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0BAbstract 
 
The newly developed TMW® disk superalloy exhibits better 
overall mechanical properties in the intended service temperature 
region (650-750 ℃) than the most advanced cast & wrought disk 
alloy U720Li. Clarification of the underlying mechanisms is 
beneficial for designing advanced superalloys. Among the TMW 
alloys, TMW-4M3 has the best tensile strength and creep 
resistance. In this study, tensile tests of U720Li and TMW-4M3 
were conducted at temperatures ranging from 25 ℃ to 750 ℃. 
The deformation microstructures have been investigated by 
transmission electron microscopy (TEM). Dislocation activity, 
involving anti-phase boundary (APB), was the dominant 
mechanism in U720Li up to 725 ℃. However, the transition of 
deformation mechanisms from dislocation pairs cutting to 
stacking fault (SF) shearing and deformation twinning was 
observed in TMW-4M3. A concise model related to the increased 
surface energy is put forward to describe the competing 
mechanisms. It is found that APB energy, SF energy (SFE), and 
volume fraction of tertiary γ΄ have important influence on the 
transition of deformation mechanisms. The controlling of 
deformation mechanism by alloy design is discussed. 
 

1BIntroduction 
 

Ni-base superalloys are extensively used in aircraft engines and 
land-base gas turbines, owing to their unique high temperature 
mechanical properties. Super-dislocations play an important role 
during the deformation of disk superalloys, which usually interact 
with γ΄ precipitates in two different ways at low (25-600 ℃) to 
intermediate temperatures (600-800 ℃ ), i.e., cutting the 
precipitates by coupled a/2<110> (a is the lattice constant) 
dislocation pairs or dissociating into super-partial dislocations [1]. 
The former creates anti-phase boundary (APB) in the γ΄ 
precipitates, and the latter forms stacking fault (SF). The 
mechanism favored by the specific alloy depends on the energy 
status in the system, which is related to microstructure, 
deformation condition and temperature. In disk superalloys, 
usually, dislocation pairs cutting mechanism prevails at 
temperatures below 600 ℃ [2-4]. Planar defects, such as SF and 
deformation twin, occur in the temperature range of 600-800 ℃. 
Above 800 ℃, dislocation climb is the dominant mechanism [1]. 
Kolbe reported the transition of deformation mechanisms from 
dislocation pairs cutting to deformation twinning at 780 ℃ in 
NIMOIC 105 and NIMONIC PE 16 [5]. However, the transition 

of deformation mechanisms associated with APB energy and SF 
energy is not yet fully understood. 
 
At National Institute for Materials Science, Japan, a new cast & 
wrought Ni-Co-base disk superalloy, TMW-4M3, has been 
developed for applications at elevated temperatures up to 725 ℃ 
[6-12]. It has been reported that TMW-4M3 has comparable yield 
strength with U720Li at room temperature, but superior yield 
strength in the service temperature region from 650 ℃ to 750 ℃ 
[6]. TMW-4M3 has higher APB energy and lower SF energy than 
U720Li. The relationship between these energies and higher yield 
strength at intermediate temperatures need further investigation.  
 
In the present study, the deformation microstructures of U720Li 
and TMW-4M3 after tensile tests at low (25 ℃) to intermediate 
temperature (750 ℃ ) have been investigated by transmission 
electron microscopy (TEM). A concise model related to the 
increased interface energy is put forward to describe the transition 
of deformation mechanisms. The controlling of deformation 
mechanism by alloy design is discussed. 
 

