TMS2008 **137th Annual Meeting & Exhibition** Linking Science and Technology for Global Solutions | Program-at-a-Glance | 2 | |-------------------------|-----| | Session Listing | 8 | | Sunday PM | 13 | | Monday AM | 24 | | Monday PM | 65 | | Tuesday AM | 113 | | Tuesday PM | 167 | | Wednesday AM | 223 | | Wednesday PM | 268 | | Thursday AM | 312 | | Index | 328 | | Floor Plans/Shuttle Map | 351 | | | | | ш | Sunday | Mor | nday | Tues | sday | Wedn | esday | Thursday | |------|--|--|--|---|--|---|---|----------| | Room | PM | AM | PM | AM | PM | AM | PM | AM | | 270 | | | Sloan Industry Centers Forum: Techno- Management Issues Related to Materials-Centric Industries: Session I | Sloan Industry
Centers Forum:
Techno-
Management
Issues Related to
Materials-Centric
Industries:
Session II | | | | | | 271 | | Micro-Engineered
Particulate-Based
Materials:
Session I | | Materials Informatics: Enabling Integration of Modeling and Experiments in Materials Science: Informatics and Materials Property Design | Materials Informatics: Enabling Integration of Modeling and Experiments in Materials Science: Informatics and Combinatorial Experiments and Materials Characterization | Materials Informatics: Enabling Integration of Modeling and Experiments in Materials Science: Informatics and Materials Theory and Modeling | Materials Informatics: Enabling Integration of Modeling and Experiments in Materials Science: Informatics and Cyberinfrastructure | | | 272 | | General Abstracts:
Extraction and
Processing:
Session I | General Abstracts:
Extraction and
Processing:
Session II | IOMMMS Global
Materials Forum
2008: Creating
the Future MS&E
Professional | Materials for
Infrastructure:
Building Bridges
in the Global
Community:
Session I | Materials for
Infrastructure:
Building Bridges
in the Global
Community:
Session II | The Role of
Engineers in
Meeting 21st
Century Societal
Challenges
AIME Keynote
Session | | | 273 | 2008
Nanomaterials:
Fabrication,
Properties, and
Applications:
Poster Session | 2008
Nanomaterials:
Fabrication,
Properties, and
Applications:
CNT | 2008 Nanomaterials: Fabrication, Properties, and Applications: Nanomaterials Synthesis and Sensor | 2008
Nanomaterials:
Fabrication,
Properties, and
Applications:
Device | 2008
Nanomaterials:
Fabrication,
Properties, and
Applications:
Application | 2008 Nanomaterials: Fabrication, Properties, and Applications: Processing and Properties | 2008
Nanomaterials:
Fabrication,
Properties, and
Applications:
Characterization
and Theory | | | 275 | | Emerging Interconnect and Packaging Technologies: Pb-Free Solders: Fundamental Properties, Interfacial Reactions and Phase Transformations | Emerging
Interconnect
and Packaging
Technologies:
Pb-Free and
Sn-Pb Solders:
Electromigation | Emerging
Interconnect
and Packaging
Technologies:
Advanced
Interconnects | Emerging
Interconnect
and Packaging
Technologies:
Pb-Free Solder:
Tin Whisker
Formation and
Mechanical
Behavior | Emerging
Interconnect
and Packaging
Technologies:
Pb-Free Solders:
Reliability and
Microstructure
Development | Emerging Interconnect and Packaging Technologies: Pb-Free Solders and Other Interconnects: Microstructure, Modeling, and Test Methods | | | 276 | | Hume-Rothery
Symposium -
Nanoscale
Phases:
Session I | Hume-Rothery
Symposium -
Nanoscale
Phases:
Session II | Hume-Rothery
Symposium -
Nanoscale
Phases:
Session III | Hume-Rothery
Symposium -
Nanoscale
Phases:
Session IV | General Abstracts:
Electronic,
Magnetic, and
Photonic Materials
Division:
Session I | General Abstracts:
Electronic,
Magnetic, and
Photonic Materials
Division:
Session II | | ### **Program-at-a-Glance** | Sunday | Monday | | Tues | sday | Wedn | Wednesday Tr | | | |--------|--|---|---|--|---|---|----|------| | PM | AM | PM | AM | PM | AM | PM | AM | Room | | | Complex Oxide Materials - Synthesis, Properties and Applications: ZnO Nanostructures and Thin Films | Complex Oxide Materials - Synthesis, Properties and Applications: Novel Functionality from Complex Oxide Heterointerfaces | Complex Oxide Materials - Synthesis, Properties and Applications: Functionally Cross-Coupled Heterostructures | Complex Oxide Materials - Synthesis, Properties and Applications: Epitaxial Oxides: Ferroelectric, Dielectric, and (Electro-)Magnetic Thin Films | Complex Oxide Materials - Synthesis, Properties and Applications: Scaling, Dynamics, and Switching | Complex Oxide
Materials -
Synthesis,
Properties and
Applications:
Ferroelectric/
Dielectric Oxides | | 277 | | | Advances in
Semiconductor,
Electro Optic and
Radio Frequency
Materials:
Silicon-Based
Optoelectronics
and
Microelectronics | Advances in
Semiconductor,
Electro Optic and
Radio Frequency
Materials:
Compound
Semiconductors
and Beyond | Phase Stability,
Phase
Transformations,
and Reactive
Phase Formation
in Electronic
Materials VII:
Session I | Phase Stability,
Phase
Transformations,
and Reactive
Phase Formation
in Electronic
Materials VII:
Session II | Phase Stability,
Phase
Transformations,
and Reactive
Phase Formation
in Electronic
Materials VII:
Session III | Phase Stability,
Phase
Transformations,
and Reactive
Phase Formation
in Electronic
Materials VII:
Session IV | | 278 | | | Mechanics and
Kinetics of
Interfaces in
Multi-Component
Materials
Systems:
Mechanics of
Adhesion, Friction
and Fracture | Mechanics and
Kinetics of
Interfaces in
Multi-Component
Materials
Systems:
Nanoscale
Structures and
Simulations | Mechanics and
Kinetics of
Interfaces in
Multi-Component
Materials
Systems:
Mechanical
Properties of
Interfaces | Mechanics and Kinetics of Interfaces in Multi-Component Materials Systems: Interfacial Microstructures and Effects on Mechanical and Physical Properties | Mechanics and Kinetics of Interfaces in Multi-Component Materials Systems: Joint Session with Advances in Semiconductors, Electro Optic and Radio Frequency Materials | | | 279 | | | Recent Developments in Rare Earth Science and Technology - Acta Materialia Gold Medal Symposium: Session I | Recent Developments in Rare Earth Science and Technology - Acta Materialia Gold Medal Symposium: Session II | Recycling:
Electronics
Recycling | Recycling:
Micro-Organisms
for Metal
Recovery | Recycling:
Light Metals | Recycling:
General Sessions | | 280 | | | | 9th Global
Innovations
Symposium:
Trends in
Integrated
Computational
Materials
Engineering
for Materials
Processing and
Manufacturing:
Session I | 9th Global Innovations Symposium: Trends in Integrated Computational Materials Engineering for Materials Processing and Manufacturing: Session II | Aqueous
Processing -
General Session:
Aqueous
Processing
General Abstracts | | | | 281 | | | General Abstracts:
Materials
Processing and
Manufacturing
Division:
Solidification and
Casting | General Abstracts:
Materials
Processing and
Manufacturing
Division:
Composition
Structure Property
Relationships I | General Abstracts:
Materials
Processing and
Manufacturing
Division:
Composition
Structure Property
Relationships II | General Abstracts:
Materials
Processing and
Manufacturing
Division:
Films, Coatings,
and Surface
Treatments | General Abstracts:
Materials
Processing and
Manufacturing
Division:
Forging, Forming,
and Powder
Processing | | | 282 | | | Sunday | Sunday Monday | | Tues | sday | Wedn | esday | Thursday | |-----|--
---|---|---|--|---|--|--| | | PM | AM | PM | AM | PM | AM | РМ | AM | | 283 | | Materials
Processing
Fundamentals:
Solidification and
Deformation | Materials
Processing
Fundamentals:
Process Modeling | Materials Processing Fundamentals: Powders, Composites, Coatings and Measurements | Materials
Processing
Fundamentals:
Smelting and
Refining | Pyrometallurgy
- General
Sessions:
Pyrometallurgy | | | | 284 | | Characterization
of Minerals,
Metals, and
Materials:
Emerging
Characterization
Techniques | Characterization
of Minerals,
Metals, and
Materials:
Characterization
of Extraction and
Processing | Characterization of Minerals, Metals, and Materials: Characterization of Microstructure and Properties of Materials I | Characterization of Minerals, Metals, and Materials: Characterization of Microstructure and Properties of Materials II | Characterization of Minerals, Metals, and Materials: Characterization of Microstructure and Properties of Materials III | Characterization of Minerals, Metals, and Materials: Characterization of Microstructure and Properties of Materials IV | Characterization
of Minerals,
Metals, and
Materials:
Characterization
of Microstructure
and Properties of
Materials V | | 285 | | Emerging
Methods to
Understand
Mechanical
Behavior:
Imaging Methods:
TEM, SEM, AFM
and Moire | Emerging Methods to Understand Mechanical Behavior: Digital Image Correlation Methods | Emerging Methods to Understand Mechanical Behavior: Indentation and Time-Resolved Methods | Emerging Methods to Understand Mechanical Behavior: Subscale Methods: Tension and Compression | Emerging Methods to Understand Mechanical Behavior: Diffraction Methods: Electron and Neutron | Emerging Methods to Understand Mechanical Behavior: Diffraction Methods: Synchrotron X-Ray | | | 286 | | 3-Dimensional
Materials Science:
ONR/DARPA
Dynamic 3-D
Digital Structure
Program | 3-Dimensional
Materials Science:
Large Datasets
and
Microstructure
Representation I | 3-Dimensional
Materials Science:
Large Datasets
and
Microstructure
Representation II | 3-Dimensional
Materials Science:
Modeling and
Characterization
across Length
Scales I | 3-Dimensional
Materials Science:
Modeling and
Characterization
across Length
Scales II | 3-Dimensional
Materials Science:
Modeling and
Characterization
across Length
Scales III | 3-Dimensional
Materials Science:
Modeling and
Characterization
across Length
Scales IV | | 287 | | Recent Industrial
Applications of
Solid-State Phase
Transformations:
Superalloys and
TRIP Steels/
Automotive Steels | Recent Industrial
Applications of
Solid-State Phase
Transformations:
Alloy Design,
Microstructure
Prediction and
Control | Frontiers in Process Modeling: Metallurgical Reactors - and - Frontiers in Process Modeling: Casting and General Modeling | | Energy Conservation in Metals Extraction and Materials Processing: Session I | Energy Conservation in Metals Extraction and Materials Processing: Session II | | | 288 | Computational
Thermodynamics
and Kinetics:
Poster Session | Computational
Thermodynamics
and Kinetics:
Defect Structure I | Computational
Thermodynamics
and Kinetics:
Defect Structure II | Computational
Thermodynamics
and Kinetics:
Phase Field
Crystal | Computational
Thermodynamics
and Kinetics:
Functional
Materials | Computational
Thermodynamics
and Kinetics:
Phase
Transformations | Computational
Thermodynamics
and Kinetics:
Integrated
Computational
Materials
Engineering | Computational
Thermodynamics
and Kinetics:
Diffusion and
Phase Stability | | 291 | | Magnesium
Technology 2008:
Magnesium
Plenary Session | Magnesium
Technology 2008:
Wrought Alloys I | Magnesium
Technology 2008:
Wrought Alloys II | Magnesium
Technology 2008:
Wrought Alloys III | Magnesium
Technology 2008:
Advanced
Magnesium
Materials | Magnesium
Technology 2008:
Corrosion,
Surface Finishing
and Joining | | | 292 | | | Magnesium
Technology 2008:
Primary
Production | Magnesium Technology 2008: Thermodynamics and Phase Transformations | Magnesium
Technology 2008:
Casting | Magnesium Technology 2008: Alloy Microstructure and Properties | Magnesium
Technology 2008:
Creep Resistant
Magnesium Alloys | | | 293 | | Aluminum Alloys:
Fabrication,
Characterization
and Applications:
Development and
Applications | Aluminum Alloys:
Fabrication,
Characterization
and Applications:
Processing and
Properties | Aluminum Alloys:
Fabrication,
Characterization
and Applications:
Modeling | Aluminum Alloys:
Fabrication,
Characterization
and Applications:
Alloy
Characterization | Aluminum Alloys:
Fabrication,
Characterization
and Applications:
Corrosion and
Protection | Aluminum Alloys:
Fabrication,
Characterization
and Applications:
Composites and
Foams | | ### **Program-at-a-Glance** | Sunday | Monday Tue | | Tues | sday | Wedn | Wednesday Thursday | | Room | |--------|---|---|--|--|--|---|---|------| | PM | AM | PM | AM | AM PM | | PM | AM | om | | | | | Carbon Dioxide
