Pore Formation in Solid during Manufacturing and Materials Processing

P. S. Wei *
Distinguished Research Professor
FASME, FAWS

* E-mail: pswei@mail.nsусu.edu.tw

Heat Transfer Lab for Manufacturing and Materials Processing
Abstract

Mechanisms of pore formation in solid during materials processing and manufacturing are studied from experimental observations and quantitative interpretations of behavior of a bubble trapped in solid during solidification in this note. Formation of bubbles is resulted from supersaturation of the dissolved gas in the liquid ahead of the solidification front. The pores in solids are widely encountered in micro-electro-mechanical systems (MEMS), manufacturing, materials and bioscience fields. To facilitate analysis, the development of the bubble or pore in solid can be classified into five regimes: (1) nucleation on the solidification front, (2) spherical growth of the bubble, (3) solidification rate-controlled elongation, (4) disappearance of the bubble in the solid, and (5) formation of the pores. Owing to quite different and irregular pore shapes, systematical investigations of complicated bubble dynamics in the solid during freezing are becoming important and challenging issues. Some of analyses, models and future topics are presented in this work.
Content

- Introduction
- Experimental setup and measurements
- Bubble formation
- Model for bubble entrapment
- Solution procedure chart
- Governing equations and boundary conditions
- Simplified models
- Wormhole formation
- Future topics
- Examples
- Conclusions
Introduction

- Chalmers (1959): Wormholes due to air supersaturation in water at solidification front are observed and interpreted from solute diffusion viewpoint.
- Wilcox and Kuo (1973): Bubble nucleation and growth ahead of solidification front of multicomponent solutions are interpreted from momentum balance, solute transport, segregation and physico-chemical theories.
- Vasconcellos and Beech (1975): Blowhole shapes are observed and explained from solute profile in ice/water/carbon dioxide system.
- Geguzin and Dzyuba (1977): The bubbles observed arise chiefly in the region of coarse distortion of solidification front. Volume density and mean size of pores in ice as functions of solidification rate are measured.
Geguzin and Dzuba (1981): Periodic formation of pores due to alternative accumulation and drop down of solute concentration are observed by using the test bubble method. A bubble may not be captured as an elongated pore, or isolated pore, depending on relative speed between the bubble cap and solidification rate.

Wei et al. (2000): A spherical cap-shaped bubble with a specified contact angle is proposed to predict pore shapes in solid by accounting for mass, momentum and energy transport and physico-chemical theories. The analysis is extended by Wei and Ho (2001) to determine self-consistent contact angles.

Murakami and Nakajima (2002): Spherical, columnar and periodic pores, and interfacial morphology as function of saturation, pressure, and solidification rate are observed and measured.

Wei et al. (2004): In situ measurements of bubble and pore shapes are conducted. Five stages of pore formation are proposed and modeled.
Experimental Setup and Measurements
(Wei et al. 2003, 2004)
Heat Transfer Lab for Manufacturing and Materials Processing
Bubbles trapped in solid at different times or locations near the location of 1 cm (a) 0, (b) 5, (c) 20, (d) 60, (e) 120, (f) 150, (g) 180, and (h) 206 s during the freezing of water containing oxygen gas content of 0.0041 g/100 g and temperature of the constant temperature sink of -25°C.
Bubbles trapped in solid at different times or locations near a location of 1 cm (a) 0 s, (b) 450 s, (c) 540 s, (d) 810 s, (e) 900 s, (f) 1170 s, (g) 1350 s, (h) 1440 s during the freezing of water containing oxygen gas content of 0.0037 g/100 g and temperature of -25°C of the constant temperature sink.
Temperature-Time Diagrams for Different Cooling Temperatures

$T_c = -25^\circ C$

$T_c = -15^\circ C$
Solidification Front Location – Time Diagram

Concentration Profile – Time Diagram

Heat Transfer Lab for Manufacturing and Materials Processing
In Situ Measurement of Pore Shapes

Oxygen in water
\(C_0 = 0.0041 \text{g/100g} \)
\(T_c = -25^\circ \text{C} \)
\(T_w = 22^\circ \text{C} \)

Heat Transfer Lab for Manufacturing and Materials Processing
Suggested Stages for Pore Formation (Wei et al. 2004)

