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Abstract 
 
The paper focuses on CMSX4 and two experimental alloys, 
LDSX5 and LDSX6, developed to provide alternative 
performance attributes.  The specific objective in this work was an 
exploration of the Low Cycle Fatigue (LCF) characteristics of 
these three alloy variants and the assessment of methods for 
predicting the observed lives.  A comparison of the alloys is 
presented in relation to their strain control fatigue response and 
notch fatigue behaviour.  Predictions of notch lives are made from 
the plain specimen data but found to be extremely pessimistic at 
the lower temperature studied, 650°C.  The inaccuracies are 
attributed to the presence of casting pores.  Using measured crack 
growth data and pore sizes, it is shown that fracture mechanics 
calculations of residual lives are more appropriate.  At 800°C, the 
higher temperature studied, Walker strain predictions of notch 
lives are more meaningful.  This is explained in terms of the 
relaxation of stresses at the defects. 
 

Introduction 
 
The research programme set out to explore the LCF behaviour of 
experimental single crystal nickel alloys.  The alloys specifically 
focused on alternative compositions to CMSX4 that offer various 
performance attributes.  The two alloys highlighted in the present 
paper were chosen because of lower densities, improved stability 
(LDSX5) and enhanced creep strength (LDSX6).  Data generated 
on CMSX4 were used for comparison. All alloys were produced 
with a [100] orientation using conventional single crystal casting 
technology. The experiments involved plain and notched test-
pieces with Kt values of 2.38 for a centre hole plus 2.3 and 3.6 for 
double edge notch geometries. Plain specimens were subjected to 
15cpm strain control fatigue with R values of 0 and -1.  From 
these tests, hysteresis loops were recorded and cyclic stress-strain 
curves constructed. The notch specimens were tested with the 
same waveform at R=0. Plain and notched specimens were tested 
at 650°C and 800°C. The orientations of test-pieces and notches 
were confirmed to be consistent by means of Electron Back-
Scatter Diffraction (EBSD) measurements. 
 
A prime objective of the work was the assessment of methods for 
predicting fatigue performance.  In particular, the Walker strain 
relationship has previously been shown to provide an effective 
means of predicting notch behaviour [1, 2]. In the present 
situation, however, inconsistencies were identified which were 
attributed to the presence of casting pores. These defects 
introduced the need to consider an alternative damage tolerance 
approach based on fracture mechanics and the application of crack 
growth rate data. Both life prediction methods are highlighted and 
discussed. 
 

 
Experimental Procedures 

 
The Alloys 
 
The compositions of the LDSX5 and LDSX6 alloys are 
summarised in Table I in relation to CMSX4. 
 

Table I.  Alloy Compositions (wt%) 
 
 Co Cr Mo W Re Ru Al Ti Ta Hf 
LDSX5 8.4 3.1 2.7 2.9 6.4 4.6 5.6 0.3 6.5 0.1 
LDSX6 3.1 3.3 2.7 4.8 6.4 4.7 5.6 0.3 6.5 0.1 
CMSX4 9 6.4 0.6 6.4 3 0 5.6 1 6.5 0.1 

 
The principal differences from CMSX4 are a higher rhenium 
content, the addition of ruthenium, greater amount of 
molybdenum and reduced tungsten particularly for LDSX5. This 
is illustrated in figure 1. These changes influenced density, 
stability, creep strength and castability. The relative benefits are 
highlighted in Table II. 
 

Table II. Relative attributes of the alloys 
 
Stability LDSX5 > LDSX6 > CMSX4 
Creep strength CMSX4 > LDSX6 > LDSX5 
Castability CMSX4 > LDSX5 > LDSX6 
 

Following casting the alloys were solution treated at 1340°C, gas-
fan quenched, primary aged at 1150°C, quenched and finally aged 
at 870°C. Microstructures were defined by etching in 10ml HNO3, 
50ml HCl, 2.5g Cucl2 and 40ml H20. Scanning Electron 
Microscopy (SEM) comparisons of LDSX5 and LDSX6 at the 
same magnification are reproduced in figures 2 and 3. 
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Figure 1. Single crystal material compositions 
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Figure 2. Microstructure of LDSX5 

 

 
Figure 3. Microstructure of LDSX6 

 
The average measured widths of the γ′ precipitates and γ channels 
are recorded in Table III. 
 

Table III. Microstructural measurements 
 

Alloy Average width of 
γ′, (μm) 

Average width of γ 
channels (μm) 

LDSX5 0.36 0.136 
LDSX6 0.41 0.136 
CMSX4 0.45 0.15 

 
All the alloys contained casting pores.  Typical examples are 
illustrated in figure 4. These pores played an important role in the 
observed fatigue behaviour. They will be considered in more 
detail during the discussion. 
 

