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Abstract 

The elastic properties of several monocrystalline and textured 
Nickel-base alloys were determined as a function of orientation in 
single crystals and of direction in textured materials by a dynam- 
ic resonance technique between 20°C and 1200°C. For the quanti- 
tative description of the elastic behavior of anisotropic solids the 
elastic single crystal constants, the texture, and the orientation are 
needed. The texture of polycrystalline materials is described by 
the orientation distribution function (ODF). In single crystals the 
orientation is given by the Eulerian angles. The determination of 
the elastic constants from single crystal measurements by a re- 
gression and a Finite Element (FE) method is shown in this paper 
to be very accurate. A new regression method allows the deter- 
mination of single crystal elastic constants from strongly textured 
materials. This method is based on the measured elastic moduli 
in different directions with regard to the direction of rolling, 
growth or recrystallization. The evaluation of the elastic constants 
by regression and FE methods and the results for several Nickel- 
base superalloys are presented and discussed. 

Introduction 

Advanced industrial gas turbines must be operated at increasing 
high temperatures to improve the efficiency and to enhance pow- 
er output. In order to meet the requirements for this application, 
turbine blades are manufactured from monocrystalline alloys or 
alloys with special textures, such as directionally solidified (DS) 
alloys having fibre textures, or directionally recrystallized (DR) 
alloys exhibiting sheet textures. With a decreasing number of 
transverse grain boundaries, improved thermal fatigue resistance 
and creep strength of these materials are achieved, allowing 
higher stresses and temperatures in service. Nickel-base superal- 
loys with T’-(Ni,(Al,Ti)) precipitates, such as CMSX-4, CMSX-6, . 
IN 738 LC or SRR 99 are of great interest for these applications. 

For the design of statically and dynamically loaded components, 
the knosvledpe of the elastic moduli and their variations with 
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temperature and orientation or direction, respectively, is a funda-. 
mental requirement, especially for the analyses of vibrations, 
strength, fracture, or stability of structures. The elastic moduli 
(Young’s modulus E and shear modulus G) of anisotropic solids 
show a strong variation with orientation in single crystals and 
with direction in textured materials (Fig. 1 and 2). Therefore, it 
is necessary to describe the elastic behaviour of each anisotropic 
material by the determination of the orientation- or direction- 
independent elastic constants. Furtheron mathematical descrip- 
tions of the elastic properties as functions of the texture and the 
direction are needed. The direction-independent elastic constants 
(elastic single crystal constants or elastic material constants) are 
the elastic compliances S, and the elastic stiffnesses C,, in 
Hooke’s law. These constants can be determined with high accu- 
racy by resonant frequency measurements with regression meth. 
ods or with a newly developed FE analysis. 

Materials 

Out of the great number of y’precipitation hardened Ni-base 
alloys investigated by the authors, measurements on SRR 99, 
CMSX4, CMSX-6 and IN 738 LC, and also on near-y’ N&Al 
and on a precipitation-free near-y matrix material are presented. 
The elemental compositions of these alloys are given in Table I. 

The y’-precipitation hardened Nickel-base alloys IN 738 LC, 
SRR 99, CMSX4 and CMSX-6 were obtained as monocrystalline 
sheets. Several cylindrical specimens of about 4 - 5 mm in dia- 
meter and 40 - 50 mm in length were machined. The orientations 
of these single crystal specimens are distributed statistically in the 
standard stereographic triangle. In addition the alloy IN 738 LC 
was available in form of a directionally solidified turbine blade 
with a mean grain diameter of 4 mm, and a grain length larger 
than 100 mm. This DS material exhibits a strong <lOO>-fibre 
texture. Several specimens were machined in such a way that the 
angle between the specimen axis and the fibre axis was varied 
between 0” and 90” in steps of 15”. 
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Table I: Elemental composition of the investigated Nickel-base alloys in weight-%. 

SRI3 99 

Co Ta Cr W Al Re Ti MO Hf Fe Nb Ni 

19.3 2.9 9.0 9.5 5.5 - 1.8 - - 1.0 0.7 bal. 

