THE WORLD COMES HERE.

TMS2023

152nd Annual Meeting & Exhibition

MARCH 19-23, 2023

SAN DIEGO CONVENTION CENTER & HILTON SAN DIEGO BAYFRONT SAN DIEGO, CALIFORNIA, USA

THE CONTENT IN THIS FINAL TECHNICAL PROGRAM WAS GENERATED ON MARCH 6, 2023.

Please refer to the online session sheets for the most up-to-date information. All times listed in this final technical program are in Pacific Daylight Time (UTC-7:00).

Download the TMS2023 App

Poster sessions are held in Hall G of SDCC. Please refer to the conference guide for information about the venue	S.	MON AM	MON PM	POSTER	TUE AM	TUE PM	POSTER	WED AM	WED PM	ТНО АМ	тно РМ
Symposium Name	ROOM	Σ	Σ	Д	—	–	Д	>	>	F	
Additive Technologies											
Additive Manufacturing and Innovative Powder/Wire Processing of Multifunctional Materials	23C			•					•		•
Additive Manufacturing Fatigue and Fracture: Effects of Surface Roughness, Residual Stress, and Environment	22			•							
Additive Manufacturing for Energy Applications V	23A				•	•		•	•	•	•
Additive Manufacturing Keynote Session	20A										
Additive Manufacturing of Large-scale Metallic Components	24A			•		•					
Additive Manufacturing of Large-scale Metallic Components	25A							•	•	•	•
Additive Manufacturing of Metals: Applications of Solidification Fundamentals	21	•		•	•	•		•	•	•	•
Additive Manufacturing of Refractory Metallic Materials	24A			•							•
Additive Manufacturing: Beyond the Beam IV	24A	•		•	•						
Additive Manufacturing: Length-Scale Phenomena in Mechanical Response	23B			•	•	•		•	•	•	•
Additive Manufacturing: Materials Design and Alloy Development V: Design Fundamentals	24C	•		•	•	•		•	•	•	•
Powder Materials Processing and Fundamental Understanding	25B			٠	٠	٠		•	•	•	•
Quantifying Microstructure Heterogeneity for Qualification of Additively Manufactured Materials	24B							•	•	•	•
Materials Processing											
Advanced Characterization of High-temperature Alloys: Phase Evolution during Manufacturing and Service-induced Deformation	29D	•	•		•	•		•			
Advanced Joining Technologies for Automotive Lightweight Structures	29C	•	•								
Advances in Powder and Ceramic Materials Science	30A	•	•		•	•	•	•	•	•	
Advances in Pyrometallurgy: Developing Low Carbon Pathways	29B		•		•	•					
Advances in Surface Engineering V	29D						•		•	•	•
Deformation-Induced Microstructural Evolution during Solid Phase Processing: Experimental and Computational Studies	29C							•	•	•	
Friction Stir Welding and Processing XII	29A	•	•		•	•		•	•	•	•
Frontiers in Solidification: An MPMD Symposium Honoring Jonathan A. Dantzig	28E	•	•		•	•	•	•	•		
High Temperature Electrochemistry V	28B	•	•		•						
Materials Processing Fundamentals	25B										
Materials Processing Fundamentals	29B							•		•	•
Materials Research in Reduced Gravity	30B							•	•	•	•
Rare Metal Extraction and Processing	30B		•								
Mechanics & Structural Reliability											
Deformation-Induced Manipulation of Defect Structures and Hierarchical Microstructures	Sapphire P							•	•		
High Temperature Creep Properties of Advanced Structural Materials	Sapphire P	•	•	•	•						

oster sessions are held in Hall G of SDCC. ease refer to the conference guide for information about the venues.		ION AM	MON AM	ION AM	ON AM	MON PM	POSTER	тие АМ	TUE PM	POSTER	WED AM	WED PM	тно ам	тни РМ						
Symposium Name	ROOM	2	2	Ш				>	>											
Nuclear Materials																				
Ceramic Materials for Nuclear Energy Research and Applications	28B										•									
Composite Materials for Nuclear Applications II	24B	•	•		•	•														
Materials and Chemistry for Molten Salt Systems	27A																			
Mechanical Behavior of Nuclear Reactor Materials and Components III	28D	•	•		•	•	•	•	•											
Methods, Techniques, and Materials Discovery of Irradiation Effect Using Insitu Microscopy	25A		•		•	•														
Microstructural, Mechanical and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface	26B	•	•		•	•	•	•												
Phase Stability in Extreme Environments	28C	•	•		•															
Phase Stability in Extreme Environments	27A																			

Composite Materials for Nuclear Applications II	24B	•	•		•	•					
Materials and Chemistry for Molten Salt Systems	27A	•	•		•	•	•	•	•		
Mechanical Behavior of Nuclear Reactor Materials and Components III	28D	•	•		•	•	•	•	•	•	
Methods, Techniques, and Materials Discovery of Irradiation Effect Using Insitu Microscopy	25A		•		•	•					
Microstructural, Mechanical and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface	26B	•	•		•	•	•	•			
Phase Stability in Extreme Environments	28C		•		•	•		•			
Phase Stability in Extreme Environments	27A									•	
Seaborg Institutes: Emerging Topics in Actinide Materials and Science	28A		•						•	•	•
Transmutation Effects in Fusion Reactor Materials: Critical Challenges & Path Forward	27B	•	•		•	•	•	•	•	•	•
Physical Metallurgy											
Computational Thermodynamics and Kinetics	26A		•	•	•	•		•	•	•	•
Phase Transformations and Microstructural Evolution	25C		•					•	•	•	•
Light Metals											
2023 Light Metals Keynote Session	20A										
60 Years of Taking Aluminum Smelting Research and Development from New Zealand to the World: An LMD Symposium in Honor of Barry J. Welch	30E				•	•		•			
Alumina & Bauxite	31B										
Aluminum Alloys, Characterization and Processing	32A		•	•	•	•		•	•	•	•
Aluminum Industry Emissions Measurement, Reporting & Reduction	31A										
Aluminum Reduction Technology	30E								•	•	•
Aluminum Waste Management and Utilization	31A										
Cast Shop Technology	31C		•		•	•		•	•		
Electrode Technology for Aluminum Production	31A		•						•		
Light Elements Technology	30D							•	•		
Light Metals Subject Awards Presentation	30E		•								
Magnesium Technology 2023	30C	•	•	•	•	•		•			
Scandium Extraction and Use in Aluminum Alloys	30D										

Poster sessions are held in Hall G of SDCC. POSTER MON AM MON PM POSTER THU AM THU PM Please refer to the conference guide for information about the venues. Symposium Name **ROOM** Characterization Advanced Characterization Techniques for Quantifying and Modeling Aqua Deformation 311A Aqua Advanced Real Time Imaging 310B Aqua Advanced Real Time Imaging 310A Aqua Characterization of Materials through High Resolution Coherent Imaging 310A Characterization of Minerals, Metals and Materials Aqua 313 Heterostructured and Gradient Materials (HGM V): New Mechanistic Aqua 314 Discoveries Enabling Superior Properties Material Behavior Characterization via Multi-Directional Deformation of Aqua Sheet Metal 309 Mechanical Response of Materials Investigated through Novel In-situ Aqua **Experiments and Modeling** 310B Aqua Neutron and X-ray Scattering in Materials Science 311B **Nanostructured Materials** Deformation Mechanisms, Microstructure Evolution, and Mechanical Aqua 300AB Properties of Nanoscale Materials Aqua Functional Nanomaterials 2023 305 Aqua Nanostructured Materials in Extreme Environments 303 **Advanced Materials** 2D Materials: Preparation, Properties, Modeling & Applications Aqua AB Advanced Functional and Structural Thin Films and Coatings & Honorary Aqua E Palkowski Session Advanced Functional and Structural Thin Films and Coatings & Honorary Aqua F Palkowski Session Advances in Multi-Principal Element Alloys II Aqua D **Bulk Metallic Glasses XX** Aqua C . . . • **High Performance Steels** Aqua F Sapphire Refractory Metals 2023 Р Refractory Metals 2023 Aqua E **Electronic Materials** Sapphire Alloys and Compounds for Thermoelectric and Solar Cell Applications XI Α

Poster sessions are held in Hall G of SDCC. Please refer to the conference guide for information about the venue	6.	MON AM	MON PM	POSTER	TUE AM	TUE PM	POSTER	WED AM	WED PM	тно ам	THU PM
Symposium Name	ROOM	2	2	Щ			Щ	>	<i>></i>		
Energy & Environment											
Advanced Materials for Energy Conversion and Storage 2023	32B	•	•	•	•	•		•	•	•	•
Advances in Magnetic Materials	33A	•	•	•	•	•		•			
Composite Materials for Sustainable and Eco-Friendly Material Development and Application	31C			•						•	•
Electrical Steels	33B								•		
Energy Technologies and CO2 Management	33B	•	•	•	•	•					
Natural Fibers and Its Composites: A Sustainable Solution	33B			•				•			
New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of Patrick R. Taylor	33C	•	•	•	•	•		•	•	•	•
Biomaterials											
Advanced Biomaterials for Biomedical Implants	Sapphire 400B					•	•	•	•		
Advances in Biomaterials for 3D Printing of Scaffolds and Tissues	Sapphire 400B				•		•				
Advances in Biomaterials for 3D Printing of Scaffolds and Tissues	Sapphire 410A								•		
Bio-Nano Interfaces and Engineering Applications	Sapphire 400A		•								
Biological Materials Science	Sapphire 402	•	•		•	•	•	•	•		
Mechanics and Physiological Adaptation of Hard and Soft Biomaterials and Biological Tissues	Sapphire 400B	•	•								
Materials Design											
Accelerated Discovery and Insertion of Next Generation Structural Materials	Sapphire M							•	•		
Advances in Titanium Technology	Cobalt 500	•	•		•	٠	٠	•	٠	٠	•
AI/Data Informatics: Computational Model Development, Validation, and Uncertainty Quantification	Cobalt 520	•	•		•	•	•	•	•	•	•
Algorithm Development in Materials Science and Engineering	Aqua 310A					•	•				
Algorithm Development in Materials Science and Engineering	Cobalt 502B							٠	٠	٠	•
Alloy Behavior and Design Across Length-Scales: An SMD Symposium Honoring Easo George	Cobalt 502B	•	•		•	•					
Alloy Development for Energy Technologies: ICME Gap Analysis	Sapphire I	٠	•				٠				
Computational Discovery and Design of Materials	Cobalt 502A	•	•		•	•	•	•	•		
Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling	Sapphire H		•		•	٠	٠	٠	٠		
Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling	Aqua 311B									•	
Hume-Rothery Symposium on First-Principles Materials Design	Cobalt 501C		٠		٠	٠		٠	٠		
Materials Genome, CALPHAD, and a Career over the Span of 20, 50, and 60 Years: An FMD/SMD Symposium in Honor of Zi-Kui Liu	Sapphire L	•	•		•	•	•	•	•		
Simulations/Experiments Integration for Next Generation Hypersonic Materials	Sapphire I						•	•	•		

Poster sessions are held in Hall G of SDCC. MON AM MON PM **POSTER** POSTER THU AM THU PM Please refer to the conference guide for information about the venues. Symposium Name **ROOM** Sapphire Thermodynamics and Kinetics of Alloys Corrosion Sapphire Environmental Degradation of Additively Manufactured Alloys 400A Sapphire Environmental Degradation of Multiple Principal Component Materials 410A Sapphire Environmentally Assisted Cracking: Theory and Practice 410B Environmentally Assisted Cracking: Theory and Practice Aqua 314 Local Ordering in Materials and Its Impacts on Mechanical Behaviors, Sapphire Radiation Damage, and Corrosion 411A **Special Topics** 20ABC TMS2023 All-Conference Plenary Exhibit 2023 Technical Division Student Poster Contest Hall G Sapphire Acta Materialia Symposium Beyond Apprenticeship: Navigating the Stages of Academia 23A Sapphire Bladesmithing 2023 Frontiers of Materials Award Symposium: Functional Composition Control of Sapphire Surface Mechanics in Soft, Water-swollen Gels D Frontiers of Materials Award Symposium: Intermetallic Alloys at the Edge of 28C Complexity Frontiers of Materials Award Symposium: Ultra-Wide Bandgap Materials and Aqua Heterostructures for Next Generation Power, RF and Quantum Applications 309 Exhibit Late News Posters Hall G

Sapphire

D

Nix Award and Lecture Symposium: Learning from Nature - From Insight to

Sustainable Innovation

LIGHT METALS

2023 Light Metals Keynote Session — Research and **Process Optimization through Computer Modelling** and Digitalization

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizer: Dmitry Eskin, Brunel University

Monday AM | March 20, 2023

20A | SDCC

Session Chair: Dmitry Eskin, Brunel University

8:30 AM Introductory Comments

8:35 AM Keynote

Data Analytics for Advanced Process Monitoring and Control in Primary Aluminum Smelting: Carl Duchesne¹; ¹Laval University

Numerical Modeling Tools for the Assessment of High-Amperage DC Busbars: Andre-Felipe Schneider¹; Daniel Richard¹; Olivier Charette¹: ¹Hatch Ltd.

