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Using two half fractional factorial experimental designs, the 
effect of alloying additions on the solidification 
characteristics of single crystal Ni-base superalloys has been 
studied in twelve distinct “2nd generation” type alloys. The 
experimental alloys, with compositional variations of C, W, 
Re, Ta, Al and Hf, were solidified as cylindrical bars in a large 
cluster mold. Under constant processing conditions, 
nominally similar experimental alloys containing additions 
of 0.125 wt.% C exhibited a decreased tendency to develop 
grain defects, such as freckle chains. The carbon additions 
resulted in the formation of three Ta-rich MC carbide 
morphologies which precipitate near the liquidus 
temperature of the alloy. Intentional carbon additions also 
affected the segregation behavior of the constituent 
elements. Comparison of distribution coefficients measured 
using a Scheil-type analyses revealed that less segregation of 
Wand Ta occurred in the experimental single crystal alloys 
containing carbon. Preliminary observations suggest that 
carbon/carbide interactions may potentially change the 
segregation behavior of high density refractory alloying 
elements and affect the properties of the mushy zone in a 
manner which decreases the driving force for thermosolutal 
convection. 

Introduction 

As nickel-base single crystals are being 
implemented to increase efficiency in large, land-based, 
industrial gas turbine engines, grain defect formation during 
solidification has become an increasingly important 
problem. Typically, grain defects, such as freckles and 
misoriented grains, are caused by the onset of thermosolutal 
convective instabilities during dendritic solidification in 
these multicomponent alloys’-6. By achieving high thermal 
gradients at the growth front during solidification in the 
Bridgman process, these instabilities can be effectively 
suppressed1-3*5,7-11. Ho wever, this becomes a challenge when 
solidifying physically large single crystals required for 
land-based gas turbines. Thus, alloys with a low potential 
for developing these solute-induced density inversions are 
highly desirable. 
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Recent experiments with “3rd generation” type 
alloys have shown that increasing tantalum and/or 
decreasing rhenium and tungsten levels will have a 
beneficial effect in reducing the number of grain defects that 
develop under relatively low gradient solidification 
conditions”. Furthermore, it has also been shown that 
intentional carbon additions will also inhibit grain defect 
formation in certain high refractory alloys12. Improving the 
solidification characteristics of single crystal Ni-base 
superalloys through the addition of carbon represents a new 
alloying alternative with a great deal of potential. However, 
the effectiveness of these alloying approaches over a broader 
range of compositions has not yet been explored. 

In this study, alloying approaches for the reduction 
of grain defects have been studied over a wider range of 
composition which covers “2nd generation” alloys such as 
RenC N5. Of particular interest was the influence of carbon 
on the segregation behavior of the constituent elements and 
the relationship between carbide precipitation and the 
tendency to form freckle defects. Results from detailed 
analyses of segregation and differential thermal analyses 
(DTA) of the alloys are reported. Based on these 
observations, a brief discussion regarding the potential 
interactions between carbon additions and freckling 
mechanisms follows. 

Experimental MateriaIs and Procedure 

A total of twelve distinct alloys, listed in Table I, 
have been investigated in two half fractional factorial studies 
designed to reveal the effects of Al, Hf, Ta, Re, W and C on 
single crystal solidification. Each experiment was repeated 
to verify reproducibility. In an attempt to keep the levels of 
interstitial impurities constant, alloys were first sectioned 
from a solute-lean master heat then doped to the 
compositions listed in Table I. In the first matrix of 
experiments, referred to as Carbide Effects (CE), carbon, 
tantalum and hafnium levels for alloys varied form 0 to 
0.125 wt.%, 4.0 to 8.0 wt.% and 0 to 0.3 wt.%, respectively. In 
the second matrix, or Main Effects (ME?) experiments, levels 
of carbon, aluminum, tungsten and rhenium in the alloys 
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0.12 
0.13 
0.14 
0. I4 
0.14 
0.14 
0.14 
0.14 
0.14 
0.15 
0.15 
0.14 
0.00 
0.00 
0.28 
0.31 
0.00 
0.00 
0.27 
0.26 

- 

ranged from 0 to 0.1 wt%, 4.5 to 7.0 wt.%, 2.5 to 7.0 wt.% and 
1.5 to 5.0 wt.%, respectively. 

