Dislocations in Metals
Dislocations in Metals

by

J. S. KOEHLER AND F. SEITZ
University of Illinois
Urbana, Illinois

W. T. READ, JR., AND W. SHOCKLEY
Bell Telephone Laboratories
Murray Hill, New Jersey

E. OROWAN
Massachusetts Institute of Technology
Cambridge, Massachusetts

Edited by

MORRIS COHEN
Massachusetts Institute of Technology

Published by

The Institute of Metals Division
The American Institute of Mining and Metallurgical Engineers, Inc.
29 West 39th Street
New York, N. Y.
1954
Preface

It is becoming increasingly evident that dislocation theory must be brought into the teaching-core of physical metallurgy. Deviations from crystalline perfection seem to play a prominent role in the behavior of metals, and dislocations constitute a most important class of imperfections about which calculations and predictions can be made. At first, the postulation of edge and screw dislocations appeared somewhat arbitrary, leaving the metallurgist with the uncomfortable feeling that they lacked reality and merely provided an amusing toy for the mathematician. However, the picture has been broadened considerably by the concept of a dislocation loop which comprises varying combinations of edge and screw elements. Thus, if slip spreads along a glide plane, the lattice discontinuity between the slipped and unslipped regions is inevitably a dislocation, no matter how curved the advancing front may be.

Dislocations have proved quite versatile in accounting for many aspects of the mechanical behavior of metals. By the same token, the theory has been criticized as being somewhat too flexible in its ability to fit the facts. During recent years, however, three striking predictions of dislocation theory have been confirmed by experiment: (a) the role of dislocations in the growth of crystals from the vapor phase and dilute solutions, (b) the calculation of low-angle grain-boundary energies as a function of the degree of disorientation, and (c) the movement of low-angle grain boundaries under stress. As a result of these triumphs, dislocation theory is now on such a firm footing that physical metallurgists will find it advantageous, if not essential, to become thoroughly conversant with dislocations and their manifestations.

As a step in this direction, a Seminar on “Dislocations in Metals” was held by the Institute of Metals Division, AIME, at its fall meeting in October 1951. Three outstanding survey lectures were given, by J. S. Koehler, W. T. Read, Jr., and E. Orowan. The presentations were educational in nature, and were purposely not intended to take the form of original papers. The response of the audience of 400 was so enthusiastic that the Executive Committee authorized the publication of the lectures as a separate volume. In the preparation of the manuscripts, F. Seitz and W. Shockley joined the authorship. Much addi-
tional material has been included that could not be treated in the original lectures. A number of new ideas, not previously published, are also contained herein.

In Chapter 1, Professors Koehler and Seitz discuss the "need" for dislocations, and outline the various phenomena in which they come into play. The geometry, stress-fields, energetics, and interactions of dislocations are reviewed in considerable detail.

Chapter 2, by Dr. Read and Dr. Shockley, is devoted primarily to those aspects of the subject in which definite predictions of dislocation theory have been subsequently verified by experiment. Emphasis is placed on the problems of crystal growth, low-angle grain-boundary energies, and the movement of these boundaries under stress.

The prodigious task of surveying the field of mechanical behavior in terms of dislocation theory is handled by Professor Orowan in Chapter 3. The thoroughness and clarity with which he has covered this complex subject will be appreciated by students of metallurgy for many years to come.

The Institute of Metals Division is deeply indebted to the five authorities on dislocation theory who have participated in the present undertaking. It is hoped that the reader response will demonstrate the importance of these IMD Seminar volumes in which overall perspective, rather than original research, is the keynote.

It is also a pleasure to acknowledge the fine cooperation of Dr. Ernest Kirkendall and Miss K. S. Lovell, who helped in many ways to bring this book to the public.

MORRIS COHEN, Editor.

CAMBRIDGE, MASSACHUSETTS
July 15, 1953
Contents

Preface—By Morris Cohen .. v

Chapter 1—The Nature of Dislocations in Ideal Single Crystals.
By J. S. Koehler and F. Seitz 1
 1.1 The Need for Dislocations 1
 1.2 Geometry of Dislocations 6
 1.3 Energies and Interactions of Dislocations 21
 1.4 Interrelations between Dislocations and Other Imperfections 26

Chapter 2—Role of Dislocations in Crystal Growth and Grain Boundary Phenomena. By W. T. Read, Jr., and W. Shockley 37
 2.1 Recent Developments in Dislocation Theory 37
 2.2 Crystal Growth ... 38
 2.3 Frank's Theory of the Growth of an Imperfect Crystal .. 39
 2.4 Observational Examples 41
 2.5 Grain Boundaries ... 42
 2.6 Dislocation Model of a Simple Grain Boundary 44
 2.7 Derivation of the Energy Formula 46
 2.8 Predictions from the Theory 51
 2.9 Comparison with Experiment 54
 2.10 Motion of Small-angle Grain Boundary 58
 2.10a. "Single-type" Boundary Motion 59
 2.10b. "Mixed-type" Blocking 61
 2.10c. Purification by Slip 61
 2.10d. Oblique Lattices 63
 2.10e. Slip by Diffusion 64
 2.10f. "Blocking and Cutting" 65
 2.10g. Parker and Washburn's Experiment 66