9:25 AM Keynote

Hydro Aluminium - Smelter Improvements Through Modelling and Digitalization: Nancy Holt1; 1Hydro Aluminium AS

9:50 AM Keynote

Importance of Transparent Data and Standardised Data Analysis for Decarbonisation of the Aluminium Sector: Marlen Bertram¹; L. Wu¹; ¹International Aluminium Institute

10:15 AM Break

10:30 AM Keynote

Issues in Macroscopic Modeling of Aluminum Direct Chill Casting: Matthew Krane¹; ¹Purdue University

10:55 AM Keynote

Microstructure Simulation as a Basis for Material Property and Casting Defect Predictions: Markus Apel¹; ¹Access RWTH-Aachen

11:20 AM Kevnote

Improving Safety and Performance of DC Casting Lines by Applying Digital Twins, Process Models and Vision Systems: Arild Hakonsen¹; ¹Hycast AS

11:45 AM Keynote

Data Driven Methods to Increase Aluminum Recycling: Elsa Olivetti¹; ¹Massachusetts Institute of Technology

12:10 PM Panel Discussion

ADVANCED MATERIALS

2D Materials: Preparation, Properties, Modeling & Applications — Carbon Related Materials -**Processing, Properties & Applications I**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Sufian Abedrabbo, Khalifa University; Hesam Askari, University of Rochester; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Joshua Young, New Jersey Institute Of Technology; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Karine Mougin, CNRS, IS2M; Heinz Palkowski, Clausthal University of Technology

Monday AM | March 20, 2023 Aqua AB | Hilton

Session Chairs: Madan Dubey, Army Research Laboratory, Sensors and Electron Devices Directorate; Nuggehalli Ravindra, New Jersey Institute of Technology

8:30 AM Introductory Comments

8:35 AM Invited

Group IV-V Based Lamellar Thin Films: A Path Toward Novel 2D Materials: Mathieu Stoffel1; Alix Valdenaire1; Sébastien Geiskopf1; Xavier Devaux¹; Erwan André¹; Cédric Carteret¹; Alexandre Bouché¹; Michel Vergnat¹; Hervé Rinnert¹; ¹Universite De Lorraine

9:00 AM Invited

Laser Photothermal Production of 3D Graphene with Polymers for Multifunctionality: Pilgyu Kang1; Byoung Gak Kim2; Minsu Kim²; Seung Min Lee¹; Shirin Movaghgharnezhad¹; ¹George Mason University; ²Korea Research Institute of Chemical Technology

9:25 AM Invited

Mapping the Local and Global Vibrational Properties of Heterostrained Twisted Bilayer Graphene: Hesam Askari¹; Aditya Dey¹; Shoieb Chowdhury¹; ¹University of Rochester

9:50 AM Keynote

Laser Processing of Novel 2D and 3D Diamond Related Materials: Jagdish Narayan¹; ¹North Carolina State University

10:20 AM Break

10:35 AM

Preparation and Electromagnetic Shielding Effectiveness (EMI SE) of Cobalt Nanowires/Carbon Nanotubes Composites: Syed Sajl1; Rajakumar Devarapalli¹; ¹Khalifa University

10:55 AM Invited

2D Amorphous Carbon Dielectric for Nanoelectronics: Congjun Wang¹; ¹National Energy Technology Laboratory

11:20 AM Keynote

Graphene and Metal Oxides Based Functional Materials for High Performance Perovskite Solar Cells and Multicomponent-**Detecting Sensors**: Yoon-Bong Hahn¹; ¹Jeonbuk National University

11:50 AM Invited

Defect Modulation in Laser Induced Graphene Oxide for Advanced Electrochemical Sensing: Pratik Joshi¹; Jagdish Narayan¹; Roger Narayan1; 1NC State University

ADDITIVE TECHNOLOGIES

Additive Manufacturing Fatigue and Fracture: Effects of Surface Roughness, Residual Stress, and Environment — Session I

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; John Lewandowski, Case Western Reserve University; Nima Shamsaei, Auburn University; Steve Daniewicz, University of Alabama; Mohsen Seifi, ASTM International/Case Western Reserve University

Monday AM | March 20, 2023 22 | SDCC

Session Chair: Nik Hrabe, National Institute of Standards and Technology

8:30 AM Invited

Fracture and Adhesion of Cold Sprayed HY80 Steel: Luke Brewer1; Christopher Roper¹; Anita Heczel¹; ¹University of Alabama

Fatigue Behavior of Fastener Holes in High-strength Aluminum Plates Repaired by Additive Friction Stir Deposition: Ismael Hidalgo¹; Paul Allison¹; Brian Jordon¹; Malcolm Williams¹; Jacob Williamson²; Jacob Strain²; ¹Baylor University; ²The University of Alabama

9:20 AM

The Influence of Powder Reuse on the Mechanical Properties of Laser Powder Bed Fused Stainless Steel 316L: Rory Douglas¹; Robert Lancaster¹; Thomas Jones²; ¹Swansea University; ²Rolls-Royce

An Acoustic Emission Monitoring Method during LPBF Processing for Detection of Microdefects: Kaita Ito1; Rinako Kokaji2; Masahiro Kusano¹; Makoto Watanabe¹; Takayuki Shiraiwa²; Manabu Enoki²; ¹National Institute for Materials Science; ²The University of Tokyo

10:00 AM Break

10:20 AM Invited

Nondestructive Inspection for Structural Cold Spray Repairs: Brandi Briggs1; Mackenzie Perry2; Dustin Avery2; Jay Waterman2; Bobbie Diedrich¹; ¹Naval Air Systems Command Aircraft Division; ²Naval Surface Warfare Center Carderock Division

10:50 AM

Comparison of Hydrogen-Metal Interactions in Additively Manufactured and Wrought 17-4PH via Thermal Desorption Spectroscopy Methods: Zachary Harris¹; Alfredo Zafra²; Lauren Singer³; Emilio Martinez-Paneda²; John Scully³; James Burns³; ¹University of Pittsburgh; ²Imperial College London; ³University of Virginia

11:10 AM Invited

Defect-sensitive Fatigue Design in Additive Manufacturing: Flaw Size Effects in Ultrasonic Fatigue of Laser Powder Bed Fabricated Al-10Si-Mg Alloys: Anthony Spangenberger¹; Timothy Piette¹; Bernd Schönbauer²; Diana Lados¹; ¹Worcester Polytechnic Institute; ²University of Natural Resources and Life Sciences, Institute of Physics and Materials Science

Mechanical Properties of Binder Jet Printed 17 - 4 Precipitation Hardened Martensitic Stainless Steel: Jayaraj Radhakrishnan¹; Punit Kumar²; Alexis Bryl³; Jim Mckinnell³; Upadrasta Ramamurty¹; ¹Nanyang Technological University; ²Lawrence Berkeley National Laboratory; ³HP Inc.

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Metals: Applications of Solidification Fundamentals — Special Session for **MURI Program**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Solidification Committee

Program Organizers: Wenda Tan, The University of Michigan; Alex Plotkowski, Oak Ridge National Laboratory; Lang Yuan, University of South Carolina; Lianyi Chen, University of Wisconsin-Madison

Monday AM | March 20, 2023 21 | SDCC

Session Chairs: Alex Plotkowski, Oak Ridge National Laboratory; Wenda Tan, University of Michigan

8:30 AM Keynote

Rationalization of Interphase Instabilities during Thermo-Mechanical Gyrations Typical to Metal Additive Manufacturing: Jennifer Wolk¹; Zoran Sterjovski²; Simon Ringer³; Sudarsanam Babu⁴; ¹Office of Naval Research; ²Defence Science and Technology Group; ³The University of Sydney; ⁴University of Tennessee, Knoxville

8:50 AM

Decomposition of a CrMnFeCoNi High-entropy Alloy Manufactured via Laser Powder Bed Fusion: Hansheng Chen¹; Hao Wang¹; Zibin Chen²; Bryan Lim¹; Hongwei Liu¹; Zhiguang Zhu³; Andrew Breen¹; Rongkun Zheng¹; Sharon Mui Ling Nai³; Sophie Primig⁴; Xiaozhou Liao¹; Simon Ringer¹; ¹The University of Sydney; ²The Hong Kong Polytechnic University; ³Singapore Institute of Manufacturing Technology; 4UNSW Sydney

9:10 AM

Estimation of Transient Melt-pool Temperature Distributions Using In-situ X-ray Radiography Images: Rakesh Kamath¹; Sudarsanam Suresh Babu¹; Hahn Choo¹; ¹University of Tennessee Knoxville

9:30 AM

In Situ Melt Pool Measurements for Laser Powder Bed Fusion using Multi Sensing and Correlation Analysis: Rongxuan Wang¹, David Garcia¹; Rakesh Kamath²; Chaoran Dou¹; Xiaohan Ma¹; Bo Shen¹; Choo Hahn²; Kamel Fezzaa³; Hang Z. Yu¹; Zhenyu Kong¹; ¹Virginia Tech; ²University of Tennessee Knoxville; ³X-ray Science Division, Advanced Photon Source, Argonne National Laboratory

9:50 AM

Numerical Simulation of the Phase Transformation Dynamics of during Electron Beam Powder Bed Fusion of IN738 Ni-based Superalloy: Nana Adomako¹; Nima Haghdadi¹; James Dingle²; Xiaozhou Liao²; Simon Ringer²; Sophie Primig¹; ¹UNSW Sydney; ²The University of Sydney

10:10 AM Break

In Situ TEM Observations of Thermally Activated Phenomena under Additive Manufacturing Process Conditions: Sriram Vijayan¹; Avantika Gupta¹; Carolin Fink¹; Joerg Jinschek¹; ¹The Ohio State University

10:45 AM

3D Characterization of Microstructure Anisotropy along the Build Direction of PBF SB-CoNi-10: James Lamb1; Andrew Polonsky2; Kira Pusch¹; Evan Raeker¹; Tresa Pollock¹; ¹University of California Santa Barbara; ²Sandia National Labs

11:05 AM

Spatially Tailoring Chemistry and Property Variations in Electron Beam Additive Manufacturing Builds through Process Control of Unicomposition Powder: Katie O'Donnell¹; Maria Quintana¹; Thomas Ales¹; Michael Kirka²; Christopher Ledford²; Siddhartha Pathak¹; Peter Collins¹; ¹Iowa State University; ²Oak Ridge National Laboratory

11:25 AM

Validation and Prediction with ECP ExaAM Simulations and MURI Additive Experiments: Sam Reeve¹; Rakesh Kamath²; Steven Gagniere³; Raymond Wysmierski²; Garrett Fields²; David Hyde⁴; Yu Fang³; Yuxing Qiu³; John Coleman¹; Gerry Knapp¹; Kwitae Chong¹; Austin Isner¹; Stuart Slattery¹; Duan Zhang⁵; Joseph Teran⁶; Chenfanfu Jiang³; Hahn Choo²; Jim Belak⁷; ¹Oak Ridge National Laboratory; ²University of Tennesse, Knoxville; ³University of California, Los Angeles; 4Vanderbilt University; 5Los Alamos National Laboratory; ⁶University of California, Davis; ⁷Lawrence Livermore National Laboratory

11:45 AM

Solidification Mapping of Refractory Alloys during Additive Manufacturing: Megan Le Corre¹; Jonah Klemm-Toole¹; Kester Clarke¹; Amy Clarke¹; ¹Colorado School of Mines

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Beyond on the Beam IV — Characterization

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: James Paramore, US Army Research Laboratory; Daniel Lewis, Texas A&M University; Kyle Tsaknopoulos, Worcester Polytechnic Institute; Paul Prichard, Kennametal Inc.

Monday AM | March 20, 2023 24A | SDCC

Session Chairs: James Paramore, United States Army Research Laboratory; Daniel Lewis, Texas A&M University; Paul Prichard, Kennametal Inc.

8:30 AM Invited

Shape and Microstructural Characterization of Commercially Pure Titanium Feedstock Powders for Cold Spray Additive Manufacturing: Newell Moser¹; Nicholas Derimow¹; Edward Garboczi¹; Ozan Ozdemir²; Sinan Muftu²; Carlos Pfeiff²; Shawn Moylan1; ¹National Institute of Standards and Technology; ²Northeastern University

Capturing the Thermo-mechanical History of Additive Friction Stir Deposited Al6061 Using a Three-dimensional CFD Based Numerical Model: Nikhil Gotawala¹; Hang Yu¹; ¹Virginia Tech

9:10 AM

Additive Friction Stir Deposition of IN625-316L Bimetal: Shreyash Patil¹; Sameehan Joshi¹; Mani Krishna Karri¹; Madhavan Radhakrishnan¹; Shashank Sharma¹; Narendra Dahotre¹; ¹University of North Texas, Denton

9:30 AM

Evolution of Precipitate Structure in AA7050 Produced by Additive Friction Stir Deposition: Jacob Strain¹; Rekha Rao¹; Zachary Tew¹; Ismael Hidalgo¹; Paul Allison²; Brian Jordon²; Luke Brewer¹; ¹University of Alabama; ²Baylor University

9:50 AM

Friction Stir Additive Manufacturing of Al-5083: David Garcia1; Tianhao Wang¹; Sarvesha Rajashekara²; Richard Eberheim³; Arvind Agarwal²; Tanaji Paul²; Kenneth Ross¹; ¹Pacific Northwest National Laboratory; ²Florida International University; ³Solvus Global

10:10 AM Break

10:25 AM

Effect of Additive Friction Stir Deposition Tool Geometry on Material Mixing and Microstructure Gradient of Al Alloys: Mackenzie Perry¹; Hang Yu2; 1NSWCCD; 2Virginia Tech

10:45 AM

Physical Trends Unraveled by Integrated In Situ Monitoring in Additive Friction Stir Deposition-Enabled Repair: Kendall Knight¹; Hang Yu1; 1Virginia Polytechnic Institute and State University

11:05 AM

A Novel Solid-stir Continuous Extrusion of an AlMgSc Alloy: Aishani Sharma¹; Abhijeet Dhal¹; Anurag Gumaste¹; Supreeth Gaddam¹; Rajiv Mishra¹; ¹University of North Texas

11:25 AM

Quantification of Defects in Binder-jet Printed Steel Parts Using Confocal Imaging and Machine Learning: Pooja Maurya1; P Pistorius¹; ¹Carnegie Mellon University

A High-throughput Process for Mechanical Characterization of Ceramic Materials Produced by Direct Ink Writing: Raphael Thiraux¹; Lorenzo Valdevit¹; Alexander Dupuy¹; ¹University of California Irvine

Characterization of an Additively-manufacturable Ammonium Perchlorate Composite Rocket Propellant: Dylan Purcell¹; Michael Hargather¹; Chelsey Hargather¹; ¹New Mexico Institute of Mining and Technology

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response — Small Scale Mechanical Testing/Microstructural Features I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Meysam Haghshenas, University of Toledo; Andrew Birnbaum, US Naval Research Laboratory; Robert Lancaster, Swansea University; Xinghang Zhang, Purdue University; Aeriel Leonard

Monday AM | March 20, 2023 23B | SDCC

Session Chair: Meysam Haghshenas, University of Toledo

8:30 AM Introductory Comments

8:35 AM Invited

Estimating Bulk Uniaxial Mechanical Properties of AM Alloys with Instrumented Indentation: Berkovich Hardness, Spherical Stress-Strain Curves, and Small Punch Testing: Jordan Weaver¹; ¹National Institute of Standards and Technology

8:55 AM

An Indentation Study of Mechanical Properties of Laser Powder-Bed-Fusion Fabricated Stainless Steels: Yu-Keng Lin¹; Alberico Talignani¹; Raj Sanjaykumar Patel²; Roger Qiu³; Kelvin Xie²; Jenn-Ming Yang¹; Yinmin (Morris) Wang¹; ¹University of California, Los Angeles; ²Texas A&M University; ³Lawrence Livermore National Laboratory

9:15 AM Invited

Nanomechanical and Microstructural Characterization of Additively Manufactured Parts Fabricated via High-velocity Laser Accelerated Deposition: Keivan Davami¹; Nicholas Brooks¹; ¹University of Alabama

