn, E 42, 101, 138, 146 Hahn, H 116, 125 Haijian, X 147 Haines, M 127 Hájek, M 122 Hakonsen, A 27, 111 Hale, L 77, 120, 121 Hales, J 71 Hallstadius, L 140 Ham, G 124, 155 Hamilton, N 61, 90	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, L. 9 Helal, A. 106 Helbig, T. 128 Hell, J. 60 Hellman, O. 76, 95, 96, 116
Habtour, E 11 Hackenberg, R 17, 38, 60, 82, 102, . 123, 159 Hack, K 104 Hadjipanayis, G 109, 151 Hafley, R 87 Hafner, K 152 Haggard, N 24 Hagiwara, R 74 Haglund, R 21, 121 Hahn, E 42, 101, 138, 146 Hahn, H 116, 125 Haijian, X 147 Haines, M 127 Hájek, M 122 Hakonsen, A 27, 111 Hale, L .77, 120, 121 Hales, J .71 Hallstadius, L .140 Ham, G .124, 155 Hamilton, N .61, 90 Hamilton, R 3, 4, 22, 23, 44,	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, L. 9 Helal, A. 106 Helbig, T. 128 Hell, J. 60 Hellman, O. 76, 95, 96, 116 Hellmich, C. 110
Habtour, E	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, L. 9 Helal, A. 106 Helbig, T. 128 Hell, J. 60 Hellman, O. 76, 95, 96, 116 Hellmich, C. 110 Hellstén, N. 84 Helmink, R. 151
Habtour, E	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, J. 9 Helal, A. 106 Helbig, T. 128 Hell, J. 60 Hellman, O. 76, 95, 96, 116 Hellmich, C. 110 Hellstén, N. 84 Helmink, R. 151 Helth, A. 46
Habtour, E	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, J. 9 Helal, A. 106 Helbig, T. 128 Hell, J. 60 Hellman, O. 76, 95, 96, 116 Hellmich, C. 110 Hellstén, N. 84 Helmink, R. 151 Helth, A. 46 He, M. 71, 118, 163, 164, 169
Habtour, E	Harada, J	He, B. 38 Hebert, R. 102 Hecht, M. 17 Hechu, K. 164 Hector Jr, L. 12 Hector Jr., L. 9 He, D. 53 Hedstrom, M. 33 Hegde, V. 112 Heijer, M. 67 Heilmaier, M. 40, 95 Heineman, W. 117 Heinz, H. 68, 89 He, J. 33 He, K. 40 He, J. 9 Helal, A. 106 Helbig, T. 128 Hell, J. 60 Hellman, O. 76, 95, 96, 116 Hellmich, C. 110 Hellstén, N. 84 Helmink, R. 151 Helth, A. 46

Hemker, K 20, 34, 77, 96, 100,	Hirota, M44	Hornbuckle, B
	Hiskey, B	Horn, T
Henein, H 94, 100, 120, 137	Hoagland, R	Horstemeyer, M 5, 12, 44, 51, 72, 78
Hennebel, T	Hochhalter, J 54, 103, 151, 155	Horstemeyer, S
Hennessey, C94	Hochrainer, T	Horst, O95
Hennig, R 9, 29, 52, 72, 73, 92,	Hodge, A 42, 96, 117, 140	Hort, N
	Hodge, B	Horváth, K
Henriksson, F	Hodgson, P	Horwath, J95
Henry, S	Hoeck, M	Hosamani, S
Henschel, A111	Hoelzer, D	Hoseinifar, A104, 151
He, Q 15, 92, 160, 161		Hosemann, P 15, 43, 45, 56,
Herbert, I	Hoff, A	64, 65, 69, 79, 86, 99,
Herderick, E 3, 22, 44, 65, 87,	Hoffman III, R	107, 119, 127, 136, 140,
	Hoffmann, M69	
Hering, B	Hofmann, D 6, 26, 65, 150	Hoskins, W
Herlach, D 75, 94, 120, 137, 162	Hofmeister, C 6, 69, 126	Hosseinzadeh, M 91
Hermann, R33, 55	Hogan, B	Hötzer, J
Hermet, P	Höglund, L	Houfa, S70
Hernández Ávila, J163, 164	Hohenwarter, A 14, 40, 55, 76,	Hou, H
Hernandez, C	84, 125, 139, 145	Houltz, Y
Hernández, J112	Ho, K	Hou, P
Hernández-Mayoral, M36	Holaday, J	Hou, X 5, 46, 137
Hernández-Quezada, M 147	Holcomb, G99, 119, 136	Hovanski, Y
Hernandez-Rodriguez, M105	Holesinger, T 22, 35, 57, 127	Howard, C107, 158
Hernández Ruiz, J	Hollenbeck, J14	Howard, R
Herrera, S	Holm, E 20, 56, 72, 96, 132,	Howard, S
Herriman, J	134, 137	Howarter, J
Herron, A66	Holmes, J	Howland, W28
He, S70	Holmes, M	Ho, Y81
Hespanhol, L163	Holroyd, H47	Hoyt, J 11, 32, 54, 75, 94, 114, 162
Hesterberg, J	Holt, N129, 141	Hruby, P
Heuer, A	Holý, V	Hsiao, H
Heugenhauser, S104	Holzmann, T27, 94	Hsiong, R48
Heuser, B	Holzner, C	Hsiung, L121
He, W	Homer, E 49, 66, 92, 96, 112,	Hsu, C158
He, X		Hsu, F83
He, Y45	Homma, T74	Hsu, T
Heyvaert, L27	Honarmandi, P72	Hsu, W146
He, Z155	Honda, T	Hsu, Y102
Hibbard, G17	Hongbin, W170	Hu, A
Hickel, T 34, 95, 116, 132, 144	Hong, J	Hua, I
Hickman, J	Hong, K	Huai, P
Hidayat, T84	Hong, L	Hua, J
Hidoussi, A	Hong, S 29, 46, 91, 116, 166	Huang, C 51, 57, 81, 146
Higo, Y	Hong, T	Huang, E
Hildebrand, J48	Hong, X	Huang, H
Hildeman, G3	Hong, Y	Huang, J 46, 147, 151, 152, 160, 166
Hilditch, T165	Hongying, X	Huang, K
Hilinski, E	Hong, Z	Huang, L
Hilla, C127, 150	Hono, K	Huang, M38, 42
Hill, C120	Hop, J	Huang, Q24, 58
Hillert, M	Hopkins, M	Huang, S
Hilli, N	Hoppe, R	Huang, T 81, 106, 122, 128, 148, 156
Hinkle, C2	Horan, H	Huang, W93, 112, 113
Hinks, J86	Horita, T	Huang, X 10, 30, 63, 106, 107
Hintsala, E14, 96	Horita, Z20, 42, 63, 84, 105,	Huang, Y
Hirel, P		
HIRE MATH, V	Hornberger, B	Huang, Z 51, 61, 65, 69, 72, 107, 147

Huan, Y		Islas, H
Hu, B	Hyeong-won, S	Ismail, F
		-
Hubbard, K	Hyers, R	Ismaill, A
Huber, D	Hyland, M	Ismail, M
Huber, N	Hyun, S152	Ismonov, S
Huber, T14	Hyun, Y165	Isoda, M48
Hudson, S		Ito, K81
Hudson, T	I	Ito, T95
Hughes, E		Ivanisenko, J
Hughes, J	Iacobescu, R40	Ivanoff, T
	Iadicola, M98	
Hughes, S	Ibrahim, I106	Ivanova, L
Hu, H	Ibrahim, M81	Ivanov, I
Hui-min, L112	Ickes, T87, 116	Iveland, T27
Huin, D17	Idell, Y	Iwaoka, H139
Hui, X 69, 76, 88, 97, 111, 115	Idrees, Y	Iwashita, T90
Hu, J		Iyer, K
Hu, K	II, S	Izadi, E
Hu, L	Ikeda, K	Izui, H
	Ikeda, T24, 46	Izzo, R
Hulikal, S144	Ikeo, N	1ZZO, K115
Hulse, R	Ikhmayies, S 7, 27, 28, 51, 71,	т
Hu, M42, 140	91, 112, 130, 131, 142,)
Humadi, H32		Jaansalu, K40
Humberson, J	Ikoma, Y	Jabbour, G21
Hung, H67		
Hung Lun, L	Ilavsky, J60	Jablonski, P
Hunn, J	ilin, D	119, 133, 136, 157
	Illston, T	Jackel, E
Hunter, A	Imai, H	Jacob, G50, 140
Hunter, B	Imai, J6	Jacobs, H
Hunter, J	Imam, M	Jacobson, D
Hunyadi Murph, S 63	Imbalzano, G51	Jacobson, N
Huo, Q156	Imhoff, S	Jacomine, L
Huo, Y	Imrich, P	
Hu, R132		Jacot, A
Hurley, D	Inal, K	Jaegle, E
Hurley, M	Indrizzi, V50	Jagadish, H
Hurt, C	Inoue, I	Jäger, N
Hu, S	Inoue, K	Jägle, E
	Inoue, M23	Jagtap, R45
Huskins, E	Ioannou, I	Jahedi, M
Hussain, S	Ionescu, M	Jahnke, J
Hussein, A	Iovine, P	Jaim, I
Hussey, D	Ipatov, M	Jain, A93, 154
Hu, T135, 158	Ipek, S	Jain, P
Hutchins, D146	•	
Hutchinson, C 17, 38, 60, 82, 102,	Ipser, H	Jainta, M
103, 123, 159	Ipus, J	Jak, E84, 104
Hutchinson, J	Irastorza-Landa, A 11	Jakes, J
	Isaacson, S147	Jakobsen, A
Hu, W	Ishibashi, T	Jakobsson, L
Hu, X 43, 51, 58, 86, 141	Ishida, K	Jakumeit, J
Hu, Y39	Ishikawa, T	Jamison, L
Huyan, F60	Ishikawa, Y	Jammal, A
Huygue, J149	Ishimi, A	Janda, D95
Hu, Z141		
Hwang, D	Ishizaki, T	Janecek, M 105, 122, 139, 161
Hwang, H	Isik, M	Janeoo, S
Hwang, J	Isiksaçan, C	Jang, J
•	Islam, C	Jang, M
42, 43, 51, 64, 71, 85, 86,	Islam, M93, 125	Janickovic, D
	Islam, S	Janotti, A

Janson, O	20	Jimenez Correa, M160	Jouiad, M7
Janssen, J	34	Jiménez, D	Joung, M
Jantzen, T	04	Jiménez, M	Jourdan, T80
Jardim, A	12	Jindal, V166	Jo, W120
Jarry, P	14	Jing, Q116	Juan, C95
Jarvis, D	26	Jing, Z106, 126	Juárez, J112
Jarvis, G	41	Jinhui, P	Juarez, T42
Jassim, A		Jin, J142	Juárez Tapia, J
Jasthi, B	53	Jin, K 43, 50, 64, 80, 107, 127, 143, 150	Judge, V
Jaya Balila, N	90	Jin, P	Jue, J
Jayaganthan, R 146, 161, 1	65	Jin, S	Jugdutt, B32
Jayaraman, T 28, 95, 151, 165, 1	66	Jinwu, K	Jun, B
Jayaram, V		Jin, Y 32, 64, 94, 159	Jund, P
		Jira, J	Jung, H
Jayaram,, V		Ji, S	Jung, I
Jeelani, S	68	Ji, T	
Jeltsch, R	41	Ji, Y58, 162, 170	Jung, M
Jensen, J	33	J. Martin, H	Jung, S
Jeong, C		Joe, S57	Jung, T
Jeong, K		Johanns, K	Jungwirth, R
Jeong, S		Johansen, S	Jung, Y 12, 14, 25, 49, 65, 168
Jeong, Y		John, P	Junior, J
Jeon, J		John, R	Jun, T
Jepson, S		Johnson, D 17, 76, 109, 161, 163	Ju, S
Jerred, N		Johnson, F4, 23, 45, 66, 88, 109, 128, 151	Justin, D
Jha, P		Johnson, J	Juul Jensen, D
Jha, S 74, 77, 94, 1		Johnson, L	,,
Jia, H		Johnson, M	K
Jia, L		Johnson, S	W 1 1 + P
			Kabakci, F
liancheng, Yl	69	Iohnson, W	
Jiancheng, Y		Johnson, W	Kaban, I
Jianfeng, H	88	Johnston, G	Kaban, I .90 Kabanova, A .89
Jianfeng, H	88 27	Johnston, G	Kaban, I 90 Kabanova, A 89 Kabemba, L 168
Jianfeng, H	88 27 64	Johnston, G 23 Joiner, C 2 Jokisaari, A 52	Kaban, I .90 Kabanova, A .89 Kabemba, L .168 Kabir, A .135
Jianfeng, H. Jiang, B. 1 Jiangbin, Z. Jiang, C. 13,	88 27 64 61	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57	Kaban, I .90 Kabanova, A .89 Kabemba, L .168 Kabir, A .135 Kabukcuoglu, M .131
Jianfeng, H. Jiang, B. 1 Jiangbin, Z. Jiang, C. 13, Jiang, D. 1	88 27 64 61 25	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77
Jianfeng, H. Jiang, B. 1 Jiangbin, Z. Jiang, C. 13, Jiang, D. 1 1 Jiang, F. 61,	88 27 64 61 25 69	Johnston, G .23 Joiner, C .2 Jokisaari, A .52 Jolly, B .57 Jolly, M .62, 70, 83, 104 Joly, A .164	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60
Jianfeng, H. Jiang, B. 1 Jiangbin, Z. 1 Jiang, C. 13, Jiang, D. 1 Jiang, F. 61, Jiang, H. 6	88 27 64 61 25 69 47	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116
Jianfeng, H. Jiang, B. 1 Jiangbin, Z. 1 Jiang, C. 13, Jiang, D. 1 Jiang, F. 61, Jiang, H. 1 Jiang, J. 6, 26, 32, 49, 69,	88 27 64 61 25 69 47 74,	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56
Jianfeng, H. Jiang, B. 1 Jiang, B. 1 Jiang, B. 1 Jiang, D. 13, Jiang, D. 1 Jiang, F. 61, Jiang, H. 1 Jiang, J. 6, 26, 32, 49, 69,	88 27 64 61 25 69 47 74,	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonas, J 102	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138
Jianfeng, H	88 27 64 61 25 69 47 74, 41,	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonas, J 102 Jonayat, A 94	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, D. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 114, 131, 142, 115, 144, 154, 154, 154, 154, 154, 154	88 27 64 61 25 69 47 74, 41, 53	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonayat, A 94 Jones, J 33, 42, 54, 114, 138	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, D. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 11 Jiang, L. 36, 84, 158, 1 Jiang, T. 2, 21, 28, 43, 46, 46, 46	88 27 64 61 25 69 47 74, 41, 53 59	Johnston, G 23 Joiner, C .2 Jokisaari, A .52 Jolly, B .57 Jolly, M .62, 70, 83, 104 Joly, A .164 Jo, M .78 Jomard, F .144 Jonayat, A .94 Jones, J .33, 42, 54, 114, 138 Jones, N .45, 81, 115, 145	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, D. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 1142, 1144	88 27 64 61 25 69 47 74, 41, 53 59 64,	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonayat, A 94 Jones, J 33, 42, 54, 114, 138 Jones, N 45, 81, 115, 145 Jones, P 40	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, D. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 114, 114, 114, 114, 114, 114, 114	88 27 64 61 25 69 47 74, 41, 53 59 64, 26, 62	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonas, J 102 Jonayat, A 94 Jones, J 33, 42, 54, 114, 138 Jones, N 45, 81, 115, 145 Jones, P 40 Jones, R 62	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 11 Jiang, L. 36, 84, 158, 1 Jiang, T. 67, 85, 86, 106, 107, 11 127, 131, 140, 1 Jiang, X. 70,	88 27 64 61 25 69 47 74, 41, 53 59 64, 26, 62 97	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonas, J 102 Jonayat, A 94 Jones, J 33, 42, 54, 114, 138 Jones, N 45, 81, 115, 145 Jones, P 40 Jones, R 62 Jones, T 118	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. Solution of the state of the	88 27 64 61 225 669 47 74, 111, 53 59 64, 26, 62 97	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonas, J 102 Jonayat, A 94 Jones, J 33, 42, 54, 114, 138 Jones, N 45, 81, 115, 145 Jones, P 40 Jones, R 62 Jones, T 118 Joni, B 125	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 1142, 1144	88 27 64 61 225 69 47 74, 411, 53 59 64, 26, 62 97 93 58	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonas, J 102 Jonayat, A 94 Jones, J 33, 42, 54, 114, 138 Jones, N 45, 81, 115, 145 Jones, P 40 Jones, R 62 Jones, T 118 Joni, B 125 Jonsson, L 62	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kainzbauer, P 128
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 1142, 1142, 1144	88 27 64 61 25 69 47 74, 411, 53 59 64, 26, 62 97 93 58	Johnston, G 23 Joiner, C .2 Jokisaari, A .52 Jolly, B .57 Jolly, M .62, 70, 83, 104 Joly, A .164 Jo, M .78 Jomard, F .144 Jonas, J .102 Jonayat, A .94 Jones, J .33, 42, 54, 114, 138 Jones, N .45, 81, 115, 145 Jones, P .40 Jones, R .62 Jones, T .118 Joni, B .125 Jonsson, L .62 Jonsson, P .62	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kainzbauer, P 128 Kaira, C 10, 15, 30, 151
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 1142, 1142, 1144,	88 27 64 61 25 69 47 74, 411, 53 59 64, 26, 62 97 93 58 03	Johnston, G 23 Joiner, C .2 Jokisaari, A .52 Jolly, B .57 Jolly, M .62, 70, 83, 104 Joly, A .164 Jo, M .78 Jomard, F .144 Jonas, J .102 Jones, J .33, 42, 54, 114, 138 Jones, N .45, 81, 115, 145 Jones, P .40 Jones, R .62 Jones, T .118 Joni, B .125 Jonsson, L .62 Jonsson, P .62 Jönsson, P .62 Jönsson, P .62	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kainzbauer, P 128 Kaira, C 10, 15, 30, 151 Kajihara, M 59
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 143, 146, 144, 145, 145, 145, 145, 145, 145, 145	88 27 64 61 25 69 47 74, 41, 53 59 64, 26, 62 97 93 58 03 112 40	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonas, J 102 Jonayat, A 94 Jones, J 33, 42, 54, 114, 138 Jones, N 45, 81, 115, 145 Jones, P 40 Jones, R 62 Jones, T 118 Joni, B 125 Jonsson, L 62 Jonsson, P 62 Jönsson, P 62 Joo, M 159	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kainzbauer, P 128 Kaira, C 10, 15, 30, 151 Kajihara, M 59 Kajita, T 145
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. Solution of the state of the	88 27 64 61 25 69 47 74, 411, 53 59 64, 26, 62 97 93 58 03 112 40 119	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonas, J 102 Jonayat, A 94 Jones, J 33, 42, 54, 114, 138 Jones, N 45, 81, 115, 145 Jones, P 40 Jones, R 62 Jones, T 118 Joni, B 125 Jonsson, L 62 Jonsson, P 62 Jönsson, P 62 Joo, M 159 Joo, S 125, 156	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kainzbauer, P 128 Kaira, C 10, 15, 30, 151 Kajihara, M 59 Kajita, T 145 Kalay, E 31, 37, 75, 92, 111,
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 1142, 1140	88 27 64 61 25 69 47 74, 411, 53 59 64, 26, 62 97 93 58 03 12 40 19 27	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonas, J 102 Jonayat, A 94 Jones, J 33, 42, 54, 114, 138 Jones, N 45, 81, 115, 145 Jones, P 40 Jones, R 62 Jons, T 118 Joni, B 125 Jonsson, P 62 Jönsson, P 62 Jönsson, P 62 Jöns, M 159 Joo, S 125, 156 Jordon, B 148	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kainzbauer, P 128 Kaira, C 10, 15, 30, 151 Kajihara, M 59 Kajita, T 145 Kalay, E 31, 37, 75, 92, 111, 130, 131, 156, 163, 164
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 1142, 1144	88 27 64 61 25 69 47 74, 411, 53 59 64, 26, 62 97 93 12 40 119 27 30	Johnston, G 23 Joiner, C 2 Jokisaari, A 52 Jolly, B 57 Jolly, M 62, 70, 83, 104 Joly, A 164 Jo, M 78 Jomard, F 144 Jonas, J 102 Jonayat, A 94 Jones, J 33, 42, 54, 114, 138 Jones, N 45, 81, 115, 145 Jones, P 40 Jones, R 62 Jones, T 118 Joni, B 125 Jonsson, P 62 Jönsson, P 62 Joo, M 159 Joo, S 125, 156 Jordon, B 148 Jordon, J 141, 155	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kaira, C 10, 15, 30, 151 Kajitar, T 145 Kalay, E 31, 37, 75, 92, 111, 130, 131, 156, 163, 164 Kalay, I 92
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1442, 1444	88 27 64 61 25 69 47 74, 411, 53 59 64, 26, 62 97 93 58 03 112 40 119 27 30 44	Johnston, G 23 Joiner, C .2 Jokisaari, A .52 Jolly, B .57 Jolly, M .62, 70, 83, 104 Joly, A .164 Jo, M .78 Jomard, F .144 Jonas, J .102 Jonayat, A .94 Jones, J .33, 42, 54, 114, 138 Jones, N .45, 81, 115, 145 Jones, P .40 Jones, R .62 Jonsson, E .62 Jonsson, P .62 Joo, M .159 Joo, S .125, 156 Jordon, B .148 Jordon, J .141, 155 Jorgensen, R .141	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kaira, C 10, 15, 30, 151 Kajihara, M 59 Kajita, T 145 Kalay, E 31, 37, 75, 92, 111, 130, 131, 156, 163, 164 Kalay, I 92 Kalbfleisch, S 10
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442	88 27 64 61 25 69 47 74, 411, 53 59 64, 26, 62 97 93 58 03 12 40 19 27 30 44 15	Johnston, G 23 Joiner, C .2 Jokisaari, A .52 Jolly, B .57 Jolly, M .62, 70, 83, 104 Joly, A .164 Jo, M .78 Jomard, F .144 Jonas, J .102 Jonayat, A .94 Jones, J .33, 42, 54, 114, 138 Jones, N .45, 81, 115, 145 Jones, P .40 Jones, R .62 Jones, T .118 Joni, B .125 Jonsson, L .62 Jonsson, P .62 Joo, M .159 Joo, S .125, 156 Jordon, B .148 Jordon, J .141, 155 Jorgensen, R .141 Joshi, C .154	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kainzbauer, P 128 Kaira, C 10, 15, 30, 151 Kajihara, M 59 Kajita, T 145 Kalay, E 31, 37, 75, 92, 111, 130, 131, 156, 163, 164 Kalay, I 92 Kalbfleisch, S 10 Kalchenko, A 59, 149
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, F. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 1142, 1142, 1144	88 27 64 61 25 69 47 74, 411, 53 59 64, 26, 62 97 93 12 40 19 27 30 44 15 48	Johnston, G 23 Joiner, C .2 Jokisaari, A .52 Jolly, B .57 Jolly, M .62, 70, 83, 104 Joly, A .164 Jo, M .78 Jomard, F .144 Jonas, J .102 Jonayat, A .94 Jones, J .33, 42, 54, 114, 138 Jones, N .45, 81, 115, 145 Jones, P .40 Jones, R .62 Jones, T .118 Joni, B .125 Jonsson, L .62 Jonsson, P .62 Joo, M .159 Joo, S .125, 156 Jordon, B .148 Jordon, J .141, 155 Jorgensen, R .141 Joshi, C .154 Joshi, P .18, 28, 39, 160, 163	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kainzbauer, P 128 Kaira, C 10, 15, 30, 151 Kajihara, M 59 Kajita, T 145 Kalay, E 31, 37, 75, 92, 111, 130, 131, 156, 163, 164 Kalay, I 92 Kalbfleisch, S 10 Kalchenko, A 59, 149 Kale, C 157
Jianfeng, H. Jiang, B. Jiangbin, Z. Jiang, C. Jiang, C. Jiang, F. Jiang, H. Jiang, J. 87, 90, 108, 111, 130, 142, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442, 1130, 1442	88 27 64 61 25 69 47 74, 411, 53 59 64, 26, 62 97 93 58 03 12 40 19 27 30 44 15 48 69 49 40 40 40 40 40 40 40 40 40 40	Johnston, G 23 Joiner, C .2 Jokisaari, A .52 Jolly, B .57 Jolly, M .62, 70, 83, 104 Joly, A .164 Jo, M .78 Jomard, F .144 Jonas, J .102 Jonayat, A .94 Jones, J .33, 42, 54, 114, 138 Jones, N .45, 81, 115, 145 Jones, P .40 Jones, R .62 Jones, T .118 Joni, B .125 Jonsson, L .62 Jonsson, P .62 Joo, M .159 Joo, S .125, 156 Jordon, B .148 Jordon, J .141, 155 Jorgensen, R .141 Joshi, C .154	Kaban, I 90 Kabanova, A 89 Kabemba, L 168 Kabir, A 135 Kabukcuoglu, M 131 Kacher, J 14, 77 Kachur, S 60 Kaczmarowski, A 71, 116 Kada, S 46, 56 Kad, B 138 Kadrolkar, A 20 Kaduk, J 24 Kahl, E 108 Kahruman, C 159, 167 Kai, L 47 Kainer, K 13, 34, 97, 117, 124 Kainuma, R 16 Kainzbauer, P 128 Kaira, C 10, 15, 30, 151 Kajihara, M 59 Kajita, T 145 Kalay, E 31, 37, 75, 92, 111, 130, 131, 156, 163, 164 Kalay, I 92 Kalbfleisch, S 10 Kalchenko, A 59, 149

