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Abstract. 

 We present the software and method CADiff which allows for numerical 

simulation of interdiffusion and reactive diffusion processes. With two examples we 

demonstrate the effectiveness of our method. The known methods on the reactive and 

interdiffusion are significantly extended as follows: i) the diffusion fluxes are defined in 

the volume fixed reference frame that is rigorously defined  ii) the Darken method is 

extended and allows analyzing the non ideal alloys showing different molar volumes, 

iii) the boundary conditions take into account both the interdiffusion and reactive 

diffusion and iv) the flux constraints are used to couple processes occurring at different 

time scales. We demonstrate solutions of the interdiffusion in Fe-Ni-Cu alloy and 

heterogeneous reaction between multicomponent alloy and oxidant. The interdiffusion 

can be computed starting from the Fick’s constitutive diffusion flux formula to the 

combined Darken-Onsager approach. It allows modeling pure interdiffusion in multi-

component systems as well as a wide class of the reaction-diffusion problems associated 

with solid state chemistry, corrosion, surface treatment etc. 

 

Keywords: diffusion, interdiffusion, reaction diffusion, oxidation, chemical 

interdiffusion. 

 

 

 



1. Introduction. 

 The quantitative models of the processes and material behavior can be very useful 

in testing material stability, estimating required properties and predicting their “life 

time”. The reliable and simple simulation software considerably accelerates both the 

research and the development. It helps in designing and production of new materials.  

 The heterogeneous reactions in ternary system were analyzed by Wagner [1,2,-,34]. 

These are essentially the quasi-equilibrium processes (chemical diffusion, and reactions 

at interfaces) that take place under the influence of chemical potential gradient [5,6]. He 

was first to notice that the oxidized component enters the oxide phase as a result of the 

surface reaction and of the diffusion through alloy|oxide interface. The non-reacting 

elements diffuse into the interior of the alloy [3]. 

 The both Onsager [7,8] and Darken [9] methods are commonly used in 

nonequilibrium thermodynamics to describe diffusion in solids. The key Darken 

postulate that the total mass flow is a sum of the diffusion and drift flows was applied 

for the description of the diffusion in multi-component solid solution [10,11]. The 

equations of mass conservation, the appropriate expressions describing the fluxes and 

the postulate of constant molar volume of the system allowed the quantitative 

description of the diffusion transport process in the open as well as closed system, i.e., 

in the diffusion couple of the finite thickness. The method describes interdiffusion when 

intrinsic diffusivities depend on composition and allows including activities of 

components [10]. 

 In this software the Darken method is further extended to include the variable 

and/or different molar volumes, e.g., the Vegard law [12]. Moreover, we rigorously 

combine interdiffusion and reactive diffusion by broadening the Wagner boundary 



condition [3]. The method presented here and simulation package allows modeling the 

wide range of processes that can be treated as one-dimensional diffusion with 

convection (Darken drift) and reaction at interfaces. Classical examples shown are: 

• Interdiffusion in the closed multi-component systems, e.g., diffusion mixing, 

evolution of gradient materials and multi-layer systems. 

• Reaction-diffusion, i.e., the coupled interdiffusion and reactive diffusion due to 

the chemical reaction at the moving interface. 

 In what follows we consider the processes where the diffusivities may differ by 

orders of magnitude and number of components is unlimited. Consequently, the 

problem exhibits different time scales, e.g., the slow chemical diffusion (in the growing 

layer) and fast interdiffusion in multi-component mixture (alloy, intermetallic 

compound, etc.). The two-scale computational methods of modeling were used by many 

authors to model the mechanical properties of materials with microstructure and two-

scale simulations were proven to be efficient and reliable [13,14]. In most cases system 

of equations were solved in different time scales. In this work we use the concept of the 

flux limiter [15]. The interdiffusion method, the reaction-diffusion and simulation 

results are shown in the following sections.  

