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• Virtually all of the topics in the EMC Program have a 
potential impact on renewable energy technologies

• Electronic materials research can make or break many of 
these emerging technologies

• Challenge that is being picked up increasingly by 
Academic, Gov't, and Industry research centers:  

"How can the basic materials science we have been working on    
for devices in telecom, computing, imaging, displays...         

be applied to photovoltaic cells, energy storage,               
and other renewable energy applications?"

Electronic Materials in Electronic Materials in 
Renewable EnergyRenewable Energy
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• Multijunction photovoltaic cells for grid-connected solar electricity
• Metamorphic (MM) semiconductors to access new band gaps
• III-V growth on Ge, SiGe, and silicon
• Wafer bonding and engineered substrates
• Narrow band gap semiconductors:  antimonides and others
• Wide band gap semiconductors:  nitrides and others
• Point and extended defects in MM materials
• Low-dimensional structures:  quantum dots, wires, and wells

• Flat-plate photovoltaics
• Polycrystalline thin-film compound semiconductor solar cells (CuInSe2, 
CdTe,...)
• Microcrystalline silicon solar cells
• Organic-inorganic hybrid photovoltaics

A Few Key Growth Areas for A Few Key Growth Areas for 
Renewable EnergyRenewable Energy
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This talk is 'focused' on the huge area of photovoltaics...
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•General Applications
• Carbon nanotubes, graphene

• Zinc oxide

• Flexible and printed thin film electronics

• Batteries, fuel cells for vehicles
• Porous, catalytic electrodes

• Ionic conductors

• Power conditioning, DC to AC conversion
• Silicon carbide

• Thermoelectrics and thermionics

A Few Key Growth Areas for A Few Key Growth Areas for 
Renewable EnergyRenewable Energy
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...but electronic materials impact many more aspects of renewable energy
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• Global climate change and the solar resource

• Solar cell theoretical efficiency limits
– Opportunities to change ground rules for higher terrestrial efficiency
– Cell architectures capable of >70% in theory, >50% in practice

• Metamorphic semiconductor materials
– Control of band gap to tune to solar spectrum
– Dislocations in metamorphic III-Vs imaged by CL and EBIC
– Metamorphic SiGe buffer and solar cell growth
– III-V solar cells on Si substrates

• Polycrystalline Cu(GaIn)Se2 and CdTe for flat-plate solar cells
– Remarkable recombination inactivity for grain boundaries
– Understanding energetically-favored defect formation
– Defect energy levels, Fermi stabilization energy

OutlineOutline
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• Nanostructures for high-efficiency photovoltaics
– Nanorod solar cell arrays grown by VLS (vapor-liquid-solid) method
– Quantum wells, wires, dots, low-dimensional structures in solar cells
– Organic semiconductors for PV

• High-efficiency                                terrestrial concentrator cells
– Metamorphic and lattice-matched 3-junction solar cells                                  

with >40% efficiency
– 39%-efficient cells at >1000 suns
– 4-junction metamorphic (MM) and lattice-matched (LM)                     

concentrator cells
– Inverted metamorphic 3- and 4-junction cells for terrestrial concentrators
– Semiconductor bonded technology (SBT) for MJ terrestrial concentrator cells

• Concentrator photovoltaic (CPV) systems and economics

Outline (cont'd)Outline (cont'd)
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Global Climate Change
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Vostok Ice Core Data
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• Antarctic ice core data allows for mapping of temperature and CO2 profiles

Climate and COClimate and CO22 Over the Over the 
Last 400,000 YearsLast 400,000 Years
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Climate and COClimate and CO22 Over the Over the 
Last 400,000 YearsLast 400,000 Years

Vostok Ice Core Data
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• Clear correlation between temperature and CO2 levels
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Vostok Ice Core Data
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• CO2 has reached levels never before seen in measured history
• If we do nothing, we allow this rising trend to continue at our own peril
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Climate and COClimate and CO22 ––
Recent HistoryRecent History



R. R. King, 51st Electronic Materials Conf., University Park, PA, June 24-26, 2009

Rosina Bierbaum, Univ. of Michigan, IPCC

IPCC (2001) scenarios 
to 2100 
IPCC (2001) scenarios 
to 2100 

1000 years of Earth temperature history…
and 100 years of projection

Temperature Anomaly by Temperature Anomaly by 
YearYear
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The Solar Resource
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Solar power:

22 % evaporates 
water

48 % heats the ground48 % heats the ground
0.56% used for photosynthesis in plants (840 TW)0.56% used for photosynthesis in plants (840 TW)
0.25% converted to wind  (380 TW)0.25% converted to wind  (380 TW)