Kallip, K103	Kar, S	Kelly, M
Kaloshkin, S	Kasai, N	Kelly, N
Kalvala, P	Kaschnitz, E	Kelly, S
Kalyanaraman, R 42, 67, 85, 117,	Kashyap, B	Kelton, K
163, 165	Kashyap, I	Kemery, C
Kamat, S	Kasinyap, 1	Kemmenoe, D
Kamelreiter, R		Kendall, A
Kammerer, C	Kasprzak, W	Kenesei, P
Kandasamy, K	Kassen, A	Kennedy, M 18, 41, 64, 91, 152
Kang, B	Kassner, M	Kenzhaliyev, B
Kang, D	Kaszás, C88	Keralavarma, S
Kang, J 17, 45, 54, 68, 102, 149	Katakam, S	Kernion, S
Kang, K	Katoh, Y35, 71, 86, 99, 140,	Kern, P94
Kang, L	150, 168	Kero, I
Kang, M148, 166	Kato, T	Kerr, D14
Kang, N	Katsman, A	Keskinkilic, E
Kang, S 58, 102, 121, 166	Katsnelson, M12	Keskinkilic, S
Kang, X	Katsuyama, K157	Kesler, M
Kang, Y	Katti, D	Ketov, S
Kang, Z	Katti, K	Keum, J
Kanjarla, A	110, 152	Keylin, V
Kanpp, I	Kattner, U12, 33, 55, 76, 77,	Key, T70
Kanth, K116	95, 113, 116	Khachaturyan, A 38, 69, 72, 102
Kan, W101	Kattoura, M155	Khademi, V
Kao, A137	Kaub, T39, 135	Khafizov, M144
Kao, C 67, 94, 132, 148	Kauffmann, A	Khalaghi, B
Kaoumi, D149, 159	Kaufman, J149	Khalajzadeh, V 62
Kapan, E45	Kaufman, M25, 81, 99, 108, 109,	Khalfallah, I
Kapoor, D123, 126		Khalifa, W 50, 111, 122, 151
Kapoor, K94	Kaune, V	Khalil, S
Kapoor, M 16, 17, 37, 38, 60,	Kaupp, G	Khandaker, R9
	Kawakami, K	Khan, H
159	Kawakita, H61	Khan, S
Kapoor, R	Kawalla, C	Kharicha, A
Kapp, M	Kawalla, R	Khatibi, G
Kaptay, G81	Kawasaki, M 20, 42, 63, 84, 105,	Khorgolkhuu, O
Kapustka, N		Khrustalyov, A
Karabanalov, M	Kawasaki, T	Kiener, D 15, 40, 66, 77, 137, 158
Karaca, H	Kaye, L	Kiggans, J
Karadeniz, P	Kaye, M	Kilczewski, S
Karadeniz, Y	Kaynak, C	Kim, B
Karagadde, S9	Kazakov, V	Kim, C 6, 44, 59, 91, 102, 133, 136
Kara, I	Kazantseva, N	Kim, D 6, 12, 63, 69, 76,
Karakaya, I	Kazerooni, D	
•	Kazuhiro, N	Kim, E
Karaman, I		Kim, G
	Kecskes, L	
Karcher, S		Kim, H
Kardellass, S	Keel, T	
Kargl, F	Ke, H	112, 125, 139, 154, 156,
Karhausen, K 104, 124, 160	Keicher, D	
Kärkkäinen, M27	Keiser, D	Kim, I
Karlsen, M	98, 119, 127, 136, 144,	Kimiecik, M
Karlsen, T		Kiminami, C
Karlson, K	Keles, O	Kim, J
Karma, A	Kelestemur, M	45, 63, 85, 91, 92, 106,
	Kellogg, F 6, 69, 103, 126	124, 135, 139, 146, 148,
Karnatak, N61	Kelly, A82	149, 155, 156, 157, 158,
Karrasch, C 120, 137, 162	Kelly, J	161, 166, 167, 168