For each experimental alloy, fourteen cylindrical 
bars approximately 15cm in length with diameters of 12.7, 
15.9 and 19.0mm were unidirectionally solidified in a large 
investment cluster mold by PCC Airfoils. Processing 
parameters used in these experiments were designed such 
that solidification occurred under relatively low thermal 
gradient conditions. The variations in bar diameters resulted 
in characteristic thermal gradients which allowed for the 
simulation of three different solidification conditions under 
a constant withdrawal rate of 20cm/hr. 

Following solidification, as-cast specimens were 
macroetched in a hot nitric bath to reveal the presence of 
freckles and misoriented grains. Selected bars were then 
sectioned normal to the solidification direction to determine 
the characteristic primary dendrite arm spacings associated 
with the varying bar diameters. 

For each of the carbon containing alloys, small 
rectangular samples (-5g) were sectioned from the bars and 
prepared for electrolytic extraction of the carbides. Using a 
small sheet of platinum as the cathode and a current density 
of 0.04 A/cm*, the y - y’ matrix was dissolved in a solution of 
9:l Methanol:HCl with 1 wt.% tartaric acid. The remaining 
carbides were then collected and analyzed in a Rigaku X-ray 
Diffractometer (XRD). A Phillips XL30 FEG scanning 
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electron microscope (SEM) was used to characterize the 
carbide morphologies and perform qualitative energy 
dispersive spectroscopy (EDS) on the carbides. 

A two step process was used to characterize 
segregation of individual alloying elements and to 
subsequently assess distribution coefficients, k, via a Scheil 
analysis. This technique is similar to the ranking technique 
reported by Gungor, Huang and Nastac13-r5. As-cast samples 
were first sectioned normal to the <OOl> growth direction. 
Next, a line scan that crossed the dendrite core into the 
interdendritic region was used to determine whether 
individual elements segregate preferentially to the dendrite 
core or the interdendritic region. A second series of analyses 
were then conducted to measure composition at points in a 
square grid composed of 225 points. The grid was placed 
over a representative section of the dendritic microstructure, 
covering -1.2 mm’. The composition data acquired for the 
individual elements were then ranked in order according to 
their characteristic segregation behavior. For elements 
determined to have distribution coefficients greater than one, 
as determined previously by the linescan, the composition 
data was ranked in descending order and plotted as apparent 
fraction solid, yielding a Scheil plot. Composition data for 
elements segregating to the interdendritic regions were 
ranked in ascending order and plotted in the same manner. 
Distribution coefficients were then extracted by fitting the 
plots with a Scheil equation [l] and/or a modified Scheil 
analysis [2] which accounts for back diffusion, 
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c, = kc& &“I PI 

C, = kC,(l -(I -2ak)fJ”“‘w2a’ 

where C, is the local composition of the solid, C, is the 
nominal alloy composition, a is the Fourier number, and fs is 
the fraction solid. This analysis assumes that the data 
collected was representative of the entire sample and that the 
distribution coefficients were constant. Steps were taken to 
determine the validity of these assumptions. First, the mean 
composition from the EDS point measurements were 
compared to the actual compositions of the different samples 
measured using X-ray Fluorescence @RF). Experimental 
Scheil plots generated from the point measurements were 
also compared to theoretical Scheil plots with constant k 
values to detect any deviations between the two curves. All 
quantitative EDS measurements in these analyses were 
carried out on a Philips XL30 FEG SEM. 

