

PROMOTING THE GLOBAL SCIENCE AND ENGINEERING PROFESSIONS CONCERNED WITH MINERALS, METALS, AND MATERIALS

Data Mining and Materials Informatics: a primer

Krishna Rajan

Department of Materials Science and Engineering NSF Intl. Materials Institute Combinatorial Sciences & Materials Informatics Collaboratory Iowa State University

What is data?

primary, secondary , derivative sources of data

What do we mean by mining data?

data correlations – dimensional analysis approach data correlations – data mining

What can we learn from data mining?

Classification

data mining databases hierarchy of data trends in data

Prediction

predicting structure-property relationships computational informatics vs. computational materials science data mining for building databases

INFORMATICS

What is it ?

- Searching for patterns of behavior among multivariate data sets
- Can pattern recognition lead to predictions?

Why?

- Establish new correlations
- Identify outliers
- Enlarge database / virtual libraries
- Evaluate databases
- Establish predictions

IOWA STATE UNIVERSITY College of Engineering

Krishna Rajan

COMPLEXITY OF BIOSYSTEMS

2005 and Beyond: A Workshop Report A Roadmap for Consolidation and Exponentiation July 14-15, 2003

IOWA STATE UNIVERSITY Krishna Rajan TMS / ASM Materials Informatics Workshop Cincinatti, OH October 15th 2006

NSF Directorate for Biological Sciences Advisory Committee (BIOAC)

INFORMATICS STRATEGY

TMS / ASM Materials Informatics Workshop Cincinatti, OH October 15th 2006

INFORMATICS-BASED DESIGN STRATEGIES

IOWA STATE UNIVERSITY

MACHINE LEARNING AND MATERIALS DISCOVERY

Requirements

- Global minima
- Categorical data
- Missing / variable data
- Skewed distributions
- Large data sets
- Scalable

Pitfalls

- Local minima
- Categorical data difficult
- Convergence difficult for large data sets
- Few outliers can lead to poor performance

A STATE VERSITY

- Accelerated insertion of materials into engineering systems
- Rapid multiscale design and optimization of materials properties
- Establishment of new structure –property correlations among large, heterogeneous and distributed data sets
- Discovery of new chemistries and compounds
- Formulation and / or refinement of new theories for materials behavior
- Rapid identification of critical data and theoretical needs for future problems

22x22 (484 cells – 2500 data points):

Silicon nitride descriptors

	-	-		-	_	-	_		-	-	_			-	-	-	-		-	-		-		-	_
	. *	•	۰.		÷.5	ł.		Ň	×.	i.		1	2			:	. 2	Υ.		2	1.	ľ.	· .	· · · ·	*
		 		┝	· . .>	÷	÷	÷.;	<u> </u>	÷	÷	· .	· ·		- · ·	.÷ •		· · ·	· ··	÷ .		· ·	÷ .		
•	2					•.		. '		:		÷		· .	÷.,	·		·		:	. :	: .	÷.,		··
•	· · ·	þ					•		1	÷	·			. ·		· · ·	· · ·				··.'	: .			···=
		+		ŀ.	•																				
		Ļ		4	_		\downarrow			Ľ.	_			L.							<u> </u>	ľ		<u>.</u>	
		L				s			Ι.						. '	. '	İ. –				· .		. '	·.	. 1
		÷		ŀ		ν.		•	1	1	┥				12	C:		Ň.		ŧ.	1.1		14. 14.		
	Ľ.	Ļ			•	Ľ.	- [<u>.</u>	<u> </u>	[<u> </u>	ļ	· ·	Ļ				<u> </u>					_
	· · · ·	1.			· `	ŗ.		• ``	7	F		."`		r.		r:		· ·		1			ŗ.		
1		t	÷	⊢	÷		÷		-	a	÷			+ +	+ :	+ :	-	+ +	:	+ +	:	+ :		÷	==
		<u>.</u>		ŀ		<u>-</u> .	4	•			4		• • •			<u> -</u>				-	·- ·			· - ·	··
• •		1	•		••	ŀ			. '	1		9		ſ.	1	1	· · · ·	ŀ.		N		i.	· .		···= ,
		·		ŀ									10	1.		. ·		·	·		~ .			'	
	ŀ	╀		-	•	•		•	ŀ	ŀ				ŀ	· .	· .	•	· .	•	· .		•	· .		
	·		. :		• -			·	· .	:		·	·	11	2	. :	·			2		:.			
		Γ	•		·						·			. '	12	. '				. '	· .		. '	·.	
	· .	·	· · ·	ľ	÷		+			-i-	+			<u> </u>	<u>├</u>			<u>.</u>	· . ·	÷ .		;· ·	17		
	· . :	·		•	5	Ň		· .:	• ;	i		12	1			1J	·	·. ·	· · .	ž –	1.1		5		
	. '	ŀ		ŀ		1.				1							14			ľ.	1		1	1	· · _ *
		t	-		÷		֠			i.	÷					1::		45			÷ .	. :	÷ :	•	
· .,	· .				.:	1	4	4	1	.i	4	1.50	ι.		-1	٨	· .	13	%	i i	·	i	1	· - · .	··
÷÷	· · ·	ŀ	• •		.*	÷	•	• 1	· - :	1	·			÷ · ·		· · ·		÷	16) · ·	10	i .	÷ •	4	
		t	•	ŀ	•		·		ŀ	1	·			· ·	• •	· ·		· ·	•	17	· ·	· ·	•	· ·	
	· · .	÷		ŀ	•	ŕ.	+	• • •	· •	<u>+</u>	4	·	•••		×.	<u>.</u>	·		· ···			ŀ:	e'	· ^ ;	·
• <	<u>۰</u> ۰۰	ŀ	•.'			e.		• :•		ł.		·· ;•	. ,	÷.,	<u>۰</u> ۳.	r۰.	··	v 1.		÷.,	18	<u>ا</u> .	Υ.	10	··
		t	•		•															· ·	•	19		·	
	· · · ·	┝	÷	ŀ		<u>.</u>	•		- · ·	÷-	•			÷ .	- ` ·	<u>.</u>		·· ·	·	÷ .				· • ·	··· =
• •	·		. :		·	ė.		· «.	• •	i		1.	14	1	1	N.	·. ,	· ·		ý	.÷.	i.	20	· * .	· ·
• •	· · ·			•	÷	÷		• •							÷ .			· · · .	1	· ·	1	: ! .	÷ .	21	··
1	. , ^r	• • •	-	·	4		;	.1		ļ	;		. 7	1. 1				'n.,		1	14	1	1		22
-																P									

DIMENSIONALITY REDUCTION

International Materials Institute

IOWA STATE

$$Sp = \lambda p$$

$$\uparrow \uparrow$$
eigenvector
eigenvalue
$$SP = P\Lambda$$

$$\uparrow \uparrow$$
Eigenvalues on the diagonal of
this diagonal matrix
Eigenvectors forming the columns of this matrix