 
Figure 4.  Typical pores in CMSX4 

 
Fatigue Procedures 
 
The core fatigue tests were carried out under strain control on a 
plain cylindrical specimen with a gauge length of 15mm and a 
nominal 5mm diameter.  Two sets of the notched specimens had a 
DEN (Double Edge Notch) configuration with Kt values of 2.3 
and 3.6.  The third set had a ‘flat plate’ geometry with a Kt value 
of 2.38.  The three notch specimens are shown in figure 5. 
 

 
Figure 5. Form and dimensions of the three notch specimens 
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Additional crack propagation measurements were made on a 
corner crack specimen with a 7x7mm cross section and a 0.35mm 
deep slit machined into one corner.  The cast bars from which all 
specimens were machined were aligned so that their primary axis 
(specimen longitudinal direction) was <20° from [001] direction.  
An EBSD analysis confirmed that in practice, misalignment 
amounted to only a few degrees.  The analysis also demonstrated 
that the alignment of notches in the DEN specimens was 
consistent throughout the whole batch of specimens. 
 
The low cycle fatigue tests complied with the British Standards 
BS3518: part 1: 1993 for load controlled notch testing and 
BS7270:1990 for the strain control testing of plain specimens.  
For all tests a 1-1-1-1 trapezoidal waveform at a frequency of 
0.25Hz was applied.  The load control tests were carried out at 
R=0 but the strain control measurements involved both R=0 and -
1.  The experiments encompassed temperatures of 650°C and 
800°C although the majority of the work involved the former.  
The temperatures were achieved by means of a conventional air 
furnace with two type K or N thermocouples attached close to the 
centre of the specimen gauge length.  A uniform temperature 
distribution to within ±1°C was maintained for the duration of the 
tests.  For the strain control experiments, the extensometer, with 
an extension range of 0.25mm and a position range or gauge 
length of 10mm, was recalibrated before each test and prior to 
heating. 
 
The crack propagation tests involved R=-1, 0 and 0.5 load ratios 
and the standard 1-1-1-1 trapezoidal waveform. Crack growth was 
monitored by a direct current potential difference method in 
which the constant current was pulsed to minimise heating effects.  
On conversion of the voltage changes to increases in crack length 
with cycles, the rate of crack growth (da/dN) was determined by 
means of a three point secant approach. 
 
All fractured specimens were examined in the SEM to define 
crack path features including casting pores and their depth below 
the specimen surface. EBSD was also used to confirm the 
orientation of all test pieces in relation to notches and crack 
growth directions. 
 

Experimental Results 
 
Cyclic Stress-Strain Curves 
 
The strain control measurements allowed key material property 
characteristics to be defined.  The important parameters involved 
monotonic and cyclic yield strengths, ultimate strengths and 
amount of stress relaxation associated with each temperature.  
Cyclic stress-strain curves derived from the measured hysteresis 
loops are illustrated for CMSX4 and the two alloy variants at 
650°C in figure 6. A similar graph for CMSX4 at 650°C and 
800°C is shown in figure 7. 
 
Several important deductions can be made from figures 6 and 7: 
 
• The monotonic stress-strain curves for CMSX4 at 650°C 

and 800°C almost superimpose although there is a slight 
reduction in modulus with temperature. 

• The monotonic strengths of LDSX5 and 6 are lower than 
CMSX4 but alloy 6 has a higher rate of strain hardening. 

• The CMSX-4 does not cyclically soften at 650°C and in fact 
tends to cyclically harden. 

• In contract the CMSX-4 at 800°C displays significant cyclic 
softening 

• Both LDSX 5 and 6 at 650°C do not cyclically soften. 

 
Figure 6. Monotonic and cyclic stress-strain response of CMSX4, 

LDSX5 and LDSX6 at 650°C 
 

 
 

Figure 7. Monotonic and cyclic stress-strain response of CMSX4 
at 650°C and 800°C 

 
Figure 8 illustrates the strain range-life response of CMSX4 at 
650°C and 800°C and the two other variants at 650°C.  Upper and 
lower bound curves have been super-imposed on the graph. The 
CMSX4 sits largely in the upper band although there are 
exceptions. The R=0 data for CMSX4 at 650 and 800°C generally 
lie on the dashed line that merges with the upper band.  The 
apparent difference for this alloy between R=-1 and R=0 is not 
unusual and has been recorded for other systems.  LDSX5 and 6 
are generally consistent with the lower band but once again there 
are exceptions. It is believed that the variability is associated with 
crack initiation at pre-existing pores.   
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Figure 8. LCF Strain Range response of CMSX4, LDSX5 and 
LDSX6 

 
Notch Fatigue 
 
Notch behaviour at 650°C and 800°C is recorded in figure 9. The 
fatigue data are plotted in terms of peak elastic stress (Kt σnom).  
There is significant scatter particularly at 650°C. This is attributed 
to the role of casting pores in crack initiation. Even so there are 
trends. Thus LDSX6 displays a longer life for the Kt = 3.6 
notches.  This may be associated with the higher, monotonic strain 
hardening characteristic of this alloy. The Kt=3.6 data for LDSX5 
and CMSX4 effectively superimpose within the observed scatter 
even though the alloy variant is weaker monotonically and in the 
strain control experiments. The only common feature of the two 
alloys is the rate of strain hardening both monotonically and 
cyclically which would influence the extent of plasticity at the 
notch root. 
 

