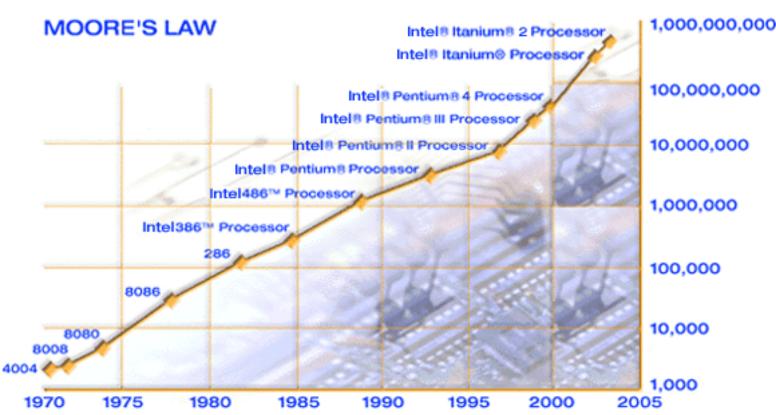
Globalization of the Electronic Materials Industry

Darrel Frear Freescale Semiconductor February 14, 2005

Materials in Electronics

	I	nsulators			Semiconductor	s Condu	uctors
	Organic		Inorg	anic	GaAs Ge	Elemental	Alloys
Thermoset Plastics Aldyd Allyl Epoxy Melemine Phenolic Polyester Polyuerthane Silicone	PlasticsPlasticsAldydABSAllylAcetalAllylAcetalEpoxyAcrylicCOMelemineCelluloseCOPhenolicFluropolymerCFPolyesterIonomerCSPolyimideLCPEFPolyuerthaneNylonSiliconeParyleneFEPEEK	Elastomers ABR BR CO COX CR CSM EPDM EPM FPM IIR IR	<i>Ceramics</i> Alumina Berylia Carbiedes Magnesia Nitrates Titanates	<i>Glasses</i> Aluminisilicate Borosilicate Glass ceramics Leaded glass Silica Soda lime	InP Al Se Cu Si Au Fe Mg Ni Pt Sn Ti W		Brass Bronze NiFe Solder Steel
	PolycarbonateNBRPolyesterNRPolyetherimidePVC/NBRPolyethyleneSBRPolyimideSIPolystyreneTPolysulofoneUPPOPPSPVCIVCI		Microelectronics is a complex system of materials and processes that are inexorably linked Processes are <i>materials</i> driven Materials are <i>process/performance</i> driven				

Overall Trend in Semiconductor Industry


Increased functionality at smaller size and lower cost

- Finer Pitch Lithography
 - Moore's Law: 30% reduction in size of printed dimensions every 2 years
 - 90nm now, 65nm in 2 years, 45nm in 4 years, etc.
- System on Chip (SoC)
- System in Package (SiP)
 - Two or more chips with different functionality in a package
- Increased levels of speed
 - Microprocessors at >1GHz
 - Cell phones at >2.5GHz
- Increased levels of power (heat dissipation)
 - Cell phones (1W), Automotive (2-5W), Microprocessor (5-10W), Basestation (>100W)
- Environmentally Friendly Electronics