Reduction
Metallurgy:
Mechanisms | Carbon Dioxide
Reduction
Metallurgy:
Ferrous Industry | Carbon Dioxide
Reduction
Metallurgy:
Electrolytic
Methods | | | 294 | | | Sustainability,
Climate Change
and Greenhouse
Gas Emissions
Reduction:
Responsibility, | Cast Shop
Technology:
Sustainability in
the Casthouse | Cast Shop
Technology:
Casthouse
Operation | Cast Shop
Technology:
Melt Handling and
Treatment | Cast Shop
Technology:
Foundry Ingots
and Alloys | Cast Shop
Technology:
Casting
Processes and
Quality Analysis | Cast Shop
Technology:
Modelling | 295 | | | Key Challenges
and Opportunities
for the Aluminum
Industry | Alumina and
Bauxite:
HSEC | Alumina and
Bauxite:
Equipment | Alumina and
Bauxite:
Bauxite | Alumina and
Bauxite:
Additives | Alumina and
Bauxite:
Operations | Alumina and
Bauxite:
Precipitation/
Conclusion | 296 | | | | General Abstracts:
Light Metals
Division:
Session I | General Abstracts:
Light Metals
Division:
Session II | Electrode Technology Symposium (formerly Carbon Technology): Anode Manufacturing and Developments | Hot and Cold
Rolling
Technology:
Session I | Aluminum
Reduction
Technology:
Reduction Cell
Modelling | | 297 | | | | Aluminum
Reduction
Technology:
Sustainability and
Environment | Aluminum
Reduction
Technology:
Cell Development
Part I and
Operations | Aluminum
Reduction
Technology:
Process Control | Aluminum Reduction Technology: Aluminum Industry in Mid-East: Joint Session with | Aluminum
Reduction
Technology:
Fundamentals,
Low Melting
Electrolytes, New
Technologies | Aluminum
Reduction
Technology:
Cell Development
Part II | 298 | | | | Electrode Technology Symposium (formerly Carbon Technology): Carbon Sustainability and Environment Aspects | Electrode Technology Symposium (formerly Carbon Technology): Anode Raw Materials and Properties | Electrode Technology Symposium (formerly Carbon Technology): Cathodes Raw Materials and Properties | Electrode
Technology
Symposium | Electrode Technology Symposium (formerly Carbon Technology): Cathodes Manufacturing and Developments | Electrode
Technology
Symposium
(formerly Carbon
Technology):
Inert Anode | 299 | | | Deformation Twinning: Formation Mechanisms and Effects on Material Plasticity: Experiments and Modeling: Twin Formation and Growth Mechanisms | Deformation Twinning: Formation Mechanisms and Effects on Material Plasticity: Experiments and Modeling: Twin Effects on Material Deformation I | Deformation Twinning: Formation Mechanisms and Effects on Material
Plasticity: Experiments and Modeling: Twinning and Associated Defect Structures | Deformation Twinning: Formation Mechanisms and Effects on Material Plasticity: Experiments and Modeling: Twin Effects on Material Deformation II | | | | 383 | | | Mechanical Behavior, Microstructure, and Modeling of Ti and Its Alloys: Processing: Design, Control and Optimization | Mechanical
Behavior,
Microstructure,
and Modeling of
Ti and Its Alloys:
Phase
Transformation
and Microstructure
Development I | Mechanical
Behavior,
Microstructure,
and Modeling of
Ti and Its Alloys:
Phase
Transformation
and Microstructure
Development II | Mechanical
Behavior,
Microstructure,
and Modeling of Ti
and Its Alloys:
Microstructure/
Property
Correlation I | Mechanical
Behavior,
Microstructure,
and Modeling of Ti
and Its Alloys:
Microstructure/
Property
Correlation II | Mechanical
Behavior,
Microstructure,
and Modeling of Ti
and Its Alloys:
Physical/
Mechanical
Property Prediction | | 384 | | ШO | Sunday | Mor | nday | Tues | sday | Wedn | esday | Thursday | |------|--|---|--|--|--|--|---|---| | Room | PM | AM | PM | AM | PM | AM | PM | AM | | 385 | | Minerals, Metals
and Materials
under Pressure:
New Experimental
and Theoretical
Techniques in
High-Pressure
Materials Science | Minerals, Metals
and Materials
under Pressure:
Shock-Induced
Phase Trans-
formations and
Microstructure | Minerals, Metals
and Materials
under Pressure:
Electronic,
Magnetic and
Optical Properties
of Materials under
High Pressure | Minerals, Metals
and Materials
under Pressure:
High Pressure
Phase Transitions
and Mechanical
Properties | | | | | 386 | Hael Mughrabi
Honorary
Symposium:
Plasticity, Failure
and Fatigue in
Structural
Materials - from
Macro to Nano:
Poster Session | Hael Mughrabi
Honorary
Symposium:
Plasticity, Failure
and Fatigue in
Structural
Materials - from
Macro to Nano:
Dislocations:
Work Hardening,
Patterning, Size
Effects I | Hael Mughrabi Honorary Symposium: Plasticity, Failure and Fatigue in Structural Materials - from Macro to Nano: High-emperature Mechanical Properties: Creep, Fatigue and Thermomechanical Fatigue | Hael Mughrabi
Honorary
Symposium:
Plasticity, Failure
and Fatigue in
Structural
Materials - from
Macro to Nano:
Dislocations:
Work Hardening,
Patterning, Size
Effects II | Hael Mughrabi
Honorary
Symposium:
Plasticity, Failure
and Fatigue in
Structural
Materials - from
Macro to Nano:
Cyclic
Deformation and
Fatigue of Metals I | Hael Mughrabi
Honorary
Symposium:
Plasticity, Failure
and Fatigue in
Structural
Materials - from
Macro to Nano:
Mechanical
Properties of
Ultrafine-Grained
(UFG) Metals I | Hael Mughrabi
Honorary
Symposium:
Plasticity, Failure
and Fatigue in
Structural
Materials - from
Macro to Nano:
Mechanical
Properties of
Ultrafine-Grained
(UFG) Metals II | Hael Mughrabi Honorary Symposium: Plasticity, Failure and Fatigue in Structural Materials - from Macro to Nano: Cyclic Deformation and Fatigue of Metals II | | 387 | | General Abstracts:
Structural
Materials Division:
Mechanical
Behavior of
Metals and Alloys | General Abstracts:
Structural
Materials Division:
Mechanical
Behavior of
Materials | General Abstracts:
Structural
Materials Division:
Structure/Property
Relations | General Abstracts:
Structural
Materials Division:
Novel Issues
in Materials
Processing | General Abstracts:
Structural
Materials Division:
Microstructure/
Property Relations
in Steel I | General Abstracts:
Structural
Materials Division:
Microstructure/
Property Relations