 

2. Interdiffusion in multicomponent open systems 

 Depending on the availability of the data and the required accuracy, CADiff 

allows selecting: i) the constitutive equations for diffusion flux, Fig. 1 and section 2.3, 

ii) the equation of state, section 2.2, iii) expression for diffusivities, section 2.4 and iv) 

the form of the known or computed reaction flux between alloy and surrounding. 

 



 

 

 

 
 
 
 
 
 
 
 
 
 
 

Flux formulae can be chosen from the set of the following constitutive equations: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Fig. 1. The schema showing the presented method and the available flux formulae’s. 

 

1) Laws: 

 a) Conservation of mass (Section 2.1):        

 div 0,    1,...,i
i

c J i r
t

∂ + = =
∂

 

  b) Equation of state (Section 2.2) 

  c) Diffusion flux (Section 2.3) 

  d) Diffusivities (Section 2.4) 

2) Boundary conditions and reaction flux        

 (Sections 2.5)

       Diffusion and Convection:                                          Diffusion only: 
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 or  or 
 
 
 
  or 
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Darken-Nernst-Planck (DNP) 
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i i i i iJ B c X c i rυ= + =  

Nernst-Planck (NP) 
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D
i i i iJ D c c

i r
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Fick (F) 
 

grad ,       1,...,i i iJ D c i r= − =  



 Figure 1 shows the schema of the method. The flux can be expressed as pure 

diffusion, d
i iJ J= (the formulae F, NP and O), or it can be coupled with the Darken 

method, d D
i i iJ J cυ= +  (DF, DNP and DO). The boundary conditions allow coupling 

interdiffusion and reactive-diffusion. The following basic methods are available to 

model the reactive-diffusion: 

• the quasi-stationary chemical diffusion of one or more elements in the growing 

layer, e.g., oxidation, intermetallic phase growth, surface treatment; 

• the concentration dependent flux through the interface (e.g., evaporation) or 

• arbitrary (postulated or measured) time dependent flux(es) through interface. 

 

2.1. Mass conservation law 

 We do not consider the chemical and/or other reactions within the diffusion zone 

and the equation of mass conservation has form: 

 ( )div 0i
i i

c c
t

υ∂
+ =

∂
, (1) 

where: ( ),i ic c t x=  and ( ),i i t xυ υ=  denote the molar concentration and the velocity of 

the i-th component. Summing up Eqs. (1) for all components, the global conservation 

law follows: 

 ( )div 0c c
t

υ∂
+ =

∂
. (2) 

The most general form of the flux used in our method is the Darken-Onsager flux: 

 
1
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i ij j i
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J L X J i r
=

= + =∑  (3) 



where: iJ  and D
iJ  denote the overall flux and the Darken flux (drift) of the i-th 

component, respectively, ijL  are phenomenological transport coefficients and jX  

denotes the force acting on the diffusing component. The Onsager constitutive 

equations base on the definition of the phenomenological transport coefficients [7]: 

 1,
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r

k k
k k i

ii i i r

k k
k
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L c B i j i r
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= ≠

=

⎛ ⎞
⎜ ⎟
⎝ ⎠= = =
∑

∑
 (4) 

 

1

,    ,    , 1,..., ,j j
ij i i r

k k
k

N B
L c B i j i j r

N B
=

= − ≠ =

∑
 (5) 

where ( ),i iN N t x= and ( ),...,i i i rB B N N= denote molar ratio and mobility.  

The transport coefficients in Eq. (5) are symmetrical, i.e., ,    ij jiL L i j= ≠ : 

 

1 1

,    ,    , 1,..., ,j j i i
ij i i j j jir r

k k k k
k k

N B N BL c B c B L i j i j r
N B N B

= =

= − = − = ≠ =

∑ ∑
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The forces in Eq. (3), jX , are defined as a gradient of the chemical potential: 

 grad ch
j jX µ= −  (7) 

The thermodynamic data in Eq. (7) can be introduced as analytical functions or 

assuming ideality sweeping statement (ai = ci). The mobilities in Eqs. (4)-(5), can 

depend on concentrations. One should notice that the results and the accuracy of the 

simulations critically depend on the quality of these descriptions (data). 

