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Abstract 

 
The residual stress distribution generated during manufacturing 
processes of a jet engine component plays an important role in 
determining component life. The heat treatment, machining and 
pre-service spin variables (if used) contribute to the magnitude 
and location of residual stresses generated prior to service.  Such 
variables have traditionally not been included in design 
optimization due to the lack of accurate and efficient process 
modeling design tools.  Increased demand for higher speed and 
higher temperature disks has necessitated advanced multi-
disciplinary modeling tools in order to deliver high performance, 
robust and cost favorable solutions. Component process modeling 
that considers disk stresses through heat treatment, machining, 
pre-service spin and design operation has been linked and 
automated to minimize service stress for locations of interest.  
This paper uses a superalloy 718 disk as an example to illustrate 
integration and automation of residual stress and service stress 
modeling that will ultimately impact component life. 
 

Introduction 
 
The advent of Integrated Computational Materials Engineering 
(ICME) [1] and the need to drastically reduce design and make 
cycle times has placed greater importance on developing and 
demonstrating virtual/digital models. This will enable rapid and 
sustainable manufacture, critical to realizing potential time-to-
market savings. To successfully integrate design and manufacture, 
a method for integrating residual stresses arising from 
manufacture with in-service (or design mission) loading is 
required (see Figure 1). 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic of integrating manufacturing residual stress 
with design mission / service loading. 
 
Residual stresses are stresses that remain after the original loading 
and constraints have been removed from the part. Residual 
stresses in superalloy disk components originate from heat 
treatments and are produced when the material yields locally 
during post solution fast cooling (water quench, oil quench, air 
quench, etc.) [2-5]. The quenched-in residual stresses are then 
relaxed during aging, but not eliminated.  Figure 2 shows a typical 
temperature-time curve for superalloy 718 disk heat treatment that 
involves solution and age. Residual stresses are reduced and 
redistributed further during machining from the ‘as heat-treated’ 

to a ‘condition-of-supply’ and then to the final component 
geometry.  However, the residual stress inside the disk is still not 
negligible.  It has an important impact on the life of the 
component during service. 
 

 
 
Figure 2. A typical temperature-time curve for superalloy 718 disk 
heat treatment that involves solution and age.  
 

Experiments and Model Validation 
 
Residual stress modeling simulates the heat treatment and 
machining processes using computer software such as 
DEFORMTM [6] to predict the resultant residual stress in final 
components.  Such modeling processes are becoming mature 
enough to correctly predict the residual stress of the final 
component [7].  Figure 3 shows the difference in absolute value in 
MPa between the prediction and mean measurement of the hoop 
stress for a portion of an RR1000 superalloy disk.  The standard 
deviation of the difference between the prediction and 
measurement is around 50 MPa (7 ksi).   
  

 
 
Figure 3. The difference in absolute value in MPa between the 
prediction and mean measurement of the hoop stress for a portion 
of a superalloy RR1000 disk 
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With the improvement in residual stress prediction accuracy, the 
next step was to look at the relationship between cyclic spin life 
and predicted spin stress using residual stresses carried over from 
prior processing steps. Toward that end, two groups of 718 R&D 
disks with documented spin test lives were investigated.  The spin 
tests for the two groups of test article disks were run at room 
temperature and the spin hoop stress was the major contributor to 
failure. The two groups of disks had identical processing histories; 
the difference being the Group 1 disk was not pre-spun and Group 
2 disk was pre-spun.  
 
 
The modeling steps for the two groups of 718 disks (Figure 4) 
includes: a) solution heat treatment (Figure 2); b) age heat 
treatment (Figure 2); c) machining to component shape; d) pre-
spin of disk (Group 2 only, 23,320 RPM); and e) spin at test speed 
(20,100 RPM). Group 1 disks failed at 7,963 cycles and Group 2 
disks failed at 22,796 cycles. The reason for the longer life of the 
Group 2 disk was that pre-spinning yielded the bore, resulting in a 
compressive bore stress after pre-spinning and going into cyclic 
spin test (Figure 4d).   
 
 
Figure 5 a) is a photo of the failed Group 1 disk. Failure analysis 
determined that the crack initiation location was at the bore; 
denoted by arrows.  Figure 5 b) shows the predicted hoop stress 
during spinning, including residual stress. That is, the heat treated 
and machined disk was spun with the residual stresses as the 
initial condition rather a zero stress initial condition. Therefore, 
centrifugal stress is generated in a coupled manner rather than a 
simple, uncoupled superposition of residual and centrifugal 
stresses. The zone of the highest hoop stress during spinning for 
the Group 1 disk is located at the bore, which is the same crack 
initiation location indicated by failure analysis.  The maximum 
and bore hoop stress are 1246 and 1164 MPa respectively. 
 