 
Figure 9. Notch behaviour at 650°C and 800°C for different Kt 

values 
 
 
Casting Pores and Variability 
 
The test results highlight the role of casting pores in the fatigue 
performance of both plain and notched specimens. Virtually all 
fracture surfaces displayed evidence of porosity. However, it was 
not always evident that a pore was responsible for crack initiation. 

Some examples of pores and fracture surfaces from strain control 
specimens are illustrated in figures 10 and 11. 
 

 
Figure 10. Casting pore in plain CMSX4 specimen at 650°C 

 

Figure 11. Casting pore in plain LDSX6 specimen at 650°C 
 

Table IV. Repeat strain control tests at Δε=1% 
 

Nf Peak 
Stress 
(MPa) 

Stress 
Range 
(MPa) 

Pore Size 
(μm2) 

Pore 
Distance 

(μm) 
12311 903.9 1188.8 19905 1750 
9983 891 1172.3 7057 100 

10997 892.8 1216.6 24328 50 
11465 1009.1 1135 5341 250 
15894 972.4 1145.1 6231 980 

 
 
It is believed that the observed variability in fatigue performance 
is a direct consequence of the pores and their position on the 
fracture surface.  To explore this belief a series of repeat strain 
control and notch tests were carried at a strain range of 1% and 
peak elastic stress of 1750 MPa respectively. The measured lives 
together with other supporting information are recorded in Table 
IV and V. 
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Table V. Repeat Kt=3.6 notch tests at Ktσmax = 1750 MPa 
 

Nf Ratio Pore Size 
(μm2) 

Pore distance 
(μm) 

4993 0.75 52 39 
50113 5.55 20 111 
8361 0.013 1227 17 
17682 0.759 362 275 
29563 0.03 1100 33 
3899 0.0488 655 32 

 
The scatter in lives observed is consistent with the original data in 
figures 8 and 9. A detailed statistical analysis suggested Weibull 
distribution functions provide the best fit. For the plain specimens 
the Weibull ‘β’ exponent was unity suggesting an exponential 
decay in failure rate. 
 
Tables 4 and 5 also contain measurements made of pore size and 
pore distance from the specimen outer surface. The pore area was 
calculated by constructing an elliptical shape around the pore with 
the major and minor axes matching the extremities of the pore.  
The areas, therefore, may overestimate pore size but do not take 
into consideration pore dimensions outside the plane of fracture.  
It might be anticipated that larger pores and short distance should 
be associated with shorter fatigue lives. An examination of the 
two tables demonstrates that reality may not be so straightforward.  
The histograms in figures 12 and 13 summarise measured areas 
and pore depths for all the R=0 strain control tests at 650°C 
highlighted in figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Critical casting pore area values 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Critical casting pore ligament distance values 

Discussion 
 
Life Prediction 
 
An objective of the work was to explore the effectiveness of strain 
approaches in the prediction of notch fatigue response. These 
methods included the Manson-Coffin [3] relationship and the 
Walker strain [4] equation with the form 
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specimen, E the modulus and Δεactual the strain range experienced.  
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 The Walker relationship has the advantage of being able to 
correlate different R values. Figure 14 illustrates the Walker 
predictions of CMSX4 notch data at 650°C (Kt=2.3) and 800°C 
(Kt=2.38) based on the strain control results in Figure 8 and the 
cyclic stress-strain curves in Figure 6 and 7. 
 

 
 

Figure 14. Walker strain predictions of CMSX4 notch lives at 
650°C and 800°C 

 
While the predictions at 800°C are generally acceptable, at 650°C 
they consistently underestimate measured lives. This discrepancy 
is attributed to stress conditions associated with the pores. At 
800°C, the alloys cyclically soften.  This must be due to enhanced 
dislocation mobility and plastic deformation (figure 7). It is 
speculated that as a consequence there will be a significant 
redistribution of stress thereby diminishing the stress 
concentration caused by pores. This appears the case in Figure 15 
which illustrates plain data at 800°C and summarises initiation 
sites. Clearly the pores do not degrade the fatigue response with 
respect to the surface. They, therefore, appear to provide a ‘free’ 
surface for crack initiation without imposing a significantly higher 
stress locally. 
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Figure 15. Comparison of surface and subsurface initiation sites in 
CMSX4 and alloy variants at 800°C 

 

In contrast, at 650°C the strain control data cyclically hardens.  
The mechanical response, therefore, become more elastic so that 
any discontinuity in the microstructure acts as a stress raiser.  A 
separate finite element analysis suggests that pores can impose a 
stress concentration factor ≥ 2 at the pore surface. The under 
prediction of the notch behaviour through application of the 
Walker expression is a consequence. The Walker exponent is 
derived from plain specimen data. Plain specimens have a bigger 
stressed volume than the notches and hence a greater likelihood of 
a larger defect. It is, therefore, not surprising that the predicted 
lives fall short of the measured notch behaviour. 
 