If V is nonsingular, this become the eigenvalue decomposition

Eigenvalue Matrix

$$S = P \Lambda P^{-1}$$

Loading Matrix=Eigenvector Matrix

DATA WAREHOUSING

Symbol	Atomic Number	Structure	Number of atoms in a unit cell	electron number, Nv	Pauling electronegativity	First Ionization Potential (eV)	Atomic Radius (A)	Melting Point (K)	Boiling Point (K)	Density @ 293 K (g/cm²)	Atomic Weight
Li	3	bcc	2	1	0.98	5.39	1.52	453.69	1620	0.534	6.941
β-Be	4	bcc	6	2	1.57	9.32	1.13	1551	3243	1.8477	9.012182
α-Be	4	hcp	6	2	1.57	9.32	1.13	1551	3243	1.8477	9.012182
Na	11	bcc	2	1	0.93	5.14	1.54	370.96	1156.1	0.971	22.989768
Mg	12	hcp	6	2	1.31	7.64	1.6	922	1363	1.738	24.305
Al	13	fcc	4	3	1.61	5.98	1.43	933.52	2740	2.698	26.981539
K	19	bcc	2	1	0.82	4.34	2.27	336.8	1047	0.862	39.0983
α-Ca	20	fcc	4	2	1	6.11	1.97	1112	1757	1.55	40.078
Sc	21	hcp	6	3	1.36	6.56	1.61	1814	3104	2.989	44.95591
Ti	22	hcp	6	4	1.54	6.83	1.45	1933	3560	4.54	47.88
V	23	bcc	2	5	1.63	6.74	1.32	2160	3650	6.11	50.9415
Cr	24	bcc	2	6	1.66	6.76	1.25	2130	2945	7. <mark>1</mark> 9	51.9961
Fe	26	bcc	2	8	1.83	7.9	1.24	1808	3023	7.874	55.847
Co	27	hcp	6	9	1.88	7.86	1.25	1768	3143	8.9	58.9332
Ni	28	fcc	4	10	1.91	7.63	1.25	1726	3005	8.902	58.6934
Cu	29	fcc	4	11	1.9	7.72	1.28	1356.6	2840	8.96	63.546
Zn	30	hcp	6	12	1.65	9.39	1.33	692.73	1180	7.133	65.39
Rb	37	bcc	2	1	0.82	4.18	2.475	312.2	961	1.532	85.4678
Y	39	hcp	6	3	1.22	6.5	1.81	1795	3611	4.469	88.90585
Zr	40	hcp	6	4	1.33	6.95	1.6	2125	4650	6.506	91.224
Nb	41	bcc	2	5	1.6	6.77	1.43	2741	5015	8.57	92.90638
Мо	42	bcc	2	6	2.16	7.18	1.36	2890	4885	10.22	95.94
Tc	43	hcp	6	7	1.9	7.28	1.36	2445	5150	11.5	-97.9072
Ru	44	hcp	6	8	2.2	7.36	1.34	2583	4173	12.37	101.07
Rh	45	fcc	4	9	2.28	7.46	1.34	2239	4000	12.41	102.9055
Pd	46	fcc	4	10	2.2	8.33	1.38	1825	3413	12.02	106.42
Ag	47	fcc	4	11	1.93	7.57	1.44	1235.08	2485	10.5	107.8682
Cd	48	hcp	6	12	1.69	8.99	1.49	594.1	1038	8.65	112.411
Sb	51	hcp	6	5	2.05	8.64	1.82	903.89	1908	6.691	121.757
Cs	55	bcc	2	1	0.79	3.89	2.654	301.55	951.6	1.873	132.90543

1. # of atoms/unit cell 2. Valence electron # 3. Electronegativity 4. 1st Ionization potential

5. Atomic radius 6. Melting point 7. Boiling point 8. Density

SEEKING PATTERNS

MENDELEEV SEQUENCING

Each cluster represent each row in the periodic table

DEVELOPING PHYSICAL LAWS

- Location of property in loading plot indicates influence of property on PC
 - Atomic weight has no influence on PC1, high influence on PC2 and 3

Clustered properties indicate relationships

- Electrical and thermal conductivity
- Melting point and density
- Molar volume and atomic radius
- Melting and boiling points, heats of fusion and vaporization, and valence number
- Pauling electronegativity and first ionization potential

DEVELOPING PHYSICAL LAWS

Activation energy for self-diffusion versus melting point

PCA of 34 binary, ternary, quaternary compounds: Score plot

Cluster analysis of 34 binary, ternary, quaternary compounds

Atomic packing of single element

Ex.) Engel's model using "# of sp electrons/atom"[†]

BCC < 1.5 HCP 1.7 – 2.1 FCC 2.5-3

PATTERN DETECTION

NSF

International Materials Institute

IOWA STATE

N.

5

10-

Krishna Rajan TMS / ASM Materials Informatics Workshop Cincinatti, OH October 15th 2006

Nv

DATA MINING DATABASES

Univ.Novi Sad, Serbia CNRS, Marseilles

COMPUTATIONAL ISSUES

Focus on properties of signal / macroscopic behavior rather than noise/ error. Assume complexity !!!

Cincinatti, OH October 15th 2008

CRYSTAL CHEMISTRY DESIGN

Ching et.al J. Amer. Ceram.Soc. 85 75-80 (2002)

