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Abstract 
 
The effects of a 2.0 at.% addition of Ta to a model Ni-Al-Cr 
superalloy aged at 1073 K are assessed using scanning electron 
microscopy and atom-probe tomography. The addition of Ta 
results in appreciable strengthening, and the morphology is found 
to evolve from a bimodal distribution of spheroidal precipitates, to 
cuboidal precipitates aligned along the elastically soft <001>-type 
directions. Tantalum is observed to partition preferentially to the 
γ’-precipitate phase and decreases the mobility of Ni in the γ-
matrix sufficiently to cause an accumulation of Ni on the γ-matrix 
side of the γ’-precipitate/γ-matrix heterophase interface.  
 

Introduction 
 
The high-temperature properties of nickel-based superalloys allow 
these materials to be used in a wide range of applications at 
operating temperatures up to 1373 K, in highly corrosive 
environments where other materials are unsuitable [1]. The ability 
of nickel-based superalloys to endure such severe environments is 
due in part to strengthening of the nickel-rich γ (f.c.c.)-matrix 
solid-solution by both solute elements and precipitates.  
 
Tantalum has played an important role in the development of 
complex concentrated multicomponent superalloys as both a 
solid-solution strengthener and a precipitate former [1-4]. The 
addition of Ta to superalloys increases the high-temperature 
strength and ductility, and the resistance to creep, fatigue, and 
corrosion, of these high-performance materials [2, 5]. While the 
effects of Ta on the microstructure and mechanical properties of 
superalloys [5-10] have been studied, little work has been done to 
characterize the morphological and compositional changes due to 
the addition of Ta.  
 
The work reported herein focuses on the temporal evolution of the 
nanostructural and compositional properties of a model Ni-Al-Cr-
Ta alloy that decomposes to form a microstructure consisting of 
γ’(L12)-precipitates in a γ(f.c.c.)-matrix. The addition of Cr to the 
binary Ni-Al system reduces the lattice parameter misfit between 
the γ’-precipitates and the γ-matrix, allowing the γ’-precipitates to 
remain spherical or spheroidal to fairly large dimensions as aging 
progresses [11]. The addition of Ta has been shown to provide 
significant strengthening by increasing the volume fraction of the 
γ’-precipitate phase, while also decreasing the inter-diffusivity 
between phases, improving phase stability and service life [2, 3]. 
 

The effects of a 2.0 at.% addition of Ta to a model Ni-Al-Cr 
superalloy aged at 1073 K are studied using primarily scanning 
electron microscopy (SEM) and atom-probe tomography (APT). 
The effects are assessed by studying changes in the 
microhardness, the γ’-precipitate morphology, the phase 
compositions, the partitioning ratio of the constituent elements, 
and the concentration profiles across the γ’-precipitate/γ-matrix 
interface, as the alloy ages. 
 

Experimental 
 
Alloy Preparation 
 
High-purity constituent elements were induction-melted under a 
partial pressure of Ar and chill cast into a 19 mm diameter copper 
mold to form a polycrystalline master ingot. Samples from the 
cast ingot then underwent a three-stage heat-treatment: (1) 
homogenization at 1573 K in the γ-phase field for 20 h; (2) a 
vacancy anneal in the γ−phase field at 1503 K for 3 hours 
followed by a water quench; and (3) an aging anneal at 1073 K 
under flowing argon for times ranging from 0.25 to 256 h. The 
samples were again water quenched, and microtip specimens and 
metallographic samples were prepared from each of the aged 
sections for study by APT and SEM.  
 