Finally, a SETARAM SETSYS 18 Differential 
Thermal Analysis unit was used to investigate the effects of 
alloying composition on alloy solidus, liquidus and carbide 
precipitation temperatures. Prior to testing of the 
experimental alloys, the IYTA unit was calibrated with high 
purity Ni (99.99+ %) and Ag (99.9999%) at scanning rates of 
3,5, IO and 20 “Urnin using a platinum reference. All tests 
were conducted in a purged ultra-high purity argon 
atmosphere (flow rate -7Occ/min) using high purity alumina 
crucibles. Once calibrated, cylindrical samples (4mm 
diameter and -3-4mm height) with masses ranging from 200- 
250mg were prepared from the various alloys. Due to the 
effects of undercooling, only the DTAtraces collected during 
heating were evaluated. The heating cycle of the samples 
consisted of: 

I) RT to 1000°C at 20”Umin 
2) 10 min isothermal soak at 1000°C 
3) 1000°C to 1550°C at S”C/min 

For this particular application, a scanning rate of S”C/min 
was determined to yield the best combination of temperature 
accuracy and peak resolution. Additionally, this 
heating/cooling rate matched the calculated solidification 
rate of the 12.7mm diameter bars. Following the DT’A 
experiments, the samples were metallographically prepared 
and examined to ensure that no major contamination or 
interaction with the alumina crucibles occurred during the 
analyses. 

Results 

Figure I shows as-solidified bars of alloy ME1 with 
diameters of 12.7, 15.9 and 19.0mm. The bars exhibit both 
freckles and larger, misoriented grains. Both types of defects 
have previously been shown to form due to the onset of 
thermosolutal convective instabilities during 
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Figure 1: Photos of the macroetched castings exhibiting 
freckling and the development of misoriented grains in (a) 
12.7mm, (b) 15.9mm and (c) 19.0mm diameter bars. 

solidification4. From this, it is apparent that the number of 
grain defects increased as the cross-sectional area of the 
casting increased. In addition, micrographs of the as-cast 
solidified microstructure, Figure 2, revealed that the primary 
dendrite arm spacing measurements (PDAS) increased with 
the diameter of the bars. On average for all alloys, the PDAS 
of the 12.7, 15.9 and 19.0mm diameter bars were measured to 
be 340, 400 and 46Opm, respectively. Figure 3 shows the 

average number of freckle-type grain defects as a function of 
alloy composition for the fractional factorial studies. The 
beneficial effects of both tantalum and carbon are evident 
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(b) --- ----- 

Cc) 
Figure 1: Typical dendritic microstructure of as-cast samples 
sectioned normal to the solidification direction with diameters 
of (a) 12.7 mm, (b) 15.9mm and (c) 19.0mm. 

from the solidification experiments involving alloys from the 
CE matrix, Figure 3a. All of these alloys were RenC N5- 
based with nominally identical levels of Cr, Co, Al, W, Re 
and MO. For example, comparison of alloys CEI and 2 to 
CE3 and 4 clearly shows that freckling was reduced when the 
level of Ta in the alloy increases from 4.0 to 8.3 wt.%. 
Interestingly, the beneficial effect from the addition of 0.125 
wt.% C to the alloys varied dramatically between alloys CE5 
and 6 compared to CE7 and 8. In alloys CE5 and 6, which 
contain -3.9 wt.% Ta, the number of freckle defects observed 
on the surface of the castings decreased only slightly with 
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Figure 2: Results from the half fractional factorial 
solidification experiments involving (a) the CE and (b) the 
ME matrix of alloys. 

the addition of carbon. However, the carbon addition was 
very effective in minimizing freckle defects in the alloys with 
8.3 wt.% Ta. Comparison of alloys CEl and 2 to CE7 and 8 
shows that freckling was essentially eliminated in the 12.7mm 
diameter bars and was greatly reduced in the 15.9 and 
19.0mm bars by the addition of carbon. 

