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Abstract 
 
The fatigue-crack-growth (FCG) experiments were performed on 
the nickel-base HAYNES R-41, HAYNES 230 and HASTELLOY 
X superalloys at temperatures ranging from 760°C to 927°C. The 
crack length was measured using a direct current potential drop 
technique. A triangular waveform of 0.333 Hz and a load ratio of 
0.05 were employed under a constant-load-range control mode in 
the FCG tests. The various tensile hold times were imposed at the 
maximum load in the FCG tests to investigate fatigue and creep-
fatigue interactions. It was found that the introduction of hold 
time and the increase of temperature led to a considerable increase 
in the cyclic-crack-growth rate. The fracture surfaces were 
investigated to determine the crack propagation mode using 
scanning electron microscope. Furthermore, the crack-growth 
rates of three superalloys were compared.    
 

Introduction 
 
Nickel-base superalloys are widely used for many high-
temperature components in gas-turbine engines, power, chemical 
process, and industrial heating industries. They include both 
precipitation-strengthened alloys and solid-solution-strengthened 
alloys. The HAYNES R-41 alloy is a 58Ni-19Cr-11Co-10Mo (in 
weight percent) [1] precipitation-strengthened alloy that combines 
excellent high-temperature strength and good oxidation resistance. 
It has reasonable fabricability, although limited formability and 
issues such as strain-age cracking during post-weld heat 
treatments have often limited the application of the alloy in 
service. It is used in afterburner parts and nozzle diaphragm 
partitions in current gas-turbine engines. The HAYNES 230 
(57Ni-22Cr-14W, in weight percent) [2] and HASTELLOY X 
(47Ni-22Cr-18Fe-9Mo, in weight percent) [3] are solid-solution-
strengthened nickel-based superalloys. 230 alloy combines 
excellent high-temperature strength and oxidation resistance with 
a superior long term stability and good fabricability. X alloy 
possesses exceptional oxidation resistance, good fabricability, and 
excellent high-temperature strength. Both alloys are widely used 
in gas-turbine engines for combustion zone components.  
 
One of the critical loading forms that lead to failures of these 
components is creep-fatigue, i.e., the combination of the time-
dependent creep and cycle-dependent fatigue. Therefore, it is 
essential to investigate the fatigue-crack-propagation behavior 
with and without hold times for designing high-temperature 
components safely and finding the potential usages of alloys. In 
this study, crack-growth experiments with a tensile hold time at 
the maximum load were performed to study effects of the hold 

time and test temperature on the crack-growth rates of the 
HAYNES R-41, HAYNES 230 and HASTELLOY X alloys. The 
fracture modes were determined with observation of scanning 
electron microscope. Moreover, the crack-growth rates of three 
superalloys were compared as a function of stress-intensity factor 
range (ΔK).    
 

Experimental details 
 

The compact-tension (CT) geometry chosen for the crack-growth 
tests is shown in Fig. 1. The thickness of the specimen was 3.2 
mm. The height and width were 61.0 mm and 63.5 mm, 
respectively. The specimens were prepared according to the 
American Society for Testing and Materials (ASTM) Standards 
E647-99 [4].   
 
 
 
 
 

                  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1   The geometry of a compact-tension specimen (Unit: mm). 

 
The crack-growth tests for R-41 alloy were conducted using a 
computer-controlled Material Test System (MTS) servohydraulic-
testing machine. A resistance-type furnace was used to heat the 
specimen. The crack-growth tests for 230 and X alloys were 
conducted using an Instron servo-controlled, hydraulically-
actuated, and closed-loop test machine. A high-frequency 
induction generator was used to heat the specimen. The 
fluctuation of the test temperature for three alloys was maintained 
within a range of ± 2oC. Prior to the crack-growth testing, CT 
specimens were precracked to approximately 1.27 mm at room 
temperature. A direct-current-potential-drop (DCPD) technique 
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was used to continuously monitor the crack length. The crack 
length is related to the electric potential by Johnson’s equation [5].  
 
 
 
                                                                                                      (1)  
 
 
where Vo and ao are the initial crack-mouth potential and crack 
length, respectively, Vm and a are the instantaneous crack-mouth 
potential and crack length, respectively, y is half of the distance 
between the two points for which the crack-mouth potential is 
measured, and W is the specimen width. The stress-intensity 
factor, K, was obtained [6,7],                                                                                                       
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where P = applied load, B = thickness, W = specimen width, and a 
= crack size for a CT specimen, and ΔK = Kmax.-Kmin. (Kmax. and 
Kmin. are the maximum and minimum stress-intensity factors, 
respectively).  
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All crack-growth experiments were conducted under a constant-
load-range control mode in laboratory air and at temperatures 
from 760oC to 927oC. A triangular waveform of 0.333 Hz and a 
load ratio of 0.05 were used in the fatigue crack-growth (FCG) 
tests. The creep-fatigue crack-growth (CFCG) tests were 
performed by superimposing the different hold time on the 
triangular waveform employed in the FCG tests at the maximum 
load.  
  