13, 167, 168 Knezwic, M. 3, 23, 15, 66, 85 Kno, Y. 1.4	Kim, K 6, 12, 17, 39, 73,	Knecht, M	Koopman, M123
Kim, M. 31, 59, 91, 102, 1 87, 105, 108, 118, 134, 134, 107, 150 Korpsink, D. 162, 164, 169 Kim, N. 13, 38, 78, 156, 157 Knight, R. .69 Korhonen, E. .87 Kim, S. .4, 40, 54, 55, 58, 58, 109 Knipling, K. .60, 119 Korkolis, Y. .98, 118 Kim, T. 12, 156, 166, 167, 168 Roor, M. .31 Kormann, F. .95 Kim, T. 12, 166 Kobe, S. .109 Kormann, F. .116, 143, 156 Kim, T. 12, 166 Kobe, S. .109 Kormann, F. .116, 143, 156 Kim, W. 6, 26, 69, 155, 161 Koca, E. .83 Kose, O. .156 Kim, W. 6, 26, 69, 156, 161 Kocafe, Y. .30, 73 Kosha, F. .53 Kim, Y. 24, 35, 40, 97, 98. Koch, G. .101 Koswak, M. .63 King, A. 42, 15, 40, 97, 98. Koch, G. .101 Koswak, M. .63 King, A. 43, 10, 97, 98, 112. Koch, G. .101 Koswak, M. .63 Kimg, G. <td></td> <td></td> <td>•</td>			•
Semin N. 13, 38, 78, 156, 157 Shight, R. 69 Sorthone, E. 87			
Kim, S. 4, 40, 54, 55, 58 Knipling, K. 60, 119 Korkolls, Y. 98, 118 6, 27, 89, 798, 112, 12 Kopp, M. 34 Kormann, F. 152, 156, 166, 167, 168 Knorr, A. 32 Körmann, F. 116, 143, 156 Kim, T. 1, 21, 66 Kobe, S. 109 Kormout, K. 26, 145 Kimura, A. 64 Köbler, A. 116 Kormout, K. 26, 145 Kimura, Y. 5, 24, 46, 67, 152 Kocafe, D. 30, 73 Sokskelo, A. 7 Kim, W. 6, 26, 69, 156, 161 Kocafe, D. 30, 73 Sokskelo, A. 7 Kim, Y. 24, 35, 49, 97, 98, Koch, C. 101 Kosh, A. 7 Kimg, A. 42, 121 Koch, G. 56 Kosmaz, E. 142 King, A. 42, 121 Koch, S. 135 Kosk, A. 48 King, G. 82 Koc, S. 156 Kosmax, F. 44 King, G. 83 KochH. 7, 10 Koska, A. 95 King, W. <t< td=""><td></td><td></td><td>* *</td></t<>			* *
6,2,78,97,98,112	Kim, N 13, 38, 78, 156, 157	Knight, R69	
6,2,78,97,98,112	Kim, S4, 40, 54, 55, 58,	Knipling, K	Korkolis, Y98, 118
152, 156, 166, 167, 168		1 6	
Kimura, A. 64 Kobler, A. 1116 Kornout, K. 26,145 Kimura, H. 100 Koca, E. 83 Köse, Ö. 156 Kimura, Y. 5,24,46,67,152 Kocaefe, D. 30,73, 93 Kosiba, F. 53 Kim, W. 6,26,69,156,161 Kocaefe, Y. 30,73 Kosiba, F. 53 Kim, Y. 24,35,40,97,98, Koch, C. 101 Koslowski, M. 6,36 Kogaefe, D. 101 Koslowski, M. 6,36 Kogaefe, Y. 102,136,148,152,154, Kocher, G. 56 Kosmaz, E. 142 Kocher, G. 56 Kosmaz, C. 142 Kosmaz, C. 25 King, A. 42,121 Koch, S. 137 Kos, K. 448 Kinga, U. 136 Kociubczyk, A. 169 Kostos, K. 448 Kinga, U. 136 Kociubczyk, A. 169 Kostos, K. 448 Kinga, U. 136 Kociubczyk, A. 169 Kostos, K. 448 Kinga, U. 137 Koc, S. 156 Kostos, C. 38 Kocher, G. 56 Kosmaz, G. 1112 King, G. 32 Koc, S. 156 Kostos, K. 448 Kinga, U. 139 Kociubczyk, A. 169 Kostos, K. 448 Kinga, U. 139 Kociubczyk, A. 169 Kostos, K. 448 Kinga, U. 139 Kociubczyk, A. 169 Kostos, K. 448 Kinga, U. 139 Kociubczyk, A. 169 Kostos, K. 448 Kinga, U. 139 Kociubczyk, A. 169 Kostos, K. 448 Kinga, U. 130 Kociubczyk, A. 169 Kostos, K. 448 Kinga, U. 130 Kociubczyk, A. 169 Kostos, K. 448 Kinga, U. 130 Kociubczyk, A. 169 Kostos, A. 35 Kocher, G. 34, 90 Kotan, R. 31 Kocher, M. 34, 90 Kotan, R. 31 Kocher, G. 34, 90 Kohara, S. 69 Koukari, P. 41 Kirishima, A. 32, 102, 127 Kohnert, A. 51, 86 Koc, V. 24, 155, 169 Kirk, M. 43, 65, 91, 071, 21 Koke, M. 35, 169, 107, 121 Koke, M. 35, 169, 107, 121 Koke, M. 31 Ko		•	
Kimura A 64 Kobler, A 1.16 Kornagay, S .1.38 Kimura, Y 5, 24, 46, 67, 152 Kocaefe, D .30, 73, 93 Kosiba, E .53 Kim, W 6, 26, 69, 156, 161 Kocaefe, V .30, 73, 93 Koskba, E .53 Kim, Y 24, 35, 40, 97, 98, Koch, C C .101 Koslowski, M .63 120, 136, 148, 152, 154, 152, 154, 166, 166, 168, 169 Koch, C .56 Kosmaz, E .142 King, A 42, 121 Koch, S .137 Koss, K .48 King, G 82 Koc, S .156 Kosmar, C .25 King, W 3, 56 Kocheltr, M .49, 40 Kofman, T .106 Kostka, A .95 Kirnbain, R 19, 40, 41, 61, 82, Kohana, K .81 Kohana, K .81 Koten, M .85 Kirchlechner, C .34, 90 Kohana, K .81 Koulkari, P .41 Kirk, M .32, 102, 127 Kohnert, A .51, 66 Kou, B .57, 62 Kirk, M			
Kimura, H 100 Koca, E 83 Köse, Ö 1.56 Kimura, Y 5, 24, 46, 67, 152 Kocaefe, P 30, 73 Köska, E 53 Kim, W 6, 26, 69, 156, 161 Kocaefe, Y 30, 73 Koskelo, A . 7 Kim, Y 24, 35, 40, 97, 98 Koch, C 101 Koslowski, M 63 Kim, Y 24, 35, 40, 97, 98 Koch, C 101 Koslowski, M 63 Kim, B 160, 166, 168, 169 Koch, H 47 Kosmaz, C 25 King, A 42, 121 Koch, H 47 Kosmaz, C 25 King, G 82 Koc, S 156 Kosters, J 13 King, G 83 Kock, S 156 Kosters, J 13 Kinney, C 38 Koch, M 34, 99 Kotan, H 118 Kinsey, B 98 Ko, H 71, 116 Koters, J 13 Kirshain, R 19, 40, 41, 61, 82 Kohana, K 81 Kotha, S 113 Kirsh			
Kimura Y 5, 24, 46, 67, 152 Kocaefe, D 30, 73, 30 Koskle, A 7 Kim, W 6, 26, 69, 156, 161 Kocaefe, Y 30, 73 Koskelo, A 7 Kim, Y 24, 35, 40, 97, 98 Koch, C 101 Koslowski, M 6.63 120, 136, 148, 152, 154 Koch, G 56 Kosmaz, D 22 King, A 42, 121 Koch, S 137 Koss, K 48 Kinga, G 42, 121 Koch, S 137 Koss, K 48 King, G 82 Koc, S 156 Kosters, J 3 King, W 3, 56 Kodama, T 106 Kosters, J 3 Kirshein, R 9, 98 Ko, H 7, 116 Koten, M 85 Kirchain, R 19, 40, 41, 61, 82 Kohara, S 40 Kou, H 60, 115, 122 Kirchelner, C 34, 90 Kohara, S 69 Koukari, P 41 Kirk, M 3, 22, 102, 127 Kohara, S 69 Kou, M 85, 166, 162 <		Koca, E83	
Kim, W. 6, 26, 69, 156, 161 Kocacle (Y 30, 73 Koskelo, A 7 Kim, Y. 24, 35, 40, 97, 98, Koch, C 101 Koslowski, M. 63 120, 136, 148, 152, 154, Koch, S. 56 Kosmaz, C 25 King, A. 42, 121 Koch, B. 137 Koss, K. 48 King, U. 136 Kociubczyk, A. 169 Koshann, J. 113 King, G. 82 Koc, S. 156 Kostann, J. 113 King, W. 3, 56 Kodama, T. 106 Kostka, A. 95 Kinney, C. 38 Koehler, M. 34, 90 Kotan, H. 168 Kirshain, R. 19, 40, 41, 61, 82 Kohama, K. 81 Kotha, S. 113 Kirchlechner, C. 34, 90 Kohara, S. 69 Kouk, H. 60, 115, 122 Kirk, M. 3, 22, 102, 127 Kohnert, A. 51, 86 Kou, M. 85, 106, 162 Kirka, M. 3, 22, 102, 127	Kimura, Y 5, 24, 46, 67, 152		
1.10, 136, 148, 152, 154, Koche, G. 56 Kosmaz, C. 25		Kocaefe, Y	Koskelo, A
160, 166, 168, 169	Kim, Y 24, 35, 40, 97, 98,	Koch, C101	Koslowski, M
Kinga, A. 42, 121 Koch, S. 1.137 Koss, K. 48 Kinga, U. 1.36 Kociubczyk, A. 1.69 Koßmann, J. 1.13 King, G. 8.2 Koc, S. 1.56 Koßers, J. 3.3 King, W. 3, 56 Kodama, T. 1.06 Kosters, J. 3.3 King, W. 3, 56 Kodama, T. 1.06 Kosters, J. 3.3 Kinsey, B. 9.8 Ko, H. 3.4, 90 Kotan, H. 1.68 Kinsey, B. 19, 40, 41, 61, 82, Kohama, K. 81 Kotha, S. 1.13		Kocher, G56	Kosmaz, E
King, U		Koch, H	Kosmaz, O
King, U		Koch, S	Koss, K48
Kinney, C. 33, 56 Kodama, T. 106 Kostka, A. 95 Kinney, C. 38 Koehler, M. 34, 90 Kotan, H. 168 Kinsey, B. 98 Kirchain, R. 19, 40, 41, 61, 82, Kohama, K. 81 Korhain, R. 19, 40, 41, 61, 82, Kohama, K. 81 Korhain, R. 83, 103, 124, 160 Kohama, K. 81 Kotha, S. 113 Kirchlechner, C. 34, 90 Kohara, S. 69 Kouk, M. 60, 115, 122 Kirchlechner, C. 34, 90 Kohara, S. 69 Kouk, M. 85, 106, 162 Kirka, M. 3, 22, 102, 127 Kohnert, A. 51, 86 Kok, M. 3, 22, 102, 127 Korler, M. 43, 56, 59, 107, 121 Koizumi, Y. 44 Koyama, M. 138 Kirubanandham, A. 9, 10 Koju, R. 117 Koyama, M. 138 Kirubanandham, A. 9, 10 Koju, R. 117 Koyama, M. 138 Kirubanandham, A. 9, 10 Koju, R. 117 Koyama, M. 138 Kirubanandham, A. 165 Kolasinski, R. 19 Kozeschnik, E. 109 Kishore Babu, N. 103 Kolās, S. 1110 Kolas, R. 1112 Kiso, M. 31 Kolbe, M. 137, 162 Kozeschnik, E. 109 Kiramura, H. 166 Koleva, E. 169 Kriramura, H. 166 Koleva, E. 169 Kraemer, S. 15, 59, 101 Kitamura, S. 62 Kolli, R. 38, 144 Krajnak, T. 118 Kitchaev, D. 30, 112 Kollus, P. 103 Kramer, G. 152 Kjellqvist, L. 105 Komarasamy, M. 115 Komarasamy, M. 115 Kramer, G. 152 Kjellqvist, L. 105 Komarasamy, M. 115 Komarasamy, M. 115 Kramer, G. 152 Kramer, G. 152 Kramer, G. 152 Kramer, G. 152 Kramer, G. 26, 27, 50, 62, 109, 161 Klassen, T. 97 Kombaiah, B. 14 Kranjc, K. 69, 90, 142 Kleese van Dam, K. 30 Komiya, Y. 82 Kreschwer, K. 18 Klelenke, H. 5 Kondo, S. 64 Kreschmer, K. 18 Klelenke, H. 5 Kondo, S. 64 Kreschmer, K. 18 Klelenker, M. 118, 154 Kondo, T. 157 Kreuzer, D. 20 Klein, R. 1118, 154 Kondo, T. 157 Krishnamurthy, K. 22 Kleingeli, N. 22, 128 Kong, C. 6, 26, 161 Krishnamurthy, K. 22 Kleingeli, N. 21, 218 Kong, L. 43, 132 Krishna, A. 1112 Klitchaev, D. 104 Klut, A. 188 Kontsov, O. 77, 113 Krivilyov, M. 122 Klut, P. 47 Kontsov, O. 77, 113 Krivilyov, M. 122, 138, Kopp, J. 112, 135, 138, Kopp, J. 112, 132, 137, 48, Kopp, J. 112, 137, 137, 138, Kopp, J. 112, 137, 137, 138, Kopp, J. 112, 1	Kinga, U	Kociubczyk, A169	Koßmann, J113
Kinney, C. 33, 56 Kodama, T. 106 Kostka, A. 95 Kinney, C. 38 Koehler, M. 34, 90 Kotan, H. 168 Kinsey, B. 98 Kirchain, R. 19, 40, 41, 61, 82, Kohama, K. 81 Korhain, R. 19, 40, 41, 61, 82, Kohama, K. 81 Korhain, R. 83, 103, 124, 160 Kohama, K. 81 Kotha, S. 113 Kirchlechner, C. 34, 90 Kohara, S. 69 Kouk, M. 60, 115, 122 Kirchlechner, C. 34, 90 Kohara, S. 69 Kouk, M. 85, 106, 162 Kirka, M. 3, 22, 102, 127 Kohnert, A. 51, 86 Kok, M. 3, 22, 102, 127 Korler, M. 43, 56, 59, 107, 121 Koizumi, Y. 44 Koyama, M. 138 Kirubanandham, A. 9, 10 Koju, R. 117 Koyama, M. 138 Kirubanandham, A. 9, 10 Koju, R. 117 Koyama, M. 138 Kirubanandham, A. 9, 10 Koju, R. 117 Koyama, M. 138 Kirubanandham, A. 165 Kolasinski, R. 19 Kozeschnik, E. 109 Kishore Babu, N. 103 Kolās, S. 1110 Kolas, R. 1112 Kiso, M. 31 Kolbe, M. 137, 162 Kozeschnik, E. 109 Kiramura, H. 166 Koleva, E. 169 Kriramura, H. 166 Koleva, E. 169 Kraemer, S. 15, 59, 101 Kitamura, S. 62 Kolli, R. 38, 144 Krajnak, T. 118 Kitchaev, D. 30, 112 Kollus, P. 103 Kramer, G. 152 Kjellqvist, L. 105 Komarasamy, M. 115 Komarasamy, M. 115 Kramer, G. 152 Kjellqvist, L. 105 Komarasamy, M. 115 Komarasamy, M. 115 Kramer, G. 152 Kramer, G. 152 Kramer, G. 152 Kramer, G. 152 Kramer, G. 26, 27, 50, 62, 109, 161 Klassen, T. 97 Kombaiah, B. 14 Kranjc, K. 69, 90, 142 Kleese van Dam, K. 30 Komiya, Y. 82 Kreschwer, K. 18 Klelenke, H. 5 Kondo, S. 64 Kreschmer, K. 18 Klelenke, H. 5 Kondo, S. 64 Kreschmer, K. 18 Klelenker, M. 118, 154 Kondo, T. 157 Kreuzer, D. 20 Klein, R. 1118, 154 Kondo, T. 157 Krishnamurthy, K. 22 Kleingeli, N. 22, 128 Kong, C. 6, 26, 161 Krishnamurthy, K. 22 Kleingeli, N. 21, 218 Kong, L. 43, 132 Krishna, A. 1112 Klitchaev, D. 104 Klut, A. 188 Kontsov, O. 77, 113 Krivilyov, M. 122 Klut, P. 47 Kontsov, O. 77, 113 Krivilyov, M. 122, 138, Kopp, J. 112, 135, 138, Kopp, J. 112, 132, 137, 48, Kopp, J. 112, 137, 137, 138, Kopp, J. 112, 137, 137, 138, Kopp, J. 112, 1	King, G	Koc, S	Kosters, J
Kinsey, B	King, W		
Kinsey, B	· ·	Koehler, M34, 90	Kotan, H168
Kirchain, R	Kinsey, B		Koten, M
Kirchlechner, C. 34, 90 Kirshima, A 18 Kirishima, A 18 Kirshima, A 18 Kohler, M 15, 18 Kou, M 15, 10 Kou, M 15, 10 Kou, S 15, 106, 162 Kou, S 15, 106, 162 Kou, S 15, 106 Kou, S 15, 106, 162 Kou, S 105, 106, 106 Kou, S 105, 106 Kou, S 105 Kou, S 105 Kou, S 105, 106 Kou, S 105 Kou,		Kohama, K81	Kotha, S
Kirishima, A 1.8 Köhler, M. 90 Kou, M. .85, 106, 162 Kirka, M. 3, 22, 102, 127 Köhnert, A. 51, 86 Kou, S. .57, 62 Kirk, D. 1.42 Kölke, J. .78, 113, 156 Kou, Y. .24, 155, 169 Kirk, M. 43, 56, 59, 107, 121 Köizumi, Y. .44 Koyama, M. .138 Kirubanandham, A 9, 10 Köju, R. .117 Köylan, S. .156 Kisailus, D. 5, 89 Koladoin, L. .143 Koylu-Alkan, O. .109 Kishawy, H. .165 Kolasinski, R. .19 Kozeschnik, E. .109 Kishore Babu, N. .103 Kolås, S. .110 Kozeschnik, E. .109 Kiss, L. .88, 109 Kolbus, I. .66 Kraemer, I. .26 Kitamura, H. .146 Koleva, E. .169 Kraemer, S. .15, 59, 101 Kitamura, S. .62 Kolli, R. .38, 144 Kraj, R. .118 Kitohaw, J. .88 Koltun, P.	83, 103, 124, 160	Kohanek, J42	Kou, H
Kirishima, A 1.8 Köhler, M. 90 Kou, M. .85, 106, 162 Kirka, M. 3, 22, 102, 127 Köhnert, A. 51, 86 Kou, S. .57, 62 Kirk, D. 1.42 Kölke, J. .78, 113, 156 Kou, Y. .24, 155, 169 Kirk, M. 43, 56, 59, 107, 121 Köizumi, Y. .44 Koyama, M. .138 Kirubanandham, A 9, 10 Köju, R. .117 Köylan, S. .156 Kisailus, D. 5, 89 Koladoin, L. .143 Koylu-Alkan, O. .109 Kishawy, H. .165 Kolasinski, R. .19 Kozeschnik, E. .109 Kishore Babu, N. .103 Kolås, S. .110 Kozeschnik, E. .109 Kiss, L. .88, 109 Kolbus, I. .66 Kraemer, I. .26 Kitamura, H. .146 Koleva, E. .169 Kraemer, S. .15, 59, 101 Kitamura, S. .62 Kolli, R. .38, 144 Kraj, R. .118 Kitohaw, J. .88 Koltun, P.	Kirchlechner, C34, 90	Kohara, S69	Koukkari, P
Kirk, D. 142 Koike, J. .78, 113, 156 Ko, Y. .24, 155, 169 Kirk, M. 43, 56, 59, 107, 121 Koizumi, Y. .44 Koyana, M. .138 Kirubanandham, A. 9, 10 Koju, R. .117 Koylu-Alkan, O. .109 Kisailus, D. 5, 89 Kolaodin, L. .143 Koylu-Alkan, O. .109 Kishawy, H. .165 Kolas, S. .110 Kozicki, R. .112 Kishore Babu, N. .103 Kolas, S. .110 Kozicki, R. .112 Kiso, M. .31 Kolbe, M. .137, 162 Kozlov, A. .34 Kiss, L. .88, 109 Kolbe, M. .137, 162 Kozlov, A. .34 Kitamura, S. .62 Kolli, R. .144 Kraemer, S. .15, 59, 101 Kitamura, S. .62 Kolli, R. .38, 144 Krain, R. .161 Kitohaev, D. .30, 112 Kolli, S. .15 Kramer, S. .15, 59, 101 Kitamura, S. .62 Kolli, R. .34,		Köhler, M90	Kou, M
Kirk, D. 142 Koike, J. 7.8, 113, 156 Ko, Y. 24, 155, 169 Kirk, M. 43, 56, 59, 107, 121 Koizumi, Y. 44 Koyama, M. 138 Kirubanandham, A. 9, 10 Koju, R. 1.17 Koylan, S. 156 Kisailus, D. 5, 89 Kolaodin, L. 143 Koylan, S. 156 Kisailus, D. 165 Kolaodini, L. 143 Koylan, S. 156 Kisailus, D. 165 Kolaodini, L. 143 Koylan, S. 156 Kishore Babu, N. 103 Kolasinski, R. 19 Kozeschnik, E. 109 Kishore Babu, N. 131 Kolbe, M. 137, 162 Kozzechnik, E. 109 Kishore Babu, N. 131 Kolbe, M. 137, 162 Kozzechnik, E. 109 Kishore Babu, N. 130 Kolbe, M. 137, 162 Kozzechnik, E. 109 Kishore Babu, N. 130 Kolbe, M. 131, 162 Kozzechnik, E. 109 Kishore Babu, N. 161 Kolbu, B.	Kirka, M	Kohnert, A51, 86	Kou, S57, 62
Kirubanandham, A .9, 10 Koju, R .117 Koylan, S .156 Kisalus, D .5, 89 Kolaodin, L .143 Koylu-Alkan, O .109 Kishawy, H .165 Kolasinski, R .19 Kozeschnik, E .109 Kishor Babu, N .103 Kolås, S .110 Kozicki, R .112 Kiso, M .31 Kolbe, M .137, 162 Kozlov, A .34 Kiss, L .88, 109 Kolbus, I .66 Kraemer, L .26 Kitamura, H .146 Koleva, E .169 Kraemer, S .15, 59, 101 Kitamura, S .62 Kolli, R .38, 144 Krajnák, T .118 Kitchaev, D .30, 112 Kolli, S .105 Kramer, G .15 Kjellqvist, L .105 Komarasamy, M .115 Kramer, G .152 Kjellqvist, L .105 Komarasamy, M .115 Kramer, M .70, 76, 100, 109, 111, Kjos, O .83, 109, 110 Komarasamy, M .115 .5	Kirk, D142	Koike, J	Ko, Y24, 155, 169
Kisailus, D 5,89 Kolaodin, L 143 Koylu-Alkan, O 109 Kishawy, H 165 Kolasinski, R 19 Kozeckniik, E 109 Kishore Babu, N 103 Kolås, S 110 Kozicki, R 112 Kiso, M 31 Kolbe, M 137, 162 Kozlov, A 34 Kiss, L 88, 109 Kolbus, L 66 Kraemer, L 26 Kitamura, H 146 Koleva, E 169 Kraemer, S 115, 59, 101 Kitamura, S 62 Kolli, R 38, 144 Krajnák, T 118 Kitchaev, D 30, 112 Kolli, S 105 Král, R 161 Kito, M 88 Koltun, P 103 Kramer, G 152 Kjellqvist, L 105 Komarasamy, M 115 Kramer, M 70, 76, 100, 109, 111, Kjos, O 83, 109, 110 Komatsu, L 15, 159 128, 164 Klarner, A 56 Komazaki, S 163 Krane, M 70, 76, 100, 109, 111,	Kirk, M 43, 56, 59, 107, 121		Koyama, M
Kishawy, H. 165 Kolasinski, R 19 Kozeschnik, E 109 Kishore Babu, N 103 Kolås, S 110 Kozicki, R 112 Kiso, M 31 Kolbe, M 137, 162 Kozlov, A 34 Kiss, L 88, 109 Kolbus, L 66 Kraemer, L 26 Kitamura, H 146 Koleva, E 169 Kraemer, S 15, 59, 101 Kitamura, S 62 Kolli, R 38, 144 Krajnák, T 118 Kitchaev, D 30, 112 Kolli, S 105 Král, R 161 Kito, M 88 Koltun, P 103 Kramer, G 152 Kjellqvist, L 105 Komarasamy, M 115 Kramer, M 70, 76, 100, 109, 111, Kjos, O 83, 109, 110 Komatsu, L 15, 159 Kramer, M 70, 76, 100, 109, 111, Kjos, O 83, 109, 110 Komatsu, L 15, 159 Kramer, M 70, 76, 100, 109, 111, Kjos, O 83, 109, 11 Komatsu, L 15, 159 Kr	Kirubanandham, A9, 10	Koju, R117	Koylan, S
Kishore Babu, N 103 Kolås, S 110 Kozicki, R 112 Kiso, M 31 Kolbe, M 137, 162 Kozlov, A 34 Kiso, M 31 Kolbe, M 137, 162 Kozlov, A 34 Kiso, M 88, 109 Kolbus, L 66 Kraemer, S 15, 59, 101 Kitamura, S 62 Kolli, R 38, 144 Krajnák, T 118 Kitchaev, D 30, 112 Kolli, S 105 Král, R 161 Kito, M 88 Koltun, P 103 Kramer, G 152 Kjellqvist, L 105 Komarasamy, M 115 Kramer, M 70, 76, 100, 109, 111, Kjos, O 83, 109, 110 Komatsu, L 15, 159 Kramer, M 70, 76, 100, 109, 111, Klarner, A 56 Komazaki, S 163 Krane, M 26, 27, 50, 62, 109, 161 Klassen, T 97 Kombaiah, B 14 Kranjc, K 69, 90, 142 Kleese van Dam, K 30 Komiya, Y 82 Krawczynska, A <td>Kisailus, D 5, 89</td> <td>Kolaodin, L</td> <td>Koylu-Alkan, O109</td>	Kisailus, D 5, 89	Kolaodin, L	Koylu-Alkan, O109
Kiso, M. 31 Kolbe, M 137, 162 Kozlov, A 34 Kiss, L. 88, 109 Kolbus, L 66 Kraemer, L 26 Kitamura, H 146 Koleva, E 169 Kraemer, S 15, 59, 101 Kitamura, S 62 Kolli, R 38, 144 Krajnäk, T 118 Kitchaev, D 30, 112 Kolli, S 105 Král, R 161 Kito, M 88 Koltun, P 103 Kramer, G 152 Kjellqvist, L 105 Komarasamy, M 115 Kramer, M 70, 76, 100, 109, 111, Kjos, O 83, 109, 110 Komatsu, L 15, 159 128, 164 Klarner, A 56 Komazaki, S 163 Krane, M 26, 27, 50, 62, 109, 161 Klassen, T 97 Kombaiah, B 14 Kranjc, K 69, 90, 142 Kleese van Dam, K 30 Komiya, Y 82 Krawczynska, A 145, 161 Kleinke, H 5 Konda Gokuldoss, P 4, 134 Kraych, A 29 <	Kishawy, H	Kolasinski, R	Kozeschnik, E
Kiss, L. 88, 109 Kolbus, L. 66 Kraemer, L. 26 Kitamura, H 146 Koleva, E. 169 Kraemer, S. 15, 59, 101 Kitamura, S. 62 Kolli, R. 38, 144 Krajnák, T. 118 Kitchaev, D. 30, 112 Kolli, S. 105 Král, R. 161 Kito, M. 88 Koltun, P. 103 Kramer, G. 152 Kjellqvist, L. 105 Komarasamy, M. 115 Kramer, M. 70, 76, 100, 109, 111, Kjos, O. 83, 109, 110 Komatsu, L. 15, 159 128, 164 Klarner, A. 56 Komazaki, S. 163 Krane, M. 26, 27, 50, 62, 109, 161 Klassen, T. 97 Kombaiah, B. 14 Kranjc, K. 69, 90, 142 Kleese van Dam, K. 30 Komida, Y. 82 Krawczynska, A. 145, 161 Kleinke, H. 5 Konda Gokuldoss, P. 4, 134 Kraych, A. 29 Klein, R. 118, 154 Kondoh, K. 6, 82, 103 <th< td=""><td>Kishore Babu, N103</td><td>Kolås, S</td><td>Kozicki, R</td></th<>	Kishore Babu, N103	Kolås, S	Kozicki, R
Kitamura, H 146 Koleva, E 169 Kraemer, S .15, 59, 101 Kitamura, S .62 Kolli, R .38, 144 Krajnák, T .118 Kitchaev, D .30, 112 Kolli, S .105 Král, R .161 Kito, M .88 Koltun, P .103 Kramer, G .152 Kjellqvist, L .105 Komarasamy, M .115 Kramer, M .70, 76, 100, 109, 111, Kjos, O .83, 109, 110 Komarasamy, M .115 Kramer, M .70, 76, 100, 109, 111, Kjos, O .83, 109, 110 Komarasamy, M .115 Kramer, M .70, 76, 100, 109, 111, Kjos, O .83, 109, 110 Komarasamy, M .115 Kramer, M .70, 76, 100, 109, 111, Kjos, O .83, 109, 110 Komarasamy, M .115 Kramer, M .70, 76, 100, 109, 111, Kjos, O .83, 109, 110 Komarasamy, M .115 Kramer, G .128, 164 Klarner, A .5 Kombaish, B .14 Kraner, M .26, 27, 50, 62, 109, 101 <td< td=""><td>Kiso, M31</td><td>Kolbe, M137, 162</td><td>Kozlov, A</td></td<>	Kiso, M31	Kolbe, M137, 162	Kozlov, A
Kitamura, S 62 Kolli, R 38, 144 Krajnák, T 118 Kitchaev, D 30, 112 Kolli, S 105 Král, R 161 Kito, M 88 Koltun, P 103 Kramer, G 152 Kjellqvist, L 105 Komarasamy, M 115 Kramer, M .70, 76, 100, 109, 111, Kjos, O 83, 109, 110 Komatsu, L 15, 159 Kramer, M .70, 76, 100, 109, 111, Kjos, O 83, 109, 110 Komatsu, L 15, 159 Kramer, M .70, 76, 100, 109, 111, Kjos, O 83, 109, 110 Komatsu, L 15, 159 Kramer, M .70, 76, 100, 109, 111, Kjos, O 83, 109, 110 Komatsu, L 15, 159 Kramer, M .26, 27, 50, 62, 109, 161 Klarner, A 56 Komazaki, S 163 Krane, M .26, 27, 50, 62, 109, 161 Klassen, T 97 Kombaiah, B 14 Kranjc, K .69, 90, 142 Kleese van Dam, K 30 Komiya, Y 82 Krawczynska, A .145, 161 Kleinke, H 5 Konda Gokuldoss, P 4, 134 Kraych, A .29 <td>Kiss, L88, 109</td> <td>Kolbus, L</td> <td>Kraemer, L</td>	Kiss, L88, 109	Kolbus, L	Kraemer, L
Kitchaev, D 30, 112 Kolli, S 105 Kráĺ, R 161 Kito, M .88 Koltun, P 103 Kramer, G .152 Kjellqvist, L .105 Komarasamy, M .115 Kramer, M .70, 76, 100, 109, 111, Kjos, O .83, 109, 110 Komatsu, L .15, 159 .128, 164 Klarner, A .56 Komazaki, S .163 Krane, M .26, 27, 50, 62, 109, 161 Klassen, T .97 Kombaiah, B .14 Kranjc, K .69, 90, 142 Kleese van Dam, K .30 Komiya, Y .82 Krawczynska, A .145, 161 Kleinke, H .5 Konda Gokuldoss, P .4, 134 Kraych, A .29 Klein, R .118, 154 Kondoh, K .6, 82, 103 Krbetschek, C .104 Klein, S .162 Kondo, S .64 Kretschmer, K .18 Klenosky, D .109 Kondo, T .157 Kreuzer, D .20 Klier, E .80 Kong, C .6, 26, 161 Kriegner, D .122 Klingenberg, M .108 Kong, L .	Kitamura, H146	Koleva, E	Kraemer, S
Kito, M. 88 Koltun, P 103 Kramer, G 152 Kjellqvist, L 105 Komarasamy, M 115 Kramer, M 70, 76, 100, 109, 111, Kjos, O .83, 109, 110 Komatsu, L .15, 159 .128, 164 Klarner, A .56 Komazaki, S .163 Krane, M .26, 27, 50, 62, 109, 161 Klassen, T .97 Kombaiah, B .14 Kranjc, K .69, 90, 142 Kleese van Dam, K .30 Komiya, Y .82 Krawczynska, A .145, 161 Kleinke, H .5 Konda Gokuldoss, P .4, 134 Kraych, A .29 Klein, R .118, 154 Kondoh, K .6, 82, 103 Krbetschek, C .104 Klein, S .162 Kondo, S .64 Kretschmer, K .18 Klenosky, D .109 Kondo, T .157 Kreuzer, D .20 Kliir, E .80 Kong, C .6, 26, 161 Krispner, Y .44 Klingenberg, M .108 Kong, L .43, 132 Krishnamurthy, K .25 Klose, C .97 Konitzer, D	Kitamura, S	Kolli, R38, 144	Krajnák, T
Kjellqvist, L 105 Komarasamy, M 115 Kramer, M 70, 76, 100, 109, 111, Kjos, O 83, 109, 110 Komatsu, L 15, 159	Kitchaev, D	Kolli, S	Král, R
Kjos, O 83, 109, 110 Komatsu, L 15, 159	Kito, M88	Koltun, P	Kramer, G152
Klarner, A .56 Komazaki, S .163 Krane, M .26, 27, 50, 62, 109, 161 Klassen, T .97 Kombaiah, B .14 Kranjc, K .69, 90, 142 Kleese van Dam, K .30 Komiya, Y .82 Krawczynska, A .145, 161 Kleinke, H .5 Konda Gokuldoss, P .4, 134 Kraych, A .29 Klein, R .118, 154 Kondoh, K .6, 82, 103 Krbetschek, C .104 Klein, S .162 Kondo, S .64 Kretschmer, K .18 Klenosky, D .109 Kondo, T .157 Kreuzer, D .20 Klier, E .80 Kong, C .6, 26, 161 Kriegner, D .122 Klingebeil, N .22, 128 Kong, K .6 Krimer, Y .44 Klingenberg, M .108 Kong, L .43, 132 Krishna, A .112 Klintenberg, M .115 Konitzer, D .81 Krishnamurthy, K .25 Klose, C .97 Konitzer, D .81 Krishnamurthy, R .60 Klud, A .18 Kontsevoi, O	Kjellqvist, L	Komarasamy, M	Kramer, M70, 76, 100, 109, 111,
Klassen, T 97 Kombaiah, B 14 Kranjc, K 69, 90, 142 Kleese van Dam, K 30 Komiya, Y 82 Krawczynska, A .145, 161 Kleinke, H .5 Konda Gokuldoss, P .4, 134 Kraych, A .29 Klein, R .118, 154 Kondoh, K .6, 82, 103 Krbetschek, C .104 Klein, S .162 Kondo, S .64 Kretschmer, K .18 Klenosky, D .109 Kondo, T .157 Kreuzer, D .20 Klier, E .80 Kong, C .6, 26, 161 Kriegner, D .122 Klingbeil, N .22, 128 Kong, K .6 Krimer, Y .44 Klingenberg, M .108 Kong, L .43, 132 Krishna, A .112 Klintenberg, M .115 Konitzer, D .81 Krishnamurthy, K .25 Klose, C .97 Konitzer, D .81 Krishnamurthy, R .60 Kluchantsev, A .25 Kon, T .170 Kriskova, L .40 Klug, A .18 Kontsevoi, O .77, 113		Komatsu, L	
Kleese van Dam, K. 30 Komiya, Y 82 Krawczynska, A 145, 161 Kleinke, H 5 Konda Gokuldoss, P 4, 134 Kraych, A 29 Klein, R 118, 154 Kondoh, K 6, 82, 103 Krbetschek, C 104 Klein, S 162 Kondo, S 64 Kretschmer, K 18 Klenosky, D 109 Kondo, T 157 Kreuzer, D 20 Klier, E 80 Kong, C 6, 26, 161 Kriegner, D 122 Klingebell, N 22, 128 Kong, K 6 Krimer, Y 44 Klingenberg, M 108 Kong, L 43, 132 Krishna, A 112 Klintenberg, M 115 Konings, R 57 Krishnamurthy, K 25 Klose, C 97 Konitzer, D 81 Krishnamurthy, R 60 Kluchantsev, A 25 Kon, T 170 Kriskova, L 40 Klug, A 18 Kontsevoi, O 77, 113 Krivilyov, M 120 Klut, P 47 Kontsos, A 11, 12, 32, 53, 74, Krogstad, J		Komazaki, S	
Kleinke, H 5 Konda Gokuldoss, P 4, 134 Kraych, A 29 Klein, R 118, 154 Kondoh, K 6, 82, 103 Krbetschek, C 104 Klein, S 162 Kondo, S 64 Kretschmer, K 18 Klenosky, D 109 Kondo, T 157 Kreuzer, D 20 Klier, E 80 Kong, C 6, 26, 161 Kriegner, D 122 Klingbeil, N 22, 128 Kong, K 6 Krimer, Y 44 Klingenberg, M 108 Kong, L 43, 132 Krishna, A 112 Klintenberg, M 115 Konings, R 57 Krishnamurthy, K 25 Klose, C 97 Konitzer, D 81 Krishnamurthy, R 60 Kluchantsev, A 25 Kon, T 170 Kriskova, L 40 Klug, A 18 Kontsevoi, O 77, 113 Krivilyov, M 120 Klut, P 47 Kontsos, A 11, 12, 32, 53, 74, Krogstad, J 16, 17, 34, 37, 38, Knapp, J 12 94, 114, 155 60, 81, 102, 122, 138, <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td>			· · · · · · · · · · · · · · · · · · ·
Klein, R 118, 154 Kondoh, K .6, 82, 103 Krbetschek, C .104 Klein, S 162 Kondo, S .64 Kretschmer, K .18 Klenosky, D 109 Kondo, T .157 Kreuzer, D .20 Klier, E 80 Kong, C .6, 26, 161 Kriegner, D .122 Klingbeil, N .22, 128 Kong, K .6 Krimer, Y .44 Klingenberg, M .108 Kong, L .43, 132 Krishna, A .112 Klintenberg, M .115 Konings, R .57 Krishnamurthy, K .25 Klose, C .97 Konitzer, D .81 Krishnamurthy, R .60 Kluchantsev, A .25 Kon, T .170 Kriskova, L .40 Klug, A .18 Kontsevoi, O .77, 113 Krivilyov, M .120 Klut, P .47 Kontsos, A .11, 12, 32, 53, 74 Krogstad, J .16, 17, 34, 37, 38, Knapp, J .12 .94, 114, 155 .60, 81, 102, 122, 138,		•	•
Klein, S. 162 Kondo, S. 64 Kretschmer, K. 18 Klenosky, D. 109 Kondo, T. 157 Kreuzer, D. 20 Klier, E. 80 Kong, C. .6, 26, 161 Kriegner, D. 122 Klingbeil, N. 22, 128 Kong, K. .6 Krimer, Y. .44 Klingenberg, M. 108 Kong, L. .43, 132 Krishna, A. .112 Klintenberg, M. 115 Konings, R. .57 Krishnamurthy, K. .25 Klose, C. .97 Konitzer, D. .81 Krishnamurthy, R. .60 Kluchantsev, A. .25 Kon, T. .170 Kriskova, L. .40 Klug, A. .18 Kontsevoi, O. .77, 113 Krivilyov, M. .120 Klut, P. .47 Kontsos, A. .11, 12, 32, 53, 74, Krogstad, J. .16, 17, 34, 37, 38, Knapp, J. .12 .94, 114, 155 .60, 81, 102, 122, 138,			
Klenosky, D. 109 Kondo, T. 157 Kreuzer, D. 20 Klier, E. .80 Kong, C. .6, 26, 161 Kriegner, D. 122 Klingbeil, N. .22, 128 Kong, K. .6 Krimer, Y. .44 Klingenberg, M. .108 Kong, L. .43, 132 Krishna, A. .112 Klintenberg, M. .115 Konings, R. .57 Krishnamurthy, K. .25 Klose, C. .97 Konitzer, D. .81 Krishnamurthy, R. .60 Kluchantsev, A. .25 Kon, T. .170 Kriskova, L. .40 Klug, A. .18 Kontsevoi, O. .77, 113 Krivilyov, M. .120 Klut, P. .47 Kontsos, A. .11, 12, 32, 53, 74, Krogstad, J. .16, 17, 34, 37, 38, Knapp, J. .12 .94, 114, 155 .60, 81, 102, 122, 138,			
Klier, E .80 Kong, C .6, 26, 161 Kriegner, D .122 Klingbeil, N .22, 128 Kong, K .6 Krimer, Y .44 Klingenberg, M .108 Kong, L .43, 132 Krishna, A .112 Klintenberg, M .115 Konings, R .57 Krishnamurthy, K .25 Klose, C .97 Konitzer, D .81 Krishnamurthy, R .60 Kluchantsev, A .25 Kon, T .170 Kriskova, L .40 Klug, A .18 Kontsevoi, O .77, 113 Krivilyov, M .120 Klut, P .47 Kontsos, A .11, 12, 32, 53, 74 Krogstad, J .16, 17, 34, 37, 38, Knapp, J .12 .94, 114, 155 .60, 81, 102, 122, 138,			
Klingbeil, N. 22, 128 Kong, K. 6 Krimer, Y. 44 Klingenberg, M. 108 Kong, L. 43, 132 Krishna, A. 112 Klintenberg, M. 115 Konings, R. 57 Krishnamurthy, K. 25 Klose, C. .97 Konitzer, D. 81 Krishnamurthy, R. 60 Kluchantsev, A. .25 Kon, T. 170 Kriskova, L. 40 Klug, A. .18 Kontsevoi, O. .77, 113 Krivilyov, M. 120 Klut, P. .47 Kontsos, A. .11, 12, 32, 53, 74, Krogstad, J. .16, 17, 34, 37, 38, Knapp, J. .12 .94, 114, 155 .60, 81, 102, 122, 138,	•		
Klingenberg, M. 108 Kong, L. 43, 132 Krishna, A. 112 Klintenberg, M. 115 Konings, R. 57 Krishnamurthy, K. 25 Klose, C. .97 Konitzer, D. 81 Krishnamurthy, R. 60 Kluchantsev, A. .25 Kon, T. 170 Kriskova, L. 40 Klug, A. .18 Kontsevoi, O. .77, 113 Krivilyov, M. 120 Klut, P. .47 Kontsos, A. .11, 12, 32, 53, 74, Krogstad, J. .16, 17, 34, 37, 38, Knapp, J. .12 .94, 114, 155 .60, 81, 102, 122, 138,			
Klintenberg, M 115 Konings, R .57 Krishnamurthy, K .25 Klose, C .97 Konitzer, D .81 Krishnamurthy, R .60 Kluchantsev, A .25 Kon, T .170 Kriskova, L .40 Klug, A .18 Kontsevoi, O .77, 113 Krivilyov, M .120 Klut, P .47 Kontsos, A .11, 12, 32, 53, 74, Krogstad, J Krogstad, J .16, 17, 34, 37, 38, Mapp, J Knapp, J .12 .94, 114, 155 .60, 81, 102, 122, 138,	=		
Klose, C .97 Konitzer, D .81 Krishnamurthy, R .60 Kluchantsev, A .25 Kon, T .170 Kriskova, L .40 Klug, A .18 Kontsevoi, O .77, 113 Krivilyov, M .120 Klut, P .47 Kontsos, A .11, 12, 32, 53, 74, Krogstad, J .16, 17, 34, 37, 38, Knapp, J .12 .94, 114, 155 .60, 81, 102, 122, 138,		=	
Kluchantsev, A 25 Kon, T 170 Kriskova, L 40 Klug, A 18 Kontsevoi, O 77, 113 Krivilyov, M 120 Klut, P 47 Kontsos, A 11, 12, 32, 53, 74, Krogstad, J 16, 17, 34, 37, 38, Knapp, J 12 94, 114, 155 60, 81, 102, 122, 138,		=	
Klug, A. 18 Kontsevoi, O. .77, 113 Krivilyov, M. .120 Klut, P. .47 Kontsos, A. .11, 12, 32, 53, 74, Krogstad, J. .16, 17, 34, 37, 38, Knapp, J. .12 .94, 114, 155 .60, 81, 102, 122, 138,			
Klut, P 47 Kontsos, A 11, 12, 32, 53, 74, Krogstad, J 16, 17, 34, 37, 38, Knapp, J 60, 81, 102, 122, 138,			
Knapp, J	•		
Knecht, K			
	Knecht, K157	Koo, J102	