Crystal a (Å) x ΔE (eV) E_{w} (eV) [*] Q_{wr}^{*} Q_{wr}^{*} Q_{wr}^{*} Q_{wr}^{*} $Crystal$ A-N B-N c-C ₃ N ₄ 6.8952 0.3832 1.14 3.70 3.63 5.27 8.647 0.358 (1.584) 0.241 (1.673) Cr_{c} -Si ₃ N ₄ 7.8374 0.3844 3.45 2.65 2.58 6.05 8.670 0.362 (1.831) 0.241 (1.853) Cr_{c} -Ge ₃ N ₄ 8.9651 0.3845 1.29 2.71 2.70 5.97 6.958 0.284 (2.092) 0.195 (2.165) c-Ti ₃ N ₄ 8.4460 0.3832 0.25 (d), 0.07 (id) 3.09 3.20 5.62 8.474 0.353 (1.949) 0.236 (2.045) c-Zri ₃ N ₄ 8.1215 O.3830 0.40 (d), 0.23 (id) 3.06 3.17 2.97 5.72 4.718 0.220 (1.982) 0.123 (2.121) c-SiC ₂ N ₄ 7.5209 0.3811 -0.65 1.343 (d), 1.259 (id) 4.14 4.44 4.75 11.231 0.290 (1.744) 0.225 (1.725) c-CGe ₂ Ce ₂ Ce ₄	A site cation 3 site cation X anion 1 As
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 site cation X anion 1 As
$ \begin{array}{c} c-C_3N_4 & 6.8952 & 0.3832 & 1.14 & 3.70 & 3.63 & 5.27 & 8.647 & 0.358 (1.584) & 0.241 (1.673) \\ c-Si_3N_4 & 7.8374 & 0.3844 & 3.45 & 2.65 & 2.58 & 6.05 & 8.670 & 0.362 (1.831) & 0.241 (1.685) \\ c-Ge_3N_4 & 8.2112 & 0.3841 & 2.22 & 2.81 & 2.80 & 5.90 & 7.900 & 0.327 (1.907) & 0.220 (1.982) \\ c-Sn_5N_4 & 8.9651 & 0.3845 & 1.29 & 2.71 & 2.70 & 5.97 & 6.958 & 0.284 (2.092) & 0.195 (2.165) \\ c-Ti_3N_4 & 8.4460 & 0.3832 & 0.25 (d) & 0.07 (id) & 3.09 & 3.20 & 5.62 & 8.474 & 0.353 (1.949) & 0.236 (2.045) \\ c-Ti_3N_4 & 8.7038 & 0.3815 & Metal & 3.17 & 2.97 & 5.72 & 4.718 & 0.220 (1.982) & 0.123 (2.121) \\ c-CSi_2N_4 & 7.5209 & 0.3815 & Metal & 3.17 & 2.97 & 5.72 & 4.718 & 0.220 (1.982) & 0.123 (2.121) \\ c-CSi_2N_4 & 7.5209 & 0.3811 & -0.65 & 1.343 (d), 1.259 (id) & 4.14 & 4.44 & 4.75 & 11.231 & 0.299 (1.714) & 0.368 (1.832) \\ c-Si_2C_N_4 & 7.4287 & 0.3885 & 3.08 & Metal & 2.45 & 3.71 & 5.53 & 8.260 & 0.359 (1.754) & 0.225 (1.725) \\ c-GeC_2N_4 & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.67 & 5.47 & 5.48 & 0.361 (1.616) & 0.220 (1.723) \\ c-Si_6C_2N_4 & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 (1.790) & 0.229 (2.000) \\ c-GeSi_N_4 & 8.0088 & 0.3900 & 0.44 & 2.635 (d), 2.554 (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 (1.946) & 0.238 (1.885) \\ c-Ti_6N_4 & 7.8351 & 0.3637 & -1.95 & Metal & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 (1.550) & 0.248 (2.046) \\ c-Ti_6C_2N_4 & 7.5400 & 0.3937 & 4.51 & 0.965 (d), 0.62 (id) & 2.97 & 3.77 & 5.37 & 8.030 & 0.352 (1.883) & 0.217 (1.753) \\ c-Sifi_2N_4 & 8.0470 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 (1.956) & 0.349 (1.896) \\ c-TiG_2N_4 & 7.5400 & 0.3383 & 1.08 & 2.62 (d), 2.51 (id) & 3.14 & 3.14 & 5.64 & 8.482 & 0.339 (2.017) & 0.240 (2.163) \\ c-TiG_2N_4 & 8.3159 & 0.3836 & 0.91 & 2.269 (d), 1.87 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c-GiT_2N_4 & 8.9276 & 0.3808 & -0.32 (d), 0.15 (id) & 3.14 & 3.14 & 5.64 & 8.482 & 0.339 (1.070) & 0.253 (2.032) \\ c-CGr_2N_4 & 8.6600 & 0.3666 & 1.79 & Metal $	X anion
$\begin{array}{c} c_{\rm Si_3} N_4 & 7.8374 & 0.3844 & 3.45 & 2.65 & 2.58 & 6.05 & 8.670 & 0.362 (1.831) & 0.241 (1.885) \\ c_{\rm Ge_8} N_4 & 8.2112 & 0.3841 & 2.22 & 2.81 & 2.80 & 5.90 & 7.900 & 0.327 (1.907) & 0.220 (1.982) \\ c_{\rm Sn_3} N_4 & 8.9651 & 0.3845 & 1.29 & 2.71 & 2.70 & 5.97 & 6.958 & 0.284 (2.092) & 0.195 (2.165) \\ c_{\rm CT_3} N_4 & 8.4460 & 0.3832 & 0.25 (d), 0.07 (id) & 3.09 & 3.20 & 5.62 & 8.474 & 0.353 (1.949) & 0.236 (2.045) \\ c_{\rm Zr_3} N_4 & 9.1215 & 0.3830 & 0.40 (d), 0.23 (id) & 3.06 & 3.17 & 5.65 & 8.609 & 0.356 (2.109) & 0.240 (2.206) \\ c_{\rm CT_4} N_4 & 8.7038 & 0.3815 & Metal & 3.17 & 2.97 & 5.72 & 4.718 & 0.220 (1.982) & 0.123 (2.121) \\ c_{\rm CSi_2} N_4 & 7.2867 & 0.3885 & 3.08 & Metal & 2.45 & 3.71 & 5.53 & 8.260 & 0.359 (1.754) & 0.225 (1.725) \\ c_{\rm CGe_2} N_4 & 7.7429 & 0.3700 & 0.00 & 1.356 & 3.67 & 2.79 & 5.68 & 8.284 & 0.361 (1.616) & 0.225 (1.970) \\ c_{\rm GeGi_2} N_4 & 8.073 & 0.3772 & -0.26 & 1.850 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 (1.790) & 0.229 (2.000) \\ c_{\rm GeSi_2} N_4 & 8.008 & 0.3900 & 0.44 & 2.635 (d), 2.554 (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 (1.946) & 0.238 (1.885) \\ c_{\rm CTi_2} N_4 & 7.8351 & 0.3637 & -1.95 & Metal & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 (1.550) & 0.248 (2.046) \\ c_{\rm TiG_2} N_4 & 8.168 & 0.3753 & -1.43 & Metal & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.226 (2.051) \\ c_{\rm CTiG_2} N_4 & 8.4070 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 (1.956) & 0.349 (1.896) \\ c_{\rm TiG_2} N_4 & 8.4070 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c_{\rm TiG_2} N_4 & 8.4070 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c_{\rm CTiG_2} N_4 & 8.4002 & 0.3829 & -0.44 & Metal & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 (1.940) & 0.253 (2.032) \\ c_{\rm CTiG_2} N_4 & 8.606 & 0.3868 & -0.13 & Metal & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 (2.056) & 0.152 (2.072) \\ c_{\rm CTiG_2} N_4 & 8.600 & 0.3663 & 1.79 & Metal & 4.00 & 1.4 & 6.40 & 7.261 & 0.452 (0.056) $	1 As
$ \begin{array}{c} c-Ge_3N_4 \\ c-Ge_3N_4 \\ c-Sn_3N_4 \\ s.9651 \\ c-Ti_3N_4 \\ s.9651 \\ c-Ti_3N_4 \\ s.9651 \\ s.9651 \\ s.976 \\ s.976 \\ s.976 \\ s.976 \\ s.978 \\ s.988 \\ s.958 \\ s.284 \\ (2.092) \\ s.978 \\ s.978 \\ s.988 \\ s.951 \\ s.978 \\ s.978 \\ s.988 \\ s.951 \\ s.978 \\ s.978 \\ s.988 \\ s.951 \\ s.978 \\ s.978 \\ s.988 \\ s.998 \\ s.988 \\ s.988 \\ s.988 \\ s.998 \\ s.988 \\ s.988 \\ s.988 \\ s.998 \\ s.988 \\ s.998 \\ s.988 \\ s.988 \\ s.998 \\ s.988 \\ s.998 \\ s.988 \\ s.988 \\ s.998 \\ s.988 \\ s.988 \\ s.998 \\ s.988 \\ s.998 \\ s.988 \\ s.988 \\ s.998 \\ s.998 \\ s.988 \\ s.998 \\ s.$	1. As
$ \begin{array}{c} c-Sn_3N_4^{^{-}} & 8.9651 & 0.3845 & 1.29 & 2.71 & 2.70 & 5.97 & 6.958 & 0.284 (2.092) & 0.195 (2.165) \\ c-Ti_3N_4 & 8.4460 & 0.3832 & 0.25 (d), 0.07 (id) & 3.09 & 3.20 & 5.62 & 8.474 & 0.353 (1.949) & 0.236 (2.045) \\ c-Zr_3N_4 & 9.1215 & 0.3830 & 0.40 (d), 0.23 (id) & 3.06 & 3.17 & 5.65 & 8.609 & 0.356 (2.109) & 0.240 (2.206) \\ c-Hf_8N_4 & 8.7038 & 0.3815 & Metal & 3.17 & 2.97 & 5.72 & 4.718 & 0.220 (1.982 & 0.123 (2.121) \\ c-CSi_2N_4 & 7.5209 & 0.3811 & -0.65 & 1.343 (d), 1.259 (id) & 4.14 & 4.44 & 4.75 & 11.231 & 0.299 (1.714) & 0.368 (1.832) \\ c-SiC_2N_4 & 7.2867 & 0.3885 & 3.08 & Metal & 2.45 & 3.71 & 5.53 & 8.260 & 0.359 (1.754) & 0.225 (1.725) \\ c-GeC_2N_4 & 7.4289 & 0.3700 & 0.00 & 1.356 & 3.67 & 2.79 & 5.68 & 8.284 & 0.361 (1.616) & 0.225 (1.725) \\ c-GeC_2N_4 & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.67 & 5.45 & 7.816 & 0.317 (1.863) & 0.220 (1.723) \\ c-SiGe_2N_4 & 8.0873 & 0.3772 & -0.26 & 1.850 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 (1.790) & 0.229 (2.000) \\ c-GeC_3I_2N_4 & 8.0088 & 0.3900 & 0.44 & 2.635 (d), 2.554 (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 (1.946) & 0.238 (1.885) \\ c-Ti_2N_4 & 7.8351 & 0.3637 & -1.95 & Metal & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 (1.550) & 0.248 (2.046) \\ c-TiC_2N_4 & 7.5400 & 0.3937 & 4.51 & 0.965 (d), 0.62 (id) & 2.97 & 3.77 & 5.37 & 8.030 & 0.352 (1.883) & 0.217 (1.753) \\ c-TiG_2N_4 & 8.0470 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 (1.956) & 0.349 (1.896) \\ c-TiC_2N_4 & 8.0470 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c-GeT_12N_4 & 8.0470 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c-Git_2N_4 & 8.0470 & 0.3868 & -0.13 & Metal & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 (1.940) & 0.253 (2.032) \\ c-TiC_2N_4 & 8.0402 & 0.3829 & -0.44 & Metal & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 (1.940) & 0.253 (2.032) \\ c-TiC_2N_4 & 8.606 & 0.3868 & -0.13 & Metal & 2.90 & 3.18 & 5.68 & 8.657 & 0.339 (2.017) & 0.240 (2.163) \\ c-Zrt_12N_4$	1. As
$ \begin{array}{c} c-Ti_{3}N_{4} & 8.4460 & 0.3832 & 0.25 (d), 0.07 (id) & 3.09 & 3.20 & 5.62 & 8.474 & 0.353 (1.949) & 0.236 (2.045) \\ c-Zr_{3}N_{4} & 9.1215 & 0.3830 & 0.40 (d), 0.23 (id) & 3.06 & 3.17 & 5.65 & 8.609 & 0.356 (2.109) & 0.240 (2.206) \\ c-Hi_{3}N_{4} & 8.7038 & 0.3815 & Metal & 3.17 & 2.97 & 5.72 & 4.718 & 0.220 (1.982) & 0.123 (2.121) \\ c-CSi_{2}N_{4} & 7.5209 & 0.3811 & -0.65 & 1.343 (d), 1.259 (id) & 4.14 & 4.44 & 4.75 & 11.231 & 0.299 (1.714) & 0.368 (1.832) \\ c-SiC_{2}N_{4} & 7.2867 & 0.3885 & 3.08 & Metal & 2.45 & 3.71 & 5.53 & 8.260 & 0.359 (1.754) & 0.225 (1.725) \\ c-CGe_{2}N_{4} & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.67 & 5.45 & 7.816 & 0.317 (1.863) & 0.220 (1.723) \\ c-GeC_{2}N_{4} & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.67 & 5.45 & 7.816 & 0.317 (1.863) & 0.220 (1.723) \\ c-GeSi_{2}N_{4} & 8.0873 & 0.3772 & -0.26 & 1.850 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 (1.790) & 0.229 (2.000) \\ c-GeSi_{2}N_{4} & 8.0088 & 0.3900 & 0.44 & 2.635 (d), 2.554 (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 (1.946) & 0.238 (1.885) \\ c-Tic_{2}N_{4} & 7.8351 & 0.3637 & -1.95 & Metal & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 (1.550) & 0.248 (2.046) \\ c-Tic_{2}N_{4} & 7.8351 & 0.3637 & -1.43 & Metal & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.256 (2.051) \\ c-TiSi_{2}N_{4} & 8.2168 & 0.3753 & -1.43 & Metal & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.256 (2.051) \\ c-TiSi_{2}N_{4} & 8.3159 & 0.3836 & 0.91 & 2.269 (d), 1.87 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (1.753) \\ c-TiC_{2}N_{4} & 8.0470 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 3.14 & 3.14 & 5.64 & 8.482 & 0.339 (2.017) & 0.240 (2.163) \\ c-TiC_{2}N_{4} & 8.0400 & 0.3868 & -0.13 & Metal & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 (2.056) & 0.152 (2.072) \\ c-CSn_{2}N_{4} & 8.3600 & 0.3636 & 1.79 & Metal & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c-CZr_{1}N_{4} & 8.3600 & 0.3636 & 1.79 & Metal & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c-CZr_{1}N_{4} & 8.3600 & 0.3636 & 1.79 & Metal & 3.65 & 2.76 & 5.71 & 7.23$	1 . As
$\begin{array}{c} c_{2}T_{3}N_{4} & 9.1215 & 0.3830 & 0.40 (d), 0.23 (id) & 3.06 & 3.17 & 5.65 & 8.609 & 0.356 (2.109) & 0.240 (2.206) \\ c_{4}H_{3}N_{4} & 8.7038 & 0.3815 & \text{Metal} & 3.17 & 2.97 & 5.72 & 4.718 & 0.220 (1.982) & 0.123 (2.121) \\ c_{5}C_{3}N_{4} & 7.5209 & 0.3811 & -0.65 & 1.343 (d), 1.259 (id) & 4.14 & 4.44 & 4.75 & 11.231 & 0.299 (1.714) & 0.368 (1.832) \\ c_{5}C_{2}N_{4} & 7.2867 & 0.3885 & 3.08 & \text{Metal} & 2.45 & 3.71 & 5.53 & 8.260 & 0.359 (1.754) & 0.225 (1.725) \\ c_{5}C_{2}N_{4} & 7.249 & 0.3700 & 0.00 & 1.356 & 3.67 & 2.79 & 5.68 & 8.284 & 0.361 (1.616) & 0.222 (1.720) \\ c_{6}C_{2}N_{4} & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.67 & 5.45 & 7.816 & 0.317 (1.863) & 0.220 (1.723) \\ c_{5}Cic_{2}N_{4} & 8.0873 & 0.3772 & -0.26 & 1.850 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 (1.790) & 0.229 (2.000) \\ c_{6}Ce_{3}L_{N_{4}} & 7.8351 & 0.3637 & -1.95 & \text{Metal} & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 (1.550) & 0.248 (2.046) \\ c_{7}Cic_{2}N_{4} & 7.8351 & 0.3637 & -1.95 & \text{Metal} & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 (1.50) & 0.248 (2.046) \\ c_{7}Cic_{2}N_{4} & 7.8351 & 0.3637 & -1.43 & \text{Metal} & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.256 (2.051) \\ c_{7}Cis_{2}N_{4} & 8.2168 & 0.3753 & -1.43 & \text{Metal} & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.256 (2.051) \\ c_{7}Cis_{2}N_{4} & 8.3159 & 0.3836 & 0.91 & 2.269 (d), 1.87 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (1.753) \\ c_{7}Cis_{2}N_{4} & 8.020 & 0.3829 & -0.44 & \text{Metal} & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 (1.940) & 0.253 (2.032) \\ c_{7}Cis_{2}N_{4} & 8.600 & 0.3668 & -0.13 & \text{Metal} & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 (2.056) & 0.152 (2.072) \\ c_{7}Cis_{2}N_{4} & 8.3600 & 0.3636 & 1.79 & \text{Metal} & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c_{7}Cis_{2}N_{4} & 8.3600 & 0.3636 & 1.79 & \text{Metal} & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c_{7}Cis_{2}N_{4} & 8.3600 & 0.3636 & 1.79 & \text{Metal} & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c_{7}Cis_{2}N_{4} & 8.3600 & 0.3636 & 1.7$	1. As
$\begin{array}{c} c-Hf_{3}N_{4} & 8.7038 & 0.3815 & \text{Metal} & 3.17 & 2.97 & 5.72 & 4.718 & 0.220 & (1.982) & 0.123 & (2.121) \\ c-CSi_{2}N_{4} & 7.5209 & 0.3811 & -0.65 & 1.343 & (d), 1.259 & (id) & 4.14 & 4.44 & 4.75 & 11.231 & 0.299 & (1.714) & 0.368 & (1.832) \\ c-SiC_{2}N_{4} & 7.2867 & 0.3885 & 3.08 & \text{Metal} & 2.45 & 3.71 & 5.53 & 8.260 & 0.359 & (1.754) & 0.225 & (1.725) \\ c-CGe_{2}N_{4} & 7.7429 & 0.3700 & 0.00 & 1.356 & 3.67 & 2.79 & 5.68 & 8.284 & 0.361 & (1.616) & 0.225 & (1.970) \\ c-GeC_{2}N_{4} & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.67 & 5.45 & 7.816 & 0.317 & (1.863) & 0.220 & (1.723) \\ c-SiC_{2}N_{4} & 8.0873 & 0.3772 & -0.26 & 1.850 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 & (1.790) & 0.229 & (2.000) \\ c-GeE_{3}N_{4} & 8.0008 & 0.3900 & 0.44 & 2.635 & (d), 2.554 & (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 & (1.946) & 0.238 & (1.885) \\ c-CTi_{2}N_{4} & 7.8351 & 0.3637 & -1.95 & \text{Metal} & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 & (1.550) & 0.248 & (2.046) \\ c-TiC_{2}N_{4} & 7.8451 & 0.3637 & -1.95 & \text{Metal} & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 & (1.785) & 