Experimental 
 

The detailed processes of preparing two alloy ingots can be found 
elsewhere [6]. All specimens were cut from the forged pancakes 
(440 mm in diameter and 65 mm in thickness), then heat treated 
as follows: 1100 ℃/4 h/oil quenching (OQ), then aging at 650 ℃
/24 h/OQ +760 ℃/16 h/OQ. Tensile tests were performed at 25 ℃
(room temperature, RT), 400 ℃, 650 ℃, 700 ℃, 725 ℃, and 750 
℃ according to ASTM E8/E21. Besides the ruptured tests, three 
interrupted tests with 1.0% plastic strain for TMW-4M3 at 25 ℃, 
650 ℃, and 725 ℃ were selected. After the mechanical tests, 
TEM discs with thickness of around 300 μm were cut from the 
deformed samples perpendicular to the stress axis. Then the discs 
were manually ground to 50 μm and perforated by twin-jet 
electro-polisher at 40 V/18 mA and -10 ℃ . The electrolyte 
consisted of 225 ml acetic acid, 225 ml butylcellosolve, and 50 ml 
perchloric acid. The microstructures of specimens were 
investigated using a Tecnai 20 microscope operated at 200 kV. 
 
Burgers vectors of dislocations were determined using g·b 
criterion. In our observations, the deviation vector (s) was always 
kept positive and the deviation parameter ( sg ⋅ξ ) was 

maintained to be larger than 0.7. For different values of g·b, the 
visibility and invisibility of partial dislocation on the one side of 
SF are summarized as follows: 
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Table I Nominal Chemical Compositions of TMW-4M3 and U720Li (wt.%) 
Alloy Ni Cr Mo W Co Ti Al C B Zr 

TMW-4M3 Bal. 13.5 2.8 1.2 25.0 6.2 2.3 0.03 0.02 0.03 
U720Li Bal. 16.3 3.1 1.3 14.8 4.8 2.4 0.03 0.02 0.03 

 
g·b = 0, ±1/3, -2/3, +4/3,  partial dislocation invisible 
g·b = +2/3, +4/3, ±1, etc.  partial dislocation visible 

The signs for 2/3 and 4/3 should be reversed for the partial 
dislocation lying to another side of SF [13]. 
 

Results and discussion 
 

UInitial microstructures  
 
The chemical compositions of two alloys are listed in Table I. 
TMW-4M3 contained higher Co content than U720Li. The 
microstructures of two alloys before tensile tests were similar and 
have been described in reference [6]. Both alloys consisted of γ 
matrix and γ΄ precipitates. The total volume fraction of γ΄ 
precipitates in TMW-4M3 and U720Li was 49.5% and 45.0%, 
respectively. 
 
UTensile properties  
 
For each alloy, two specimens were tested at each temperature. 
Figure 1(a) shows the average tensile properties of two 
superalloys at various temperatures. The ultimate tensile strength 

(
bσ ) of TMW-4M3 is significantly higher than that of U720Li in 

the temperature range of 25-725 °C. TMW-4M3 has comparable 
yield strengths ( 2.0σ ) with U720Li at temperatures below 650 °C, 

whereas it has higher 2.0σ  than U720Li in the temperature range 
of 650-750 °C. With increasing temperature, the discrepancy of 

2.0σ  between TMW-4M3 and U720Li gradually increases and 
reaches the maximum at 750 °C, i.e., 10% higher (see Figure 1(b)). 
 
UMicrostructures after tensile deformation 
 
UDeformation microstructures of U720Li:U The representative 
microstructures of U720Li after tensile rupture at RT, 650 ℃, and 
725 ℃ are shown in Figure 2. Dislocation slip bands were 
present at RT, and Orowan dislocation loops were frequently 
observed at 650 ℃. With increasing temperature to 725℃, 
dislocation slip combining climb was the main deformation mode, 
and few stacking faults were formed. These results indicate that 
dislocation activity, mainly dislocation-coupled APB shearing, is 
the dominant mechanism in U720Li up to 725 ℃. Our 
observation is in agreement with Gopinath’s report [14]. 