in Steel II | | | 388 | | Enhancing Materials Durability via Surface Engineering: Residual Stress Effects on Durability | Enhancing Materials Durability via Surface Engineering: Steel and Other Alloys Surface Durability | Enhancing
Materials
Durability via
Surface
Engineering:
Superalloy
Surface Durability | Enhancing Materials Durability via Surface Engineering: Novel Surface Durability Approaches - and - National Academies Corrosion Education Study Commuity Town Hall Meeting | Refractory Metals
2008:
Processing | Refractory Metals
2008:
Characterization | Refractory Metals
2008:
Properties of
Refractory Metals | | 389 | | Particle Beam-
Induced Radiation
Effects in
Materials:
Metals I | Particle Beam-
Induced Radiation
Effects in
Materials:
Metals II | Particle Beam-
Induced Radiation
Effects in
Materials:
RIS and
Multilayers | Particle Beam-
Induced Radiation
Effects in
Materials:
Ceramics and
Nuclear Fuel
Materials | Particle Beam-
Induced Radiation
Effects in Materials:
Carbides,
Semiconductors
and Other
Non-Metals | Particle Beam-
Induced Radiation
Effects in
Materials:
Nanostructures | | | 390 | | Biological
Materials Science:
Mechanical
Behavior of
Biological
Materials I | Biological
Materials Science:
Implant
Biomaterials I | Biological
Materials Science:
Bioinspired
Design and
Processing | Biological
Materials Science:
Scaffold
Biomaterials | Biological
Materials Science:
Functional
Biomaterials | Biological
Materials Science:
Mechanical
Behavior of
Biological
Materials II | Biological
Materials Science:
Implant
Biomaterials II | | 391 | | Neutron and
X-Ray Studies for
Probing Materials
Behavior:
Resolving Local
Structure | Neutron and
X-Ray Studies for
Probing Materials
Behavior:
Diffraction at
Small Dimensions | Neutron and
X-Ray Studies for
Probing Materials
Behavior:
Phase Transitions
and Beyond | Neutron and
X-Ray Studies for
Probing Materials
Behavior:
Recrystallization | Neutron and
X-Ray Studies for
Probing Materials
Behavior:
Stresses/Strains
and Structure | Neutron and
X-Ray Studies for
Probing Materials
Behavior:
Scattering and
Understanding of
Materials
Properties | | ### **Program-at-a-Glance** | Sunday | Monday | | Tues | sday | Wedn | esday | Thursday | Room | |---------------------------|---|---|--|--|---|---|--|---------------| | PM | AM | PM | AM | PM | AM | PM | AM | om | | | Materials in Clean
Power Systems
III: Fuel Cells,
Hydrogen-, and
Clean Coal-Based
Technologies:
Plenary Session | Materials in Clean
Power Systems
III: Fuel Cells,
Hydrogen-, and
Clean Coal-Based
Technologies:
Gas Separation
and CO ₂ Capture | Materials in Clean
Power Systems
III: Fuel Cells,
Hydrogen-, and
Clean Coal-Based
Technologies:
Solid Oxide Fuel
Cells: Metallic
Interconnects | Materials in Clean
Power Systems
III: Fuel Cells,
Hydrogen-, and
Clean Coal-Based
Technologies:
Metallic
Interconnects in
SOFCs:
Oxidation,
Protection
Coatings | Materials in Clean
Power Systems
III: Fuel Cells,
Hydrogen-, and
Clean Coal-Based
Technologies:
Metallic
Interconnects and
Sealing in SOFCs |
Materials in Clean
Power Systems
III: Fuel Cells,
Hydrogen-, and
Clean Coal-Based
Technologies:
PEM Fuel Cells
and Solar
Technologies | Materials in Clean
Power Systems
III: Fuel Cells,
Hydrogen-, and
Clean Coal-Based
Technologies:
Hydrogen
Technologies | 392 | | | Bulk Metallic
Glasses V:
Structures and
Mechanical
Properties I | Bulk Metallic
Glasses V:
Structures and
Mechanical
Properties II | Bulk Metallic
Glasses V:
Structures and
Modeling I | Bulk Metallic
Glasses V:
Structures and
Mechanical
Properties III | Bulk Metallic
Glasses V:
Glass Forming
Ability and Alloy
Development | Bulk Metallic
Glasses V:
Structures and
Modeling II | Bulk Metallic
Glasses V:
Processing and
Properties | 393 | | | Structural Aluminides for Elevated Temperature Applications: Applications | Structural Aluminides for Elevated Temperature Applications: Mechanical Behavior | Structural Aluminides for Elevated Temperature Applications: FE and Other Alumindes | Structural Aluminides for Elevated Temperature Applications: Processing and Microstructure Control | Structural Aluminides for Elevated Temperature Applications: Phase and Microstructure Evolution | Structural Aluminides for Elevated Temperature Applications: New Class of Gamma Alloys - and - Poster Session | Structural Aluminides for Elevated Temperature Applications: Environmental Effects and Protection | 394 | | | Ultrafine-Grained
Materials: Fifth
International
Symposium:
Modeling, Theory,
and Property | Ultrafine-Grained
Materials: Fifth
International
Symposium:
Processing and
Materials | Ultrafine-Grained
Materials: Fifth
International
Symposium:
Stability,
Technology, and
Property | Ultrafine-Grained
Materials: Fifth
International
Symposium:
Properties - and -
Poster Session | Ultrafine-Grained
Materials: Fifth
International
Symposium:
Deformation
Mechanisms | Ultrafine-Grained
Materials: Fifth
International
Symposium:
Structure and
Evolution | | 395/396 | | General Poster
Session | | | | | | | | Hall I-2 | | | Frontiers of
Computational
Materials Science:
Session I | | | | | | | R01/R02 (APS) | # **TMS2008** 137th Annual Meeting & Exhibition | 2008 Nanomaterials: Fabrication, Properties, and Applications: Application | 273 | Tues PM | 167 | |---|------------|----------|-----| | 2008 Nanomaterials: Fabrication, Properties, and Applications: CNT | 2/3 | Mon AM | 24 | | 2008 Nanomaterials: Fabrication, Properties, and Applications: Nanomaterials Synthesis and Sensor | | | | | 2008 Nanomaterials: Fabrication, Properties, and Applications: Poster Session | 273 | Sun PM | 13 | | 2008 Nanomaterials: Fabrication, Properties, and Applications: Processing and Properties | 273 | Wed AM | 223 | | 2008 Nanomaterials: Fabrication, Properties, and Applications: Characterization and Theory | 273 | Wed PM | 268 | | 3-Dimensional Materials Science: Large Datasets and Microstructure Representation I | | | | | 3-Dimensional Materials Science: Large Datasets and Microstructure Representation II | | | | | 3-Dimensional Materials Science: Modeling and Characterization across Length Scales I 3-Dimensional Materials Science: Modeling and Characterization across Length Scales II | | | | | 3-Dimensional Materials Science: Modeling and Characterization across Length Scales III | 286
