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Abstract 

 
The low solvus high refractory (LSHR) nickel base superalloy 
was chosen as a candidate for a dual microstructure heat treatment 
(DMHT) turbine disk, with fine grains in the bore and coarser 
grains in the rim.  In between those two regions, there is a 
transition in grain size and γ′ precipitation.  In this study, the 
mechanical performance of the coarse grain region was evaluated 
by room temperature tensile testing in the un-aged and dual aged 
conditions.  Optical digital image correlation (DIC) was used to 
detect the localized strains evolving from the tensile testing.  
Strain maps from the DIC successfully detected localized strains 
in both of the microstructural conditions of interest.  Transmission 
and scanning electron microscopy was use to analyze the 
deformed regions to assess grain misorientation and dislocation 
activity within each microstructure. While dislocations appeared 
to accumulate in the gamma channels in both microstructures, 
there appeared to more grain misorientation in the unaged 
condition of LSHR.     
 

Introduction 
 
The LSHR nickel base superalloy was developed to combine the 
low solvus of René 104 and the higher refractory content of Alloy 
10 [1].  It was believed that with this combination of composition, 
that turbine disks would no longer suffer from quench cracking 
during fabrication [2].  The enhanced processing capability of this 
alloy made it a prime candidate for the dual microstructure heat 
treatment (DMHT) developed by NASA.  The details of the 
DMHT can be found elsewhere [1, 3].  The DMHT allows the 
turbine disk to optimize the strength dependent properties in the 
bore with fine grains as well as the time-dependent properties in 
the rim with coarser grains [1].   
 
However, grain size is not the only concern with respect to the 
optimization of turbine disk mechanical properties.  LSHR is a 
precipitate strengthened nickel base superalloy.  Previous 
researchers have demonstrated the complex strengthening 
mechanisms that exist in such alloy systems [4-7].  They showed 
that the size, distribution and volume fraction of γ′ (Ni3Al) 
precipitates influence the behavior of linear and planar defects in 
the material and thus, greatly influence the mechanical 
performance of the turbine disk. Following the DMHT, the 
microstructure exhibited several modes of precipitation, including 
primary, secondary and tertiary distributions. Since the γ′ phase 
has proven to be such a critical part of the strengthening, turbine 
disks are aged to stabilize the phase prior to use [8].   Aging 
studies performed by NASA [9] determined that a dual aging 
sequence provided the best balance in mechanical properties for 
the LSHR alloy. At the conclusion of that study, the process by 
which the secondary and tertiary γ′ precipitates exchanged volume 
fractions remained unclear.    
 

The objective of the current investigation was to determine the 
effect of the dual aging process on the mechanical response of the 
LSHR alloy.  It is likely that various strengthening mechanisms 
are activated simultaneously to account for the macroscopic 
performance of the alloy [4].   For this reason, digital image 
correlation (DIC) techniques were used in an attempt to determine 
which microstructural features influence the localization of strain 
in the material. Previous studies have shown that when DIC 
techniques are combined with orientation information from 
electron backscatter diffraction (EBSD), valuable information 
about strain localization can be obtained [10].   
 
In an attempt to simplify the microstructural features contributing 
to experimental observations, the coarse grains in the rim section 
of the disk were initially chosen for this investigation.  This 
section of the disk has a more uniform microstructure compared 
with that of a gradient containing coarse and fine grains and lacks 
the micron sized primary γ′ found in the bore section of the disk.  
The mechanical performance of the coarse grain microstructure 
was evaluated in the un-aged and dual aged condition with room 
temperature tensile testing.  Strain maps were constructed of the 
sample surface using optical DIC techniques to detect the 
localization of strain.  Strain localizations were further analyzed 
using scanning electron microscopy (SEM) and transmission 
electron microscopy (TEM) based techniques.    
 

Materials and Procedure 
 
The composition of the LSHR alloy is displayed in Table 1. 
 

Table 1. Composition of LSHR (wt %) 
Co Cr Al Ti W Mo Ta Nb C B Zr Ni 

20.4 12.3 3.5 3.5 4.2 2.7 1.6 1.5 .05 .03 .05 Bal 
 

The LSHR superalloy was received after the DMHT was 
completed (without any additional aging).  Subscale tensile 
specimens were extracted from the rim of the disk forging.  Figure 
1 displays the size and geometry of the specimens as well as and 
the location and orientation for extraction (relative to the turbine 
disk forging).  
 