0.256 & (2.051) \\ c-TiS_{1}N_{4} & 8.2168 & 0.3753 & -1.43 & \text{Metal} & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 & (1.785) & 0.256 & (2.051) \\ c-TiG_{2}N_{4} & 8.0470 & 0.3898 & 1.08 & 2.62 & (d), 2.51 & (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 & (1.956) & 0.349 & (1.896) \\ c-TiC_{2}N_{4} & 8.4020 & 0.3829 & -0.44 & \text{Metal} & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 & (1.940) & 0.253 & (2.032) \\ c-TiZ_{1}N_{4} & 8.606 & 0.3868 & -0.13 & \text{Metal} & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 & (2.056) & 0.152 & (2.072) \\ c-Sn_{2}N_{4} & 7.625 & 0.3988 & 5.65 & 1.00 & (d), 0.99 & (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 & (2.007) & 0.204 & (2.163) \\ c-ZrTi_{2}N_{4} & 8.3600 & 0.3636 & 1.79 & \text{Metal} & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 & (1.650) & 0.190 & (2.187) \\ c-Sn_{2}N_{4} & 7.625 & 0.3988 & 5.65 & 1.00 & (d), 0.99 & (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 & (2.007) & 0.204 & (1.772) \\ c-CTr_{2}N_{4} & 8.3600 & 0.3636 & 1.79 & \text{Metal} & 3.78 & 3.16 & 5.48 & 8.169 & 0.$	1. As
$\begin{array}{c} c-CS_{12}N_{4} & 7.5209 & 0.3811 & -0.65 & 1.343 (d), 1.259 (id) & 4.14 & 4.44 & 4.75 & 11.231 & 0.299 (1.714) & 0.368 (1.832) \\ c-SiC_{2}N_{4} & 7.2867 & 0.3885 & 3.08 & Metal & 2.45 & 3.71 & 5.53 & 8.260 & 0.359 (1.754) & 0.225 (1.725) \\ c-CGe_{2}N_{4} & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.67 & 5.45 & 7.816 & 0.317 (1.863) & 0.229 (2.070) \\ c-GeC_{2}N_{4} & 8.0873 & 0.3772 & -0.26 & 1.850 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 (1.790) & 0.229 (2.000) \\ c-GeC_{3}N_{4} & 8.0088 & 0.3900 & 0.44 & 2.635 (d), 2.554 (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 (1.946) & 0.238 (1.885) \\ c-CTi_{2}N_{4} & 7.5400 & 0.3937 & 4.51 & 0.965 (d), 0.62 (id) & 2.97 & 3.77 & 5.37 & 8.030 & 0.352 (1.883) & 0.217 (1.753) \\ c-TiG_{2}N_{4} & 8.0470 & 0.3937 & 4.51 & 0.965 (d), 0.62 (id) & 2.97 & 3.77 & 5.37 & 8.030 & 0.352 (1.883) & 0.217 (1.753) \\ c-TiG_{2}N_{4} & 8.0470 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 (1.956) & 0.349 (1.896) \\ c-TiG_{2}N_{4} & 8.3159 & 0.3836 & 0.91 & 2.269 (d), 1.87 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c-GeTi_{2}N_{4} & 8.0402 & 0.3829 & -0.44 & Metal & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 (1.940) & 0.2253 (2.032) \\ c-TiZ_{2}N_{4} & 8.9276 & 0.3800 & 0.95 & 0.32 (d), 0.15 (id) & 3.14 & 3.14 & 5.64 & 8.482 & 0.339 (2.017) & 0.240 (2.163) \\ c-ZrTi_{2}N_{4} & 8.3600 & 0.3636 & -0.13 & Metal & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 (2.056) & 0.152 (2.072) \\ c-Sn_{2}N_{4} & 8.3600 & 0.3636 & 1.79 & Metal & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c-Sn_{2}N_{4} & 8.3600 & 0.3636 & 1.79 & Metal & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c-Sn_{2}N_{4} & 8.3600 & 0.3636 & 1.79 & Metal & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c-Sn_{2}N_{4} & 8.3600 & 0.3674 & 1.75 & Metal & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c-Sn_{2}N_{4} & 7.7625 & 0.3988 & 5.65 & 1.00 (d), 0.99 (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 (2.007) & 0.204 (1.772) \\ c-CT_{2}N_{4} & 8.5091 & 0.36$	
$\begin{array}{c} c-SiC_2N_4 & 7.2867 & 0.3885 & 3.08 & Metal & 2.45 & 3.71 & 5.53 & 8.260 & 0.359 (1.754) & 0.225 (1.725) \\ c-CGe_2N_4 & 7.7429 & 0.3700 & 0.00 & 1.356 & 3.67 & 2.79 & 5.68 & 8.284 & 0.361 (1.616) & 0.225 (1.725) \\ c-CGe_2N_4 & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.67 & 5.45 & 7.816 & 0.317 (1.863) & 0.220 (1.723) \\ c-SiC_2N_4 & 8.0873 & 0.3772 & -0.26 & 1.850 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 (1.790) & 0.229 (2.000) \\ c-GeSi_2N_4 & 8.008 & 0.3900 & 0.44 & 2.635 (d), 2.554 (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 (1.946) & 0.238 (1.885) \\ c-CTic_N_4 & 7.8351 & 0.3637 & -1.95 & Metal & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 (1.550) & 0.248 (2.046) \\ c-TiC_2N_4 & 7.5400 & 0.3937 & 4.51 & 0.965 (d), 0.62 (id) & 2.97 & 3.77 & 5.37 & 8.030 & 0.352 (1.883) & 0.217 (1.753) \\ c-SiTi_2N_4 & 8.2168 & 0.3753 & -1.43 & Metal & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.256 (2.051) \\ c-TiGe_2N_4 & 8.0470 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 (1.956) & 0.349 (1.896) \\ c-TiGe_2N_4 & 8.3159 & 0.3836 & 0.91 & 2.269 (d), 1.87 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c-GeTi_2N_4 & 8.0402 & 0.3829 & -0.44 & Metal & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 (1.940) & 0.253 (2.032) \\ c-TiZ_2N_4 & 8.6806 & 0.3868 & -0.13 & Metal & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 (2.056) & 0.152 (2.072) \\ c-SnC_2N_4 & 7.7625 & 0.3988 & 5.65 & 1.00 (d), 0.99 (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 (2.007) & 0.204 (1.772) \\ c-CZr_N & 8.5091 & 0.3674 & 1.75 & Metal & 3.78 & 3.16 & 5.48 & 8.690 & 0.321 (1.730) & 0.235 (2.189) \\ \end{array}$	•••••
$\begin{array}{c} c-CGe_{2}N_{4} & 7.7429 & 0.3700 & 0.00 & 1.356 & 3.67 & 2.79 & 5.68 & 8.284 & 0.361 (1.616) & 0.225 (1.970) \\ c-GeC_{2}N_{4} & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.67 & 5.45 & 7.816 & 0.317 (1.863) & 0.220 (1.723) \\ c-GeC_{2}N_{4} & 8.0873 & 0.3772 & -0.26 & 1.850 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 (1.790) & 0.229 (2.000) \\ c-GeSi_{2}N_{4} & 8.0008 & 0.3900 & 0.44 & 2.635 (d), 2.554 (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 (1.946) & 0.238 (1.885) \\ c-CTi_{2}N_{4} & 7.8351 & 0.3637 & -1.95 & Metal & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 (1.550) & 0.248 (2.046) \\ c-TiC_{2}N_{4} & 7.8351 & 0.3637 & -1.95 & Metal & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.248 (2.046) \\ c-TiC_{2}N_{4} & 7.8451 & 0.3637 & -1.43 & Metal & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.256 (2.051) \\ c-TiG_{2}N_{4} & 8.2168 & 0.3753 & -1.43 & Metal & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.256 (2.051) \\ c-TiG_{2}N_{4} & 8.3159 & 0.3836 & 0.91 & 2.269 (d), 1.87 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c-TiC_{2}N_{4} & 8.4002 & 0.3829 & -0.44 & Metal & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 (1.940) & 0.253 (2.032) \\ c-TiZ_{2}N_{4} & 8.606 & 0.3868 & -0.13 & Metal & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 (2.056) & 0.152 (2.072) \\ c-CSn_{2}N_{4} & 7.7625 & 0.3988 & 5.65 & 1.00 (d), 0.99 (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 (2.007) & 0.204 (1.772) \\ c-CZr_{1}N_{4} & 8.5091 & 0.3674 & 1.75 & Metal & 3.78 & 3.16 & 5.48 & 8.669 & 0.312 (1.738) & 0.226 (2.180) \\ \end{array}$	vorio
