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Abstract 

A new directional solidification technique promising a more 
economic production of large blades is the Liquid-Metal-Cooling 
(LMC) process. The advantages of this technique are summarized 
in the paper. Direct temperature measurements as well as 
microstructural comparisons point towards an increase of the 
thermal gradient by a factor of two for large industrial turbine 
blades. This is at the present state of technical development, i.e. 
further improvements are expected eventually. 

One of the most important factors in optimizing LMC is the 
choice of the cooling medium. In this paper tin and aluminium are 
compared. The advantages and disadvantages of these two cooling 
media are discussed in detail. Special attention is directed to the 
heat transfer potential and the possible dissolution of the cast 
component in the cooling bath in case of inadvertant contact. In 
addition information on the effect of tin as an intentional alloying 
element is given. Although tin looks rather favourable with respect 
to the points discussed, the long term performance on an industrial 
scale as compared to aluminium remains to be seen. 

Introduction 

Higher demands on turbine blades in modern industrial gas 
turbines (IGT’s) have led to increasing use of directional 
solidification. The trend towards larger components and more 
complex alloy compositions reveales the limitations of the 
conventional Bridgman-technique (High-Rate-Solidification 
technique, FIRS). Due to the limited temperature gradient only low 
withdrawal rates can be applied. An economic production based 
on radiation cooling becomes therefore quite difficult [l]. A 
promising alternative is the Liquid-Metal-Cooling (LMC) process 
[2,3]. LMC is expected to provide important improvements and 
may play a significant role in the industry in the near future [4]. 

The main advantages of the LMC technique have been well 
demonstrated for small scale, laboratory test pieces [Sj. The higher 
thermal gradient and the increased solidification rate results in a 
finer microstructure as compared to the conventional Bridgman- 
technique. This reduces significantly the solution heat treatment 
soak period. 
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Figure 1: Industrial scale LMC-furnace at DONCASTERS 

Precision Castings - Bochum GmbH, Germany. 

This furnace is in operation since mid of 1999. 
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Figure 2: Schematic diagram of the apparatus used for the 

immersion and dissolution tests. During heating to 

temperature T the specimen and the liquid metal 

are not in contact (left). During the time t the 

rotating specimen is immersed into the liquid metal 

bath (right). 
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In 1994, a LMC pilot plant was installed at the WTM-institute in 

Erlangen [3]. By casting large test pieces and full scale, cored IGT 

single crystal turbine blades the feasibility of LMC was studied on 

a prototype scale. Some results from this program will be 

presented in the following together with some more general 

considerations that led recently to the construction of the worlds 

largest LMC production scale furnace (Figure 1) at 

DONCASTERS Precision Casting in Bochum. The main 

emphasis of the paper will be on the choice of a suitable cooling 

medium in LMC. 

Experimental Procedure 

LMC-casting trials have been carried out in the pilot plant at the 

WTM-Institute. The cooling bath with dimensions of 700 mm x 

700 mm x 700 mm contains 1.7 t of liquid tin. Single crystal slabs 

(18 mm x 100 mm x 200 mm, two slabs per mold) and full scaled, 

cored IGT single crystal turbine blades were cast. The nickel base 

superalloys SC16 (16 wt.% Cr, 3,5 % Al, 3,5 % Ta, 3,5 % Ti, 

3 % MO and Ni as balance) and PWA 1483 (12,2 % Cr, 9 % Co, 

4,1 % Ti, 3,6 % Al, 1,9 % MO, 3,8 % W, 5 % Ta, 0.07 % C and Ni 

as balance) were used. The test pieces were solution heat treated 

and aged before mechanical testing. 

