MODELING THE HOT FORGING OF NICKEL-BASED SUPERALLOYS: IN718 and ALLOY 718PLUS

Esteban B. Marin¹, Douglas J. Bammann¹, Arthur Brown², Haitham El Kadiri¹, R. Daniel Costley³, Paul T. Wang¹, Mark F. Horstemeyer¹

¹Center for Advanced Vehicular Systems, Mississippi State University, MS, 39759
²Sandia National Laboratories, Livermore, CA, 94550
³Miltec Research & Technology, Oxford, MS, 38655

Keywords: Material Model, Internal State Variable, Forging, Inconel Superalloys

Abstract

An internal state variable material model is used to describe the rate– and temperature–
dependent large deformation response of the nickel-based superalloys Inconel 718 and Inconel 718 Plus. The current version of the material model describes the elastic-plastic and thermal
deformation of metals, having two internal state variables whose evolution equations account
for dislocation hardening and static /dynamic recovery processes. Other microstructural
features such as recrystallization and grain growth are currently being added to the model.
Experimental data from mechanical characterization tests of cylindrical and double cone
compression specimens are used, respectively, to calibrate the material model and to validate
its predictive capability. In general, the calibrated model predicts well the experimental
stress/load levels as well as the rate and temperature dependence of the mechanical response
of these superalloys.

Introduction

The superalloys IN718 and IN718Plus have been very well characterized in terms of their
chemistry, microstructure (precipitation phases), manufacturing processing and mechanical
properties [1,2,3,4] It is well known that the use of the correct chemical components together
with an adequate thermo-mechanical processing (deformation processing, heat treatment,
aging) develop in these materials the desirable microstructure (precipitate phases) that give
these alloys their good elevated temperature strength, thermal stability, and hot workability,
characteristics needed for the long–term high–temperature environments typical of aircraft
engine turbine parts [5]. However, there is still a demand to understand the mechanical
behavior at the final stages of the manufacturing process, which is typically a multi–step hot
forging process [6].

During hot forging processes, the microstructure and mechanical behavior of these super-
alloys typically change by metallurgical transformations. Microstructural features such as
dislocation structures, annealing phenomena (recovery, recrystallization and grain growth),
and precipitate phases are mainly responsible for the final mechanical properties of the ma-
terial [7], and hence for the performance of the manufactured part during service. In this
context, much research has been directed at understanding the mechanisms and phenomenol-
ogy of microstructure evolution during hot deformation. Microstructural processes such as
dynamic, metadynamic and static recrystallization as well as grain growth in metals [8], and
their relation to the hot processing parameters has been studied and modeled in these super-
alloys, with the bulk of the study mainly concentrated on IN718, an alloy invented almost a
half-century ago [9,10,11,12,13,14,15]. Modeling the hot deformation of superalloys during
Thermo–mechanical processing implies the implementation of microstructural models in numerical codes and its application to solve deformation processing problems. In this regard, many studies have been published in the literature, where the connection between processing parameters and microstructure evolution has been made \[16,17\]. In a more consistent approach, from a constitutive modeling point of view, the above microstructural models should be included in a general constitutive framework that describes the high–temperature large-deformation behavior of these superalloys. Such formulations typically rely on the use of internal state variable (ISV) models consistently formulated using kinematics and thermodynamics formalisms. In this case, specific microstructural variables, such as dislocation density, fraction of recrystallized materials and grain size, can be identified as part of the state variables of the model and whose evolution equations will capture the physics of deformation. In this context, many ISV models for metals exist \[18\] and a number of them have been used to predict some features of the microstructure evolution (dislocation hardening/recovery, recrystallization, grain growth) and mechanical properties during hot deformation \[19,20,21\], with some of these models having been applied to model the hot forging response of IN718 \[22\]. Particularly, a modification of the BCJ model \[18\] is used in this work to represent the rate– and temperature–dependent response of the Inconel superalloys.