- Nucleation on solidification front
- Spherical growth
- Solidification rate-controlled elongation
- Disappearance of the bubble
- Pore formation in solid
Bubble Formation

- Nucleation from super-saturation (Grigorenko, 1970)
- Entrapment in high-intensity beam welding (Pastor et al. 2001)
Nucleation (Ward et al. 1970; Wei et al. 2003)

Nucleation of a bubble on a surface is satisfied by

\[
\frac{\partial \Delta F}{\partial R} \leq 0, \quad R \geq R_c
\]

where the change in Helmholtz free energy

\[
\Delta F = \sigma_{\ell g} A_{\ell g} + (\sigma_{sg} - \sigma_{s\ell}) A_{sg} - (p_g - p_{\ell}) V_g
\]

where terms on the right-hand side are, respectively, free energy change due to formations of L-G and S-G interfaces and disappearance of S-L interface, and volumetric free energy change due to bubble formation.
The free energy barrier for nucleation is

\[\Delta F_{\text{max}} = \frac{16\pi \sigma_{lg}^3}{3(p_g - p_\ell)^2} f(\phi) \]

where

\[p_g = \eta p_{\ell,\text{sat}} + p_\ell \frac{C_{2,\ell}}{C_{2,\ell,\text{sat}}} \]

Factor \(\eta \approx 1 \), gas pressure is determined by considering phase equilibrium

\[\mu_{2,g}(p_g, T, \omega_{2,g}) = \mu_{2,\ell}(p_\ell, T, \omega_{2,\ell}) \quad \mu_{1,g}(p_g, T, \omega_{1,g}) = \mu_{1,\ell}(p_\ell, T, \omega_{1,\ell}) \]

The chemical potential for species \(j \) is evaluated by

\[\mu_j = \mu_{0j}(p, T) + k_B T \ln \omega_j \]

where \(\mu_{0j}(p, T) \) is the chemical potential in the pure phase of species \(j \), \(\omega_j \) mole fraction.
Entrapment

- The reasons for entrapment of bubbles in liquid are still unclear. Bubble entrapment is closely related to complicated annular vertical two-phase flows.
Model for Bubble Entrapment

Previous two types of bubble formation can be treated by the model involving three phases separated by two moving boundaries.
Solution Procedure Chart

1. Eq. of state: $T_g = \text{const.}$
2. Mass transfer: h_D
3. Henry’s law: $p_g = KC_w$
4. Mass influx: $\frac{dn_g}{dt} = h_D S(C_w - C_\infty)$
5. Rayleigh-Plesset Eq. or Young-Laplace Eq.:
 $p_g = p_\ell + \sigma \frac{1}{R_1} + \frac{1}{R_2}$
6. Pore shape
7. Liquid domain is determined from energy balance at S-L interface
8. Fluid and energy Eqs. are solved
9. p_ℓ converges
 - Yes → Next time
 - No → No

Heat Transfer Lab for Manufacturing and Materials Processing

Dept. Mechanical & Electro-Mechanical Eng., NSYSU
Kaohsiung, Taiwan, China
Governing Equations and Boundary Conditions

Continuity, fluid, energy and species eqs.

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{v} &= 0 \\
\frac{\partial \rho \mathbf{v}}{\partial t} + \nabla \cdot \rho \mathbf{v} &= -\nabla p + \mu \nabla^2 \mathbf{v} - \rho \beta_T \bar{g}(T - T_0) - \rho \beta_C \bar{g}(C - C_0) \\
\frac{\partial \rho T}{\partial t} + \nabla \cdot \rho \mathbf{v} T &= \alpha \nabla^2 T \\
\frac{\partial \rho C}{\partial t} + \nabla \cdot \rho \mathbf{v} C &= D \nabla^2 C
\end{align*}
\]

Energy and concentration balances at the solidification front

\[
\begin{align*}
-\mathbf{n} \cdot k_s \nabla T_s &= -\mathbf{n} \cdot k_\ell \nabla T_\ell + \rho h_s \mathbf{n} \cdot \mathbf{v} \quad \text{(i.e. Stefan B. C.)}
\\
-\mathbf{n} \cdot D_s \nabla C_s &= -\mathbf{n} \cdot D_\ell \nabla C_\ell + C_\ell (1 - k_p) \mathbf{n} \cdot \mathbf{v}
\end{align*}
\]
Simplified Models

