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Abstract 

 

The contributions of multiple strengthening factors to the 0.2% 

flow stress have been studied in a cast and wrought Ni-Co base 

disk superalloy with varying grain size, twin fraction and bimodal  

or trimodal ′ size distributions. The alloy was heat-treated within 

the ′ sub- and super-solvus temperature ranges between 1100oC 

to 1180oC, followed by two step aging heat-treatment. The 

contribution of each strengthening factor are analyzed by 

measuring its Vickers hardness at over a structural scale ranging 

from nano to micro levels and then by converting the hardness 

differences to the contribution to the 0.2% flow stress on the basis 

of the empirical relation: 0.2=2.46Hv. The results clearly show 

that the contribution of grain boundary strengthening decreased 

and reached zero with increasing solution temperature. The 

behavior followed Hall-Petch effect and Zener’s pinning model, 

and strongly depended on the size and volume fraction of pinning 

primary ′ that is un-dissolved during solution treatment. 

Meanwhile, the contributions of secondary and tertiary ′ 

precipitation strengthening increased with increasing temperature. 

The behaviors also strongly depend on the volume fraction of the 

primary ′ since the designed total volume fraction of ′ of the 

alloy is approximately 0.5. As a result, the combinations of these 

strengthening factors lead to the maximum flow stress at solution 

temperature of 1135oC. This would suggest that the primary ′ 

plays an important role to optimize the microstructure 

combination through the solution heat-treatment. 

 

Introduction 

 

Polycrystalline Ni-base disk superalloys with /′ two-phase 

structure are widely used as turbine disk materials in advanced 

aircraft engines and land-base gas turbine owing to excellent 

tensile strength and creep properties [1]. These properties were 

developed through multiple-strengthening factors. Tensile 

properties, especially, yield stress y may be developed through 

the solid solution strengthening, precipitation strengthening: 

primary ′ (1-3 m), secondary ′ (50-300 nm) and tertiary ′ (5-

50 nm), and grain boundary strengthening [2-4]. Additionally, 

strengthening due to annealing twin boundary will operate in 

latest Ni-Co-base disk superalloy (TMW®alloy) [5] with low 

stacking fault energy [6-7]. However, the contribution of each 

strengthening factor to the total strength of the alloys has not been 

clearly understood because their complicated microstructure 

makes it difficult to separately measure the contribution. Thus, it 

would be time consuming to explore the optimum combination of 

strengthening factors and their heat-treatment steps.  

 

There have been several attempts to model the contribution of 

each strengthening factor to the total strength of a typical 

polycrystalline Ni-base superalloy [4, 8-9]. However, most of 

these models have been consistently constructed using 

quantitative calculations with limited experimental results [4, 8] 

or using alloys with simple microstructures [9]. Therefore, these 

models cannot divide or indicate clearly the contribution of each 

factor to the total strength. Thus, quantitative analysis of multiple-

strengthening factors contributing to total tensile properties is of 

key importance for optimization of their microstructure and 

maximization of their mechanical properties through processing. 

 

An indentation test is one of the most common techniques used to 

extract the local material properties at the nano-, sub-micron-, and 

micron-scale [10-12]. In particular, nanoindentation combined 

with atomic force microscopy (AFM) is useful for evaluating the 

hardness of a specific nanoscale site in a material having complex 

microstructures, because an in-situ AFM image enables the 

accurate setting of a Berkovich indenter with a triangular 

pyramidal shape at the desired site [11]. Furthermore, recently we 

have proposed a new method for measurement of Vickers 

hardness values in scales ranging from nano to micro levels in 

disk superalloy [13], making it possible to divide clearly the each 

strengthening factors.  

 

The purpose of this study is to clarify the contribution of each 

strengthening factors to the strength in the Ni-Co-base disk 

superalloy TMW-4M3 heat-treated at different solution 

temperatures, and to discuss optimum microstructure combination 

to get higher strength.  