Experimental Results

An experimental program carried out at the Air Force Research Lab \[23\] scheduled a number of isothermal compression (upsetting) tests on cylindrical and double truncated cone specimens under various strain rates and temperatures to generate the needed experimental data for development of constitutive models for IN718 and IN718Plus. The test matrices used for these mechanical characterization studies are presented in Tables 1 and 2. The cylindrical specimens had a diameter and height of approx. 8.4 mm and 12.7 mm, respectively, while the geometry of the double truncated cone specimens is presented in Fig.1A.

The compression tests of the cylindrical specimens generated true strain–true stress curves that can be used to fit the predicted response of a rate– and temperature–dependent constitutive model, and hence, compute the corresponding material parameters of the model. The determined experimental curves for IN718 at a strain rate of 0.1 s$^{-1}$ for the different temperatures listed in Table 1 are presented in Fig.1B.

While the compression experiments were assumed to provide an homogeneous deformation field in the specimens (uniform strain and stress states), giving stress-strain data that are used for material model calibration, the upsetting tests of the double truncated cone specimens induced a strain gradient in the sample (non–uniform stress state), providing load–displacement curves that can be used for model validation. A sample of the load–displacement curves for IN718 obtained using Table 2 is presented in Fig.1C. Besides, these upsetting tests are commonly performed to obtain microstructural information for a range of strains within a single specimen. In particular, the experimental program planned to use different dwell times before quenching to affect the grain morphology developed in the deformed upset specimens, information that is mainly used to develop /validate microstructural models of static recrystallization and grain growth. This aspect is not addressed in this work, and we mainly use the load–displacement curves for model validation.

An Internal State Variable Material Model – EMMI

Modeling and simulation of thermo–mechanical processing require the use of constitutive models that, for complex deformation histories, can accurately predict the evolution of
Table 1. Test Matrix for Uniaxial Compression Experiments

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature θ, °C (°F)</th>
<th>Strain Rate (\dot{\varepsilon}), s(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN718, IN718Plus</td>
<td>982 (1800)</td>
<td>0.1, 1.0</td>
</tr>
<tr>
<td></td>
<td>1037 (1900)</td>
<td>0.1, 1.0</td>
</tr>
<tr>
<td></td>
<td>1093 (2000)</td>
<td>0.1, 1.0</td>
</tr>
</tbody>
</table>

Table 2. Test Matrix for Double Cone Compression Experiments, \(\dot{\varepsilon} = 0.5 \text{ s}^{-1} \)

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature, °C (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN718</td>
<td>996 (1825)</td>
</tr>
<tr>
<td></td>
<td>1037 (1900)</td>
</tr>
<tr>
<td>IN718Plus</td>
<td>982 (1800)</td>
</tr>
<tr>
<td></td>
<td>1024 (1875)</td>
</tr>
<tr>
<td></td>
<td>1065 (1950)</td>
</tr>
</tbody>
</table>

Figure 1. Double cone specimen geometry and mechanical response from uniaxial and double cone compression tests for IN718.

main microstructural features typically observed during the high temperature deformation of metals. Among these features are dislocation hardening, static/dynamic recovery processes, static/dynamic recrystallization, and grain growth, among others. In this context, the Evolving Microstructural Model of Inelasticity or EMMI [24], is a physically-based internal state variable model that can be used to describe the rate– and temperature–dependent finite deformation behavior of metals. Although the current version of the model mainly accounts for thermally activated dislocation motion (kinetic equation) and hardening laws with dislocation storage/recovery processes, current efforts are underway to extend the model and include recrystallization and grain growth effects.

A main feature of EMMI is that the constitutive equations are written in a fully dimensionless form by choice of appropriate scaling parameters. All stress–like quantities are scaled by twice the shear modulus, except for pressure which scales with bulk modulus. The characteristic length for normalization is the magnitude of the Burger’s vector of the underlying crystals. Temperatures are scaled by the melting temperature. A characteristic time is introduced by considering the diffusivity of defects through the crystal at the melt temperature. The normalization allows the use of a small number of parameters that define the scale for the problem (moduli, mass density, Burger’s vector, melt temperature, etc), with the remainder of the parameters being dimensionless. It is important to note that the use of normalized equations may play an important role in extrapolating the fitted response of a
particular material to other similar materials. In addition, using a dimensionless model reduces the constitutive equations to a simpler form, simplifies the fitting parameter procedure and increases the robustness of the numerical implementation of the model.