The overall composition of the master ingot was determined by 
inductively coupled plasma (ICP) atomic-emission spectroscopy 
to be 80.01 Ni-9.75 Al-8.21 Cr-2.02 Ta at.%, and, within 
experimental error, was indistinguishable from the targeted 
composition of Ni-10.0 Al-8.5 Cr-2.0 Ta at.%. ICP chemical 
analysis was also used to determine the compositions of the γ-
matrix and γ’-precipitate phases of a sample aged at 1073 K for 
256 h after phase extraction by anodic dissolution of the γ-matrix 
phase with a 1:1 aqueous solution of citric acid and ammonium 
nitrate at constant current density. The commercial software 
package Thermo-Calc [12] was used to estimate the values of the 
equilibrium γ’-precipitate volume fraction, φeq, and the 
equilibrium compositions of the γ-matrix, )(, ∞eq

iCγ , and γ’-
precipitate phases, )(,' ∞eq

iCγ , for each solute species i, using a 
database for nickel-based superalloys developed by Saunders [13], 
at a pressure of 1 atmosphere. The tracer diffusivities of the 
atomic species in the γ-matrix phase were calculated employing 
Dictra [14] with the mobility database due to Campbell [15] and 
employing the Saunders thermodynamic database. 
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Experimental Procedures 
 
Vickers microhardness was measured using a Buehler 
Micromet™ at a load of 500 g, sustained for 5 s, on mounted 
samples polished to 1 μm, using the average value of fifteen 
independent measurements made on several grains. SEM was 
performed on mounted samples polished to a 0.02 μm finish and 
etched in a 100 ml HCl/100 ml deionized H2O/1g K2S205 mixture, 
employing a LEO Gemini 1525™ field-emission SEM operated at 
5 kV with a 20-30 μm aperture and a working distance of 6 mm. 
APT was performed with a local-electrode atom-probe (LEAP™) 
tomograph [16-19] at the Northwestern University Center for 
Atom-Probe Tomography (NUCAPT). Pulsed-laser APT data 
collection was performed at a target evaporation rate of 0.04 ions 
per pulse, a specimen temperature of 40.0±0.3 K, a pulse energy 
of 0.6 nJ, a pulse repetition rate of 200 kHz, and a background 
gauge pressure of < 6.7 x 10-8 Pa. APT data were analyzed with 
the IVAS® 3.0 software program (Imago Scientific Instruments, 
Madison, Wisconsin). The γ’-precipitate/γ-matrix heterophase 
interfaces were delineated with Al isoconcentration surfaces 
generated by efficient sampling procedures [20]. Detailed 
compositional information was obtained with the proximity 
histogram method [21], and extrapolated to infinite time 
employing the predictions of classical coarsening models [22]. 
 

Results 
 
Equilibrium Volume Fraction and Phase Composition 
 
The values of φeq estimated by APT and Thermo-Calc for a Ni-
10.0 Al-8.5 Cr-2.0 Ta at.% alloy aged at 1073 K are presented in 
Table I, and compared to the values of the precipitated volume 
fraction, φ, at 256 h, as measured by both APT and ICP chemical 
analysis. The values of φ estimated by APT at 256 h are within 
experimental error of the values of φeq, suggesting that growth of 
the γ’-precipitate phase is complete and that the alloy may be 
undergoing quasi-stationary-state coarsening. A pure coarsening 
regime can occur only when an equilibrium value of φ is achieved 
and the supersaturations are zero. 
 

Table I. Equilibrium γ’-precipitate volume fraction, 
φeq, determined by APT, ICP chemical analysis, and 
thermodynamic modeling employing Thermo-Calc for 
Ni-10.0 Al-8.5 Cr-2.0 Ta at.% aged at 1073 K. 

 
The values of )(,' ∞eq

iC γ and )(, ∞eq
iCγ  are listed in Table II. A 

comparison of these values to the compositions measured by APT 
and ICP analysis after 256 h of aging shows that the phase 
compositions are near their equilibrium values at 256 h. Thus, the 
γ-matrix supersaturations are small and γ’-precipitate growth is 
nearly complete, and the alloy may be undergoing quasi-
stationary-state coarsening.  

