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Abstract

The outstanding mechanical properties of the nickel based
superalloy Allvac 718PlusTM are sensitive to the mi-
crostructure, in particular to the grain size, which de-
pends on the processing history. The grain structure is
mainly controlled by thermo-mechanical processes like re-
crystallization and grain growth. This paper deals with
the simulation of the evolution of the grain structure in al-
loy Allvac 718PlusTM during disc forging using the Finite
Element (FE) code Deform 2DTM . Additionally the ma-
terial flow, pressing forces and temperatures are of inter-
est. The hot deformation behaviour of Allvac 718PlusTM

has been characterized in a temperature range of 900–
1050 ◦C and at strain rates of 0.1–10 s−1 by use of cylin-
drical compression tests. Particular emphasis is put on
the identification of the parameters of a semi-empirical
model for dynamic recrystallization. Furthermore the
simulated results are compared with an industrial trial-
forging. The results of the simulations shall be the basis
for the development of an optimized forging process with
respect to cost effectiveness, product quality and low en-
ergy consumption.

Introduction

Aerospace gas turbine disks operate in an environment of
relatively high stresses caused by centrifugal forces and el-
evated temperatures. These severe conditions necessitate
the need for materials with high temperature strength
and good low cycle fatigue resistance. One class of alloys
used for this task are the nickel based superalloys, out of
which, Alloy 718 is the most widely used in the aerospace
industry. A new grade Allvac 718PlusTM shall further en-
hance the high temperature properties [1]. Its properties
are attributed to the combined effects of the chemistry,

heat treatment as well as the microstructure. The ability
to precisely control the microstructure development dur-
ing forging needs sound process models, which provide
reliable process conditions where no damage or flow insta-
bilities occur. The objective of this work is the prediction
of both the microstructure due to dynamic recrystalliza-
tion and the process control parameters, i.e. temperature
and strain rate, during hot closed die forging with the FE
code Deform 2DTM .

Experimental

Triple melt (VIM + ESR + VAR) nickel based superalloy
Allvac 718PlusTM with a billet size of 8” (203.3 mm) and
an initial mean grain size of 20 µm was investigated in this
study. The chemical composition in wt.% is shown in Ta-
ble 1. Cylindrical compression samples with Rastegaev

Table 1: Chemical composition of Alloy 718PlusTM in
wt.%

C Cr Mo W Co Fe

0.02 18.00 2.70 1.00 9.00 10.00

Nb Ti Al P S Ni

5.50 0.75 1.45 0.006 0.006 Bal.

geometry and 16 mm diameter d0 as well as 24.6 mm
length, as shown in Fig. 1, were used. In order to re-
duce contact friction and to get homogeneous deforma-
tion a special glass powder was filled in the pockets of the
samples. The recrystallization kinetics was studied by us-
ing compression tests under isothermal conditions at con-
stant true strain rates at a Servotest thermo-mechanical
treatment simulator (TMTS). The specimens were de-
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Figure 1: Dimensional sketch of the Rastegaev sample.

formed in a temperature range of 900–1050 ◦C at con-
stant strain rates of 0.1–10 s−1 to different true strains of
0.2, 0.4, 0.6, 0.9 and 1.6. Water quenching after compres-
sion retained the dynamically recrystallized microstruc-
ture. Fig. 2 shows the heating cycle for the compression
tests. First the samples were heated in the fast thermo

Figure 2: Heating cycle for the compression tests.

treatment unit (FTTU) inductively from room temper-
ature to 650 ◦C at a heating rate of 10 ◦C/s−1. Then
the glass powder was attached to the Rastegaev samples’
contact surfaces to reduce friction. After that samples
were heated to forging temperature, e.g. 1000 ◦C, and
held for 180 s at constant temperature. All tests were
carried out in standard atmosphere. The transfer time of
the sample from the FTTU to the press was 0.5 s. For mi-

crostructure investigations, the compressed samples were
cut longitudinally (specimen center) and transversally (at
a quarter of the specimen height). Finite element calcula-
tions of compression testing indicated that in this section
from the centre to half of the radius, the local and the
global strain rate correspond (see Fig. 3). It is neces-

Figure 3: FE simulation for uniaxial compression
(half-symmetrical longitudinal section); global strain
rate = 1 s−1, global strain = 0.9; corresponding global
and local true strain at 1

4 and 3
4 specimen height (dashed

line).

sary to prepare the samples metallographically and etch
electrolytically. The recrystallized fraction and the final
grain size were analyzed by using optical microscopy and
verified by electron back scatter diffraction (EBSD) mea-
surements.