Chapter 3—Dislocations and Mechanical Properties. By E. Orowan .. 69
 3.1 Historical Sketch .. 69
 3.2 Discrepancy between Observed Value of the Yield Stress and Its Theoretical Estimate 72
 3.3 Earlier Attempts at Explaining the Discrepancy 77
 3.4 The Theory of R. Becker 78
 3.5 The Dislocation Belt Around the Area of Local Slip ... 81
CONTENTS

3.6 Stability Condition for an Area of Local Slip 85
3.7 The Specific Energy of a Dislocation 87
3.8 The Critical Stable Size of a Slipped Area 88
3.9 Dislocations as the Cause of the Discrepancy between the Observed and the Calculated Value of the Yield Stress 89
3.10 The Origin of Dislocations 90
3.11 The Herring-Galt Experiment 94
3.12 Multiplication Mechanisms of Dislocations 95
3.13 The Frank-Read Double Mill (“Dislocation Source”) and the Bulge Extrusion Mechanism of Slip 97
3.14 Generation of Double Mills and the Spread of Slip to Other Slip Planes ... 103
3.15 Z-mills .. 110
3.16 Recapitulation ... 114
3.17 Mechanical Twinning and Martensitic Transformation 116
3.18 The Initial Yield Stress of Crystals 125
3.19 Precipitation Hardening ... 128
3.20 Theories of Strain Hardening 134
3.21 The Taylor Theory: Strain Hardening Due to the Accumulation of Dislocations at Obstacles 139
3.22 The Elastic Field Around a Dislocation 143
3.23 Strain Hardening Due to Dislocations Cut Across by Slip 146
3.23A Strain Hardening Due to Stacking Faults 150
3.24 Creep and the Temperature Dependence of the Yield Stress ... 157
3.25 The Yield Phenomenon .. 165
3.26 Recovery, Polygonization, and Recrystallization 175
3.27 Ductile Fracture and Fatigue 188

Index ... 197
Index

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum, deformation of single crystals, 17</td>
<td>Density of dislocations, in strained metal, 28, 148</td>
</tr>
<tr>
<td>Angle of misfit, 45</td>
<td>in well-annealed materials, 20</td>
</tr>
<tr>
<td>B</td>
<td>Diamond, hardness determination, 126</td>
</tr>
<tr>
<td>Becker theories, discrepancy, 78, 89</td>
<td>Dislocation concept, usefulness, 1</td>
</tr>
<tr>
<td>nucleation, 181</td>
<td>Dislocation, origin of name, 69</td>
</tr>
<tr>
<td>slip, 162</td>
<td>Dislocation line, 9</td>
</tr>
<tr>
<td>Beryl crystals, step heights in edges, 41</td>
<td>Dislocation mill, definition, 97</td>
</tr>
<tr>
<td>Brittle materials, discrepancy between observed and calculated</td>
<td>double, and bulge extrusion mechanism of slip, 97</td>
</tr>
<tr>
<td>tensile strengths, 73</td>
<td>explanation of spread of slip to other planes, 103</td>
</tr>
<tr>
<td>Burgers circuit, effect in crystal, 10</td>
<td>generation during slip, 104</td>
</tr>
<tr>
<td>Burgers dislocation, formation and effect, 6</td>
<td>Dislocation model, 38, 43, 70</td>
</tr>
<tr>
<td>Burgers distance, or vector, 9, 14</td>
<td>Dislocation movement, factors facilitating, 2</td>
</tr>
<tr>
<td>C</td>
<td>Dislocation rings, 9, 14</td>
</tr>
<tr>
<td>Cavities, 109</td>
<td>Dislocation theory, modern developments, 37</td>
</tr>
<tr>
<td>Chemical reaction rate theory, 159</td>
<td>Dislocations, around area of local slip, 81</td>
</tr>
<tr>
<td>Concept of dislocation, usefulness, 1</td>
<td>definition, 1</td>
</tr>
<tr>
<td>Copper, energy of grain boundaries, 57</td>
<td>distribution in crystals, model, 43 edge. See Edge</td>
</tr>
<tr>
<td>lattice vacancies, 30</td>
<td>energies and interactions, 21</td>
</tr>
<tr>
<td>Creep in crystalline materials, 157, 164</td>
<td>half, 13, 15, 16, 154</td>
</tr>
<tr>
<td>Crystal growth, Frank theory, 38</td>
<td>mechanical properties, 69</td>
</tr>
<tr>
<td>from vapor, 39</td>
<td>multiplication mechanisms, 95</td>
</tr>
<tr>
<td>nuclei provided by dislocations, 4, 181</td>
<td>origin, 90</td>
</tr>
<tr>
<td>spirals, 41</td>
<td>prismatic, 12</td>
</tr>
<tr>
<td>suitable materials for observation, 41</td>
<td></td>
</tr>
<tr>
<td>Crystal monolayers, steps in edges, 40</td>
<td></td>
</tr>
</tbody>
</table>

197
Dislocations, role in crystal growth, 37
screw. See Screw
sessile, 16
Shockley, 13, 15
twin, 13, 15, 16, 118
Duralumin, precipitation hardening, 128

