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Abstract 

 

Continuous improvements of properties for individual parts are indispensable for 

perpetual development of aircraft engines. Concerning turbine disc, numerical simulation 

of forging process is one of the most attractive tools to reduce the cost and time and to 

improve the properties and the reliability at the same time. In this paper, the hot 

deformation behavior of IN 718 superalloy has been characterized in the temperature 

range 900-1020 
o
C and strain rate range 0.001-0.1 s

-1
 using isothermal constant strain rate 

compression tests on process annealed material, with a view to obtain a correlation 

between grain size and the process parameters. Through a comparison study of two 

forging methods, temperature-field and strain-field finite element analysis modeling were 

established, and load-time curves were obtained for a turbine disc under routine and hot 

die forging process conditions. Results of numerical simulation show that compared to 

routine forging, hot die forging gives a decrease in total forging force, the 

temperature-field and strain-field of the turbine disc is more uniform. The effect of cold 

die on the microstructure is decreased notably under hot die forging condition. 

 

Introduction 

 

IN 718 belongs to a class of nickel-iron base superalloys with a face-centered cubic 

(FCC) austenitic matrix that is strengthened by precipitation of an ordered body centered 

tetragonal (BCT) intermetallic precipitate γ". The alloying of nickel and iron results in the 

formation of the austenitic matrix, γ, while the addition of chromium and molybdenum 

cause solid solution strengthening. Also, alloying with niobium causes precipitation of 

351



the metastable hardening constituent γ" (Ni3(Nb,Ti))[1-3].The properties of IN 718 are 

attributed to the combined effects of the chemistry, heat treatment, and microstructure. 

The chemistry is tailored not only for solid solution strengthening but also for 

precipitation hardening developed during heat treatment, which combined with a fine 

grained microstructure lead to excellent mechanical properties such as low cycle fatigue 

resistance and elevated temperature strength [4-5]. The properties of a gas turbine disc 

are sensitive to the microstructure, in particular the grain size, which is dependent on the 

processing history. The ability to precisely control the microstructure development during 

forging is dependent on controlling the thermomechanical process so that the work piece 

is deformed within a safe region where no microstructural damage due to flow 

instabilities occur.     

    

In this paper, the hot deformation behavior of IN 718 under different deformation 

conditions, including the flow stress and associated microstructural evolution, was 

systematically studied by hot compression tests. The dependence of flow behavior and 

microstructural evolution on deformation temperature and strain rate was established by 

introducing the Zener-Hollomon parameter. Temperature and strain-fields for both the 

routine forging and hot die forging processes were established by finite element analysis 

using Deform-2D software. 

 

Experimental Procedure 

 

The chemical composition (wt.%) of the Ni-based superalloy IN 718 used in this study 

are as follows: Cr, 18.09; Fe, 17.69; Nb, 5.43; Mo, 3.07; Ti, 0.97; Al, 0.46; Co, 0.18; Si, 

0.078; Mn, 0.065; Cu, 0.065; C, 0.040; S＜ 0.001; P＜ 0.007; Ni, balance. Hot 

compression tests were conducted using a MTS 810.13 simulator at temperature of 900 
o
C, 940

 o
C, 980

 o
C and 1020 

o
C and in the strain rate range of 0.001, 0.005, 0.01, 0.05 and 

0.1 s
-1

 with 20 mm diameter, 30 mm high cylindrical specimens. All specimens were 

quickly heated to the hot compression temperature and held for 30 min and then 

deformed to a strain of 0.7 and immediately water cooled to room temperature. The 

deformed specimens were sectioned parallel to the compression axis and prepared for 

microstructure observation. The load-stroke data obtained in compression were processed 

to obtain true stress-true strain curves using the standard method.  

 

   Metallography of the tested specimens was performed to study the effect of 

deformation parameters, i.e. temperature and strain-rate, on the microstructure. The 

as-received material and tested specimens were prepared for optical microscopy using 

standard metallographic techniques of sectioning, mounting, coarse and fine grinding, 

final polishing, and etching. The specimens were immersion etched with 50 ml H2O+50 
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ml HCl+50 ml HF+3 ml H2O2 to reveal the microstructure. Microstructure was evaluated 

with LEICA MEF4-A type optical microstructure (OM). Quantitative analysis of the as 

deformed specimens was performed to determine the average recrystallized grain size. 