 

       
                                    (a)                                                                                     (b)           
Figure 1. (a) Average tensile properties of TMW-4M3 and U720Li at various temperatures. (b) Yield strength of TMW-4M3 and U720Li 

in the temperature range of 650-750 °C 
 

   
                 (a)                                                            (b)                                                            (c) 

Figure 2. Ruptured microstructures (samples were cut far from the ruptured surface) of U720Li at: (a) RT, dislocation slip bands were 
present; (b) 650 ℃, Orowan dislocation loops were frequently observed; and (c) 725 ℃, Dislocation slip combining climb was the main 

deformation mode. Few stacking faults were formed. 
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UDeformation microstructures of TMW-4M3: 
 
Microstructures after 1.0% plastic strain:Figure 3 shows the 
microstructures of TMW-4M3 with 1.0% plastic strain at RT, 650 
℃, and 725 ℃. Dislocation pairs cut through the γ΄ precipitates at 
RT, as shown in Figure 3(a). The Burgers vector of the paired 
dislocations involving the creation of APB in the γ΄ precipitates 
was determined to be a/2<110> by contrast analysis. Paired 
dislocations interacting with the γ΄ precipitates are usually active 
in superalloys when deformed at low temperature [15, 4]. The 
precipitate size and volume fraction are controlling parameters to 
determine the specific mechanism, namely, weakly or strongly 
coupled dislocations. For present case, the size of secondary γ΄ 
precipitates was about 100 nm, several times larger than the 
spacing between these paired dislocations in Figure 3(a). The 
spacing between weakly coupled dislocations is defined to be 
much larger than the precipitate size. It is therefore inferred that 
the dislocation pairs in Figure 3 (a) are strongly coupled. 
 
At 650 °C, numerous SFs can be seen in Figure 3(b). The length 
of most SFs was a few tens of nanometers. The SFs were verified 
to lie on two variants of {111} planes. At 725 °C, long 
deformation twins sheared both the matrix and the γ΄ precipitates, 
as shown in Figure 3(c). Twin reflections can be clearly observed 
in the inset [110] selected area diffraction (SAD). The thickness 
of deformation twins was around 10 nm. These results indicate 
that increasing temperature promotes the transition of SF shearing 
to deformation twinning.  

At 700 and 725 ℃, lots of deformation twins at nano-scale were 
present and had transversed across entire grains. Typical 
microstructures are illustrated in Figure 4(d) and (e). The 
diffraction spots from twins are marked by arrows in the inset 
[110] SAD of Figure 4(d). The bright laths in Figure 4(e) are 
deformation twins, imaged by selecting twin reflection.  
 
UNature of SF and dislocation dissociation in TMW-4M3 
 
The nature of SF in TMW-4M3 was determined by contrast 
analysis under two beam conditions. Figure 5 (a) and (b) show the 
BF and DF images of SF in the sample deformed at 650 ℃, 
respectively. Beam direction is along [ 101 ]. In Figure 5(a), 
both the outmost left and right fringe are dark, operating vector 
( 111 ) points toward the dark fringe of SF. In Figure 5(b), 
operating vector is (111), the outmost left fringe is bright, whereas 
the outmost right fringe is dark, ( 111 ) points toward the bright 
fringe of SF. According to the commonly used rules [16], the SF 
is intrinsic. 
 
The dislocation dissociation in interrupted sample deformed at 
650 ℃ was analyzed in detail. Figure 6 shows the representative 
micrographs used for the analysis of Burgers vectors of partials (1 
and 2) bounding SF. The fault plane determined by trace line 
analysis is (1 1 1). In Figure 6(a), both partial 1 and 2 are visible, 
while only partial 2 is visible in Figure 6(b). Experimental

 

   
         (a)                                                                  (b)                                                                 (c) 
Figure 3. Microstructures of TMW-4M3 with 1.0% plastic strain. (a) At RT, dislocation pairs cut the γ΄ precipitates; (b) At 650 °C, partial 
dislocations sheared the γ΄ precipitates, leaving short stacking faults behind; (c) At 725°C, numerous deformation twins sheared both the 

matrix and the γ΄ precipitates, inset SAD showing twin reflections. 
 

 
 
Microstructures after rupture:At RT, comparing Figure 4(a) with 
Figure 3(a), one can find that the dislocation density in the 
ruptured sample increased dramatically. Very few SFs were 
observed, which indicates that dislocation dissociation even at the 
final deformation stage is still difficult. The deformation 
microstructure at 400 ℃, Figure 4(b), is similar to that at RT.  
 
