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Abstract

The precipitation and strengthening behavior has been studied in a
newly developed high molybdenum Ni-base superalloy,
HASTELLOY® C-22HS® alloy, for long time exposures of
1000hrs at 600, 625 and 650°C. The homogeneous precipitation of
the long range ordered (LRO) phase Niy(Mo,Cr) with an average
size on the order of 10nm after a specially designed heat treatment
contributes an excellent strengthening effect for this new
superalloy. The grain boundary precipitation of high molybdenum
containing phases such as M¢C and p phase has been studied via
isothermal exposures in a wide temperature range of 600-1050°C.
The T-T-T curve of grain boundary phase precipitation has been
also determined. This newly developed Ni-base superalloy with
excellent corrosion resistance and high strength can be used in the
intermediate temperature range below 650°C.

Introduction

Almost all of the Ni-base superalloys are strengthened by NizM-
type v' and y” phases such as Niz(Al Ti) and Niz(Nb,Ti,Al). In
some applications the alloy is required to possess both high
temperature strength and high corrosion resistance. For this
purpose a new high molybdenum Ni-base superalloy designated
as HASTELLOY C-22HS alloy has been recently developed by
Haynes International, Inc™. This new alloy, Ni-21Cr-17Mo, is
actually on the base of the ternary Ni-Cr-Mo system'. From the
search of experimentally determined Ni-Cr-Mo system phase
diagrams, high molybdenum containing phases can be formed
such as p and P phases, but many others are still subjected to
debate (with question marks in the phase diagrams) such as
?CFMO4Ni5, ?Cr4M03Ni3, ?Cr5M07Nig[3] and ? CrgMOSNi6[4].
Recent calculated isothermal sections of the Ni-Cr-Mo phase
diagram at 500, 620 and 700°C show the existence of P phase and
OP6 phase[s], OP6 stands for Pt;Mo type phase (such as Ni;Mo
and Ni,Cr or Niy(Cr,Mo)). The high chromium and high
molybdenum carbides Mp;Cs and MgC can be also formed
respectively because of the existence of carbon in C-22HS alloy.

For understanding the strengthening behavior of this new alloy,
the precipitation behavior and microstructural stability have been
studied in the temperature range of 600-650°C for 1000 h for the
purpose of intermediate temperature applications. Grain boundary
precipitation behavior is important to understand for engineering
applications. Isothermal exposures have been conducted in a wide
temperature range of 600-1050 °C for determination of T-T-T
diagram of grain-boundary precipitation.

Experimental Procedure

Nominal chemical composition of HASTELLOY C-22HS® is

HASTELLOY, C-22HS, and C-22 are registered
trademarks of Haynes International, Inc.

shown in Table I. Investigated samples for this paper were taken
from ®19mm hot rolled and annealed bar. The specially designed
heat treatment is 1080°C mill annealing followed by water
quenching + 705°C/16h furnace cooling to 605°C/32h/AC.

Table I. Nominal chemical composition of C-22HS alloy (wt%)

C Si Mn Cr Mo Ni \\ Fe B

0.01* | 0.08* | 0.8% | 21 17 | Bal | I* 2% 1 0.006

* Maximum content.

For detailed understanding of the precipitation strengthening
behavior, a study on long time aging of this new alloy after heat
treatment has been conducted as shown in Table I1.

Table II Heat treatment and thermal exposure
of investigated C-22HS alloy

Heat
treatment | 1080°C/Annealed/WC+705°C/16h/FC+605°C/32h/AC
(HT)
HT+600°C/10h, 100h, 500h, 1000h/AC
Thermal
eXDOSUTE HT+625°C/10h, 100h, 500h, 1000h/AC
P HT+650°C/10h, 100h, 500h, 1000h/AC

Isothermal exposures have been conducted after super-solvus
solution treatment at 1120°C in a wide temperature range of 600
to 1050°C for determination of grain boundary precipitation
behavior in C-22HS alloy (see Table III).

Table III. Isothermal aging conditions
after super-solvus temperature of 1120°C/1h for C-22HS alloy

Time/h
0.1 1017 | 025 | 033 | 0.67 |22 |32 |9
Temp/®

1050

1000

950

900

850

E Pl P P P

P P P PN P P

800

750 N

700 N

650

<]
2]l j2l2l2l2 |2 2] <]
< |22 <] 2|

600

Phase idenfication and structure analyses have been conducted by
means of SEM with EDX, TEM with SAD and EDX. Precipitated
phases were also electrolytically extracted and examined by XRD
for phase identification and in some cases quantitatively analysed.
Mechanical properties of tensile and impact tests were conducted
for understanding strengthening effect only.




Results and Discussion

Mechanical Properties

The yield strengths of C-22HS alloy at ambient and high
temperature (595°C) in comparison with C-22 alloy are shown in

Figure 1.