Increased Functionality at Smaller Size

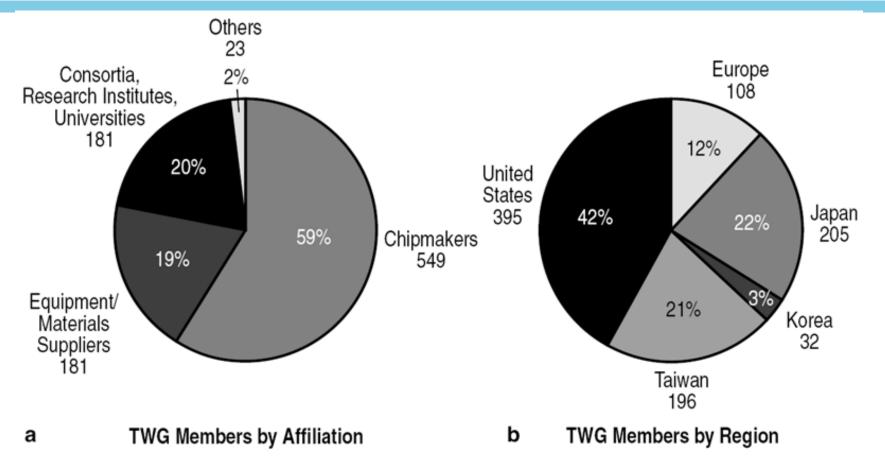
Gordon Moore (Intel) observed in 1965 that the number of transistors would grow exponentially, doubling every couple of years

From: Intel website

International Technology Roadmap Nodes

Semiconductor Highlights

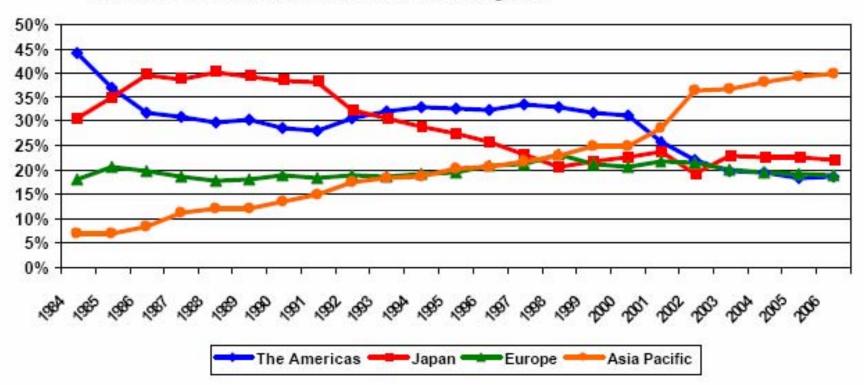
	2004	2005	2006	2007
Pitch (nm)	90	65	45	18
Memory (Gb)	1	2	4	32
Cost/bit (micro-cents)	2.7	0.96	0.34	0.021
Physical gate (nm)	37	25	18	7
Speed (GHz)	4.2	9.3	15	53


	1990	2001	2012	2019
Wafer size (mm)	200	300	450	675

Packaging Highlights

- SiP
- 3D Packaging
- Wafer Level Packages
- Thinned Die
- MEMS
- Optoelectronics
- Bio Chips

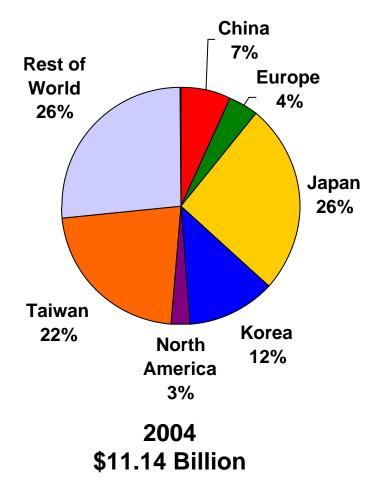
International Technology Roadmap for Semiconductors: Technical Working Group



• The future of semiconductor technology is internationally defined

From: W.H. Hunt "Global Perspectives on Electronic Materials: Challenges and Opportunities", JOM June'04