9:35 AM

Nanoindentation Assisted Measurements of Hierarchical Mechanical Properties in Additively Manufactured Martensitic Steel: Ankita Roy¹; Abhijeet Dhal¹; BA McWilliams¹; Kyu C Cho¹; Clara M Mock¹; Rajiv Mishra¹; ¹University of North Texas

9:55 AM Invited

Nanoindentation Response of Wire-arc Additive Manufactured and Friction Stir Modified Cu-Al-Ni Alloy: Farzad Khodabakhshi¹; Adrian P. Gerlich¹; Mohsen Mohammadi²; ¹University of Waterloo; ²University of New Brunswick

10:15 AM Break

10:35 AM Invited

The Effect of Nano-scale Porosity on the SCC Behavior of AM 17-4PH in the Peak- and Over-aged Condition: James Burns¹; Trevor Shoemaker¹; Zach Harris¹; ¹University of Virginia

10:55 AM

Length Scale Effects of Nanoindentation on Additively Manufactured Stainless Steel: Kunging Ding¹; Yin Zhang¹; Andrew Birnbaum²; John Michopoulos²; David McDowell¹; Ting Zhu¹; ¹Georgia Institute of Technology; ²US Naval Research Laboratory

11:15 AM Invited

Micromechanical Testing of Additively Manufactured Materials and Structures: Opportunities for a Better Understanding of the **Structure-Property Relationships**: Sezer Ozerinc¹; ¹Middle East **Technical University**

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Materials Design and Alloy Development V - Design Fundamentals - Design **Fundamentals**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Behrang Poorganji, University of Toledo; Hunter Martin, HRL Laboratories LLC; James Saal, Citrine Informatics; Jiadong Gong, Questek Innovations LLC; Orlando Rios, University of Tennessee; Atieh Moridi, Cornell University

Monday AM | March 20, 2023 24C | SDCC

Session Chairs: Behrang Poorganji, Morf3D; James Saal, Citrine Informatics

8:30 AM Introductory Comments Behrang Poorganji. Morf3D

8:35 AM Invited

In-Situ Alloying As An Approach for Alloy Development: Does It Work?: Moataz Attallah1; 1University of Birmingham

9:05 AM Invited

Algorithmic Design of Functionally Graded Alloys: Raymundo Arroyave1; Marshall Allen1; Tanner Kirk2; Richard Malak1; 1Texas A&M University; 2Questek

9:35 AM Invited

Grain Refinement in Fusion Based Additive Manufacturing: Mark Easton¹; Duyao Zhang¹; Dong Qiu¹; ¹RMIT University

10:05 AM Break

10:20 AM Invited

ICME-guided Design of Ni-based Superalloy Coatings for Hightemperature Industrial Applications: Ida Berglund¹; Savya Sachi¹; David Linder¹; Fuyao Yan¹; ¹Questek Europe AB

10:50 AM Invited

Additive Manufacturing of Inconel 718

by Meltpool and Grain Boundary Engineering: Frank Abdi¹; Vasyl Harik¹; Mallikharjun Marrey¹; Amir Eftekharian¹; Rashid Miraj¹; ²; ¹Alphastar Technology Solutions LLC; ²Imperial College London

11:20 AM

Grain Boundary Engineering of New Additive Manufactured Polycrystalline Alloys: Abhishek Kumar¹; Mallikharjun Marrey²; Veera Sundararaghavan³; Frank Abdi²; ¹Wentworth Institute of Technology; ²AlphaStar Corporation; ³University of Michigan

MATERIALS PROCESSING

Advanced Characterization of High-temperature Alloys: Phase Evolution during Manufacturing and Service-induced Deformation — Deformation **Assisted Microstructural Control of High Temperature Alloys During Manufacturing Processes**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Katerina Christofidou. University of Sheffield: Benjamin Adam, Oregon State University; Stoichko Antonov, Max-Planck Institut für Eisenforschung GmbH; James Coakley, University of Miami; Martin Detrois, National Energy Technology Laboratory; Paraskevas Kontis, Norwegian University of Science and Technology; Stella Pedrazzini, Imperial College London; Sophie Primig, University of New South Wales

Monday AM | March 20, 2023 29D | SDCC

Session Chairs: Katerina Christofidou, The University of Sheffield; Sophie Primig, University of New South Wales

8:30 AM Introductory Comments

8:35 AM Invited

A New Paradigm for Wrought Superalloys with Superior Fatigue Strength: Marie Charpagne¹; JC Stinville²; ¹University of Illinois at Urbana-Champaign; ²University of Illinois

9:05 AM Invited

Grain Boundary Microstructure Optimization in Ni-Co-based Wrought Superalloys: Akane Suzuki1; Steve Buresh1; Richard DiDomizio¹; Scott Oppenheimer¹; Ian Spinelli¹; ¹GE Research

9:35 AM

Accelerating Alloy Development for Additive Manufacturing: Elisabeth Kammermeier¹; Carolin Körner¹; Christopher Zenk¹; ¹FAU Erlangen-Nuernberg, WTM

9:55 AM

Influence of Local Thermal History during Laser Powder Bed Fusion Additive Manufacturing on Solidified Microstructure and Phase Transformations during Subsequent Heat Treatment: Andrew Wessman¹; Yi Zhang¹; ¹University of Arizona

10:15 AM Break

10:35 AM Invited

Segregation-assisted Yield Strength Anomalies in Superalloys: Steffen Neumeier¹; Andreas Bezold¹; Mathias Goeken¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

11:05 AM

Effect of Machining Processes on the Perceived Mechanical Properties of Tantalum Refractory Alloys: Christopher Finfrock¹; Zahra Ghanbari¹; Rachel White¹; Charles Robino¹; Christina Profazi¹; Jay Carroll¹; Stephen Spiak¹; Bonnie Antoun¹; ¹Sandia National Laboratories

11:25 AM

Effects of Heat-Treatment on the High-Temperature Wear Behaviors of Additively Manufactured Inconel 718: Zhengyu Zhang¹; Wenjun Cai¹; ¹Virginia Polytechnic Institute and State University

11:45 AM

Surface Integrity and Microstructural Characterization of Additively Manufactured Inconel 625 subjected to Shot Peening and Laser Peening: Manisha Tripathy1; LLoyd Hackel2; Keivan Davami³; Ali Beheshti¹; ¹George Mason University; ²Curtiss Wright Surface Technologies; ³The University of Alabama

CHARACTERIZATION

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session I

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; C. Tasan, Massachusetts Institute of Technology; Olivia Jackson, Sandia National Laboratories

Monday AM | March 20, 2023 Aqua 311A | Hilton

Session Chairs: Dierk Raabe, Max-Planck Institute; Gregory Rohrer, Carnegie Mellon University

8:30 AM Invited

Quantifying Microstructural Evolution in Polycrystals: Gregory Rohrer¹; Robert Suter¹; Zipeng Xu¹; Aditi Bhattacharya¹; ¹Carnegie Mellon University

9:00 AM

Multiscale Characterization of Deformation and Defect Structures during Continuous Bending under Tension: David Fullwood¹; Nathan Miller¹; Addison McClure¹; Michael Miles¹; Marko Knezevic²; Brad Kinsey²; ¹Brigham Young University; ²University of New Hampshire

9:20 AM

Three-dimensional Assessment of Strain Localization at the Subgrain Level of a Ni-based Superalloy at Low and High Temperature Using Laser Scanning Confocal Microscopy: Damien Texier¹; Malo Jullien¹; Ali Rouwane¹; Julien Genée¹; Jean-Charles Stinville²; Marc Legros³; Jean-Charles Passieux¹; ¹CNRS - Institut Clément Ader; ²University of Illinois, Urbana-Champaign; ³CEMES - UPR CNRS 8011

The Effect of Hydrogen on Strain Gradient Hardening of Ni: Lai Jiang1; Michael Demkowicz1; 1Texas A&M University

10:00 AM Break

10:20 AM Invited

Mesoscale Simulation of Material Properties and Processing under Consideration of Microstructure, Chemistry and Damage Using DAMASK: Dierk Raabe1; 1Max-Planck Institute

10:50 AM

Towards Data-driven In-Situ Materials Testing in SEM: Fang Zhou¹; ¹Carl Zeiss Microscopy

Structure-property Correlations in Molecular Crystals Determined via Nanoindentation and Molecular Mechanics Modeling: Sushmita Majumder1; Gerrit Vreeman1; Javier Garcia Barriocanal1; Greg Haugstad¹; Changquan Calvin Sun¹; Nathan Mara¹; ¹University of Minnesota-Twin Cities

11:30 AM

Integration of X-Ray Microscopy and Finite Elements into a Digital Twin: Mustafa Elsherkisi¹; Theo Huyghe¹; Maadhav Kothari²; Fabian Duarte Martinez¹; Simon Gray¹; Gustavo Castelluccio¹; ¹Cranfield University; ²Carl Zeiss Microscopy Limited

ADVANCED MATERIALS

Advanced Functional and Structural Thin Films and Coatings & Honorary Palkowski Session — Honorary Palkowski Session I

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, IS2M; Ravindra Nuggehalli, New Jersey Institute of Technology; Heinz Palkowski, Clausthal University of Technology

Monday AM | March 20, 2023 Aqua E | Hilton

Session Chairs: Ravindra Nuggehalli, New Jersey Institute of Technology; Gérald Ferblantier, University of Strasbourg, ICube Laboratory, CNRS; Adele Carrado, University of Strasbourg, IPCMS,

8:30 AM Introductory Comments

8:45 AM Invited

Thermal Fatigue of Spheroidal Graphite Cast Iron: Primoz Mrvar¹; Mitja Petric¹; Milan Tercelj¹; ¹University of Ljubljana

9:15 AM

Reduction of Friction and Adhesion in Copper and Brass Extrusion by Application of Boron Containing Surface Modifications: Stefan Lechner¹; Alexander Thewes²; Soeren Mueller¹; ¹Extrusion Research and Development Center FZS, TU Berlin; 2Institute for Surface Technology, TU Braunschweig

9:35 AM Invited

In-Situ Alloy Formation during Selective Laser Melting with CuSn10 and Aluminum Powders: Farzad Foadian1; Robert Kremer1; ¹Dortmund University of Applied Sciences and Arts

10:05 AM Break

10:20 AM Invited

Prediction of Grain Size Evolution during Hot Rolling of HSLA Steels Considering Precipitation: Goran Kugler¹; Jan Foder²; Boštjan Bradaškja²; David Bomba¹; ¹University of Ljubljana; ²SIJ Acroni d.o.o.

MATERIALS PROCESSING

Advanced Joining Technologies for Automotive **Lightweight Structures — Novel Joining Processes**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yan Huang, Brunel University London; Carla Barbatti, Constellium

Monday AM | March 20, 2023 29C | SDCC

Session Chair: Shouxun Ji, Brunel University London

8:30 AM Invited

Enabling Multimaterial Joining in Lightweight Automotive Structures Using Novel High Velocity Riveting Process: Benjamin Schuessler¹; Daniel Ramirez-Tamayo¹; Lei Li¹; Ayoub Soulami¹; Sridhar Niverty¹; Xiaolong Ma¹; Darrel Herling¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

9:00 AM Invited

Impact Welding of an Automotive Component with Vaporizing Foil Actuator: Yu Mao¹; Brian Thurston¹; Anupam Vivek¹; Glenn Daehn¹; ¹The Ohio State University

9:30 AM

Adhesive Bonding of Lightweight Multi-materials with Surface Modifications: Yong Chae Lim¹; Nihal Kanbargi¹; Zeyang Yu¹; Bradley Lokitz¹; Jiheon Jun¹; Yi Feng Su¹; Amit Naskar¹; Zhili Feng¹; ¹Oak Ridge National Laboratory

9:55 AM Break

Joint Strength Optimization of Single-lap Al 5052-H36 Adhesively Bonded for Off-road Vehicle Chassis Components: Marzieh Nodeh¹; Ahmed Maslouhi¹; Alain Desrochers¹; ¹Universite de Sherbrooke

10:35 AM

Ultrasonically Assisted Resistance Spot Welding of Multiple Thin Al Foil Stacks for Battery Cell Joining: Ho Kwon¹; Xun Liu¹; ¹The Ohio State University

11:00 AM

Investigation of Metal Mixing in Laser Keyhole Welding of Dissimilar Metals: Wenkang Huang¹; Wenda Tan¹; ¹The University of Michigan

ENERGY & ENVIRONMENT

Advanced Materials for Energy Conversion and Storage 2023 — Energy Conversion and Storage Mix I

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Surojit Gupta, University of North Dakota; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania

Monday AM | March 20, 2023 32B | SDCC

Session Chairs: Partha Mukherjee, Purdue University; Soumendra Basu, Boston University

8:30 AM Keynote

Analysis of Degradation of (Ni-YSZ) Fuel Electrode during SOEC Operation: Uday Pal¹; John-In Lee¹; Jillian Mulligan¹; Ayesha Akter¹; Soumendra Basu¹; Srikanth Gopalan¹; ¹Boston University

9:00 AM Invited

Corrosion Resistant SiOCN Coatings on Steel with Repair Capability: Kathy Lu¹; Hyeon Joon Choi¹; ¹Virginia Polytechnic Institute and State University

9:25 AM Keynote

SolidPAC: A Design Tool for Solid-state Batteries: Ilias Belharouak¹; ¹Oak Ridge National Laboratory; University of Tennessee, Knoxville

9:55 AM Break

10:15 AM Invited

Dielectrics, Solid Electrolytes, and Ferroelectrics: What Makes a Good Insulator Layer in Energy Harvesting and Storage Cells Good?: Maria Helena Braga1; 1University of Porto

ENERGY & ENVIRONMENT

Advances in Magnetic Materials — Soft Magnetic **Materials**

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Jose Maria Porro, Bcmaterials; Huseyin Ucar, California Polytechnic University, Pomona; Patrick Shamberger, Texas A&M University; Min Zou, Lab Magnetics, A Quadrant Company; Gaoyuan Ouyang, Ames Laboratory; Alex Leary, NASA Glenn Research Center

Monday AM | March 20, 2023 33A | SDCC

Session Chair: Alex Leary, NASA Glenn Research Center

8:30 AM Invited

Market Trends and Supply Chain Constraints for Soft Magnetic Materials: Eric Theisen¹; ¹Metglas Inc.

9:00 AM

Computer-aided Optimization of Packing Behavior of Softmagnetic Amorphous Powder: Jungjoon Kim1; Junhyub Jeon2; Seok-Jae Lee²; Youngkyun Kim³; Hwi-Jun Kim⁴; Youngjin Kim⁵; Hyunjoo Choi¹; ¹Kookmin University; ²Jeonbuk National University; ³Institute of Advanced Engineering; 4Korea Institute of Industrial Technology; ⁵Korea Institute of Materials Science

Effect of Nitrogen Martensite Formation on Magnetostriction in Fe-Co Alloy: Tomohiro Tabata¹; Matahiro Komuro¹; Yusuke Asari¹; Masafumi Noujima¹; Shohei Terada¹; ¹Hitachi, Ltd.