At 650 ℃, the SF extended over a few hundreds of nanometers. 
Figure 4(c) shows the SFs close to the edge-on orientation. The 
reflection spots originated from deformation twins were absent in 
the inset SAD. Comparing Figure 4(c) with Figure 3(b), it is 
concluded that larger strain can promote the extending of SF.  

observations of visibility/invisibility of partials under various two 
beam conditions are given in Table II. The results indicate that the 
Burgers vectors of two partials bounding SF are of a/6[ 121 ] 
and a/3[ 121 ], respectively. The dislocation dissociation is as 
follows: 
            a/2[110] = a/6[ 121 ] + SF + a/3[ 121 ] 
The leading partial may have the Burgers vector of a/3[ 121 ], 
which sheared the matrix and precipitates continuously, leaving 
intrinsic SF behind. Because Shockley partial dislocation shearing 
γ΄ precipitate forms complex SF with high energy in the γ΄ 
precipitate. It is energetically unfavorable. So the trailing partial 
a/6[ 121 ] was left at γ/γ΄ interface. Similar dislocation processes 
have been reported in IN738LC alloy under monotonic loading at 
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elevated temperatures and in C263 alloy after creep deformation 
at 800 ℃ [17, 18]. 
 

 
 
 

  
                                        (a)                                                                  (b)   
 

  
                                        (c)                                                                        (d)   
 

 
                                                                                (e)        

Figure 4. Microstructures after tensile rupture at various temperatures. Dislocations slipping was the dominant mechanism at RT (a) and 
400 ℃ (b); SF developed to be the main mechanism at 650 ℃ (c); deformation twinning evolved to be the controlling mechanism at 700 ℃ 

(d) and 725 ℃ (e). 
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                                       (a)                                                                    (b) 

Figure 5. (a) BF image of SF. Zone axis is [ 101 ]. Operating vector ( 111 ) points toward the dark fringe of SF. (b) DF image of SF. 
Operating vector is (111), and ( 111 ) points toward the bright fringe (left side) of SF. 

 

  
 

                            (a)                                                                                 (b) 
Figure 6. Representative micrographs corresponding to Table II used for the analysis of Burgers vectors of partial dislocations (1 and 2) 

bounding SF. (a) BD=[ 101 ], g = ( 200 ); (b) BD=[ 101 ], g = (111). 
 
Table II Experimental Observations of Visibility (v)/Invisibility (i) of Partials Under Different Two Beam Imaging Conditions. Fault Plane 

Is (1 1 1). Sample Deformed at 650 ℃. 

g Observations 
of partial 1 

g·bp1 
bp1=a /6[ 121 ] 

Observations 
of partial 2 

g·bp2 
bp2=a /3[ 121 ] 

200  v -2/3 v +2/3 

002  weak +2/3 i -2/3 

111  i -1/3 i +4/3 

111  i +1/3 v -4/3 

111 i +1/3 v +2/3 

111  i -1/3 i -2/3 

202  i -1/3 i +4/3 

220  i +1/3 v -4/3 

311  i +2/3 weak -2/3 

202  i -1/3 weak -2/3 
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UDeformation mechanism 
 
The dislocation pairs cutting mechanism (APB shearing 
mechanism) and SF shearing mechanism, schematically shown in 
Figure 7(a) and (b), are two competing deformation modes. As 
mentioned before, the former prevails in superalloys at 
temperatures below 600 °C, while the latter is usually observed at 
elevated temperatures. For the sheared area, APB is created in 
both the tertiary γ΄ precipitates and small part of secondary γ΄ 
precipitates when coupled dislocations movement is active. SF is 

formed in the matrix, secondary and tertiary γ΄ precipitates when 
SF shearing is the main deformation mechanism. Here, we put 
forward a concise model to describe the two processes. The 
increased surface energy per deformed unit area corresponding to 
the two mechanisms can be expressed as follows: 

 
APB shearing mechanism,    ΔE = γAPB(f γ΄III + θ f γ΄II )              (1) 
SF shearing mechanism,   ΔE = γp

SF (f γ΄III + f γ΄II ) + γm
SF fm    (2)

 
 

    
                                                                           (a)                                                (b) 
 

  
                       (c)                                                                                              (d) 

Figure 7. Schematic drawings of APB (a) and SF (b) shearing mechanisms. Small solid circles and large circles denote tertiary and 
secondary γ΄ precipitates, respectively. (c) The ΔE corresponding to APB shearing and SF shearing mechanisms as a function of tertiaryf . 