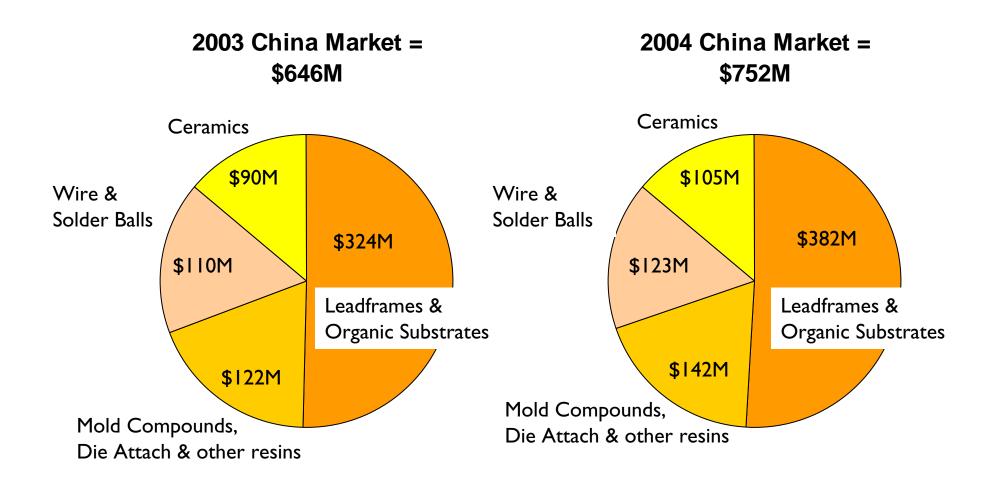
Worldwide Consumption of Semiconductor Electronics


% Share of Global Semiconductor Consumption

• Asian semiconductor market surpassed the U.S. market in 2001 and is expected to widen the gap thereafter

From: W.H. Hunt "Global Perspectives on Electronic Materials: Challenges and Opportunities", JOM June'04

Semiconductor Packaging Materials Markets


Region	2003 \$B	2004 \$B	% Change
China	0.65	0.75	15%
Europe	0.43	0.49	14%
Japan	2.46	2.90	18%
Korea	1.12	1.30	16%
North America	0.32	0.36	13%
Taiwan	2.03	2.48	22%
Rest of World	2.47	2.86	16%
Total Regions	9.48	11.14	18%

Totals may not add due to rounding

Source: SEMI January 2005

Packaging Materials Market in China

Source: SEMI January 2005

China- Emergence of Packaging Materials Manufacturing

Company	Material	Number of Plants
APIC Yamada	Leadframes	1 plant, stamping and plating
ASM Pacific	Leadframes	1 plant, stamping and plating
Enomoto	Leadframes	1 plant, stamping
FuSheng Industrial	Leadframes	1 plant, stamping and plating
Mitsui High-tec	Leadframes	4 plants (inc. Hong Kong) plus new one in 2005
Possehl Electronics	Leadframes	2 plants (inc. Hong Kong), stamping, etching and plating
QPL	Leadframes	2 plants
SDI Corp	Leadframes	1 plant, stamping
Sumitomo Metal Mining	Leadframes, Wire	2 plants for leadframes, expand stamping and add etching 1 plant for gold wire production
E'Dale Technology	Mold Compound	Plant in Wuxi
Sumitomo Bakelite	Mold Compound	1 plant
Henkel Technologies	Underfill, Encapsulants, Die Attach	1 plant in Yantai
Heraeus Holding	Wire	2 plants for gold wire production
Nippon Micrometal	Wire	Gold wire production
Tanaka KK	Wire	Gold wire production

Packaging Materials Market Summary

 17.5% growth in 2004, with strongest growth in laminate substrates, underfill, solder balls and WLP dielectrics materials

• Forecasting 8.3% growth in 2005

- Laminate substrates will lead growth
- Low single digit growth for traditional packaging materials

• Expanding supplier base in China and Asia

Global Environmental Materials Issues

WEEE: Waste of Electrical and Electronic Equipment (August 2005)

Recycling of Electrical and electronic products in the European Union

• OEM to support recycling process and waste management by providing material composition

China – RoHS (definition in progress)

 Similar to the **European RoHS** May have additional marking & label requirements

RoHS: Reduction of Hazard Substances -European Union (July 1, 2006)

> [Manufacturing process of] Restricts certain substances in electrical and electronic equipment

• Reduce lead content (<0.1% by weight)

> • Reduce cadmium, mercury, hexavalent chromium, and certain flame retardants

ELV: End-of-Life Vehicle (Now, since July 1, 2003)