The average recrystallized grain size was determined using the line intercept method.  

 

Results and Discussion 

 

True stress-True strain curves and constitutive relationship of IN 718 

 

True stress-True strain curves. The load versus time curves generated from the isothermal 

compression tests were used to calculate the true stress versus true strain curves. A series 

of typical stress-strain curves of the Ni-based superalloy deformed at various temperature 

from 900 to 1020
 o

C under strain rates from 0.001 to 0.1 s
-1

 is shown in Fig. 1. A set of 

representative true stress versus true strain curves obtained at 980 
o
C is shown in Fig. 1(c). 

The flow behavior is similar for all test conditions. Following initial work hardening 

leading to a peak in the flow stress at a critical strain, the flow curves exhibit flow 

softening followed by steady state flow at larger strains. However at the highest strain 

rate, the flow curves exhibit continuous flow softening. 

  
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 True stress-true strain curves of IN 718 at 900
o
C(a), 940

o
C(b) 980

o
C(c) and 1020

 o
C(d). 

 

It can be seen that the flow stress increases to a peak value with increasing strain and then 
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decreases as the strain is further increased. The initial rapid rise in stress is associated 

with an increase in dislocation density and the formation of poorly developed sub-grain 

boundaries, as a result of work hardening and dynamic recovery. In alloys with low or 

intermediate stacking fault energy, dynamic recovery proceeds slowly. The high 

dislocation density stimulates the occurrence of dynamic recrystallization once a critical 

strain is exceeded. The flow stress increases with increasing strain rate and decreasing 

temperature. These results are in good agreement with previous reports dealing with high 

temperature compressive behavior of IN 718[4-6].    

 

Constitutive relationship of IN 718. Constant strain rate flow curves have been analyzed 

in order to develop a constitutive model to describe the high temperature behavior of this 

materials using the standard kinetic rate equation that relates the steady state flow stress 

(σ) to the test temperature (T) and the strain rate (
•

ε ) given by: 

                       exp(-Q/RT)A nσ=
•

ε  

Where σ is the flow stress, n is the stress exponent, Q is the activation energy, and A is a 

constant. For this model, steady state flow stress (σ) values at different temperatures (T) 

and strain rates (
•

ε ) at a true strain of 0.5 have been used. 

 

A plot of log (σ) vs. log (
•

ε ) for different temperatures is shown in Fig. 2. It can be seen 

from this plot that the dependence of flow stress on strain rate is non-linear over the 

entire range of temperatures and strain rates tested. The stress exponent, n, defined by:                      

                        

)(log

)(log

T,

n

σ

ε

ε

∂

∂
•

=  
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Fig. 2 Variation of the flow stress with strain rate for different test temperature. 

Is strain rate dependent and hence the kinetic rate is not valid in the full range of process 

parameters. However, over a narrow range of temperature bounded by the 940-1020 
o
C 

and limited range of strain rates (0.005-0.1s
-1

) a liner fit a good approximation and the 

value of n is found to be 6.17.   

 

The activation energy Q, may be defined by: 

                      
[ ]
[ ](1/T)

)ln(
nRQ

∂

∂

•

=
σ

ε

 

and is computed from the slopes of the plot shown in Fig. 3. If the slopes are computed 

within the same temperature range as mentioned before, the apparent activation energy is 

approximately 528 kJ/mol. Compared to the previously reported value, for example, 443 

kJ/mol by H.Yuan et al. [6], 443.2 kJ/mol by Y. Wang et al. [7], 400 kJ/mol by S.C. 

Medeiros et al. [8], 423 kJ/mol by M.J. Weis et al. [9], activation energy Q in this study is 

appreciably high, due to the different original microstructure of compress samples. It 

should be noted from the figure that the scatter increases with increasing strain rate. This 

would imply that as strain rate is increased the mechanism responsible for deformation is 

changing. 
 

 

 

 

 

 

 

 

 
 

Fig. 3 Variation of the flow stress with temperature for different strain rate. 
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The above value of apparent activation energy was used to calculate the Zener-Hollomon 

parameter (Z) defined by: 

                       exp(Q/RT)Z
•

= ε  

and is plotted versus the flow stress in Fig. 4. This plot shows a good correlation between 

the flow stress and the Zener-Hollomon parameter which implies that the flow stress 

follows the expected trend with respect to strain rate and temperature. It also implies that 

within the temperature range bounded by the 940-1020 
o
C, the power law relationship for 

hot deformation is may be applied. In a word, Constitutive relationship of IN 718 as 

follows: 

 0/RT)exp(-52800101.58 17.618σ×=
•

ε  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Variation of the Z parameter with flow stress. 
 