 
Table II. Equilibrium γ’-precipitate, )(,' ∞eq

iCγ , and γ-
matrix, )(, ∞eq

iCγ , compositions determined by APT, 
ICP analysis, and Thermo-Calc for Ni-10.0 Al-8.5 Cr-
2.0 Ta at.% aged at 1073 K (at.%). 

 
Microhardness Testing 
 
The microhardness of Ni-10.0 Al-8.5 Cr-2.0 Ta at.%, aged at 
1073 K for t = 0–256 h, Figure 1, varies from 3.3 to 3.6 GPa, with 
peak microhardness occurring between t = 1 and 16 h. For Ni-10.0 
Al-8.5 Cr at.% aged at 1073 K, the microhardness varies over a 
narrow range, 2.15 GPa to 2.5 GPa, with peak microhardness 
occurring at 4 h [23, 24]. The addition of 2.0 at.% Ta therefore 
results in an increase in microhardness of 47±5 % over the range 
of aging times studied.  
 

 
Figure 1. Vickers microhardness measurements for Ni-
10.0 Al-8.5 Cr-2.0 Ta and Ni-10.0 Al-8.5 Cr at.% aged 
at 1073 K. 

Technique used to estimate φeq: φeq
 (%) 

Lever rule with  APT compositions, 256 h: 37.2±8.9 

Lever rule with equilibrium compositions 
extrapolated from APT data: 37.0 ±9.0 

ICP chemical analysis, 256 h: 36.4 

Thermo-Calc and Saunders database [13]: 38.17 

Technique: 
 

)(,' ∞eq
NiCγ

 

 
)(,' ∞eq

AlCγ

 

 
)(,' ∞eq

CrCγ

 

 
)(,' ∞eq

TaCγ

 

APT, 256 h: 75.37 
±0.05 

16.56 
±0.08 

3.25 
±0.09 

4.82 
±0.09 

APT: 75.24 
±0.08 

16.48 
±0.07 

3.20 
±0.06 

5.03 
±0.07 

ICP, 256 h: 75.56 16.57 3.28 4.58 

Thermo-Calc: 76.47 17.00 2.66 3.88 

Technique: 
 

)(, ∞eq
NiCγ

 

 
)(, ∞eq

AlCγ

 

 
)(, ∞eq

CrCγ

 

 
)(, ∞eq

TaCγ

 

APT, 256 h: 81.65 
±0.01 

5.23 
±0.03 

12.66 
±0.03 

0.47 
±0.03 

APT: 81.68 
±0.04 

5.18 
±0.08 

12.70 
±0.02 

0.44 
±0.06 

ICP, 256 h: 83.17 5.49 10.74 0.60 

Thermo-Calc: 81.37 5.68 12.11 0.84 
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Morphological Development 
 
The morphology of the Ni-Al-Cr-Ta alloy evolves from a bimodal 
distribution of spheroidal γ’-precipitates, to cuboids with 
significantly rounded edges, and finally to a cuboidal morphology 
with γ’-precipitates aligned along the elastically soft <001>-type 
directions, Figures 2 and 3.  
 

 
 

Figure 2. SEM images of a Ni-10.0 Al-8.5 Cr-2.0 Ta 
at.% alloy aged at 1073 K for: (a) 0 h; (b) 4 h; and (c) 
64 h. The γ’-precipitate morphology evolves from 
spheroidal γ’-precipitates to a cuboidal morphology 
with γ’-precipitates aligned along the elastically soft 
<001>-type directions. 

 
In the as-quenched state, a bimodal distribution of γ’-precipitates 
is observed, Figure 3a, consisting of larger primary γ’-precipitates 
with radii, R, on the order of 30-40 nm and smaller secondary γ’-
precipitates with radii of 3-5 nm. The smaller γ’-precipitates are 
lost during the etching process and are not detected in SEM 
micrographs, Figure 2a. For aging times beyond the as-quenched 

state, the γ’-precipitates begin to adopt a {100}-faceted cuboidal 
morphology with rounded corners, as can be seen by both SEM, 
Figure 2b, and APT, Figure 3b, for a sample aged for 4 h. Figure 
2b shows γ’-precipitates that have nucleated and grown 
heterogeneously at a grain boundary. The cuboidal morphology of 
the γ’-precipitates persists with longer aging, and for aging times 
of 4 h and longer, the γ’-precipitates align along orthogonal 
<001>-type directions, Figures 2c and 3c. 
 