Restricts certain substances in vehicles and sets requirements for increasing the reuse, recycling and other forms of recovery of end-of life vehicles (ELV) and their components

Reduce lead content

 OEM to support recycling process and waste management by providing material composition

Consortia: In-Country Focus

- Up to 1980, in-house R&D
- Japanese companies capture market share worldwide in semiconductor materials, equipment and manufacturing (1980)

• Semiconductor Research Council (form 1982)

- Basic/Applied research on semiconductors (Materials and Design focus)
- Mission: Assure US technology leadership
- Sponsored by US Gov't (DARPA, NIST, NSF)

Sematech formed in 1987

- Companies combine resources to develop US-based tools and manufacturing technology
- Semiconductor Leading Edge Technologies (SELETE)
 - Japanese consortia
 - Similar mission as Sematech for Japan

Consortia: Industry Focus

Companies join together to address significant process issues (late 1990's)

• Cu/lowk interconnect, 300mm wafers

Reason: Cost

• FABs cost in excess of \$3 to \$4B, each tool >\$1M

Industry Focus Consortia

International Sematech

International companies join in 1998, no US Gov't funding

Crolles Alliance (Philips, ST, Freescale, TSMC)

• 300mm and Cu/lowk shared R&D and manufacturing in France

Interuniversity Microelectronics Center (IMEC)

• EU consortia in The Netherlands

US Manufacturing and R&D

The United States has held several advantages in attracting high technology investment.

- Coherent R&D system (universities, government, and industry)
- Research universities
- Research consortia (SRC)
- Flexible and entrepreneurial business climate
- Governmental rule of law (IP protection)
- Strong infrastructure
- Largest market for high tech products

If lower labor costs and proximity to emerging markets outweigh U.S. advantages then manufacturing will move offshore

Globalization of Manufacturing and R&D

Capital costs dominate high-end semiconductor manufacturing

- Labor consists of only 10% to 15% of costs
- Tax considerations are now even more important than lower-cost labor

Semiconductor R&D requires use of high cost manufacturing tools

 Companies co-locate manufacturing and R&D to use the same equipment can be used for both activities

Tax consequences affect further expansion offshore

 Returning dollars back to the U.S. contribute to foreign, rather than domestic, expansion.

Globalization of Manufacturing of Electronics

Volume manufacturing of semiconductors distributed world-wide

- US, Europe, Asia
- Shift in volume from US and Europe to Asia
 - e.g., TSMC

Packaging materials fabricated primarily in Asia

Volume manufacturing of final assembly (electronic packaging) primarily in Asia

- Some still in Europe
- Large customer base in Asia, lower costs

Specialty materials and assembly in US

- Lower volumes, high value
- Niche products

Direction of Global Electronic Materials Research

Packaging materials research growing in Asia

- Primarily in the US up to 1990
 - Supported by defense and vertically integrated companies
- China and Korea have exhibited the most growth in the last 10 years
 - Based on papers submitted/published (JEM ~90% Asia-Pac)
 - 10% from Europe and US
- Globally distributed effort. (Complexity of the problem...)

Semiconductor materials research

- Gradual shift over last 10 years from US to Asia-Pac
 - JEM publications from Asia significantly up to about 80%
 - Electronic Materials Conference has seen increased participation from Europe and Asia
- International research alliances growing
 - SMA (Singapore-MIT Alliance) joint academic alliance (nanofab, material physics and materials chemistry)
 - Europe is changing degree programs to align with US
 - > BS, MS, Ph.D.
 - > Greater opportunities for collaboration (US/Europe/Asia)

Summary

- Electronic materials are global
- Volume manufacturing
 - Packaging materials and assembly: primarily Asia
 - Semiconductors: Global (US/Asia/Europe)
- Manufacturing location driven by market and cost
- Research following materials and manufacturing development
 - Growth in effort in Asia on manufacturing materials
 - Fundamental research is global
 - Global academic and research alliances are growing