 
The above stresses were used to compare with the Group 2 disk 
and the Trade Study disks to follow. Figure 6 a) is a photo of 
Group 2 disk that failed at 22,796 cycles. The possible crack 
initiation location is behind the filet.  Figure 6 b) shows the 
predicted spin hoop stress coupled with residual stress; the 
maximum spin hoop stress is located right behind the filet. The 
magnitude of the maximum spin hoop stress is 1193 MPa and the 
spin hoop stress at the bore is 889 MPa.  Both values are smaller 
than the Group 1 disk. The predicted locations and magnitudes of 
the maximum spin hoop stress for the two groups of 718 disks are 
consistent with the observed fracture pattern and relative life of 
the failed disks. 

  
 
Figure 4. The modeling steps for 718 disk include: a) solution heat 
treatment; b) age heat treatment; c) machining to component 
shape; d) pre-spin of disk (Group 2 only); and e) spin at 
temperature and speed.   
 

 
a)  

 
b)  
Figure 5. a) Photo of Group 1 disk (7,963 cycles, arrow denotes 
crack initiation locations); b) predicted spin hoop stress with a 
maximum and bore stress of 1246 and 1164 MPa respectively. 
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a) 
 

 
b)  
 
Figure 6. a) Photo of Group 2 disk (22,796 cycles, the possible 
crack initiation location is behind the filet); b) The predicted spin 
hoop stress with a maximum of 1193 MPa and a bore stress of 
889 MPa. 
  
 

Automation and Optimization 
 

 
An automated process modeling loop was developed to link all 
DEFORM modeling steps together, shortening the turn-around 
time for component design applications. Given the reasonable 
prediction of spin stress for a component with residual stress in 
the previous section, automation was a natural step toward an 
ICME approach to improve modeling efficiency.  Figure 7 shows 
an example of such a loop that links: solution and aging heat 
treatment, machining, pre-spinning (if used), application of design 
point temperature and spin conditions, and the calculation of 
service stresses and life of the component.  
  
A modeling Trade Study can be performed very efficiently with 
the automated process modeling loop shown in Figure 7.  A Trade 
Study was investigated first, consisting of three conventional heat 
treatment scenarios coupled with pre-spinning.  This was followed 
by a Design of Experiment (DOE) for quenching heat transfer 

 
 
Figure 7.  Automated process modeling loop developed to link all 
DEFORM modeling steps together. 
 
 
coefficients. The Trade Study heat treatment conditions were; (1) 
a Pancake oil quench (Figure 8), which was the condition used for 
the Group 2 disk shown in Figure 4; (2) a Ring water quench 
(Figure 9), which was the 1st Trade Study; and (3) a Ring oil 
quench (Figure 10), which was the 2nd Trade Study.  The 
maximum spin hoop stress and the spin hoop stress at the bore 
were used as gauges to compare disks with different processes.  
Though the stress values are similar for the baseline case (Figure 
8) and Trade Study 1 (Figure 9), the hoop stress distribution is 
slightly different.  Among the three cases, the best case is Trade 
Study 2; Ring oil quench with the lowest maximum spin hoop 
stress of 1175 MPa and the lowest spin hoop stress at bore of 868 
MPa (Figure 10). 
 

  
Figure 8.  The baseline case for Trade Study: pancake oil quench 
with a maximum spin hoop stress of 1193 MPa and a bore stress 
of  889 MPa. 
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Figure 9.  Trade Study 1: ring water quench with a maximum spin 
hoop stress of 1195 MPa and a bore stress of 889 MPa. 
 

 
 

 
Figure 10.  Trade Study 2: ring oil quench with a maximum spin 
hoop stress of 1175 MPa and a bore stress of 868 MPa. 
 

Maximization of component service life is related to minimization 
of the residual stress and service stress for critical locations.  For a 
given heat treatment shape and pre-spin condition, the 
minimization of the residual stress and service stress is related to 
the optimization of the heat transfer coefficients (HTC’s) during 
post solution cooling. This is Step 1 of the loop shown in Figure 
7.  The HTC segments for the 718 ring studied in this case are 
shown in Figure 11.  Controlled cooling needs to be applied to 
realize a set of optimized HTC’s.  To optimize the HTC’s, the 
optimization software iSightTM [8] was linked to the automated 
process modeling loop (Figure 7) to select HTC’s. Figure 12 
shows the iSight Design of Experiments (DOE) used to determine 
the minimum residual and service stresses for locations of interest 
to maximize component life.   

 

 
 
 
Figure 11.  The HTC segments used for the ring of alloy 718 
studied in this case.  
 

  
 
Figure 12. Schematics of Design of Experiments in iSight: a) 
Latin Hypercube DOE was used; b) DOE controls the simulation 
code which is the automated process modeling loop shown in 
Figure 7.   
 