Results and discussion 
 

The cyclic-crack-growth rates, da/dN, for the R-41 alloy are 
presented as a function of the stress-intensity-factor range, ΔK, in 
Fig. 2.    
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Fig. 2   Effects of the test temperature for the FCG tests (a) 
without hold time; (b) with 2 min.-hold time. 
 
Figure 2(a) shows the effects of the test temperature for the FCG 
tests without hold times. As ΔK increases, the cyclic-crack-growth 
rate increased for all temperatures. The increase of the 
temperature from 760°C to 816°C resulted in a slight increase of 
the crack-growth rate in the ΔK investigated. When the test 
temperature increases from 816°C to 871°C, it was found that the 
crack-growth rate at 871°C was lower than that at 816°C below a 
ΔK of 30 MPa m , and it was comparable in a ΔK from 30 
MPa m to 37 MPa m . However the crack-growth rate at 871°C 
was greater than that at 816°C above a ΔK of 37 MPa m . It can 
be noted that the fatigue crack resistance at 871°C is the highest in 
the low ΔK region. The crack-growth rates of the FCG tests with a 
2 min.-hold time at 816°C and 871°C are indicated in Fig. 2(b). 
As the temperature increases from 816°C and 871°C, the cyclic-
crack-growth rates increased in all ΔK examined. For example, 
with a ΔK of 30 MPa m , the cyclic-crack-growth rate at 871°C 
was about fifteen times greater than that at 816°C. Furthermore, 
the difference of the crack-growth rates at 816°C and 871°C 
increased with increasing ΔK.   
 
Figure 3 shows the cyclic-crack-growth rates versus stress-
intensity-factor range for 230 and X alloys at 816°C and 927°C. 
The effects of temperature for FCG tests without hold times are 
presented in Fig. 3(a). The increase of temperature for 230 alloy 
resulted in higher crack-growth rate in all ΔK. The crack growth 
rate of X alloy at 816°C was comparable to that at 927°C below a 
ΔK of 25 MPa m , while the crack-growth rate at 927°C was 
greater than that at 816°C above a ΔK of 25 MPa m . It is noted 
that the crack-growth rate of X alloy was higher than that of 230 
alloy at both temperatures. Figure 3(b) shows the effects of 
temperature for FCG tests with 2 min.-hold time. The crack-
growth rates in all ΔK increased significantly with increasing the 
test temperature. For instance, with a ΔK of 30 MPa m , the 
cyclic-crack-growth rates at 927°C for 230 and X alloys were 
about fifty and thirty times greater than those at 816°C, 
respectively. Moreover, it was revealed that the crack-growth 
rates of X alloy for 2 min.-hold test are larger than those of 230 
alloy in all ΔK regions.  20 30 40 50 60

10-4

10-3

10-2

da
/d

N
 (m

m
/c

yc
le

)

ΔK (MPa.m1/2)

 

 

HAYNES R-41
   zero hold

  760 oC
  816 oC
  871 oC

(a)

=
V
V

o

o

m

/cos
/coshcosh

/cos
/coshcosh

1

1

π
π
π
π

510



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3   Effects of the test temperature for the FCG tests (a)                   
without hold time; (b) with 2 min.-hold time for 230 and X alloys. 
 
The effects of the 2 min.-hold time for R-41 alloy at 816°C and 
871°C are shown in Fig. 4(a). The introduction of a 2 min.-hold 
time at the maximum load significantly increased the crack-
growth rate at both temperatures. The 2 min.-hold time test at 
871°C resulted in much greater cyclic-crack-growth rate changes, 
as compared to that at 816°C. For instance, the cyclic-crack-
growth rate of the 2 min.-hold test at 816°C was about three times 
greater than that of the zero-hold test at a ΔK of 30 MPa m , 
while the cyclic-crack-growth rate of the 2 min.-hold test at 871°C 
was about forty times higher than that of the zero-hold test. 
Moreover, the differences between the continuous and hold-time 
crack-growth rates increased with increasing ΔK. Figure 4(b) 
shows the influence of the 2 min.-hold time on the crack-growth 
rate of 230 alloy. When a 2 min.-hold time was imposed, the 
crack-growth rates tremendously increased at both temperatures. 
The difference of crack-growth rate between the zero and 2 min.-
hold time tests increased gradually with increasing ΔK. Figure 
4(c) shows the changes of crack growth rate of X alloy with 
introduction of hold times at 816°C and 927°C. As the hold time 
increases, the crack-growth rate significantly increased at both 
temperatures. Especially, when a 60 min.-hold time was 
introduced at 816°C, the cyclic-crack-growth rate at a ΔK of 30 