E
Edge dislocations, affinity for impurities, 3, 27
description, 2, 69
distribution of stress, 49
effects, 6
formation in disoriented crystals, 91
generation of slip, 106
role in polygonization, 24
structure, 83
Z-mills, 110
Elastic field around a dislocation, 143
Energies and interactions of dislocations, 21
Energy, derivation of formula, 46
of dislocations, elastic, 85
misfit, 88
per unit of length, 87
grain-boundary, measurements, silver, iron, copper, 55
physical meaning of formula, 51
relation to dislocations, 5
relative, measurements, 54

F
Fatigue of metals, role of dislocations, 188
Fracture in ductile crystalline materials, role of dislocations, 188
Frank theory of crystal growth, 38
Frank and Read, double mill, 97
process of producing slip on single atomic plane from single dislocation, 18, 21

G
Grain boundaries, arrays of dislocations, 42, 45, 91
method of producing, 47
Grain boundaries, small-angle, 45, 58
Grain boundary, dislocation model, 42, 44
Grain-boundary motion, small-angle, blocking and cutting, 65
mixed-type blocking, 65
oblique lattices, 63
Parker and Washburn's experiment, 66
purification by slip, 61
single type, 59
slip by diffusion, 64
Griffith theory, 77
Growth. See Crystal Growth

H
Half dislocations, 13, 15, 16, 154
Hardening process, precipitation, 128
role of stacking faults in cubic face-centered crystals, 138
strain, 134
Herring-Galt experiment, 94

I
Imperfections, interactions, 26
Impurities, affinity for edge dislocations, 3, 27
Interrelations between dislocations and other imperfections, 26
Interstitial atoms, 4, 27, 29, 31
Iodine crystals, growth from vapor, 39
Iron, intergranular energy of boundaries, 55
upper yield point in relation to dislocations, 28

K
Kirkendall experiment, marker motion, 4, 34

L
Lattice vacancies. See Vacancies
Lead, energy of grain boundaries, 57
INDEX

M
Martensitic transformations, formation of lamellae of stable phase, 116, 123
Mechanical hysteresis, model explaining, 70
Mercury single crystals, shearing stress with silver as impurity, 3
Metals, cold-worked, structural changes, 175
lattice vacancies. See Vacancies
Misfit energy, 88
Model, distribution of dislocations, 38, 43, 44
explanation of mechanical hysteresis, 70
Movement of dislocations, factors facilitating, 2
Multiplication mechanisms of dislocations, 95

N
Node, definition, 10
Nucleation theories, 181

O
Origin of dislocations, 90
Origin of name dislocation, 69

P
Parker and Washburn’s experiment, 66
Partial dislocation, Shockley, 13, 15
Plastic flow, phenomena accounted for by dislocation concept, 1, 5, 114
Polygonization, 24, 176
Precipitation hardening, 128
Prediction from dislocation theory, first dynamic example, 67
Prismatic dislocations, 12
Punching experiments in thallium bromide, 10

R
Recovery, 175, 176
Recrystallization, 181
Ring dislocation, 9, 14

S
Screw dislocations, 6, 24, 31, 40, 69, 104
Sessile dislocation, 16
Shockley partial dislocation, 13, 15
Silicon carbide, hardness determination, 127
steps in growth, 41
Silver, grain-boundary energy, 55, 57
Single crystals, shearing stress, 3
yield stress, 72
Slip on single atomic plane, 17
Slip process, critical stable size of area, 88
cross slip, 105
dislocation belt around area, 81
Frank-Read double mill, 97
multiplication mechanisms of dislocations, 95
production of lattice imperfections, 138
spread of slip to other planes, 103
stability conditions, 85
twinning, 116
yield-stress theories, 165
Slip tracks, 114
Small-angle grain boundaries, 45, 58
Snakes, dislocations, 85
Solid free of dislocations, probable behavior, 6
Stacking faults, 138, 150
Step formation, 104
Strain aging, causes, 28
Strain hardening, dislocations cut across by slip, 146
elastic field around dislocation, 143
stacking faults as cause, 138, 150
theories, 134
Stress concentrations, 21, 26

T
Taylor-Orowan dislocation, 2, 6
Taylor theory of strain hardening, 126, 135, 136, 139
Thallium bromide, punching experiments, 10
Tin crystals, energy of grain boundaries, 57
Herring-Galt experiment, 94
plastic flow as result of dislocations, 5
Twin dislocations, 13, 15, 16, 118
Twinning in crystals, 20, 107, 116

V
Vacancies, 4, 29, 31, 33, 65, 168
Volmer nucleation theory, 181, 185

W
Warren theory of strain hardening, 138, 150
Worms, dislocations, 85

Y
Yield-point phenomenon, 28, 165
Yield stress, definition in contrast to yield strength, 72
discrepancy between observed value and calculated value, 89
discrepancy between observed value and theoretical estimate, 72, 77
initial of crystals, 125
in precipitation hardening, 134
in single crystals, 72
temperature dependence, 157
theories, 165

Z
Z-mills, 110, 138, 169