 

Experimental 

 

The Ni-Co base disk superalloy, TMW-4M3, used in this study 

was cut from pancake-shaped disks forged by Mitsubishi 

Materials Co. Ltd. The chemical compositions of TMW-4M3, the 

′ solvus temperature, and volume fraction calculated using 

Thermo-Calc. are listed in table I. The material fabrication 

processes have been described in detail elsewhere [2-3], and the 

processes for TMW-4M3 are outlined briefly here. Ingots with a 

diameter of 500 mm were prepared by triple melting. The ingots 

were forged at 1100oC into 200 mm billets. The billets were then 

isothermally forged at 1100oC into a 440 mm pancake-shaped 

disk. 10mm70 mm round bar specimens were cut out of the 

disk for hardness and tensile testing. For comparison, single 

crystal bar specimens having a same chemical composition as 

TMW-4M3 were cast in a NIMS directionally solidification 

furnace (TMS-4M3). The specimens having  3o of <001> 

orientation to a longitudinal direction were used for hardness and 

tensile testing.  

 

Heat treatments were carried out at a solution temperature from 

1100oC to 1180oC for 4 h, followed by air cooling (AC). The air-
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cooled sample was primary aged at 650oC / 24 h / AC and then 

secondary aged at 760oC /16 h / AC.  

 

For hardness testing, the heat-treated specimen was cut into a 

specimen with10 mm  5 mm. The specimens surface were  

electrolytically polished in a solution of 8% perchloric acid, 70% 

ethanol, 10% butoxy-ethanol, and 12% H2O at a voltage of 40 V 

for 10 s. Ultra-micro- (indentation force: 0.1-1 mN), micro- (1-

1000 mN), and Vickers (0.196-490 mN) hardness tests were 

performed on the polished specimens at room temperature. For the 

Vickers hardness test, a quadrangular diamond indenter with face 

angles of 136o (Akashi) was used. For the micro-hardness test, a 

triangular pyramidal indenter with an apical angle of 115o was 

used. An AFM ultra micro-hardness tester with special levers 

developed by NIMS was utilized for testing the hardness at the 

nanoscale level [10-13]. In this study, two types of special levers 

with apical angles of 60o and 115o were used for the triangular 

pyramidal indenter. Vickers hardness can be calculated based on 

the indentation force-penetration depth (F-h) curves from the 

ultra-micro- and micro-hardness tests, and is given by 

 

      
 

        
 

                                                                    

 

where Hv* is a converted Vickers hardness and p, q, and n are 

constants. These constants [13] can be estimated empirically from 

the F-h curves obtained in several single crystals such as those of 

Ni, Mo, and W having a known Vickers hardness. In this study, F-

h curves obtained from an ultra-micro-hardness test at 60o, ultra-

micro-hardness test at 115o, and micro hardness tests, respectively, 

were used for Vickers hardness conversion. To normalize the 

difference in shape between pyramidal and Vickers indenters, the 

size of an indent obtained using the pyramidal indenter is 

expressed as the square root of the projected area of the triangle 

indent, √So. 

 

The tensile tests specimens with a gauge section of 22 mm  4 

mm were cut out of the bar specimens. Tensile tests were also 

performed at room temperature with a nominal strain rate of 0.3% 

/ min.  

 

Structures of the heat-treated alloy were characterized by electron 

backscatter Diffraction (EBSD) in a field emission scanning 

electron microscope (FE-SEM), and by transmission electron 

microscopy (TEM). TEM was performed using a Tecnai TEM 

operating at 200 kV. EBSD were carried out in a JSM-7000F with 

a field emission gun operating at 20 kV using a program TSL 

OIM data collection. The grain size D and twin fraction were 

measured from EBSD data using a program TSL OIM analysis. 

The fvI of the primary ′ precipitation was measured using a point 

counting method from SEM images. From the TEM images, the 

average size dII, dIII and volume fraction fvII, fvIII of secondary and 

tertiary ′ precipitates were measured using software of NIS-

Elements (Nikon).  