$\begin{array}{c} c-GeC_{2}N_{4} & 7.4289 & 0.3942 & 3.84 & 0.707 & 2.85 & 3.67 & 5.45 & 7.816 & 0.317 (1.863) & 0.229 (1.723) \\ c-SiGe_{2}N_{4} & 8.0873 & 0.3772 & -0.26 & 1.850 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 (1.790) & 0.229 (2.000) \\ c-GeSi_{3}N_{4} & 8.0008 & 0.3900 & 0.44 & 2.635 (d), 2.554 (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 (1.946) & 0.238 (1.885) \\ c-CTi_{2}N_{4} & 7.8351 & 0.3637 & -1.95 & Metal & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 (1.550) & 0.248 (2.046) \\ c-TiC_{2}N_{4} & 7.5400 & 0.3937 & 4.51 & 0.965 (d), 0.62 (id) & 2.97 & 3.77 & 5.37 & 8.030 & 0.352 (1.883) & 0.217 (1.753) \\ c-SiTi_{2}N_{4} & 8.2168 & 0.3753 & -1.43 & Metal & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.256 (2.051) \\ c-TiGe_{2}N_{4} & 8.0470 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 (1.956) & 0.349 (1.896) \\ c-TiGe_{2}N_{4} & 8.3159 & 0.3836 & 0.91 & 2.269 (d), 1.87 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c-GeTi_{2}N_{4} & 8.4002 & 0.3829 & -0.44 & Metal & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 (1.940) & 0.253 (2.032) \\ c-TiZ_{1}N_{4} & 8.6806 & 0.3868 & -0.13 & Metal & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 (2.056) & 0.152 (2.072) \\ c-SnC_{2}N_{4} & 7.7625 & 0.3988 & 5.65 & 1.00 (d), 0.99 (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 (2.007) & 0.204 (1.772) \\ c-CZr_{1}N_{4} & 8.5091 & 0.3674 & 1.75 & Metal & 3.78 & 3.16 & 5.48 & 8.690 & 0.303 (1.950) & 0.129 (1.723) \\ c-CTr_{2}N_{4} & 8.0501 & 0.3674 & 1.75 & Metal & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c-SnC_{2}N_{4} & 7.7625 & 0.3988 & 5.65 & 1.00 (d), 0.99 (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 (2.007) & 0.204 (1.772) \\ c-CTr_{2}N_{4} & 8.5091 & 0.3674 & 1.75 & Metal & 3.78 & 3.16 & 5.48 & 8.690 & 0.312 (1.738) & 0.236 (2.189) \\ \end{array}$	valla
$\begin{array}{c} c-SiGe_{2}N_{4} & 8.0873 & 0.3772 & -0.26 & 1.850 & 3.10 & 2.91 & 5.77 & 9.999 & 0.564 (1.790) & 0.229 (2.000) \\ c-GeSi_{2}N_{4} & 8.0088 & 0.3900 & 0.44 & 2.635 (d), 2.554 (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 (1.946) & 0.238 (1.885) \\ c-CTi_{2}N_{4} & 7.8351 & 0.3637 & -1.95 & Metal & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 (1.550) & 0.248 (2.046) \\ c-TiC_{2}N_{4} & 7.5400 & 0.3937 & 4.51 & 0.965 (d), 0.62 (id) & 2.97 & 3.77 & 5.37 & 8.030 & 0.352 (1.883) & 0.217 (1.753) \\ c-SiTi_{2}N_{4} & 8.2168 & 0.3753 & -1.43 & Metal & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.256 (2.051) \\ c-TiSi_{2}N_{4} & 8.0470 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 (1.956) & 0.349 (1.896) \\ c-TiGe_{2}N_{4} & 8.3159 & 0.3836 & 0.91 & 2.269 (d), 1.87 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c-GeTi_{2}N_{4} & 8.9276 & 0.3800 & 0.95 & 0.32 (d), 0.15 (id) & 3.14 & 3.14 & 5.64 & 8.482 & 0.339 (2.017) & 0.240 (2.163) \\ c-ZTiT_{2}N_{4} & 8.6806 & 0.3868 & -0.13 & Metal & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 (2.056) & 0.152 (2.072) \\ c-SinC_{2}N_{4} & 7.7625 & 0.3988 & 5.65 & 1.00 (d), 0.99 (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 (2.007) & 0.204 (1.772) \\ c-CZr_{N} & 8.5091 & 0.3674 & 1.75 & Metal & 3.78 & 3.76 & 5.48 & 8.690 & 0.312 (1.738) & 0.236 (2.189) \\ \end{array}$	noror
$\begin{array}{c} -\operatorname{GeSi}_{2}\mathrm{N}_{4} & 8.0873 & 0.5712 & 0.20 & 1.850 & 1.850 & 1.851 & 1.71 & 1.77 & 0.504 & (1.176) & 0.122 & (1.286) \\ -\operatorname{GeSi}_{2}\mathrm{N}_{4} & 8.008 & 0.3900 & 0.44 & 2.635 & (d), 2.554 & (id) & 3.02 & 2.53 & 5.98 & 8.260 & 0.320 & (1.946) & 0.238 & (1.885) \\ -\operatorname{c-Tic}_{2}\mathrm{N}_{4} & 7.8351 & 0.3637 & -1.95 & \text{Metal} & 3.71 & 3.23 & 5.46 & 9.005 & 0.383 & (1.550) & 0.248 & (2.046) \\ -\operatorname{c-Tic}_{2}\mathrm{N}_{4} & 7.5400 & 0.3937 & 4.51 & 0.965 & (d), 0.62 & (id) & 2.97 & 3.77 & 5.37 & 8.030 & 0.352 & (1.883) & 0.217 & (1.753) \\ -\operatorname{c-Tii}_{2}\mathrm{N}_{4} & 8.2168 & 0.3753 & -1.43 & \text{Metal} & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 & (1.785) & 0.256 & (2.051) \\ -\operatorname{c-Tii}_{2}\mathrm{N}_{4} & 8.0470 & 0.3898 & 1.08 & 2.62 & (d), 2.51 & (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 & (1.956) & 0.349 & (1.896) \\ -\operatorname{c-Tii}_{2}\mathrm{C}_{2}\mathrm{N}_{4} & 8.3159 & 0.3836 & 0.91 & 2.269 & (d), 1.87 & (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 & (1.932) & 0.217 & (2.006) \\ -\operatorname{c-Tii}_{2}\mathrm{N}_{4} & 8.902 & 0.3829 & -0.44 & \text{Metal} & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 & (1.940) & 0.225 & (2.032) \\ -\operatorname{c-Tii}_{2}\mathrm{N}_{4} & 8.9276 & 0.3800 & 0.95 & 0.32 & (d), 0.15 & (id) & 3.14 & 3.14 & 5.64 & 8.482 & 0.339 & (2.017) & 0.240 & (2.163) \\ -\operatorname{c-ZrTi}_{2}\mathrm{N}_{4} & 8.6806 & 0.3668 & -0.13 & \text{Metal} & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 & (2.056) & 0.152 & (2.072) \\ -\operatorname{c-Sn}_{2}\mathrm{N}_{4} & 8.3600 & 0.3636 & 1.79 & \text{Metal} & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 & (1.650) & 0.190 & (2.187) \\ -\operatorname{c-Sn}_{2}\mathrm{N}_{4} & 7.7625 & 0.3988 & 5.65 & 1.00 & (d) & 0.99 & (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 & (2.007) & 0.204 & (1.772) \\ -\operatorname{c-C}_{2}\mathrm{N}_{4} & 8.6901 & 0.3674 & 1.75 & \text{Metal} & 3.78 & 3.76 & 5.48 & 8.690 & 0.327 & (1.936) \\ -\operatorname{c-C}_{2}\mathrm{N}_{4} & 8.6901 & 0.3674 & 1.75 & \text{Metal} & 3.78 & 3.76 & 5.48 & 8.690 & 0.312 & (1.738) & 0.236 & (2.189) \\ \end{array}$	parai
$\begin{array}{c} c-CTi_{2}N_{4} \\ c-TiC_{2}N_{4} \\ c-TiC_{2}N_{4} \\ r, 8.5035 \\ c-TiC_{2}N_{4} \\ r, 5400 \\ r, 551 \\ r, 540 \\ r, 550 \\ r, 551 \\ r, 540 \\ r, 550 \\ r, 510 \\ r, 51$	
$\begin{array}{c} c-TiC_{N_4} & 7.500 & 0.3937 & 4.51 & 0.965 (d), 0.62 (id) & 2.97 & 3.77 & 5.37 & 8.030 & 0.352 (1.883) & 0.217 (1.753) \\ c-TiC_{N_4} & 8.2168 & 0.3753 & -1.43 & Metal & 2.51 & 3.31 & 5.72 & 9.075 & 0.366 (1.785) & 0.256 (2.051) \\ c-TiS_{12}N_4 & 8.0470 & 0.3898 & 1.08 & 2.62 (d), 2.51 (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 (1.956) & 0.349 (1.896) \\ c-TiG_{e_2N_4} & 8.3159 & 0.3836 & 0.91 & 2.269 (d), 1.87 (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 (1.932) & 0.217 (2.006) \\ c-GeTi_{2N_4} & 8.4002 & 0.3829 & -0.44 & Metal & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 (1.940) & 0.253 (2.032) \\ c-TiZ_{2}N_4 & 8.9276 & 0.3800 & 0.95 & 0.32 (d), 0.15 (id) & 3.14 & 3.14 & 5.64 & 8.482 & 0.339 (2.017) & 0.240 (2.163) \\ c-ZrTi_{2}N_4 & 8.6806 & 0.3868 & -0.13 & Metal & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 (2.056) & 0.152 (2.072) \\ c-SnC_2N_4 & 7.7625 & 0.3988 & 5.65 & 1.00 (d), 0.99 (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 (2.007) & 0.204 (1.772) \\ e-CZrN_8 & 8.5091 & 0.3674 & 1.75 & Metal & 3.78 & 3.16 & 5.48 & 8.169 & 0.312 (1.738) & 0.236 (2.189) \\ \end{array}$	KNOW