S
un

lig
ht

10
0,

00
0,

00
0

G
W

30,000 kilowatts per person30,000 kilowatts per person
U.S. Currently: 1.5 kW/person

30 %
 reflected

Angus Rockett, Univ. of Illinois 14
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5

6

5
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• Entire US electricity demand can be provided by concentrator PV arrays 
using 37%-efficient cells on:  

or      ten 50 km x 50 km areas
or      similar division across US

Ref.:  http://rredc.nrel.gov/solar/old_data/
nsrdb/redbook/atlas/

150 km x 150 km area of land

The Solar ResourceThe Solar Resource
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Map source: http://www.nrel.gov/gis/images/map_csp_us_annual_may2004.jpg

CPV cost superiority
40% cell efficiency

CPV cost superiority
50% cell efficiency

Map source: http://www.nrel.gov/gis/images/map_csp_us_annual_may2004.jpg

CPV cost superiority
40% cell efficiency

CPV cost superiority
50% cell efficiency

Concentrator Photovoltaic Concentrator Photovoltaic 
(CPV) Electricity Generation(CPV) Electricity Generation

Higher multijunction cell efficiency has a huge impact on the economics of 
CPV, and on the way we will generate electricity.
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Solar Cell Theoretical

Efficiency
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Photon Utilization EfficiencyPhoton Utilization Efficiency
33--Junction Solar CellsJunction Solar Cells
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Ec

Ev

hν
Eg

qφn

qV
qφp

V = voltage of solar cell

= quasi-Fermi level splitting

= ⏐φp - φn⏐

• Not all of bandgap energy is available to be collected 
at terminals, even though electron in conduction band 
has energy Eg

• Only qV = q⏐φp - φn⏐ is available at solar cell 
terminals

• Due to difference in entropy S of carriers at low 
concentration in conduction band, and at high 
concentration in contact layers:  G = H - TS

Energy Transitions in Energy Transitions in 
SemiconductorsSemiconductors
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Energy Transitions in Energy Transitions in 
SemiconductorsSemiconductors
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Detailed Balance Limit of Solar Cell Efficiency

• 30% efficient 
single-gap solar 
cell at one sun, 
for 1 e-/photon

• 44% ultimate 
efficiency for 
device with 
single cutoff 
energy

Shockley and Queisser (1961)Shockley and Queisser (1961)
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• Assumptions for theoretical efficiency in Shockley and 
Quiesser (1961)

• Viewed from a different angle, these assumptions represent 
new opportunities, for devices that overcome these barriers

 
Assumption limiting solar cell efficiency Device principle overcoming this limitation 

Single band gap energy Multijunction solar cells 
Quantum well, quantum dot solar cells 

One e--h+ pair per photon Down conversion 
Multiple exciton generation 
Avalanche multiplication 

Non-use of sub-band-gap photons Up conversion 

Single population of each charge carrier type Hot carrier solar cells 
Intermediate-band solar cells  
Quantum well, quantum dot solar cells 

One-sun incident intensity Concentrator solar cells 

 

Assumptions Assumptions →→
OpportunitiesOpportunities
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Theoretical

95% Carnot eff. = 1 – T/Tsun T = 300 K, Tsun ≈ 5800 K
93% Max. eff. of solar energy conversion 

= 1 – TS/E = 1 – (4/3)T/Tsun (Henry)

72% Ideal 36-gap solar cell at 1000 suns    (Henry)

56% Ideal 3-gap solar cell at 1000 suns      (Henry)
50% Ideal 2-gap solar cell at 1000 suns      (Henry)

44% Ultimate eff. of device with cutoff Eg:  (Shockley, Queisser)
43% 1-gap cell at 1 sun with carrier multiplication

(>1 e-h pair per photon) (Werner, Kolodinski, Queisser)

37% Ideal 1-gap solar cell at 1000 suns      (Henry)

31% Ideal 1-gap solar cell at 1 sun              (Henry)
30% Detailed balance limit of 1 gap solar cell at 1 sun

(Shockley, Queisser)

Measured

3-gap GaInP/GaInAs/GaInAs cell at 326 suns  (NREL)  40.8%
3-gap GaInP/GaInAs/Ge cell at 240 suns  (Spectrolab) 40.7%

3-gap GaInP/GaAs/GaInAs cell at 1 sun   (NREL) 33.8%

1-gap solar cell (silicon, 1.12 eV) at 92 suns (Amonix)  27.6%
1-gap solar cell (GaAs, 1.424 eV) at 1 sun (Kopin)  25.1%