 

 

Table I Chemical composition, ′ solvus temperature and volume fraction calculated by Thermo Calc. in TMW-4M3 

 

Alloy Ni Cr Co Mo W Ti Al C B Zr ′ solvus temperature, Ts/
oC Volume fraction of ′

TMW-4M3 Bal. 13.5 25.0 2.8 1.20 6.20 2.30 0.03 0.02 0.03 1162 oC 0.495

 
 

Figure 1 EBSD and TEM dark field images of the alloys solution-heat-treated at (a) 1100oC, (b) 1150oC and (c) 1180oC for 4 hours 

followed by two step aging treatments. (Red line in EBSD images indicate the Annealing twin boundary) 

(a) 1100oC/4h/AC (b) 1150oC/4h/AC (c) 1180oC/4h/AC
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Results and discussion 

 

Microstructure 

Figure 1 shows EBSD and TEM dark field images of TMW-4M3 

heat-treated at (a) 1100oC, (b) 1150oC and (c) 1180oC for 4 hours. 

The alloy mainly consisted of general grain boundary, annealing 

twin boundary with 3, primary ′, secondary ′ and tertiary ′ 

within the tested solution temperature.  

 

The effect of solution temperature on the grain size (D) and 

volume fraction fvI of primary ′ which were measured from 

EBSD and SEM images, respectively, are shown in figure 2. The 

fvI decreased with increasing the temperature and reached to 0 at T 

≈ 1162oC for 4 hours. Thus, the ′ solvus temperature TS should 

lie within 1150 < TS < 1160. In this study, we determined the TS 

of the alloy heated for 4 hours as ≈ 1162oC.  

 

Within the ′ sub-solvus temperature range, the grain size 

increased slightly from about 6 to 10 m with increasing the 

temperature from 1100oC to 1135oC (Region I), and increased 

significantly from about 10 to 300 m with increasing the 

temperature from 1135oC to ′ solvus temperature (Region II). 

This behavior can be explained by Zener’s pinning model of the 

pinning primary ′ [14-15]. Meanwhile, the fraction of annealing 

twin boundary increased during the grain growth and reach to 38-

43%. Within the ′ super-solvus temperature range, grain size 

increased from about 300 to 620m. The grain grew very quickly 

because the pinning primary ′ dissolved completely (Region III). 

For convenience, we categorized the solution temperature ranges 

into above three regions according to its growth rate.  

 

The size distributions of intragranular ′ precipitates measured 

from TEM images are shown in figure 3. At all the solution 

temperature, the bimodal distribution can be observed within the 

grain. Thus, the trimodal and bimodal distributed ′ are present in 

the tested alloy heat-treated within the sub-solvus temperature 

(Region I and II) and super-solvus temperature range (Region III), 

respectively, considering the present of the primary ′. With 

increasing the temperature, both an average size dII and the 

volume fraction fvII of the secondary ′ gradually increased. 

Meanwhile, the size dIII of the tertiary ′ are unaltered, although 

the volume fraction fvIII of the tertiary ′ increased from 0.0019 to 

0.05.  

 

It should be noted that both the increase in fVII and fvIII strongly 

depends on the decrease in fvI of the primary ′ un-dissolved 

during solution heat-treatment. Furthermore, the total fraction of 

′: fv
total=fvI+fvII+fvIII is approximately 0.5 in all the solution 

temperature, which is almost close to the volume fraction at the 

second aging temperature of 760oC calculated by Thermo Calc.. 

All the microstructural features are listed in table II 

 

Our finding suggested that D, fvII and fvIII strongly depend on the 

fvI. Thus, it is important to understand the solution and coarsening 

behaviors of the primary ′ precipitates for controlling the states 

of microstructure. 