Krokhin, A	Kwon, B	Lauer, K
Kroneman, L	Kwon, E	Lauer, M
Krüger, M	Kwon, J71, 168	Laughlin, D
Krumwiede, D	Kwon, K167	Laukkanen, A
Kruzic, J	Kwon, O124	Launey, M
Kuang, W	Kwon, S	Lauridsen, E
Kubec, V	Kyratsi, T	Lau, Y
Kubrin, R	14,141.01, 1	Lavender, C
Ku, C	L	Lavenstein, S
Kuebel, C		Lavernia, E
Kuehbach, M	Lacroix, E	143, 158
Kuhlmann, J	Ladani, L 44, 53, 114, 128, 135	Lavery, L
Kuhn, B	Ladd, C	Lavery, N
Kuhr, S	Lados, D 3, 44, 54, 74, 109,	Lavielle, N
Kuk, S	132, 141	Lavoie, E
Kulis, M	Ladouceur, G	Lavoie, P
Kulkarni, S	Laflamme, F	Lavrskyi, M
Kumagai, M157	Lagacé, C73, 109	Lawn, B
Kumagai, Y	Lai, B	Lawrence, S
Kumar, D	Laine, J110	Lawrie, B
Kumar, G90	Lainer, Y	Laws, K
Kumar, M	Laing, J	147, 149
Kumar, N	Lai, P85	Lawson, J
	Laird, B	Laws, W24
Kumar, P	Lai, S	Leach, L
Kumar, R	Lai, Y	Leary, A
Kumar, S	Lalwani, B	Leazer, J
Kumawat, B122	LaManna, J30	Lebedev, O
Kumdali Acar, F	Lambotte, G	Lebensohn, R 72, 87, 116, 151
Kunc, V	Lancaster, F	LeBlanc, M
	Lance, M	
Kunimine, T	Lançon, F56	Lebon, G
Kunitake, M	Landa, A57	LeBreux, M
Kunnummel 46 Kuntz, M 46	Landau, U79	Le Brun, P
	Landers, R	Leclerc, S
Kupriiyanova, J	Landino, B141	Lee, A
Kurimoto, T	Lane, B	Lee, B
Kurmanaeva, L	Lan, G113	Lee, C
Kurniawan, M	Langdon, T 105, 139, 161	
Kuroda, P	Langelier, B	Lee, D
Kurosaka, S	Langer, J11	Lee, G
Kurosaki, K 104, 152, 156, 157	Lan, J	Lee, H
Kuru, Y	Lan, K	106, 120, 137, 139, 147,
Kurz, G	Lanning, W	
Kurz, W	Lan, S	Lee, J
114, 162	Lan, X110	42, 57, 59, 63, 65, 79,
Kushan Akin, S	La, P	
Kushima, A	Laplanche, G95	
Kustas, A	Lark, A	
Kutsal, M	Larrazabal, C169	Lee, K12, 44, 124, 155, 166,
Kuttolamadom, M	Larsen, J	167, 168
Kutukova, K	Larson, B	Lee, M 12, 56, 98, 118, 135, 136
Kuwabara, K	Larson, N20, 41, 71	Lee, N
Kužel, R	Lashgari, H	Lee, P
Kvamme, B	Lass, E	Lee, S
Kvithyld, A	65, 107	
83, 103, 124, 160	Lassiter-Mangana, J 42	
Kwak, J	Lattimer, B	Lee, T 17, 53, 94, 113, 133, 148
Kwak, T156		Lee, W