I CMSX-4 1 9.5 6.5 6.4 6.3 5.7 2.9 1.0 0.6 0.1 0.1 0.1 bal. 1 

CMSX-6 5.0 2.0 

IN 738 LC 8.6 1.9 

10.0 - 4.9 

16.0 2.7 3.4 

- 
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4.8 3.0 - 

3.4 1.8 - 
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0.1 
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bal. 

bal. 

Matrix alloy 16.7 - 15.8 8.0 - 5.0 - 1.8 - bal. 
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Figure 1: Young’s modulus E and shear modulus G of monocry- 
stalline IN 738 LC as a function of the orientation parameter J 
(equ. 8), describing the orientation. 
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Figure 2: Young’s modulus E and shear modulus G of directio- 
nally solidified IN 738 LC as a function of the angle A between 
the specimen axis and the direction of solidification. 

Experimental 

For the determination of the elastic properties from resonant fre- 
quency measurements a modified FGrster resonance technique is 
used. Long thin rods with approximately 50 mm in length and 
5 mm in diameter are excited to vibrations by piezo-electrical 
transducers and the resonant frequencies are measured (Fig. 3). 
The transducers are coupled to the specimen by suspension of the 
rod into carbon wire loops. By the Gain-Phase Analyzer the 
amplitude and the phase angle are measured as a function of the 
applied frequency. In the case of resonance, a maximum in am- 
plitude and a characteristic phase shift are measured. The mea- 
surements were carried out in vacuum in the 4 to 150 kHz fre- 
quency range between 20°C and 1250°C. The temperature was 
controlled by a Pt/PtRh-thermocouple located 1 mm away from 
the middle of the specimen. 

furnace 

Figure 3: Schematic representation of the experimental equipment 
for measuring the resonant frequencies. 

Three vibrational modes, the flexural, longitudinal and torsional, 
are excited in the fundamental vibrations and in several over- 
tones. Flexural and longitudinal vibrations supply information 
about the Young’s modulus E(T), and the torsional vibrations 
about the shear modulus G(T). From the measured resonant fre- 
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quencies the Young’s modulus and the shear modulus are cal- 
culated via the following theoretical relationships /1,2,3/: 

E(T) = 
4.n:2*~V’)*~4(T) $,&Y -K 

h ’ (1) 
x2(T)-(mJ4 

G(T) = 4.p(T).Z2(T)-(f,:,,(T)ln2) .K, , (2) 

where p(T) is the density, l(T) the length, x(T) the radius of iner- 
tia, n the order of vibration, and f,(T) the resonant frequency of 
the n-th mode of vibration of flexure or torsion. Kbr K, and m, 
are vibration mode dependent correction factors, tabulated’in /l/. 

For measurements at temperatures above 20°C the specimen 
dimension and the density had to be corrected by the coefficient 
of thermal expansion. 

Elastic Behaviour of Anisotropic Solids 
with Cubic Crvstal Structure 

Single Crystals 

The proportionality of stress and strain is described by the two 
forms of the generalized Hooke’s law. It relates the stress vector 
0 to the strain vector E by the equations /4/ 

bi = c c,, . E, > 

&,=CS ‘4, ‘I 

where C, is the stiffness matrix and S, is the compliance matrix. 
The matrices C,, and S,, have in general twenty-one independent 
components with respect to an arbitrarily selected coordinate sys- 
tem, but this number can be reduced drastically in the presence of 
crystal symmetries. For instance, single crystals with cubic, hex- 
agonal and orthorhombic symmetries have three, five and nine in- 
dependent elastic stiffnesses C,, (compliances S,,), respectively. In 
the case of cubic crystal symmetry the three independent elastic 
single crystal constants are S,,, S,, and S, or C,,, C,, and C,. 
The stiffnesses C, can be calculated from the compliances S, and 
vice versa IS/. 