The basic formulation of the plasticity and temperature aspects of the model relies on an extended description of the large deformation kinematics using the multiplicative decomposition of the deformation gradient into thermal, plastic and elastic components. This kinematics is then coupled with a thermodynamic approach with internal state variables, as proposed in [25]. A detailed formulation of the model including isotropic damage can be found elsewhere [24]. Here, we mainly list the plasticity version of the constitutive equations of EMMI written in dimensionless form in the so-called current configuration. Some particular symbols used to write the EMMI equations are: \(\dot{a} \) to denote a dimensionless quantity, \(\dot{a} \) to represent a dimensionless time derivative, and \(\ddot{a} \) (bold–faced letter) to denote a dimensionless second–rank tensor. The specific version of the equations presented below is valid for small elastic strains (typical in metals), isotropic plasticity, and isotropic thermal expansion:

kinematics:
\[
\text{dev}\ddot{d} = \text{dev}\dot{d} - \dot{d}^p, \quad \text{tr}(\ddot{d}^c) = \text{tr}(\dot{d}) - 3f_\theta \dot{\theta}, \quad \dot{\omega} = \dot{\omega}^c
\]

elastic law:
\[
\tilde{\mathcal{L}}_c \text{dev}\ddot{\tau} = \text{dev}\dot{\tau}
\]

flow rule:
\[
\dot{d}^p = \sqrt{\frac{3}{2}} \dddot{n}, \quad \dddot{n} = \sqrt{\frac{3}{2}} \dddot{\xi} / \dddot{\sigma}_e - \sqrt{\frac{3}{2}} || \dddot{\alpha} || \dddot{\alpha}
\]

hardening rules:
\[
\tilde{\mathcal{L}}_c \dddot{\alpha} = \dddot{\alpha} \dddot{\alpha} - \dddot{\alpha}^p \dddot{n} = \sqrt{\frac{3}{2}} \dddot{\alpha}_e - \sqrt{\frac{3}{2}} \dddot{\alpha}_e
\]

with
\[
\dddot{n} = \sqrt{\frac{3}{2}} \dddot{\xi} / \dddot{\sigma}, \quad \dddot{\alpha}_e = \sqrt{\frac{3}{2}} \dddot{\alpha}_e, \quad \dddot{\alpha}_e = \sqrt{\frac{3}{2}} \dddot{\alpha}_e
\]

where \(\tilde{\mathcal{L}}_c(\dddot{\alpha}) \) denotes a corotational rate typically used to make the formulation frame indifference. In these equations, \((\dddot{\tau}, \dddot{p}_r) \) are the total stress tensor and its hydrostatic part (pressure), \((\dot{d}, \dddot{d}, \dddot{d}^p) \) are the total, elastic and plastic rate of deformation tensors, \((\dddot{w}, \dddot{w}^p) \) are the total and elastic spin tensors, \((\alpha, \dddot{\alpha}_e) \) are the internal state variables representing strengths for kinematic (tensor) and isotropic (scalar) hardening, \(\dot{\theta} \) is temperature, and \(f_\theta \) is a function describing the thermal expansion characteristics of the material. The symbols \(\text{dev}(\dddot{\alpha}), \text{tr}(\dddot{\alpha}), \text{||}(\dddot{\alpha})|| \) denote the deviatoric, trace, and norm operators of a second–rank tensor.