High-Temperature Stability of Induced Anisotropy and Permeability in Co-Rich Nanocrystalline Soft Magnetic Alloys: Tyler Paplham¹; Yuankang Wang¹; Paul Ohodnicki¹; ¹University of Pittsburgh

10:00 AM Break

10:15 AM Invited

Tunable Magnetics: Materials, Manufacturing, and Component Designs: Paul Ohodnicki¹; Tyler Paplham¹; Richard Beddingfield²; Mark Nations²; Subhashish Bhattacharya²; ¹University of Pittsburgh; ²North Carolina State University

10:45 AM

Effect of Thermodynamic and Sintering Atmosphere Parameters on Magnetic Properties of Mn-Zn Ferrites: Suraj Mullurkara1; Alexander Pierce¹; Christopher Bracken¹; Paul Ohodnicki¹; ¹University of Pittsburgh

11:05 AM

Low Magnetostrictive Materials Produced by Severe Plastic **Deformation**: Alexander Paulischin¹; Michael Zawodzki¹; Stefan Wurster¹; Heinz Krenn²; Reinhard Pippan¹; Andrea Bachmaier¹; ¹Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences; 2Institute of Physics, University of Graz

11:25 AM

Crystallization Kinetics and Magnetic Properties of Co-Fe2.3Mn2.3Nb4Si2B14 Nanocomposite Ribbon: Yuankang Wang¹; Alex Leary²; Paul Ohodnicki¹; ¹University of Pittsburgh; ²NASA

ADVANCED MATERIALS

Advances in Multi-Principal Element Alloys II — Alloy **Development and Application I**

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; E-Wen Huang, National Yang Ming Chiao Tung University; Jennifer Carter, Case Western Reserve University; Srivatsan Tirumalai; Xie Xie, FCA US LLC; James Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Monday AM | March 20, 2023 Aqua D | Hilton

Session Chairs: Peter Liaw, The University of Tennesee; Carl Koch, North Carolina State University

8:30 AM Keynote

Nanostructured Multi-principal Ellement Alloys: A Review: Carl Koch¹; ¹North Carolina State University

9:00 AM Keynote

Exceptional Fracture Toughness of CrCoNi-based Alloys Close to Liquid Helium Temperatures: Robert Ritchie¹; Dong Liu²; Qin Yu³; Saurabh Kabra⁴; Madelyn Payne⁵; Ruopeng Zhang⁵; Flynn Walsh⁵; Bernd Gludovatz⁶; Mark Asta⁵; Andrew Minor⁵; Easo George⁷; Punit ¹University of California, Berkeley; ²Bristol University; ³Lawrence Berkeley Natonal Laboratory; ⁴Rutherford Appleton Laboratory; ⁵University of California, Berkeley; ⁶University of New South Wales; 7Oak Ridge National Laboratory; 8Lawrence Berkeley **National Laboratory**

9:30 AM Invited

High Throughput Design and Synthesis of MPEAs: Unexpected Discoveries: Mitra Taheri¹; ¹Johns Hopkins University

9:50 AM Invited

High Entropy Alloys and NSF: Jonathan Madison¹; ¹National Science Foundation

10:10 AM Break

10:30 AM Invited

Design and Development of Refractory High-entropy Alloys via An Experimentally Driven High-throughput Approach: Chanho Lee¹; Dongyue Xie¹; Benjamin Derby¹; Jon Baldwin¹; Christopher Tandoc²; Osman Atwani¹; Yong-Jie Hu²; Nan Li¹; Saryu Fensin¹; ¹Los Alamos National Laboratory; ²Drexel University

10:50 AM Invited

Accelerated Design of Cost-Competitive FCC High Entropy Alloys Superior to IN625: Kenneth Smith1; John Sharon1; Ryan Deacon1; Soumalya Sarkar¹; Shunli Shang²; Zongrui Pei³; Michael Gao³; ¹Raytheon Technologies Research Center; ²Pennsylvania State University; 3National Energy Technology Laboratory

11:10 AM Invited

High-Throughput Design of Refractory Multi-Principal Element Alloys: Katharine Padilla¹; Zhaohan Zhang¹; Rohan Mishra¹; Katharine Flores¹; ¹Washington University in St. Louis

11:30 AM Invited

Additive Manufacturing of Compositionally Complex Metal Alloys with Engineered Microstructures: Wen Chen1; 1University of Massachusetts-Amherst

11:50 AM Invited

Tailoring Microstructure of Refractory High Entropy Superalloys through Semi-quantitative Miscibility Gap: Sangjun Kim1; Jiyoung Kim¹; Jae Kwon Kim¹; Kook Noh Yoon¹; Hyun Seok Oh²; Eun Soo Park¹; ¹Seoul National University; ²Massachusetts Institute of Technology

12:10 PM Invited

Designing Immiscible Medium-entropy Alloys: Hyoung Seop Kim¹; Jongun Moon¹; ¹Pohang University of Science and Technology

MATERIALS PROCESSING

Advances in Powder and Ceramic Materials Science High Entropy Ceramics I

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Materials Characterization Committee, TMS: Powder Materials Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Faqin Dong, Southwest University of Science and Technology; Jinhong Li, China University of Geosciences; Ruigang Wang, The University of Alabama; Alexander Dupuy, University of California, Irvine

Monday AM | March 20, 2023 30A | SDCC

Session Chairs: Alexander Dupuy, University of California Irvine; Bowen Li, Michigan Tech

8:30 AM Introductory Comments

8:50 AM Keynote

Microstructure Engineering Using Entropic Phase Transformations: Julie Schoenung¹; ¹University of California, Irvine

9:20 AM Invited

Compositionally Complex Oxide Ceramics: Synthesis, Structure and Properties: Horst Hahn¹; ¹Karlsruhe Institute of Technology

9:40 AM Invited

Compositionally Complex Oxides: Synthesis, Characterization, Challenges, and Opportunities: Veerle Keppens¹; ¹University of Tennessee

10:00 AM Break

10:20 AM

Design of High Entropy Ceramics with IGZO-based Compounds for Electroceramics Applications: Zaid Alejandro Luzanilla Meléndrez¹; Alejandro Durán²; Francisco Brown¹; Ofelia Hernández Negrete¹; Javier Hernández Paredes¹; Victor Emmanuel Alvarez Montano¹; ¹Universidad De Sonora; ²Universidad Nacional Autónoma de México

10:40 AM Invited

Applying the High Entropy Concept in Single-atom Catalysts and Ceramic Battery Cathode Active Materials: Huolin Xin1; Rui Zhang1; Chunyang Wang¹; Lili Han¹; ¹University of California - Irvine

11:00 AM

Grain size Confinement of Secondary Phases in Entropy Stabilized Oxides: Alexander Dupuy¹; Julie Schoenung¹; ¹University of California,

11:20 AM

Electrical Behavior of Multi-phase Entropy-stabilized Oxides: Arturo Meza¹; Alina Vizcaya¹; Alexander Dupuy¹; Julie Schoenung¹; ¹University of California Irvine

MATERIALS PROCESSING

Advances in Pyrometallurgy: Developing Low Carbon Pathways — Biocarbon and Alternative **Reduction Methods**

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Camille Fleuriault, Eramet Norway; Joalet Steenkamp, XPS Glencore; Dean Gregurek, RHI Magnesita; Jesse White, KTH Royal Institute of Technology; Quinn Reynolds, Mintek; Phillip Mackey, P.J. Mackey Technology, Inc.; Lina Hockaday, Curtin University, WASM

Monday AM | March 20, 2023 29B | SDCC

Session Chairs: Dean Gregurek, RHI Magnesita; Camille Fleuriault, **Eramet Norway**

8:30 AM Invited

Ferroalloy Production without Use of Fossil Carbon - Some Alternatives: Eli Ringdalen1; 1SINTEF

9:00 AM Invited

The Path to Zero Carbon Dioxide Emissions in Silicon Production: Gudrun Saevarsdottir¹; Thordur Magnusson²; Halvor Kvande³; ¹Reykjavik University; ²Normi; ³Previously NTNU

Towards Bio-Carbon Substitutes in the Manufacture of Electrodes and Refractories for the Metallurgical Industries: A Science and Technology Review: Jesse White1; Natalia Skorodumova1; Björn Glaser¹; ¹KTH Royal Institute of Technology

10:00 AM Break

10:20 AM

A Pilot Trial Investigation of Using Hydrochar Derived from Biomass Residues for EAF Process: Chuan Wanq¹; Yu-Chiao Lu²; Liviu Brabie¹; Guangwei Wang³; ¹Swerim AB; ²KTH Royal Institute of Technology; ³University of Science and Technology Beijing

Biocarbon Materials in Metallurgical Processes - Investigation of Critical Properties: Nicholas Smith-Hanssen¹; Gøril Jahrsengene¹; Eli Ringdalen¹; ¹SINTEF

Characterizing Bio-carbon for Metallurgical Processes Using Micro X-ray Computed Tomography with High Temperature Experiments: Stein Rørvik¹; Nicholas Smith-Hanssen¹; Sethulakshmy Jayakumari¹; Liang Wang¹; ¹Sintef Industry

MATERIALS DESIGN

Advances in Titanium Technology — Session I

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Zachary Kloenne, Ohio State University; Fan Sun, CNRS - PSL Research University; Stoichko Antonov, National Energy Technology Laboratory; Rongpei Shi, Harbin Institute of Technology (Shenzhen)

Monday AM | March 20, 2023 Cobalt 500 | Hilton

Session Chair: Yufeng Zheng, University of Nevada Reno

8:30 AM Invited

Interface and Colony Boundary Sliding as a Deformation Mechanism in Titanium Alloys: Zachary Kloenne¹; Gopal Viswanathan¹; Hamish Fraser¹; ¹Ohio State University

9:00 AM Invited

New Insights into Oxygen-rich Alpha Titanium Alloys for Structural Applications: Fabienne Amann¹; Régis Poulain²; Stéphanie Delannoy¹; Ivan Guillot²; Zachary Kloenne³; Guillou Raphaëlle⁴; Couzinié Jean-Philippe²; Dominique Thiaudière⁵; Jean-Luc Béchade⁴; Lartique Sylvie²; Emmanuel Clouet⁴; Hamish Fraser³; Frederic Prima¹; ¹Chimie ParisTech; ²Université Paris Est Créteil; ³The Ohio State University; ⁴Université Paris-Saclay; ⁵Synchrotron SOLEIL

9:30 AM Invited

Pathways to Engineer High Strength Coupled with High Strain Hardenability and Ductility in Metastable -Titanium Alloys: Abhishek Sharma¹; Srinivas Aditya Mantri¹; Nartu Mohan Sai Kiran¹; Sriswaroop Dasari¹; Ravisankar Haridas¹; Riyadh Salloom¹; Fan Sun²; Frederic Prima²; Hamish Fraser³; Srinivasan Srivilliputhur¹; Rajarshi Banerjee1; 1University of North Texas; 2CNRS - PSL Research University; 3The Ohio State University

10:00 AM Break

10:20 AM

Adiabatic Heating and Phase Transformation in Serrated Chips of Ti-6Al-4V during Turning: Jiawei Lu1; Thomas Bieler1; Ryan Khawarizmi¹; Patrick Kwon¹; ¹Michigan State University

10:40 AM

Investigation of Grain Boundary Precipitation in Titanium Alloys using 3D Computational Simulation and Experimental Characterization: Dian Li¹; Rongpei Shi²; Yufeng Zheng¹; ¹University of Nevada-Reno; ²Harbin Institute of Technology (Shenzhen)

Exploring the Potential of Ti-Fe-X Systems for Design of Novel Titanium-based Superalloys: Rosie Mellor1; Nicholas Jones1; Howard Stone¹; ¹University of Cambridge

Grand Canonical Optimization of Grain Boundary Structure in Hexagonal Close-packed Titanium: Enze Chen1; Timofey Frolov2; Mark Asta¹; Tae Wook Heo²; Brandon Wood²; ¹University of California, Berkeley; ²Lawrence Livermore National Laboratory

11:40 AM

Understanding the Role of Dual-phase Interface on the Alpha Precipitation in Metastable Beta Titanium Alloy: Dian Li¹; Yufeng Zheng1; 1University of Nevada, Reno

MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Validation, and Uncertainty Quantification — Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Francesca Tavazza, National Institute of Standards and Technology; Dennis Dimiduk, BlueQuartz Software LLC; Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Shreyas Honrao, NASA Ames Research Center; Ashley Spear, University of Utah; Houlong Zhuang, Arizona State University

Monday AM | March 20, 2023 Cobalt 520 | Hilton

Session Chair: Darren Pagan, Pennsylvania State University

8:30 AM Kevnote

RVE, SERVE and Digital Material Volumes for Design and Engineering: Dennis Dimiduk1; Somnath Ghosh2; David Furrer3; ¹BlueQuartz Software LLC; ²Johns Hopkins University; ³Pratt & Whitney

9:00 AM

A Framework to Solve the Inverse "Process-Structure" Problem of Identifying Process Parameters to Produce a Target Microstructure: Dung-Yi Wu¹; Todd Hufnagel¹; ¹Johns Hopkins University

9:20 AM

A Hybrid Gaussian Random Field - Deep Learning Model for Statistically Controllable Synthetic Microstructure Generation: Andreas Robertson¹; Surya Kalidindi¹; ¹Georgia Institute of Technology

Data-driven Surrogate Models for Predicting Microstructural **Evolution**: Peichen Wu¹; Kumar Ankit¹; Ashif Lquebal¹; ¹Arizona State University

Predicting Grain Boundary Properties Using Strain Functional Descriptors and Supervised Machine Learning: Avanish Mishra¹; Sumit Suresh¹; Khanh Dang¹; Saryu Fensin¹; Edward Kober¹; Nithin Mathew¹; ¹Los Alamos National Laboratory

10:20 AM Break

10:35 AM

Statistical Generation of Three-Dimensional Dislocation Microstructures with Graph Neural Networks: Dylan Madisetti¹; Jafaar El-Awady¹; Christopher Stiles²; ¹Johns Hopkins University; ²Johns Hopkins Applied Physics Laboratory

10:55 AM

Comparing Microstructure Representations for Machine Learning Models Predicting Material Properties: Akhil Thomas¹; Ali Durmaz¹; Harald Sack²; Chris Eberl³; ¹Fraunhofer IWM; ²FIZ Karlsruhe / KIT Karlsruhe; 3University of Freiburg