If the single crystal specimens are long and thin rods, then orien- 
tation-dependent elastic moduli are connected to the compliances 
by the following equations /4,6/: 

E,,,~(%(P) = [S,,-2SJl-’ , (5) 

G,e.r(e.(~) = [(s,-~sJ).(~-~)I~’ , (6) 

where E,,,(Q) and G,,,&(p) are the measured Young’s and 
shear modulus for a given orientation, 0 and cp are the Eulerian 
angles according to Fig. 4. The factor 6 corrects coupling effects 
between torsion and bending /6,7/. S and the orientation parame- 
ter J are given by the following equations: 

s = s,,-s,,-s,/2, (7) 

J = sin2B. co&l + $sin% . (1 - cos(49)) 63) 

t 

LOO11 

specimen axis 

lo101 

J I1001 

Figure 4: Definition of the Eulerian angles 8 and cp. 

Textured Materials 

A description of the elastic behavior of a textured material is 
based on a consideration of the symmetry of the whole polycrys- 
talline aggregate. Fibre textured materials, e.g. directionally solid- 
ified Nickel-base alloys, exhibit hexagonal symmetry, while 
rolled sheets can be described by assuming an orthorhombic sym- 
metry. Hence, the elastic behavior of these textured materials is 
determined by five or nine elastic polycrystal constants SF and 
CF in the cases of hexagonal and orthorhombic symmetry, re- 
spectively. Then Hooke’s law can be expressed by equations (9) 
and (IO), where the polycrystal constants of the textured material 
correlate the mean stresses 0 with the mean strains r. Sz and Cz 
are the polycrystal constants according to Voigt /4/ and Reuss /8/, 
respectively. 

For the condition of constant strain in all grains an upper bound 
of the elastic properties according to Voigt is obtained, while for 
the condition of constant stress in all grains one gets a lower 
bound of the elastic properties according to Reuss: 
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q = c ci; . E, , 

E, = c s,” . oj . 

The mean values of these upper and lower bounds given by 

sI/u = $Y;+s;] (11) 

according to Hill /9/ are very close to the real elastic properties 
of the textured material. Sl and Cx are connected via Si = [CG]-‘. 

These polycrystal constants are related to the single crystal con- 
stants by the orientation distribution function (ODF) of the tex- 
ture by equations given in the appendix (Al and A2) for hexa- 
gonal texture symmetry /lo,1 II. The relations between the direc- 
tion-dependent elastic moduli E and G and the elastic polycrystal 
constants Sijpc are given by equations (12) and (13) for hexagonal 
symmetries as in the fibre textures: 

E(0) = [S,Y;sin% + Sgcos48 + 

+ 2S,Pc + SE sin28 -cos2e ( ) I-’ , (12) 

G(B) = [Sg+(Sz-SE-(S~/2))sinzB+2(S,‘;+ 

+Sg-2SIF;-S~)cos28 sin2B]-’ . [l-tc-’ , (13) 

where A denotes the angle between the specimen axis and the 
fibre axis. 

Using the equations (12) and (13) with the polycrystal constants 
according to Voigt, Reuss or Hill we obtain upper and lower 
bounds of the elastic moduli or the Hill mean values. Fig. 5 
shows the dependence of Young’s and shear modulus versus the 
angle A between the specimen axis and the fibre axis of direc- 
tionally solidified IN 738 LC. The Voigt-Reuss-Hill values cal- 
culated according to eqns. (12), (13), (Al), (A2) are compared 
with the measured ones. The Hill mean values, based on the elas- 
tic constants determined from single crystal measurements and 
the ODF show a good agreement with the measurement data. 

Determination of Elastic Constants 

As mentioned above the knowledge of the elastic single crystal 
constants is very important to describe the elastic behavior of 
anisotropic solids. For this reason several methods have been 
developed to determine the elastic constants from measured 

measured Rents Voigt Hill - 
. - _ _ _ - 

Specimen Angle A [“I 

Figure 5: Measured Young’s and shear modulus and calculated 
Voigt-Reuss-Hill values for IN 738 LC DS, as a function of the 
angle A between the fibre axis and the specimen axis. 

resonant frequencies. In the following the determination of the 
elastic constants from resonance measurements of single crystals 
and of textured materials will be presented. Two different meth- 
ods are used, based on regression and on Finite Elements (I%), 
respectively. 

