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Preface

It is becoming increasingly evident that dislocation theory must
be brought into the teaching-core of physical metallurgy. Deviations
from crystalline perfection seem to play a prominent role in the be-
havior of metals, and dislocations constitute a most important class
of imperfections about which calculations and predictions can be made.
At first, the postulation of edge and screw dislocations appeared some-
" what arbitrary, leaving the metallurgist with the uncomfortable feeling
that they lacked reality and merely provided an amusing toy for the
mathematician. However, the picture has been broadened consider-
ably by the concept of a dislocation loop which comprises varying
combinations of edge and screw elements. Thus, if slip spreads along
a glide plane,. the lattice discontinuity between the slipped and un-
slipped regions is inevitably a dislocation, no matter how curved the
advancing front may be. o

Dislocations have proved quite versatile in accounting for many
aspects of the mechanical behavior of metals. By the same token, the
theory has been criticized as being somewhat too flexible in its ability
to fit the facts. During recent years, however, three striking predictions
of dislocation theory have been confirmed by experiment: (a) the
role of dislocations in the growth of crystals from the vapor phase and
dilute solutions, (b) the calculation of low-angle grain-boundary
energies as a function of the degree of disorientation, and (c¢) the
movement of low-angle grain boundaries under stress. As a result of
these triumphs, dislocation theory is now on such a firm footing that
physical metallurgists will find it advantageous, if not essential, to be-
come thoroughly conversant with dislocations and their manifestations.

As a step in this direction, a Seminar on “Dislocations in Metals”
was held by the Institute of Metals Division, AIME, at its fall meeting
in October 1951. Three outstanding survey lectures were given, by
J. 8. Koehler, W. T, Read, Jr., and E. Orowan. The presentations were
educational in nature, and were purposely not intended to take the
form of original papers. The response of the audience of 400 was so
enthusiastic that the Executive Committee authorized the publication
of the lectures as a separate volume. In the preparation of the manu-
scripts, F. Seitz and W. Shockley joined the authorship. Much addi-
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tional material has been included that could not be treated in the origi-
nal lectures. A number of new ideas, not prev1ously published, are
also contained herein.

In Chapter 1, Professors Koehler and Seitz discuss the‘’ need” for
dislocations, and outline the various phenomena in which they come
into play. The geometry, stress-fields, energetics, and 1nteract10ns of
dislocations are reviewed in considerable detail.

Chapter 2, by Dr. Read and Dr. Shockley, is devoted primarily to
those aspects of the subject in which definite predictions of dislocation
theory have been subsequently verified by experiment. Emphasis is
placed on the problems of crystal growth, low-angle grain-boundary
energies, and the movement of these boundaries under stress.

The prodigious task of surveying the field of mechanical behavior -
in terms of dislocation theory is handled by Professor Orowan in
Chapter 3. The thoroughness and clarity with which he has covered
this complex subject will be appreciated by students of metallurgy
for many years to come.

" The Institute of Metals Division is deeply indebted to the five
authorities on dislocation theory who have participated in the present
undertaking. It is hoped that the reader response will demonstrate the
importance of these IMD Seminar volumes in which overall perspec-
tive, rather than original research, is the keynote.

It is also a pleasure to acknowledge the fine cooperation of Dr
Ernest Kirkendall and Miss K. S. Lovell, who helped in many ways
to brlng this book to the pubhc
Morris Cougen, Editor.
CAMBRIDGE, MASSACHUSETTS ' - '
July 15, 1953
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