 
 

Figure 2 Effect of solution temperature on the grain size (D) and 

volume fraction fvI of primary ′. 
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Figure 3 Size distributions of intragranular ′ precipitates 

measured from TEM images. 
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Table II Effect of solution temperature on microstructural parameters 

 

Solution 

temperature

Grain size, 

D/m

Twin 

fraction

Primary ' Secondary ' Tertiary '

Volume fraction, fvI Size, dI /m Volume fraction, fvII Size, dII /nm Volume fraction, fvIII Size, dII /nm

1100oC 6.00±0.68 0.382 0.189 2.65±0.24 0.304 72.87±17.99 0.0019 16.0±2.66

1150oC 60.8±14.4 0.424 0.040 2.77±0.31 0.405 93.17±37.22 0.0331 15.1±4.35

1180oC 619±131 0.249 - - 0.455 97.82±27.25 0.0509 15.4±4.39
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(a) Region I 

 
(b) Region II 

 
(c) Region III 

Figure 4 Relationship between converted Vickers hardness and 

indent size in alloy solution-heat-treated at (a) Region I: 1100oC, 

(b) Region II: 1150oC and (c) Region III: 1180oC 
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New quantitative analysis of contributing factors 

Figure 4 (a), (b) and (c) show the relationship between converted 

Vickers hardness and indent size in the TMW-4M3 heat-treated at 

1100oC (Region I), 1150oC (Region II) and 1180oC (Region III), 

respectively. For comparison, the hardness of single crystal TMS-

4M3 is also shown in figure 5 (c). The hardness of the pure Ni 

single crystals (001) is 93, which is used as the hardness of the 

base materials (HvNi).  

 

The results clearly show that the indent size has a significant 

influence on the converted Vickers hardness. This means that 

multiple strengthening factors due to general grain boundary 

HvGB, annealing twin boundaryHvTB, primary ′ Hv′I, 

secondary ′ Hv′II, tertiary ′ Hv′III together with solid solution 

Hvsol may operate hierarchically, depending on the tested range, 

which is  evaluated to the microstructural feature as show in 

figure 1. It is important to note that the hardness increased 

significantly from a certain √So when the √So increased. This is 

due to the fact that as the √So exceeds a certain level, the 

deformed zone around the indents will inevitably successively 

transcend different microstructure features: secondary ′, primary 

′, twin boundaries and grain boundaries, leading to the large 

hardness increments.  

 

The alloys heat-treated at 1100oC (Region I) and 1150oC (Region 

II) showed similar hardening behaviors. For the case of 1100oC 

(Region I), the experimental Hv had three constant values, 237, 

402, and 474, within the ranges of √So  150 nm, 1 m  √So  

4m, and √So  20 m, respectively. Thus, the experimental 

hardness comes from HvNi + Hvsol + Hv′III in the tested range of 

√So  150 nm; HvNi + Hvsol + Hv′III + Hv′II in the tested range 

of 1m√So4m; and HvNi + Hvsol + Hv′III + Hv′II + Hv′I 

+HvGB+HvTB in the tested range of √So  20 m. Therefore, we 

can obtain 144 for Hvsol + Hv′III, 165 for Hv′II, and 72 for 

Hv′I + HvGB + HvTB in the Region I. For the case of 1150oC 

(Region II), thus, we also obtain 160 for Hvsol + Hv′III, 191 for 

Hv′II, and 33 for Hv′ + HvGB + HvTB. For the case of 

1180oC (Region II), the experimental Hv had only two constant 

values, 255, and 473, within the ranges of √So  140 nm and √So  

7 m, respectively. This is due to the fact that since the alloy has 

no primary ′ and the large grain (D=620m), even the large 

Vickers indent cannot cross the primary ′ precipitates, grain 

boundaries and twin boundaries. Thus, we obtain 162 for 

Hvsol+Hv′III, and 218 for Hv′II.  