1-gap solar cell (silicon, 1.12 eV) at 1 sun  (UNSW) 24.7%
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Growth on Ge or GaAs substrate, 
followed by substrate removal from sunward surface

Growth
Direction

cap

1.9 eV (Al)GaInP subcell 1

1.4 eV GaInAs subcell 2

graded MM buffer layers

1.0 eV GaInAs subcell 3

Ge or GaAs substrate

Ge or GaAs substrate

cap

Metamorphic (MM) 3Metamorphic (MM) 3--Junction Cells    Junction Cells    
–––– Inverted 1.0Inverted 1.0--eV GaInAs SubcelleV GaInAs Subcell
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cap

contact
AR

(Al)GaInP Cell 1     2.0 eV
wide-Eg tunnel junction
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tunnel junction
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Ge Cell 5
and substrate
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• Divides available 
current

density above GaAs Eg

among 3-4 subcells

• Allows low-current
GaInNAs cell to 
be matched to
other subcells

• Lower series resistance

Ref.:  U.S. Pat. No. 6,316,715, Spectrolab, Inc., filed 3/15/00, issued 11/13/01.  

55-- and 6and 6--Junction CellsJunction Cells
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Metamorphic 

Semiconductor 

Materials
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• Metamorphic = "changed form"

• Thick, relaxed epitaxial layers grown with different lattice 
constant than growth substrate

• Allows access to subcell band gaps desired for more 
efficient division of the solar spectrum in multijunction solar 
cells

• Also called lattice-mismatched

• Misfit dislocations are allowed to form in metamorphic 
buffer, which typically has graded composition and lattice 
constant

• Threading dislocations which can propagate up into active 
device layers grown on buffer are minimized as much as 
possible

Metamorphic (MM) Metamorphic (MM) 
Semiconductor MaterialsSemiconductor Materials
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Bandgap vs. Bandgap vs. 
Lattice ConstantLattice Constant
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• Low dislocation 
density in active cell 
layers in top portion of 
epilayer stack:  

~ 2 x 105 cm-2 from 
EBIC and CL meas.

• Dislocations confined 
to graded buffer layers in 
bottom portion of 
epilayer stack

GaInAs cap

GaInAs MC

GaInP TC

0.2 μm

Tunnel junction

Pre-grade buffer

Misfit dislocations

GaInAs graded
buffer to 8%-In

0.2 μm

Ge substrate

Cross sectional TEMCross sectional TEM
GaGa0.440.44InIn0.560.56P/ GaP/ Ga0.920.92InIn0.080.08As/ Ge  As/ Ge  

CellCell
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• GaInP/ 8%-In GaInAs/ Ge 
metamorphic (MM) cell 
structure

• Nearly 100% relaxed step-
graded buffer →
removes driving force for 
dislocations to propagate 
into active cell layers

• 56%-In GaInP top cell 
pseudomorphic with respect 
to GaInAs middle cell

HighHigh--Resolution XRD Resolution XRD 
Reciprocal Space Map (RSM)Reciprocal Space Map (RSM)
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Ge or GaAs substrate

Growth on Ge or GaAs substrate, 
followed by substrate removal from sunward surface

nucleation

buffer layerbuffer layer

emitter

1.39-eV GaInAs
inverted LM subcell

base

contact

metal

hν

Inverted LatticeInverted Lattice--Matched (LM)Matched (LM)
1.391.39--eV GaInAs SubcelleV GaInAs Subcell
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Ge substrate

Growth on Ge or GaAs substrate, 
followed by substrate removal from sunward surface

nucleation and pre-grade buffer

transparent MM transparent MM 
graded buffer layersgraded buffer layers

emitter

1.10-eV GaInAs
inverted MM subcell

base

contact
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hν

Metamorphic (MM) 3Metamorphic (MM) 3--Junction Cells Junction Cells 
–––– Inverted 1.10Inverted 1.10--eV GaInAs SubcelleV GaInAs Subcell
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Ge substrate
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followed by substrate removal from sunward surface
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Ge substrate

Growth on Ge or GaAs substrate, 
followed by substrate removal from sunward surface
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Voltage depends on non-equilibrium concentrations of 
electrons and holes
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• Bandgap-voltage offset W ≡ (Eg/q) – V is a useful parameter for 
gauging solar cell quality, especially when dealing with semiconductors 
of many different bandgaps