Results from the ME matrix of experiments are 
shown in Figure 3b. General trends indicate that increasing 
levels of W and Re promote the development of freckle 
defects while intentional C additions of 0.125 wt.% suppress 
them. Alloys used for these experiments were also RenC N5- 
based with nominally identical levels of Cr, Co, MO, Hf and 
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Ta. Comparison of alloys ME1 through 8 reveals that the 
onset of convective instabilities was most prevalent in 
alloys with elevated levels of W and Re. In comparative 
instances, alloys with the intentional carbon additions, ME9 
through 16, exhibited fewer freckle defects on the surface of 
the casting. However, the effectiveness of the carbon 
addition in suppressing grain defect formation again varied 
from alloy to alloy. In this instance, the beneficial effect of 
the carbon addition is shown to be much more significant in 
the alloys which contain elevated levels of W, ME9 through 
12. The degree of freckling on the surfaces of the castings 

Main Effects Plot for 12.7mm Dia. ME Bars 

Carbon Aluminum Tungsten Rhenium 

Main Effects Plot for 15.9mm Dia. ME Bars 

Carbon Aluminum Tungsten Rhenium 

Main Effects Plot for 19.0mm Dia. ME Bars 

(0 
Figure 4: Main Effects plots generated using the results from 
(a) CE 12.7mm, (b) CE 15.9mm, (c) CE 19.0mm, (d) ME 
12.7mm, (e) h4E 15.9mm and (f) ME 19.0mm diameter bars. 

with -2.4 wt% W, ME13 through 16, was observed to be only 
slightly lower than comparable alloys containing no carbon 
additions. 

To statistically assess the influence of individual 
elements within the two sets of designed experiments, a 
commercially available statistical sofiware package, 
MINITAB, was used to generate Main Effects plots, Figure 4. 
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In factorial experiments, such as these where the variables are 
systematically changed, these plots isolate the response of 
each variable. For the CE alloys, Figures 4a-c clearly indicate 
that increasing Ta levels in the alloys from 4.0 to 8.0 wt% 
played a major role in inhibiting the onset of freckle 
formation. Due to a large two factor interaction between C 
and Hf in the CE matrix, their effects cannot be evaluated 
separately. However, results from the ME matrix, Figures 4d- 
f, reveal that the effect of C was indeed beneficial with respect 
to stabilizing against the onset of convective instabilities. 
In addition, freckle defects are shown to increase with 
elevated Re and W levels. Finally, changes in Al content 
become statistically insignificant as thermal gradients 
decrease in the larger diameter bars. 

In all instances, carbon additions to the 
experimental alloys resulted it the formation of a small 
volume fraction of carbides located preferentially in the 
interdendritic regions, surrounded by a y - y’ matrix. 
Extraction of carbides present in “2nd generation” alloys 
revealed morphologies that are identical to those observed in 
“3rd generation” RenC N6-based alloys. As seen in Figure 5, 
the three morphologies were characterized as blocky, script 
and nodular. Most of the experimental alloys contained a 
mixture of both script and nodular carbides. No correlation 
between carbide morphology and freckling was evident. 
XRD and EDS analyses identified these carbides to be Ta-rich 
MC carbides, with lattice parameters varying from 4.39 to 
4.45 angstroms depending on the presence of minor amounts 
of Hf, Ni, Cr, Co, and MO. 

Due to a potential change in the solidification path 
of the alloy as a result of the precipitation of Ta-rich MC 
carbides, the segregation characteristics of the constituent 
elements were studied in the as-cast crystals. Quantitative 
EDS linescans through the dendrite core and interdendritic 
regions revealed that Ta and Al segregate preferentially to the 
interdendritic region, while W, Re, Co, Cr and MO segregate 
to the dendrite core. 