 
           (a)    (b) 

Figure 1. (a) Tensile specimen geometry used for mechanical 
testing (b) Location and orientation of sample extraction  
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This sample geometry was specifically used for testing on an 
Electrothermal Mechanical Tester (ETMT).  The ETMT, shown in 
Figure 2, is a modified load frame capable of simultaneously 
controlling load, displacement and temperature (via direct 
resistive heating) [11]. The ETMT used was developed by the UK 
National Physical Laboratory and Instron and is located at the 
Center for Accelerated Maturation of Materials (CAMM) at the 
Ohio State University.  
 

 
Figure 2. (a) Electrothermal Mechanical Tester 
(ETMT) at CAMM (b) A sample in the ETMT 
chamber being held at held at temperature for a 
mechanical test [11] 

 
After extraction, one sample was left in the un-aged condition, 
while another was subjected to NASA’s dual aging sequence.  
Before commencing with the heat treatment, the sample was glass 
encapsulated and backfilled with argon to prevent unwanted 
oxidation. The two-step aging sequence consisted of an initial 
exposure of 860°C for 4 hours with a furnace cool, followed by 
780°C for 8 hours with an air cool. Room temperature tensile tests 
were performed using the ETMT under a constant strain rate of 
8.3x10-5 s-1.  
 
Digital image correlation software (VIC-2D) was used to 
determine the total amount of strain in the sample and to generate 
strain maps of localized strain intensity.  Using this technique, two 
general assumptions are made: (1) there is a direct correspondence 
between the motion of points in the collected images and motion 
of points on the object and (2) that there is adequate spatial 
contrast to define and track local motions [12]. A random paint 
speckle pattern was applied to the sample surface to optimize the 
local spatial contrast required for the correlation functions in the 
software [12].    An example of an experimental speckle pattern 
can be seen in Figure 3.  The vertical line through the center of the 
gage section in the image displays the digital extensometer used in 
the software to calculate the total strain in the sample.  Further 
details of the mathematics and experimental procedures for using 
DIC can be found in the reference by Sutton [13].   
 

             
(a)   (b) 

Figure 3. (a) Optical image of speckle pattern 
required for image correlation.  The vertical line 
on the image displays the digital extensometer (b) 
Location microstructural examination on the 
tensile specimen, illustrated with the circle in the 
center of the gage section 

  
Field emission scanning electron microscopy (SEM) [14] was 
used to observe the γ′ volume fractions in each of the 
microstructures of interest.  Before examining samples in the 
SEM, they were initially prepared with standard metallographic 
techniques and finished with 0.05 µm colloidal silica.  Since the 
atomic number contrast is typically poor between the γ′ and γ 
phases [14], the samples were etched with a solution that 
contained 50 ml of lactic acid, 30 ml of nitric acid, and 2 ml of 
hydrofluoric acid.  The etchant is designed to remove the γ′ phase, 
thus enhance the contrast during imaging. 
 
A MATLAB based image processing software program developed 
at CAMM was used to determine the volume fraction and 
equivalent diameters of the γ′ precipitates in the high-resolution 
SEM images.  As a point of reference, γ′ greater than 100 nm will 
be referred to as “secondary” and less than 100 nm as “tertiary” 
[9].  Electron backscatter diffraction (EBSD) measurements were 
made to determine the grain misorientations due to deformation. 
The misorientations were determined using the EDAX TSL 
Orientation Image Microscopy (OIM) software.  
 