Thirty DOE trials were run in iSight for the disk with and without 
pre-spin and the impact of HTC’s on the maximum spin hoop 
stress was analyzed.  The thirty cases with pre-spin were analyzed 
first.  Figure 13 is a Pareto plot showing the impact of the HTC’s 
on the maximum spin hoop stress for the disk with pre-spin.  It is 
shown that HTC3 has the largest impact (% effect) on the 
maximum spin hoop stress. The maximum spin hoop stress will 
increase with an increase in HTC3.  Thus, the HTC3 should be 
reduced if possible.  Figure 13 also shows that the HTC1 has the 
next largest impact on the maximum spin hoop stress. The 
maximum spin hoop stress will be reduced if HTC1 increases.  
Thus, HTC 1 should be increased if possible.  HTC2 and HTC4 
have a minor impact on the maximum spin hoop stress and need 
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to be increased in order to reduce the maximum spin hoop stress 
as well.  Figure 14 shows the DOE results, the maximum spin 
hoop stress, for all HTC combinations as well as the potential 
optimum combination. The potential optimum combination of 
HTC1-HTC4 and the resultant spin hoop stress is shown in Figure 
15. The maximum spin hoop stress is 1080 MPa and the spin hoop 
stress at bore is 716 MPa.  Both stresses are the lowest so far with 
a pre-spin condition (Group 2, Trade Study 1, and Trade Study 2).  

 
 

 
 
Figure 13.  Pareto plot showing HTC’s impact on max spin hoop 
stress with pre-spin. 
 

 
 
 
Figure 14.  Individual HTC settings for HTC1-HTC4 in thirty trial 
DOE and the corresponding maximum spin hoop stress.  The 
potential optimum combination of HTC1-HTC4 is also marked. 
 
 

 
 
Figure 15. The potential optimum combination of HTC1-HTC4 
setting for a superalloy 718 disk with pre-spin. The maximum 
spin hoop stress is 1080 MPa and the bore stress is 716 MPa. 
 
 
Although pre-spinning can reduce the spin hoop stress, there is 
extra cost and risk involved. It would be more desirable to obtain 
a similar stress state without pre-spinning the disk. Controlled 
cooling can be used rather than pre-spinning to yield the bore and 
create a compressive stress. The impact of HTC’s on the 
maximum spin hoop stress for thirty DOE trials on the disk 
without pre-spinning were analyzed below. Figure 16 is a Pareto 
plot of the impact (% effect) HTC’s have on the maximum spin 
hoop stress for a disk without pre-spinning.  It is shown that the 
HTC1 has the largest impact on reducing the maximum spin hoop 
stress.  Thus, efforts should be made to increase HTC1 within 
manufacturing limit to reduce the maximum spin hoop stress.  
Figure 16 shows HTC2 and HTC4 again have a minor impact on 
the maximum spin hoop stress and need to be increased as well.  
An increase in HTC3 will increase the maximum spin hoop stress; 
however HTC3 has the least impact on maximum spin hoop 
stress.  Figure 17 shows the DOE results, the maximum spin hoop 
stress, for all HTC combinations as well as the potential optimum 
combination.      
 

 
 
Figure 16.  Pareto plot showing HTC’s impact on max spin hoop 
stress without pre-spinning. 
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The potential optimum combination of HTC1-HTC4 setting was 
used in another modeling loop run and the spin hoop stress is 
shown in Figure 18.  The figure shows that, even without pre-
spinning, the maximum spin hoop stress is 1082 MPa and the spin 
hoop stress at bore is 717 MPa.  Both values are almost identical 
to the pre-spun disk shown in Figure 15.  Thus, if the controlled 
cooling is performed properly, similar stress level could be 
achieved for the superalloy 718 disk with or without pre-spin.  
Obviously, the non pre-spun 718 disk is a more economical 
solution; it removes a process step and a potential risk.     
 

 
 
Figure 17.  Individual HTC settings of thirty DOE without pre-
spinning and the corresponding maximum spin hoop stress. The 
potential optimum combination is marked. 
 

 
 

Figure 18. The potential optimum combination setting for the 
superalloy 718 disk without pre-spinning. The maximum spin 
hoop stress is 1082 MPa and the bore stress is 717 MPa. 
 

Conclusions 
 

The residual stress distribution from the heat treatment processes 
plays a very important role in determining the service stress for 
locations critical to the life of rotating superalloy components.  
The residual stress modeling tool is maturing toward accurate 
prediction of residual stresses in final components.  A spin stress 
prediction that included residual stress is consistent with the 
observed fracture pattern and the observed life for the superalloy 
718 disks presented in this paper.  The automated residual 
stress/service stress/lifing calculation loop makes the optimization 
of component design more efficient and practical for use within 
aggressive design timescales.  Controlled cooling could be used to 
maximize the disk performance with possible lower cost and is the 
future for residual stress/service stress/lifing optimization.  
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