286 | Wed PM | 269 | | 3-Dimensional Materials Science: Modeling and Characterization across Length Scales IV | 286 | Thurs AM | 312 | | 3-Dimensional Materials Science: ONR/DARPA Dynamic 3-D Digital Structure Program | | | | | 9th Global Innovations Symposium: Trends in Integrated Computational Materials Engineering | | | | | for Materials Processing and Manufacturing: Session I | 281 | Mon PM | 68 | | 9th Global Innovations Symposium: Trends in Integrated Computational Materials Engineering for Materials Processing and Manufacturing: Session II | 201 | T 43.6 | 116 | | Advances in Semiconductor, Electro Optic and Radio Frequency Materials: Compound Semiconductors | 281 | 1ues AM | 116 | | and Beyond | 278 | Mon PM | 68 | | Advances in Semiconductor, Electro Optic and Radio Frequency Materials: Silicon-Based | 270 | | 00 | | Optoelectronics and Microelectronics | 278 | Mon AM | 27 | | Alumina and Bauxite: Additives | 296 | Wed AM | 226 | | Alumina and Bauxite: Bauxite | | | | | Alumina and Bauxite: Equipment | | | | | Alumina and Bauxite: HSEC | 296 | Mon PM | 70 | | Alumina and Bauxite: Operations | 296 | Wed PM | 2/1 | | Aluminum Alloys: Fabrication, Characterization and Applications: Alloy Characterization | | | | | Aluminum Alloys: Fabrication, Characterization and Applications: Composites and Foams | | | | | Aluminum Alloys: Fabrication, Characterization and Applications: Corrosion and Protection | | | | | Aluminum Alloys: Fabrication, Characterization and Applications: Development and Applications | 293 | Mon AM | 28 | | Aluminum Alloys: Fabrication, Characterization and Applications: Modeling | | | | | Aluminum Alloys: Fabrication, Characterization and Applications: Processing and Properties | 293 | Mon PM | 70 | | Aluminum Reduction Technology: Aluminum Industry in Mid-East: Joint Session with Electrode | 200/200 | XX 1 A M | 220 | | Technology Symposium | 298/299 | wed AM | 120 | | Aluminum Reduction Technology: Cell Development Part II | 298 | Thurs AM | 313 | | Aluminum Reduction Technology: Fundamentals, Low Melting Electrolytes, New Technologies | | | | | Aluminum Reduction Technology: Process Control | 298 | Tues PM | 173 | | Aluminum Reduction Technology: Reduction Cell Modelling | 297 | Wed PM | 274 | | Aluminum Reduction Technology: Sustainability and Environment | 298 | Mon PM | 72 | | Aqueous Processing - General Session: Aqueous Processing General Abstracts | 281 | Tues PM | 174 | | Biological Materials Science: Bioinspired Design and Processing | | | | | Biological Materials Science: Implant Biomaterials I | 390 | Mon PM | 73 | | Biological Materials Science: Implant Biomaterials II | | | | | Biological Materials Science: Mechanical Behavior of Biological Materials I | | | | | Biological Materials Science: Mechanical Behavior of Biological Materials II | 390 | Wed PM | 275 | | Biological Materials Science: Scaffold Biomaterials | | | | | Bulk Metallic Glasses V: Glass Forming Ability and Alloy Development | | | | | Bulk Metallic Glasses V: Processing and Properties | | | | | Bulk Metallic Glasses V: Structures and Mechanical Properties I | | | | | Bulk Metallic Glasses V: Structures and Mechanical Properties II | | | | | Bulk Metallic Glasses V: Structures and Modeling I | | | | | Bulk Metallic Glasses V: Structures and Modeling II | | | | | Carbon Dioxide Reduction Metallurgy: Electrolytic Methods | | | | | Carbon Dioxide Reduction Metallurgy: Ferrous Industry | | | | | Carbon Dioxide Reduction Metallurgy: Mechanisms | | | | | Cast Shop Technology: Casthouse Operation | | | | | Cast Shop Technology: Casting Processes and Quality Analysis | | | | | Cast Shop Technology: Foundry Ingots and Alloys | | | | | Cast Shop Technology: Modelling | | | | | Cast Shop Technology: Sustainability in the Casthouse | | | | | Characterization of Minerals, Metals, and Materials: Characterization of Extraction and Processing | | | | | Characterization of Minerals, Metals, and Materials: Characterization of Microstructure and | | | | | | | | | | Properties of Materials I | 284 | Tues AM | 126 | # **Session Listing** | Characteristics of Minarch Matter and Materials Characteristics of Minarchanton and | | | | |--|-----------|-------------|-----| | Characterization of Minerals, Metals, and Materials: Characterization of Microstructure and Properties of Materials II | 284 | Tues PM | 181 | | Characterization of Minerals, Metals, and Materials: Characterization of Microstructure and | 204 | rues r wr | 101 | | Properties of Materials III | 284 | Wed AM | 235 | | Characterization of Minerals, Metals, and Materials: Characterization of Microstructure and | | | | | Properties of Materials IV | 284 | Wed PM | 279 | | Characterization of Minerals, Metals, and Materials: Characterization of Microstructure and | 204 | TI 43.6 | 210 | | Properties of Materials V | 284 | I hurs AM | 319 | | Complex Oxide Materials - Synthesis, Properties and Applications: Epitaxial Oxides: Ferroelectric, | 284 | IVION AIVI | 33 | | Dielectric, and (Electro-)Magnetic Thin Films | 277 | Tues PM | 182 | | Complex Oxide Materials - Synthesis, Properties and Applications: Ferroelectric/Dielectric Oxides | 277 | Wed PM | 280 | | Compley Oxide Materials - Synthesis Properties and Applications: Functionally Cross-Coupled | | | | | Heterostructures | | Tues AM | 128 | | Complex Oxide Materials - Synthesis, Properties and Applications: Novel Functionality from Complex | | | | | Oxide Heterointerfaces | 277 | Mon PM | 78 | | Complex Oxide Materials - Synthesis, Properties and Applications: Scaling, Dynamics, and Switching Complex Oxide Materials - Synthesis, Properties and Applications: ZnO Nanostructures and Thin Films | | | | | Computational Thermodynamics and Kinetics: Defect Structure I | | | | | Computational Thermodynamics and Kinetics: Defect Structure II | | | | | Computational Thermodynamics and Kinetics: Diffusion and Phase Stability | | | | | Computational Thermodynamics and Kinetics: Functional Materials | | | | | Computational Thermodynamics and Kinetics: Integrated Computational Materials Engineering | | | | | Computational Thermodynamics and