It can be seen that the yield strengths of C-22HS alloy at both
room temperature and 595°C are approximately doubled after
aging in comparison with the mill annealed condition (MA).
However, C-22HS alloy still possesses very good ductility in the
as-heat treated condition. For example, the reduction in area for
tensile test at room temperature can almost reach 50%. This is a
unique strengthening effect developed in a high molybdenum
containing (17%Mo) C-22HS alloy in comparison with C-22 alloy
(13%Mo) at almost same level of chromium content (21%Cr)).

Comparative Yield Strengths
Mill Annealed (MA) vs. Age-Hardened (MA+HT)
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Figure 1. Comparative yield strengths of C-22 and C-22HS

Phase Calculation

The phase diagram based on the nominal chemical composition of
C-22HS alloy has been calculated by Thermo-Calc software!® as
shown in Figure 2. It can be seen that only 2 carbides, M,;Cy and
MeC, and 2 high molybdenum containing intermetallic

compounds, (Ni,Cr);Mog type p phase and NigyCrigMoy, type P
phase, can be formed in the FCC Ni-Cr-Mo y-matrix. However,
Mj;Cs and MyC carbides often precipitate at grain-boundaries in
Ni-base superalloys. Intermetallic compounds p and P are
normally considered as deleterious phases in Ni-base alloys. The
strengthening phase in C-22HS alloy must be some kind of finely
dispersed distributed phase in the y-matrix. It will be confirmed as
Niy(Mo,Cr), a long range order phase in this paper. The stability
of the Niy(Mo,Cr) strengthening phase after extended long time
thermal exposure is the key issue for C-22HS alloy to be used at
high temperatures. The purpose of following study is to observe
the strengthening phase and to study its precipitation and
coarsening behavior at high temperature exposures.
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Figure 2. Calculated phase diagram of C-22HS

Structure in the as-HT Condition

Figure 3 shows an SEM micrograph of C-22HS alloy in the as
heat-treated (HT) condition. Different size particles are present
not only at grain-boundaries, but also randomly distributed in the
grains. These undissolved particles after 1080°C MA condition
have been electrolytically extracted and identified via XRD as p
and M¢C carbide (see Figure 4). These particles are in a very
small amount and quantitatively determined after electrolytical
extraction just 0.07%wt only.
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Figure 3. SEM microstructure of C-22HS alloy at as HT condition
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Figure 4. XRD diffraction spectrum of p and MgC in C-22HS

Dark field TEM imaging reveals a homogeneous distribution of
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fine precipitates in y-matrix. The average size is on the order of
10nm. Selected area diffraction of these precipitates confirms their
identity as the long range ordered phase Niy(Mo,Cr), see Figure 5.

In the Ni-Cr system, Ni,Cr is a LRO stable phase, but Ni,Mo
(Pt;Mo type) in Ni-Mo system is a LRO metastable phase.
However, in Ni-Cr-Mo ternary system chromium can replace a
part of molybdenum to increase the stability for forming
Niy(Mo,Cr) Pt;Mo-type strengthening phase. The volume fraction
of Ni)(Mo,Cr) strengthening phase in C-22HS in a as heat treated
condition was calculated form TEM images and reported as about
25% in the recent paper”. Quantitative determination of
Ni,(Mo,Cr) phase by electrolytical extraction followed by special
designed micro-chemical analysis was conducted. However, it
failed because of the close chemical potentials of Ni-Cr-Mo v-
matrix and Ni,(Mo,Cr) phase at electrolytical isolation condition.
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Figure 6. The relationship of room temperature tensile properties with exposure time (1000h )
and temperature (600, 625 and 650°C) for (a) ultimate strength, (b) reduction in area
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Figure 7. Morphology of dispersively precipitated Niy(Mo,Cr) in C-22HS alloy at different thermal exposures
(a) AS HT+600°C/1000h; (b) AS HT+625°C/100h; (c) AS HT+625°C/1000h; (d) AS HT+650°C/100h;
(e) AS HT+650°C/500h; (f) AS HT+650°C/1000h

Long-term exposure at 600, 625 and 650°C

The ultimate strengths of C-22HS alloy continuously increase with
the exposure time up to 1000h at 600, 625 and 650°C (see Figure
6a) and ductilities are still very high, for example the reduction in
area of tensile testes can still keep above 55% (see Figure 6b).

It shows the unique strengthening effect of Niy(Mo,Cr) fine
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particle complementary precipitation during long time aging in the
temperature range of 600-650°C.

