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Abstract

The dragging effect exerted by second phase particles
on grain growth in two-dimensional systems is investi-
gated. Full field simulations were performed to highlight
the influence of the size and the surface fraction of the
precipitates on the limiting mean grain size. A modi-
fied version of the 2D classical Zener equation is finally
proposed based on these numerical experiments. It is
shown that the proposed model is in good agreement
with other works from the literature.

Introduction

It is well-known that precipitates act as obstacles to the
displacement of the grain boundaries and may hinder
grain growth. Under certain conditions, second phase
particles (SPP) can also pin the microstructure, leading
eventually to a limiting mean grain size (MGS), which
is characteristic of the Zener pinning. This phenomenon
is widely used by metallurgists to control the grain size
during the forming process of many alloys, including
superalloys. Predictive tools are then needed to model
accurately this phenomenon and thus optimize the fi-
nal in-use properties of the materials. Classical laws
predicting the limiting MGS, noted 〈Rf 〉, have the fol-
lowing form:

〈Rf 〉 = K
〈rp〉
fm

, (1)

where 〈rp〉 and f are respectively the mean radius and
volume (resp. surface in 2D) fraction of SPP. K and
m are two parameters that fluctuate according to the
assumptions made to obtain the equation [1]. Recently,
Moelans et al. [2] proposed to consider the volume frac-
tion of particles located at the grain boundaries fgb in-
stead of f , because only these precipitates exert effec-
tively a dragging effect on the grain boundaries. The
Eq. 1 is thus reformulated as follows:

〈Rf 〉 = K
〈rp〉
fm
gb

, (2)

In the following, only the expression given by Eq. 2
will be discussed.

There are many approaches to model the Zener
pinning phenomenon at the polycrystal scale. Prob-
abilistic voxel-based approaches such as Monte Carlo
[3, 4, 5, 6, 7, 8] (MC) were the first to be developed.
Due to the explosion of the computer capacities,
deterministic approaches have become more popular
in the last years. These methods do not rely on
probabilistic laws and are therefore more precise, but
also more greedy in terms of numerical requirements.
Several authors have chosen to model explicitly the
grain boundaries [9, 10] but these methods are hardly
used in 3D, mainly because handling the complex
topological events (grain shrinkage, nucleation...) is
still an open issue. Recently more attention has been
paid to other methods, in which the interfaces are
implicitly represented by mathematical functions, like
the phase-field (PF) [2, 11, 12, 13] and the level-set
(LS) [14, 1] methods. These two approaches present
the great advantage of avoiding the complex problems
which come with the explicit tracking of the interfaces.
Although the PF method lies on strong physical
and thermodynamical fundations, its formulations
introduces purely numerical parameters (like the grains
boundary width). On the other hand, the LS method
only requires measurable quantities which have a
direct physical interpretation [15], but still needs to be
developed in order to consider specific metallurgical
mechanisms (twin interfaces, anisotropy...).

First efforts to model the Zener pinning phenomenon
in a LS framework are actually quite recent [14, 1]. In
[1], numerical investigations are proposed in order to
quantify the influences of the size and surface fraction of
the SPP on the limiting MGS. Interestingly, even if the
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relevance of Eq. 2 comparatively to Eq. 1 was proved,
quite surprising results were obtained concerning Eq.
2. It has thus been found that Eq. 2 can not predict
exactly the limiting MGS in microstructures character-
ized by different grain/particle size ratios (see [1], Fig.
10), which could be a reason of the scatter of (K;m)
values reported in the literature. To our knowledge, it
has never been proposed to improve the model of Eq.
2 based on the results of accurate and representative
simulations at the polycrystal scale. However even
if the LS approach used in the previous study was
very precise (no assumption concerning Zener pinning
phenomenon), the simulations were limited in terms
of representativity (limited number of grains, limited
mesh size) due to their colossal numerical costs (several
weeks of computations for a 2D polycrystal of around
1400 grains). Moreover, serious numerical difficulties
were then encountered in these simulations, especially
for the reinitialization of the LS functions.

Recently, the numerical efficiency of the LS model has
been drastically improved in order to deal with more
representative microstructures. A new direct reinitial-
ization algorithm [16] and an efficient recoloring scheme
[15] enabling to perform optimized and coalescence-free
simulations have been developed. These optimizations
have been tested on pure grain growth (GG) without
SPP in 2D and 3D and have permitted to reduce signif-
icantly the numerical requirements. In the present work,
a numerical investigation of the Zener pinning phe-
nomenon in two dimensions is proposed. More specif-
ically, full field experiments are performed in order to
discuss a typical model predicting the MGS.

Numerical model

As mentioned above, the model considered in this pa-
per works around a LS description of the interfaces in
a finite element (FE) framework. A LS function ψ is
defined over a domain Ω as the signed distance function
to the interface Γ of a sub-domain G of Ω. The values
of ψ are calculated at each interpolation point (node in
the considered P1 formulation) and the sign convention
states ψ ≥ 0 inside G and ψ ≤ 0 outside:

∀t
{

ψ(x, t) = ±d(x,Γ(t)), x ∈ Ω,
Γ(t) = {x ∈ Ω, ψ(x, t) = 0} , (3)

where d(., .) corresponds to the Euclidean distance.

When considering pure grain growth, each LS interface
is then displaced by solving the following partial differ-
ential equation:

⎧⎨
⎩

∂ψ(x, t)

∂t
−MγΔψ(x, t) = 0,

ψ(x, t = 0) = ψ0(x),
(4)

where M and γ are the grain boundary (GB) mobility
and energy, respectively.