In order to investigate the behaviour of the superalloys in direct 

contact with the cooling medium a laboratory test was developed 

(see Figure 2). A cylindrical, polished superalloy specimen 

(10 mm diameter) is immersed into a liquid metal bath (tin or 

aluminium) at constant temperature for an appropriate time. The 

specimen can be rotated at different speeds. In order to obtain 

reacting surfaces with well defined uniform flow conditions in the 

bath, the cylinder is coated at the bottom and near the fluid 

surface. In this way these surfaces are protected against 

dissolution. The bulk concentration c, at the time t is calculated 

from the weight loss of the specimen. 

Results 

Advantages of the Liauid Metal Cooline-technique 

Higher thermal gradients. It has always been assumed that the 

LMC-process has the advantage of producing a higher 

longitudinal thermal gradient during solidification. In the 

following, we want to explore the evidence for this when large 

IGT-geometries are considered. 



The potential of the LMC process on a larger scale has been 
studied in an earlier investigation using an analytical model [6,7]. 
It was possible to predict the optimal withdrawal rate and the 
temperature gradient. Predominantly in large cross sections LMC 
was expected to double the gradient as compared to the HRS- 
technique. The influence of several parameters like temperature of 
the heater and the cooling medium, ceramic shell conductivity or 
mold thickness were examined. Depending on the parameter set, 
thermal gradients for LMC in the range between 2 K/mm and 
8 K/mm were calculated. 

The results of the earlier theoretical investigation will be now 
compared with the experimental results. At fist we will derive the 
thermal gradient by evaluating the microstructure achieved during 
solidification for casting conditions that are typical for each 
process. In a first stage turbine blade (length = 290 mm) LMC was 
found to reduce the primary dendrite arm spacing ht by half [8]. 
At the same time LMC allows withdrawal rates twice as high as 
the HRS technique [S]. The use of the empirical formula [9] 

1 1 

hl = 750 G-2 v--~ (1) 

allows to estimate the temperature gradient present. For the HRS- 
technique (ht = 600 pm, v = 3.5 mm/mm) a gradient of Gnas = 0.8 

K/mm can be calculated, while for LMC (1, = 300 pm, 
v = 8.0 mm/mm) the gradient is G*c = 2.2 K/mm. It must be 
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Figure 3: Cooling curve during withdrawal for an IGT blade 
(length = 290 mm) solidified at a withdrawal rate 
of 8 mm/mm using the LMC pilot plant at WTM- 
Institute. The thermocouple was situated in the 
middle of the airfoil. The thermal gradient is 
determined to be 4.9 K/mm. This value is in good 
agreement with values derived from evaluation of 
the microstructure as well as earlier analytical 
predictions. It is at least twice as high as in the 
corresponding HRS process. 

noted, however, that the experimental data in [9] shows a large 
scatter. Therefore, the gradient is better represented by a range, 
e.g. from 1.5 K/mm to 3.8 K/mm for LMC and 0.7 K/mm to 
1.1 K/mm for HRS. 

To confii the estimates based on the microstructure, temperature 
measurements with thermocouples have been performed during 
the LMC-process. Figure 3 shows a cooling curve for a first stage 
turbine blade in the middle of the airfoil. The cooling rate at the 
liquidus front was determined to be 40 K/mitt. For a withdrawal 
rate of 8 mm/mm this is equivalent to a thermal gradient of 
4.9 K/mm which is somewhat higher but close to the values based 
on equation (1). 

Other LMC advantages. The LMC process has further advantages 
besides its capability for higher gradients. Higher withdrawal rates 
and reduced dendrite arm spacings have already been mentioned. 
In addition LMC-cast components show finer and more 
homogeneously distributed carbide precipitates and y/y‘-eutectic. 