(d) The ΔE corresponding to APB shearing and SF shearing mechanisms as a function of temperature (T). 
 
 
Where 

ΔE is the increased surface energy per deformed unit area 
in system, 

γAPB is the APB energy of γ΄ precipitates, 
f γ΄III is the volume fraction of tertiary γ΄ precipitates, 
θ is a coefficient between zero and one, 
f γ΄II is the volume fraction of secondary γ΄ precipitates, 
γp

SF is the stacking fault energy of γ΄ precipitates, 
γm

SF is the stacking fault energy of γ matrix, 
fm is the volume fraction of γ matrix.  

Note that the ΔE depends on the microstructure, APB energy of γ΄ 
precipitates, and SF energy of both matrix and precipitates.  
 
For equation (1), the ΔE is linear to f γ΄III by assuming that θf γ΄II is 
a constant (very small but not zero in case of low strain), as 
illustrated in Figure 7(c). For SF shearing mechanism, the ΔE is a 
constant by assuming that the γp

SF is equal to γm
SF and volume 

fraction of primary γ΄ is a constant, as shown in Figure 7(c). The 
two lines have an intersection point, as indicated in Figure 7(c). 
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Table III The Value of Various Parameters and Calculated Results of ΔE (mJ·m-2) at RT 
Alloy f γ΄II f γ΄III

a fm θ γAPB
b γp

SF
c γm

SF
d ΔE(APB) ΔE(SF) 

TMW-4M3 0.32 0.015 0.505 0 180 19.9 19.9 2.7 16.7 
U720Li 0.294 0.025 0.55 0 150 35.9 35.9 3.8 31.2 

 
a The total volume fraction of γ΄ in TMW-4M3 and U720Li was 0.495 and 0.45, respectively, calculated by Thermal-cal program with a 
Ni-RUMN database. The volume fraction of primary γ΄ in TMW-4M3 and U720Li was examined by SEM to be around 0.16 and 0.13, 
respectively.  
b Reference 19. 
c The stacking fault energy of γ΄ precipitates is unknown, it is assumed to be equal to γm

SF. 
d The γm

SF of TMW-4M3 and U720Li is 19.9 ± 2.5 mJ·m-2 and 35.9 ± 3.7 mJ·m-2, respectively, determined via high resolution TEM. 
 
This point means a critical volume fraction of tertiary γ΄ 
( c

tertiaryf ). Below the c
tertiaryf , APB shearing mechanism is 

active. Above the c
tertiaryf , SF shearing mechanism is dominant.  

 
The influence of temperature on the deformation mechanism can 
be interpreted by considering the temperature dependence of ΔE. 
The APB energy is assumed to be nearly constant from RT to 700 
°C, while SFE decreases within this temperature range [20, 21]. 
The ΔE corresponding to APB shearing (equation (1)) is therefore 
a constant, however, it decreases with increasing temperature in 
case of SF shearing mechanism. The temperature dependence of 
ΔE is plotted in Figure 7(d). There exists a critical temperature Tc. 
Below the Tc, the APB shearing mechanism is favored, while the 
SF shearing mechanism is expected above the Tc.  
 
According to equation (1) and (2), APB energy, SFE, and f γ΄III 
have great influence on c

tertiaryf  and Tc, which are corresponding 

to the transition of deformation mechanisms. Higher APB energy 
and lower SFE cause the shift of c

tertiaryf  and Tc to left side, as 

inferred from Figure 7. Though the volume fraction of tertiary γ΄ 
is small, it does affect the deformation processes. Locq et al. have 
reported that the tertiary γ΄ may play a major role in the shearing 
process [22], which is in agreement with our proposal. 
 