 

Thus, we can concluded that the method presented here can be 

divided the total hardness Hvtotal into three hardness increment 

Hv in addition to the base material hardness, based on the 

experimental Vickers hardness and its value difference as follow: 

 

                                                                                     
                                                                     

                                                                                 

                                                        

 

Here, we should note that the hardening behavior in the alloy 

heat-treated at 1180oC is very similar to that in single crystal 

TMS-4M3. This result implies that the hardness values obtained 

here are reasonable. Furthermore, this approach can completely 

isolate the hardening from the secondary ′ Hv′II. Thus, we 

conclude that the new proposed method is very useful to 

quantitatively measure the contribution of each hardening factor 

to the total hardness. 
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Relationship between total strength and total hardness 

The Hvtotal can be converted to the total tensile strength. It has 

been reported that ultimate tensile strength UTS and 0.2 % flow 

stress 0.2 have linear relation to its Vickers hardness within the 

Hv ranging approximately 100  Hv  400 [16]. However, the 

converted Hv of the tested alloy were distributing within 100  Hv 

 500. Thus, we discussed the relationship between tensile 

strength and Vickers hardness for typical metals in addition to the 

tested alloy as shown in Figure 5. The figure indicates that Hv 

shows a better proportional relationship with the 0.2 than the UTS. 

Thus, we obtained  

 

                                   
 

for all metals: steel, stainless steel, Ni-alloy and Ni base 

superalloys [16] in addition to the tested alloys. Moreover, the 

relation could be applied to a wide range of values between 100  

Hv  500. Meanwhile, Hv also has a proportional relation with 

UTS for each metal, but the slope differs depending on the 

material. This could be caused by the difference in work 

hardening behaviors [17]. 

 

Strengthening Map 

The strengthening behaviors in the alloy system can be described 

by superposition of each strengthening mechanism. Several 

models of superposition have been proposed [18]. The general 

equation is given by: 

 

      
      

 

 

              

 

where i is number of strengthening mechanism. The exponent k is 

adjustable parameter, and varies between 1.0 and 2.0 in the actual 

material. The values have been proposed theoretically k = 1.0 [18].  

Assuming that k=1[4, 19], the total strength of the disk alloy can 

be described by superposition of several strengthening factors as 

follows: 

 

                              

                                                                   

 

Assuming that the relation: 0.2 = 2.46Hv is still active in all 

strengthening factors in the tested alloy and within all the tested 

range, equation [8] can be rewritten as: 

 

                                       

                                                            

 

                                             

                                                    

 

Thus, substituting the equation [2]-[5] into equation [10], the 

effect of solution temperature on the individual strengthening 

mechanism contributing to the 0.2% flow stress can be 

summarized as shown in Figure 6.  

 

By using the quantitative analysis proposed here, we can clearly 

understand the contributions of each of multi-strengthening 

factors to the 0.2. With increasing the solution temperature, the 

total strength (both the measured and converted 0.2% flow stress) 

increased in region I, decreased in region II, and reached to the 

values obtained from TMS-4M3 in region III. With increasing the 

solution temperature, ′I+GB+TB decreased, which would 

be mainly explained by Hall-Petch relation [20]: GB = kGB/√D 

and Zener’s pinning model of the pinning primary ′. In region I, 

GB decreased slightly, because of slight increase of grain size. 

In region II, GB decreased significantly. This is due to the fact 

that grain size increased significantly with decreasing the volume 

fraction of the pinning primary ′. In region III, GB decreased 

and reached to GB ≈, because of large grain size.  

 

Meanwhile, ′II increased significantly as the solution 

temperature increased and showed a maximum value at around ′ 

solvus temperature. The increment would be due to the increase in 

the volume fraction of secondary ′ precipitates from 0.304 to 

0.455 according to a strengthening model for strong coupled pair 

dislocation [21].  