The y‘-precipitates are dis’uibuted more uniformly and cubic 
morphology is already achieved in the as cast condition. Due to 
the smaller dendrite arm spacings, concentration gradients are 
much higher and segregation is much more rapidly eliminated. 
The high temperature gradients can be achieved even for large 
blade clusters, since heat transfer is uniform even under these 
conditions. [8] 
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Figure 4: Vapor pressure of low melting point metals [18]. A 
low vapor pressure is a prerequisite for use as 
cooling medium in the LMC process. Both tin and 
aluminium are particularly suitable. 
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Choice of the Cooling Medium 

Phvsical urouerties and heat transfer. One of the challenges in the 
optimization of the LMC technology on an industrial scale is to 
find a suitable cooling medium. Several requirements have to be 
fullfilled e.g. low melting temperature, low vapor pressure, high 
thermal conductivity, low viscosity, no toxicity, and economic 
efficiency. 

Figure 4 presents the vapor pressure of low melting point metals 
as a function of temperature. The only liquid metals with suitable 
vapor pressure for a vacuum process at high temperatures are 
ahmrinium and tin. Gallium and indium are not considered due to 
their high price. Although the curves for aluminium and tin are 
nearly congruent, tin appears to be more favourable because the 
lower melting point allows a lower process temperature to be 
used. 

One of the evident advantages of aluminium is its very high 
thermal conductivity (h = 104 W/r& at a temperature of 660°C) 
promising a good heat transfer from the casting, see Table I. 
However there are other important factors in heat transfer that 
should not be overlooked. A simple pseudo-one-dimensional heat 
transfer model can give an idea of the magnitude of the heat flux 
possible. The situation is depicted in the insert drawing in Figure 
5. For every temperature Tsc within the solidified cast component 
a local heat flux q perpendicular to the withdrawal direction can 
be calculated. The heat is transferred through a gap between the 
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Figure 5: Comparison of the calculated local specific heat 
flux q for LMC with tin or aluminium as a cooling 
medium with the conventional HRS-technique. 
The heat flux for LMC with tin is significantly 
higher than for LMC with Aluminium. In general 
LMC leads to better cooling conditions than the 
HRS-technique. 

Table I: Properties of liquid aluminium and liquid tin at 
their melting point [19]. 

~1 
Thermal diffusivity 

Latent heat kJ/m3 921834 418800 

Kinematic Viscosity rn’1.s 6,3 x 1O-7 2,58 x 1O-7 

cast component and the inner mold surface at temperature Twt by 
radiation. It was assumed that the heat transfer takes place 
between two infinite parallel plates [lo]. For heat transfer through 
the shell wall (with thermal conductivity &d = 4 W/mK and 
thickness dm,, = 10 mm) by conduction and heat transport from the 
outer mold surface at temperature Two into the surrounding liquid 
metal bath at temperature Ts by convection the overall heat 
balance takes the following form: 

9= 
~&-~i& e&d 

L+L1 
--&TwI -Two)=a(Two -Ts) (2) 

El E2 

with ~1 =&a = 0.5. The heat transfer coefficient a can be 
calculated, e.g. for flow over a flat plate, using the following 
formula [ 111: 

Nu = !$-f = 0,38 (Re Pr)“*65 = 0,38 
0,65 

(3) 

where Nu is the Nusselt-number, Re is the Reynolds-number and 
Pr is the Prantl-number. Figure 5 shows the local heat flux q 
according to eq. (2) for an alloy with a liquidus temperature of 
1350°C for both cooling media, aluminium (Ts = 660°C) and tin 
(Ts = 232°C). A flow velocity of Ur = 0.1 m/s and a characteristic 
length of L = 0.1 m for the cast component was assumed. 

The most important parameter determining the heat flux in LMC 
is the temperature of the surrounding medium. Therefore, the heat 
flux with tin is significantly higher than with aluminium. 

In addition, a curve for heat transport by radiation from the outer 
mold surface is given in Figure 5: 

4 
q=mi+-W $nd 

L+l-l md 
(%I - TWCI > = T;i; (4) 

El E2 F-1 E2 
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with .sl = ~2 = 0.5 and Ts = 25°C. It is obvious that the heat flux 

for both LMC-techniques is much higher than for the HRS- 

process. 