 

 

 



2.2. Equations of state 

The total mass density, ( ),t xρ ρ= , the molar concentration, the molar volume, 

( ),t xΩ = Ω , and the molar mass, ( ),M M t x= , are defined by the following standard 

relations: 
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= =
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where Mi is the molar mass of  i-th component and iΩ  denotes its partial molar volume.  

Total and partial molar volumes obey the following relations: 

 ( )1 2
1 1

, ,...,
r r

r i i i
i ii

d N N N dN dN
N= =

∂Ω
Ω = = Ω

∂∑ ∑ , (10) 

 ( ) [ ]*
1 2

1 10

, ,..., ,      at a moment 0,
iNr r

i i
r i i

i i

cN N N dN t t
c= =

Ω
Ω = Ω = ∈∑ ∑∫ , (11) 

where 
0

iN

i i i idN NΩ = Ω∫ . When molar volumes do not depend on concentration and 

stresses are negligible, the relation known as Vegard law follows from Eq. (11) [12]: 

 
1 1 1

1
r r r

i i i
i i i

i i i

cN c
c= = =

Ω Ω
= = Ω =

Ω Ω∑ ∑ ∑  (12) 

In this work we do consider noncompressible processes only. Consequently we assume 

that partial molar volumes are constant, i constΩ = . The two different forms of the 

equation of state can be used: 



- the classical Darken postulate of constant molar concentration 
1

:
r

i
i

c c const
=

= =∑  and      

- the Vegard law ( )
1

1, :
r

i i
i

t x N
c=

Ω = Ω =∑ , Eq. (12). 

 

2.3 Diffusion flux in multicomponent systems. 

The Darken flux, D
iJ , is computed relatively to the volume fixed reference frame: 

 D D
i iJ cυ=  (13) 

where: Dυ  is Darken velocity that is common for every component.  

 The Darken velocity, Dυ , is generated during interdiffusion due to locally 

unbalanced diffusion fluxes [16,  17]. The different partial molar volumes imply: 

 ( )
1

,
r

D di i
i

i

ct x
c

υ υ
=

Ω
= −

Ω∑ . (14) 

Depending on the available data, the diffusion flux can be expressed by the different 

constitutive equations. When different partial molar volumes are considered, 

,   i j i jΩ ≠ Ω ≠  the diffusion fluxes that are defined in the volume fixed reference frame 

and contain the correction factor, i
if

Ω
=
Ω

 [16]. The following constitutive equations are 

allowed in the presented method, Figure 1: 

a) The Darken-Onsager flux, 
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b) The Onsager flux: 
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=

Ω
= =
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c) The Darken-Nernst-Planck flux1: 

 ,       1,...,Di
i i i i iJ c B X J i rΩ
= + =
Ω

. (17) 

d) The Nernst-Planck diffusion flux [18,19]: 

 ,       1,...,i
i i i iJ c B X i rΩ
= =
Ω

 (18) 

e) The Fick-Darken flux2: 

  grad ,       1,...,D
i i i iJ D c J i r= − + =  (19) 

f) The Fick flux, Eq. (19), without Darken velocity and when molar volumes are 

equal becomes 1st Fick law: 

  grad ,       1,...,i i iJ D c i r= − =  (20) 

 

2.4 Composition dependent diffusivities. 

 The method allows to introduce constant as well as composition dependent 

diffusivities for all of the components, e.g., as analytical functions. Other possibility is 

to approximate the composition dependent diffusivities from the known self diffusion 

coefficients for each component: 

 * 0 exp ,       1,...i
i i

QD D i r
RT

⎛ ⎞= − =⎜ ⎟
⎝ ⎠

 (21) 

                                                 
1 Equation (17) follows from (3) when: 0,  for  ijL i j= ≠  and  ,    1,...,ii i iL c B i r≈ = . 
2 Equation (19) follows from Eq. (17). By assuming i) the ideality sweeping 

statement and ii) the equal partial molar volumes of components and Nernst-

Einstein relation between self diffusion coefficient and mobility, i iD B kT= . One 

gets: ( )0grad ln gradi i i i
i

RTX RT c ccµ= − + = − , where: 0
iµ  is standard chemical 

potential, R and T denote the gas constant and temperature. 



where: 0
iD  and iQ  denote the pre-exponential constant and activation energy for 

diffusion. 