These LRO phase Niy,(Mo,Cr) fine particles are very stable as
shown in Figure 7a after 1000h exposure at 600°C. Niy(Mo,Cr)
fine particles can still homogeneously distribute in the grains from
100h to 1000h exposure at 625°C (see Figure 7b and 7c). The



dispersively distributed particles Niy(Mo,Cr) increase in size with
a certain coarsening rate in the time period of 100, 500 and 1000h
exposures at 650°C (see Figure 7d, e and f). The average size of
the Niy(Mo,Cr) phase vs temperature and time at long-term
exposure has been quantitatively determined from TEM images as
shown in Figure 8. The growth rate of the Niy(Mo,Cr)
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Figure 8. Relationship of the average size of Niy(Mo,Cr) phase
vs temperature and time at long-time exposure

strengthening phase is very slow at 600°C and only a little bit
higher at 625 and 650°C. The average sizes of Ni,(Mo,Cr) after
the 1000h long time exposure at 600, 625 and 650°C are still
below 20, 40 and 60nm respectively. These particles sizes can still
impart a significant strengthening effect and they are acceptable
for engineering application.
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Figure 9. Relationship of Charpy impact energy of C-22HS alloy
vs long-term aging time in the temperature range of 600-650°C
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Figure 10. High chromium grain bbuhdary precipitates in C-22HS alloy after 650°C/1000h aging

(a) (b) SEM micrograph (c) Bright field micrograph and EDX spectrum of high chromium precipitate
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The impact toughness mildly decreases with the exposure time at
600 and 625°C. However, it drops rapidly at 650°C aging after
500h and it is lower than 100J after 1000h exposure at 650°C (see
Figure 9). SEM micrograph shows the continuous grain boundary
precipitation (see Figure 10) which may be the origin of this drop
in impact toughness. Bright field TEM micrograph and EDX
spectrum show a high chromium containing precipitate at grain
boundaries (see Figure 10c). XRD analysis of extracted residue
from C-22HS long-term aged at 650°C for 1000h shows the
existence of high chromium carbide M,;Cg (see Figure 11).
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Figure 11. XRD spectrum of extracted residue from
C-22HS alloy aged for 1000h at 650°C

T-T-T Diagram of Grain-boundary Precipitation

To understand the grain boundary phase precipitation in C-22HS
alloy, isothermal exposures have been also conducted in a
wide temperature range (600 - 1050°C) with different times as
shown in Table III. A super-solvus temperature of 1120°C was
conducted for full dissolution of p and MgC phase at mill annealed
condition. A T-T-T curve of grain-boundary precipitation was
determined by SEM observation as shown in Figure 12.

Grain boundary precipitation is accelerated by increasing
temperature as shown in Figure 12 and 13 from 600°C to 750°C.
Above 800°C, the grain-boundary precipitation develops very fast
and a certain amount of grain-boundary precipitates can be formed
at very short time such as only after 10min in the temperature
range from 800°C to 1050°C (see Figure 14). An EDX spectrum of
grain-boundary precipitates in this temperature range (for example
900°C/96h) shows very high molybdenum content (see Figure 15).
It reminds us that the grain boundary precipitates in the
temperature range of 600°C-1050°C might be high molybdenum
containing p phase and M¢C carbide. The detail work on grain-
boundary precipitation will be studied further.
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Figure 12. Time-Temperature-Transformation
diagram of grain boundary precipitates in C-22HS
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Figure 13. Grain-boundary precipitation at iso-thermal
treatment of C-22HS alloy after (a) 600°C/96h (b) 700°C/32h
(¢) 750°C/35min

Conclusions

1. Three high molybdenum containing phases p, M¢C and Pt-
Mo type Niy(Mo,Cr) have been identified in the newly developed
Haynes C-22HS® superalloy. A high chromium carbide, M,;Cg,
has been also found after 650°C/1000h aging.

2. The new alloy possesses high strength as a result of the
strengthening effect of the Pt,Mo-type long range ordered
Ni(Mo,Cr) phase precipitated using a specially designed heat
treatment condition of 1080°C/annealed/WC + 705°C/16h/FC +
605°C/32h/AC.

3. The Pt,Mo-type long range ordered Niy(Mo,Cr) phase
possesses a unique strengthening effect because of its fine disperse
precipitation in the Ni-Cr-Mo y-matrix. The average size of



Niy(Mo,Cr) in the as-heat treated condition is on the order of
10nm. Its average size can still keep below 20, 40 and 60nm after
1000h exposure at 600, 625 and 650°C, respectively.

4. The T-T-T diagram of grain boundary precipitates has been
determined over a wide range of temperatures (600-1050°C).

5. This newly developed, highly corrosion-resistant Ni-base
superalloy with high strength, C-22HS®™ alloy, can be used at
intermediate temperatures below 650°C.

Figure 14. Grain-boundary precipitation at iso-thermal
treatment for 10min of C-22HS alloy at the temperatures
(a) 950°C(b) 1000°C (c) 1050°C
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Figure 15. SEM micrograph and EDX spectrum of grain boundary
precipitate in C-22HS alloy after iso-thermal aging at 900°C/96h
shows high content of Mo (~32.5%wt) and Cr (~19.7%wt)
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