EBSD measurements

The EBSD measurements and analyses were performed
using an EDAX-TSL system (CCD-Digiview-camera,
OIMTM 5.2 software) attached to a Zeiss Ultra FESEM
(primary electron energy: 20 keV; probe current: 5.4 nA).
In order to minimize the strain caused by the grinding and
polishing processes the specimens were finally polished
with an alkaline colloidal silica solution (OP-U suspen-
sion from Struers, 0.04 µm granularity) for 60 minutes.
An area of 250 µm x 250 µm was scanned with a step
size of 0.5 µm (hexagonal pixels). Grain boundaries were
characterized by a misorientation larger than 5◦ between
neighboring measurement points. To reduce the influence
of noise in the results, a grain must comprise at least six
pixels resulting in a minimum grain diameter of around
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1.4 µm. The discrimination between the still deformed
and the recrystallized grains were carried out with the
grain orientation spread, because of the approved accu-
racy of this method [2].

Results

Isothermal flow curves

Data received from the TMTS were force versus stroke
including both the elastic and the plastic region [3]. In
a first step the elastic region was corrected. Finally flow
stress σ and true strain ε were calculated by

σ =
4Fhi

πh0d2
0

(1)

and

ε = ln
(

h0

hi

)
, (2)

where h0 is the initial height, hi is the current height, d0

is the initial sample diameter and F stands for the applied
force.

The measured curves were adiabatic due to deforma-
tion heat (Fig. 4). To receive isothermal flow curves it is

Figure 4: Measured temperature evolution in the spec-
imen center compared to calculated values according to
Eq.(3). The horizontal line represents the isothermal test-
ing temperature Tiso (1050 ◦C in this case).

important to calculate the thermal influence on the flow
stress. The increase in temperature depends on the mean
flow stress σ̄ in a deformation interval ∆ε and on the

thermo-physical properties of the material according to

∆Td = kT
σ̄

ρ cp
∆ε. (3)

∆Td is the change in temperature during deformation (see
Fig. 4), kT is the fraction of deformation energy that dis-
sipates in heat (≈ 0.9 for nickel-based alloys), ρ is the
density and cp is the specific heat capacity at constant
pressure.

According to [4] the change in flow stress (∆σ in Fig. 5)
can be calculated by

∆σ =
[

∂σ

∂(1/T )

]
∆ε,ε̇

[
1

Tiso + ∆Td
− 1

Tiso

]
. (4)

The term
[

∂σ
∂(1/T )

]
∆ε,ε̇

is the change of the flow stress

with changing temperature at constant strain and con-
stant strain rate. It was calculated by spline interpola-
tion. Fig. 5 shows the comparison between an adiabatic
and an isothermal flow curve.

Figure 5: Strong decrease of flow stress due to tem-
perature rise and material softening (adiabatic curve);
compensated curve for isothermal conditions (isothermal
curve) at T = 1050 ◦C and ε̇ = 1 s−1.

Flow curve modeling

In metals with low stacking fault energy such as nickel-
base alloys, recrystallization is the dominant softening
mechanism during hot deformation. Reaching sufficiently
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high local strains and temperatures leads to the nucle-
ation and growth of new grains. The concurrent deforma-
tion stimulates an ongoing nucleation if a critical strain
is reached. Thus the microstructure contains grains hav-
ing different sizes and strains [5]. If the hardening rate
equals the recrystallization rate, a stationary flow stress is
reached. The maximum stress σp for a given temperature
T and strain rate ε̇ can be described by

sinh(ασp) = AZm, (5)

where Z denotes the Zener-Hollomon parameter

Z = ε̇ exp
(

Q

RT

)
. (6)

α, A and m are material constants, R is the molar gas
constant. Hence follows for the determination of the ac-
tivation energy Q (430.0 kJmol−1)

ln[sinh(ασp)] =
mQ

RT
+ Const. (7)

From Fig. 6 it is obvious that at low temperatures

Figure 6: Arrhenius plot to calculate the activation en-
ergy Q for hot deformation according to Eq.(7).

(T<950 ◦C), the activation energy for hot deformation in-
creases due to precipitation processes [6]. The values for
α, A and m were determined with 2.26·10−4, 2.55·1011,
6.53, respectively.

The peak strain εp at σp depends on the initial grain
size D0 and Z [7]

εp = kpD
m3
0 Zm4 , (8)

where kp, m3 and m4 are material constants (Table 3).
The influence of ln(Z) on ln(εp) is depicted in Fig. 7 for
Allvac 718PlusTM . Obviously, the different ln(εp)–ln(Z)
slopes for temperatures below and above the solvus tem-
perature of the δ-phase (Tδ≈990 ◦C) in Allvac 718PlusTM

recommend the determination of two different parameter
sets for both the flow stress and the DRX model.

Figure 7: Variation of the slope ln(εp)–ln(Z) above and
below the solvus temperature Tδ of the δ-phase.

According to Karhausen [8], the σ – ε relation in the
hardening region of the flow curve can be described by

σ

σp
=

ε

εp

[
exp

(
1− ε

εp

)]C

, (9)

where the ”work-hardening exponent” C can be described
by

C = AC

[
1− exp

(
−BC · ln(Z)CC

)]
, (10)

AC(0.46), BC(3.97·10−33) and CC(20.07) are constants.