11:15 AM

Inferring Topological Transitions in Pattern-forming Processes via Self-supervised Learning: Marcin Abram¹; Keith Burghardt¹; Greg Ver Steeg¹; Remi Dingreville²; ¹University of Southerm California; ²Sandia National Laboratories

11:35 AM

What Does a Computer Vision Model Trained to Classify Material Microstructure Images Actually Understand?: Colby Wight1; Henry Kvinge¹; Davis Brown¹; Keerti Kappagantula¹; ¹Pacific Northwest **National Laboratory**

MATERIALS DESIGN

Alloy Behavior and Design Across Length-Scales: An SMD Symposium Honoring Easo George — **Perspectives and Behavior at Extremes**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Michael Mills, Ohio State University; George Pharr, Texas A&M University; Robert Ritchie, University of California, Berkeley; Muralidharan Govindarajan, Oak Ridge National Laboratory

Monday AM | March 20, 2023 Cobalt 502B | Hilton

Session Chair: Michael Mills, The Ohio State University

8:30 AM Introductory Comments

8:40 AM Invited

Physical Metallurgy and Mechanical Properties of Iridium and Platinum Alloys Used in Power and Heat Sources Onboard Interplanetary Spacecraft: Easo George¹; ¹Oak Ridge National Laboratory

9:10 AM Invited

Easo George - Recollections of His Youth: David Pope1; 1University of Pennsylvania

9:40 AM Invited

From Superplasticity in Steels to the Great Pyramid of Giza: Jeffrey Wadsworth¹; ¹former CEO, Battelle

10:10 AM Break

10:30 AM Invited

Future Prospects of MoSiBTiC Alloys as Ultra-High Temperature Materials: Kyosuke Yoshimi¹; ¹Tohoku University

11:00 AM Invited

Challenges in the Design of Refractory Multi-principal Element Alloys: Carolina Frey1; Leah Mills1; Sebastian Kube1; Tresa Pollock1; ¹University of California, Santa Barbara

MATERIALS DESIGN

Alloy Development for Energy Technologies: ICME Gap Analysis — ICME Tools, Data, and Materials Design

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Ram Devanathan, Pacific Northwest National Laboratory; Raymundo Arroyave, Texas A & M University; Carelyn Campbell, National Institute of Standards and Technology; James Saal, Citrine Informatics

Monday AM | March 20, 2023 Sapphire I | Hilton

Session Chairs: Ram Devanathan, Pacific Northwest National Laboratory; James Saal, Citrine Informatics; Carelyn Campbell, National Institute of Standards and Technology; Raymundo Arroyave, Texas A & M University

8:30 AM Invited

Materials-by-Design Utilizing ICME Tools and Crucial Nextgeneration Needs: Amit Behera¹; Yu Lin¹; Noriaki Arai¹; Greg Olson¹; ¹QuesTek Innovations LLC

9:00 AM Invited

Theory-guided Design of High-strength, Ductile Multi-principalelement Alloys with Validation for High-temperature Energy Technologies: Duane Johnson¹; Prashant Singh²; Andrey Smirnov²; ¹lowa State University; ²Ames Laboratory

9:30 AM

Phase Field Dislocation Dynamics Modeling of Shearing Modes in Ni₂(Cr,Mo,W)-containing HAYNES® 244® Superalloy: Thomas Mann¹; Michael Fahrmann²; Marisol Koslowski¹; Michael Titus¹; ¹Purdue University; ²Haynes Intl.

Phase-field Modeling of Aluminum Foam Based on Molecular **Dynamics Simulations**: Chaimae Jouhari¹; Yucheng Liu¹; Doyl Dickel²; ¹South Dakota State University; ²Mississippi State University

10:10 AM Break

10:30 AM Invited

Filling Data Gaps with ICME Tools and Identifying Data Gaps in ICME Tools: A Case Study in Precipitation Kinetics: Paul Mason¹; Taiwu Yu¹; Carl-Magnus Lancelot²; Thomas Barkar²; ¹Thermo-Calc Software Inc.; 2Thermo-Calc Software AB

11:00 AM Invited

Electronic NIST/TRC Resource for Thermophysical Property Data of Metal Systems: Boris Wilthan1; 1NIST

Towards FAIR Simulation Workflows: nanoHUB's Sim2Ls and ResultsDB: Juan Verduzco1; Daniel Mejia1; Steven Clark2; David Farache¹; Alejandro Strachan¹; ¹Purdue University; ²University of California San Diego

ELECTRONIC MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XI — Session I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Chiao Tung University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Cnrs Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute For Materials Science; Wan-Ting Chiu, Tokyo Institute of Technology; Chenguang Fu, Zhejiang University

Monday AM | March 20, 2023 Sapphire A | Hilton

Session Chairs: Hsin-Jay Wu, National Yang Ming Chiao Tung University; Takao Mori, National Institute for Materials Science

8:30 AM Introductory Comments

8:35 AM Invited

Interface and Grain Boundary Effects on Thermal and Electrical Transport: G. Jeffrey Snyder¹; ¹Northwestern University

Novel Mechanisms to Lower Thermal Conductivity and Enhance ZT: Takao Mori¹; ¹National Institute For Materials Science

9:15 AM Invited

Crystal Structure, Phase Stability, and Thermoelectric Properties of Medium-Temperature IV-VI Thermoelectric Materials: Hsin-Jay $\mathit{Wu}^{\scriptscriptstyle 1}$; Szu-Chien $\mathit{Wu}^{\scriptscriptstyle 1}$; ${}^{\scriptscriptstyle 1}$ National Yang Ming Chiao Tung University

Shapes of Phase Boundaries in Isothermal Phase Diagrams: Adetoye Adekoya¹; G. Jeffrey Snyder¹; ¹Northwestern University

9:55 AM

Redissolution of Ge precipitates Boosts Thermoelectric Performance and Self-tunes the Carrier Concentration in Homogenous GeTe materials: Yi-Fen Tsai1; Hsin-Jay Wu1; 1National Yang Ming Chiao Tung University

10:15 AM Break

10:35 AM Invited

Unexpected Reactions Observed in Ni/SnSe2 Couples: Sinnwen Chen1; Chao-hong Wang2; Jia-Ruei Chang1; He-Cheng Yang2; ¹National Tsing Hua University; ²National Chung Cheng University

Phase Diagrams of the Ag-Cu-Se-Te Quaternary System: Yohanes Hutabalian¹; Sinn-wen Chen¹; ¹National Tsing Hua University

11:15 AM

Concluding Maximum Solubility Using Impurity Stoichiometry: Shashwat Anand1; Chris Wolverton2; Jeff Snyder2; ¹Lawrence Berkeley National Laboratory; ²Northwestern University

11:35 AM

Enhanced Thermoelectric Performance by Compositional Modulation in AgSbTe₂: Chen Bo-Chia¹; Hsin-Jay Wu¹; ¹National Yang-Ming Chiao Tung University

Phase Diagram of Ternary Zn-Sb-Cu System and Thermoelectric Properties of Copper Doped Zn, Sb₂: I-Lun Jen¹; You-Kai Su²; Hsin-Jay Wu¹; ¹National Yang Ming Chiao Tung University; ²National Sun Yat-Sen University

SPECIAL TOPICS

Beyond Apprenticeship: Navigating the Stages of Academia — The Path to Academia

Sponsored by: TMS: Education Committee

Program Organizers: Alexis Lewis, National Science Foundation; Suveen Mathaudhu, Colorado School of Mines; Michael Groeber, The Ohio State University

Monday AM | March 20, 2023 23A | SDCC

Session Chairs: Michael Groeber, The Ohio State University; Alexis Lewis, National Science Foundation

8:30 AM Invited

Comparing Leadership Perspectives at a National Laboratory and a University: Transition to Academia: Dan Thoma1; 1University of Wisconsin-Madison

9:00 AM Invited

A Field Guide for Becoming an Assistant Professor: Victoria Miller1; ¹University of Florida

9:30 AM Invited

The Early Days of Faculty Life: Balancing the Tripod: Danielle Cote¹; ¹Worcester Polytechnic Institute

10:00 AM Break

10:20 AM Invited

Additive Manufacturing across Organizations: A perspective on Academia, Companies, and Research Institutes: Ed Herderick¹; ¹The Ohio State University

10:50 AM Invited

Navigating Academia from Industry and a National Laboratory: Bradley Jared¹; ¹University of Tennessee, Knoxville

BIOMATERIALS

Bio-Nano Interfaces and Engineering Applications — Session I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Kalpana Katti, North Dakota State University; Hannes Schniepp, William & Mary; Terry Lowe, Colorado School of Mines; Po-Yu Chen, National Tsing Hua University

Monday AM | March 20, 2023 Sapphire 400A | Hilton

Session Chairs: Hannes Schmidt, William & Mary; Candan Tamerler, University of Kansas

8:30 AM Invited

An Insight into Cellular Protein Mechanics during Cancer Progression: Dinesh Katti¹; Sharad Jaswandkar¹; Hanmant Gaikwad¹; Kalpana Katti¹; ¹North Dakota State University

From Molecular Interactions to Macroscopic Properties: Studying Protein-based Structural Materials Across the Scales: Hannes Schniepp1; 1William & Mary

9:35 AM

Antimicrobial Peptide-polymer Hybrids Towards Next Generation Dental Adhesives: Kalea Chu1; Kyle Boone1; Aya Cloyd1; Qiang Ye1; Paulette Spencer¹; Candan Tamerler¹; ¹University of Kansas

9:55 AM Break

10:10 AM Invited

Nanostructural Bone Remodeling at the Interface to Mg Implants: Helga Lichtenegger¹; Thomas Bretschneider¹; Annelie Weinberg²; Nicole Sommer²; Omer Suljevic²; Christian Hellmich³; Lukas Pircher³; Nicole Zechmann³; Tilman Gruenewald⁴; Irene Rodriguez⁵; Andreas Menzel⁵; ¹University of Natural Resources and Life Sciences (BOKU); ²Medical University of Graz; ³Technical University of Vienna; ⁴Institut Fresnel, Marseille; 5Paul Scherrer Institute

10:45 AM

Influence of Nanoscale Hydration on the Micro-structural Properties of Human Cortical Bone: Elizabeth Montagnino¹; Glynn Gallaway¹; Thomas Siegmund¹; John Howarter¹; ¹Purdue University

11:05 AM

Dental Application of Nano-Zirconia: Joy Iyamu¹; Ikhazuagbe Ifijen²; Obehi Ogudu²; Aiyevbekpen C. Ehigie¹; Osahon K. Ogbeide¹; ¹University of Benin, Benin City, Edo State, Nigeria; ²Rubber Research Institute of Nigeria

11:25 AM

Multi-functional Peptide-mediated Intrafibrillar Remineralization for Dental Tissue Repair: Aya Cloyd1; Kye Boone1; Qiang Ye1; Paulette Spencer¹; Candan Tamerler¹; ¹University of Kansas

BIOMATERIALS

Biological Materials Science — Biological Materials Science I

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Jing Du, Pennsylvania State University; David Restrepo, University of Texas at San Antonio; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Ling Li, Virginia Polytechnic Institute

Monday AM | March 20, 2023 Sapphire 402 | Hilton

Session Chairs: Steven Naleway, University of Utah; David Restrepo, University of Texas at San Antonio

8:30 AM Invited

The Mechanics of Living Organisms: Some Observations: Marc Meyers¹; Tarah Sullivan¹; Andrei Pissarenko¹; Haocheng Quan²; Eduard Arzt²; ¹University of California-San Diego; ²Leibniz Institute for New Materials

9:00 AM

Hierarchical, Progressive Collapsibility in the Impact Resistant Jackfruit: Benjamin Lazarus¹; Rachel Luu¹; Victor Leung¹; Matthew Wong¹; Samuel Ruiz-Pérez²; Willams Barbosa³; Ryan Fancher¹; Diego Carneiro³; Wendell Almeida Bezerra⁴; Marc Meyers¹; Josiane Barbosa³; ¹University of California San Diego; ²Universidad Nacional Autónoma de México; 3SENAI CIMATEC; 4Instituto Militar de Engenharia (IME)

9:20 AM

Bio-inspired 3-phase Composites for Improved Impact Resistance: Shahbaz Khan¹; Ling Li¹; ¹Virginia Tech

9:40 AM Invited

Structure-mechanics-performance of Fish-fins as Inspiration for Robotic Materials: Francois Barthelat1; Saurabh Das1; Florent Hannard²; ¹University of Colorado Boulder; ²Université Catholique de Louvain

10:10 AM Break

10:30 AM

Protecto-flexible Bioinspired Design: *Alex Ossa*¹; Susana Estrada¹; Dwayne Arola²; ¹Universidad Eafit; ²University of Washington

10:50 AM

Prestressing Bioceramics: On the Structural Origins and Mechanical Significance of Residual Stresses in Sea Urchin Spines: Zhifei Deng¹; Zian Jia¹; Hyunchae Loh²; Admir Masic²; Emily Peterman³; Ling Li¹; ¹Virginia Polytechnic Institute and State University; ²Massachusetts Institute of Technology; ³Bowdoin College

11:10 AM

Sclerites from the Gorgonian Octocoral, Lophogorgia Chilensis: A Biological Mechanotunable System Based on Granular Jamming: Chenhao Hu¹; Zian Jia¹; Ravi Tutika¹; Michael Bartlett¹; Xianghui Xiao²; Daniel Baum³; James Weaver⁴; Ling Li¹; ¹Virginia Tech; ²Brookhaven National Laboratory; ³Zuse Institute Berlin; ⁴Harvard University

ADVANCED MATERIALS

Bulk Metallic Glasses XX — Glass-forming Ability and the Glass Transition

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Robert Maass, Federal Institute of Materials Research and Testing (BAM); Peter Derlet, Paul Scherrer Institut; Katharine Flores, Washington University in St. Louis; Yonghao Sun, The Chinese Academy of Sciences; Lindsay Greer, University of Cambridge; Peter Liaw, University of Tennessee

Monday AM | March 20, 2023 Aqua C | Hilton

Session Chair: Sebastian Kube, University of California Santa Barbara

8:30 AM Introductory Comments

8:40 AM Invited

Studying Phase Transitions in Slow Motion via Fast Differential Scanning Calorimetry: Jörg Löffler¹; ¹ETH Zurich

9:00 AM

Uncovering the Structural Evolution of Metallic Liquids during Vitrification: Konstantinos Georgarakis¹; ¹Cranfield University