 Following DICTRA [20], in the spirit of the Calphad approach, the composition 

dependency of these two factors, is represented with a linear combination of the values 

at each endpoint of the composition space. Using the Redlich-Kister expansion and Eq. 

(21) one gets: 

 * 0ln ln ,       1,...i
i i iRT D RT D Q i rΦ = = − =  (22) 

where: iΦ  can be interpreted as free energy of diffusion of the i-th component. 

The intrinsic diffusivities in r-component mixture (solid solution) are computed using 

the following relation [20]: 

 ( ),

1 1 0
,       1,...

r r r m pj p j k
i j j k j k

j j k j p
N N N N N i r

= = > =

⎡ ⎤
Φ = Φ + Φ − =⎢ ⎥

⎣ ⎦
∑ ∑∑ ∑  (23) 

where: iΦ  can be interpreted as free energy of intrinsic diffusion in the alloy, jΦ  is a 

value of iΦ for pure j-th component and ,p j kΦ  are binary interaction parameters. 

Thus from the Eq. (22), the intrinsic diffusivities in the alloy are given by: 

 exp       1,...alloy i
i iD D i r

RT
⎛ ⎞Φ

= = =⎜ ⎟
⎝ ⎠

. (24) 

 

2.5. Boundary conditions  

 The diffusion processes can be simulated using different boundary conditions. 

The software can simulate both the open and closed systems. 

1) In closed system all fluxes at all boundaries equal zero, 

( ) ( )( ),0 , 0,    1,...i i RJ t J t t i rλ= = =  (25) 



2) The boundary condition in a case of interdiffusion in open systems (system 

exchanging mass with a surrounding, Fig. 2) states that the flux of the arbitrary element 

through interface equals its diffusion flux in alloy at interface [10], e.g., for the right 

boundary it is: 

 ( ) ( ), ,d
i R i RJ t J tλ λ= , (26) 

where flux through interface, ( ),i RJ t λ , is a known or computed function of time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The schema of the interdiffusion forced by the chemical reaction at alloy|oxide 

interface. 
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 In this work we consider the fluxes at the boundaries, ( )( ),i RJ t tλ  and ( ),0iJ t , 

that are a result of chemical reaction, ( )ch
iJ t  [3]: 

 ( )( ) ( ), ch
i R iJ t t J tλ = . (27) 

The reaction flux can be introduced by: 

a) the analytical, known function to simulate the arbitrary process, e.g., a surface 

treatment of the alloy. The user has a possibility to introduce different fluxes for every 

component. 

b) in a case of  oxidation the fluxes can be introduced based on the Wagner method 

[3].  

 Wagner was first to notice that the oxidized component enters the oxide phase as a 

result of the surface reaction and of the diffusion through alloy|oxide interface. The non-

reacting element diffuse into the interior of the multi-component alloy [3]. By analogy, 

the reaction flux of A, ( )ch
AJ t , is due to the surface reaction, ( ), d dA R Rc t tλ λ− , and 

flux of A through the alloy|oxide interface, ( ),A RJ t λ , Fig. 2. 