Single Crystals 

The regression method for cubic single crystals, based on the 
equations (5) to (8), is the most simple way to determine the 
elastic compliances. According to them, the reciprocal values of 
the measured moduli, (E&l and (G,,;(l-F)).‘, of several speci- 
mens, each with different orientation, are plotted versus the orien- 
tation parameter J, given in equation (8), (Fig. 6). A linear re- 
gression with respect to J=O leads to the elastic constants S,, and 
S,, while S,, can be calculated by equation (7) from the slope of 
the regression lines. The slope of the regression lines from mea- 
sured reciprocal elastic moduli versus J is equal to -2s and 4S, 
respectively. 
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Figure 6: Determination of S,,, S, and S,, by linear regression 
from single crystal measurements for the alloy CMSX-4. 

Using the Finite Element Method (FEM), the resonant frequen- 
cies of a cylindrical specimen are calculated by an FE-model for 
given elastic constants. The specimen is modelled by 16 isopara- 
metric three-dimensional 20-node-elements /12/. The desired reso- 
nant frequencies are obtained from solutions of the following 
corresponding eigenvalue equations: 

(-o;M+K)-u, = 0; i = 1,2,... ) (14) 

where o, and u, are the i-th natural frequency and mode, M and 
K are the mass and stiffness matrices of the FE-model, respec- 
tively. 

The strategy for the determination of the elastic constants and the 
orientation is the adjustment of these constants in an optimization 
procedure, where the differences between the measured and the 
calculated frequencies of several specimens are minimized. The 
eigenvalue equations (14) are solved by the FEM code ADINA 
/13/. The optimizer is from MINIPACK /14/. It uses a modified 
Levenberg-Marquard algorithm. In every iteration step of the 
optimization procedure, the calculated frequencies must be as- 
signed to the measured ones. This is carried out by the use of a 
frequency assignment algorithm which is based on the or- 
thogonality of the natural modes, In the optimization procedure 
also the orientation of the specimens can be determined beside 
the elastic constants. The details about the frequency assignment 
algorithm and the numerical simulation of the dependence of the 
resonant frequencies on the orientation and on the elastic con- 
stants are given in reference /I 5,16/. 

Textured material 

Problems can arise in obtaining the elastic constants of the single 
crystal in the cases where the latter is difficult to grow, expensive 

or cannot be prepared at all, as for instance in the case of ODS- 
alloys. In all these cases the elastic constants of the single crystal 
have to be determined from measurements on textured polycrys- 
talline material. This determination is only possible if the poly- 
crystalline material exhibits elastic properties which depend on 
the direction. These properties have to be measured in several 
directions with regard to the direction of rolling, growth or recry- 
stallization. From such experimental results the elastic constants 
of the single crystal can be calculated by connecting the proper- 
ties of the textured polycrystalline and the monocrystalline mate- 
rial as shown above. Using the concept of Hill, a new empirical 
evaluation method allows the determination of the elastic single 
crystal constants from measurements on textured material. 

This method is formally based on the relations between the elas- 
tic properties and the orientation parameter J for a single crystal 
of cubic crystal structure /17/. In the following this method is 
presented for fibre textured material. From the input data, which 
are the coefficient of the ODF and approximately assumed elastic 
constants S,,, S,, and S,, the five elastic constants S,,” for hex- 
agonal symmetry are calculated by equation (12), (13), (Al) and 
(A2). Then these are used for the determination of theoretical 
values E(A) and G(A), where A denotes the specimen angle as 
introduced above. In the next step these values are introduced 
into the equations (15) and (16) for the determination of theor- 
etical orientation parameters J,(A) and J,(A): 

l/E(A) = S,, - 2SJe(A) , (15) 

l/[G(A)(l-6)] = S, + 4S$(A). (16) 

After the calculation of J,(A) and J,(A) the measured moduli are 
introduced in the equations (15) and (16). A linear regression 
with respect to J,(A) and J,(A) leads to the compliances of the 
single crystal, analogous to the regression in the case of cubic 
single crystals. Using these single crystal constants as new input 
data for the next iteration step, improved values of J,(A) and J,(A) 
can be determined as described above. It is necessary to repeat 
this procedure until there is no further significant change in the 
calculated constants from the (n-1)-th and n-th cyclus. In practice 
not more than five iteration steps are necessary. 