One major drawback of the LS approach lies in the
possible alteration of the metric property during the
transport stage (i.e. ‖∇ψ‖ �= 1). This is particularly
problematic when a specific remeshing technique
depending on the distance property is used at the
interface [17]. In addition, the diffusive formulation of
Eq. 4 is valid only if the function ψ is locally a distance
function. Finally, the condition number associated
with our weak formulation (P1 interpolation, implicit
method) depends largely on the regularity of the
function ψ [18].

The distance function must therefore be reinitialized
at each time step to recover the metric property
‖∇ψ‖ = 1. In [1], this operation is performed by
solving a set of Hamilton-Jacobi partial differential
equations. It has been proved in [16] that this ap-
proach is inefficient in the considered polycrystalline
context. Since this early work, a new direct and
parallel reinitialization algorithm has been developed
and incorporated in the present model [16]. The latter
has been proven extremely fast and accurate. In this
algorithm, the LS interface is firstly discretized into a
collection of segments (respectively triangles in 3D) and
the nodal values of the LS function are then updated
by finding the nearest element in the collection and
calculating the distance between the considered node
and this nearest element. This method takes advantage
of a space-partitioning technique using k-d tree and
an efficient bounding box strategy enabling to max-
imize the numerical efficiency for parallel computations.

In addition to the previous reinitialization algorithm,
a recoloring scheme detailed in [15] has also been in-
troduced. It presents the great advantage of reducing
significantly the number of LS functions needed to rep-
resent the polycrystal, and prevent any undesirable coa-
lescence event by recoloring dynamically the grains dur-
ing the simulation when it is needed. This new tool has
also permitted to reduce the numerical costs associated
with the present model and to increase its robustness.
We refer the interested reader to [15] for additional de-
tails concerning the recoloring scheme.
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Figure 1: Scheme illustrating the SPP/GB interaction.

Handling of the grain boundary/particle interaction

The LS method is particularly interesting for the mod-
eling of Zener pinning. Contrary to other numerical
approaches, no assumption is required concerning the
shape or the dragging force exerted by the SPP. The
interaction angle α between the grain boundary (GB)
and a precipitate is dictated by the balance of the sur-
face tensions according to sin(α) = (γp

2 − γp
1 )/γ, where

γp
1 , γ

p
2 and γ are respectively the surface tensions asso-

ciated with the interfaces Γp
1, Γ

p
2 and Γ12 (see Fig. 1).

This constraint can be simply imposed by the mean of
a boundary condition in the considered LS framework:

∇ψ

‖∇ψ‖ · −→n = ∇ψ · −→n = sin(α). (5)

When a GB passes through a particle, its shape thus
adapts to satisfy Eq. 5, which modifies its local
curvature and therefore its kinetics.

Coherent or incoherent SPP can thus be considered by
applying the suitable boundary conditions. In the case
of incoherent precipitates, one has γp

1 = γp
2 = γ and

α = 0◦, which corresponds to a normal interaction angle
between the GB and the particles. This configuration
corresponds to a null boundary condition in Eq. 5. In
practice, the SPP are represented by voids in the FE
mesh and the boundary condition defined by Eq. 5 is
directly integrated in the weak formulation of the FE
problem (see [1] for further details). With the exception
of the particular FE mesh needed to model the SPP,
simulate pure GG or GG with precipitates in a LS/FE
framework is then strictly equivalent and requires no
further adaptation.

Simulation parameters

All the simulations are performed on a linux cluster
(Xeon 1.2 GHz). On average, 16 CPUs are used for
the simulations and the calculation times are around
one or two days, depending on the configuration, which
is considerably less than the ones from the previous
study [1]. Furthermore, around twice as many grains
are now considered, which enables more statistically
representative predictions by limiting the impact of the
edge effects.

The initial polycrystal follows the grain size distri-
bution measured experimentally in Inconel 718. The
values of the GB mobility and energy are respectively
fixed to M = 2.3 × 10−23m4/(Js) and γ = 0.6J/m2,
which is representative of this material at a sub-solvus
temperature (around 985◦C) [1]. The simulated domain
is a square with dimensions 0.3×0.3mm2, leading to an
initial number of grains close to 2600. The initial MGS
is 〈R0〉 = 3.35μm. All SPP are perfectly circular with
identical radius rp and assumed incoherent (α = 0◦ in
Eq. 5).

Several tests have been performed in order to propose
an adequate value for the time step and it has been
observed that Δt = 0.1s is optimal for the considered
problem.

Results and discussion concerning the limiting
mean grain size equation

The initial FE meshes with voids are generated using
a frontal/Delaunay algorithm. In order to keep a
high accuracy for the GB description, a metric-based a
posteriori remeshing technique is employed to refine the
mesh around the interfaces. The remeshing operations
are performed by the mesher/remesher MTC [19]. The
Fig. 2 illustrates a FE mesh, where it can be seen
that elements are highly anisotropic and refined in the
direction normal to the GB.

In the following, the results of the LS simulations are
constantly confronted with the work of Moelans et
al. [2]. In this study, PF simulations are performed
to calibrate the Zener-type equation of Eq. 2 for
different particle and grain sizes. As these results show
good agreement with experimental observations, it is
assumed they stand for a reliable comparison.

In the present study, four particle radii rp are tested
(0.2μm, 0.4μm, 0.8μm and 1μm) with surface fractions
of 1% to 8%. For each simulation, the values of fgb
and 〈Rf 〉 are measured at the steady state (when
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Figure 4: Evolution of the MGS during the heat treat-
ment for different particle radii with a surface fraction
f = 3%.
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Figure 5: Results of the LS simulations measured at the
steady state. Each dashed line corresponds to the best
fit satisfying Eq. 2 for a given particle radius.
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tions of the microstructure features (initial mean grain
size and particle radius). Based on these numerical ex-
periments, a new model of Zener pinning is finally pro-
posed which shows very good agreement with reference
works from the literature.
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