MPa m was about three hundred times greater than that of the 
zero-hold test.   
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Fig. 4   The cyclic-crack growth rate as a function of ΔK for (a) R-
41; (b) 230; (c) X alloys. 
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The fracture surfaces of 230 alloy after FCG tests were examined 
to evaluate the crack propagation mode using scanning electron 
microscope. Figure 5(a) presents that the crack propagated in a 
transgranular fracture mode showing well-defined fatigue striation 
for FCG test without hold time at 816°C. The secondary crack 
was often examined, suggesting that the grain boundary cavity 
would be developed by creep deformation although alloy is 
subjected to only fatigue loading. On the other hand, 2 min.-hold 
time resulted in a dominant intergranular fracture mode, as shown 
in Fig. 5(b). The fatigue striation is hardly observed. As 
temperature increases from 816°C to 927°C, the fracture mode 
was changed from transgranular to dominant intergranular (Fig. 
5(c)). For test with 2 min.-hold time at 927°C (Fig. 5(d)), a 
complete intergranular fracture appearance was observed. 
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Fig. 5   SEM micrograph of the fracture surface at a ΔK of 35 
MPa m  for HAYNES 230 alloy: (a) 816°C, without hold time; 
(b) 816°C, 2 min.-hold time; (c) 927°C, without hold time; (d) 
927°C, 2 min.-hold time.   

  
Figure 6(a) shows the fracture surface of X alloy for test without 
hold time at 816°C and ΔK=23.5 MPa m . A typical 
transgranular mode was examined indicating that crack 
propagated through the grain. When a 2 min.-hold time is imposed, 
the fracture mode is changed from transgranular to complete 
intergranular, as shown in Fig. 6(b). Figures 6(c) and 6(d) show an 
intergranular fracture feature for test with 60 min.-hold time, 
indicating that crack propagated along the grain boundary due to 
creep deformation. It is obvious that the time-dependent creep 
developed by the tensile hold time resulted in the intergranular 
cracking path. Figure 6(e) shows the dominant intergranular 
feature for the test without hold time at 927°C. It is noted that the 
increase of temperature resulted in the change of fracture mode 
and higher crack-growth rate (Fig. 3(a)). When 2 min.-hold time 
is introduced (Fig. 6(f)), the fracture mode was completely 
intergranular.  

 20 μm 

(b) 

 
Based on analyses of fractography, as the temperature and hold 
time increase, it should be pointed out that the fracture mode 
changes from transgranular to intergranular feature. Intergranular 
fracture is caused by the time-dependent creep deformation.  
Higher temperature and longer hold time facilitate for the creep 
deformation accompanying the grain boundary cavitation. 
Consequently, it resulted in an intergranular fracture. From the 
previous crack growth studies with various hold times, it was 
found that the intergranular cracking path corresponds to the time-
dependent cracking range and resulted in higher crack growth rate 
[8,9]. As a result, the increase of temperature and hold time would 
lead to higher crack growth rate developing an intergranular 
fracture due to creep deformation.   
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 100 μm (c) Fig. 6   SEM micrograph of the fracture surface for HASTELLOY 
X alloy: (a) 816°C, without hold time, ΔK=23.5 MPa m ; (b) 
816°C, 2 min.-hold time, ΔK=23.5 MPa m ; (c) 816°C, 60 min.-
hold time, ΔK=23.5 MPa m ; (d) higher magnification view of 
the rectangular area in (c);  (e) 927°C, without hold time, ΔK=30 
MPa m ; (f) 927°C, 2 min.-hold time; ΔK=30 MPa m .   
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Fig. 7   Comparison of the cyclic-crack growth rates among the 
three alloys at 816°C. 
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The crack-growth rates of three nickel-based alloys were 
compared, as shown in Fig. 7. For the FCG tests without hold 

The fatigue-crack-growth  with and without hold 
times were conducted at temp atures ranging from 760°C to 
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time at 816°C, the crack-growth rate of the X alloy was the 
highest among three alloys, and the R-41 and 230 alloys were 
very comparable. In the low ΔK region, the crack-growth rate of 
the 230 alloy is lower than that of the R-41 alloy, while the fatigue 
crack resistance of the R-41 alloy is greater than that of the 230 
alloy in higher ΔK region. When a 2 min.-hold time was 
introduced, the creep-fatigue resistance of the R-41 alloy was the 
most superior, followed by the 230 alloy, and then the X alloy. It 
is thought that the different crack-growth rates of three alloys 
would be caused by distinct creep-resistance of materials. In 
further work, the examination of fracture mode of R-41 alloy with 
and without hold times will be performed and its influence of 
crack-growth rates will be compared with other two alloys. 

 
Summary 

 
experiments

er
927°C. The increase of the temperature and the introduction of 
hold times resulted in the change of fracture mode from 
transgranular to intergranular and a substantial increase in the 
crack-growth rates. The difference of the crack-growth rates 
increased with increasing ΔK. Furthermore, the crack-growth 
rates of three superalloys were compared. The creep-fatigue 
resistance with the introduction of 2 min.-hold time of the 
HAYNES R-41 alloy was the best, followed by the HAYNES 230 
alloy, and then the HASTELLOY X alloy.   
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