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 Abstract  

The effect of microstructure on the oxidation behavior of 718Plus was evaluated in dry air, wet 
air and steam environments at 650°-700°C. Tests at 800°C were also performed in an attempt to 
accelerate the testing.  Oxidation in wet air simulates turbine combustion environments and 
causes net mass losses at 650°-700°C because of the volatilization of Cr oxy-hydroxides that is 
not observed in ambient air testing. At 800°C, mass gains were measured but significant Cr 
depletion can be measured in the alloy after exposure due to volatilization. Changes in 
temperature and environment had much larger effects on oxidation performance than the two 
microstructures evaluated. Advanced characterization techniques were used to compare the 
differences in the oxide scale formed on alloys with different process conditions. At higher 
temperatures, the surface oxide was primarily identified as Cr2O3 by x-ray diffraction. Cross-
section analysis showed an increase in internal oxidation attack with increasing temperature. The 
internal attack appeared to be associated with rod-shaped Ni3Nb precipitates (δ-phase). Because 
of the changes in microstructure at 800°C, the steam and wet air evaluations appeared to be less 
relevant to lower temperatures. Thus, increasing the exposure temperature to 800°C does not 
appear to be a good strategy for accelerated testing of 718Plus. 
 Introduction  
Alloy 718 is widely used for high temperature components in power generation and aircraft 
turbines [1-3]. The service life is expected to be many thousands of hours (at least 30kh) while 
maintaining a stable structure. In order to increase the maximum operating temperature (650°C) 
and performance, alloy 718Plus was developed for improved thermal stability. Alloy 718Plus 
includes significant composition changes from 718: Fe content was reduced and 10% Co was 
added as well as an increase in Al content to 1%.  The higher Al content promotes the formation 
of the L12 γ′ phase (Ni3(Al,Ti)), which has higher thermal stability than DO22 γ′′ phase (Ni3Nb) 
[4-8]. The growth rate of γ′ in 718Plus is much slower than the γ′′ phase in 718, which results in 
slower associated formation of the stable orthorhombic δ  phase (Ni3Nb). Also, the addition of 
1% W further increases the high temperature strength.  The compositions are summarized in 
Table I. 
 
One of the main environmental issues that has been studied on 718 is the environmental effect on 
crack growth. Many superalloys are susceptible to environmentally enhanced intergranular 
cracking in the presence of oxygen, water vapor, sulphur, and chlorine [2]. Typically, oxidation 
is sensitive to the oxygen partial pressure, which will determine which phases are 
thermodynamically stable.  In ambient air at temperatures near 650°C, 718 will form a transient 
(i.e. initial) oxide rich in Fe and Ni, likely a spinel-type Ni(Fe,Cr)2O4 oxide, followed by the 
formation of an underlying Cr-rich layer, typically Cr2O3, which is more thermodynamically 

977



   

stable [9-11]. The long-term oxidation rate is controlled by growth and transport through this 
external Cr-rich oxide layer or scale. At lower oxygen partial pressures, Fe- and Ni-rich oxides 
may not be stable and the scale is primarily Cr-rich oxide. At higher temperatures, other spinel-
type oxides have been observed; NiCr2O4 and NiFe2-xCrxO4 [12]. Also, Nb-containing oxides and 
carbides can form during oxidation at very high temperatures [3]. 
 
Relatively little attention has been given to the effect of water vapor on the oxidation of 
superalloys like 718. Water vapor is present in combustion environments but its affect is not 
always considered. All Fe- and Ni-base chromia-forming alloys are affected by the reaction of 
the scale with O2 and H2O to form a volatile oxy-hydroxide [13, 14]: 
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 O2(g) + H2O(g) = CrO2(OH)2(g)              (1) 

Since the volatilization can follow linear kinetics, the longer-term loss of Cr from the substrate is 
significantly higher than in environments that do not contain water vapor. However, steam 
environments with low dissolved oxygen do not experience this volatilization [15].  Some studies 
have examined the effect of wet air environments on 718Plus, including evidence of grain 
boundary cracking of fully recrystallized 718Plus [16]. It was concluded that high-angle grain 
boundaries were the preferred sites for oxygen penetration.  Additionally, the presence of δ phase 
oriented along grain boundaries provided the path for oxygen penetration and subsequent 
embrittlement. 
 
The aim of the current study is to examine the effect of two different microstructures (worked 
and recrystallized) on the high temperature oxidation behavior of 718Plus in laboratory (dry) air 
and wet (10 vol.% H2O) air and examine the effect of accelerated testing at high temperature 
(800°C). 
 