Microstructure analysis

The evolution of the recrystallized fraction was mea-
sured by optical microscopy and EBSD analysis and
showed good correlation for both methods. In the fol-
lowing the development of DRX exemplarily is shown for
T = 1000 ◦C and ε̇ = 1 s−1. Fig. 8 depicts the increas-
ing dynamic recrystallized fraction with increasing strain.
Nucleation starts mainly at the grain boundary and leads
to a typical necklace structure. A comparison of both
DRX fraction measured by optical microscopy and EBSD
analysis is shown in Table 2.
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Figure 8: Progress of DRX at T = 1000 ◦C and ε̇ = 1 s−1

at strains of 0.4 (a), 0.6 (b), 0.9 (c) and 1.6 (d) based on
EBSD analysis [2].

Table 2: Recrystallized fraction measured by optical mi-
croscopy (OM) and EBSD analysis at T = 1000 ◦C and
ε̇ = 1 s−1 and different strains

ε 0.2 0.4 0.6 0.9 1.6

OM 0.32 0.50 0.68 0.98

EBSD 0.02 0.25 0.56 0.71 0.94

Dynamic recrystallization

Due to the high obtained strains during upsetting, the
evolution of the microstructure between the start of re-
crystallization, close to the peak strain εp, and the steady
state could be investigated. The dynamically recrystal-
lized fraction XDRX in general can be described using an
Avrami type equation

XDRX = 1− exp
[
ln (0.5)

(
ε− εcr

ε0.5 − εcr

)m1
]

. (11)

Here the exponent m1 is a constant, εcr and ε0.5 denote
the critical strain for the onset of DRX and the strain for
50% recrystallization, respectively:

εcr = kcrεp, (12)

where kcr is 0.8 and

ε0.5 = k1Z
m2 . (13)

Calculated and measured XDRX showed a good correla-
tion, which is demonstrated in Fig. 9. The dynamically

Figure 9: Calculated dynamic recystallized fraction vs.
measured dynamic recrystallized fraction. The 45◦ line
represents full correlation.

recrystallized grain size DDRX was found to follow the
equation

DDRX = k2 exp(Tk3). (14)

All parameters for the DRX model are given in Table 3.

Table 3: Model parameters for DRX kinetics. The influ-
ence of initial grain size was not considered, thus m3 = 0

kp k1 k2 k3

T < Tδ 3.40·10−3 0.14·103 0.4·10−5 1.10·10−2

T > Tδ 3.40·10−3 3.45·103 0.4·10−5 1.10·10−2

m1 m2 m3 m4

T < Tδ 3.34 -0.11 0.00 0.10

T > Tδ 0.88 -0.22 0.00 0.10

Industrial application

The described DRX model was implemented into FE code
Deform 2DTM using Fortran user routines. A four-step
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disc forging was simulated to find optimal process condi-
tions: Billet heating to forging temperature - two passes
- reheating - two passes (Fig. 10). The heating tempera-

Figure 10: Schematic diagram of the four pass turbine
disc forging process.

ture of the billet (203.2 mm diameter, 200 mm height) was
1000◦C and the initial mean grain size was assumed to be
20 µm. In Fig. 11 both the accumulated strain (Fig. 11a)
and the DRX fraction distribution (Fig. 11b) after the
fourth pass are shown. Finally FE simulations were com-
pared with an industrial trial forging on a 31.5 Mt screw
press. After the multi pass forging, an advanced dynami-
cally recrystallized microstructure could be obtained both
in the simulation and in the industrial process with a re-
sulting grain size of 13 µm (ASTM 10) (see Fig. 11c).
However, in the lower edge zone additional processes have
a strong influence on the resulting grain structure, hence
leading to differences between the measured and simu-
lated grain size. The study thus stipulates further re-
search according to static recrystallization during inter-
pass.

Conclusion

The kinetics of dynamic recrystallization of the nickel
based superalloy Allvac 718 PlusTM was investigated in
this work. Flow curves were measured in the process win-
dow of turbine disc closed die forging and were trans-
formed to isothermal stress–strain plots. Out of those
data, parameters for a mathematical flow curve descrip-
tion as well as an Avrami type dynamic recrystallization
models were obtained by numerical regression.

Figure 11: FE model (third pass) of a disc forging process.
Accumulated true strain (a), the dynamically recrystal-
lized fraction XDRX (b) and the dynamically recrystal-
lized mean grain size DDRX [µm] (c) (after fourth pass)
are shown.
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The strong influence of the δ-phase Ni3Nb on the soft-
ening behaviour of the material made it necessary to as-
sign different parameter sets for both above and below
the δ-solvus temperature. The metallographical inves-
tigations of the recrystallized fraction obtained by opti-
cal microscopy was validated by EBSD analyses, which
showed a sound correlation. The semi-empirical model
was implemented into FE code and was tested on a trial
forging at industrial scale, which also showed good results.
Further work will be done on static recrystallization that
influences the grain size evolution of surface areas where
small deformation occurred during the final pass.
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