Focused Ion Beam (FIB) foils were extracted from each of the 
microstructures.  This method of TEM sample preparation is 
particularly useful for site-specific sample extraction as required 
in this investigation.  FIB foils were extracted from areas of 
highly localized strain, which were detected using the VIC-2D 
software.  Bright field (BF) scanning transmission electron 
microscopy (STEM) was performed to observe dislocation 
activity within the deformed regions.  According to Phillips [15], 
BF STEM zone axis imaging simultaneous uses multiple 
diffraction vectors such that any arbitrary lattice defect should 
exhibit contrast.  Thus, zone axis imaging allows for a broad view 
of the existing defects in the microstructure and was pursued in 
this investigation for the <110> zone axis.     
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Results and Discussion 
 
Heat Treatment  
As a point of reference, the microstructures in the center of each 
tensile specimen (shown in Figure 3b) were initially compared for 
differences in grain and precipitate size and distribution.  Figure 4 
displays the inverse pole figure (IPF) maps generated from EBSD 
measurements of the central regions of the un-aged and dual aged 
tensile specimens.  The maps show the grain size and orientation 
in which neither sample appeared to be highly textured.  
 

 
(a) 

 
(b) 

Figure 4. IPF maps of (a) un-aged (b) dual aged 
LSHR (in this case a hardness indent was used to 
mark the location of interest) 

 
Figure 5 displays high-resolution SEM images of the un-aged and 
dual aged LSHR microstructures treated with the gamma prime 
etchant.  Measurements of the volume fractions of the γ′ particles 
as a function of etching time were performed.  The results prove 
to be reliable and repeatable for etching times between 3 to 5 
seconds [16].  Both microstructures appear to have a bimodal 
distribution of γ′ and display secondary γ′ as rounded  cuboids.  
One difference that immediately appears is the dispersion of 
tertiary precipitates. Higher magnifications (displayed in Figure 
5(c) and 5(d)) of the microstructure show that the there is no 
longer a fine dispersion of tertiary gamma prime in the material 
after the dual aging sequence. 
 
 
 

 
(a)    (b) 

 

   
(c)    (d) 

Figure 5. High resolution SEM images of (a) unaged 
microstructure (b) dual aged microstructure (c) 
higher magnification of unaged microstructure (d) 
higher magnification of dual aged microstructure  

 
Stereological measurements of the microstructure were pursued to 
further quantify the differences between the microstructures.  
Segmentation routines were performed using the MATLAB based 
software developed at CAMM.  Figure 6 displays the thresholded 
binary images of the γ′ precipitates. 
 

 
(a) 

  
(b) 

Figure 6. Thresholded images of the gamma prime 
after image processing from the (a) un-aged condition 
(b) dual aged condition  

 
The γ′ volume fraction of the un-aged LSHR was measured to be 
44 ± 2%, where 42% comprised of secondary precipitates and 2% 
tertiary. The average equivalent diameter of the secondary and 
tertiary γ′ was  175 ± 46 and 29 ± 17 nm, respectively. The γ′ 
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volume fraction in the dual aged material was found to be 48 ± 
3%, where 45% were secondary and 3% tertiary. The average 
equivalent diameter of the secondary and tertiary γ′ in thi s 
microstructural condition was 179 ± 54 and 36 ± 17 nm, 
respectively.  Further research aimed at improving the accuracy of 
measuring the γ′ is currently being performed.  
 

   
(a) 

 
(b) 

Figure 7. (a) Histogram of un-aged microstructure (b) 
histogram of dual aged microstructure 

 
Figure 7(a) and 7(b) display histograms for the γ′ distributions 
(including both secondary and tertiary precipitates) for each 
microstructural condition and further amplify the difference in the 
γ′ population after aging. The histograms clearly show a bimodal 
distribution in both microstructures.  However, independent 
assessments of the growth and coarsening of the gamma prime 
can not made at this time.  To fully address the coarsening 
behavior of the alloy, the stability of the γ′ volume fraction would 
have to be observed through longer aging exposures (at a given 
temperature) [17].         
 
Mechanical Testing of Unaged Microstructure 
The room temperature 0.2% offset yield strength of the un-aged 
sample was measured to be 1003 MPa, with a total strain of 
2.98% experienced by the sample.  Figure 8 displays the strain 
map output from the VIC-2D software as time elapsed during the 
test.   The largest amount of strain was detected in the center of 

the sample at 3.11%. For the sake of simplicity, three different 
locations on the sample were chosen to display changes in the 
accumulated strain over time. 