- Liquid pressure is hydrostatic pressure to avoid calculation of fluid equations.
- The bubble cap is spherical.
- The growth of bubble cap is specified.
- The liquid layer inside solid is stationary or absent.
- Henry’s law is used to remove calculation of species transport.
- Solidification rate is a constant.
Spherical Growth

- Schematic sketch gives

\[R + R \cos \phi \approx s \]

Differentiating leads to

\[
\frac{dR}{dt} (1 + \cos \phi) + R \frac{d \cos \phi}{dt} = \frac{ds}{dt}
\]

The contact angle is found by introducing \(R = c \sqrt{t - t_N} \) and conducting integration

\[
\phi = \cos^{-1} \left(\frac{\sqrt{t - t_N}}{c} \frac{ds}{dt} - 1 \right)
\]

where \(c = r_c \sqrt{\frac{3}{2 \sigma} R_g T \omega M_{in,c}} \).
Solidification Rate-Controlled Elongation

Normal stress balance gives

\[r_i(t) = \frac{2\sigma_{\ell g} \sin \phi}{p_g - p_\ell} \]

Concentration at the bubble cap can be simply obtained by

\[C_{\ell,w} = C_0(1 - \frac{K}{R_\ell Th_D} \frac{ds}{dt})^{-1} \] \hspace{1cm} (1)

which, unfortunately, exhibits singularity as denominator vanishes.

Eq. (1) is derived as follow:
Continued

Differentiating Eq. of state

\[
\frac{dp_g}{dt} V + p_g \frac{dV}{dt} = \frac{dn_g}{dt} RT
\] \hspace{1cm} (2)

where time derivative of bubble volume is

\[
\frac{dV}{dt} = \pi r^2 \frac{ds}{dt}
\] \hspace{1cm} (3)

Mass influx is

\[
\frac{dn_g}{dt} = h_D \pi r^2 (C_{\ell,w} - C_{\infty})
\] \hspace{1cm} (4)

Henry's law is

\[
p_g = KC_{\ell,w}
\] \hspace{1cm} (5)

Equation (1) is obtained from Eq.(2) by ignoring the first term and substituting Eqs. (3) through (5).
Comparison between Prediction and Measurement

ℓ: bubble length in solid
ϕ: contact angle
h: cap height
r_i: cap radius on solidification front

Heat Transfer Lab for Manufacturing and Materials Processing
Example 1. Find (a) gas pressure, (b) free energy barrier for heterogeneous nucleation, and (c) the critical radius of a bubble in water containing oxygen gas of 0.0041 g/100g, as the solidification front advances to 1 cm. Solidification subject to a cold temperature of -25°C starts at 20 cm below the free surface. The contact angle is assumed to be 60 deg.

Ans.: As shown in previous figure, oxygen content is 0.04 g/100g as the solidification front advances to 1 cm. The saturated solubility is 0.00665 g/100g, and saturation vapor pressure is 611 Pa.

(a) The difference in gas and hydrostatic pressures is

\[p_g - p_\ell = p_\ell \left(\frac{C_{2,\ell}}{C_{2,\ell,\text{sat}}} - 1 \right) + p_{\ell,\text{sat}} = 1000 \cdot 9.8 \cdot (0.2 - 0.01) \cdot \left(\frac{0.04}{0.00665} - 1 \right) + 611 \]

\[= 9949 \text{ Pa} \]
(b) The free energy barrier is

\[\Delta F_{\text{max}} = \frac{16\pi\sigma^3_{lg}}{3(p_g - p_\ell)^2} f(\phi) = \frac{16\pi(0.076)^3}{3(9949)^2} \left(0.5 + 0.5^3\right) / 4 = 1.2 \times 10^{-11} \text{ J} \]

(c) The critical radius is

\[R_c = \frac{2\sigma_{lg}}{p_g - p_\ell} = \frac{2 \cdot 0.076}{9949} = 1.5 \times 10^{-5} \text{ m} \]

which agrees with experimental data (Wei et al. 2003)
Example 2. As extended by Ex. 1, calculate (a) solidification rate, (a) mass transfer to the bubble at the time for nucleation.