• Basically a measure of how close electron and hole quasi-Fermi 
levels are to conduction and valence band edges

Solar Cell VoltageSolar Cell Voltage
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Metamorphic III-V Growth
on Si Substrates 

Using SiGe Buffers
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SiGe
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Ge

GaAs cell

InGaP cell

GaAs cell

Virtual Ge substrate

engineered
Si substrate:
Virtual Ge

Dual junction 
PV cell on Si

GaAs matl
on Si: virtual 

GaAs

Single 
junction PV 
cell on Si

Being 
commercialized by 
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Polycrystalline Thin-Film 
Solar Cells:  

Cu(In,Ga)Se2
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Cu(In,Ga)SeCu(In,Ga)Se22

• Promise:  
• Cost / watt equivalent to                           

First Solar CdTe
• Performance matching the best 

multijunctions

• Issues:
• Major defect contributing to 

carrier loss
• Wide-gap devices to enable 

multijunctions?
• Fundamental understanding of 

the device incomplete

M
ul

tij
un

ct
io

n 
C

IG
S

The 
promise of 
thin films

Understanding for Device Engineering
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The Real DeviceThe Real Device

TEM image Schematic

Devices are thought to be limited by recombination in the 
depletion region, not by heterojunction recombination.

• What is the major 
recombination 
center? 

• What do grain 
boundaries do?

• Why does 
CuGaSe2 not 
work well?

• Why do some 
growth 
processes work 
better than 
others?

54
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Chalcopyrite CIGSChalcopyrite CIGS

c

a

In

Se
Yet:  

• Extended defects inactive

• Polar surfaces most stable

• Hole mobility phonon limited for p to >1019 cm-3

• Polycrystalline devices work better than single 
crystals

• Disordering energy is low so there are many 
point defects

• CIGS is a polar compound so charged 
surfaces could be a problem 

57
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• Certain materials systems exhibit low minority-carrier recombination in spite of 
very high defect densities

– e.g., GaN and InGaN devices, polycrystalline Cu(GaIn)Se2 (CIGS) solar cells

• Need atomic level understanding of the mechanisms that render dislocations 
inactive in these remarkable materials

• CIGS solar cells
– Cu vacancies (VCu) and cation antisite defects such as InCu have a low enthalpy of formation
– spontaneously forms Cu-poor phases of CIGS
– defects form complexes in which they can neutralize each other electrically

• Microchemical analyses show little composition change between grain boundaries 
and bulk in CIGS

– suggests recombination activity self-passivating, due to nature of surface defects

• Can self-passivating behavior of polycrystalline CIGS can be extended to other 
semiconductors, additional device structures?  

– If so, opens possibility of high-efficiency MJ solar cells in low-cost thin-film configuration

• Understanding of self-passivating phenomena at defects and interfaces is 
essential for nanostructured photovoltaic cells, e.g., quantum dot and nanowire solar 
cells

– Very large interfacial area is natural consequence of nanoscale structures

SelfSelf--Passivating Defects in Passivating Defects in 
Cu(GaIn)SeCu(GaIn)Se22
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• Layers facet spontaneously into polar (112) type planes

• Smooth facets alternate with rough facets

• Indexing surface planes shows smooth planes are metal terminated
(220)/(204) epitaxial layer AFM image

Red: metal terminated
Blue: Se terminated

(1
12

) A

(112)B

Conclusion:
Somehow the polar surfaces are stabilized, 
giving a very strong preference for these.  

(220)/(204) Oriented CIGS(220)/(204) Oriented CIGS
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CIGS solar cells
• Are heterojunction devices with a very strongly inverted 

junction (Cd doping overwhelms Fermi level pinning).

• Do not mind grain boundaries because they are highly faceted 
to extremely passive (112) surfaces.

• Heterojunction is made to these surfaces regardless of grain 
orientation.

• Point defects control doping in the bulk and are very consistent.

• Edge dislocations do not matter because they turn into (112) 
surfaces.

Conclusions of all of thisConclusions of all of this……
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Nanostructured, 
Organic, and Other 
Novel Solar Cells

61
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Nanostructures Nanostructures 
for Solar Cellsfor Solar Cells

• Can be formed into flexible arrays that are peeled off of template Si
Harry Atwater, Caltech
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Nanorod Solar CellsNanorod Solar Cells

Large Area (>1 cm2) Si Wire Arrays

Harry Atwater, Caltech

B.M. Kayes, M.A. Filler, et al., App. Phys. Lett. 91, 103110 (2007)
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• The “Gratzel” cell uses an electrolyte 
to conduct holes away from the 
chromophore.