 
 
Figure 3. APT images of a Ni-10.0 Al-8.5 Cr-2.0 Ta 
at.% alloy aged at 1073 K for: (a) 0 h; (b) 4 h; and (c) 
64 h. The elements that partition to the γ’-precipitates, 
Ta and Al, are shown in black, while Cr, which 
partitions to the γ-matrix, is shown in white; Ni atoms 
are omitted for clarity. The morphology of the γ’-
precipitate phase is spheroidal in the as-quenched state, 
and a bimodal particle size distribution is apparent. 
The smaller γ’-precipitates are observed to have radii 
of 3-5 nm, while the larger γ’-precipitates have radii on 
the order of 30-40 nm. After aging for 64 h, the γ’-
precipitates are distinctly cuboidal and aligned 
crystallographically. 

 
Temporal Evolution of the Concentration Profiles at the γ’-
precipitate/γ-matrix Interface 
 
The compositional information generated by APT permits the 
study of both the temporal evolution of the phase compositions, 
and of the concentration profiles at the γ’-precipitate/γ-matrix 
interface, Figure 4. The phase compositions evolve temporally, 
and an accumulation of Ni, and a depletion of Cr, is observed 
approximately 2 nm into the γ-matrix. This effect was not detected 
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for Ni-10.0 Al-8.5 Cr at.% [23, 24], and is likely a kinetic effect 
associated with the addition of Ta.  
 

 
 

Figure 4. The concentration profiles of the constituent 
elements across the γ’-precipitate/γ-matrix heterophase 
interface for a Ni-10.0 Al-8.5 Cr-2.0 Ta at.% alloy 
aged at 1073 K. The phase compositions evolve 
temporally, and the widths of the interfaces decrease 
with increasing aging time. An accumulation of Ni is 
observed to develop on the γ-matrix side of the 
heterophase interface, evidence of a kinetic effect 
associated with the addition of Ta. 
 

Partitioning of Elemental Species 
 
The partitioning behavior of the elements can be determined 
quantitatively by calculating the partitioning ratio, γγ /′

iK , the 

ratio of the concentration of an element i in the γ’-precipitates to 
the concentration of the same element in the γ-matrix, Figure 5. 
Aluminum and Ta are observed to partition to the γ’-precipitates, 
while Cr and Ni partition to the γ-matrix. The strong partitioning 
of Ta to the γ’-precipitates reduces the partitioning of Al to the γ’- 
phase, and increases the partitioning of Cr to the γ-matrix, when 
compared to the results obtained for a ternary Ni-10.0 Al-8.5 Cr 
at.% alloy [23, 24], Figure 5; the partitioning of Ni is unaffected 
by the addition of Ta. 
 

 
 

Figure 5. The temporal evolution of the partitioning 
ratios, γγ /′

iK , of the constituent elements i of: (a) Ni-
10.0 Al-8.5 Cr-2.0 Ta; and (b) Ni-10.0 Al-8.5 Cr at.% 
aged at 1073 K. Aluminum and Ta are observed to 
partition to the γ’-precipitates, while Cr and Ni 
partition to the γ-matrix. For all aging times, the γγ /′

NiK  
values of the two alloys are identical, within 
experimental error. 