Kinetics: Phase Field Crystal | | | | | Computational Thermodynamics and Kinetics: Phase Transformations | | | | | Computational Thermodynamics and Kinetics: Poster Session | 288 | Sun PM | 16 | | Deformation Twinning: Formation Mechanisms and Effects on Material Plasticity: Experiments and | 202 |) (D) (| 00 | | Modeling: Twin Effects on Material Deformation I | 383 | Mon PM | 80 | | Deformation Twinning: Formation Mechanisms and Effects on Material Plasticity: Experiments and Modeling: Twin Effects on Material Deformation II | 383 | Tues PM | 184 | | Deformation Twinning: Formation Mechanisms and Effects on Material Plasticity: Experiments and | | 1 ucs 1 W1 | 104 | | Modeling: Twin Formation and Growth Mechanisms | 383 | Mon AM | 37 | | Deformation Twinning: Formation Mechanisms and Effects on Material Plasticity: Experiments and | | | | | Modeling: Twinning and Associated Defect Structures | 383 | Tues AM | 130 | | Electrode Technology Symposium (formerly Carbon Technology): Anode Manufacturing and | | | | | Developments | 297 | Tues PM | 185 | | Electrode Technology Symposium (formerly Carbon Technology): Anode Raw Materials and Properties | 299 | Tues AM | 132 | | Electrode Technology Symposium (formerly Carbon Technology): Carbon Sustainability and Environment Aspects | 200 | M DM | 92 | | Environment Aspects Electrode Technology Symposium (formerly Carbon Technology): Cathodes Manufacturing and | | Mon PM | 82 | | Developments | | Wed PM | 283 | | Electrode Technology Symposium (formerly Carbon Technology): Cathodes Raw Materials and Properties | 299 | Tues PM | 186 | | Electrode Technology Symposium (formerly Carbon Technology): Inert Anode | | | | | Emerging Interconnect and Packaging Technologies: Advanced Interconnects | 275 | Tues AM | 133 | | Emerging Interconnect and Packaging Technologies: Pb-Free and Sn-Pb Solders: Electromigation | 275 | Mon PM | 82 | | Emerging Interconnect and Packaging Technologies: Pb-Free Solder: Tin Whisker Formation and | | | | | Mechanical Behavior | 275 | Tues PM | 187 | | Emerging Interconnect and Packaging Technologies: Pb-Free Solders and Other Interconnects: | 275 | W. IDM | 205 | | Microstructure, Modeling, and Test Methods | 275 | Wed PM | 285 | | Interfacial Reactions and Phase Transformations | 275 | Mon AM | 38 | | Emerging Interconnect and Packaging Technologies: Pb-Free Solders: Reliability and Microstructure | 213 | IVIOII AIVI | | | Development | 275 | Wed AM | 239 | | Emerging Methods to Understand Mechanical Behavior: Digital Image Correlation Methods | | | | | Emerging Methods to Understand Mechanical Behavior: Diffraction Methods: Electron and Neutron | | | | | Emerging Methods to Understand Mechanical Behavior: Imaging Methods: TEM, SEM, AFM and Moire. | 285 | Mon AM | 39 | | Emerging Methods to Understand Mechanical Behavior: Indentation and Time-Resolved Methods | | | | | Emerging Methods to Understand Mechanical Behavior: Subscale Methods: Tension and Compression | | | | | Emerging Methods to Understand Mechanical Behavior: Diffraction Methods: Synchrotron X-Ray | | | | | Energy Conservation in Metals Extraction and Materials Processing: Session I | | | | | Energy Conservation in Metals Extraction and Materials Processing: Session II
Enhancing Materials Durability via Surface Engineering: Novel Surface Durability Approaches | | | | | Enhancing Materials Durability via Surface Engineering. Residual Stress Effects on Durability | | | | | Enhancing Materials Durability via Surface Engineering: Steel and Other Alloys Surface Durability | | | | | Enhancing Materials Durability via Surface Engineering: Superalloy Surface Durability | | | | | Frontiers in Computational Materials | . RO1/RO2 | Mon AM | 42 | | Frontiers in Process Modeling: Casting and General Modeling | 287 | Tues AM | 138 | | Frontiers in Process Modeling: Metallurgical Reactors | 287 | Tues AM | 137 | | General Abstracts: Electronic, Magnetic, and Photonic Materials Division: Session I | 276 | Wed AM | 242 | # **TMS2008** 137th Annual Meeting & Exhibition | General Abstracts: Electronic, Magnetic, and Photonic Materials Division: Session II | 276 | Wed PM | 289 | |--|------|----------|-----| | General Abstracts: Extraction and Processing: Session I | | | | | General Abstracts: Extraction and Processing: Session II | | | | | General Abstracts: Light Metals Division: Session I | 297 | Mon PM | 87 | | Ganaral Abstracts: Materials Processing and Manufacturing Division: Composition Structure | | | | | Property Relationships I | 282 | Mon PM | 88 | | General Abstracts: Materials Processing and Manufacturing Division: Composition Structure | 202 | | | | Property Relationships II | 282 | Tues AM | 140 | | General Abstracts: Materials Processing and Manufacturing Division: Films, Coatings, and | | | | | Surface Treatments. | 282 | Tues PM | 191 | | General Abstracts: Materials Processing and Manufacturing Division: Forging, Forming, and | | | | | Powder Processing | 282 | Wed AM | 243 | | General Abstracts: Materials Processing and Manufacturing Division: Solidification and Casting | 282 | Mon AM | 44 | | General Abstracts: Structural Materials Division: Mechanical Behavior of Materials | | | | | General Abstracts: Structural Materials Division: Mechanical Behavior of Metals and Alloys | | | | | General Abstracts: Structural Materials Division: Microstructure/Property Relations of Steels II | 367 | | 290 | | General Abstracts: Structural Materials Division: Novel Issues in Materials Processing | | | | | General Abstracts: Structural Materials Division: Structure/Property Relations | 387 | Tues AM | 141 | | General Poster Session. | | | | | Hael Mughrabi Honorary Symposium: Plasticity Failure and Fatigue in Structural Materials - from | | | | | Macro to Nano: Cyclic Deformation and Fatigue of Metals I | 386 | Tues PM | 194 | | Hael Mughrabi Honorary Symposium: Plasticity Failure and Fatigue in