 ( ) ( ) ( )d, ,
d

ch R
A A R A RJ t c t J t

t
λλ λ= − +  (28) 

The total (volume) balance of A during reaction of the multi-component alloy showing 

the constant molar concentration requires: 

 ( ) Rd
d

ch
AJ t c

t
λ

= −  (29) 

From Eqs. (28) and (29) the flux of A in the alloy at alloy|oxide interface is given by  

 ( ) ( ) ( )( ) d, , ,
d

R
A R A R RJ t c t c t

t
λλ λ λ= − . (30) 



Above equation is identical with boundary condition in the case of binary Ni-Pt alloy 

analyzed by Wagner [3]. In a case of multi-component alloy it is necessary to compute 

inward fluxes of the all non-reacting components. These diffusion fluxes are a result of 

the alloy consumption: d dR tλ . Consequently: 

 ( ) ( ) d, ,    for    1, 2,..., 1
d

R
i R i RJ t c t i r

t
λλ λ= = −  (31) 

The fluxes in the alloy as given by Eqs. (30) and (31), are computed only when both 

diffusion and convection are considered, Fig. 1. The schema of the interdiffusion forced 

by the chemical reaction at alloy|oxide interface is shown in Fig. 2. In a case of low 

nonstoichiometry of the growing phase, .ox
Ac const≅ , the flux of the reacting component 

A depends on time only (does not depend on position) [3]. This flux can be expressed 

by the Nernst-Planck formula [18,19]  

 ( )
ox

ch ox ox A
A A AJ t c B

x
µ∂

= −
∂

 (32) 

The Nernst-Einstein relation, i iD B kT=  [21], allows writing the reaction flux in the 

form: 

 ( )
ox ox ox

ch A A A
A

c DJ t
RT x

µ∂
= −

∂
 (33) 

The balance of A at the oxide|gas interface (Stefan condition) requires: 

 ( ) dX
d

ch ox
A AJ t c

t
= . (34) 

By comparison of the Eqs. (32) and (34), than applying the mean value theorem, one 

can obtain the rate growth equation, where the reaction rate is a function of time [3]: 

 ( )
( ) ( )

( )d 1  where  
d

A

A

t
ox ox
A A

k tX k t D d
t X t RT

µ

µ

µ
′

′′

= = ∫  (35) 



where ( ) ( )alloy oxideA Atµ µ′ =  and ( )2oxide OA Aµ µ′′ =  are the local chemical 

potentials of A at interfaces, Fig. 2. 

Upon assuming the local thermodynamical equilibrium at the alloy|oxide interface,  

 ( ) ( )( ) ( )( ) ( )( ), ,A A Aalloy t t t t oxide tµ λ µ λ µ′= = , (36) 

the instantaneous rate constant in Eq. (35) can be expressed as a function of A 

concentration in the alloy, at the alloy|oxide interface: 

 ( )
( ),1 A R

A

t
ox ox
A Ak t D d

RT

µ λ

µ

µ
′′

= ∫ . (37) 

 Equations (34) and (35) allow computing the flux of A in the oxide as a function 

of the instantaneous rate constant (chemical potential of A at interface):  

 ( ) ( )
( )

( )

( )
0

2

ox
Ach ox

A A t

k t c k t
J t c

X t k dτ τ
= =

∫
, (38) 

where ( ) ( )2

0
2

t
X t k dτ τ= ∫ . 

The interdiffusion in the alloy and the reaction diffusion in the oxide are coupled by the 

flux of reacting component through the interface, Fig. 2. The total flux of reacting 

component A, Eq. (38), through the alloy|AaXb interface is a result of reaction (alloy 

consumption), Eq. (30). Combining Eqs. (29), (30) and (38), one gets the equation 

describing the flux of oxidized component through the interface: 

 ( )( ) ( )

( )
( )

( ),

0

1,     where    
2

A R

A

tox
ox oxA

A R A At

c k t
J t t k t D d

RTk d

µ λ

µ

λ µ
τ τ ′′

= = ∫
∫

. (39) 

 

 

 



2.6. Initial conditions 

1) Initial distributions of the mixture components must be known: 

 ( ) ( )00,   for  1, 2,...,i ic x c x i r= =  (40) 

 The initial distributions of the components can be introduced as a step function 

(Heaviside function) or any profile given by the set of points. Thus, one can analyze 

processes in gradient materials, multi-layers, multiples materials and many others.  