 
Discussion 

 
The addition of 2.0 at.% Ta to a model Ni-Al-Cr system results in 
a dramatic increase in the value of φeq from 18.9 % for a ternary 
Ni-10.0 Al-8.5 Cr at.% alloy [23, 24] to 37.0±9.0 % for the 
quaternary alloy when aged at 1073 K. The added solid-solution 
strengthening provided by Ta, and the increase in the value of φeq, 
lead to an increase in microhardness of 47±5 % over the full range 
of aging times. A similar increase in microhardness of 41±9 % 
was previously observed for a 2.0 at.% W addition to Ni-10.0 Al-
8.5 Cr at.% , which resulted in a φeq value of 30.8% [23, 24]. 
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Morphological Development 
 
The morphology of the γ’-precipitates is observed to evolve from 
a bimodal distribution of spheroidal γ’-precipitates to cuboids 
with significantly rounded edges, and finally to cuboids aligned 
along orthogonal <001>-type directions. The γ’-precipitates that 
form the original bimodal distribution in the as-quenched state 
nucleate rapidly during the quench due to the low barrier to 
nucleation and the large supersaturations of alloying elements. 
The larger γ’-precipitates nucleate first, but with additional 
cooling, a supersaturation of solute develops in the interprecipitate 
spaces, resulting in the secondary burst of smaller precipitates 
observed between the larger γ’-precipitates, Figure 3a. 
 
The evolution of the spheroidal γ’-precipitates into cuboids in the 
Ni-Al-Cr-Ta alloy commences at an aging time of 0.25 h, when 
the γ’-precipitates have an average radius of 30-50 nm. The radius 
at which the microstructure becomes cuboidal for the base Ni-Al-
Cr alloy was estimated to be ~ 88 nm, and occurred at an aging 
time of 64 h [23, 24] at 1073 K. The spheroid-to-cuboid transition 
is determined by a competition of the elastic self-energy and the 
γ’-precipitate/γ-matrix heterophase interfacial free energy [25]. 
The elastic self-energy of a precipitate increases as R3, while the 
interfacial free energy increases as R2. Thus as coarsening 
proceeds, and the average precipitate radius increases in 
elastically-stressed alloy systems such as the one studied here, the 
elastic energy ultimately determines the precipitate morphology, 
and is decreased by the formation of cuboidal γ’-precipitates.  
 
The γ’-precipitates of a Ni-10.0 Al-8.5 Cr-2.0 W at.% alloy were 
previously observed  to become cuboidal at an aging time of 32 h, 
when the precipitates have an average radius of ~ 50 nm [23, 24]. 
For the case of the Ni-Al-Cr-W alloy, it was reasoned that the 
transition from spheroids to cuboids occurs at a smaller radius 
than for the model Ni-Al-Cr alloy because of a larger lattice 
parameter misfit between the γ’-precipitate and γ-matrix phases in 
the Ni-Al-Cr-W system. The same logic applies to the Ni-Al-Cr-
Ta system; a calculation of the lattice parameters based on 
Vegard’s law and the partitioning of solute elements [1], reveals 
that the lattice parameter misfit increases by 110 %, from 0.59 % 
to 1.25 %, due to the addition of 2.0 at.% Ta. The alignment of the 
γ’-precipitates as aging progresses results from the minimization 
of the elastic interactions between the γ'-precipitates, where the 
interaction energy depends on the elastic anisotropy, the 
difference in the elastic constants of the two phases, and the sign 
and magnitude of the misfit strain [26, 27]. 
  
Compositional Evolution 
 
The APT results show strong partitioning of Al and Ta to the γ’-
precipitate phase, while Ni and Cr partition to the γ-matrix phase, 
in agreement with prior experimental work [5, 9, 10, 28-31]. The 
experimentally determined equilibrium composition of the γ’-
precipitate phase of 75.24 Ni-16.48 Al-3.20 Cr-5.03 Ta at.%  
suggests that Al, Ta and Cr occupy the Al sites of the L12-ordered 
Ni3Al-type γ’-precipitate phase of the Ni-Al-Cr-Ta alloy at 1073 
K. Previous APT, atom probe field-ion microscope (APFIM) [30, 
32, 33], x-ray analysis [34, 35], and diffusion couple technique 
[31] experiments, as well as results of Monte Carlo simulations 
[36] and calculations employing first-principles [37-40], the 
cluster variation method [41-44], and other techniques [45, 46], 
have shown that Ta occupies the Al sites in the ordered Ni3Al 