Structural Materials - from | | | | | Macro to Nano: Cyclic Deformation and Fatigue of Metals II | 386 | Thurs AM | 323 | | Hael Mughrahi Honorary Symnosium: Plasticity, Failure and Fatigue in Structural Materials - from | | | | | Macro to Nano: Dislocations: Work Hardening, Patterning, Size Effects I | 386 | Mon AM | 47 | | Hael Mughrabi Honorary Symposium: Plasticity, Failure and Fatigue in Structural Materials - from Macro to Nano: Dislocations: Work Hardening, Patterning, Size Effects II | | | | | | | Tues AM | 143 | | Hael Mughrabi Honorary Symposium: Plasticity, Failure and Fatigue in Structural Materials - from | | | | | Macro to Nano: High-Temperature Mechanical Properties: Creep, Fatigue and Thermomechanical Fatigue. | 386 | Mon PM | 91 | | Hael Mughrabi Honorary Symposium: Plasticity, Failure and Fatigue in Structural Materials - from | •0.5 | | | | Macro to Nano: Mechanical Properties of Ultrafine-Grained (UFG) Metals I | 386 | Wed AM | 246 | | Hael Mughrabi Honorary Symposium: Plasticity, Failure and Fatigue in Structural Materials - from Macro to Nano: Mechanical Properties of Ultrafine-Grained (UFG) Metals II | 206 | W-1 DM | 201 | | Hael Mughrabi Honorary Symposium: Plasticity, Failure and Fatigue in Structural Materials - from | 386 | wed PM | 291 | | Macro to Nano: Poster Session | 386 | Sun DM | 22 | | Hot and Cold Rolling Technology: Session I. | | | | | Hume-Rothery Symposium - Nanoscale Phases: Session I | | | | | Hume-Rothery Symposium - Nanoscale Phases: Session II | 276 | Mon PM | 93 | | Hume-Rothery Symposium - Nanoscale Phases: Session III | 276 | Tues AM | 145 | | Hume-Rothery Symposium - Nanoscale Phases: Session IV | 276 | Tues PM | 195 | | IOMMMS Global Materials Forum 2008: Creating the Future MS&E Professional | | | | | Magnesium Technology 2008: Advanced Magnesium Materials | 291 | Wed AM | 249 | | Magnesium Technology 2008: Alloy Microstructure and Properties | 292 | Wed AM | 250 | | Magnesium Technology 2008: Casting | 292 | Tues PM | 196 | | Magnesium Technology 2008: Corrosion, Surface Finishing and Joining | 291 | Wed PM | 293 | | Magnesium Technology 2008: Creep-Resistant Magnesium Alloys | 292 | Wed PM | 294 | | Magnesium Technology 2008: Magnesium Plenary Session | | | | | Magnesium Technology 2008: Primary Production | | | | | Magnesium Technology 2008: Thermodynamics and Phase Transformations | | | | | Magnesium Technology 2008: Wrought Alloys I | | | | | Magnesium Technology 2008: Wrought Alloys II | | | | | Materials for Infrastructure: Building Bridges in the Global Community: Session I | | | | | Materials for Infrastructure: Building Bridges in the Global Community: Session II | | | | | Materials in Clean Power Systems III: Fuel Cells, Hydrogen-, and Clean Coal-Based Technologies: | 2/2 | wed AM | 231 | | Gas Separation and CO, Capture | 392 | Mon PM | 96 | | Materials in Clean Power Systems III: Fuel Cells, Hydrogen-, and Clean Coal-Based Technologies: | | | | | Hydrogen Technologies | 392 | Thurs AM | 324 | | Materials in Clean Power Systems III: Fuel Cells, Hydrogen-, and Clean Coal-Based Technologies: | | | | | Metallic Interconnects and Sealing in SOFCs | 392 | Wed AM | 252 | | Materials in Clean Power Systems III: Fuel Cells, Hydrogen-, and Clean Coal-Based Technologies: | | | | | Metallic Interconnects in SOFCs: Oxidation, Protection Coatings | 392 | Tues PM | 200 | | , , | | | | | Materials in Clean Power Systems III: Fuel Cells, Hydrogen-, and Clean Coal-Based Technologies: | | | | | Materials in Clean Power Systems III: Fuel Cells, Hydrogen-, and Clean Coal-Based Technologies: PEM Fuel Cells and Solar Technologies | 392 | Wed PM | 295 | # **Session Listing** | Materials in Clean Power Systems III: Fuel Cells, Hydrogen-, and Clean Coal-Based Technologies: | | | |
---|------------|-------------------|-----| | Solid Oxide Fuel Cells: Metallic Interconnects | 392 | Tues AM | 150 | | Materials Informatics: Enabling Integration of Modeling and Experiments in Materials Science: | | | | | Informatics and Cyberinfrastructure | 271 | Wed PM | 296 | | Materials Informatics: Enabling Integration of Modeling and Experiments in Materials Science: Informatics and Combinatorial Experiments and Materials Characterization | 271 | Tues PM | 201 | | Materials Informatics: Enabling Integration of Modeling and Experiments in Materials Science: | | | | | Informatics and Materials Property Design | 271 | Tues AM | 151 | | Materials Informatics: Enabling Integration of Modeling and Experiments in Materials Science: | | | | | Informatics and Materials Theory and Modeling | 271 | Wed AM | 254 | | Materials Processing Fundamentals: Powders, Composites, Coatings and Measurements | 283
283 | Iues AM
Mon PM | 152 | | Materials Processing Fundamentals: Smelting and Refining. | 283 | Tues PM | 202 | | Materials Processing Fundamentals: Solidification and Deformation | 283 | Mon AM | 50 | | Mechanical Behavior, Microstructure, and Modeling of Ti and Its Alloys: Microstructure/Property | | | | | Correlation I. | 384 | Tues PM | 203 | | Mechanical Behavior, Microstructure, and Modeling of Ti and Its Alloys: Microstructure/Property Correlation II | 204 | 777- J A M A | 255 | | Mechanical Behavior, Microstructure, and Modeling of Ti and Its Alloys: Phase Transformation and | 384 | wed AM | 233 | | Microstructure Development I | 384 | Mon PM | 99 | | Mechanical Behavior, Microstructure, and Modeling of Ti and Its Alloys: Phase Transformation and | | | | | Microstructure Development II | 384 | Tues AM | 153 | | Mechanical Behavior, Microstructure, and Modeling of Ti and Its Alloys: Physical/Mechanical Property | • • • | *** **** | | | Prediction | 384 | Wed PM | 297 | | Mechanical Behavior, Microstructure, and Modeling of Ti and Its Alloys: Processing: Design, Control and Optimization | 384 | Mon AM | 52 | | Mechanics and Kinetics of Interfaces in Multi-Component Materials Systems: Interfacial Microstructures | 304 | Wion Aivi | 52 | | and Effects on Mechanical and Physical Properties | 279 | Tues PM | 205 | | Mechanics and Kinetics of Interfaces in