The Finite Element Method can also be applied to sheet or fibre 
textured material. According to the regression method it is as- 
sumed that textured material macroscopically exhibits a hexago- 
nal or orthorhombic symmetry. In these cases five or nine elastic 
constants must be adjusted /18,19/. In the FE-model of the speci- 
men the exact macroscopic constitutive law for the elastic aniso- 
tropic material is used. This method can be regarded as a suitable 
averaging method which does not use any restrictions on the 
distributions of the stresses or the strains and any prior knowl- 
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Figure 7: Young’s and shear modulus for three different mono- 
crystalline specimens of the alloy CMSX-4. 

edge about the orientation distribution of a textured alloy. Unfor- 
tunately, the successful determination of the elastic single crystal 
constants can be carried out only in the case of single crystals or 
strongly fibre textured materials. In the other cases only the 
elastic polycrystal constants depending on the texture can be 
determined. 

Results and Discussion 

Elastic Moduli 

The elastic moduli of several monocrystalline specimens with dif- 
ferent orientations of the alloys SRR 99, CMSX-6, CMSX-4 and 
IN 738 LC were determined between 20°C and 1200°C. As an 
example Figure 7 shows the measured Young’s and shear moduli 
in <OOl>-, <Oil>- and ~11 l>-direction as a function of the 
temperature for the alloy CMSX-4. Similar orientation depen- 
dencies of the elastic moduli were observed for all other mono- 
crystalline Ni-base alloys. 

Young’s and shear modulus in Figure 7 show a linear decrease 
with temperature up to about 900°C and a very strong decrease 
between 900°C and 1100°C. Extensive investigations of the dam- 
ping behaviour of the alloy CMSX-4 reveals two different damp- 
ing maxima in the temperature range in which the strong decrease 
of the elastic moduli occurs /20/ (Fig. 8). 
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Figure 8: Young’s modulus and normalized damping for the 
monocrystalline alloy CMSX-4. 
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Figure 9: Normalized Young’s moduli as a function of the tempe- 
rature for CMSX-4, Ni,Al and the matrix material. 

Further investigations performed on precipitation-free material, 
which is near to the composition of the y-matrix of CMSX-4 
/21/, and on ordered N&Al, which is near to the composition of 
the y’-precipitates, leads to the assumption, that these damping 
maxima are caused by diffusion processes in the y’-phase /20/. 

From Figure 9 it is clearly visible, that the temperature depen- 
dence of the normalized Young’s moduli of CMSX-4 and N&Al 
agree very well, while for the y-free matrix material no stronger 
modulus decrease at higher temperatures was found. This indi- 
cates that the stronger modulus decrease is caused by the y- 
phase. Further details about the damping behaviour of Ni-base 
alloys are published in /20/. 
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Figure 10: Elastic compliances S,,, S,, and S, for the Ni-base 
alloy SRR 99. 

Elastic Constants 

The elastic compliances Sjj of the alloys CMSX-4, CMSX-6 and 
SRR 99 were determined from the measured resonant frequencies 
of several monocrystalline specimens by the regression- and the 
FE-method. In order to test the accuracy of these methods the 
evaluated constants S, ,, S,, and S, of the alloy SRR 99 are 
compared in Figure 10. In addition the data obtained from tensile 
tests up to 980°C are also included in Figure 10. The comparison 
of the constants S, of different independent origins shows good 
agreement between them. The deviations lie in the range of 5% 
percent. Only at higher temperatures the constants from static 
tests show deviations up to lo%, which is probably due to mea- 
surement effects. 

0 0,05 
OrientZIon PZ’a5meter0s2Je anYi2& 

0,3 

Figure 11: Determination of the elastic single crystal constants 
from measurements for fibre textured material of IN 738 LC. 