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} c-Tiri_{2}N_{4} & 8.2168 & 0.5753 & -1.43 & \text{Metal} & 2.51 & 3.51 & 5.72 & 9.075 & 0.506 & (1.783) & 0.226 & (2.011) \\ c-Tiris_{2}N_{4} & 8.0470 & 0.3898 & 1.08 & 2.62 & (d), 2.51 & (id) & 2.62 & 3.65 & 5.56 & 10.806 & 0.303 & (1.956) & 0.349 & (1.896) \\ c-Tiric_{2}N_{4} & 8.3159 & 0.3836 & 0.91 & 2.269 & (d), 1.87 & (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 & (1.932) & 0.217 & (2.006) \\ c-Geri_{2}N_{4} & 8.4002 & 0.3829 & -0.44 & \text{Metal} & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 & (1.940) & 0.253 & (2.032) \\ c-Tiriz_{2}N_{4} & 8.9276 & 0.3800 & 0.95 & 0.32 & (d), 0.15 & (id) & 3.14 & 3.14 & 5.64 & 8.482 & 0.339 & (2.017) & 0.240 & (2.163) \\ c-ZrTi_{2}N_{4} & 8.6806 & 0.3868 & -0.13 & \text{Metal} & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 & (2.056) & 0.152 & (2.072) \\ c-Sn_{2}N_{4} & 8.3600 & 0.3636 & 1.79 & \text{Metal} & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 & (1.650) & 0.190 & (2.187) \\ c-Sn_{2}N_{4} & 7.7625 & 0.3988 & 5.65 & 1.00 & (d), 0.99 & (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 & (2.007) & 0.204 & (1.772) \\ c-CTr_{4}N_{4} & 8.6901 & 0.3674 & 1.75 & \text{Metal} & 3.78 & 3.16 & 5.48 & 8.169 & 0.312 & (1.738) & 0.236 & (2.180) \\ \end{array}$	
$\begin{array}{c} c-\text{TiSl}_2\text{N}_4 & 8.0470 & 0.5896 & 1.08 & 2.02 & (d), 2.31 & (d) & 2.02 & 3.05 & 5.36 & 10.800 & 0.505 & (1.936) & 0.349 & (1.896) \\ c-\text{TiGe}_2\text{N}_4 & 8.3159 & 0.3836 & 0.91 & 2.269 & (d), 1.87 & (id) & 3.08 & 2.91 & 5.77 & 8.231 & 0.378 & (1.932) & 0.217 & (2.006) \\ c-\text{GeTi}_2\text{N}_4 & 8.4002 & 0.3829 & -0.44 & \text{Metal} & 2.90 & 3.18 & 5.68 & 8.657 & 0.323 & (1.940) & 0.253 & (2.032) \\ c-\text{TiZr}_2\text{N}_4 & 8.9276 & 0.3800 & 0.95 & 0.32 & (d), 0.15 & (id) & 3.14 & 3.14 & 5.64 & 8.482 & 0.339 & (2.017) & 0.240 & (2.163) \\ c-\text{ZrTi}_2\text{N}_4 & 8.6806 & 0.3868 & -0.13 & \text{Metal} & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 & (2.056) & 0.152 & (2.072) \\ c-\text{Csn}_2\text{N}_4 & 8.3600 & 0.3636 & 1.79 & \text{Metal} & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 & (1.650) & 0.190 & (2.187) \\ c-\text{SnC}_2\text{N}_4 & 7.7625 & 0.3988 & 5.65 & 1.00 & (d), 0.99 & (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 & (2.007) & 0.204 & (1.772) \\ c-\text{CZr}_{\text{N}} & 8.5091 & 0.3674 & 1.75 & \text{Metal} & 3.78 & 3.16 & 5.48 & 8.169 & 0.312 & (1.738) & 0.236 & (2.189) \\ \end{array}$	<u> </u>
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2. ES
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} c_{-1}c_{2}r_{12}r_{4} & 8.9276 & 0.5800 & 0.95 & 0.52 & (d), 0.13 & (d) & 5.14 & 5.14 & 5.04 & 8.462 & 0.539 & (2.017) & 0.240 & (2.165) \\ c_{-}c_{T}r_{12}r_{4} & 8.6806 & 0.3868 & -0.13 & \text{Metal} & 4.10 & 1.14 & 6.40 & 7.261 & 0.452 & (2.056) & 0.152 & (2.072) \\ c_{-}c_{Sn}r_{2}r_{4} & 8.3600 & 0.3636 & 1.79 & \text{Metal} & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 & (1.650) & 0.190 & (2.187) \\ c_{-}snc_{2}r_{4} & 7.7625 & 0.3988 & 5.65 & 1.00 & (d), 0.99 & (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 & (2.007) & 0.204 & (1.772) \\ c_{-}CTr_{N}r_{4} & 8.5091 & 0.3674 & 1.75 & \text{Metal} & 3.78 & 3.16 & 5.48 & 8.169 & 0.312 & (1.738) & 0.236 & (2.189) \\ \end{array}$	on da
$\begin{array}{c} c-2 \sin_2 N_4 & 8.0806 & 0.3808 & -0.15 & \text{Metal} & 4.10 & 1.14 & 0.40 & 7.201 & 0.432 (2.056) & 0.152 (2.072) \\ c-C \sin_2 N_4 & 8.3600 & 0.3636 & 1.79 & \text{Metal} & 3.65 & 2.76 & 5.71 & 7.234 & 0.335 (1.650) & 0.190 (2.187) \\ c-s n C_2 N_4 & 7.7625 & 0.3988 & 5.65 & 1.00 & (d), 0.99 & (id) & 2.70 & 3.71 & 5.47 & 7.093 & 0.273 (2.007) & 0.204 (1.772) \\ c-C T R_N & 8.5091 & 0.3674 & 1.75 & \text{Metal} & 3.78 & 3.16 & 5.48 & 8.169 & 0.312 (1.738) & 0.236 (2.189) \\ \end{array}$	
$c-\text{Csn}_2\text{N}_4$ 8.5000 0.5050 1.79 Metal 5.05 2.76 5.71 7.234 0.555 (1.650) 0.190 (2.187) $c-\text{Sn}C_2\text{N}_4$ 7.7625 0.3988 5.65 1.00 (d), 0.99 (id) 2.70 3.71 5.47 7.093 0.273 (2.007) 0.204 (1.772) c-CTr.N 8.5091 0.3674 1.75 Metal 3.78 3.16 5.48 8.169 0.312 (1.738) 0.236 (2.180)	instea
c-SnC ₂ N ₄ /./625 0.3988 5.65 1.00 (d), 0.99 (id) 2.70 3.71 5.47 7.093 0.273 (2.007) 0.204 (1.772) c -CZr.N. 8 5091 0.3674 1.75 Metal 3.78 3.16 5.48 8.169 0.312 (1.738) 0.236 (2.189)	
$C = C T_{a} N_{a} = 3 / 3 + 1 / 5 / 4 + 1 / 5 / 5 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /$	relati
7.03174 0.001 0.001 1.10 1.100 1.100 0.10 0.10	rolati
$c^{-2}CC_{2}N_{2}$ / .8186 0.3965 6.51 0.39 2.55 4.43 5.15 / .286 0.348 (1.991) 0.188 (1.799)	
$c-S15n_2N_4$ 8.62/19 0.3/15 0.29 1.68 4.62 3.65 5.02 6.740 0.441 (1.816) 0.134 (2.188) 4.62 3.65 5.02 6.740 0.441 (1.816) 0.134 (2.188)	
c-SnSi ₂ N ₄ 8.2479 0.3948 1.15 2.63 (d), 2.58 (id) 2.96 3.33 5.60 10.829 0.312 (2.076) 0.347 (1.909)	२ (
c -SiZ $_{2}$ N ₄ 8.7484 0.3753 0.25 Metal 3.45 3.02 5.63 9.443 0.498 (1.878) 0.227 (2.197)	J . U
$c-ZrSi_2N_4$ 8.2912 0.3928 1.71 3.315 (d), 2.78 (id) 2.62 3.59 5.55 10.619 0.315 (2.051) 0.338 (1.937)	nrodi
c-GeSn ₂ N ₄ 8.7583 0.3795 0.41 Metal 2.88 2.66 5.95 7.184 0.311 (1.965) 0.196 (2.151)	preur
$c-SnGe_2N_4$ 8.4615 0.3895 0.06 2.31 (d), 2.28 (id) 2.68 2.83 5.92 7.536 0.291 (2.053) 0.217 (1.997)	00 00
c-GeZr ₂ N ₄ 8.9505 0.3807 0.73 Metal 3.00 3.12 5.69 8.442 0.289 (2.028) 0.255 (2.188)	OUTLIE
$c-ZrGe_2N_4 = 8.5689 = 0.3872 = 0.96 = 2.64$ (d), 2.40 (id) = 2.99 = 2.96 = 5.77 = 8.219 = 0.388 (2.040) = 0.213 (2.029)	
$c-SnTi_2N_4$ 8.6340 0.3888 -0.20 0.0 (semi-metal) 2.75 3.22 5.70 8.430 0.289 (2.087) 0.255 (2.045)	
$c-\text{TiSn}_2\text{N}_4$ 8.8175 0.3780 1.06 2.27 (d), 1.88 (id) 3.21 2.76 5.82 7.705 0.384 (1.953) 0.193 (2.176)	4 Lee
$c-\text{SnZr}_2\text{N}_4 9.1425 0.3859 0.52 \text{Metal} \qquad 2.80 3.17 5.72 8.419 0.270 \ (2.152) 0.261 \ (2.191) (2.$	4 . In
c - $ZrSn_2N_4$ 9.0475 0.3814 0.08 2.63 (d), 2.60 (id) 3.08 2.80 5.83 7.753 0.397 (2.059) 0.191 (2.206)	<i>c</i>
c-ZrHf ₂ N ₄ 8.9223 0.3853 -1.523 -0.02 (semi-metal) 2.82 3.09 5.75 4.473 0.163 (2.091) 0.132 (2.143)	Tormu
$c-\text{HfZr}_2\text{N}_4 = 8.9922 = 0.3815 = 0.035 = 0.24 \text{ (d)}, 0.10 \text{ (id)} = 3.23 = 2.83 = 5.78 = 4.379 = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.199 (2.057) = 0.116 (2.193) = 0.1$	