 
 

 
 

Figure 8. VIC-2D strain maps of the un-aged material in 
different instances of time.  The levels of strain are as 
indicated, with the largest strains accumulating in the 
center of the sample 3.11% 

 
Characterization of Unaged LSHR After Testing 
The highly localized region of un-aged sample was further 
investigated with EBSD measurements.  Figure 10 displays the 
grain reference orientation deviation (GROD) and IPF maps 
overlaid with the image quality (IQ) parameter of the localized 
region after the test. The GROD map measures the angular 
deviation of each pixel within a grain with respect to the grain’s 
reference orientation [18], in this case, its average orientation. A 
color-scale is then applied to the spectrum of calculated angular 
deviations allowing one to visualize the local crystal rotations 
within each grain.  
 
However, it should be noted that care must be exercised when 
forming GROD maps.  For instance, before these maps are 
constructed, the user must specify the critical misorientation and 
minimum pixel size that define a grain in the TSL software.  An 
appropriate choice of critical misorientation is crucial to 
distinguishing strain localization from low-angle boundaries. 
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Furthermore, the minimum pixel size must be carefully selected as 
it can depend on the step size chosen for the scan, i.e. the number 
of pixels allotted for each grain.  To minimize such complications, 
the scan and software parameters were consistent for each 
microstructure studied.   
 
With proper caution, a GROD map can reveal strain localizations. 
However, its effectiveness may be increased by overlaying a map 
of the IQ parameter. The IQ parameter is a measure of Kikcuhi 
band intensity observed at each data point [19] and can reveal the 
presence of lattice distortions, in particular those due to strain in 
the sample [18]. When the lattice is strained, the ideal diffracting 
conditions are no longer present and thus these areas appear 
darker in the image quality map.  
 

 
(a)    (b) 

 

  
(c)                  (d) 

Figure 9. (a) GROD map with IQ parameter, the double 
sided arrow indicates the loading direction (b) 
Corresponding IPF map overlaid with the IQ (c) GROD 
of a grain with a large amount of misorientation at grain 
boundary (circled) (d) complimentary IPF map selected 
grain displaying diffuse slip traces at the highly 
misoriented grain boundary 

 
The IPF maps in Figure 9 display apparent slip traces induced 
from the tensile testing as dark linear features within the grains.  
These linear features are also recognizable in the GROD maps.  In 
this instance they appear as additional sources of lattice 
misorientation (shown in Figure 9(c)).  An interesting 
phenomenon was observed such that as the slip traces approach 
several grain boundaries, the linear features attributed to poor 
image quality become more diffuse (shown in Figure 9(d)).  This 
same region appears to be highly misoriented relative to the rest 
of the grain (shown in Figure 9(c)).  This diffuse IQ is observed in 
several areas of the microstructure.  According to Courtney [20] 
some grains in the microstructure are more favorably oriented 
than others for plastic flow, i.e. more favorable for the movement 
of dislocations.  This produces strain displacements across the 
grain boundary, which leads to strain gradients within individual 

grains.  Thus, the dislocation density in the regions of the grain 
boundary is greater than the interior [20].  However, further 
investigation of the highly misoriented grain boundaries in the 
microstructure is required to confirm the actual deformation 
activity present. 
 
A FIB TEM sample was extracted from a population of slip traces 
in the central strained region of the tensile specimen.  Zone axis 
BF STEM imaging was performed on the <110> zone.  Figure 10 
displays the observed dislocation activity.    
 

 
Figure 10. Zone axis BF STEM image of 

dislocations in un-aged microstructure 
 
The majority of the dislocations appeared to be within the γ 
channels of the larger γ′ precipitates.  It is accepted that that the 
observed deformation is a function of temperature, strain rate and 
total strain.  Since the mechanical performance of the 
microstructure is of value, the activity observed in the un-aged 
condition will be contrasted with all future microstructure 
conditions of interest.  In this case, the next microstructure to be 
evaluated was the coarse grain microstructure subject to the dual 
aging heat treatment.  
 