Experimental Procedure 
 
Alloy 718Plus with a composition shown in Table I was received in the as-forged condition.  The 
alloy subsequently underwent two different heat treatments with details presented in Table II. 
The first heat treatment is a standard (Std) heat treatment, which is employed in the industry and 
results in a worked microstructure.  
 

 
Table I. Chemical composition of 718Plus is determined by ICP and combustion methods (in 

wt.% except S in ppmw) 
Alloy Ni Cr Mo W Co Fe Nb Ti Al Mn C S P 
718  54.1  18.0  3.1  0.02  0.3  17.6  5.0  1.0  0.5  0.1  0.04  <10  0.01 

718Plus 52.5 17.9 2.67 0.98 8.9 9.5 5.3 0.8 1.3 0.04 ‐ ‐ 0.002 
 
 
In order to study the effect of grain size on high temperature oxidation, the second heat treatment 
(Rx+Std) incorporates an additional heat treatment above the δ  solvus (1038°C/1h) prior to the 
standard treatment. As a consequence the microstructure was fully recrystallized prior to the 
standard treatment. For metallographic examination of the grain size, samples were polished 
using standard techniques followed by etching with modified Kalling's (100 ml HCl, 100 ml 
methanol, 15g CuCl2) etchant. 
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Table II. Heat treatment applied to 718Plus 
Name  Heat Treatment  Grain Size (µm) 

Standard  
(Std) 

   968°C (1775F) 2 hours / oil quench 
  788°C (1450F) 8 hours / air cooled 
   704°C (1300F) 8 hours / air cooled 

63 

Recrystallized  
(Rx+Std) 

     1038°C (1900F) 1 hour / air cooled 
     968°C (1775F) 2 hours / oil quench 
     788°C (1450F) 8 hours / air cooled      704

°
C (1300F) 8 hours / air cooled 

100 

  
High temperature oxidation studies were performed in laboratory air (dry air) and in air + 10 
vol.% water vapor (wet air) at 650°C, 700°C, and 800°C. The 800°C temperature is higher than 
the typical operating temperature for 718 or 718Plus and was selected to accelerate the oxidation 
testing in an attempt to simulate to the long service life of these materials at lower temperatures. 
The wet air environment was generated in an alumina tube furnace by atomizing water into the 
flowing air stream and calibrating the amount of injected water with the air flow rate. 
 
Oxidation coupons (1.5 x 10 x 19 mm) were polished to 600 grit for the wet air experiments and 
to 0.3 µm alumina for the air experiments. All samples were ultrasonically cleaned in acetone 
and methanol prior to oxidation testing. One set of specimens was removed at 1kh for 
characterization.  A second set will continue for longer-term evaluations. 
 
After exposure, coupons were examined in plan-view and then Cu-plated, sectioned, and 
polished for metallographic analysis. Characterization included light microscopy (LM), x-ray 
diffraction (XRD), scanning electron microscopy (SEM) using a Hitachi S4800, and electron 
probe microanalysis (EPMA) using a JEOL 8200 with wavelength dispersive x-ray analysis. 
 

Results 
 
Alloy microstructure 
Figure 1 shows polished cross-sections of the two different heat treatments of 718Plus. Standard 
heat treatment (Std) resulted in a lightly worked structure with an average grain size of 63 µm 
(standard deviation of 38 µm) (ASTM 4.5) (Fig. 1a). The structure after the Rx+Std treatment 
was more uniform (Fig. 1b) and had an average grain size of 100 µm (standard deviation of 55) 
(ASTM 3.5).   
 
Effect of water vapor on oxidation 
Figures 2-5 compare the oxidation behavior of 718Plus tested in laboratory air and wet air at 
650°-800°C. At 650°C, the specimens with the two microstructures exhibited small mass gains in 
laboratory air and a small mass loss in wet air, Figure 2. In general, the net measured mass 
change, ΔMtotal, of an oxidation specimen can be described by the following equation: 
 

ΔMtotal = ΔMoxide - ΔMspall - ΔMvolatile          (2) 
 
where ΔMoxide is the mass gain due to oxide scale formation, ΔMspall and ΔMvolatile are the mass 
losses due to scale spallation and volatilization (i.e. Eqn. 1), respectively. Since no scale 
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spallation was observed at 650°C on the surface of the smaples after analysis via SEM, the low 
mass change at 650°C in wet air is attributed to volatilization in the presence of water vapor. 
 