As far as TMW-4M3 and U720Li are concerned with this model, 
the ΔE at RT can be roughly estimated. The value of various 
parameters and calculated results are listed in Table III. The ΔE 
corresponding to APB and SF shearing mechanisms in TMW-
4M3 is 2.7 and 16.7 mJ·m-2, and 3.8 and 31.2 mJ·m-2 in U720Li, 
respectively. For both alloys, the ΔE corresponding to SF shearing 
mechanism is much greater than that corresponding to APB 
shearing mechanism. So APB shearing mechanism was favored at 
RT, which is consistent with the experimental observation.  
 
When compared TMW-4M3 with U720Li, it is found that TMW-
4M3 has higher APB energy and lower SFE than U720Li. The 
APB energy is higher at higher Ti to Al ratios [23]. Because 
TMW-4M3 has higher Ti to Al ratio than U720Li (see Table I), it 
is reasonable to assume that TMW-4M3 has higher APB energy 
than U720Li. The SFE of γ matrix in TMW-4M3 and U720Li has 
been determined to be 19.9 ± 2.5 mJ·m-2 and 35.9 ± 3.7 mJ·m-2, 
respectively [24]. High APB energy and lower SFE result in the 

2c
tertiaryf > 1c

tertiaryf and 2
cT  > 1

cT  (see Figure 7(c) and (d)). The Tc 

in TMW-4M3 may be around 650 °C. So we can observe the 
transition of various deformation mechanisms in the temperature 
range of 25-725 °C in TMW-4M3. In contrast, only dislocation 

slip and/or climb prevailed in U720Li up to 725 °C, which implies 
that the Tc in U720Li may be higher than 725 °C. 
 
It is demonstrated that the deformation mechanisms in TMW-4M3 
and U720Li are different at low to intermediate temperatures 
depending on the energy status. The mechanical behavior is 
closely associated with the deformation mechanisms. In TMW-
4M3, the enhanced yield strength in the temperature range of 650-
750 °C is just corresponding to SF shearing and deformation 
twinning. Previous results have demonstrated that twin 
strengthening contributes to the enhanced strength in TMW-4M3 
[25, 26]. Here, the deformation processes involving planar defects, 
such as SFs and deformation twins, may be partly responsible for 
the enhanced yield strength of TMW-4M3 at service temperatures 
(650-750 °C). So controlling the deformation mechanism in disk 
superalloys seems to be a very useful method for improving the 
mechanical properties. Our results show that it is possible to 
control the deformation mechanism. For example, the APB energy 
and SFE, intrinsic parameters of materials, can be tailored by 
chemical composition design. The volume fraction of tertiary γ΄ 
can be adjusted by composition and heat treatment. Further 
investigation is needed to clarify possible other factors that may 
have great influence on the transition of deformation mechanisms. 
 

Summary 
 
The deformation microstructures of alloy U720Li and TMW-4M3 
after tensile tests at various temperatures have been studied by 
TEM. The main conclusions are as follows: 

(1) Dislocation activity, mainly APB shearing, was the 
dominant mechanism in U720Li up to 725 ℃. 

(2) In TMW-4M3, APB shearing mechanism was dominant at 
RT and 400 ℃, while intrinsic SFs shearing both the γ matrix and 
γ΄ precipitates operated at 650 ℃ . Moreover, deformation 
twinning occurred above 700 ℃.  

(3) A model related to the increased interface energy is put 
forward to describe the APB shearing and SF shearing 
mechanisms. The analysis indicates that there is a critical value, 
that is c

tertiaryf  and Tc. APB is favored when tertiaryf  and 

temperature are below the critical value, otherwise SF is favored.  
(4) APB and SF energy have great influence on c

tertiaryf  and 

Tc, which are corresponding to the transition of deformation 
mechanisms. Higher APB energy and lower SFE decrease the 
transition temperature from APB shearing to SF shearing 
mechanism.    

(5) The volume fraction of tertiary γ΄, APB energy, and SFE 
are important parameters for controlling the deformation 
mechanism in disk superalloys. 
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