Multi-Component Materials Systems; Joint Session with | | | | | Advances in Semiconductors, Electro Optic and Radio Frequency Materials | 279 | Wed AM | 256 | | Mechanics and Kinetics of Interfaces in Multi-Component Materials Systems: Mechanical Properties of | 270 | т мм | 155 | | Interfaces | 2/9 | Iues AM | 155 | | Friction and Fracture | 279 | Mon AM | 53 | | Mechanics and Kinetics of Interfaces in Multi-Component Materials Systems: Nanoscale Structures and | | | | | Simulations | | | | | Micro-Engineered Particulate-Based Materials: Session I | 271 | Mon AM | 54 | | Minerals, Metals and Materials under Pressure: Electronic, Magnetic and Optical Properties of Materials | 205 | T 436 | 156 | | under High Pressure | 385 | Iues AM | 156 | | Minerals, Metals and Materials under Pressure: New Experimental and Theoretical Techniques in | 363 | rues r wr | 200 | | High-Pressure Materials Science | 385 | Mon AM | 55 | | Minerals, Metals and Materials under Pressure: Shock-Induced Phase Transformations and Microstructure | 385 | Mon PM | 101 | | National Academies Corrosion Education Study Community Town Hall Meeting | | | | | Neutron and X-Ray Studies for Probing Materials Behavior: Diffraction at Small Dimensions | | | | | Neutron and X-Ray Studies for Probing Materials Behavior: Phase Transitions and Beyond | | | | | Neutron and X-Ray Studies for Probing Materials Behavior: Recrystallization Neutron and X-Ray Studies for Probing Materials Behavior: Resolving Local Structure | 391 | Tues PM | 207 | | Neutron and X-Ray Studies for Probing Materials Behavior: Scattering and Understanding of | 391 | VIOH AWI | | | Materials Properties | 391 | Wed PM | 298 | | Neutron and X-Ray Studies for Probing Materials Behavior: Stresses/Strains and Structure | 391 | Wed AM | 258 | | Particle Beam-Induced Radiation Effects in Materials: Carbides, Semiconductors and Other Non-Metals | 389 | Wed AM | 259 | | Particle Beam-Induced Radiation Effects in Materials: Ceramics and Nuclear Fuel Materials | 389 | Tues PM | 209 | | Particle Beam-Induced Radiation Effects in Materials: Metals I | | | | | Particle Beam-Induced Radiation Effects in Materials: Metals II | | | | | Particle Beam-Induced Radiation Effects in Materials: RIS and Multilayers | | | | | Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials VII: | | | | | Session I | 278 | Tues AM | 160 | | Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials VII: | 270 | m | | | Session II. Phase Stability Phase Transformations and Passive Phase Formation in Flactronic Metarials VII. | 278 | Tues PM | 210 | | Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials VII: Session III | 278 | Wed AM | 260 | | Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials VII: | 4 / 0 | wou /\www. | 200 | | Session IV | | | | | Pyrometallurgy - General Sessions: Pyrometallurgy | | | | | Recent Developments in Rare Earth Science and Technology - Acta Materialia Gold Medal | 200 | | | | Symposium: Session I | 280 | Mon AM | 59 | # TMS2008 137th Annual Meeting & Exhibition | | ent Developments in Rare Earth Science and Technology - Acta Materialia Gold Medal | | | | |------|--|---------|----------|-----| | | posium: Session II | 280 | Mon PM | 105 | | Rec | ent Industrial Applications of Solid-State Phase Transformations: Alloy Design, Microstructure | | | | | | ediction and Control | 287 | Mon PM | 106 | | | ent Industrial Applications of Solid-State Phase Transformations: Superalloys and TRIP | | | | | | eels/Automotive Steels | | | | | | cling: Electronics Recycling | | | | | Rec | cling: General Sessions | 280 | Wed PM | 302 | | | cling: Light Metals | | | | | | cling: Micro-Organisms for Metal Recovery | | | | | | actory Metals 2008: Characterization | | | | | Refr | actory Metals 2008: Processing | 388 | Wed AM | 263 | | Refr | actory Metals 2008: Properties of Refractory Metals | 388 | Thurs AM | 325 | | | n Industry Centers Forum: Techno-Management Issues Related to Materials-Centric Industries: | | | | | | ssion I | 270 | Mon PM | 108 | | Sloa | n Industry Centers Forum: Techno-Management Issues Related to Materials-Centric Industries: | | | | | Se | ssion II | 270 | Tues AM | 163 | | Stru | ctural Aluminides for Elevated Temperature Applications: Applications | 394 | Mon AM | 61 | | Stru | ctural Aluminides for Elevated Temperature Applications: Environmental Effects and Protection | 394 | Thurs AM | 326 | | Stru | ctural Aluminides for Elevated Temperature Applications: FE and Other Alumindes | 394 | Tues AM | 163 | | | ctural Aluminides for Elevated Temperature Applications: Mechanical Behavior | | | | | Stru | ctural Aluminides for Elevated Temperature Applications: New Class of Gamma Alloys | 394 | Wed PM | 304 | | Stru | ctural Aluminides for Elevated Temperature Applications: Phase and Microstructure Evolution | 394 | Wed AM | 264 | | Stru | ctural Aluminides for Elevated Temperature Applications: Poster Session | 394 | Wed PM | 306 | | Stru | ctural Aluminides for Elevated Temperature Applications: Processing and Microstructure Control | 394 | Tues PM | 212 | | | ainability, Climate Change and Greenhouse Gas Emissions Reduction: Responsibility, Key | | | | | | allenges and Opportunities for the Aluminum Industry | 295/296 | Mon AM | 62 | | The | Role of Engineers in Meeting 21st Century Societal Challenges AIME Keynote Session | 272 | Wed PM | 308 | | | afine-Grained Materials: Fifth International Symposium: Deformation Mechanisms | | | | | | afine-Grained Materials: Fifth International Symposium: Modeling, Theory, and Property | | | | | | afine-Grained Materials: Fifth International Symposium: Poster Session | | | | | Ultr | afine-Grained Materials: Fifth International Symposium: Processing and Materials | 395/396 | Mon PM | 110 | | Ultr | afine-Grained Materials: Fifth International Symposium: Properties | 395/396 | Tues PM | 214 | | | afine-Grained Materials: Fifth International Symposium: Stability, Technology, and Property | | | | | | afine-Grained Materials: Fifth International Symposium: Structure and Evolution | | | | | | | | | |