The normalized temperature–dependent plasticity parameters of the model are \((\dddot{f}, \dddot{n}, \dddot{Y}, \dddot{r}_d, \dddot{h}, \dddot{R}_D, \dddot{H}, \dddot{R}_S, \dddot{Q}_S) \), and they are expressed in terms of other constants as given in Table 3. Commonly, these parameters are used to fit the predicted plastic behavior of the model to experimental stress-strain responses for a particular material obtained at different temperatures and strain rates. In particular, the function \(\dddot{Y} \), which represents the yield strength of the material, is expressed in terms of the nondimensional temperature–dependent function

\[
\dddot{Y}(\dddot{\theta}) = \frac{\dddot{m}_1}{1 + \dddot{m}_2 \exp(-\dddot{m}_3 / \dddot{\theta})} \left[1 + \tanh(\dddot{m}_4(\dddot{m}_5 - \dddot{\theta})) \right] (2)
\]
where \hat{m}_1, \hat{m}_2, \hat{m}_3, \hat{m}_4, and \hat{m}_5 are additional material constants. Also, the shear modulus, $\mu(\hat{\theta})$, and bulk modulus, $K(\hat{\theta})$, follow a linear dependence on temperature as indicated by the non-dimensional functions

$$\tilde{\mu}(\hat{\theta}) = \mu(\hat{\theta})/\mu_0 = 1 + c_{\theta\mu}(\hat{\theta} - \hat{\theta}_0), \quad \tilde{K}(\hat{\theta}) = K(\hat{\theta})/K_0 = 1 + c_{\theta K}(\hat{\theta} - \hat{\theta}_0)$$

(3)

where $(c_{\theta\mu}, c_{\theta K})$ are material constants, $\hat{\theta}_0$ is a reference temperature, and (μ_0, K_0) are the shear and bulk moduli at $\hat{\theta}_0$.

The current version of the model assumes $\hat{Q}_S = 1$ ($\hat{c}_{10} = 1, \hat{Q}_5 = 0$), and hence the set \hat{a}_k reduces to 18 material parameters. To compute these parameters, we will first determine \hat{m}_1 to \hat{m}_5 by fitting Eq. (2) to reported yield strength–temperature data. These values will then be used to determine the other 13 parameters by fitting the predicted stress response of the model to experimental compression stress–strain data. This fitting is performed using EMMI-Fit, a matlab code that implements the reduced one-dimensional equations of the model together with a constrained minimization problem based on a discrete nonlinear least square functional that tries to minimize the distance between the model predictions and the experimental data.

To illustrate the predictive capability of EMMI, we present in Fig.2 the summary of the model calibration to both reported yield strength-temperature data [26] and experimental strain-stress curves for stainless steel 304L [21].

Modeling the Mechanical Response of IN718 and IN718Plus

In this section, the EMMI constitutive equations are applied to model the mechanical response of the nickel–based superalloys IN718 and IN718Plus. The model material parameters