Numerical simulation of hot die forging for IN 718 disc  

 

Basic parameters of forging processing. 

 

 routine forging hot die forging 

forging temperature  1010-930
o
C 1010-930

o
C 

die materials 5CrNiMo K3 

die temperature  450
 o

C 900
 o

C 

ram velocity 3.8mm/s 3mm/s before holding 

friction coefficient 0.08 0.08 

 
 

 

 

 

2.1 2.2 2.3 2.4 2.5 2.6

19.0

19.5

20.0

20.5

21.0

21.5

22.0

L
O

G
(Z

,s
-1
)

LOG (Flow stress,MPa) 

356



 

 

 

 

 

Forging figure of IN 718 disc as follows: 

 

Results of numerical simulation. Under hot die forging condition, the temperature-field in 

the IN 718 disc at the end of the forging stroke is in the range 945~1024
o
C, as shown in 

Fig. 5(b). The of the majority of the disc is below initial forging temperature 1010
 o

C, 

except in the disc center. Whereas under routine forging condition, the temperature-field 

in the IN 718 disc shows a range of 980~1060
o
C. At the center of disc the temperature is 

1060
 o

C, an increase of 50 
o
C over the initial forging temperature, as shown in Fig. 5(a). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Comparison analyses of temperature-filed under routine forging (a) and hot die 

forging (b) conditions 

 

Under hot die forging condition, strain-field in the IN 718 disc at finished forging is 

bounded of 0.35~2.49, as shown in Fig. 6(b). Change range of stain-field in the 

noumenon position of the disc is between 0.52 and 1.50. Stain-field in the installation 

position is bounded of 0.19~0.52. Center position with the maximal strain is 2.98 was 

moved by mechanical processing. 
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Fig. 6 Comparison analyses of strain-filed under routine forging (a) and hot die 

forging (b) conditions 

According to the metallographic observation of dynamic recrystallization for the IN  

718 under different temperature, strain rate and strain conditions, as shown in Fig. 7, 

nearly full dynamic recrystallization was occurred at noumenon position of the disc under 

hot die forging and average grain size is approximately 20 µm. For the routine forging 

condition the dynamically recrystallised grains have undergone growth because of 

temperature rise from deformation heat. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Dynamic recrystallization occurring after compression tests at: (a) 940 
o
C, 

0.05S
-1

, 30%; (b) 940 
o
C, 0.05S

-1
, 40%; (c) 980 

o
C, 0.05S

-1
, 30%;(d) 980 

o
C, 0.05S

-1
, 

40%. 

 

Under hot die forging condition, stress-field in the IN 718 disc at finished forging is 

in the range 54~274MPa, as shown in Fig. 8(b). The routine forging condition, the 

stress-field Fig. 8(a) is in the range 78~410MPa. Therefore, die material is subject to 

higher, deformation forces under routine forging. As shown in Fig. 9 shows the 

(a) (b) 

(c) (d) 
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load-stroke predictions for hot die forging condition, with a peak load of 55MN, 

significantly lower than the routine forging peak load of 143MN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 Comparison analyses of stress-filed under routine forging (a) and hot die 

forging (b) conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9 Comparison analysis of load-stroke curves under routine forging and hot die 

forging conditions 

 

Conclusions 

 

1. Within the temperature range bounded by the 940-1020 
o
C, and strain rate range 

Hot die forging 

Routine forging 

5.5×10
7
 

1.43×10
8
 

(a) (b) 
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bounded by the 0.005-0.1 s
-1

, the power law relationship for hot deformation of IN 718 

may be applied. The constitutive relationship of IN 718 as follows: 

           0/RT)exp(-52800101.58 17.618σ×=
•

ε   

2. Compare to routine forging, total load of forging is decreased effectively, 

temperature-field and strain-field of turbine disc is much uniformly, average size of 

recrystallization grain is little, effect of cold die on the microstructure is decreased 

notably under hot die forging condition. 
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