I V 16 157	I : C 160	157 150
Lee, Y	Lian, S	156, 158
Lefaix-Jeuland, H	Lian, Y151	Lim, J
Leff, A59, 108, 149	Liao, J69	Lim, W116, 157
Lefler, H61	Liao, L	Li, N 14, 23, 31, 59, 77,
le Graverend, J 54	Liao, X	98, 121, 158
Legris, A	Liaw, P 6, 26, 28, 49, 55,	Lina, L
=		Lin, B
Legros, M		
Lehman, J	94, 95, 111, 112, 115,	Lin, C 16, 21, 112, 131, 166
Lehmann, J	116, 130, 133, 136, 141,	Lindberg, D 37, 79, 105, 170
Lei, J	143, 153, 156, 163, 164	Linde, D
Leimberger, M	Li, B	Lindemann, A
Leitner, A	47, 49, 50, 51, 69,	Lindemer, T
Leitner, M95	71, 78, 85, 91, 112,	Lind, J117
Leitner, T84		Lindley, T
Lei, Y		•
	Libertini, R	Lind, R
Lei, Z114	Libo, Z	Lindsay, S
Lejaeghere, K	Li, C12, 21, 31, 61, 62,	Linga, H30
Lekakh, S84	67, 76, 83, 86, 115,	Linga Murty, K
Lemgruber, L24	130, 132, 141, 143, 147,	Ling, H62
Lemoine, O	159, 161, 165	Lingwei, Y
Lemoine, P 5	Licavoli, J76, 99, 115, 119, 133,	Lin, H93, 146
Lenarz, T		Lin, J
	Li, D 42, 97, 119, 133	
Lenci, M		Lin, K
Lenoir, B	Lidong, Z5	Linke, B
Lenski, H	Lienert, T	Linke, J
Lenthe, W54, 96	Lienert, U	Link, R
Leonard, D 32, 109, 119, 155	Lienshoeft, L	Lin, L
Leonard, K 14, 35, 78, 140, 143, 150	Li, F 50, 118, 162, 169	Lin, M
LePage, W	Li, G 21, 28, 67, 85, 86,	Linne, M
Leparoux, M		Lin, P
-		
Lepkowski, D		Lin, S 16, 37, 59, 81, 101, 146, 147
Lepule, M56, 157	Ligda, J 108, 125, 134, 156	Lin, T
Le, Q18	Li, H 15, 30, 129, 146, 155, 162	Lin, X
LeSar, R100	Li, J	Lin, Y
Le, T	32, 34, 43, 46, 50, 51,	
Letcher, T	56, 58, 59, 60, 71, 84, 88,	Liotti, E
Letzig, D 104, 124, 135, 160		Liou, F
Leu, B		Liou, T
Leu, F	157, 158, 162, 163, 164, 167	Li, P
Leu, M		Liping, Z
Levchenko, E	Li, K	Lipinska, M
Levi, C	Li, L 5, 10, 12, 24,	Lipin, V24, 47
Levine, L 3, 22, 105, 108, 132, 165	29, 30, 31, 46, 53,	Li, Q
Levin, Z	67, 74, 86, 92, 101,	
Lewandowska, M 139, 145, 161		
Lewandowski, J 3, 26, 44, 47, 59,	Lilensten, L	Liqiang, W
		1 0
65, 119, 130, 133, 137,	Lili, Z	Li, R
151, 155	Liljegren, A	Li, S 12, 33, 76, 117, 127,
Lewis, B	Lilleodden, E 36, 42, 45, 158	
Liang, B	Lilova, K27, 91	Lisboa-Filho, P
Liang, C	Li, M	Liss, K
Liang, F91, 129	57, 59, 62, 63, 84,	List-Kratochvil, E
Liang, J		Li, T
Liang, L	119, 121, 135, 140, 159,	Littlefair, G
•		
Liang, S		Littrell, K 107, 128, 141
Liang, Y	Lim, A116, 122	Litynska-Dobrzynska, L 144, 165
Liang, Z30	Lima, G163	Liu, B50, 51, 59, 82, 118,
Lian, J	Lim, H4, 79, 97, 127, 132,	

I: C 7 12 21 (7 01	I - I	I C 51 52
Liu, C	Lo, L	Lu, G
90, 102, 106, 114, 126,	Lolla, T119	Lugao, A15, 159, 165
142, 168	Lomaev, S	Lugão, A 46, 71, 153, 159
Liu, D	Lomunov, A71	Lu, H
Liu, G	Long, C65, 110	Luhrs, C158, 163
Liu, H4, 10, 81, 84	Long, H	Lui, A
Liu, J	Long, M	Luidold, S
70, 74, 87, 88, 97,	Longoria, L	Luitjohan, K
128, 129, 153, 155, 158,	Long, S	Lui, W
		Lu, J
Liu, L 24, 28, 63, 142, 146, 166, 169	Long, W24, 67	Lujan-Regalado, I
	e	
Liu, M	Long, Z	Lu, K
Liu, P	Lookman, T	Lukác, F
Liu, Q 6, 73, 85, 147	Lopes, E	Lu, L
Liu, R112, 116	Lopez-Hirata, V163	Lu, N
Liu, S 7, 10, 40, 87, 102, 123, 153	Lopez, J146	Lundin, C
Liu, T	Lopez, V	Lund, S45
Liu, W	Lorenzino, P	Lunt, D45, 108
	Lorenzo, N	Luo, A 9, 12, 30, 56, 57
Liu, X 6, 9, 10, 14, 21,	Lorusso, M127	Luo, C112
23, 26, 29, 31, 36,	Löser, W	Luo, H
40, 43, 52, 53, 61,	Lossius, L	Luo, J
	Loto, C	Luo, m
90, 93, 107, 113, 114,	Lotto, A	Luong, D
119, 132, 154, 155,	Louchez, M	Luong, N
157, 162	Loughnane, G128	Luo, S
Liu, Y	Lou, H49	Luo, W
39, 49, 50, 59, 64, 77,	Louhenkilpi, S27	Luo, X128, 156
82, 85, 86, 93, 106, 110,	Lourenço, M	Luo, Z58
129, 132, 134, 147, 159, 167	Loutfy, R	Lu, P
Liu, Z 41, 56, 64, 88, 92,	Louzguine, D	Lupinacci, A107
95, 97, 111, 115, 130,	Lovato, M	Lu, Q
	Love, L	Luque, A
Livescu, V 3, 45, 150, 165	Löwe, K	Lu, S 26, 123, 147, 152
Li, W	Lowery, A	Luscher, W
Li, X 2, 19, 34, 36, 39,	Lowe, T	Luskin, M
		Luther, E
Li, Y 10, 22, 31, 42, 43,	Low, T	Lüthi, B
50, 53, 58, 64, 66,	Lo, Y	Lutton, K
73, 93, 102, 113, 132,	Lozano-Perez, S86	Lu, W
151, 154, 162, 164, 169, 170	Lu, A45, 151	Lu, X
Li, Z	Lubarda, V5	142, 146, 162, 165
100, 106, 107, 116, 118,	Lubin, M30	Lu, Y 30, 46, 88, 117, 119, 156
125, 161	Lu, C	Lu, Z
Lj, L112	150, 162, 165	Luzanski, T141
Llobet, A82	Lucadamo, G107	Lv, D
Llorca, J	Lucas, M 12, 23, 55, 76, 95, 96	Lv, K
LLorca, J	Lucas, P	Lv, L
Lloyd, P	Luce, B	Lv, S
•		
Lloyd, R	Luce, J	Lv, X
Lock, A	Lucero, A2	Lv, Y
Loc, T	Lucey, T	Ly, A
Loeffler, J111	Lucis, M	Lyapunova, E
Löffler, J	Ludwig, A6, 19, 27, 50, 70, 94,	Lynch, P56
Logan, K127	153	Lyon, P117
Loghin, A54, 74	Ludwig, K53	
Lograsso, T	Ludwig, W32, 151	
Lokitz, B	Lu, F	

M	Molard D 51	Marian I 160
M	Malard, B	Marian, J
Ma, A	Malet, L	Marinica, C
Maalekian, M	Malfliet, A	Mariyappan, A
Maass, R	Malik, J	Marker, M
Ma, C		
MacDonald, E147	Malik, M .93 Malka-Markovitz, D .166	Maroudas, D
MacDowell, A71		Marquis, E
Macedo, E	Malladeb, B	
Macedo, J	Mallik, M	
Machado, G	Maloy, S	Marsden, W
Machiels, L		Marshall, D
Maciel, N	Maltais, J	Marshall, G
Macin, V	Malynowskyj, A	Marshall, R
Mackey, P 20, 41, 62, 84, 104, 1	Ma, M	Martens, R
24, 125, 169	Mamiyand, M35	Marthi, S
MacRae, A	Ma, N	Martín-Aranda, M
Macwan, A	Manakari, V	Martín-Cid, A
Ma, D	Manandhar, K	Martín, D
Madan, D	Manazoglu, M	Martinez, E
Maddali, S	Manchiraju, K50	Martínez, J
Madden, J	Mandal, A	Martinez, N148, 161
Madison, J	Mandal, M80	Martínez, R
Madugundo, R	Mandal, S	Martinez Saez, E
Ma, E	Manfredi, D127	Martínez-Saez, E
Maeda, M	Manga, V	Martin, H 4, 39, 150, 152, 160
	Mani, B	Martini, R
Ma, G	Manilla, E	Martin, J24, 147
Magnuson, E	Manimunda, P	Martin, M149
Maguire, M	Manivannan, S	Martin, O110
Ma, H	Manjili, M91	Martins, R
Mahajan, S	Mankame, N	Martin, T
Mahapatra, M	Manley, M 12, 33, 55, 76, 95,	Martukanitz, R
Mahapatra, R	116, 151	Martynenko, N
Mahida, P	Mannava, S	Maruoka, N
Mahjoub, R	Mann, V47	Maruyama, S
Mahjouri-Samani, M	Mansoor, B60, 101, 105	Marvel, R21
Mahklouf, M	Manuel, M	Marx, M32
Mahmudi, R	97, 117, 118, 135, 148,	Marya, M39
Mahtabi, M	156	Ma, S
Maia, W	Manzoni, A	Mashl, S 6, 26, 49, 69, 91
Maier, H	Mao, H	Maskley, B
Maier, P	Mao, S	Mason, P 3, 13, 22, 44, 65, 107
Maier, S	141	Masood, S
Maier, V 26, 40, 66, 137	Mao, W31	Masoumi, M 126, 157, 165
Maijer, D	Mapar, A131, 142	Massey, C119
Maiti, S	Ma, Q 31, 61, 82, 103, 123	Massey, M127
Maiti, T	Mara, N	Masson, P
Maiwald, D	158	Masuda, T
Ma, J	Marceau, D30, 73	Ma, T96
Major, J	Marcelo, O146	Mathaudhu, S 20, 26, 42, 50, 55,
Major, P	Marcelo Suárez, O148	63, 75, 76, 84, 95,
Major, R	Marchand, D58	97, 105, 115, 125, 133,
Majrashi, M	Marconnet, A	139, 143, 145, 156, 157,
Majumdar, B	Margarido, F	161
Ma, K	Margelowsky, G113	Mathew, K
Makitka, A	Margem, F	Mathew, M4, 24, 151
Ma, L	Margem, J	Mathew, S
73, 108, 113, 132, 133	Maria, J	Mathis, K118

Mathur, S	McGregor, K	Meredith, C118
Matlock, D	McGuinness, K	Merkle, A
Matson, D 100, 120, 137	McGuire, M109, 128	Mertens, J
Matson, L	McHenry, M	Meskers, C 19, 40, 41, 61, 82,
Matsunaka, D	McHugh, P117	83, 103, 124, 160
Matsuura, M	McInnis, C	Messina, L
Matteis, P	McIntosh, G	Messing, G
Matthies, C	McIntyre, D	Metson, J
Mattson, J	McKeown, J	
		Meydanoglu, O124
Mauger, L	McKerns, M	Meyer, A
Maughan, M	McKinley, J	Meyer, F
Maugis, P	McKittrick, J	Meyer, H
Mavroudis, A	McMahon, J	Meyers, M 5, 42, 48, 89, 101,
Ma, W	McMurray, J8	138, 146, 153, 161
Ma, X	McNally, B61, 73	Mezin, H
Ma, Y	McNulty, I	Miao, J
May, A	McWhinney, H	Miao, Y 36, 43, 119, 127, 157
Mayer, A20	McWilliams, B6, 103	Michael, N
Mayer, C	Meagher, P	Michaels, C
Mayer, M	Mecartney, M78	Michalikova, J90
Mayeshiba, T30	Meço, H	Michel, K
Mayeur, J	Medasani, B9	Michie, R
Mayo, D	Medina, C	Mignanelli, P81
Mayrhofer, L	Medisetti, S	Mi, H
Mays, J	Medlin, D	Mikhailova, A
Ma, Z	Meek, N	Milhet, X
Mazdiyasni, S	Meek, T	Militzer, M
Maziasz, P	Megahed, M	Miller, B
Maznev, A	Meher, S	Miller, C
Mazumder, J	Mehrjardi, A	Miller, J 127, 150, 162, 164
Mazur, K	Mehta, A	Millerleile, J
Mazzoni, A	Meidani, H	Miller, M
Mburu, S	Meier, J	Miller, S
McAllister, D	Meinshausen, L	Miller, V
Mccabe, R77	Meirbekova, R89	Millett, P
McCabe, R	Mei, Z 127, 154, 158	Milligan, J65
87, 102, 105, 108, 118,	Melado, A60	Mills, M 3, 72, 96, 139, 144,
134, 150	Mello, A	145, 154, 168
McCall, S	Memdelev, M	Mills, R60
McCallum, R109	Menasche, D	Millwater, H74
McCallum, W	Mendelev, M 29, 42, 96, 121	Mimoto, T
McCarley, J66	Mendes, B	Minami, K
McCauley, J	Méndez, C	Minárik, P
McClelland, Z	Mendez, E	Min, B167
McComb, D	Mendez, J54	Mindt, H
McCrea, J	Mendez-Martin, F	Mineta, T156
McCulloch, R93	Mendis, C34, 78, 97	Minnich, A
McDaniel, C6	Mendis, G	Minor, A 14, 77, 134, 158
McDaniels, R	Mendonça, T	Miracle, D 55, 115, 141, 142
McDonald, B	Menegazzo, N	Miranda, L
McDonald, R	Menezes, P	Mireles, I
McDonald, S 10, 94, 132, 154, 155	Meng, F	Mireles, J
McDonnell, S	Meng, W	Mishin, Y
McDonnell, W	Menon, E	Mishra, B
	Menon, S	
McDowell, D13, 54, 92, 94, 113,		82, 83, 103, 124, 146,
	Menou, E	
McEnerney, B	Mercier, D	Mishra, R
McGlade, P24, 46, 67	Meredig, B52	67, 68, 75, 77, 87, 108,

115 127 122 140 140	M (1	M 11 () C 50 155
115, 127, 132, 148, 149,	Montesano, J	Muhlstein, C
150	Montgomery, C22, 107	Mukai, T56
Mishra, V140	Montgomery, F	Mukherjee, A 16, 63, 123, 158
Misiolek, W	Montiel, D	Mukherjee, P
Misra, A14, 15, 23, 33, 36,	Montoya Carvajal, J 163	Mukherjee, R
	•	•
	Montoya, J	Mukherjee, S49, 90, 116, 117,
	Mook, W	
Misra, M	Moon, B158, 163	Mukherjee, T126
Mistarihi, Q157	Mooney, K	Mukhopadhyay, J
Mitazono, Y	Moon, J	Mulakuri, N52
Mithieux, J	Moon, M	Mulay, R
Mitra, A	Moore, G	Müller, C
Mitra, R	Moore, L	Müller, M
Mitra, S	Moosavi-Khoonsari, E170	Muller, S
Mittal, P	Morais, B	Müller, S
Mittig, W	Morales, D	Mulligan, R70
Mittler, T	Morales-Estrella, R100	Mullner, P
Miura, S	Morales, F	Mungole, T105
Miwa, K	Morales-Rivas, L78	Munguia, J
Miwa, S	Moras, G	Munhoz Jr, A165
Miyamoto, G	More, K	Munhoz Junior, A71, 165
•		
Miyamoto, T	Moreno, M	Munirathnam, N169
Miyazaki, Y	Moreno-Ramírez, L	Munir, K
Mnikoleiski, M	Morgan, D	Munoz, J
Mo, C	71, 72, 93, 95, 113,	Muñoz, J96
Moering, J	116, 132, 154	Munoz Moreno, R
Mogilevsky, P	Mori, G	Munroe, P 6, 26, 56, 161
Mohamed, G	Morishita, K	Muntifering, B
Mohamed, W 64, 127, 157, 158	Mori, T	Murakami, K
Mohammad Rahimi, R	Mörke, T	Murakami, Y
Mohan, A54	Morral, J	Muralidharan, G 119, 155, 166
Mohan, K164	Morris, A	Muralidharan, K85, 95, 132
Mohassab, Y 2, 6, 39, 64, 99,	Morris, J	Murashkin, M 21, 68, 88, 140
100, 169	Morrow, B 34, 55, 77, 96, 116,	Murch, G132
Mohd Khalid, H	122, 134	Murcia, S
Mohd Salleh, A	Morscheiser, J	Murdoch, H56, 63, 77, 96, 117,
Mohd Salleh, M 10, 94, 154, 155	Mosali, V	
Mohri, T	Moscoso, I	Murph, S
•		-
Mo, J	Moseler, M	Murphy, A
Mo, K	Moser, R	Murray, C140
140, 157	Mostafaei, A	Murr, L152
Molina-Aldareguia, J 4, 34, 45, 79	Mota, F100	Murty, B134
Molla, M68	Motamarri, P51	Murty, K149
Mollaoglu Altuner, H124	Motta, A 14, 28, 43, 141	Murugesan, V
Mompiou, F	Motz, C	Music, D
Monaji, V	Mourad, H	Musinski, W
•		
Monas, A	Moura, E	Mussnig, F
Monchoux, J61	Mourão, M85	Muta, H 152, 156, 157
Monnet, I	Mousseau, N 8	Muthegowda, N
Monnier, J	Mo, X	Mutuku, F53
Monroe, C	Mo, Y	Mu, Y
Monroe, W	Moylan, S	Muylaert, F91
Montalvo, J	Moy, T	Muylaert, L
Monteiro, S	Mridha, S	Muylaert Margem, F
	Mroz, M	Myers, D
163, 164	Mueller, S	Myrhe, C
Montemagno, C 48	Mueller, T93	
Monterrosa, A64	Muhammad, W68	

N	N Ch, K	Niedziela, J76
Nabatame, T	Ndjom, B	Niedziolka, K
Nabawy, A	Neal, D	Nieh, T
Nadot-Martin, C31	Neelameggham, N 10, 13, 17, 19, 31,	Nie, J
Nagai, Y		Nielsch, K
Nagao, S	56, 61, 74, 78, 82,	Nielson, W
Nagarajah, R	83, 97, 103, 117, 118,	Niesenhaus, T129
Nagaumi, H	124, 135, 155, 156, 159,	Nieto, D
Nagel, J		Nie, Z
Nagels, E	Neibecker, P	Niezgoda, S 3, 13, 16, 30, 90,
Nagira, T	Neilson, H	
Naglieri, V	Neises-von Puttkamer, M	Niinomi, M
Nagpure, S	Neiva, G	Nikandrov, K
Naguib, M	Nelabhotla, D	Nikolic, V
Nahshon, K	Nelaturu, P	Ning, C
Naik, R	Nelson, A	Ningileri, S
Nai, M	Nelson, K	Ning, Z
Nair, A	Nemiroski, A	Ninomi, M
Nair, V	Neri Enriquez, D	Ninomiya, Y
Nait-Ali, A31	Neron, J	Nirankari, V
Na, J90	Nesic, S	Nishibata, A
Nakai, M	Nestler, B 16, 52, 72, 123	Nishikawa, A60
Nakamori, F	Neto, P	Nishikawa, H
Nakanishi, B	Netto, P	Nishikawa, L 60
Nakano, A 10, 40, 82, 159	Neuefeind, J	Nishimura, T 54, 73, 132, 155
Nakano, J	Neugebauer, J 9, 34, 95, 116, 132,	Nitschke, R
Nakano, K	144, 156	Niu, J
Naleway, S	Neuhaus, J	Niu, T118
Nam, C21	Neuhaus, P	Nizery, E
Nam, H	Neumann-Heyme, H32	Nizolek, T84, 105
Namilae, S	Neumann, J	Nlebedim, C
Nam, S	Neves, A131	Nlebedim, I
Nan, C 5, 24, 46, 67, 152	Neves Monteiro, S	Nnaji, R
Nangia, V	Neves, S	Nobakhtghalati, S52
Nanstad, R144, 166	Neveu, J	Nobari, A
Napolitano, R	Neville, A	Noble, M
Naragani, D	Newell, R	Noebe, R
Narayanan, V	Newman, J	Noell, P
Narayan, R	Newman, R	Nogami, H
Narita, K	Nga Yu, H102	Nogita, K 10, 31, 53, 73, 93,
Narushima, T	Ng, K	94, 113, 132, 154, 155
Nasedkina, Y	Ng, N	Nogueira, A
Nash, P	Nguyen, J	Nogueira, R
Nasim, W 60	Nguyen, L	Nohira, T
Naskar, A	Nguyen Le, P	Noh, J
Nastac, L 6, 27, 50, 70, 153	Nguyen, Q	Noh, Y
Nastar, M	Nguyen, T	Nolen, R
Nastasi, M	Nguyen-Thi, H	Norfolk, M
Natarajan, A	Nibur, K	Norquist, P
Nathaniel, J	Ni, C	Northey, S
Navale, S	Nichol, C	Nouri, A
Navone, C	Nichols, B	Novakovic, R
Na, Y155	Nickolai, I	Nowell, M
Nayak, J	Nicola, L	Nunis da Silva, A 40
Nazaretski, E10	Nicolas, A	Nürnberger, F
Ncapayi, V	Niedzialek, S	Nyberg, E
		7 0, =