<table>
<thead>
<tr>
<th>$\hat{\epsilon}^p$–equation</th>
<th>$\hat{\alpha}$–equation</th>
<th>$\hat{\kappa}_s$–equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\epsilon} = \hat{c}_2 \exp(-\frac{\hat{Q}_1}{\hat{\theta}})$</td>
<td>$\bar{\epsilon}_d = \hat{c}_3 \exp(-\frac{\hat{Q}_2}{\hat{\theta}})$</td>
<td>$\bar{\epsilon}_D = \hat{c}_5 \exp(-\frac{\hat{Q}_3}{\hat{\theta}})$</td>
</tr>
<tr>
<td>$\tilde{c}_2 = t_c \hat{c}_2$, $\hat{Q}_1 = \frac{\hat{Q}_1}{\hat{\theta}_M}$</td>
<td>$\tilde{c}_3 = \hat{c}_3$, $\hat{Q}_2 = \frac{\hat{Q}_2}{\hat{\theta}_M}$</td>
<td>$\tilde{c}_5 = \hat{c}_5$, $\hat{Q}_3 = \frac{\hat{Q}_3}{\hat{\theta}_M}$</td>
</tr>
<tr>
<td>$\tilde{n} = \frac{\hat{c}_0}{\hat{\theta}} + \hat{c}_1$</td>
<td>$\tilde{h} = \tilde{c}_4$</td>
<td>$\tilde{H} = \hat{c}_6$</td>
</tr>
<tr>
<td>$\tilde{c}_1 = c_1$, $\hat{c}_9 = \frac{c_0}{\hat{\theta}_M}$</td>
<td>$\tilde{c}_4 = c_4$</td>
<td>$\tilde{c}_6 = c_6$</td>
</tr>
<tr>
<td>$\tilde{Y} = \tilde{c}_5 \frac{\tilde{Y}(\hat{\theta})}{\tilde{\mu}(\hat{\theta})}$</td>
<td>$\tilde{r}_S = \tilde{c}_7 \exp(-\frac{\hat{Q}_4}{\hat{\theta}})$</td>
<td>$\tilde{r}_S = \hat{c}_7 \exp(-\frac{\hat{Q}_4}{\hat{\theta}})$</td>
</tr>
<tr>
<td>$\tilde{c}_8 = c_8$</td>
<td>$\tilde{c}_7 = t_c \hat{c}_7$, $\hat{Q}_4 = \frac{\hat{Q}_4}{\hat{\theta}_M}$</td>
<td>$\tilde{c}_8 = c_8$, $\hat{Q}_4 = \frac{\hat{Q}_4}{\hat{\theta}_M}$</td>
</tr>
<tr>
<td>$\tilde{Q}S = \tilde{c}{10} \exp(-\frac{\hat{Q}_5}{\hat{\theta}})$</td>
<td>$\tilde{Q}S = \hat{c}{10} \exp(-\frac{\hat{Q}_5}{\hat{\theta}_M})$</td>
<td>$\tilde{Q}S = \hat{c}{10} \exp(-\frac{\hat{Q}_5}{\hat{\theta}_M})$</td>
</tr>
<tr>
<td>$\tilde{c}{10} = c{10}$</td>
<td>$\tilde{Q}_5 = \frac{\hat{Q}_5}{\hat{\theta}_M}$</td>
<td>$\tilde{Q}_5 = \frac{\hat{Q}_5}{\hat{\theta}_M}$</td>
</tr>
</tbody>
</table>
are determined by correlating yield strength–temperature curves obtained from published data, and the strain–stress responses generated from the isothermal compression tests on cylindrical specimens. The validation of the model is performed using finite element simulations to predict the experimental load–displacement curves from the truncated double cone compression experiments. The value of the physical /mechanical properties used to normalize (scale) the EMMI equations for these superalloys is given in Table 4. These properties have been obtained from a number of sources [27,28], and have been assumed to be the same for both superalloys.

The first step of the calibration procedure fits Eq. (2) to the yield strength–temperature data shown in Fig.3. This fit for both IN718 and IN718Plus is presented in the same figure, while the corresponding computed \(\hat{m}_i \) parameters are given in Table 5. Next, using the computed \(\hat{m}_i \) parameters, the EMMI model is calibrated to strain-stress data determined from the isothermal compression tests at different temperatures/strain rates. EMMI-Fit is used for this purpose. The fitted response to this experimental data is presented in Fig.4 for IN718 and Fig.5 for IN718Plus, and the respective computed material constants of EMMI are given in Table 6. As can be noted from these figures, the experimental strain-stress curves show a softening response that the current version of the model does not capture. In general, this softening may be due to adiabatic heating and/or dynamic recrystallization phenomena. Current efforts are underway to consider both effects in the constitutive framework.

Table 4. Physical/Mechanical Properties for IN718 / IN718Plus.