Ans.: (a) Energy balance at the solidification front is governed by

\[k_s \frac{\partial T_s}{\partial x} = k_\ell \frac{\partial T_\ell}{\partial x} + \rho h_{sl} \frac{ds}{dt} \]

Owing to low liquid thermal conductivity and thick thickness of liquid, solidification rate can be estimated by

\[\frac{ds}{dt} \approx \frac{k_s}{\rho h_{sl}} \frac{\partial T_s}{\partial x} \approx \frac{2.22}{1000 \cdot 3.3 \times 10^5} \cdot \frac{25}{0.01} = 1.7 \times 10^{-5} \text{ m/s} \]

which agrees with experimental data.
(b) Choosing mass transfer coefficient \(h_D \) to be \(1.7 \times 10^{-5} \text{ m/s} \), mass transfer flux to the bubble yields

\[
M_{in,c} = h_D (C_{\ell,w} - C_0) = 1.7 \times 10^{-5} (0.04 - 0.0041) \cdot \frac{10}{1000} \cdot 1000
\]

\[
= 6.1 \times 10^{-6} \text{ kg/m}^2 \cdot \text{s}
\]
Example 3. Based on previous example, calculate the maximum radius of the pore as the solidification front is advanced to 3 cm.

Ans.: Henry's constant $K = 10^6$ Pa-m3/kg – mole, mass transfer coefficient $h_D = \frac{ds}{dt} = 1.7 \times 10^{-5}$ m/s. The solut content at the bubble cap is then calculated by

$$C_{l,w} = C_0 \left(1 - \frac{K}{R_g \cdot T_D} \frac{ds}{dt}\right)^{-1} = 0.0041 \left(1 - \frac{10^6}{8314 \cdot 273 \cdot 1.7 \times 10^{-5}}\right)^{-1} = 0.007 \text{ g/100g}$$

Gas pressure is

$$p_g = KC_{l,w} = 10^6 \frac{\text{Pa} - \text{m}^3}{\text{kg} - \text{mole}} \left(\frac{0.007 \text{ g/100g}}{32} \cdot \frac{10}{1000}\right) \cdot 1000 \frac{\text{kg}}{\text{m}^3} = 2200 \text{ Pa}$$

The maximum radius takes place at a contact angle of $\pi / 2$. This gives

$$r_i = \frac{2 \sigma_{lg}}{p_g - p_l} = \frac{2 \cdot 0.076}{2200 - 1000 \cdot 9.8 \cdot (0.2 - 0.03)} = 2.8 \times 10^{-4} \text{ m}$$

which are of relevant magnitudes as experimental data.
Wormhole Formation

(Bond number $\equiv \frac{\rho g R^2}{\sigma_{lg}} \ll 1$)

Balance between gas pressure and capillary pressure due to two principal curvatures results in a bubble having a neck.
Force balance indicated in previous figure can be extended to interpret the formation of a wormhole. Furthermore, the reason for an increase in bubble size with depth is attributed to an increase in hydrostatic pressure.
Future Topics

- Fluid flow effects on liquid pressure in bubble growth
- Gas flow in the bubble
- More realistic shape of the bubble surface
- Criterion for bubble departure and entrapment
- More realistic mass transfer across bubble surface
- Coupled solidification rate determined by energy equation together with Stefan boundary condition
- Interfacial morphology on bubble growth
- Interactions between adjacent bubbles and pores
- Cooling and solidification of a pore in solid
- Coalescence of pores in solid
- Criterions and phenomena among spherical, columnar, and periodic pores
Conclusions

- Mechanisms of pore formation in solid can be revealed from studying behavior of a bubble entrapped in solid during unidirectional solidification.
- Pore shapes in solid should account for transient phase changes in three phases, physico-chemical and metallurgical kinetics, mass, momentum, energy and species transport.
- Simplified models presented in this note have provided a fundamental and crucial understanding of pore formation in solid. However, they still need to be improved and generalized.
- Mechanisms of irregular shapes of pores are still unclear at the present time.
References

Thanks for Your Attention