• Issues
• Energy loss at electrolyte/TiO2

redox reaction
• Energy loss at TiO2 Ru complex 

interface
• Hermetic seal to preserve 

electrolyte
• Instability of Ru complex

Efficiency ~12% (record)

Photoelectrochemical CellsPhotoelectrochemical Cells
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• Reasons for:
• Flexible cells
• Non vacuum/cheap 

substrate
• Enables organic 

chemistry control

• Reasons against
• Exciton binding energy
• Mobility of carriers
• Stability

PCBM

CuPc

e.g.: P3HT

66
Angus Rockett, Univ. of Illinois
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High-Efficiency

Multijunction Cells
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Concentrator cell light I-V and efficiency independently verified by J. Kiehl, T. Moriarty, K. Emery – NREL

• Greater than 
39% efficiency at 
>1000 suns

Spectrolab High-Concentration
GaInP/ GaInAs/ Ge Cell

Voc = 3.196 V 
Jsc = 15.33 A/cm2

FF    = 86.90%
Vmp = 2.799 V 

Efficiency = 39.1%  ± 2.4% 
at 1089 suns (108.9 W/cm2) intensity

0.2082 cm2 designated area
25 ± 1°C, AM1.5D, low-AOD spectrum

HighHigh--Concentration Concentration 
33--Junction CellJunction Cell
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Metamorphic (MM) Metamorphic (MM) 
33--Junction Solar CellJunction Solar Cell
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• Metamorphic growth of upper two subcells, GaInAs and GaInP
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• Metamorphic GaInAs and GaInP subcells bring band gap combination 
closer to theoretical optimum
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Concentrator cell light I-V and efficiency independently verified by J. Kiehl, T. Moriarty, K. Emery – NREL

• First solar cell of 
any type to reach 
over 40% efficiency

Spectrolab
Metamorphic

GaInP/ GaInAs/ Ge Cell
Voc = 2.911 V 
Jsc = 3.832 A/cm2

FF    = 87.50%
Vmp = 2.589 V 

Efficiency = 40.7%  ± 2.4% 
240 suns (24.0 W/cm2) intensity
0.2669 cm2 designated area
25 ± 1°C, AM1.5D, low-AOD spectrum Ref.:  R. R. King et al., "40% efficient 

metamorphic GaInP / GaInAs / Ge 
multijunction solar cells," 
Appl. Phys. Lett., 90, 183516, 4 May 2007.

Record Record 40.7%40.7%--Efficient Efficient 
Concentrator Solar CellConcentrator Solar Cell

74



R. R. King, 51st Electronic Materials Conf., University Park, PA, June 24-26, 2009 75

 

Growth on Ge or GaAs substrate, 
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sunward surface
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• Bottom ~1-eV GaInAs subcell is inverted and metamorphic (IMM)

• Upper two GaInAs and GaInP subcells are inverted and lattice matched (ILM)
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• Raising band gap of bottom cell from 0.67 for Ge to ~1.0 eV for IMM 
GaInAs raises theoretical 3J cell efficiency
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• Current density in spectrum above Ge cell 4 is divided 3 ways among 
GaInAs, AlGa(In)As, GaInP cells

•Lower current and I2R resistive power loss
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44--Junction Upright Metamorphic Junction Upright Metamorphic 
(MM) Terrestrial Concentrator Cell(MM) Terrestrial Concentrator Cell

0.67-eV Ge cell 4 
and substrate

transparent buffer

1.2-eV GaInAs cell 3

1.55-eV AlGaInAs cell 2

1.8-eV (Al)GaInP cell 1

metal 
gridline
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• Lowering band gap of subcells 2 and 3, e.g., with MM materials, gives 
higher theoretical 4J cell efficiency
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• Light I-V curves for 3-junction upright MM (40.7%), 3J lattice-matched (40.1), 
3J cell designed for >1000 suns (39.1%), and 4J LM cell (35.7%)
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SemiconductorSemiconductor--Bonded Technology Bonded Technology 
(SBT) Terrestrial Concentrator Cell(SBT) Terrestrial Concentrator Cell

