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Abstract 
 
Conversion of highly-alloyed γ’-hardened disk alloys such as 
UDIMET alloy 720 from cast ingot into billet requires a detailed 
knowledge of the hot working process window. Hot workability 
of billet stock was assessed by Gleeble tension testing.  The 
effects of test temperature and, in particular, cooling rate from the 
prior annealing temperature to the test temperature on hot ductility 
were systematically studied.  High cooling rates on the order of 30 
oC / s as realized in the Gleeble tester resulted in a dramatic drop 
in hot ductility.  Much slower cooling rates, representative of 
industrial conversion operations, resulted in acceptable ductility of 
greater than 60 %.  Microstructures of the as-supplied billet stock 
and in the various tested conditions were characterized.  The 
measured significant differences in hot ductility are rationalized 
by the dominant deformation mechanisms observed 
microscopically. 
 
 

Introduction 
 
UDIMET alloy 720, a γ’–hardenable Ni-base superalloy, is known 
to be one of the highest alloyed disk materials that can be 
processed along the traditional cast & wrought route [1].  Thermo-
mechanical conversion of the cast ingot to billet stock is often 
accomplished by press forging at temperatures approximately 50 
oC below the γ’–solvus temperature (roughly 1160 oC).  Owing to 
the rapid age hardening propensity of this alloy upon cooling 
while being processed, loss of ductility is a major concern 
potentially impacting quality and yield. 
 
Hot ductility of billet stock is traditionally assessed by various 
types of Gleeble hot deformation testing schemes that reflect the 
relatively high strain rates encountered in industrial conversion 
operations.  In the present study, simple Gleeble tension testing 
was executed.  To closely simulate conversion processes, the 
specimens were heated to a nominal forging temperature, 
stabilized, and then cooled within a wide range of rates to the 
actual test temperature. Reduction in area was utilized as a 
measure of hot ductility. These tests were complemented by 
detailed analyses of the respective microstructures. 
 
 

Experiment 
 

Material was made available from 0.15 m diameter billet.  The 
actual chemical composition of this billet stock is listed in Table I.  
Two alloying elements (Cr and Ti) are slightly outside the 
specification limits for UDIMET alloy 720.  This resulted in a γ’ –
solvus temperature elevated by roughly 10 oC over regular 
production material. Nonetheless, it is believed that the results and 

conclusions of this study are generally applicable to highly 
alloyed γ’–hardened disk materials. 
 
 

Table I.  Chemical composition (in wt.%)  
       of the studied billet material. 

 
C Cr Mo W Al Ti Co Ni 

0.013 14.8 3.1 1.3 2.7 5.5 14.2 bal. 
 

   
Uniformity of the microstructure across the billet diameter was 
adequate to allow for machining of a significant number of 
Gleeble specimens without regard to location.   All specimens 
featured an axial orientation.  Specimens were mounted in a 
Gleeble tester, rapidly annealed to a temperature of 1110 oC, and 
held for 5 min.  Cooling rates to the actual test temperature varied 
between 0.03 and 30 oC / s.  The upper bound reflects cooling 
rates typically encountered in Gleeble tests whereas the lower 
bound approximates cooling rates experienced by the billet center 
upon a standard air cool [2].   
 
Once stabilized (1 min) at the test temperature, specimens were 
pulled rapidly at approximately 0.02 m / s translating into strain 
rates on the order of 1 / s.  Peak loads were used to compute 
tensile strength, and reduction of area was employed as a measure 
of hot ductility. 
 
Microstructures of the material in the as-supplied as well as in the 
various tested conditions were characterized by optical 
microscopy, SEM, and TEM.  Seven-acids etch (300 ml 
hydrochloric acid, 60 ml nitric acid, 60 ml phosphoric acid, 30 ml 
hydrofluoric acid, 30 ml sulfuric acid, 30 grams anhydrous iron 
chloride, 60 ml acetic acid, 300 ml water) was employed to reveal 
the γ’ precipitates.  In order to gain insight into the operative 
deformation mechanisms during testing, TEM specimens were 
prepared from near the fracture surfaces.  Discs 0.12 mm in 
thickness and 3 mm in diameter were cut, mechanically polished, 
and then subjected to twin-jet electron polishing in a solution of 
340 ml methanol, 50 ml perchloric acid, 65 ml butyl cellusolve 
and 45 ml distilled water. The polishing was conducted at – 40 oC 
and a voltage of 18~22 V.  
 
 

Results and Discussion 
 

Fig. 1 shows reduction of area (RA) as a function of test 
temperature for standard Gleeble testing conditions, i.e., cooling 
rates of approximately 30 oC / s.   The two curves represent the 
test results obtained with two sets of specimens and demonstrate 
the reproducibility of the results.  The dramatic drop in hot 
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ductility at around 1040 oC is apparent.  Values of less than 20 % 
in RA are generally considered unacceptable for hot forming 
operations.  Recalling that billet surface temperatures could 
readily drop below this mark during a forge session, major surface 
cracking could be anticipated.  This projection contradicts forge 
shop experience with this alloy.  
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                Figure 1.  Reduction of area as a function of 
                                test temperature of two  
                                sets of specimens.  Standard  
                                Gleeble testing conditions. 
 