i"d" denotes a direct band gap and "id" denotes an indirect band gap. *Bond length given in parentheses, in units of Å.

1. Assess influence of latent variables (i.e. electronic structure parameters) on properties of known data

R

2. Establish heuristic relationships on database of <u>all input</u> variables instead of phenomenological relationships in bivariate manner

3. Use statistical learning to predict new materials behavior on new multivariate *input* data

4. Inverse problem approach to formulate quantitative structure-property relationships

TMS / ASM Materials Informatics Workshop Cincinatti, OH October 15th 2008

International Materials Institute

LINKING DISPARATE LENGTH SCALES

Visualizing Associations

International Materials Institute

Cincinatti, OH October 15th 2006

STRATEGY FOR MATERIALS DESIGN

CONCLUSIONS

Science was originally empirical, like Leonardo, making wonderful drawings of nature. Next came the theorists who tried to write down the equations that explained the observed behaviors, like Kepler or Einstein. Then when we got to complex enough systems like the clustering of a million galaxies, there came the computer simulations, the computational branch of science. Now we are getting into the data exploration part of science, which

is kind of a little bit of them all "...

Dr. Alex Szalay: Virtual Observatory Project

The New York Fimes

May 20th 2003

The Facts of the Matter: Finding, understanding, and using information about our physical world (2000)

Information science based design of materials.....next stage of the scientific discovery process

Division of Materials Research: Cyber infrastructure and cyber discovery in materials science (2006)