<table>
<thead>
<tr>
<th>Property</th>
<th>Notation</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burgers Vector</td>
<td>(b)</td>
<td>(2.5 \times 10^{-10})</td>
<td>m</td>
</tr>
<tr>
<td>Melting Temperature</td>
<td>(\theta_M)</td>
<td>1573</td>
<td>K</td>
</tr>
<tr>
<td>Shear Modulus ((\mu)) at 300K</td>
<td>(\mu_0)</td>
<td>(7.86 \times 10^4)</td>
<td>MPa</td>
</tr>
<tr>
<td>Temperature dependence of (\mu)</td>
<td>(c_{\theta \mu})</td>
<td>-0.50</td>
<td>—</td>
</tr>
<tr>
<td>Bulk Modulus ((K)) at 300K</td>
<td>(K_0)</td>
<td>(16.09 \times 10^4)</td>
<td>MPa</td>
</tr>
<tr>
<td>Temperature dependence of (K)</td>
<td>(c_{\theta K})</td>
<td>-0.36</td>
<td>—</td>
</tr>
<tr>
<td>Lattice Diffusion (prefactor)</td>
<td>(D_0)</td>
<td>(1.6 \times 10^{-4})</td>
<td>m²/s</td>
</tr>
<tr>
<td>Lattice Diffusion (activation energy)</td>
<td>(Q_{\nu})</td>
<td>(285 \times 10^3)</td>
<td>J/mole</td>
</tr>
</tbody>
</table>

The numerical simulation of the isothermal hot upsetting tests for the double–cone shape specimens has been performed using ABAQUS/explicit and a VUMAT that implements the numerical integration of the EMMI constitutive equations. The detailed geometry of the specimen is presented in Fig.1A. Due to symmetry in both loading and geometry the analysis is performed as a two–dimensional axi–symmetric problem, with only one-half of the
Table 5. Parameters \bar{m}_i of Yield Function $\hat{Y}(\bar{\theta})$.

<table>
<thead>
<tr>
<th>Material</th>
<th>\bar{m}_1</th>
<th>\bar{m}_2</th>
<th>\bar{m}_3</th>
<th>\bar{m}_4</th>
<th>\bar{m}_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN718</td>
<td>1.2321</td>
<td>0.45080</td>
<td>0.14395</td>
<td>11.490</td>
<td>0.67071</td>
</tr>
<tr>
<td>IN718Plus</td>
<td>1.2240</td>
<td>0.44455</td>
<td>0.15452</td>
<td>15.625</td>
<td>0.69911</td>
</tr>
</tbody>
</table>

Figure 3. Fit to temperature dependent yield strength for both IN718 and IN718Plus.

Figure 4. EMMI fitted strain–stress response of nickel–based superalloy IN718 for strain rates of (A) $\dot{\varepsilon} = 0.1\;s^{-1}$ and (B) $\dot{\varepsilon} = 1.0\;s^{-1}$.

specimen being considered. The specimen is discretized with 539 axi-symmetric elements, ABAQUS type CAX4R (reduced-integration element with one integration point), see Fig.6A. Symmetry boundary conditions are imposed along x=0 and y=0, while a displacement boundary condition is applied incrementally at the top surface along the -y direction through
a rigid die such that a constant deformation rate of \(\dot{\varepsilon} = 0.5 \text{s}^{-1} \) is obtained. The total simulation time is \(T = 2.2 \text{s} \). The displacement history is computed using \(u = h_0/2 [\exp(\dot{\varepsilon} t) - 1] \), where \(h_0 \) is the initial height of the specimen, \(\dot{\varepsilon} \) is the applied strain rate, and \(t \) is time \((0 \text{s} \leq t \leq 2.2 \text{s}) \).

The simulations are performed under isothermal conditions, at two temperatures for IN718 and three temperatures for IN718Plus, as indicated by Table 2. The stress-strain response at each integration point is given by the EMMI predictions using the material properties listed in Table 6. A “rough” friction condition (ABAQUS terminology for a rigid sticking condition) is assumed between the rigid die and specimen. A typical time step in the simulations is on the order of \(10^{-8} \text{s} \), giving much more than 1,000,000 time increments needed to solve each case. Mass scaling with a factor of 10 is used to speed up the simulation runs.

Table 6. Non-Dimensional EMMI Material Constants.