  
 

Figure 1. Optical images representing the microstructure after a) standard (Std) and  
b) recrystallized (Rx+Std) heat treatment. 

 
 
At 700°C, small but significantly different mass gains were measured in laboratory air and a 
consistent mass loss was measured in the presence of water vapor, Figure 3. Again, this 
difference is attributed to the volatilization of the Cr oxy-hydroxide. At 600°C and 700°C, both 
718Plus microstructures performed very similarly in wet air.  Differences in mass gains were 
observed in laboratory air at both temperatures; however, longer-term results are needed, along 
with characterization of the reaction products, to evaluate these differences. In these initial 
results, the mass gain was significantly lower at 700°C for the larger grain size. 
 
At 800°C, the mass changes in laboratory and wet air were more similar for the first 1kh, Figure 
4. Two specimens are shown for each condition, one that was removed after 1kh for 
characterization and a second specimen that is continuing for exposure to ~5kh. At longer times 
(>2.2kh), the specimens in wet air appear to begin losing mass.  Considering Eqn. 2, the mass 
gain due to oxide growth appears to dominate the mass change at 800°C, compared to the lower 
temperatures. There appears to be little difference in performance due to microstructure at this 
temperature, although the smaller grain size showed a slightly higher mass gain in both 
environments. 
 
Figure 5 summarizes the mass change for 718Plus with the standard heat treatment after 1kh at 
the three temperatures in laboratory air and wet air.  At each temperature, the mass gain in air is 
higher than in wet air and this difference is attributed to the volatilization of the Cr oxy-
hydroxide. At 650° and 700°C, where the oxide scale is thin, there is a net mass loss in wet air.  
At 800°C where the oxide is much thicker, there is a net mass gain in wet air. 
 
 

a) b) 
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Figure 2. Effect of environment and microstructure on mass change data after exposure of 

718Plus to air and wet air (air +10% water vapor) at 650°C. 
 
 
 

 
Figure 3. Effect of environment and microstructure on mass change data after exposure of 

718Plus to air and wet air  (air +10% water vapor) at 700°C. 
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Figure. 4 Effect of environment (air vs. wet air) and microstructure (deformed (Std) vs. 

recrystallized (Rx+Std)) after exposure at 800°C. 
 

 
 
 

 
Figure 5. Mass change data for Std 718Plus obtained after 1kh in air and wet air at 650°C, 

700°C, and 800°C. 
 
 

Mass change starts 
decreasing for wet air 
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Figure 6 shows some initial results of the 718Plus specimens in 17bar steam at 800°C. In steam, 
formation of the oxy-hydroxide does not occur because of the lack of free O2 in the environment.  
Thus, no mass loss was expected. The mass gains in steam are significantly higher than the mass 
gains in laboratory air or wet air suggesting a much faster rate of attack. 
 
                                   

 
Figure 6.  Mass change of 718Plus specimens in 500h cycles at 800°C in 17bar steam compared 

to wet air. 
 
 
Scale characterization 
Figure 7 shows the gas-interface scale morphology formed on 718Plus (Std) after 1kh in wet air 
at the three oxidation temperatures. There was no difference in scale morphology for the two 
718Plus microstructures. As mentioned earlier, there was no spallation observed under any of 
these conditions. The high magnifications in Figures 7a and 7b emphasize the fine grains formed 
in the surface scale at 650° and 700°C, respectively. X-ray diffraction showed very small Cr2O3 
peaks at 650°C consistent with the low mass gain at this temperature, Figure 2.  More distinctive 
Cr2O3 X-ray peaks were observed at the higher temperatures. Larger oxide grains and more 
transient oxides were observed after oxidation at 800°C, Figure 7c and 7d.   
 
Figure 8 compares the gas-interface scale morphology formed on both 718Plus microstructures 
after 1kh at 800°C in laboratory air. At lower magnification, Figures 8a and 8c, the grain 
boundaries appear to be visible with a thinner oxide.  At higher magnification, Figures 8b and 
8d, large crystals are observed at the scale/gas interface, with a higher density on the finer 
grained (Std) microstructure.   
 