9:20 AM

The Physics of Elemental Ag and Binary Cu-Ag Glasses: First Order Glass Transition: *Qi An*¹; William Johnson¹; Konrad Samwer¹; Sydney Corona¹; William Goddard¹; ¹Iowa State University

9:40 AM Invited

Compositional Dependence of the Fragility in Metallic Glass Forming Liquids: Sebastian Kube¹; Sungwoo Sohn¹; Rodrigo Ojeda Mota¹; Theo Evers¹; William Polsky¹; Naijia Liu¹; Kevin Ryan¹; Sean Rinehart¹; Yong Sun¹; Jan Schroers¹; ¹Yale University

10:00 AM Break

10:20 AM

Measurements from the Gap: Viscosity and Wave Speed Measurements in the Supercooled Liquid Region: Robert Conner¹; Stefan Lohaus²; Rebecca Stevens¹; Joseph Serrano¹; ¹California State University Northridge; ²California Institute of Technology

10:40 AM

Thermodynamic Connections to the Fragility of Pt-based BMGs: *Hillary Smith*¹; Colby Stoddard¹; Jong Na²; Marios Demetriou²; ¹Swarthmore College; ²Glassimetal

11:00 AM

In-situ XRD Studies of Crystallization and Phase Transformations in Metallic Glasses upon Ultrafast Heating: *Ivan Kaban*¹; ¹IFW Dresden

11:20 AM

Imaging Crystallization of a Au-based Bulk Metallic Glass: Influence of the Initial Glassy State: Owain Houghton¹; A. Greer¹; Yurii Ivanov¹; ¹University of Cambridge

CHARACTERIZATION

Characterization of Materials through High Resolution Coherent Imaging — High Resolution Characterization of Materials with Coherent Diffraction Imaging

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Richard Sandberg, Brigham Young University; Ross Harder, Argonne National Laboratory; Xianghui Xiao, Brookhaven National Laboratory; Brian Abbey, La Trobe University; Saryu Fensin, Los Alamos National Laboratory; Ana Diaz, Paul Scherrer Institute; Mathew Cherukara, Argonne National Laboratory

Monday AM | March 20, 2023 Agua 310A | Hilton

Session Chair: Ana Diaz, Swiss Light Source, Paul Scherrer Institute

8:30 AM Invited

Structural Evolution of Nanoparticles Under Realistic Conditions Observed with Bragg Coherent X-ray Imaging: Marie-Ingrid Richard¹; Maxime Dupraz¹; Corentin Chatelier¹; Clément Atlan¹; Sarah Yehya²; David Simonne²; Stéphane Labat³; Steven Leake⁴; Ewen Bellec⁴; Tobias Schulli⁴; Olivier Thomas³; Joel Eymery¹; Eugen Rabkin⁵; ¹CEA Grenoble; ²Synchrotron SOLEIL; ³IM2NP-CNRS; ⁴ESRF; ⁵Technion

9:00 AM

Nanoscale Imaging of Electrochemically-induced Strain Dynamics in a Locally Polarized Pt Grain: *Dina Sheyfer*¹; Ruperto Mariano²; Tomoya Kawaguchi³; Wonsuk Cha¹; Ross Harder¹; Mathew Kanan⁴; Stephan Hruszkewycz¹; Hoydoo You¹; Matthew Highland¹; ¹Argonne National Laboratory; ²Massachusetts Institute of Technology; ³Tohoku University; ⁴Stanford University

9:20 AM

In Situ and Operando 3D Imaging of Pt and Pd Electrocatalytic Nanocrystals: Clement Atlan¹; Corentin Chatelier¹; Arnaud Viola²; Maxime Dupraz³; Isaac Martens⁴; Joël Eymery¹; Frédéric Maillard²; Marie-Ingrid Richard¹; ¹French Alternative Energies and Atomic Energy Commission; ²Laboratory of Electrochemistry and Physical-Chemistry of Materials and Interfaces; ³French National Centre for Scientific Research; ⁴European Synchrotron Radiation Facility

9:40 AM

Exploring the Formation of Superlattice in Metal Nanocrystals using Bragg Coherent X-ray Diffraction Imaging: Ericmoore Jossou¹; Ana Suzana¹; Longlong Wu¹; Jiecheng Diao²; Tadesse Assefa³; Steven Leake⁴; Adam Gabriel⁵; Anton Schneider⁶; Kim Kisslinger¹; Lin Shao⁵; Yongfeng Zhang⁶; Lynne Ecker¹; Jian Gan⁷; Ian Robinson¹; Simerjeet Gill¹; ¹Brookhaven National Laboratory; ²University College London; ³SLAC National Accelerator Laboratory; ⁴The European Synchrotron Facility; ⁵Texas A&M University; ⁶University of Wisconsin; ⁷Idaho National Laboratory

10:00 AM Break

10:20 AM Invited

Searching for Crystals, Twins, Peaks and Dislocations with BCDI: Anthony Rollett¹; Yueheng Zhang¹; Matthew Wilkin¹; Robert Suter¹; Nicholas Porter²; Richard Sandberg²; Wonsuk Cha³; Ross Harder³; Siddharth Maddali³; Stephan Hruszkewycz³; ¹Carnegie Mellon University; ²Brigham Young University; ³Argonne National Lab

10:50 AM Invited

High-speed Free-run Ptychography at the Australian Synchrotron: Cameron Kewish¹; ¹Australian Nuclear Science and Technology Organization

11:20 AM

Catalytic Properties at the Nanoscale Probed by Coherent **Diffraction Imaging**: David Simonne¹; Andrea Resta¹; Alessandro Coati; Alina Vlad¹; Benjamin Voisin¹; Yves Garreau¹; Corentin Chatelier²; Maxime Dupraz³; Marie-Ingrid Richard²; ¹Synchrotron SOLEIL; ²CEA Grenoble; ³ESRF

11:40 AM

In Situ Bragg Coherent X-ray Diffraction Imaging Studies: David Yang¹; Nicholas Phillips²; Kay Song¹; Guanze He¹; Clara Barker¹; Wonsuk Cha³; Ross Harder³; Wenjun Liu³; Dina Sheyfer³; Felix Hofmann¹; ¹University of Oxford; ²Paul Scherrer Institute; ³Argonne National Laboratory

12:00 PM

Internal Strain Changes of Pt Nanoparticles in Response to the High Pressure in Diamond-anvil Cell: Stephane Labat¹; Sarah Yehya¹; Marie-Ingrid Richard²; Felisa Berenguer³; Pierre Fertey³; Steven Leake⁴; Bjorn Wehinger⁴; Mor Levi⁵; Eugen Rabkin⁵; Mohamed Mezouar⁴; ¹AMU-CNRS; ²CEA; ³SOLEIL; ⁴ESRF; ⁵TECHNION

12:20 PM

Rationalization of CO2 Adsorption on Ni nanocrystals using Bragg Coherent X-ray Imaging: Corentin Chatelier¹; Clément Atlan¹; David Simonne²; Joël Eymery¹; Marie-Ingrid Richard¹; ¹CEA Grenoble; ²Synchrotron SOLEIL

CHARACTERIZATION

Characterization of Minerals, Metals and Materials — Advanced Characterization Methods I

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Mingming Zhang; Zhiwei Peng, Central South University; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological Úniversity; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, Eurofins EAG Materials Science LLC; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, DEVCOM ARL Army Research Office; Shadia Ikhmayies

Monday AM | March 20, 2023 Aqua 313 | Hilton

Session Chairs: Jian Li, CanmetMATERIALS; Yunus Kalay, Middle East Technical University

8:30 AM

Non-local Means Denoising of EDS Spectra for Rapid Mapping of Composition in Nickel Aluminum Bronze: Patrick Callahan¹, Dillon Watring¹; David Rowenhorst¹; ¹US Naval Research Laboratory

8:50 AM

Analytical Polarized-light Microscopy: Specifications and Applications: Brian Hoover¹; Cesar Ornelas-Rascon¹; ¹Advanced Optical Technologies, Inc.

9:10 AM

Characterization of the Speed of Sound for Molten Metals at High Pressures: Elizabeth Rasmussen¹; Mark McLinden¹; ¹National Institute of Standards and Technology

Critical Analysis of Intermetallic Phases in Cu-Sn Alloys by EBSD: Stefan Martin¹; Andreas Leineweber¹; ¹Tu Bergakademie Freiberg

9:50 AM

Thermal Conductivity Measurements of Battery Components using the Flash Method: Heng Wang1; Peter Ralbovsky1; Guiquan Pan1; Marc-Antoine Thermitus¹; ¹Netzsch Instruments North America, LLC

10:10 AM Break

10:25 AM

Characterization of Lunar and Martian Meteorites using Scanning Electronic Microscope (SEM): Hussain Al Halwachi¹; ¹Bahrain Society of Chemists

10:45 AM

Characterization of Pearls using EDXF and Omnian Standard Less Application: Hussain Al Halwachi¹; ¹Aluminium Bahrain (Alba)

X-ray Tomography as a 3D Metrology Technique: Brian Patterson¹; Bryan Hunter¹; Steven Young¹; Theresa Quintana¹; Thomas Day¹; Derek Schmidt¹; Adam Wachtor¹; ¹Los Alamos National Laboratory

11:25 AM

Online Electron Microscope for 3D Microstructure Data: Zachary Varley¹; Allison Weller¹; Gregory Rohrer¹; Marc De Graef¹; ¹Carnegie Mellon University

11:45 AM

Unveiling Effect of Alloying Elements on Recrystallization Behavior of Platinum Alloys: Gaeun Song¹; So-Yeon Lee²; In-Suk Choi¹; ¹Seoul National University; 2Kumoh National Institute of Technology

12:05 PM

The Power and Limitation of Ion Beam Imaging in Focused Ion Beam Microscopes: Pei Liu1; 1CanmetMATERIALS

NUCLEAR MATERIALS

Composite Materials for Nuclear Applications II — SiC/SiC for Fission and Fusion

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Composite Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Anne Campbell, Oak Ridge National Laboratory; Dong Liu, University of Bristol; Rick Ubic, Boise State University; Lauren Garrison, Commonwealth Fusion Systems; Peng Xu, Idaho National Laboratory; Johann Riesch, Max-Planck-Insitut Fuer Plasmaphysik

Monday AM | March 20, 2023 24B | SDCC

Session Chairs: Anne Campbell, Oak Ridge National Laboratory; Peng Xu, Idaho National Laboratory

8:30 AM Invited

Status Update on Framatome PROtect ATF Solutions: Cr-coated M5_{Framatome} and SiC_r/SiC Cladding Designs: Matthieu Aumand¹; Kiran Nimishakavi¹; Elmar Schweitzer¹; Karl Buchanan¹; Claire Verdon¹; Thorsten Marlaud¹; ¹Framatome

9:00 AM

Characterization of Defects Generated from Thermal Stresses in SiC/SiC Composites: Jose Arregui-Mena¹; Takaaki Koyanagi¹; Yutai Katoh¹; ¹Oak Ridge National Laboratory

9:20 AM

Advanced Modeling for use in Accelerate Fuel Qualification of Silicon Carbide Composite Cladding: Joel Kosmatka¹; Nicholas Truong¹; Herb Shatoff¹; George Jacobsen¹; ¹General Atomics

Development of SiCf/SiC Composite Materials for Fusion Applications: Alexander Leide¹; Max Rigby-Bell¹; Slava Kuksenko¹; James Wade-Zhu¹; David Bowden¹; ¹United Kingdom Atomic Energy Authority

10:00 AM Break

10:20 AM Invited

Next-generation Nuclear Grade Composite Components: Sean Gonderman¹; George Jacobsen¹; Ivan Ivanov¹; Lucas Borowski¹; Rolf Haefelfinger¹; Christian Deck¹; Jack Gazza¹; ¹General Atomics

10:50 AM

Development and Evaluation of Dual-purpose Coating to SiC/ SiC Composite Accident-tolerant Fuel Cladding for Light Water Reactors: Yutai Katoh¹; Takaaki Koyanagi¹; Peter Mouche¹; ¹Oak Ridge National Laboratory

11:10 AM

Mechanistic Understanding of Hydrothermal Corrosion of SiC Under Irradiation: Peng Wang¹; Gary Was¹; ¹University of Michigan

11:30 AM

Stress Rupture of SiC/SiC Composite Tubes Under Hightemperature Steam: Implications for Resistance to Light Water Reactor Accident: Takaaki Koyanagi¹; Omer Karakoc¹; Charles Hawkins¹; Edgar Lara-Curzio¹; Yutai Katoh¹; ¹Oak Ridge National Laboratory

11:50 AM

Microstructure and Mechanical Behavior of Cr Coatings for Mitigating Hydrothermal Corrosion of SiC-SiC, Fuel Cladding: Kyle Quillin¹; Hwasung Yeom¹; Tyler Dabney¹; Evan Willing¹; David Frazer²; Lingfeng He2; Laura Jamison3; Kumar Sridharan1; 1University of Wisconsin-Madison; 2Idaho National Laboratory; 3Argonne National Laboratory

MATERIALS DESIGN

Computational Discovery and Design of Materials — Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Houlong Zhuang, Arizona State University; Duyu Chen, University of California, Santa Barbara; Ismaila Dabo, Pennsylvania State University; Yang Jiao, Arizona State University; Sara Kadkhodaei, University of Illinois Chicago; Mahesh Neupane, Army Research Laboratory; Xiaofeng Qian, Texas A&M University; Arunima Singh, Arizona State University; Natasha Vermaak, Lehigh University

Monday AM | March 20, 2023 Cobalt 502A | Hilton

Session Chairs: Sara Kadkhodaei, University of Illinois Chicago; Mahesh Neupane, Army Research Laboratory

8:30 AM Invited

Ultra-fast Interpretable Machine-learning **Potentials** Accelerated Structure Prediction of Materials: Richard Henniq1; Stephen Xie2; Pawan Prakash1; Ajinkya Hire1; Robert Schmid3; Hendrik Kraß³; Matthias Rupp³; ¹University of Florida; ²KBR, NASA Ames Research Center; ³University of Konstanz

9:00 AM Invited

Computational Reconnoiter for the Design of Amorphous Transition Metal Oxides for Surface Transfer Doping of Diamond: Peter Greaney1; Cameron Chevalier1; Harsha Antony1; Pegah Mirabedini1; Sarah Allec²; Mahesh Neupane³; ¹University of California, Riverside; ²Pacific Northwest National Laboratory; ³Army Research Laboratory

9:30 AM Invited

Modeling of Local Lattice Distortion Effects on Vacancy Migrations in Multicomponent FCC Alloys: Zhucong Xi1; Louis Hector, Jr2; Amit Misra¹; Liang Qi¹; ¹University of Michigan; ²GM Global Technical Center, General Motors Company