 
Another set of specimens was subsequently tested employing a 
cooling rate of only 0.03 oC / s to the test temperature.  The results 
are plotted in Figure 2 and contrasted to the outcome of the first 
test condition employing a cooling rate of 30 oC / s.   
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             Figure 2.  Reduction of area as a function of  
                             test temperature for two different 
                             cooling rates of 30 oC / s and  
                             0.03 oC / s.  
 
 
Evidently, the drop in hot ductility is no longer present.  Ductility 
over a wide temperature range is quite acceptable, actually 
suggesting a generous hot working window. 

To further explore cooling rate effects, another set of specimens 
was cooled at varying rates to 1010 oC, and pulled.  Figure 3 
depicts the measured RA values as a function of cooling rate.  
Superimposed on this graph is the range of cooling rates from 
center to surface modeled for air cooling of an intermediate size, 
0.38 m diameter billet [2].  Apparently, even the billet surface can 
be expected to exhibit sufficient hot ductility.   
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        Figure 3.  Reduction of area as a function of cooling rate 
                         to a test temperature of 1010 oC.  Superimposed 
                         is the modeled range of cooling rates of air- 
                         cooled 0.38 m diameter billet. 
 
 
Hence, from a conversion point of view, hot cracking should be a 
rare event.  However, above reasoning does not account for the 
fact that the grain structure of the tested material (fully wrought) 
is certainly not representative of the grain structure during initial 
ingot break-down.  It is speculated that the initially coarse, 
oriented grain structure in the cast ingot may be much more 
important in terms of cracking propensity than any lack of 
traditional Gleeble hot ductility measured on fully wrought, fine-
grained material.  This notion is supported by shop floor 
observations in that the workability of UDIMET alloy 720 billet 
generally improves throughout the conversion process [3]. 
 
In order to gain insight into the different hot ductility behaviors, 
microstructures of material in the initial and selected tested 
conditions were examined.  Specifically, samples from the 
standard test runs at 30 oC / s (subsequently referred to as “fast 
cooling” condition) and 0.03 oC / s (referred to as “slow cooling” 
condition) were chosen for detailed analyses.  Test temperature 
was 1010 oC in either case. 
 
Figure 4 depicts the typical as–supplied microstructure featuring 
coarse, blocky primary γ’ precipitates of several microns in size.  
The grain size was read to ASTM 8 or finer.  Higher 
magnification images (Figure 5) revealed the presence of 150 nm-
size fine spherical secondary γ’ that must have formed during 
cooling from the hot working temperature.  It can be expected that 
this fine cooling γ’ would dissolve upon heating to the 1110 oC 
annealing temperature in the Gleeble tester. 
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              Figure 4.  SEM micrograph of the as-supplied 
                               billet microstructure featuring coarse, 
                               blocky primary γ’.  
 
 

 
 
                  Figure 5.  SEM micrograph of the  
                                   as-supplied billet microstructure  
                                   revealing fine cooling γ’. 
 
 
A SEM micrograph representative of the “fast cooling” condition 
is shown in Figure 6.  Notice the presence of the similarly coarse 
blocky γ’ as observed in the as-supplied condition (Figure 4).  
Evidently, the 1110 oC annealing temperature in the Gleeble tester 
was well below the γ’-solvus temperature of the material as 
intended. 
 
A higher resolution TEM micrograph (Figure 7) revealed copious 
amounts of fine, approximately 40 nm-size secondary γ’ that 
precipitated during controlled cooling from the 1110 oC annealing 
temperature to the 1010 oC test temperature. 

 
 
                     Figure 6.  SEM micrograph of the gage section 
                                     of a Gleeble specimen in the “fast 
                                     cooling” condition. 
 
 

 

 
 
               Figure 7.  TEM dark field image of “fast cooling” 
                                specimens featuring copious amounts 
                                of secondary γ’ precipitates in γ matrix     
                                (B=001, g=100). 
 
 
In order to examine the deformation mechanisms operative during 
Gleeble tests, TEM foils were prepared from near the fracture 
surface.  A bright field image (Figure 8a) exhibits a high density 
of planar faults with a couple of 100 nm in spacing. These faults 
are continuous across entire grains. The diffraction pattern taken 
from the [011] direction shows weak reflection spots that have a 
twin relationship with the matrix as indicated with circles. A 
higher magnification micrograph (Figure 8b) shows thin twin 
plates 10-30 nm thick. The twin interfaces are indicated with 
arrowheads, and they are (111) planes. The twin plates seem to 
penetrate γ’ precipitates. Other deformation activities, such as 
dislocation gliding, are rarely observed in this specimen. These 
features are similar to "microtwins" observed in polycrystalline 
Ni-base superalloys with fine γ’ precipitates during creep 
deformation at low temperature and high stress condition [4]. 
Therefore, microtwinning is surmised to be the dominant 
deformation mechanisms in the "fast cooling" condition.  
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            Figure 8.  TEM bright field images of the region 
                            near fracture surface of Gleeble specimens               
                            in the “fast cooling” condition, showing 
                            microtwins (B=011). 
 