Figure 9 shows polished cross-sections of the specimens exposed for 1kh. The specimens from 
650° and 700°C (Figs. 9a-9d) are at a higher magnification because of the thinner reaction 
products. Very little internal attack was observed at 650°C; however, large δ -precipitates 
(Ni3Nb) were present in the Std heat treated specimen (Fig. 9a). At 700°C, a thin (<1µm) surface 
oxide also was formed but significant internal attack was observed, Figures 9c and 9d.  The 
internal attack sometimes appeared to follow the Ni3Nb/matrix interfaces. At 800°C, the surface 
scale was significantly thicker (~2µm) with a slightly thicker scale forming in wet air (Figures 9e 
and 9f) compared to laboratory air (Figures 9g and 9h). As at 700°C, the internal attack appeared 
to follow the Ni3Nb/matrix interfaces. Wet air also gave a significant increase in  
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Figure 7. Secondary electron plan-view images of the scale formed after 1kh in wet air at  
a) 650°C, b) 700°C, c) 800°C and d) 800°C - higher magnification image. 

 
 

  
 

  
 

Figure 8. Secondary electron images of the top surface of alloy 718Plus after exposure to air for 
1kh at 800°C for microstructure with a-b) smaller grains (Std), and c-d) larger grains (Rx+Std). 

 
 

a) b) 

c) d) 

a) b) 

d) c) 
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800°C 800°C 

Std Std 
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Figure 9. SE images of the cross-sections after exposure of 718Plus for 1kh at a) 650°C/wet 
air/Std, b) 650°C/wet air/Rx+Std, c) 700°C/wet air/Std, d) 700°C/Rx+Std, e) 800°C/wet air/Std, 

f) 800°C/wet air/Rx+Std, g) 800°C/air/Std, h) 800°C/air/Rx+Std. 
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the depth of internal attack. The amount of internal attack in wet air appeared higher in the Std 
heat treatment, although the depth was similar, Figures 9e and 9f. This difference is in agreement 
with the mass change data in Figure 4. The standard heat-treatment was reported to result in a 
more uniformly distributed δ-phase in 718Plus [16], however, that is not necessarily reflected in 
the images in Figure 9. Exposure at 800°C appeared to result in γ′ coarsening (100-150nm) and a 
higher density of δ-phase which is detrimental to 718Plus oxidation resistance. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Cross-section of the 718Plus (Std) after 1kh at 800°C (a) secondary electron image 
and EPMA elemental maps (b) O, (c) N, (d) Ti, (e) Cr, (f) Al, (g) Nb and (h) Ni. 

 
 
Figure 10 shows EPMA x-ray maps of the scale formed on 718Plus (Std) after 1kh at 800°C in 
wet air.  The maps appear to show a multi-layer oxide scale with a Ti-rich outer layer and a Cr-
rich inner layer. There may be some N enrichment.  The internal oxide appears to be primarily 
Al2O3, as expected. The Nb elemental map clearly shows the δ-phase precipitates and a 
concentration of Nb near the metal-scale interface, perhaps rejected from the oxidation front. 
 
Figure 11 shows cross-sections of the 718Plus specimens exposed in 17bar steam for 2kh at 
800°C.  The attack is similar as that observed in wet air at 800°C atmospheric pressure. Because 
of the lack of free oxygen in the steam environment, formation of Cr oxy-hydroxide is not 
expected [15], and Cr depletion has not been observed in a chromia-forming steel [17]. 
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g) h) 

a) 

Ti Cr Al 
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Figure 11.  SE images of polished sections of 718Plus exposed for 2kh at 800°C in 17bar steam 
for samples with a) smaller grains (Std) and b) larger grains (Rx+Std). 

 
 
Alloy Characterization 
In order to further study the effect of water vapor on Cr depletion in the substrate, EPMA line 
composition profiles were performed on the cross-section of the specimens exposed for 1kh at 
the three temperatures. The beginning of the EPMA lines was at the top surface of the 
specimens. Figure 12 compares profiles after exposure at 800°C in wet and laboratory air for the 
two different microstructures. In the profile, the metal-oxide interface has been set to zero so the 
distance values less than zero reflect the external scale that has a high Cr content, while the 
distance values greater than zero reflect the alloy. Therefore, beneath the scale, the Cr depletion 
is observed in laboratory and wet air for both microstructures. Also, the finer grained (Std) 
microstructure resulted in greater surface depletion (<8wt%Cr) and depletion to a greater depth 
than the recrystallized microstructure (Fig. 12). In laboratory air, less Cr depletion was observed 
as Cr was not lost due to volatilization of CrO2(OH)2 and the scale formed was not as thick as 
that formed in wet air (Fig. 9). 
 