10:00 AM Break

10:20 AM Invited

Computation Discovery of Materials for Solid-state Batteries: Yifei Mo¹; ¹University of Maryland, College Park

10:50 AM

Machine-learning-boosted Searching and Optimization of Emergent Quantum Materials: Mingda Li¹; ¹Massachusetts Institute of Technology

PHYSICAL METALLURGY

Computational Thermodynamics and Kinetics — **Kinetics and Transport**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Solidification Committee

Program Organizers: Hesam Askari, University of Rochester; Damien Tourret, IMDEA Materials Institute; Eva Zarkadoula, Oak Ridge National Laboratory; Enrique Martinez Saez, Clemson University; Frederic Soisson, Cea Saclay; Fadi Abdeljawad, Clemson University; Ziyong Hou, Chongqing University

Monday AM | March 20, 2023 26A | SDCC

Session Chairs: Theresa Davey, Tohoku University; Eva Zarkadoula, Oak Ridge National Laboratory

8:30 AM Invited

Interplay between Thermodynamics and Kinetics in Solid-state Synthesis: Katsuyo Thornton¹; ¹University of Michigan

Characterization of Grain Boundary Phase Transformations: lan Winter¹; Robert Rudd²; Tomas Oppelstrup²; Timofey Frolov²; ¹Sandia National Laboratories; ²Lawrence Livermore National Laboratory

Kinetic Monte Carlo Simulations of BCC Crystal Surfaces with Applications to Chromium, Titanium, and Nitinol: Pheobe Appel¹; Divya Sharma¹; Paulette Clancy¹; Jonah Erlebacher¹; ¹Johns Hopkins University

9:40 AM

Accelerating Off-lattice Kinetic Monte Carlo Simulations to Predict Hydrogen Vacancy-cluster Interactions in -Fe: Conor Williams1; Enrique Galindo-Nava²; ¹University of Cambridge; ²University College London

10:00 AM Break

10:20 AM

Microscopic View of Heat Capacity of Matter: Jaeyun Moon¹; Takeshi Egami²; ¹Oak Ridge National Laboratory; ²University of Tennessee, Knoxville

10:40 AM

Semi-empirical Approach for Analyzing the Microstructure-aware Effective Thermal Conductivity of Polycrystalline Materials: Younggil Song¹; N. C. Du¹; D.-X. Qu¹; T. W. Heo¹; ¹Lawrence Livermore **National Laboratory**

11:00 AM

A Phase Field Approach to Study Precipitate Migration under Temperature Gradient: Sandip Guin¹; Soumya Bandyopadhyay²; Saswata Bhattacharya³; Rajdip Mukherjee⁴; ¹Indian Institute of Technology, Kanpur/National Yang Ming Chiao Tung University; ²Indian Institute of Technology, Kanpur/Kookmin University; ³Indian Institute of Technology, Hyderabad; 4Indian Institute of Technology, Kanpur

11:20 AM

First-principles Investigation of Alloying Element Migration and Intermetallic Phase Formation in a Cr-alloy Coated Zr-alloy Accident Tolerant Nuclear Fuel System: Theresa Davey¹; Ying Chen¹; ¹Tohoku University

11:40 AM Invited

Understanding the Effect of Crystal Anisotropy on Grain Growth, Texturing, and Transport via the Orthorhombic Alpha-uranium System: Andrea Jokisaari¹; Benjamin Beeler²; Khadija Mahbuba²; Yuhao Wang³; ¹Idaho National Laboratory; ²North Carolina State University; 3University of Michigan

NANOSTRUCTURED MATERIALS

Deformation Mechanisms, Microstructure Evolution, and Mechanical Properties of Nanoscale Materials Deformation Mechanisms I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Niaz Abdolrahim, University of Rochester; Matthew Daly, University of Illinois-Chicago; Hesam Askari, University of Rochester; Eugen Rabkin, Technion; Jeffrey Wheeler, Femto Tools Ag; Wendy Gu, Stanford University

Monday AM | March 20, 2023 Aqua 300AB | Hilton

Session Chairs: Timothy Rupert, University of California, Irvine; Christoph Kirchlechner, KIT

8:30 AM Invited

The Role of Amorphous Shear Bands in Deformation of Crystalline Materials: Izabela Szlufarska¹; ¹University of Wisconsin-Madison

9:00 AM

Submicron Intermetallic Particle Heterogeneity Controls Shear Localization in High-strength Nanostructured Al Alloys: Tianjiao Lei¹; Esther Hessong¹; Jungho Shin²; Daniel Gianola²; Timothy Rupert¹; ¹University of California Irvine; ²University of California Santa Barbara

9:20 AM

Rejuvenation of Plasticity via Deformation Graining in Submicron Magnesium: Boyu Liu¹; Zhen Zhang²; Fei Liu¹; Bin Li³; Zhiwei Shan¹; ¹Xi'an Jiaotong University; ²Hefei University of Technology; ³University of Nevada, Reno

9:40 AM

The Heterogeneous Nature of Mechanically Accelerated Grain Growth: Elton Chen¹; Brad Boyce¹; Remi Dingreville¹; ¹Sandia National Laboratories

10:00 AM Break

10:20 AM Invited

Thermal Stability and Mechanical Behavior in Segregation-Engineered Nanocrystalline Ternary Al Alloys: Jungho Shin1; Fulin Wang²; Glenn Balbus³; Tianjiao Lei⁴; William Cunningham¹; Ravit Silverstein¹; Timothy Rupert⁴; Daniel Gianola¹; ¹University of California-Santa Barbara; ²Shanghai Jiao Tong University; ³Air Force Research Laboratory; ⁴University of California Irvine

Deformation Behavior and Microstructural Characterization of Pure Mg Deformed by Nanoindentation: Yi-Cheng Lai1; Yuwei Zhang¹; George Pharr¹; Kelvin Xie¹; ¹Texas A&M University

11:10 AM Invited

Dislocation Twin Boundary Interactions: Slip Transfer and **Dislocation Nucleation**: Christoph Kirchlechner¹; ¹Karlsruhe Institute of Technology

ELECTRONIC MATERIALS

Electronic Packaging and Interconnection — Quality and Reliability of Advanced Microelectronic **Packaging**

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Kazuhiro Nogita, University of Queensland; Mohd Arif Mohd Salleh, Universiti Malaysia Perlis, Dan Li, Beijing University of Technology; David Yan, San Jose State University; Fan-Yi Ouyang, National Tsing Hua University; Patrick Shamberger, Texas A&M University; Tae-Kyu Lee, Cisco Systems; Christopher Gourlay, Imperial College London; Albert T. Wu, National Central University

Monday AM | March 20, 2023 Sapphire D | Hilton

Session Chairs: Tae-Kyu Lee, Cisco Systems; Kazuhiro Nogita, The University of Queensland

8:30 AM Introductory Comments

8:40 AM Invited

Power Cycling Reliability with Temperature Deviation of Pressureless Silver Sinter Joint for Silicon Carbide Power Module: Won Sik Hong¹; Mi Song Kim¹; ¹Korea Electronics Technology Institute

9:05 AM

Investigation of Corrosion for Ni-based Surface Finish: Jui-Lin Chao1; Si-Wei Lin1; Jing-Chie Lin1; Yi-Hung Liu1; Chih-Yuan Hsiao2; Freeze Wang²; Nico Li²; Alber T Wu¹; ¹National Central University; ²Taiwan Uyemura Co Ltd., 337 Taiwan

Mitigation of Tin Whiskers Growth by Co-electroplating Sb: Lei Zhang¹; Xia Wang¹; Hongwei Qu¹; ¹Oakland University

9:45 AM Break

10:05 AM

Low Melting Temperature Solder Interconnect Thermomechanical Performance Enhancement Using Elemental Tuning: Tae-Kyu Lee1; Nilesh Badwe2; Greg Baty3; Raiyo Aspandiar4; Young-Woo Lee⁵; ¹Cisco Systems; ²IIT Kanpur; ³Portland State University; ⁴Intel; ⁵MK Electron

10:25 AM

Probing Defect Formation and Reliability of Solder Interconnects Produced through Quasi-ambient Bonding: Wajira Mirihanage¹; Saranarayanan Ramachandran¹; Zhaoxia Zhou²; Zhe Cai¹; Fan Wu¹; Canyu Liu²; Han Jiang²; Christoforos Panteli³; Stuart Robertson²; Andrew Holmes³; Sarah Haigh¹; Changqing Liu²; ¹The University of Manchester; ²Loughborough University; ³Imperial College London

10:45 AM

The Effect of Grain Boundary Type on Void Formation in a Through Silicon Via (TSV): Armin Shashaani¹; Panthea Sepehrband¹; ¹Santa Clara University

11:05 AM

Phase-field Modeling of Electromigration-mediated Void Migration and Coalescence under Mechanical Compression: William Farmer¹; Kumar Ankit¹; ¹Arizona State University

ENERGY & ENVIRONMENT

Energy Technologies and CO2 Management — Renewable Energy and Combustion Technologies

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Shafiq Alam, University of Saskatchewan; Donna Guillen, Idaho National Laboratory; Fiseha Tesfaye, Metso Outotec Finland Oy; Lei Zhang, University of Alaska Fairbanks; Lina Hockaday, Curtin University, WASM; Neale Neelameggham, IND LLC; Hong (Marco) Peng, University of Queensland; Nawshad Haque, Commonwealth Scientific and Industrial Research Organization; Liu Yan, Northestern University

Monday AM | March 20, 2023 33B | SDCC

Session Chairs: Donna Guillen, Idaho National Laboratory; Lina Hockaday, Curtin University, WASM

9:35 AM Introductory Comments

9:40 AM

Analysis of Environmental Impact of Vertical Axis Wind Turbine using Circular Economy Approach: Satyendra Dayalu¹; Shalini Verma¹; Akshoy Ranjan Paul¹; Nawshad Haque²; ¹Motilal Nehru National Institute of Technology Allahabad; ²Commonwealth Scientific and Industrial Research Organization

Corrosion and Erosion Protection to Accelerate Deployment of Sustainable Biomass: Patrick Shower¹; Voramon Dheeradhada¹; Scott Weaver¹; Bruce Pint²; Michael Pagan³; Suresh Babu³; Aida Amroussia¹; Martin Morra¹; Gilad Zorn¹; Anteneh Kebbede¹; ¹GE Research; ²Oak Ridge National Laboratory; ³University of Tennessee, Knoxville

10:20 AM Break

10:40 AM

Development of Indium-tin Oxide Thin Films on PAMAM Dendrimer Layers for Perovskite Solar Cells Application: Firdos Ali¹; Alecsander Mshar¹; Ka Ming Law¹; Xiao Li¹; A. Hauser¹; Shanlin Pan¹; Dawen Li¹; Subhadra Gupta¹; ¹University of Alabama

DFT Study of CuS-ZnS Heterostructures: Louis Oppong-Antwi¹; Judy Hart¹; ¹University of New South Wales

CORROSION

Environmental Degradation of Multiple Principal Component Materials — High Temperature Corrosion I

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Wenjun Cai, Virginia Polytechnic Institute and State University; XiaoXiang Yu, Novelis Global Research Center; Vilupanur Ravi, California State Polytechnic University Pomona; Christopher Weinberger, Colorado State University; Elizabeth Opila, University of Virginia; Bai Cui, University of Nebraska-Lincoln; Mark Weaver, University of Alabama; Bronislava Gorr, Karlsruhe Institute of Technology (KIT); Gerald Frankel, Ohio State University; ShinYoung Kang, Lawrence Livermore National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Monday AM | March 20, 2023 Sapphire 410A | Hilton

Session Chairs: Bronislava Gorr, Karlsruhe Institut für Technologie; Mark Weaver, The University of Alabama

8:30 AM Invited

Conditions for Exclusive External Scale Formation in the High Temperature Oxidation of Alloys: Karl Sieradzki1; William Blades1; Elizabeth Opilia²; ¹Arizona State University; ²University of Virginia

8:50 AM

Effect of the Chemical Composition on the Formation of Compact (Cr,Ta,Ti)O, Scales on Refractory High-entropy Alloys (RHEAs) within the Ta-Mo-Cr-Ti-Al System: Steven Schellert1; Hans-Jürgen Christ¹; Stephan Laube²; Alexander Kauffmann²; Martin Heilmaier²; Bronislava Gorr³; ¹Universität Siegen; ²Karlsruher Institut für Technologie (KIT IAM-WK); 3Karlsruher Institut für Technologie (KIT IAM-AWP)

9:10 AM

Flow and Steam Enhanced Degradation of Once Through Steam Generation Piping Steels: Kevin Hodder¹; Omnath Ekambaram¹; Saeid Dehghani¹; John Nychka¹; Basil Perdicakis²; R. Sean Sanders¹; ¹University of Alberta; ²Suncor Energy

9:30 AM

High Temperature Oxidation of CoNiFeMnCr High Entropy Alloys Reinforced by MC-carbides: Patrice Berthod¹; ¹University of Lorraine

9:50 AM Break

10:05 AM

Investigation of Spinel Phase Formation on Ni-doped FeCrAl Alloy in Multiple Environments: Rajnikant Umretiya1; Andrew Hoffman1; Richard Blair¹; Robert Motly¹; Timothy Jurewicz¹; Raul Rebak¹; ¹GE Research

10:25 AM Invited

Elemental Effects on Oxidation Kinetics of Refractory High Entropy Alloys: Hideyuki Murakami¹; Moreau Louis¹; Wei-Chih Lin²; Kai-chi Lo²; Stephane Gorsse³; An-chou Yeh²; ¹National Insititute for Materials Science; ²National Tsing Hua University; ³CNRS, Univ. Bordeaux

Role of Surface Deformation on the High-Temperature Oxidation Response of FeNiCr-based HEAs: Kate Moo1; Daniele Fatto Offidani1; Emmanuelle Marquis1; 1University of Michigan

CORROSION

Environmentally Assisted Cracking: Theory and Practice — Stress Corrosion Cracking I

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska-Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Monday AM | March 20, 2023 Sapphire 410B | Hilton

Session Chairs: Gary Was, University of Michigan; John Scully, University of Virginia

8:30 AM Invited

Mechanistic Understanding of Irradiation Assisted Stress Corrosion Cracking: Gary Was1; 1University of Michigan

Cold Spray Deposition for Mitigation and Repair of Stress Corrosion Cracking in Used Nuclear Fuel Storage Stainless Steel Canisters: Hwasung Yeom¹; Nicholas Pocquette¹; Jonathan Tatman²; Frank Pfefferkorn¹; Kumar Sridharan¹; ¹University of Wisconsin Madison; ²Electric Power Research Institute