 

Assuming that solid solution strengthening sol is constant 

within test temperature ranges since all the alloys eventually heat-

treated at the same aging temperature, ′III also slightly 

increased with increasing the temperature. This is due to the fact 

that the tertiary ′ volume fraction slightly increased from 0.0019 

to 0.05.  

 

As a result, both the converted and measured 0.2 % flow stress 

showed a maximum value of the strength at the solution 

temperature between the region I and region II (1135oC). Thus, 

we can conclude that the 1135oC is optimum solution temperature, 

which can lead to the optimum combination of microstructure and 

the strengthening factors contributing to the yield stress at room 

temperature. Additionally, we should note the role of the ′ 

precipitates. Many researchers are not too interest in the 

precipitates, because of the fact that contribution of the primary ′ 

with low fvI and large particle size to the strength of the disk 

superalloy at room temperature is very small. However, the 

finding here clearly indicated that the evolution of primary ′ 

controlled the state of other microstructure and their strengthening 

behaviors. Thus, we can conclude that the understanding 

evolution of the primary ′ during the solution-heat-treatment [15] 

 
Figure 5 Relationship between 0.2% flow stress and Vickers 

hardness in typical metals and alloys [15]. 
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is a key to the optimization of microstructure and their multi-

strengthening behaviors in the disk superalloy. 

 
Figure 6 Strengthening map: effect of solution temperature on 0.2 % flow stress and contribution of each strengthening factors. 
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Figure 7 Schematic Illustration: temperature dependence of strengthening factors. 
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High temperature strength 

This new quantitative method may extend to analyze the tendency 

of strengthening factors with increasing temperature to real 

application of turbine disks at high temperature. Figure 7 shows 

the schematic illustration of temperature dependence of multiple-

strengthening factor in the TMW-4M3. As shown in the figure, 

the contributing factors in TMW-4M3 may be still active below at 

least 650 oC because there is little decline in experimental tensile 

strength from RT to about 650oC [2]. Furthermore, this would be 

also supported by the fact that dislocation activity, involving anti-

phase boundary (APB), is the dominant tensile mechanism in 

TME-4M3 up to about 650oC [22-23]. According to our findings, 

we try to illustrate the high temperature strength. For example, 

GB may exhibit negative temperature dependence because of 

the degradation of kGB in Hall-Petch relation. Meanwhile ′II 

may be almost constant or slightly increase. sol + ′III will be 
decrease because sol

 may decrease with increasing temperature. 

Ni should decrease slightly from RT to about 725oC.  

 

This approach will be applied to conventional Ni-base superalloys 

such as U720Li, because the same deformation mechanism as the 

tested alloy can be observed in U720Li at high temperature. 

However, we should be careful about temperature range, because 

the tensile deformation mechanism in TMW-4M3 transfer from 

dislocation pairs cutting to stacking fault (SF) shearing and 

deformation twinning at about 650oC [22-23].  

. 

Present effort is focused on obtaining contributing strengthening 

factors at high temperature, then confirming that the method can 

be used to analyze each strengthening factor from RT to high 

temperature. 

 

Conclusion 

 

In this paper, contributions of multiple strengthening factors to the 

0.2% flow stress have been investigated in a cast and wrought Ni-

Co base superalloys heat-treated at different solution-heat-

treatment conditions. Microstructure observation indicated that 

the grain size, volume fraction of secondary ′ and tertiary ′ 

strongly depend on that of the un-dissolved primary ′during 

solution treatment. Using a new quantitative analysis, we could 

clarify the contribution of each strengthening factor to the strength 

of TMW-4M3 at room temperature.  The result clearly showed 

that differences in the solution temperature lead to a large 

influence on the contribution of the grain boundary, secondary ′ 

and tertiary ′ strengthening to the total 0.2% flow stress. Thus, it 

was found that understanding the evolution of the primary ′ 

during the solution-heat-treatment is a key to the optimization of 

microstructure combination in the disk superalloy, although the 

contribution of the precipitate is relatively small because of the 

large inter-particle spacing.  
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