Nychka, J	Oliveira, L	Ouzilleau, P
129, 152	Oliveira, N	Overman, N
Nye, A	Oliveira, O	Ovri, H
,-,-	Oliveira, R	Owen, S
0	Oliveira, S	Owoeye, T
01: 5	Oliver, W	Ozcan, S
Obi, E	Olivetti, E	Özdemir, F
O'Brien, C		Özdes, H
O'Connor, G6	Olmsted, D	Özerinç, S
Oddershede, J	Olson, G	Ozer, S
Odette, G15, 35, 37, 59, 64,	Olsson, P	Ozisik, R
101, 107, 119, 136, 137,	Olszewska, J	Ozolins, V
	Oluwatobi, O	Ozturk, D
Odqvist, J82, 123	O, M	Ozturk, T
Ofori-Opoku, N	Omori, T	Ozturk, 1
Ofran, A119	Omotosho, O	P
Ogata, P	Omrani, E	-
Ogawa, Y		Pacheco, V
Ogbiye, A165	Onderka, B	Packard, C
Ogunlana, O	Onisei, S	Pacou, D54
Ohara, K69	Oñorbe, E	Padhi, B
O'Hare, E35	Onovo, H	Padilla, R
Oh, C	Oosterhof, H 17, 38, 61, 159	Padula, S
Oh, H	Ophus, C	Paes, J
Oh, I	Opila, E124, 170	Pagé, M53
Ohi, A81	Opila, R	Page, T
Ohishi, Y 152, 156, 157	Oppedal, A12, 78	Paiva, D
Oh, J	Ordonez, S	Pajarre, R
Ohkubo, T109	Ordoñez, S167	Pakkanen, J
Ohl, B69	Ordu, M167	Pak, V25
Ohm, V	Orhan, G	Palacios, E
Ohnuma, I 16, 37, 59, 81, 101	Orlov, D	Palanivel, S
Ohodnicki, P 4, 11, 23, 33, 45,	Orozco-Caballero, A 45	Palasyuk, A
53, 54, 66, 75, 88,	Orozco -Sandoval, M105	Palazuelos, L
95, 109, 115, 128,	Ortalan, V	Pal, J
	Ortiz-Lara, N100	Palkowski, H
Ohriner, E	Ortiz, M	Palmer, C
Oh, S	Ortiz-Mariscal, A	Palmer, T
Ohtaki, K	Osaka, M	
	Ose, S	Palm, M 40 Palmre, V 39
Ohto, K	Osetsky, Y	
Ohtsuka, Y	Oshin, T	Pal, s
Ojha, A	Osoba, L149	Pal, S
Ojolo, S	Ossa, A5	Pal, U
Ojo, O	Ossa Henao, E	Palukuri, N
Okada, J	Ostadhossein, A	Palumbo, M
Okasinski, J	Osuji, C	Panat, R
Okeniyi, E	Oswald, J	Pan, D
Okeniyi, J 25, 83, 157, 165, 166	Oswald, M104, 160	Panda, A
Okosun, T	Otagiri, Y145	Panda, M
Oksman, P	Otero, J	Pande, C
Oladipupo, S	Otis, R	Pandelaers, L
Olaleye, S	Ott, R 100, 109, 164	Pandey, A
Olaya-Luengas, L	Ouchi, T	54, 55, 75, 77, 95, 96,
Olejnik, L161	Oudot, B	
Olevsky, E70, 100	Oum, G	Pandey, O
Oliani, W		Pandey, R
Olivares, R99	Ouyang, D	Pan, F
Oliveira, F	Ouyang, F	Panfilov, P

Dama ()	Datal II 07	Domar D 9 20 51 72 02
Pang, Q	Patel, H	Perez, D 8, 29, 51, 72, 92,
Pang, R	Patel, J	
Pang, X118	Patel, M 14, 78, 127, 157	Perez, E
Panigrahi, A139	Patel, P	Perez-Labra, M
Pan, L	Patel, S 4, 24, 54, 110, 148,	Perez-Reche, F
Pan, Q58, 147	151, 161, 169	Perez Trujillo, F
Pantleon, W3, 23, 45, 66, 87,	Pathak, S	Pericleous, K 6, 19, 27, 50, 70,
108, 150	Patil, Y	111, 137, 153
Pan, W	Patiño Cardona, F	Perkins, E
Pan, X24, 46	Patiño, F	Perovic, D53
Pan, Y	Patriarca, L	Perriere, L
Pan, Z	Patrice, C	Perrière, L
Panzner, T	Patte, R	Perrin-Schmitt, F
Papandrew, A	Patterson, B	Perron, A
Papanikolaou, S	Paul, R	Persaud, S
Papesch, C	Paulson, N	Persson, K
Papin, P 22, 57, 79, 82, 127	Paul, T	Pesic, B
Paquit, V	Pavlidis, G2	Pešicka, J161
Paramatmuni, C156	Pavlov, S	Pessoa, D
Paramore, J	Pavone, M51	Petculescu, G
Parande, G97	Pawlek, R110	Peters, B11
Paranjape, H	Paxton, D	Petersen, A
Paranthaman, M128	Payton, T	Petersen, S
Parekh, D	Payzant, E	Petersen, T124
Parida, S91	Pearce, J	Peterson, J
Parikh, H	Pearce, M	Peterson, P
Parish, C	Pedrazzini, S	Peters, R
	Pedroti, L	Peter, W
Park, B	Peelman, S	Petford-Long, A
		•
Park, C96, 163	Pegues, J	Petrov, A
Park, D	Pei, F	Petrovna Semenova, I
Park, E	Pei, N	Petrov, R
	Pekguleryuz, M73	Petry, W
Parker, I	Pellemoine, F	Pettit, R
Parker, S	Pelletier, J	Pfeif, E
Park, H14, 29, 36, 40, 58,	Pellicer, E	Pfennig, A
79, 100, 120, 137, 147,	Pellin, M 127, 157, 158	Pham, Q7
153, 157, 166	Pelton, A20, 41, 62, 84, 104,	Phan, M
Parkinson, D		Phan, T
Park, J	Peng, F	Pharr, G 119, 121, 143
62, 87, 112, 124, 140,	Peng, G97, 156	Phatak, C9, 30, 164
149, 165, 167	Peng, J 13, 28, 61, 86, 127, 140,	Phillion, A
Park, L	141	Phillips, J
Park, S	Peng, K	Phukan, H
Parks, S	Pengqi, Z	Phung, B
Park, Y	Peng, W	Piasny, S
Parlak, M		•
	Peng, X	Picard, Y
Parra, D 15, 46, 71, 153, 159, 165	Peng, Z	Picasso, M
Parrens, C	51, 71, 86, 91, 112, 127,	Pichler, C
Partezana, J14		Pickering, E115
parthasarathy, t	Penumadu, D87, 92	Pickmann, C
Parthasarathy, T29, 60	Peppler, D	Pierce, D
Pasebani, S	Peralta, P 7, 79, 127, 158	Pihlasalo, J
Pasiliao, C	Perander, L129	Pilchak, A 13, 65, 77, 94, 133, 165
Passos, S	Perea, D	Pillai, V47
Patala, S	Pereda, J	Pilyugin, V40
Patel, A108	Pereira Goncalves, A	Pilz, S
Patel, D65	Perez-Bustamante, R 67	Piñero, E62

Ping, W	77	Porter, W	Pulugurtha, M
Pinheiro, M		Portugal Gonzales, I124	Purdy, G
Pinisetty, D		Poschmann, M	Pustode, M148
Pinomaa, T		Post, B	Pusztai, T
Pino Rivero, L		Potocnik, V	Putman, D
Pint, B 98, 99, 119, 141, 1		Potokin, A	Pyo, Y
Pint, C		Poudeu Poudeu, P 5	Pytlewski, K
Pintore, M		Poulsen, H	1 yelewises, 10
Pippan, R		Poulsen, S	Q
		Pourboghrat, F	
Pirard, E		Pourjafar, D	Qasim, M
Pirling, T		Pournaderi, S	Qian, D
Piro, M		Pourovskii, L	Qiang, J
Pisch, A		Pourroy, G	Qiang, Z107
Piskin, F		Poveda, P	Qian, L112, 164
Pistorius, P 2, 3, 21, 22,		Powell, M	Qian, M82
		Power, B	Qian, S
		Powers, K	Qian, Y43
Pitts, A		Pozenato, C	Qianying, Z
Plank, H		Poznak, A	Qiao, J 6, 49, 111, 118, 133
Plapp, M		Pozo-Morejón, J	Qiao, Y40, 162
Plevachuk, Y		Prabhakaran, R 13, 14, 35, 47, 57,	Qiao, Z170
Plotkowski, A		78, 98, 119, 136, 144,	Qi, L
			Qin, F
Podmaniczky, F			Qingkai, X
Podolskiy, A		Prabha, A	Qingyan, X
Poelmans, W		Prabhu, A	Qingyun, Z
Poirier, D		Prabhu, N	Qin, L126
Poirier, S		Pradhan, S	Qin, Q10, 74
Pokharel, R		Prager, M148	Qin, W
Poková, M		Prakash, C	Qiu, A
Polat, D		Prasad, A104	Qiu, J 48, 98, 130, 152
Polcawich, R		Prasad, K	Qiuju, L
Poling, W		Prashanth, K	Qiuyue, Z
Polle, S		Prater, T	Qi, Y
Pollock, T		Pratt, M	Qi, Z162
105, 113, 1		Praveen, P	Quadir, M
Poll, V		Prenninger, P	Quadir, Z161
Polyakova, V		Pretorius, E	Quan, H
Polyakov, M		Preuss, M	Qu, D
Polyakov, P		Pribram-Jones, A	Quek, S
Polyanskii, A		Price, L	Que, Z
Pomrehn, G147, 1		Price, P	Quinta da Fonseca, J 45, 108, 113
Poncsak, S		Priddy, M54	Quintana Puchol, R
Poncsák, S		Priedeman, J	Qu, J
Ponga, M		Prieur, D	Qu, T
Pontes, L		Prima, F	Qu, X
Pontikes, Y		Prisbrey, K	Qu, Z140
Poole, W		Prithivirajan, V	
Poole, Z		Priya, P	R
Poon, J		Proffen, T	Packs D 24 65 66 75 00
Pooser, R		Promakhov, V	Raabe, D
Popat, K		Proudhon, H32, 151	
Poplawsky, J 17, 28, 38, 78,		Proust, G	Raab, G
		Provatas, N 32, 56, 58, 72, 162	Raahauge, B
Popoola, A83, 1		Pruyne, J	Rabbaa, S
Popov, Y		Przybyla, C60	Rabbi, F
Poquillon, D		Puchala, B	Rabeeh, B
Porter, M	. 5	Pudasaini, P	Rabello, A

Rabiu, B	Rappaz, M	Resichig, P7
Race, C	Rashad, M	Restorff, J
Rachdi, F	Rashid, J	Restrepo Baena, O
Rack, P	Rasouli, E	Restrepo, D
Radchenko, I	Ratajczak, M	Restrepo Gutiérrez, J
Radecka, A	Rateick, R	Restrepo, J
Radoman-Shaw, B	Ratvik, A	
		Restrepo, O
Raeisinia, B	Ravat, B	Rettenmayr, M
Rafiezadeh, S	Ravindra, N 18, 19, 39, 40, 160	Reuter, M
Rager, M	Ravindran, R	Reuven, R
Raghavan, N	Ray, A	Revard, B
Raghavan, S	Ray, D	Reverdy, M
Rahbar, N	Ray, P	Revil-Baudard, B
Rahman, M	Razavi, S	Reyes Cruz, V
Raiman, S	Razaz, G50	Reyes D., I
Rajagopalan, J	Razmi, J	Reyes, I 112, 166, 167
Rajagopalan, M 21, 36, 100, 157	Read, J	Reyes, M
Rajagopalan, S52	Ready, J	Reyes Perez, M
Rajaguru, M	Rebak, R	Reyes Pérez, M
Raja, K	98, 99, 119, 136, 144,	Reyes Valderrama, M163
Rajamani, R83	157	Reynolds, T
Rajan, K	Recht, D94	Rezende, A
Raja, V	Reddy, G103	Rhamdhani, M
Rajendran, N	Reddy, K139	Rhee, H44, 51
Rajh, T	Reddy, R46, 169	Rhein, R113
Raju Natarajan, A72	Redik, S	Rhyim, Y124
Raju, S	Redjaïmia, A	Riaño Zambrano, J96
Rakowski, J	Redwing, J	Ribárik, G
Rak, Z93	Reed, A63	Ribeiro, A 4, 23, 24, 45, 151
Ramachandran, S167	Reedlunn, B	Ribeiro, C91, 131
Ramadurgakar, A	Reek, T	Ricci, E
Ramalingam, G165	Reeve, K	Richards, A
Ramana, C 18, 39, 128, 160	Reeve, S	Richardson, C57
Ramanathan, R92	Reggente, M18	Richter, A
Ramanathan, S	Reichardt, A 56, 107, 149, 150	Richter, M
Raman, R91	Reid, M	Riegel, J
Ramanujan, R 4, 23, 45, 66, 88,	Reifsnider, K	Rieken, J
	Reinhart, G	Rieutort-Louis, W
Ramchandran, D	Reinke, P	Riggs, M
Ramesh, A	Reinl, A	Rigmant, M
Ramesh, K	Reiso, O	Rigopoulos, I74
Ramezani-Dakhel, H68	Reiss, R	Rikhari, B
Ramirez, A	Reiter, C	Rincon Troconis, B
Ramirez, M	Rementeria, R	Ringdalen, E
Ramirez Ortega, P	Remington, B	Ringers, S
Ramírez, P	Remington, T	Rinzler, C
Ramos Ribeiro, T 40	Renaudier, S	Rios, O
Ramstein, G	Ren, B	Ripley, P
Randolph, S141	Ren, C	Ritchie, R 5, 14, 48, 55, 90, 130
Rangari, V	Rengaswamy, J	Rivera-Díaz-del-Castillo, P 75, 120,
	Ren, J	
	Renk, O	
Rao, D	Rentenberger, C 125, 134, 158	Rivera, O
Rao, H	Ren, W	Rivera, P
Rao, M	Ren, Y	Riveros, G
Rao, S	Reny, P	Riyad, M
Rao, Z	Ren, Z	Roach, C
Rappaz, J	Reshetnikova, N	Roach, M

Robbins, W	Rosseel, T	Sabirov, I
Robert, C146	Rossi, A	Sabisch, J
Robert Kao, C	Rossi, M	Sachan, R
Roberts, A	Ross, J	Sachdev, A
Roberts, D	Rosso, M 50	Sadangi, R 82, 123, 125, 126
Roberts, N	Rotella, J	Sadowski, M
Robertson, A	Roters, F	Saedi, S
Robertson, D20, 41, 62, 84, 104,	Roth, D	Saengdeejing, A
	Rottmann, P	Saevarsdottir, G
Roberts, S 6, 26, 65, 144, 150	Rouchette, H	Sævarsdóttir, G128
Robin, J	Rouillard, F	Safarzadeh, M
Robinson, A	Rouleau, C	Safarzadeh, S
Robinson, J	Roven, H	Sagar, S
Robles M, S		Saghafian, H
Rocha, L		•
	Rovinelli, A	Saha, R
Rock, B	Roy, G	Sah, I
Rockett, P	Roy, I50, 139, 140	Sahi, C
Rodelas, J	Roy, R	Sahin, F
Röder, M	Roy, S	Sahul, M
Rodgers, T	Rozak, G	Sahu, T93
Rodney, D	Rozicki, R	Said, A12
Rodriguez, O	Rozman, K	Saida, J
Rodriguez, R	Ruan, X50	Saifaddin, B
Roeb, M	Rudinger, V	Saif, T135
Roehling, J	Rudin, S	Saini, G
Roes, W	Rudraraju, S	Sainz Trigo, M
Rogal, J144	Rudshaug, M141	Saitoh, H
Rogers, J120	Rudy, J.M., K	Saito, K139
Rogl, P	Rugg, D32	Saito, N
Rohatgi, A	Rui, C12	Sakaguchi, N27
Rohatgi, P	Ruiz, M167	Sakata, O
Rohen, L	Ruiz-Ornelas, J	Salamance-Riba, L
Roh, H	Rullán~Semidey, M 149	Salari, S
Rohrer, G53, 71, 144	Runa, M24	Salazar, D
Roine, A82	Runnels, B	Saldana, C
Rokkam, S	Rupert, T 20, 42, 63, 84, 105,	Salehinia, I
92, 154	125, 139, 145, 161	Saleh, M
Rolando Valenzuela Diaz, F 28	Rupp, R	Saleh, T
Roldan Cuenya, B	Ruta, B	Salem, A
Rollett, A 3, 4, 22, 74, 87,	Rutherford, B	Sales, B
	Ruxanda, R	Sales, J
Rollett, T	Ryu, C	Salgado, J
Rolseth, S	Ryu, H	Salinas, E
Román, A	Ryu, M	Salinas Rodríguez, E
Romano, R	Ryu, S	Salishchev, G95
Romero, J	Ryu, W	Sallam, H
Romero Serrano, J	Kyu, W	Salleh, A
Rondinella, V	S	Salleh, M
Rong, Y 65, 68, 150, 151, 155	Saad, A120	Sallis, P
Rong, Z	Saal, J	Salloom, R
Rørvik, S	Sabarou, H	Salloum-Abou-Jaoude, G
Rosa, D	Sabatini, M148	Salonitis, K
Rosalie, J	Sabau, A	Salzbrenner, B
Rosefort, M	153	Samolyuk, G8
Rosenberger, A	Sabbaghianrad, S	Sampathkumaran, E88
Roshanghias, A	Saberi-Movahed, F85	Sampath, S
Roshchupkina, O54	Saber, M101	Samuel, J
Rösler, G19		Samulyuk, G143