There are other properties in Table I that have to be taken into 

account. For example the density of aluminium is only one third 

of tin thus faciliting contruction problems. On the other hand the 

energy AE needed for melting the cooling medium: 

T3 
AE = j-C,dT + AH (5) 

RT 

is more than 250 % higher for aluminium (AE = 2.47 x IO6 k.Vm3) 

than for tin (AE = 0.68 x IO6 kJ/m3). 

Mechanical urouerties and effect of tin. A particularly important 

issue is the possible contamination of the superalloy with the 

cooling medium, e.g. when revert material is used. For aluminium, 

which is an alloying element in nickel base superalloys, this is not 

an issue. In the case of tin a review of the literature shows that tin 

is generally believed to be harmful. The removal of tin from the 

alloy using long melting times during production of the master 

melt is not possible [ 13, 141. In order to clarify the effect of tin on 

alloy properties, test slabs with tin concentrations up to 4150 ppm 

were cast and heat treated. Creep rupture strength was tested for 

SC16 and PWA 1483. 

A Larson-Miller-plot for SC16 with and without tin additions 

(Figure 6) illustrates that there is no important influence of tin on 

the creep strength. Creep rupture tests for PWA 1483 showed that 

this holds even for very high tin concentrations up to 4150 ppm 

that are extremely unlikely to occur in commercial practice. In 

Figure 7 SEM-micrographs of the microstructure of SC16 with 

and without tin doping are shown. There is no apparent effect of 
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Figure 6: Creep strength of single crystal superalloy SC16. 

The Larsen-Miller parameter LM was calculated 

using temperature T in Kelvin and time tr in hours. 

There is no important influence of added tin. 

Figure 7: SEM-micrographs of the microstructure of SC16 

with and without tin doping. There is no apparent 

effect of tin on shape, size or volume fraction of 

the y‘-precipitates. 

tin on shape, size or volume fraction of the y‘-precipitates. 

In addition low cycle fatigue has been tested for PWA 1483 with 

the same tin concentrations. In Figure 8 the results for 850°C and 

950°C are presented. Again no influence on the mechanical 

properties was determined. The evaluation of other properties like 

corrosion resistance is presently under way. 
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Figure 8: Low cycle fatigue strength of the single crystal 

superalloy PWA 1483. No significant influence of 

tin is found. 
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Figure 9: Schematic representation of the concentration 
profile in the case of the dissolution of a solid 
substance in a liquid. At the interface diffusive flux 
is rate limiting [15, 161. 

Allov dissolution. Further diffrcuhies may appear if the solidified 
superalloy comes inadvertently into contact with the cooling 
medium. Reactions with the liquid metal of the cooling bath could 
lead to partial dissolution of the cast component. A related issue is 
the reaction between the liquid metal of the cooling bath and the 
bath container material and other bath components. 

Several transport mechanisms might be limiting for the reaction 
rate in alloy dissolution, e.g. diffusion in the solid, mass transfer 
between solid and liquid, or the transport within the fluid. For the 
sake of the argument, let us assume in the following transport in 
the liquid phase limits the rate of the dissolution. The transport in 
the fluid occurs through a combination of diffusion and 
convection (see Figure 9) [15, 161. The total flux is constant and 
does not change with the distance from the solid-liquid interface. 
Near the interface transport is by diffusion while further in the 
bulk convection becomes dominant. A boundary layer thickness 6 
can be defined as shown in Figure 9. Considering Fick’s law and 
the time dependence of the diffusion flux, the rate of dissolution 
can be calculated by using the differential equation 

+$5fz (6) 

where D is the diffusion coefficient, V is the liquid metal volume, 
A is the area of the solid-liquid interface, c is the bulk 
concentration of the liquid metal bath and c, is the saturation 

concentration. For a transport controlled, one-dimensional reaction 
the solution of (6) can be given as: 

Ct =cJI-exp(-j-et)] 

The term D/6 can be substituted by a solution rate constant k. The 

thickness of the boundary !ayer 6 and therefore the constant k 
depends on the flow conditions. 