InP growth substrateGaAs or Ge 
growth substrate

1.4-eV GaInAs cell 3

1.7-eV AlGaInAs cell 2

2.0-eV AlGaInP cell 1
0.75-eV GaInAs cell 5

1.1-eV GaInPAs cell 4

GaAs or Ge 
growth substrate

1.4-eV GaInAs cell 3

1.7-eV AlGaInAs cell 2

2.0-eV AlGaInP cell 1

1.4-eV GaInAs cell 3

1.7-eV AlGaInAs cell 2

2.0-eV AlGaInP cell 1

GaAs or Ge 
growth substrate

1.4-eV GaInAs cell 3

1.7-eV AlGaInAs cell 2

2.0-eV AlGaInP cell 1

GaAs or Ge 
growth substrate

semi-
conductor 

bonded
interface

metal 
gridline

0.75-eV GaInAs cell 5

1.1-eV GaInPAs cell 4

1.4-eV GaInAs cell 3

1.7-eV AlGaInAs cell 2

2.0-eV AlGaInP cell 1

semi-
conductor 

bonded
interface

metal 
gridline

– Low band gap cells for MJ 
cells using high-quality, 
lattice-matched materials
– Epitaxial exfoliation and 
substrate removal
– Formation of lattice-
engineered substrate for 
later MJ cell growth
– Bonding of high-band-gap 
and low-band-gap cells after 
growth
– Electrical conductance of 
semiconductor-bonded 
interface
– Surface effects for 
semiconductor-to-
semiconductor bonding

• Wafer bonding for multijunction solar cells
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Concentrator 
Photovoltaic (CPV) 

Systems 
and 

Economics
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Combination of high efficiency & 500X 
concentration boosts output per 
semiconductor area by a factor of 
1000.

• 1 football field of ~ 17% solar cells at 1-sun produces ~ 500 kW.

• By using MJ cells (> 35%) at concentration of 500 suns, same power is 
produced from smaller semiconductor area (or the football field 
produces 500 MW).

MJ cells are replaced by less expensive 
optics and common materials.

Leads to reduced cost of energy despite 
paying extra for tracking & cooling.

Concentrator PV Systems Concentrator PV Systems 
with Multijunction Cellswith Multijunction Cells
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Solar cells = Semiconductor converting light into electricity
Receiver   = A collection of one or more solar cells mounted on substrates
Module     = Receiver + optics to concentrate the light
BOS         = Balance of System (everything else needed, e.g., tracker, inverter)

Solar
Cell

Receiver

Spectrolab’s 
Product Module System (total of 50 modules mounted

on a dual-axis tracker)

Light in

Electricity out

Elements of a CPV SystemElements of a CPV System
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Courtesy of Solar Systems Pty. Ltd., Australia

Equipped 
with III-V MJ 

cell receivers

• III-V MJ cells give 
56% measured 
improvement in 
module efficiency 
relative to Si 
concentrator cells

Solar Systems, AustraliaSolar Systems, Australia
Hermannsburg Power StationHermannsburg Power Station
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Courtesy of Solar Systems Pty. Ltd., Australia

TrackingTracking

StructureStructure

OpticsOptics

CoolingCooling

Operation Operation 
and and 
MaintenanceMaintenance

Balance of System CostsBalance of System Costs
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94

Economics for Economics for 
Device PhysicistsDevice Physicists

Continuity equation:  

...in $$ rather than charge carriers:  

change in              value of kWhr        operating               funds paid out to bank
value of           =    generated          – expenses        – for interest and principal
PV system             by PV system          for PV system         on loan to buy PV system
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Cell cost ranges
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R. R. King et al., 3rd Int'l. Conf. on Solar Concentrators (ICSC-3), Scottsdale, AZ, May 2005

Increasing cell efficiency main 
priority for concentrators

Decreasing cell cost main priority 
for flat-plate

Terrestrial PV System Cost Terrestrial PV System Cost 
vs. Cell Costvs. Cell Cost
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• Urgent global need to address carbon emission, climate change, and 
energy security concerns  → renewable electric power can help
• Electronic materials research has a huge opportunity to impact these 
challenges, by developing new materials, devices, processes to reach:  

– 45-50% efficient single-crystal multijunction cells
– 25% polycrystalline thin-film PV
– better fuel cells, batteries, power and other renewable energy devices

• Theoretical solar conversion efficiency
– Examination of built-in assumptions points out opportunities to reach 

higher terrestrial PV efficiency
– Theo. solar cell η > 70%, practical η > 50% achievable

• Metamorphic multijunction cells have begun to realize their promise
– 40.7% metamorphic GaInP/ GaInAs/ Ge 3J cells demonstrated
– First solar cells of any type to reach over 40% efficiency
– Metamorphic 3J cells now over 41% efficiency

• Solar cells with efficiencies in this range can transform the way we 
generate most of our electricity, and make the PV market explode

SummarySummary
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