Sanchez, J	Scagliusi, S	87, 108, 115, 127, 136,
Sanchez, L	Scattergood, R	
Sanchez, M	Scavino, G	Sebastian, J
Sandenbergh, R	Sceats, H	Šebo, P
Sanders, A	Schaarschuch, R	Sediako, D
Sanders, P	Schaefer, F	Seelig, K
Sandfeld, S	Schaeffer, L	Seely, D
Sandireddy, V	Schaffer, J	Seepersad, C
Sandnes, E	Schafler, E	Seetala, N
Sandoval, S	Schaper, J	Seetharaman, S
Sangid, M	Schaper, M	Segatz, M
	Schappel, D	Segurado, J
	Scharf, T	Sehitoglu, H
Sanjari, M	Scharnweber, J	Seibert, R
San Marchi, C22, 114	Schehl, N	Seidel, A
Sano, T		Seidman, D
	Scheiber, V	
SanSoucie, M	Schell, N	Seifeddine, S
Sansoz, F	Schland D	Seifi, M
Santala, M	Schlagel, D	Seitz, J
Santella, M	Schlung, O	Seixas, M
Santhanam, A	Schmetterer, C 16, 37, 59, 81, 101	Sekerka, R
Santodonato, L	Schmid-Fetzer, R34, 41, 57	Seki, I
Santos, D	Schmid, K	Seki, T
Santos, E	Schmidt, C104	Seko, A
Sanz, J	Schmitt, C	Selin, V
Sanz-Robinson, J	Schmitz, G33, 81	Selleby, M 20, 41, 62, 84, 104,
Sao, J	Schmitz, J	
Sapiro, D	Schmoll, R111	Semenova, I
Sapper, E	Schnaars, K	Semiatin, L 3, 22, 44, 65, 107, 127
Sarac, B	Schnabel, V	Semiatin, S
Sari, D	Schneider, G	Sengupta, A
Sarikaya, M	Schneider, J 3, 22, 34, 44, 65,	Sengupta, S
Sarikurt, S		Senkov, O55, 115, 143
Sarkar, R134, 158	Schneider, S120, 137	Sen, M16
Sarkes, D	Schnideritsch, H20	Senninger, O
Sartor, D	Schniepp, H	Senor, D
Sasaki, H	Schoenfeld, W67	Sepehrband, P56
Sasaki, T109	Schoenung, J36, 49, 84, 103, 104,	Sepehri-Amin, H109
Sasmaz, M	107, 126, 158	Sepulveda Lopera, A163
Sathyapalan, A61	Schroers, J	Serebryany, V106
Satko, D	Schuh, B76	Serena Palomares, S105
Sato, H	Schuh, C 6, 36, 96, 122, 135	Serp, J
Sato, N	Schuler, T80, 92	Serrano, M
Satoshi Sugimoto, S	Schultz, B	Seshadri, V
Sattler, C83	Schumacher, P 50, 104, 162	86, 106, 126, 140, 162
Saucedo-Muñoz, M	Schumann, S	Sethulakshmi, N
Saunders, E	Schuren, J	Setman, D
Sauvage, X 6, 17, 21, 26, 88,	Schuster, B 108, 125, 134, 156, 165	Sevener, K
123, 140, 143	Schwaiger, R	Seymour, M
Sauzay, M	Schwalbach, E 3, 22, 44, 65, 127	Seymour, T140
Savage, D	Schwarm, S	Shaba, A53
Savan, A19	Schwen, D	Shade, P11, 30, 34, 55, 77,
Savazzini Reis, A160	Schwöbel, C128	87, 96, 116, 134, 154
Sawada, H	Scott, J	Shafaghi, N
Sawaguchi, T138	Scotto D'Antuono, D47	Shaffer, B
Sawatzki, S128	Scudino, S26, 69, 90	Shaffer, J113
Saxena, K	Scully, J	Sha, G109, 161
Saxena, S	Sears, J 3, 22, 44, 65, 76,	Shahani, A

Shahbazian-Yassar, R24	Shien-Ping, F	Silva-Valenzuela, M
Shahid, R	Shiflet, G26, 82	Si, M
Shah, P39	Shi, H	Sim, G 139, 158, 161
Shaker, M91	Shih Wei, L	Simoes, M
Shakur Shahabi, H 69	Shilko, S167	Simons, H
Shamlaye, K	Shim, M	Simpson, J
Shamsaei, N	Shin, D	Simpson, R
Shamsuzzoha, M144		Simpson, T
Shang, J113	Shin, k	Simsek, E
Shang, S 56, 88, 97, 111, 115,	Shin, K 24, 85, 157, 169	Simsiriwong, J
154, 167	Shin, S	Sims, Z
Shannon, S121	Shin, Y	Simunovic, S
Shanov, V117	Shi, Q	Sinfield, M
Shanthraj, P3	Shi, R	Singh, A 13, 34, 56, 78, 92,
Shan, Z 45, 49, 77, 118, 134	Shirakawa, Y	97, 117, 118, 135,
Shao, L	Shira, S141	156, 168
149	Shiratori, H	Singh, C 15, 92, 142, 153, 158
Shao, M	Shiro, A	Singheiser, L
Shao, S	Shishin, D84	Singh, G
Shapiro-Scharlotta, A22, 65, 150	Shishkin, D	Singh, I165
Sharma, A	Shi, X	Singh, J81, 99
Sharma, H	Shi, Y	Singh, K
Sharma, M	Shi, Z 84, 129, 153, 158	Singh, N151, 153
Sharma, P	Shobu, T	Singh, P
Sharma, V	Shokhufar, T	Singh, R
Shassere, B	Shokuhfar, T 4, 23, 24, 45, 151	Singh Raman, R117
Shaver, C	Shollock, B	Singh, S 4, 7, 9, 10, 15, 30,
Shaw, G149	Short, A	79, 80, 116, 151
Shaw, J	Short, M 21, 28, 30, 140, 149, 158	Singh, V
Shaw, L	Shower, P	Sinha, O85
Shayesteh Moghaddam, N 44	Shrestha, R155	Sinha, V
Shaysultanov, D95	Shuai, J	Sinnott, S
Shearer, L	Shuai, R	Sin, W44
Shearing, P	Shuang, Y	Siow, K
Sheets, C	Shu Hui, W	Sisneros, T45
Shen, D	Shukla, A	Sisson, R 61, 73, 147, 148
Shenderova, O85	Shuleshova, O	Sitek, R161
Shengfu, Z	Shull, R42, 88	Sitler, S
Sheng, H	Shumeyko, C30	Sitzmann, E
Sheng, J	Shunmugasamy, V	Siva Kumar, C
Shengping, L	Shu, S	Skaret, P105
Shen, J	Shusen, W	Skokov, K
Shen, K	Shuxing, Q27	Skorpen, K145
Shen, P111	Shu, Y	Skripnyak, E
Shen, X169	Shyam, A	Skripnyak, N
Shen, Y		Skripnyak, V
Shen, Z142	Sickafus, K14	Skrotzki, W
Sheridan, L22, 128	Sida, M67	Skybakmoen, E83
Sherman, Q	Sierros, K	Skyllas-Kazacos, M
Sherman, V	Sietsma, J	Slattery, K123
Shetty, P	Signor, L	Slifka, A
Shevchenko, N	Sijabat, S68, 70	Slinger, T
She, X	Sikan, F92	Slizovskiy, D21
Sheykh-Jaberi, F114	Silaen, A	Slone, B 8
Shibata, A	Sillekens, W	Slone, C96
Shibutani, Y	Silva, C	Sluiter, M
Shield, J	Silva, L	Smid, I
Shields, K4, 152	Silva Valenzuela, M71	Šmilauerová, J122

C '41 A	C II 106	0 : :11: 4 0 70 122
Smith, A	Song, H	Srivilliputhur, S
Smith, B	Song, J 58, 81, 113, 135, 166	Srolovitz, D
Smith, C	Song, M 35, 56, 81, 99, 138, 145	Stachowski, R
Smith, D91	Song, N	Staeck, A
Smith, F	Song, S	Stafford, S
Smith, G23	Song, X	Staicu, D
Smith, H	Song, Y32, 100, 162	Stanek, C
Smith, R 35, 51, 107, 154	Son, H152, 168	Stanford, M
Smith, S	Sonoiki, O	Stannard, T
Smith, T	Son, Y148, 160	Stan, T 101, 107, 119
Smola, B	Sopu, D	Stanton, C
Smoot, M	Sorensen, J	Stark, A
Smyth, C	Sorhuus, A	Staron, P
Snead, L	Sorkin, J	Stassun, K
Snugovsky, P	Sort, J 6, 167	Stauffer, D
Snyder, D	Sosa, J	Staunton, J
Snyder, G 5, 24, 46, 67, 152	Soto, H	Stebner, A
Snyder, M	Soto-Parra, D	Steen, P
Soares, F	Soto, S	Stefani, F
Soares, P	Souhar, Y	Steinacker, S
Soares Tenório, J	Soulami, A13, 14, 141	Steinbach, I
Sobamowo, G	Sourmail, T	Steinberger, D
So, C89	Souza, A	Steiner, M
Soderhjelm, C147, 167	Souza, C163	Steinfeld, A
Soellner, W	Souza, J	Steinlechner, S
Sohn, D	Souza, M	Steinmetz, P
Sohn, H 2, 6, 64, 99, 100, 169	Souza, V	Stein, W
Sohn, I	Souza, W	Stender, P
Sohn, J	Sowards, J	Stepanov, N
Sohn, S	So, Y	Stephens, E
Sohn, Y 6, 13, 69, 78, 126,	Spaepen, F	Stephenson, K
	Spangenberger, A	Stephenson, T
Soisson, F	Spangenberger, J 19, 40, 41, 61, 82,	Sterling, A
So, K		Steurer, W
Sokolova, O	Spanring, A	Stevens, E
Sokolov, M	Sparks, J	Stevenson, J54, 75, 115
Solanki, K 13, 21, 29, 34, 36,	Spathis, D	Stevens, P
56, 77, 78, 97, 100,	Spear, A	Stewart, J
117, 118, 132, 135,	114, 151, 155	Stiles, D
156, 157	Spearot, D29, 52, 66	Stiles, N
Soler, M	Specht, E	Stinville, J54
Solheim, A52, 53, 83, 89, 110,	Speer, J 15, 17, 38, 109	StJohn, D
129, 141	Speller, S	Stockman, T
Solis, J	Spence, D	Stocks, G 86, 95, 107, 115
Solitro, G 4	Spencer, B	Stocks, M143
Solomon, E	Spolenak, R	Stöhr, F
Solorzano, G	Springer, H	Stoica, A
Solsona, P	Sprouster, D	Stoica, M
Soltan Ali Nezhad, M104, 151	S.P, T	Stolbchenko, M
Somekawa, H	Sridhar, A	Stoller, R 8, 36, 64, 80, 107
Somerday, B	Sridharan, K	Stonaha, P
Somers, J	Sridharan, N 102, 107, 128	Stone, H
Somerville, M	Sridhar, D85	Stone, I
Sommerseth, C30	Srinivasan, A165	Støre, A
Song, B	Srinivasan, G164	Story, W
Song, C	Srirangam, P	Stoudt, M
Songca, S	Srivastava, D	Stoughton, T
Song, G 28, 60, 118, 164	Srivatsa, S	Strachan, A

Stráská, J	Sun, Z 28, 53, 60, 74, 102, 139	Takeuchi, A
Stráský, J	Supan, K	Takeyama, M
Stratis-Cullum, D	Su, Q119	Takizawa, Y
Stratmann, M113	Suresh, K	Takoudis, C 4
Straub, T34, 155	Surh, H157	Taktak-Karaca, B89
Strebel, C25	Suriñach, S	Tal, A
Strömberg, E	Su, S	Talaat, A23, 151
Stromberg, R34	Suter, R 4, 30, 74, 87, 132	Talari, M103
Strutzenberg, L100	Sutou, Y	Talebanpour, B
Stubbins, J	Sutton, S	Taleff, E
Stuliková, I	Suwas, S117	Talik, M
Sturm, J	Su, X	Taller, S
Suarez, G	Su, Y	Tamerler, C 25, 48, 68, 89,
suarez, O	Su, Z	110, 129, 152
Suárez, O	Suzuki, A 13, 34, 57, 78, 98, 118	Tamirisakandala, S155
Subedi, S	Suzuki, H	Tamm, A115, 142
Subia, S	Suzuki, J62	Tamma, S33
Suckert, M	Suzuki, M104	Tamuly, S
Sudarchikova, V	Švec, P	Tamura, N
Sudbrack, C22	Švec Sr., P	Tan, A92
Sudharshan Phani, P 167	Svensson, A	Tanaka, I
Sugahara, T	Swaminathan, R	Tanaka, M
Suganuma, K31, 59	Swan-Wood, T	Tanaka, N
Sugar, J	Swarup, K	Tanaka, T104
Sugiyama, A	S. Was, G	Tanatsugu, Y
Suguihiro, N	Sweatman, K	Tan, C
Su, H6	Sweet, R	Tancret, F112
Suh, B	Sweidan, F	Tandon, R
Suh, D	Swenson, M	Tang, B122, 123
Suh, J	Swinteck, N	Tang, G
Su, J 108, 135, 156	Switzner, N	Tang, H
Suk, M	Syafri Sunardi, M 68, 70	82, 85, 123, 153
Sukotjo, C	Sylvén, P	Tang, K
Suksangpanya, N	Synowczynski-Dunn, J 56, 132	Tang, M
Sullivan, T	Sypek, J	Tangstad, M
Su, M106	Sypien, A	Tang, W
Suman, S	Szakacs, G97	Tang, X101, 114
Summers, P	Szlufarska, I71	Tang, Y 24, 42, 81, 114, 163
Sumner, J	Szornel, J	Tang, Z 55, 133, 141, 143
Sun, C15, 36, 59, 80, 101,	Szymanski, C10	Tan, L
		Tan, M36
Sun, D	T	Tannenbaum, J51
Sundararaghavan, V33	Ta'asan, S	Tan, P
Sundararajan, G58	Tabachnikova, E	Tan, Q53
Sunday, K45, 147	Tabandeh-Khorshid, M36	Tan, W
Sundman, B17, 77, 113	Tabereaux, A	Tan, X44
Sung, H95, 110	Tada, S	Tan, Y140
Sung, Y147	Taheri Andani, M44	Tan, Z26
Sung, Z19	Taheri, M	tao, j
Sun, H168		Tao, J
Sun, J53, 69, 152		Tao, Y
Sun, K64	Tahreen, N	Tarasov, A
Sun, M	Tai, C	Tarcea, G33
Sun, P61, 87, 123	Taina, F	Tarrant, A58, 101
Sun, R21, 86	Takahiko, K	Tasan, C 75, 83, 108, 116
Sun, T18	Takano, C85	Taskinen, P 20, 41, 62, 79, 84,
Sun, W	Takata, K 67	
Sun, Y 31, 39, 51, 100, 111, 126	Iunaiu, IC	Tasneem, K

TT '' A	m: 147 55	06 116 115 124 150
Tasooji, A164	Thierry, W	96, 116, 117, 134, 158
Tata, M166	Thilly, L	Tomas, B
Taufour, V	Thoeny, B	Tomchik, C
Taupin, V100	Thoma, D	Tome, C
Tavares, R	Thomas, B 6, 27, 50, 70, 94, 153	Tomé, C
Tavazza, F 9, 12, 29, 33, 52,		Tom Jones, P
	Thomas, D	
72, 76, 77, 92, 113,	Thomas, J	Tomota, Y
132, 134	Thomas, M61	Tomsett, A
Taylor, A156	Thomas, P	Tomsia, A48
Taylor, C	Thomas, S	Tong, Y
Taylor, M	Thomas, V	Tong, Z155
Tayon, W	Thompson, G 16, 17, 23, 37,	Tonini Simonassi, N
Taz, H		Tonks, M 8, 28, 51, 71, 154
Tedenac, J	122, 135, 137, 138,	Topkaya, Y
Tédenac, J		Topping, T
Teeter, L	Thompson III, G4	Torabi Rad, M27
Teeter, M	Thompson, J	Torbati Sarraf, S161
Tegnestedt, C25	Thompson, S	Torres do Santos, M
Teixeira, J	Thomson, J99	Torries, B
Teja Ruiz, A163	Thorne, R	Tor, S
Tekade, K148	Thornton, K	Tortika, A125
Tekumalla, S	Thornton, R	Tortorelli, P
Telang, A	Thorpe, S	Toth, G37, 162
Teles, M	Thriveni, T	Tóth, G32
Telles, A	Thuinet, L28, 154	Toumar, A
Temel, O	Thurnheer, P	Tourret, D 32, 37, 52, 100, 162
Temesgen, S	Thurston, K	Towns, J
Templeton, J	Tian, L	Toyama, T
Teng, C98	Tian, M85, 131	Toyota, T
Teng, F	Tian, Y 24, 34, 59, 65, 129,	Trabia, S
Tennakoon, S	146	Tracy, J
	Tian, Z	
Tennyson, W		Tracy, S
Tenorio, J	Tianzu, Y	Trahey, L
Tenório, J	Tikare, V	Tramontina, D146
Terent'ev, P	Tikasz, L93	Tran, A29
Terentjev, I	Tikhonovsky, M	Tranell, G 18, 21, 41, 124
Teresi, C148	Tilliander, A62	Tran, T
Ter-Isahakyan, A115, 133	Timelli, G62, 104	Trautt, Z29, 77, 121
Terrani, K	Timmel, K	Travassos, R
79, 98, 99, 107, 119,	Tims, M	Traylor, R14, 69
	Ting'an, Z 24, 46, 67, 70, 170	Trelewicz, J
	Tingaud, D	
Terry, J	6	Tremblay, M
ter Weer, P	Tin, S	Tremblay, S
Tescari, S	Tippey, K	Trevisan, F
Tesfaye, F	Tiryakioglu, M	Tricker, D
Tessier, J	Tischler, J	Trinkle, D 8, 9, 29, 33, 51,
Tetlie, P	Tiwary, C158	55, 71, 72, 80, 92, 112,
Tewari, S	T.Lucero, A	
Tewes, S	To, A	Trino, L151
Thadhani, N	Tobón, J	Tripathi, S
Thamaraikannan, S	Toda-Caraballo, I	Trivedi, R
Thangarasu, P	Todaka, Y	Troparevsky, C
Tharwat Henry, A	Todd, R	Troparevsky, M
Thatte, A	Todorova, M	Trotter, G119
Theisen, E120, 169	Tolnai, D34, 78, 97	Trubel, S
Thermitus, T	Toloczko, M15, 59	Trujillo, C
Thevuthasan, S	Toman, J44, 150	Trumble, K
Thibeault, P25	Tomar, V	Trump, A
	. , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.