In order to determine the elastic single crystal constants from 
textured material measurements according to the regression me- 
thod described above, <lOO>-fibre textured IN 738 LC was inves- 
tigated. In Figure 11 the experimentally determined [E(A)]-’ and 
[G(A)(l-6)1-i of the textured material at room temperature are 
plotted versus the calculated J,(A) and J,(A), respectively. The 
plotted properties exhibit a good linear dependence on J,(A) or 
J,(A), respectively. 

Figure 12 shows a comparison of elastic compliances S,,, S,, and 
S, of IN 738 LC determined from <lOO>-fibre texture and from 
single crystal measurements. The comparison of the constants S, 
of different independent origins shows good agreement between 
them. The deviations lie in the range of 5% percent. This result 
confirms the high accuracy of the S$ values obtained from the 
investigation of textured materials by the new regression method. 

In Figure 13 the elastic compliances of the alloys CMSX-4, 
CMSX-6, SRR 99 and IN 738 are shown as a function of the 
temperature. The constants of these four alloys are very similar, 
with deviations lieing in the range of 10%. Hence, the elastic 
constants of most of the Ni-base alloys can be regarded as nearly 
identical. 

Conclusions 

The elastic moduli (Young’s modulus E and shear modulus G) of 
anisotropic materials exhibit a strong variation with orientation, 
direction and temperature. They were measured by a modified 
Forster resonance method between 25°C and 1200°C. At temper- 
atures between 900°C and 1100°C the elastic moduli of all 
investigated Ni-Base alloys show a strong decrease, which is 
most probably caused by diffusion processes in the y’-precipita- 
tion phase. 
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Figure 12: Elastic constants S,,, S, and S,, for IN 738 LC, deter- 
minated from single crystal and DS-material measurements. 

In order to describe the elastic behavior of an anisotropic material 
the direction-independent elastic single crystal constants (com- 
pliances S, or stiffnesses C,) must be known. In the case of tex- 
tured material the elastic polycrystal constants (SC and CF) are 
needed. They can be calculated from the single crystal constants 
and the orientation distribution function (ODF). 

The determination of the elastic constants from resonance mea- 
surements of single crystals and textured materials by regression 
and by Finite Element methods were presented. All methods re- 
quire measurements of the elastic properties on specimens pre- 
pared with different orientations of single crystals or with their 
axes at different angles to the direction of solidification, recrystal- 
lization or rolling in textured materials. These methods were 
applied to monocrystalline and textured Nickel-base alloys 
(SRR 99, CMSX-6, CMSX-4, IN 738 LC). The good agreement 
of the results from different methods and materials with different 
anisotropic behaviour demonstrate convincingly the efficiency and 
the usefulness of the regression and FE methods for the deter- 
mination of the elastic single crystal constants. 
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Figure 13: Comparison of the elastic compliances of the Nickel- 
base alloys CMSX-4, CMSX-6, SRR 99 and IN 738 LC. 
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Experiences with these methods for different materials show that 
a strong direction dependence of the elastic properties in the tex- 
tured materials is a fundamental requirement for a successful 
application of the presented methods. 
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Appendix 

Calculation of the elastic polycrystal 
Reuss in the case of fiber-textured 
lattice structure: 

s; = s,, - 0,4S + 

s; = s,, 0,4s + 

spz = s,, + 0,2s + 

s; = s,, + 0,2s - 

s,“, = s, + 0,8S - 

constants after Voigt and 
material exhibiting cubic 

3ac;s 

8aC4S 

ac;s 

4ac;s 

16uC;S (Al) 
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C,: = C,, - 0,4C + 3aC,‘C 

C31;’ = C,, - 0,4C + 8aCiC 

Cd = C,, + 0,2C + aC,lC 

C,l; = C,, + 0,2C - 4aC,‘C 

Cz = C, + 0,2C - 4aCiC 

where: 
a= 0,006155 
s = s,, - s,, - s&J2 
c = c,, -c,, - 2c, 
Cd: coefficient of the ODF. 

Calculation of the elastic stiffnesses C,,, C,, and C, from the 
compliances S,,, S,, and S, for cubic lattice structure: 

CM=;. 
44 

(A31 

c-44) 

c-45) 
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