<table>
<thead>
<tr>
<th>Constant</th>
<th>IN718</th>
<th>IN718Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ddot{c}_1)</td>
<td>0.93490</td>
<td>0.98396</td>
</tr>
<tr>
<td>(\ddot{c}_2)</td>
<td>(6.6213 \times 10^{-11})</td>
<td>(7.9600 \times 10^{-11})</td>
</tr>
<tr>
<td>(\ddot{c}_3)</td>
<td>(7.5057 \times 10^5)</td>
<td>(1.5765 \times 10^6)</td>
</tr>
<tr>
<td>(\ddot{c}_4)</td>
<td>(3.2447 \times 10^{-2})</td>
<td>(5.8655 \times 10^{-3})</td>
</tr>
<tr>
<td>(\ddot{c}_5)</td>
<td>66.367</td>
<td>88.961</td>
</tr>
<tr>
<td>(\ddot{c}_6)</td>
<td>(1.5476 \times 10^{-2})</td>
<td>(1.9041 \times 10^{-2})</td>
</tr>
<tr>
<td>(\ddot{c}_7)</td>
<td>(5.5359 \times 10^{-2})</td>
<td>(1.0838 \times 10^{-1})</td>
</tr>
<tr>
<td>(\ddot{c}_8)</td>
<td>(4.2081 \times 10^{-3})</td>
<td>(4.5186 \times 10^{-3})</td>
</tr>
<tr>
<td>(\ddot{c}_9)</td>
<td>1.3952</td>
<td>1.0964</td>
</tr>
<tr>
<td>(Q_1)</td>
<td>0.24402</td>
<td>0.25901</td>
</tr>
<tr>
<td>(Q_2)</td>
<td>(1.3355 \times 10^{-2})</td>
<td>(4.6295 \times 10^{-2})</td>
</tr>
<tr>
<td>(Q_3)</td>
<td>0.31148</td>
<td>0.50214</td>
</tr>
<tr>
<td>(Q_4)</td>
<td>0.97489</td>
<td>2.1887</td>
</tr>
</tbody>
</table>
A typical deformed finite element mesh is presented in Fig.6B. This case is for the IN718Plus double cone specimen deformed at 982°C. The contour plots shown indicates levels of equivalent plastic strain. Clearly, the deformation field is rather non–homogeneous, indicating strain gradients across the specimen, in particular for points in the middle of the specimen (e.g. point 1), between the free surface and the center of the specimen.

A comparison of the computed force–displacement curves with the experimental ones for both superalloys is presented in Fig.7. The predicted response agrees well with the experiments at low deformation levels, however, the computed values start to deviate from the data as the deformation increases, resulting in an overpredicted load level at large deformations. It is believed that this difference may be attributed to the missing features in the material model to predict the softening effect of annealing phenomena (recrystallization and grain growth) on the macroscopic stress response of the material points (integration points) in the finite element simulations.

Figure 6. (A) Finite element mesh for axisymmetric double cone specimen. (B) Deformed double cone specimen showing contours of equivalent plastic strain (ABAQUS variable SDV18) for IN718Plus at 982°C.

Summary

This work has presented the application of the internal state variable material model EMMI to describe the rate– and temperature–dependent response of IN718 and IN718Plus, two Nickel-based superalloys used to manufacture components of aero-engines. The model, calibrated using strain-stress data from isothermal compression tests, has been validated using load-displacement curves from double cone isothermal upsetting tests at various temperatures. In general, the model captures the stress/load levels of the tests at lower deformation levels as well as the rate and temperature dependence of the mechanical response of these superalloys. However, specific details of this behaviour, such as the stress softening due recrystallization and grain growth are not yet represented in the model. Ongoing work is focussed on enhancing EMMI with microstructural models to capture the effect of these annealing phenomena on the macroscopic strain-stress response.
Figure 7. The isothermal load–displacement curves for the double cone compression tests for both (A) IN718 and (B) In718Plus: comparison of experimental data and numerical predictions.

Acknowledgments

This work was supported by the Center of Advanced Vehicular Systems (CAVS), Mississippi State University (MSU), and the Miltec Research and Technology (MRT), Inc.

References