Truong, E107	Tyler, K	Vahidi, E
Tryon, R	Tyliszczak, T	Vaidya, M
Tsai, C	Tyrer, M	Vakhrushev, A94
Tsai, M	Tyrpekl, V122	Valdez, J
Tsai, P 37, 69, 76, 142, 147	Tzanakis, I	Valeev, D
Tsaknopoulos, D147	Tzouganatos, N	Vale, M165
Tschiptschin, A60		Valencia, J
Tschöpe, K	U	Valenti, L
Tschopp, M 8, 9, 12, 28, 29,	III D 0.02 101 121	Valentina, T92
33, 51, 52, 56, 71, 72,	Uberuaga, B 8, 93, 101, 121,	Valentino, G139, 161
	127, 135	Valenzuela Diaz, F
154	Ucar, H	Valenzuela-Diaz, F164
Tseng, C59	Ucar, S	Valenzuela Díaz, F
Tseng, S	Uchic, M	Valenzuela-Díaz, F164
Tseng, Y	Ueda, M	Valenzuela, F71
Tsiros, J	Ueshima, M	Valenzuela, M
Tsou, C	Uguz, O	Valiev, R 21, 68, 88, 139, 140
Tsuchiya, K69, 137, 138	Uhlenwinkel, V	Vallabhaneni, R10
Tsuchiya, S	Uhl, J	Valloton, J94, 120
Tsujimoto, M31	Ukai, S	Van Camp, M124
Tsuji, N	Ullmann, M	VanCoevering, G86
Tsukerman, V	Ulucan, T	Vandegrift, J99
Tsuru, T	Uludag, M	Van der Van, A
Tsuzaki, K	Umeda, J	Van der Ven, A
Tucker, G 14, 21, 30, 36, 56,	Umemoto, M	van der Zwaag, S
58, 77, 79, 100, 120,	Um, J	Van de Walle, C9
137, 157	Unalan, H	van Duin, A
Tucker, J	Unal, O	Van Ende, M
99, 144, 154, 168	Ungar, T	Vaney, J
Tucker, T		Vanka, S50
Tucs, A50	Ungár, T	Van Landeghem, H
Tuecke, S	Ünlü, N	VanOosten, S110
Tu, G24, 46	Unnikrishnan, V2, 21, 42, 63, 85,	Vanover, T
Tugrul, A		Van Petegem, S 11, 23, 79, 98, 118,
Tu, H86	Unnimaya, A	139
Tu, K93, 94, 132	Unocic, K	van Rooyen, I 35, 57, 99, 144
Tummala, R147, 168		Van Speybroeck, V9
Tunca, B	Uno, M	Van Swygenhoven, H 11, 23, 79, 98,
Tungala, V	Unsworth, L	118, 139
Tung, D	Upadhyay, M	Van Sy, D
Tung, H	Upadhyay, P 98, 118, 135, 136, 141	Van Vliet, K
Tuofu, L	Uraoka, Y	Van Zyl, D 5
Tuomisto, F	Urban, A	Vardar, O
Turabi, A	Urbán Ríos, A	Vargas Martínez, J148
Turan, A	Uribe, R	Varma, R
Turan, J	Urones-Garrote, E	Varvenne, C
Turan, R	Ushizima, D	Vasiliades, M74
Turan, S	Usman, M	Vaßen, R
Turchi, P	Usov, A	Vasseur, K
Turco, R	Usov, I	Vassileva, V
Turco, T	· · · · · · · · · · · · · · · · · · ·	Vasudevan, V
Turgut, Z	V	Vattré, A80
Turk, A	Vashkani C	Vaynman, S
Türkel, B	Vachhani, S	vazquez, C
Turnage, S 21, 36, 100, 157	Vaclavová, K	Vega-Flick, A158
Turner, J	Václavová, K	Veith, G
Turner, T	Vaganova I	Velasco, L
Tylczak, J	Vaganova, I71	Velazquez, D

77.1 D	115 104	FF F 0 00 100 100
Veloso, R	117, 134	77, 79, 80, 100, 102,
Veloz Rodríguez, M 19, 164	Vora, S	115, 117, 120, 123,
Venancio, L	Vorontsov, V	130, 133, 134, 137,
Venkataraman, A	Vorozhtsov, A	141, 147, 152, 153,
Ventelon, L121, 158	Vorozhtsov, S	157, 162
Verbaan, N	Voter, A	Wang, K 36, 57, 83, 131, 136
Verdenik, A	Voyer, R	Wang, L 45, 64, 76, 80, 85,
Verdu, C32	Voyevodin, V59	93, 106, 107, 150,
Vergara, H	Voyles, P	162, 163
Verhulst, D 10, 31, 53, 74, 155	Vukovic, G126	Wang, M 19, 25, 35, 61,
Verma, A	Vutova, K	83, 99, 109, 131
Verma, D		Wang, N
Verma, N	\mathbf{W}	Wang, P 26, 43, 44, 113
Verma, V		Wang, Q50, 70, 141, 143,
	Wachs, D	
Veselý, J	Wada, T	
Vetterick, G	Wadley, H39	Wang, R
Viana, H15	Wadsworth, J	Wang, S
Vicente, F	Wagner, C	Wang, T 2, 10, 31, 53, 69,
Vieira, C 40, 71, 131, 163, 164	•	74, 92, 117, 142, 155
Vieira, J	Wagner, M105, 136	Wang, W
	Wagner, S	
Vijayan, S	Wagstaff, S48, 91	34, 41, 68, 88, 97,
Vila-Comamala, J131	Wahbah, E	111, 115, 154, 160
Vila, R92	Wakeel, A106	Wang, X 6, 37, 49, 59, 60,
Villa, E	Walawalkar, M	61, 70, 84, 88, 90,
Villalon, T		
Villanueva, J5	Walde, C	Wang, Y 3, 9, 13, 15, 16,
	Walden, J	•
Villaseñor, L	Waleczek, M	
Villechaise, P	Walker, A	32, 37, 38, 39, 43,
Villegas-Cardenas, J163	Walker, E	49, 50, 53, 56, 59,
Vincent, D	Wallace, G	60, 69, 72, 76, 81,
Vinogradova, N		85, 88, 90, 92, 94,
Vinson, K	Wallace, R	95, 97, 102, 103, 111,
Virginio, S	Wallén, H25	115, 121, 122, 127, 129,
	Walls, M144	
Virieux, F	Walpole, A155	
Virnelson, C	Wanderka, N	154, 156, 159, 160, 162,
Visconti, A	Wang, A	169
Viswanathan, G	Wang, B 7, 43, 89, 123, 129,	Wang, Z 3, 43, 45, 52, 76,
Vitek, V121	153, 169	77, 84, 85, 90, 101,
Vivès, S		
Vlcek, M97	Wang, C16, 27, 31, 37, 53,	Wan, L
Vodnik, D	57, 59, 79, 81, 99,	Wan, X
Vogel, E	101, 111, 120, 126,	Ward, L
•	162, 169	
Vogel, F	Wang, D	Warnett, J
Vogel, S	Wang, E	Warnken, N50, 162
Vo, H69, 149	Wang, F	Warren, C121
Voice, W		Warrender, J
Voigt, C	Wang, G	Warren, G
Voisin, T	65, 68, 69, 75, 76,	Warren, J
Voit, S	90, 95, 104, 111, 115,	Waryoba, D
	130, 133, 141, 143, 150,	
Völker, B		Wasekar, N
Völkl, R	Wang, H	Was, G
Volkmann, T120, 137	63, 68, 75, 76, 79,	86, 99, 141, 144
Volz, H		Wat, A
Vo, N	84, 90, 93, 98, 101,	Watanabe, H
von Kaenel, L53	121, 136, 138, 145,	Watanabe, K
von Kaenel, R		Watanabe, T91
von Lilienfeld, A112	Wang, J 14, 23, 36, 37, 42,	Watanabe, Y
	48, 57, 58, 61, 64,	
Voorhees, P 9, 52, 54, 96, 100,		Wataya, C165

Watkins, T	Werkheiser, N	Wimmer, S
Watson, D	Werner, M	Windl, W
Watt, T	Wernicki, E	Winkler, R
Waz, E	West, E	Winter, I
Weaver, K		Winther, G
Weaver, M	West, H	Wippermann, A
	-	11
Webb, E	West, M	Wirth, B
Webb, M	Westman, B	79, 86, 93, 115, 137,
Weber, G	Weston, B	149
Weber, R	Westover, A	Wirtz, M
Weber, W59, 64, 80, 95, 107,	Whalen, S	Wise, J
121, 127, 143, 154, 157	Whan, A41	Wisner, B
Webler, B	Wharry, J	Wiss, T57
Webster, T 4	Wheeler, J96, 133	Withers, P116
Wegen, D	Wheeler, R 34, 56, 77, 116	Witkin, D65
Wehrenberg, C	White, B148, 168	Witman, J119
Wei, C 30, 43, 64, 144, 145	White, E61, 109	Witteman, L30
Weidner, R141	White, K39	Wittig, J66
Wei, F161	Whitesides, G	Wo, A
Weifeng, L	Whitt, H144	Wojewoda-Budka, J 144, 165
Wei, G	Whittington, W	Wolff, M97
Weigand, J	Wicker, R	Wolf, M31, 155
Weiguang, Z24, 67	Widener, C	Wolk, J
Weihs, T	Widom, M	Wollmershauser, J
Wei, J	Wiebeck, H	Wolverton, C9, 29, 30, 33, 52,
Wei, K	Wiechec, M	
Weinberger, C14, 17, 23, 37, 137,	Wieckert, C	
159	Wiencek, T	Wondrak, T58, 120
Wei, Q	Wierzbicka-Miernik, A	Wong, D
Wei, S	Wiese, B	Wong, M122
Weiss, S	Wiezorek, J	Wong-Ng, W
Weiss, T	Wi, H	Wood, A110
Weitz, D	Wilde, G 20, 21, 49, 134	Wood, J
Wei, W	Wilford, K	Woodley, D
Weiwei, T	Wilke, K31	Woo, K166
Wei, Y	Wilkerson, R	Woolum, C
Wejdemann, C	Wilkinson, A98, 114	Wraith, M57
Welch, B129	Willaime, F121, 158	Wright, E
Weldon, A	Willard, M	Wright, J127
Welk, B44, 122	109, 128, 151	Wright, S
Wells, D	Will-Cole, A165	Wrightson, G112
Wells, P	Willers, B58	Wu, A
144, 154	Willhard, T153, 166	67, 73, 93, 106, 113,
Wen, C50	Williams, B	
Wendt, C	Williams, J 10, 30, 80, 94, 116	Wu, B
Wen, G169	Williams, L	Wu, C 37, 53, 69, 148, 153
Wengrenovich, N	Williams, M65, 164	Wu, D 57, 75, 122, 132
Wen, H35	Williamson, D	Wu, F
Wen, J81	Williamson, I	Wu, G39, 106, 112, 128,
Wen, L	Williamson, R 8, 28, 51, 71, 154	
Wen, W	Williams, P	Wu, H 5, 24, 29, 30, 37,
Wen, X	Williams, R 70, 122, 133, 145	
Wen, Y	Williams, W	
Wenzel, M	Wills, J	Wu, J
	Wills,)	
wenzhong, C		
Wenzhong, C	Wilson D	Wu, K
Wenzl, C	Wilson, P	Wu, L
Werckmann, J	Wilson, S	Wu, M6, 46, 94

Wunderlich, R90, 120, 137	Xiong, W	
Wun-Fogle, M45	Xiu, D72	Yamamoto, Y
Wu, R	Xuan, Y93	107, 119, 141
Wurster, S	Xu, B	Yamanaka, K
Wu, S 85, 106, 136, 162	118, 132, 169	Yamanaka, S 104, 152, 156, 157
Wuttig, M	Xu, C 107, 140, 162, 165	Yamashita, I
Wu, W	Xu, D	Yan, D
Wu, X 42, 63, 152, 168	Xue-fei, R	Yang
Wu, Y	Xuefeng, L	Yang, B
	Xue, G	
73, 76, 90, 93, 94,	Xue, H	145, 150
	Xue, J	Yang, C
		Yang, D
Wu, Z	Xue, Q	Yang, F
Wyrobek, T	Xue, S	Yang, G
X	Xuewei, L	Yang, H 36, 46, 94, 111, 126,
A	Xu, G	
Xavier, G163, 164	Xu, H	Yang, J
Xhaxhollari, V41	Xuhua, Z24	82, 129, 156
Xia, H140	Xu, J32, 36, 37, 43, 58, 132,	Yang, K127, 157
Xia, K	163	Yang, L 32, 34, 37, 80, 94, 106
Xiang, R	Xu, L50	Yang, M
Xiang, X	Xu, M	Yang, Q
Xiang, Y	Xu, P65, 169	Yang, R98
Xian, J	Xu, Q2, 104, 106, 140, 162,	Yang, S 24, 118, 135, 143
Xianwei, H	165	Yang, T21, 46, 64, 95, 144,
Xiao, D	Xu, R	150
Xiaofeng, Z	Xu, S66, 82, 92, 100, 132, 135,	Yang, W
Xiao, H21	148	110, 129, 152, 153
Xiao, J	Xu, T 2, 21, 42, 63, 85, 106, 146	Yang, X 74, 80, 133, 160
Xiao, K	Xu, W 38, 101, 145, 156	Yang, Y
Xiao, L	Xu, X40, 98	101, 103, 106, 107, 108,
Xiaoli, J	Xu, Y	110, 121, 138, 142, 143,
Xiaolong, L	163, 169	166, 169
Xiao, X 7, 9, 80, 116, 117	Xu, Z8, 10, 13, 70, 88, 94, 103,	Yang, Z
Xia, S	142, 153	146, 153, 165
Xia, W127, 153	Y	Yan, H10, 157
Xia, Y	1	Yanhua, Y
Xie, B	Yabansu, Y	Yanhui, L
Xie, D	Yablinsky, C13, 14, 15, 35, 57,	Yan, J
Xie, F	59, 78, 98, 119, 136,	Yan, L
Xie, G6, 26	144, 157	Yan, M82
Xie, J	Yacout, A 13, 64, 127, 154,	Yano, K56
Xie, K		Yan, P105
Xie, L	Yadavali, S	Yan, X
Xie, W	Yadav, N	Yanxiu, W24, 67
Xie, X	Yadav, S 14, 23, 77, 121	Yan, Y24
143	Yagodzinskyy, Y 87	Yan, Z162
Xie, Y	Yagsi, C18, 167	Yao, K6
Xie, Z	Yahyazadehfar, M89	Yao, T35
Xi, J	Yakubtsov, I	Yao, X
Xing, J	Yakymovych, A	Yao, Y
Xing, L	Yalnizyan-Carson, O	Yao, Z30
Xing, Q	Yamabe, Y	Ya-ping, Z112
Xionggang, L170	Yamada, M	Yaraghi, N89
Xiong, L	Yamada, R	Yarmolenko, S
Xiong, S	Yamamoto, T35, 37, 59, 64, 119,	Yartys, V
0,		Yasar, B

Yasen, A6	Yoon, Y	Yuyev, D59
Yasinsky, A	Yoo, S	Yu, Z 102, 106, 148, 159
Yasuda, H	Yorgason, W	
Yasuda, K74	Yorulmaz, A	Z
Yasueda, H152	Yoshiya, M54	Zahihradah C 70
Yataco-Lazaro, L164	You, B	Zabihzadeh, S
Yatsugi, K	Young, D	Zadeh, M
Yau, K21	Young, G38, 168	Zadorozhnyy, V
Yavas, H	Young, J	Zafalon, A
Ya-xuan, W	Young, N	Zafari, A
Ye, B	Young, S	Zahiri, S
Ye, C	Young, W22	Zahrah, T82, 123, 126
Yee, J	Youssefian, S	Zaidi, Z
Yee Wen, Y148	Youssef, M	Zai, X
Ye, G84	Youssif, K167	Zaki, A
Yegao, C169	You, Z126	Založnik, M
Ye, H	Yuan, B131, 158	Zambaldi, C
Yeh, J 55, 95, 133, 143, 156	Yuan, F	Zambrano, A
Yeh, N111	Yuan, G70	Zamora, R
Ye, J101	Yuan, H53	Zanelato, E
Ye, L	Yuan, R	Zangeneh, S
Yen, H	Yuan, T57	Zang, S
Yen, Y	Yuan, Z169	Zapolsky, H 17, 69, 72, 102
147	Yubuta, K143	Zaporjchenko, V
Yeon, J	Yu, C48, 130	Zareie Rajani, H
Yeo, S	Yucel, O	Zarezadeh Mehrizi, M
Ye, R	Yücel, O 2, 21, 43, 64, 85,	Zarkadoula, E
Yeratapally, S		Zarouni, A110, 129
Yermakov, A	162, 165	Zavala, M
Yesilyurt, H	Yucesoy, D	Zavattieri, P
Ye, Y	Yu, D	Zawodzinski, T
Ye, Z	Yuelin, Q	Zaytsev, D
Yi, F9	Yue, S	Zbib, H
Yi, G128	Yu, F63, 170	Zecevic, M
Yildiz, B	Yu, H 24, 37, 46, 137	Zehetbauer, M125, 139
Yilmaz, S	Yu, J	Zeh, J
Yilong, L		Zellhofer, C
Yim, C		Zeltmann, S
Yin, A	Yu-Jin, L	Zeng, F
Yin, F	Yu, K 56, 59, 101, 121, 145	Zeng, G94, 131, 132
Yingli, L	Yuksel, C 62, 83, 104, 166, 167	Zeng, J
Ying, S	Yu, L	Zeng, L
Yingying, S	Yu, M 9, 21, 104, 116	Zeng, Q
Yin, J	Yumoto, M	Zeng, W
Yin, T	Yun, C85	Zeng, Y
Yin, X	Yun, D	Zeng, Z14, 136
Yi, S	Yun, K	Zepon, G
Yi, Z	Yu, P	Zerihun, N
Yokoi, E	Yu, Q 6, 10, 14, 66, 74, 90	Zhai, H
Yokoyama, Y	Yurchenko, N	Zhai, P
Yoneda, A	Yuryev, D	Zhai, Q
Yong-bin, Y	Yusufoglu, I	Zhai, T
Yong, Z	Yusufu, A	109, 114, 155
Yonkee, B	Yu, T	Zhai, Y
Yoo, H	Yuwen, Z	Zhanal, P
Yoo, M	Yu, X	Zhánal, P
Yoon, E	Yu, Y	Zhan, C
Yoon, W		Zhandong, H131

Zhang, B 31, 39, 150, 155	Zhao, B	Zhuang, H 92, 112, 131, 142, 153
Zhang, C 3, 7, 13, 38, 41,	86, 106, 126, 140, 162	Zhuang, W85
60, 75, 108, 119, 133,	Zhao, C60, 151	Zhu, D
143, 146, 150, 151,	Zhao, D	Zhu, H
156	Zhao, F	Zhu, J 10, 13, 18, 31, 38,
Zhang, D 6, 21, 26, 28, 36, 49	Zhao, G	
50, 61, 69, 70, 84,	Zhao, H	115, 142, 143, 146,
	Zhao, J 7, 9, 13, 16, 22, 30,	155, 156, 160, 166
125, 142, 153, 161	34, 43, 57, 63, 78,	Zhu, K146
Zhang, F	90, 98, 118, 120,	Zhukov, A23, 151
119, 133, 143, 145,	122, 145	Zhukova, V
	Zhao, M	Zhukov, I
Zhang, G 18, 36, 58, 109	Zhao, P	Zhu, L
ĕ		
Zhang, H 6, 19, 31, 43, 59,	Zhao, Q	Zhu, M 6, 7, 27, 50, 70, 153
	Zhao, S	Zhu, Q
Zhang, J	Zhao, W	Zhu, R145, 168
43, 65, 67, 70, 75,	Zhaowen, W	Zhu, S6, 71, 78, 89, 131,
98, 101, 103, 106,	Zhao, X	163
112, 123, 142, 150, 151,	Zhao, Y 18, 100, 135, 163, 169	Zhu, T
153, 154, 158, 162, 169,	Zhao, Z85, 114	100, 113, 120, 137,
170	Zhe, F	157
Zhang, K	Zheleznyi, M	Zhu, Y
· ·	•	
Zhang, L	Zheng, B	Zhu, Z
50, 51, 53, 57, 61,	Zheng, F	Ziaei, S
62, 64, 70, 74, 79,	Zheng, H	Ziehmer, M
86, 98, 99, 111, 116,	Zheng, J	Zikry, M134
120, 125, 127, 129, 140,	Zheng, K106	Zimmerman, J 12, 14, 36, 56, 58,
143, 153, 155, 163, 169	Zheng, L147	79, 100, 114, 120,
Zhang, M7, 27, 28, 51, 71, 91,	Zheng, S	137, 157
112, 126, 130, 131,	Zheng, X	Zimmermann, E51
	Zheng, Y 6, 50, 70, 97, 122, 125	Zimmermann, G120
Zhang, N	Zhenhu, D	Zimmermann, M 155
Zhang, P 29, 150, 154, 162	Zhenyang, W162	Zimu, Z
Zhang, Q	Zherdev, A	Zindel, J
Zhang, R 5, 46	Zhilyaev, A	Zinkle, S
Zhang, S 2, 7, 64, 98, 99, 138	Zhong, L	149
Zhang, T	Zhongning, S	Zivanovic, B
•	Zhong, Q	Zok, F
Zhang, W	6 -	
67, 82, 102, 105,	Zhong, R	Zoraga, M
	Zhong, W	zou, x
Zhang, X	Zhong, Y 9, 37, 57, 93, 154	Zou, X
63, 75, 79, 84, 92,	Zhou, B56	165
101, 107, 121, 138, 140,	Zhou, C	Zou, Y100, 135
144, 145, 155, 158, 159,	Zhou, D 6, 26, 69, 70, 125, 161	Zou, Z
162, 170	Zhou, E85	Zschech, E
Zhang, Y	Zhou, F116	Zuback, J126
	Zhou, L	Zuo, H
56, 59, 61, 64, 65,	109, 118, 126, 138	Zuo, T
70, 80, 86, 87, 95,	Zhou, M118	Zuo, Y
106, 107, 111, 119, 121,	Zhou, N	Zuo, Z
122, 126, 127, 129, 131,	Zhou, P	Zupanic, F128, 142
	Zhou, Q	Zupan, M120
	Zhou, S	Zurek, E
Zhang, Z	Zhou, T	Zurob, H
•	Zhou, W	
126, 135, 137, 141, 145,	Zhou, X	Zweifel, T
	Zhou, Y	
Zhao, A58, 67	Zhou, Z	