 
 
A SEM micrograph representative of the “slow cooling” condition 
is shown in Figure 9.  In addition to the retained primary coarse 
γ’, secondary γ’ of dendritic morphology is evident.  Such 
morphologies are likely growth morphologies as reported in a 
number of γ’-hardened alloys.  They typically result from slow 
cooling (on the order of 1 oC / min) through the γ’ precipitation 
range [5].  In the present study, they are surmised to have formed 
during slow cooling from the 1110 oC annealing temperature to 
the 1010 oC test temperature. Precipitate-free zones around the 
primary γ’ precipitates are also apparent, indicative of the 
exhausted hardener levels in the vicinity of these larger particles. 
 

 
 
               Figure 9.  SEM micrograph of the gage section 
                                of Gleeble specimens in the “slow 
                                cooling” condition. 
 
 

 
 
             Figure 10.  TEM bright field images of the region 
                                near fracture surface of Gleeble specimens               

                        in the “slow cooling” condition (B=001). 
 
 

Figure 10(a) shows a TEM bright field image taken from near 
fracture surface of the specimen in "slow cooling" condition. 
Large γ’ precipitates with a size larger than 200 nm are present in 
the γ matrix. Different from the "fast cooling" condition, 
microtwins were absent. Instead, dislocations gliding in the matrix 
phase were observed (Figure 10(b)). They were identified as 
1/2<110> type dislocations via g·B analysis. Therefore, normal 
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dislocation gliding appears to be the dominant deformation 
mechanism in the "slow cooling" condition.  
 
Based on the examinations of the various microstructures, the 
Gleeble results can be rationalized.  Upon cooling from the 1110 
oC annealing temperature to the actual test temperature, a 
significant supersaturation of the γ-matrix in the γ’-forming  
elements Al and Ti will build up (Figure 11).   
 

 
 
           Figure 11.  JMatPro predictions [6] of the  
                             temperature-dependent γ’ 
                             volume fraction in the studied 
                             billet material. 
 
 
 
Then, the cooling rate dictates the interplay between nucleation of 
secondary γ’ and its growth – high cooling rates favor nucleation, 
hence, large amounts of very fine secondary γ’ precipitates are 
formed.  Their size and tight spacing greatly impede dislocation 
motion during the actual Gleeble test. In γ+γ’ alloys, mode of γ’ 
shearing depends on the size of precipitates. Generally, when 
precipitates are small (less than 100 nm), the precipitates are 
sheared by 1/6<112> partial dislocations, rather than 1/2<110> 
dislocations, and microtwins [4] or stacking faults [7] are 
observed. This is thought to be the case of the "fast cooling" 
condition.  Interestingly, it apparently takes a significant amount 
of supersaturation (or undercooling) in solute for this mechanism 
to become operative since the ductility deficit did not materialize 
for small amounts of undercooling (see Figure 1). 
 
 In the “slow cooling” case, precipitate growth (either of pre-
existing, retained primary γ’ or newly created secondary γ’ nuclei) 
dominates.   Hence, nucleation number densities are low and 
precipitate spacing is significantly greater.  Such microstructures 
enable the classical (111)<110> slip systems in the γ matrix, and 
result in much improved ductility.   
 
The ramifications of the different microstructures for specimen 
mechanical behavior are also reflected in their tensile strengths – 
fine secondary γ’ resulted in significantly higher strength levels 
than coarser dendritic secondary γ’ (Figure 12).   
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                   Figure 12.  Gleeble tensile strengths as a  
                                     function of test temperature for  
                                     “fast cooling” and “slow cooling” 
                                      testing regimes. 
 
 
Above reasoning should be generally applicable to highly alloyed 
Ni-base superalloys that exhibit a sufficient variation in γ’ volume 
fraction within the hot working window.  Indeed, quite similar 
debits in hot ductility were reported for UDIMET alloy 700 in the 
“fast cooling” condition [8]. 
 
 
 

Summary and Conclusions 
 

Hot workability of highly-alloyed γ’-hardened billet stock of 
UDIMET alloy 720 type was assessed by Gleeble testing.  
Gleeble hot ductility was found to be sensitive to cooling rate 
from the prior annealing temperature.  High cooling rates on the 
order of 30 oC / s resulted in poor ductility of less than 20 %.  
Lower cooling rates of 3 oC / s or less resulted in ductility 
exceeding 60 %. 
 
The observed differences in hot ductility could be rationalized by 
the precipitation kinetics of γ’ during cooling from the prior 
annealing temperature to the actual test temperature.  High 
cooling rates caused very fine, 40 nm-size secondary γ’ which 
triggered micro-twinning in the course of Gleeble testing. In 
contrast, slow cooling yielded much coarser (even dendritic) 
secondary γ’ that enabled the classical (111)<110> slip.  
 
As for industrial conversion operations, it seems that even surface 
chill rates would ordinarily fall into the slow cooling regime.  
Hence, lack of workability is likely be caused by factors other 
than γ’ precipitation kinetics.   
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