Comparison of the Scheil analyses of tantalum for a 
pair of nominally similar alloys with and without carbon is 
shown in Figure 6. Initially, the two curves are nearly 
identical, suggesting that solidification is progressing in the 
same manner for the two alloys. However, separation of the 
curves occurs at approximately 0.5 apparent fraction solid, 
corresponding to the onset of Ta-rich MC carbide 
precipitation in the mushy zone. The 1.5-2 wt.% (-0.6 at.%) 
deviation in the curves is consistent with the TaC reaction, 
consuming the 0.125 wt.% (0.6 at.%) carbon in solution. The 
difference in the overall slope of the two curves is captured 
by the fitted distribution coefficient, k. Using the modified 
Scheil equation to account for limited back diffusion (a = 
O.Ol), the fitted distribution coefficients for CEI and CE8 are 
0.71 and 0.80, respectively. Although comparison of the 
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Figure 5: Photomicrographs of Ta-rich MC carbide 
morphologies seen in both RenC N5 and N6 - based alloys: 
(a) blocky, (b) script and (c) nodular. 

segregation coefficients in Table II show that less 
segregation of the constituent elements occurred in alloys 
which contain carbon, the degree to which the elements were 
affected varied. Generally, the largest changes in segregation 
due to carbon were observed in Ta and W. Since carbides 
contain a significant amount of Ta, the change in Ta 
segregation was not unexpected. However, W segregation is 
altered by the presence of carbon in spite of the fact that no 
W could be detected in the carbides. As mentioned earlier, 
the ME alloys in which the carbon additions were determined 
to be most effective in suppressing the onset of convective 
instabilities also had elevated levels of W. 



DTA analyses of the as-cast experimental single 
crystal alloys revealed information on the effects of alloy 
composition on solidus, liquidus and carbide dissolution 
temperatures. Comparison of alloys CE4 and CE5 in Figure 
7a, which are essentially nominally similar alloys except for 
the addition of 0.125 wt% C to CE5, reveal that carbon 
lowers the liquidus temperature of the alloy by -7°C. 
Furthermore, it results in the dissolution of the Ta-rich MC 
carbides at approximately 24°C below the liquidus 
temperature of the alloy. As seen in Figure 7b, increasing the 
level of Ta dramatically lowers the liquidus temperature of 
the alloys by approximately 15°C. Although the liquidus 
temperatures of the alloys are significantly different, carbide 
dissolution in alloys CE5 through 8 occur at the same 
temperature, 1385°C. Collective results of the DTA analyses, 
Table III, show that the carbide dissolution temperatures 
(1377-1393°C) are much less sensitive to shifts in 
composition than the solidus (1331-1391’C) and liquidus 
(1381-1428°C) temperatures. 

0 d,, c 0.2 014 0.6 0.8 
Apparent Fraction Solid 

Figure 6: Comparison of tantalum distribution in alloys CEl 
and CE8. 

Discussion 

The results of experiments reported here on “2nd 
generation” type alloys as well as results of previous 
experiments on “3rd generation” type alloys clearly show 
that intentional carbon additions to high refractory single 
crystal alloys assist in minimizing grain defect formation. 
However, the effects of carbon on the mechanisms which 
result in freckling are not yet well understood. One potential 
mechanism by which carbon improves solidification 
characteristics is by a change in segregation behavior of 
other constituent elements. Changes in segregation lead to 
slight compositional changes in the interdendritic liquid 
which may possibly lower the tendency for the onset of 
convective instabilities. Keeping in mind the variable 
factors in the ME alloys, comparison of the results from the 
solidification experiments show that alloys ME9&10 and 
ME1 l&12 have significantly improved solidification 
characteristics when compared to ME5&6 and ME3&4, 
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Figure 7: DTAtraces from single crystal alloys (a) CE4 and 
CE5 (b) CEl and CE8. 