Using a laboratory test with a cylindrical specimen rotating in a 
liquid metal bath (Figure 2) it was possible to investigate the 
kinetics of the dissolution of superalloys in liquid metals at 
various temperatures. Some results for the system SC16-Sn at 
1000°C are presented in Figure 10. It is obvious that for a 
rotational speed of 80 rpm (Reynolds number Re = n d2/v = 620) 
corresponding to a laminar fluid flow there is only little difference 
to the static case, while a rotational speed of 300 rpm (Re = 2325) 
corresponding to a turbulent flow leads to a very fast dissolution. 
Higher rotating speeds lead to higher degrees of convection and 
therefore smaller boundary layers. The evident influence of the 
flow conditions in the bath is an indication for transport within the 
fluid to be limiting, rather than diffusion in the solid. 
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Figure 10: Plot of ln(l-c/c,) as a function of (AN) t for 
dissolution of superalloy SC16 in liquid tin, see 
equation (7) in the text. The slope of the curve is 
equivalent to the solution rate constant k. Stirring 
obviously speeds up the dissolution of the 
superalloy, thus confirming that transport in the 
bath is rate controlling. 
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Experiments at different temperatures and equal flow conditions Conclusions 

allow to determine the activation energy AH using the formula: 

k=k, e-% (8) 

Figure 11 shows an Arrhenius-plot for the dissolution of SC16 in 

liquid tin. The activation energy is determined to be 56 kJ/mol. 

This rather low value is another indication that transport in the 

liquid is rate controlling. It is similar to other values found in the 

literature for dissolution of metals in liquids, where diffusion in 

the liquid controls the reaction rate. Processes like dissolution of 

silver in mercury (AH = 59.4 kJ/mol) [16] or of chromium in iron 

(AH = 44.8 k.I/mol) [ 171 are examples. 

With respect to the dissolution of a superalloy, tin and aluminium 

will be compared below at their respective process temperatures. 

Figure 12 shows that an aluminium melt at 700°C (40 K above 

aluminium melting point) leads to considerable damage after only 

15 minutes. For tin at 300°C (68 K above its melting point) no 

reaction is observed at all even after 300 minutes direct contact. 
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Figure 11: Arrhenius-plot for the solution rate constant k for 

SC16 in liquid tin. Specimens were rotated with 

300 rpm. The activation energy was determined to 

be 56 kJ/mol which is typical for diffusion in the 

liquid metal to be rate limiting. 

The Liquid Metal Cooling (LMC) process has several advantages 

in comparison with the conventional Bridgman-technique (high 

rate solidification, HRS). The rapid and uniform heat transfer 

allows higher withdrawal rates and larger clusters. At the same 

time a liner and more homogeneous microstructure is obtained. 

An important factor for commercializing the process is the choice 

of the cooling medium. The discussion of the physical properties 

focusses on the two cooling media aluminium and tin. A heat 

balance shows the improved potential with both cooling media in 

comparison with the HRS-process. The maximum heat flux for 

tin was calculated to be significantly higher than for aluminium. 

Measurements of the creep strength and low cycle fatigue strength 

for SC16 and PWA 1483 showed that intentional doping of the 

alloys with up to 4150 ppm tin has no significant influence on the 

mechanical properties. 

Direct contact between the cast component and the cooling 

medium was examined. Diffusion in the fluid was found to be the 

limiting mechanism for a dissolution of the superalloy in the 

liquid metal. Tin and aluminium were compared at typical process 

temperatures. No reaction is observed for tin (300°C) after 

300 min while aluminium (700°C) causes significant dissolution 

of the superalloy after 15 min. 

Figure 12: Comparison of dissolution of PWA 1483 in liquid 

aluminium or tin at typical process temperatures. 

No superalloy dissolution is apparent with tin, 

whereas significant dissolution occurs with 

aluminium. 
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