2) Initial position of the right boundary of the mixture,  ( ) 00R Rλ λ=  (the thickness of 

the mixture/alloy). 

3) Initial thickness of the product layer,  ( ) 00X X=  

 

3. Examples 

3.1. The reaction-diffusion, processes at different time scales 

 From the technical point of view, very interesting are the heterogeneous reactions, 

e.g., the oxidation of alloys, some CVD processes, etc. In such processes three different 

phases are considered. Figure 2 shows the substrate (the multi-component alloy), 

reacting element in gas or liquid phase (oxidant X) and solid product layer (AaXb). The 

respective interfaces are planar and local equilibrium is assumed. 

Reaction-diffusion, non stationary Wagner model. Heterogeneous reactions in many 

cases result in the formation of the compound showing narrow homogeneity range, i.e., 

showing the low nonstoichiometry, Aa-yXb, where 0y ≈ . In this work we analyse 

growth of the binary compound shown on Fig. 2. The A-component of the alloy reacts 

with, X-component in the gas atmosphere, X2(gas). The slowest, rate controlling 

process is diffusion of A and/or X in the growing product layer of finite thickness, X(t), 

Fig. 2. The compound formation occurs according to reaction: 



 ( )2A(alloy) + X gas  = A X2 a b
ba . (41) 

Let us assume that the alloy is an ideal solid solution, 0 lni i iRT cµ µ= + . The local 

equilibrium at ( )R tλ , Eq. (36), implies  ( )( ) ( )( )0 ln ,A A Aoxide t RT c t tµ µ λ′ = + . In such 

a case the instantaneous rate constant in Eq. (39) becomes: 

 ( )
( )

ln
A

A

c t
ox
A A

c

k t D d c
′

′′

= ∫  (42) 

or 

 ( )
( )

ln
A

A

N t
ox
A A

N

k t D d N
′

′′

= ∫  (43) 

where: ( ) ( )( ),A A RN t N t tλ′ =  is a molar ratio of the component A in the alloy at the 

alloy|oxide interface.  

 Following Wagner, the molar ratio of the oxidized component A in the oxide can 

be expressed assuming the local equilibrium within the scale. Consequently, the 

oxidized component mole fraction at the alloy|oxide interface is given by [3]: 

 ( )( ) ( ) ( )
2 2

4 / z e
A O ON t p t p′ ′ ′=  (44) 

where: ( ) ( )
2 2

 and  e
O Op t p′ ′  denote the oxygen partial pressures at the alloy|oxide and (pure 

metal A)|oxide interfaces respectively, z is the valence of oxidized component A in 

oxide. Combining Eqs. (43) and (44): 

 ( )
2

2

2 ( )

ln
4

O

O

p
ox
A O

p t

zk t D d p
′′

′

= ∫  (45) 

where ( ) ( )
2 2

alloy oxideO Op t p′ =  and ( )
2 2 2oxide OO Op p′′ =  are the oxygen pressures at 

interfaces of the growing layer. 



 It was shown by authors, that presented method gives better approximation of the 

experimental data than the Wagner quasi-stationary solution [22]. 

 

Reaction-diffusion, arbitrary ternary alloy. In this work we show the influence of the 

different time scales, different diffusion coefficients in alloy and oxide.  

 The data used to simulate the oxidation of the arbitrary ternary alloy are shown in 

Table 1. We assume that it is an ideal solid-solutions and that intrinsic diffusivities in an 

alloy and oxide differ (interdiffusion coefficient in alloy depends on composition). 

 

Table 1. Data used to simulate the oxidation of the A-B-C alloy: NA(0)=0.6, NB(0)=0.1, 

NC(0)=0.3 and the initial thickness of oxidized alloy equals 50 µm.  
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 Figure 3 shows the results obtained for an arbitrary ternary alloy, A-B-C. It can be seen 

that when intrinsic diffusivities in the alloy are higher than in the growing layer, Fig. 3a, 

then the oxidation process can be approximated by the parabolic rate law, i.e., the slow 

diffusion in the reaction product is rate controlling step. One may also note relatively 

high concentration of reacting element A in the alloy at the alloy│oxide interface. The 



low intrinsic diffusivities in the alloy markedly decrease the reaction rate, Fig. 3b. The 

concentration of reacting metal in alloy at alloy|oxide interface after the long reaction 

time decreases to the very low values and oxidation process is non-parabolic one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The growth rate of the AO scale on ternary alloy and concentrations of 

components as a function of distance from alloy/oxide interface after 1000 hours. 