respectively. Since the effect of Al has been previously 
shown to be negligible, especially as thermal gradients 
decrease, these improvements can be attributed to the carbon 
addition. Relative to the effects of W, Re and Ta additions, 
previous studies involving “3rd generation” Rend N6-based 
alloys have also shown that minor variations in Al levels 
were statistically insignificant with respect to freckle 
formation2**2. Comparison of ME13&14 and M.E15&16 with 
ME@2 and ME7&8 show that the beneficial effects of the 
carbon addition are much less significant in alloys with low 
levels of W. Recalling the segregation analyses, the 
constituent elements most affected by the carbon additions 
were Ta and W. The alloys which benefit to the greatest 
degree from the C addition have the strongest segregation of 
Ta combined with the weakest segregation of W. Typically, 
elevated levels of W would promote freckling due to its 
tendency to segregate to the dendrite core and create a 
density inversion between the interdendritic liquid and the 
bulk melt2”. However, in this case, the addition of carbon 
results in less segregation of W to the dendrite core thereby 
lowering the alloys’ tendency to develop convective 
instabilities. In alloys ME1&2, ME7&8 and ME13 through 
16 the presence of only -2.4 wt.% W in the alloys would not 
seem likely to contribute significantly to the formation of 



convective instabilities. Thus, a decreased degree of W 
segregation in these alloys apparently does not provide 
substantial benefits in improving the solidification 
characteristics. On the other hand, in alloys ME3 through 7 
and ME9 through 12 (>7.0 wt.% W) where W would likely be 
considered to contribute heavily to freckle formation, 
changes in segregation could potentially improve 
solidification characteristics substantially. Similar changes 
in segregation behavior of W due to carbon have also been 
recently reported in experimental “3rd generation” single 
crystal superalloys’*. 

Interestingly, the consumption of tantalum by the 
TaC carbide reaction during solidification is beneficial with 
respect to the solidification characteristics of the alloy. 
During solidification, tantalum segregates preferentially to 
the interdendritic regions and offsets the density imbalance 
which develops between the solute in the mushy zone and 
the bulk liquid. Previous studies have shown that 
decreasing the levels oftantalum in the mushy zone leads to 
an increased propensity for the onset of thermosolutal 
convection2.4. However, since the density of TaC (14.5 
gm/cm3) is almost twice that of the bulk liquid, the presence 
of these high density carbides in the mushy zone during 
solidification may also be beneficial in stabilizing 
convective fluid flow. 

In the CE matrix of experiments, levels of Ta, C and 
Hf were varied in the alloys while all of the other 
constituents were held constant. The most obvious result 
from Figures 3a and 4a-c is that increasing the level of Ta in 
the alloy suppresses the onset of thermosolutal convection. 
In the results, the effect of Hf on the solidification 
characteristics was negligible. Although, Hf is a very potent 
MC carbide former, it was concluded that the presence of 
only -0.3 wt.% Hf (-0.1 at.%) was insufficient to generate 
drastic changes, since it would consume only -0.02 wt.% C 
(0.1 at.%) in the alloy. With -4.5 wt% W present in the CE 
alloys, the change in the segregation behavior of W due to 
carbon had little effect in reducing the number of freckles in 
alloys CES and 6. However, a substantial decrease in the 
number of freckles was observed between alloys CE1&2 and 
CE7&8. Clearly, in this instance, the carbon addition to 
alloys CE7 and 8 is affecting a mechanism of freckle 

formation other than the segregation behavior of the 
constituent elements. Even though larger differences in W 
segregation were measured between alloys CE4 and CE5, no 
significant beneficial effect due to carbon was observed 
between alloys CE3&4 and CE5&6. Factoring in the DTA 
data, differences between the relative carbide dissolution 
temperatures of CE5&6 and CE7&8 are readily observed. 
Considering the sequence of events which begin with the 
initiation of the convective instabilities and ultimately 
result in freckle formation, it seems highly probable that 
carbide formation close to the liquidus temperature could 
potentially affect freckling mechanisms. Carbide dissolution 
in alloys CE7&8 and CE5&6 occur at -8°C and -24’C below 
their respective alloy liquidus temperatures. Referring back 
to the carbon containing alloys in the ME experiments, even 
though alloys ME9 and 10 had the highest potential for 
developing freckles based on composition, more freckle 
defects were observed on the castings from alloys MEI 3 and 
14. In this case, the relative carbide dissolution temperatures 
in ME9&10 and MEl3&14 were -8°C and 22”C, respectively. 