 
Mechanical Testing of Dual Aged LSHR 
A room temperature tensile test was performed on the dual aged 
coarse grain microstructure at a strain rate of 8.3x10-5 s-1.  The 
0.2% offset yield strength was determined to be 1105 MPa and the 
total strain the sample experienced was 2.80%.   Figure 11 shows 
the strain maps generated by VIC-2D as time elapsed in the test. 
Unlike the un-aged sample, this specimen displayed three regions 
of highly localized strain in the gage section.  
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Figure 11. Strain mapping of dual aged microstructure condition 

and increasing levels of strain as time elapsed 
 

 
Characterization of Dual Aged LSHR After Testing 
For the sake of comparison to un-aged condition, the initial 
investigation of the dual aged microstructure focused on the 
central region of the gage.  This region presented a localized strain 
of 3.02%, which was still higher than measured bulk strain at 
2.80%.  Figure 12 displays the corresponding GROD and IPF 
maps.  Like the un-aged sample, slip traces are observed 
throughout the scanned area.   
 
 
 
 
 

  
 (a)    (b) 

 
(c)    (d) 

 
Figure 12. EBSD of dual aged microstructure (a) 
GROD map overlaid with IQ parameter, the double 
sided arrow indicates the loading direction (b) 
Corresponding IPF map IQ parameter (c) 
Misorientation at the grain boundary (d) IPF map 
showing diffuse slip traces approaching grain boundary  

 
Similar to the un-aged condition, in several locations in the 
microstructure the image quality parameter becomes more diffuse 
as the misorientation at the grain boundary increased, as shown in 
Figure 12(c) and 12(d).  As previously mentioned, this may be 
due to a preferred slip orientation within the grain. However, 
further investigation is required to confirm the precise 
deformation behavior.   Figure 13 displays a side-by-side 
comparison of the misorientations in each microstructure 
condition. 
 

 
(a)    (b) 

Figure 13.  Direction comparison of misorientations after tensile 
testing for (a) unaged and (b) dual aged microstructures 

 
Figure 13 shows that there were more detected misorientations in 
the unaged microstructure than the dual aged in the central section 
of the gage.  This is an interesting observation that is still not 
understood. A FIB foil was extracted from slip traces within a 
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grain interior in the dual aged condition. The <110> zone axis BF 
STEM image of the dislocation activity is displayed in Figure 14. 
 
 

  
Figure 14. BF STEM image of dual aged microstructure 

 

Similar to un-aged condition, the majority of the dislocation 
activity in this zone axis appears to be collected around γ′ in the γ 
channels.  This is an interesting observation, considering the yield 
strength of the dual aged specimen is approximately 100 MPa 
higher than the un-aged condition.  This further illustrates that 
there are several microstructural features that contribute to the 
strength of nickel base superalloys.         

 
Summary and Conclusions 

 
Coarse grain specimens were extracted from the rim region of an 
LSHR turbine disk.  The effects of a two-step aging sequence 
were investigated using high resolution scanning electron 
microscopy and transmission electron microscopy. Bimodal γ′ 
precipitate populations were observed in each microstructure of 
interest. Stereological measurements of the bimodal 
microstructures showed a small quantitative increase in the 
precipitate volume fraction and average equivalent diameter as a 
function of aging. 
 
Digital image correlation performed on the subscale tensile 
specimens successfully showed intense strain localization in the 
un-aged and dual aged conditions.  However, the specimen with 
the dual aging heat treatment displayed three regions of highly 
localized strain where the un-aged sample appeared to have one.  
In this study, the central regions of localized strain intensity in 
each microstructure were examined for microstructural 
differences.  The additional strain localizations in dual aged 
condition are the subject of a further investigation.   
 
EBSD measurements of both microstructures showed that slip 
traces in particular grains become less detectable as the 
misorientation increased at a grain boundary.  This effect is likely 
due to a favorable slip orientation within grains, which enables 
enhanced dislocation activity, but this needs to be confirmed with 
future research.  EBSD measurements of the two microstructures 
displayed more widespread misorientation in the un-aged 
microstructures versus the dual aged microstructure. Bright field 
STEM dislocation imaging was pursued to observe the dislocation 
activity within the highly localized strained regions of both 
samples.  Both microstructures showed dislocations accumulating 

within the γ channels of the secondary γ′.  Overall, both 
microstructures presented similar deformation features, but the 
dual aged condition provided a higher yield strength.  Additional 
research will be performed to determine exact microstructural 
features that contribute to this performance.   
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