 

 The last example is the reactive-interdiffusion is again selective oxidation of the 

arbitrary ternary gradient material (alloy). The initial concentration of components 

a) 

b) 



shown in Fig. 4 is typical for the alloy│coating system. The data used to simulate the 

interdiffusion and reaction of the arbitrary ternary alloy are shown in Table 2.  

 

Table 2. Transport properties of the ternary alloy and oxide, AX.  
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 The initial thickness of the alloy equals 100 µm, oxidation time equals 10000 h.  

 

 

 

 

 

 

 

 

 

Fig. 4. The thickness of the AO scale growing on A-B-C ternary alloy/coating system 

after 10000 hours; the concentration of components as a function of distance from the 

coating/oxide interface. 

 

 It can be seen that live time of the material exceeds 10000 hours and process 

follows the parabolic rate law. 

 



3.2. Interdiffusion 

 In this section we compare the experimental results [23] with the computed results 

using the Darken-Nernst-Planck flux formulae, Eq. (17). The Fe-Cu-Ni system was 

chosen because it is a single phase in a wide range of compositions and the extensive 

experimental data are available. The following data were used: 

- the thermodynamic properties of Fe-Cu-Ni alloys at 1273T =  [K] [24]; 

- the experimentally measured tracer diffusivities in Cu-Fe-Ni alloys [25]; 

- the composition of diffusion couple: 41.9NCu-58.1Ni|Fe [wt.%], its thickness: 2 [mm] 

± 0.1 and annealing time: 170 [h] [23]; 

- the partial molar volumes of components, iΩ , were estimated from the density of the 

pure metals and relation: T
i i iM ρΩ = . The density of alloy, Tρ , was estimated using 

the expression: ( )mTT
mk T Tρ ρ= − −  where mT  is an alloy melting temperature, mTρ its 

density and k the coefficient of thermal expansion [26]. The partial molar volumes 

equal: 7.92CuΩ = , 7.66FeΩ = , 7.21NiΩ =  [cm3mol-1]. 

 Figure 5 shows the comparison of the experimental data [23] with computed 

results. Figure 6 shows the results obtained with the use the composition dependent 

diffusivities (section 2.4) and the average intrinsic diffusion coefficients: 

-91.021 10CuD = ⋅ , -101.254 10FeD = ⋅  and -12 23.647 10  /NiD cm s⎡ ⎤= ⋅ ⎣ ⎦  [25].  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Comparison of the experimental and  calculated  distribution  of  elements in the 

41.9NCu-58.1Ni|Fe [wt.%] diffusion couple. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The comparison of different approximation of diffusion coefficient 

 

This work 

This work, 
composition independent 
intrinsic diffusivities 
This work, 
composition dependent 
intrinsic diffusivities 



 It is evident that the approximation give satisfactory agreement with experimental 

results in case of simulating the Cu-Fe-Ni diffusion couple 58.1Ni-41.9NCu|49.6Ni -

50.4Fe [wt. %] [23].  

 

4. Summary and conclusions 

 We presented the model of the reaction–diffusion in the multi-component, two-

phase system. The simulation of interdiffusion in ternary alloy and the selective 

oxidation of the binary/ternary compound validated model. The simulation of 

interdiffusion in the Fe-Ni-Cu alloy show satisfactory agreement with experimental 

data. Moreover, it confirms the effectiveness of the approximation method used to 

evaluate the intrinsic diffusivities as a function of concentration. 

 The model/method and the software can be extended to compute the more 

complex processes. 
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