 

                
Figure 12. Cr content by EPMA as a function of distance from the surface acquired from the 
sample cross-sections for 718Plus after exposure for 1kh at 800°C in air and wet air for two 

different microstructures. 
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Figure 13a compares the Cr line profiles in the standard 718Plus specimens as a function of 
temperature after 1kh in wet air. As expected, the Cr depletion increased significantly with 
temperature as the scale thickness increased and the amount of volatilization also is expected to 
increase with exposure temperature. Figure 13b shows Al line profiles from the same specimens 
in Figure 13a.  There is a slight enrichment of Al in the scale but very little depletion at 650° and 
700°C. At 800°C, there is Al enriched in oxides near the surface and a significant Al depletion in 
the adjacent metal. This depletion is typical of internal oxidation [18]. 
 
 

 
 

     
Figure 13. a) Cr and b) Al content by EPMA as a function of distance from the surface acquired 

from the sample cross-sections for 718Plus after 1kh high-temperature oxidation. 
  

Discussion 
 
Many 718Plus oxidation studies involve short times and/or higher temperatures. The current 
study has initially characterized oxidation after 1kh, but longer-term (5kh) exposures are being 
conducted to confirm these observations at longer times.  Because of the long lifetimes expected 
for 718Plus components, one strategy to accelerate the oxidation testing is to increase the 
exposure temperature.  In this study, 800°C was used for accelerated testing, resulting in a much 
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b) 
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thicker surface oxide than was formed at 650° or 700°C. However, there was evidence of 
microstructural changes for 718Plus after oxidation at this temperature. Due to the complex 
phase composition, thermal stability is more of an issue with this material than alloys with 
simpler compositions. Therefore, this acceleration strategy is questionable. Also, the temperature 
dependence of the competing oxide growth and oxy-hydroxide volatilization are not the same.  
Therefore, the effect of water vapor may be different at 800°C compared to more typical service 
temperatures.   
 
Oxidation studies in water vapor may be more representative of other service combustion 
environments such as in gas turbines. Crack growth studies have been conducted in wet air 
environments and long-term studies will quantify the depth of material affected by this 
environment.  From the 1kh results, it is apparent that 718Plus is affected at a greater depth in the 
presence of water vapor. One problem with testing in water vapor is that the mass gain measured 
is more difficult to extrapolate to longer times. For oxidation in air, parabolic kinetics for the 
mass gain and scale thickness readily lead to long-term predictions. In wet-air, para-linear 
kinetics are expected due to the combination of oxide growth and volatilization. However, the 
volatilization is dependent on the water vapor content and gas velocity [15]. Therefore, data from 
laboratory experiments with a relatively low gas velocity (~1.5cm/s) will not provide accurate 
rate data for applications in turbines or other high velocity environments.   
 
There was not a strong effect of 718Plus microstructure on oxidation behavior in these initial 
observations. Perhaps longer exposures will cause the two microstructures to differentiate 
further. Generally, finer-grained alloys tend to form less transient oxide and more easily form a 
protective scale because there are more short circuit diffusion paths in the alloy for Cr transport 
to the oxidation front.  However, the coarse-grained structure (Rx+Std) often had smaller mass 
gains and less reaction product.  It appeared that there was less δ phase present near the surface, 
only at the grain boundaries, of the Rx+Std material, which resulted in less internal oxidation. 
After oxidation at 800°C, the microstructures appear more similar so the difference in 
performance may be reduced with longer exposures. Characterization of the longer-term (5kh) 
specimens at 650° and 700°C will provide more information about the effect of microstructure 
on the oxidation behavior. 
 

Conclusions 
 
Specimens of 718Plus with two different microstructures, with and without recrystallization, 
were evaluated at 650°-800°C. The comparison between laboratory air and wet air illustrated the 
role of water vapor in accelerating the oxidation attack, especially increasing the amount of 
internal oxidation and Cr depletion from the near-surface region.  Because of the volatilization of 
the Cr oxy-hydroxide, mass losses were measured after 1kh at 650° and 700°C. Relatively thin, 
Cr-rich external oxide scales formed at these temperatures. Attempting to accelerate the 
oxidation test by increasing the oxidation temperature to 800°C produced questionable results 
because the microstructure coarsened and there was an increase in the rod-shaped δ (Ni3Nb) 
phase in the alloy. Internal oxidation increased with exposure temperature and for the most part 
appeared to follow the δ-matrix interfaces. In general, only minor changes were noted in the 
oxidation behavior because of the microstructure.  The expected benefit of a finer alloy grain size 
was not evident. The standard heat treatment (Std) resulted in slightly higher mass gains and 
internal attack because of a higher fraction of δ phase at the specimen surface compared to the 
recrystallized microstructure (Rx+Std). 
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