Along with the possibility of influencing the 
segregation behavior of the constituent elements, the 
resulting carbide precipitation may serve to alter the 
viscosity and permeability of the interdendritic fluid. 
Investigations of freckling in transparent and binary alloy 
systems have shown that the onset of thermosolutal 
convection occurs in the upper regions of the mushy zone 
where the fraction solid in no greater than -0.55.6J6-i8. At 
higher fraction solid, the permeability of the dendritic 
network is too low for solute induced fluid flow to develop. 
Thus, changes to the upper regions of the mushy zone, such 
as the precipitation of carbides just below the liquidus, 
should theoretically lower the permeability and decrease the 
alloys’ tendency to develop freckles. 

To summarize, this study suggests that some of the 
inherent difficulties in casting single crystal blades can be 
lessened through slight modifications in alloy composition. 
Although freckles and other grain defects can potentially be 
reduced by optimizing the levels of Ta, Re, and W, this is 
unlikely to simultaneously benefit phase stability, 
corrosion, creep, and fatigue properties. Therefore, alloying 
approaches, which involve changes in “minor” alloying 
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elements such as carbon, may be more useful for reducing 
grain defects without significantly compromising 
mechanical or physical properties. These results reveal that 
carbon additions are beneficial in lowering the alloys’ 
tendency to develop freckle defects over a wide range of 
experimental “2nd generation” single crystal alloys. 
Although the addition of carbon resulted in an overall 
reduction of grain defects, certain alloy compositions 
benefited more than others. Carbon additions were 
determined to influence the segregation behavior of the 
constituent alloys and affect some aspect of the mechanisms 
which lead to solute-induced fluid flow. DTA analyses 
revealed a correlation between the relative carbide 
dissolution temperature and the number of observed grain 
defects. As MC carbide formation occurred closer to the 
liquidus temperature, the tendency for grain defect formation 
decreased. Thus, alloys designed with high levels of 
tantalum and carbide precipitation occurring near the 
liquidus provide the highest degree of resistance to the 
breakdown of single crystal solidification. 

Table II: Liquidus, Solidus and Carbide Dissolution 
Temperature Measurements.for Experimental Single Crystal 
Alloys With am 

Alloy 

Vithout Cak 

T(solidus) 
“C 

T(carbide) T(liquidus) 
“C “C! 

MEI 1335 
ME2 1333 
ME3 1331 
ME4 1331 
ME5 1393 
ME6 1396 
ME7 1390 
ME8 1391 
ME9 1355 

ME10 1354 
ME11 1376 
ME12 1378 
ME13 1378 
ME14 1379 
ME15 1355 
ME16 1358 
CEl 1369 
CE2 1370 
CE3 1381 
CE4 1379 
CE5 1371 
CE6 1370 
CE7 1366 
CE8 1364 

1383 
1378 
i391 
1391 
1393 
1393 
1377 
1378 

1385 
1385 
1386 
1385 

1397 
1396 
1393 
1393 
1426 
1428 
1416 
1417 
1390 
1389 
1412 
1412 
1416 
1415 
1381 
1384 
1402 
1403 
1416 
1416 
1409 
1410 
1393 
1393 

Conclusions 

1) Under relatively low thermal gradients, elevated levels of 
Ta and intentional additions of 0.125 wt% C improve single 
solidification characteristics over a wide range of 
compositions encompassing both “2nd and 3rd generation” 
alloys. Increasing the levels of W and Re in these alloys 
promotes the formation of freckle-type defects. 
2) Intentional carbon additions result in the formation of Ta- 
rich MC carbides during solidification and alter the 
segregation behavior of the constituent elements. 
3) Fewer freckle-type defects develop in carbon containing 
alloys where carbide precipitation occurs just below the 
liquidus temperature. 
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