structure. These results contradict experimental results from ion 
channeling and nuclear reaction studies [47] and results based on 
short-range ordering parameters determined from pseudopotential 
approximations [48], which conclude that Ta occupies the Ni sites 
in the Ni3Al structure. Chromium has been found to occupy both 
the Ni or Al sites, depending on the composition of the alloy  
studied [34, 36, 37, 39, 43, 48, 49]. 
 
The most striking feature of the concentration profiles across the 
γ’-precipitate/γ-matrix heterophase interface, Figure 4, is the 
accumulation of Ni in the γ-matrix, roughly 2 nm from the 
interface. This effect is likely kinetic in origin, resulting from a 
decrease in the diffusivity of Ni in the γ-matrix, as evidenced by a 
threefold decrease in the calculated γ-matrix tracer diffusivity of 
Ni, γ

NiD , from 6.06 x 10-18 m2 s-1 to 2.02 x 10-18 m2 s-1 due to a 
2.0 at.% addition of Ta, Table III. This effect is significant 
because Ni becomes the least mobile species in the γ-matrix. As 
Ni partitions to the γ-matrix during phase decomposition, the 
diffusivity of Ni is not sufficient to transport all of the Ni atoms 
away from the interface and an accumulation of Ni is observed. 
The diffusivities of the other atomic species do not decrease by 
more than 10% with the addition of Ta, though a decrease in the 
coarsening kinetics is anticipated. 
 

γ
iDTable III. Tracer diffusivity, , of element i in the γ-

matrix of Ni-10.0 Al-8.5 Cr and Ni-10.0 Al-8.5 Cr-2.0 
Ta at.% calculated with Dictra at 1073 K (10-18 2 m s-1): 

γ
AlD γ

CrD γ
TaDγ

NiD        Alloy (at.%)          

Ni-10.0 Al-
8.5 Cr 6.06 13.9 5.13 - 

Ni-10.0 Al-
8.5 Cr-2.0 Ta 2.02 12.6 4.80 5.14 

 
Summary and Conclusions 

 
The effect of a 2.0 at.% Ta addition to a model Ni-Al-Cr 
superalloy aged at 1073 K for 0 to 256 h is assessed using 
scanning electron microscopy and atom-probe tomography, 
leading to the following conclusions: 

• The addition of Ta results in a 47±5 % increase in 
microhardness, due to increases in solid-solution 
strengthening and in the precipitated volume fraction.  

• The morphology is found to evolve from a bimodal 
distribution of spheroidal precipitates, to cuboids with 
significantly rounded edges, and finally to cuboidal 
precipitates aligned along the elastically soft <001>-type 
directions. The transition from a spheroidal to a cuboidal 
morphology commences at an aging time of 0.25 h, when 
the primary γ’-precipitates have radii of 30-50 nm. 

• Aluminum and Ta partition to the γ’-precipitates, while Cr 
and Ni partition to the γ-matrix. The strong partitioning of 
Ta to the γ’-precipitates decreases the partitioning of Al to 
the γ’-precipitates, and increases the partitioning of Cr to the 
γ-matrix, when compared to the results obtained for the base 
Ni-Al-Cr alloy aged at 1073 K [23, 24]. 

• The concentration profiles of the constituent elements of the 
model Ni-Al-Cr-Ta alloy across the γ’-precipitate/γ-matrix 
interface exhibit an accumulation of Ni on the γ-matrix side 
of the interface. This effect is likely due to the diminution of 
the mobility of Ni in the γ-matrix due to the addition of Ta. 
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