Correlating Pore Impact 
 

It was shown in Tables 4 and 5 that the dependence of fatigue 
performance on pore size and position is not necessarily 
straightforward. However, intuitively, fatigue lives should 
decrease as pore size increases but increase as pore distance (or 
ligament) from the surface increases. On this basis, the fatigue 
lives for the repeat plain and notched specimens were expressed in 
terms of the ratio (ligament/pore area). Thus as the ratio increases 
the fatigue lives should also increase. The outcome is illustrated in 
figure 16 for plain specimens and in figure 17 for the notched 
specimens. The increasing trend is evident. Furthermore 
correlation coefficients in excess of 0.9 emphasise the strength of 
the correlation. 
 

 
 

Figure 16. Ligament / Pore Area Ratio versus life for CMSX-4 
plain specimens 

 
Figure 17.  Ligament / Pore Area Ratio versus life for CMSX-4 Kt 

= 3.6 notched specimens 
 
Damage Tolerance 
 
In general, defect situations are generally assessed by the 
application of fracture mechanics through equations of the form 
 

mKC
dN
da

Δ=          (2) 

 
With da/dN the rate of crack propagation, C and m constants and 
ΔK the stress intensity factors [5]. Through integration of this 
equation, knowledge of m and c from laboratory experiments and 
an expression for ΔK, the residual lives of specimens and 
components can be calculated through the following equation.   
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with Y the geometry term in an expression for the stress intensity 
factor of the form ΔK=YΔσ a  
 
Brandt [6] has derived a stress intensity expression that is 
appropriate for the current situation: 
 

             ΔK=(0.78 + 0.0395D/L) Δσ D                     (4) 
 
which highlights a dependence on ligament distance, L, and pore 
size, D. For convenience, in the present analysis it was assumed 
that the initial and growing crack shape was circular with the 
radius a=D/2 = π/sizepore . On this basis, the geometry term 
has the form 
 

              Y= 2 { }L/a.. 07900780 +                 (5) 
 

Since both a and L are changing as the crack grows, the 
propagation life is calculated incrementally. For each increment 
the conditions are assumed to be constant. Clearly, a smaller 
increment size will give a more accurate calculation. On this basis 
the crack size, a1, at the end of an increment of crack growth, ΔN, 
is given by: 
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with a0 the crack size at the start of incremental growth. By 
summing all the increments, the total crack propagation life can 
be calculated. 
 
Using this expression and measured crack growth rates at 650°C 
on CMSX4 corner crack specimens, shown in figure 18, the 
correlation recorded in table VI was obtained.   
 
Table VI. Calculated crack propagation lives in CMSX4 at 650°C 
 

Pore 
Area 
(μm2) 

Ligament 
Distance 

(μm) 

m c Calculated 
Nf 

Measured 
Nf 

19905 1750 2.68 5.1E-11 16063 12311 
19905 1750 2.19 4.1E-10 4330 12311 

 
 
Table VI contains two sets of m and C values. This reflects 
previously reported work [7] that the rate of propagation is 
influenced by the direction in which the crack is growing on the 
(001) plane.  Clearly cracks growing form a buried flow will be 
influenced by this apparent anisotropy which in turn will impact 
on the measured lives. The calculated lives span the measured 
values perhaps reflecting the anisotropic influence. Thus the 
analysis is a promising but preliminary evaluation. A more 
detailed assessment will follow in future publications.   

 
 

Figure 18. Crack Propagation rates for CMSX4 at 650°C 
 

Conclusions 
 
The paper explores the strain control fatigue behaviour of CMSX4 
and several alloy single crystal variants.  It clearly demonstrates 
differences in the cyclic fatigue response at 650°C and 800°C 
which is related to increased dislocation mobility at 800°C. The 
different response impacts on the role that casting pores play in 
the initiation of fatigue cracks. This is illustrated through 
application of the Walker strain relationship which is effective at 
800°C but under predicts notch lives at 650°C possibly because of 
‘weak’ link concepts associated with volume differences. Two 
approaches to life predictions of the pores are discussed. One 

relates fatigue lives to the ratio ligament distance to pore area.  
The second demonstrates the effectiveness of fracture mechanics 
and the application of crack growth data in calculating residual 
propagation lives. 
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