Peening Technologies to Mitigate Initiation and Resurgence of Stress Corrosion Cracking in Dry Cask Storage Stainless Steel Canisters: John Lacy¹; Hwasung Yeom¹; Kumar Sridharan¹; Stan Bovid²; Andrew Tieu³; Jon Tatman⁴; Willie³; Kenneth Ross⁵; ¹University of Wisconsin-Madison; ²LSP Technologies; ³VLN Technologies; ⁴Electric Power and Research Institute; ⁵Pacific Northwest nation Laboratory

9:40 AM

Coupled Analysis of Stress and Deformation Behavior in Transgranular Stress Corrosion Crack Tip Plasticity in Austenitic Stainless Steel: Haozheng Qu¹; Rebecca Schaller²; Eric Schindelholz³; Janelle Wharry¹; ¹Purdue University; ²Sandia National Laboratories; ³Ohio State University

10:00 AM Break

10:20 AM Invited

Hydrogen Interactions and Transport in Additively Manufactured Structural Alloys: Implications for Stress Corrosion Cracking and Hydrogen Embrittlement: John Scully¹; James Burns¹; Lauren Singer¹; Zachary Harris¹; ¹University of Virginia

10:50 AM

Improving Stress Corrosion Cracking of Type 304 Stainless Steel through Grain Boundary Engineering: Osama Alyousif¹; ¹Kuwait University

11:10 AM

A Mechanistic Study on Dealloyed-induced Stress Corrosion Cracking Initiation of Alloy 800: Hooman Gholamzadeh1; Adil Shaik¹; Kevin Daub¹; Matt Topping¹; Mark Daymond¹; Suraj Persaud¹; ¹Queen's University

MATERIALS DESIGN

Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling Multi-mechanical Interactions During Extreme **Environment Fatigue Loading**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Additive Manufacturing Committee

Program Organizers: Jean-Charles Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Ashley Spear, University of Utah; Antonios Kontsos, Drexel University; Brian Wisner, Ohio University; Orion Kafka, National Institute of Standards and Technology

Monday AM | March 20, 2023 Sapphire H | Hilton

Session Chair: Brian Wisner, Ohio University

8:30 AM Invited

On the Low Temperature Fatigue Crack Growth Behavior of AA7075-T651 in Ultra-high Vacuum Environments: Zachary Harris¹; Adam Thompson²; James Burns²; ¹University of Pittsburgh; ²University of Virginia

8:55 AM

Hydrogen Impact on Cyclic Behavior of Titanium Alloys Questioned in Term of Dislocation Pattern and Internal Stresses: Some Consequences on Damage: Larissa Moreira¹; Abdelali Oudriss²; Guillaume Lotte³; Stéphane Cohendoz²; Simon Frappart⁴; Aude Mathis4; Thierry Millot4; Jamaa Bouhattate2; Feaugas Xavier3; ¹LaSIE - NavalGroup; ²Lasie Cnrs Umr73; ³LaSIE UMR CNRS; ⁴Naval **Group CESMAN**

9:15 AM

Very-high Cycle Fatigue Lives of High-temperature Materials Tested by Ultrasonic Fatigue: Alexander Schmiedel¹; Anja Weidner¹; Horst Biermann¹; ¹TU Bergakademie Freiberg

9:35 AM

Sensitivity of Fatigue Crack Growth Lives to Sustained Thermal Gradients: James Sobotka1; Robert McClung1; Michael Enright1; ¹Southwest Research Institute

Contributions of Oxidation and Creep to High Temperature Fatigue Crack Susceptibility in Waspalov: Alex Jennion¹: Zachary Harris¹: James Burns¹; ¹University of Virginia

10:15 AM Break

10:30 AM

Mechanism of Microstructural Decay from a Detailed Characterization of 52100 Bearing Steel after Rolling Contact Fatigue: Tania Loaiza1; Prasath Babu Revathy Rajan1; Steve Ooi2; Peter Hedström¹; ¹KTH (Royal Institute of Technology); ²Ovako/ Maxwell Centre, University of Cambridge,

10:50 AM Invited

Critical Effect of Volumetric Defects in High Cycle Fatigue of Additively Manufactured Ti-6Al-4V: Shuai Shao1; Nima Shamsaei1; ¹Auburn University

11:15 AM

Influence of Build Orientation on High Temperature Fatigue Crack Growth Mechanisms in Inconel 718 Fabricated by Laser Powder Bed Fusion: Effects of Temperature and Hold Time: Diego Martinez de Luca¹; Philippa Reed¹; Andrew Hamilton¹; ¹University of Southampton

11:35 AM

Fatigue Crack Propagation in Plasticity Mismatched Bi-material Steels Fabricated by Laser Powder Bed Fusion: Anqi Liang¹; Sandeep Sahu¹; Xiao Zhao¹; Tomas Polcar¹; *Andrew Hamilton*¹; ¹University of Southampton

11:55 AM

The Role of Cellular Microstructures on the Fatigue Behavior of Additively Manufactured Al Alloys: Emine Tekerek¹; Lars Jacquemetton²; Darren Beckett²; Scott Halliday³; Jorg M. K. Wiezorek⁴; Antonios Kontsos¹; ¹Drexel University; ²Sigma Additive Inc; ³Navajo Technical University; ⁴University of Pittsburg

12:15 PM

High Cycle Fatigue of a Novel Additively Manufactured Al-Ni-Ti-Zr Alloy with a Heterogeneous Microstructure: Ravi Sankar Haridas¹; Saket Thapliyal¹; Priyanka Agrawal¹; Priyanshi Agrawal¹; Rajiv Mishra¹; ¹University of North Texas

MATERIALS PROCESSING

Friction Stir Welding and Processing XII — Additive Friction Stir Deposition

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Anton Naumov, Peter The Great St. Petersburg Polytechnic University; Nilesh Kumar, University of Alabama, Tuscaloosa

Monday AM | March 20, 2023 29A | SDCC

Session Chairs: Hang Yu, Virginia Polytechnic Institute And State University; Mandana Hendrickson, MELD Manufacturing

8:30 AM Invited

Recent Progress in Additive Friction Stir Deposition: from Process Fundamentals to Niche Applications: Hang Yu¹; ¹Virginia Polytechnic Institute and State University

8:50 AM Invited

Repair of Railroad Rail via Additive Friction Stir Deposition: Michael Eff¹; Kathleen Chou²; Chase Cox³; Connor Saukas²; Jason Carroll²; Ryan Henderson³; ¹EWI; ²Eaton; ³MELD Manufacturing Corporation

9:10 AM

Microstructure and Hardness of Al2050 Parts Made by Additive Friction Stir Deposition: Hamed Ghadimi¹; Mojtaba Talachian¹; Congyuan Zeng¹; Huan Ding¹; Selami Emanet¹; Uttam Bhandari¹; Chase Cox²; Michael Eller³; Shengmin Guo¹; ¹Louisiana State Univ; ²MELD Manufacturing Corporation; ³Lockheed Martin Space

9:30 AM

Closed-loop PID Temperature Control of Additive Friction Stir Deposition: *Jason Glenn*¹; Luk Dean¹; Arnold Wright²; Yuri Hovanski¹; ¹Home; ²Bond Technologies

9:50 AM Break

10:10 AM Invited

Advancement of US Navy Sustainment Capabilities Through Solid-State Additive Manufacturing (FSW/FSAM): Stephen Cox¹; ¹US Navy

10:30 AM

A Feasibility Study on Friction Screw Extrusion Additive Manufacturing of AA6060: Ton Bor¹; Sharon Strik¹; Saed Sayyad Rezaeinejad¹; Nick Helthuis¹; Bert Vos¹; Martin Luckabauer¹; Remko Akkerman¹; ¹University of Twente

10:50 AM

Fundamental Study of Material Properties of Aluminum Additively Manufactured via Multi-layer Friction Surfacing: Zina Kallien¹; Lars Rath¹; Arne Roos¹; Benjamin Klusemann¹; ¹Helmholtz-Zentrum Hereon

11:10 AM Invited

Neutron/X-ray Testing on Al6061 Prepared by Solid-state Friction Stir Additive Manufacturing: Saber Nemati¹; Les Butler¹; Gerry Knapp²; Kyungmin Ham¹; Selami Emanet¹; Hamed Ghadimi¹; Congyuan Zeng¹; Shengmin Guo¹; ¹Louisiana State University; ²Oak Ridge National Laboratory

MATERIALS PROCESSING

Frontiers in Solidification: An MPMD Symposium Honoring Jonathan A. Dantzig — Dendritic Growth & Rapid Solidification

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Light Metals Division, TMS Structural Materials Division, TMS: Aluminum Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Andre Phillion, McMaster University; Michel Rappaz, Ecole Polytechnique Fédérale De Lausanne; Melis Serefoglu, Marmara University; Damien Tourret, IMDEA Materials Institute

Monday AM | March 20, 2023 28E | SDCC

Session Chairs: Andre Phillion, McMaster University; Michel Rappaz, EPFL; Melis Serefoglu, Marmara University; Damien Tourret, IMDEA Materials

8:30 AM Introductory Comments

8:50 AM Invited

In-situ Measurements of Dendrite Tip Shape Selection in a Metallic Alloy: Christoph Beckermann¹; Hieram Neumann-Heyme²; Natalia Shevchenko²; Joerg Grenzer²; Kerstin Eckert²; Sven Eckert²; ¹University of Iowa; ²Helmholtz-Zentrum Dresden-Rossendorf (HZDR)

9:20 AM Invited

Growth Orientations and the Morphology of Dendrites: *Maike Becker*¹; ¹German Aerospace Center (DLR)

9:50 AM Break

10:10 AM Invited

Bridging between Glass-Crystal Growth in Organics and Rapid Solidification Effects in Metals: A. Lindsay Greer¹; Yurii Ivanov²; Dmitri Louzguine-Luzgin³; ¹University of Cambridge; ²Istituto Italiano di Tecnologia (IIT); ³Tohoku University

10:40 AM Invited

Quantitative Phase-field Modeling of Alloy Solidification Far from Equilibrium: New Insights into Absolute Stability and Banded Microstructures: Alain Karma¹; Kaihua Ji¹; Elaheh Dorari¹; Amy Clarke¹; ¹Northeastern University

11:10 AM Invited

Kinetics Phase Diagram for Dendrite Tip Kinetics: Gildas Guillemot¹; Christopher Hareland²; Peter Voorhees²; *Charles-Andre Gandin*¹; ¹PSL University; ²Northwestern University

11:40 AM

Phase-field Model for Non-equilibrium Solidification: Arnab Mukherjee¹; James Warren²; Peter Voorhees¹; ¹Northwestern University; ²National Institute of Standards and Technology

NANOSTRUCTURED MATERIALS

Functional Nanomaterials 2023 — Session I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Nanomaterials Committee, TMS: Composite Materials Committee

Program Organizers: Yong Lin Kong, University of Utah; Sarah Ying Zhong, University of South Florida; Mostafa Bedewy, University of Pittsburgh; Woochul Lee, University of Hawaii at Mnoa; Changhong Cao, McGill University; Kiyo Fujimoto, Idaho National Laboratory; Surojit Gupta, University of North Dakota; Michael Cai Wang, University of South Florida

Monday AM | March 20, 2023 Aqua 305 | Hilton

Session Chairs: Surojit Gupta, University of North Dakota; Woochul Lee, University of Hawaii at Manoa; Yong Lin Kong, University of Utah

8:30 AM

Design and Characterization of Novel Lignin Based Nanoparticles: Surojit Gupta¹; Negin Ziamahmoodi¹; Sabah Javaid¹; ¹University of North Dakota

8:50 AM

Fabrication of Hexagonal Diamond by Aqueous Solution-based Electrochemistry: Rajakumar Sidharada Devarapalli¹; Daniel Choi¹; ¹Khalifa University

9:10 AM Invited

Multi-principal Element Nanostructures via Nanosecond Laserinduced Dewetting: Ritesh Sachan¹; Ashish Gupta¹; Soumya Mandal¹; Andrea Konečná²; Nozomi Shirato³; Jordan Hachtel⁴; ¹Oklahoma State University; ²Brno University of Technology; ³Argonne National Laboratory; 4Oak Ridge National Laboratory

9:40 AM Invited

Multiscale and In Situ X-ray Interrogation of Functional Carbon Nanotube Materials and Devices: Eric Meshot¹; Livermore National Laboratory

10:10 AM Break

10:30 AM

3D Printed Nanomaterials-based Functional Architecture with Metamaterials-inspired Electromagnetic Structures: Samuel Hales¹; Jared Anklam¹; Yang Xin²; John Ho²; Yong Lin Kong¹; ¹University of Utah; 2National University of Singapore

10:50 AM

Heteroatom-Doped Laser-Induced Graphene for Flexible Biosensors of Neurotransmitters with Nanomolar Sensitivity: Mostafa Bedewy¹; Ki-Ho Nam¹; Moataz Abdulhafez¹; Elisa Castagnola¹; Golnaz Najaf Tomaraei¹; Xinyan Tracy Cui¹; ¹University of Pittsburgh

11:10 AM

Energetics of Nanoscale Films Consisting of Vertically-aligned Oxide-metal Pillars In Nitride Matrix: Sreekar Rayaprolu¹; Ahmad Ahmad¹; Haiyan Wang¹; Anter El-Azab¹; ¹Purdue University

Bottom Up, Scalable Synthesis of Anatase-based Carbo-oxide Nanofilaments and Two-dimensional Sheets, Their Properties, and Potential Applications: Hussein Badr¹; Michel Barsoum¹; ¹Drexel University

CHARACTERIZATION

Heterostructured and Gradient Materials (HGM V): New Mechanistic Discoveries Enabling Superior Properties — Heterostructured Materials I: Fundamentals

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Shaping and Forming Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Nanyang Technological University; Ke Lu, Institute of Metal Research; Suveen Mathaudhu, Colorado School of Mines; Xiaolei Wu, State Institute of Mechanics, Chinese Academy of Sciences

Monday AM | March 20, 2023 Aqua 314 | Hilton

Session Chairs: Amit Misra, University of Michigan; Xinghang Zhang, Purdue University

8:30 AM Invited

Deformation Mechanisms in Laser Processed Nano-eutectics: Amit Misra¹; Jian Wang²; ¹University of Michigan; ²University of Nebraska-Lincoln

9:00 AM

Mechanical Anisotropy Effects on Strength and Deformability in Nanolaminates Containing 3D Interfaces: Justin Cheng¹; Shuozhi Xu²; Jon Baldwin³; Mauricio De Leo¹; Irene Beyerlein⁴; Nathan Mara¹; ¹University of Minnesota Twin Cities; ²University of Oklahoma; ³Los Alamos National Laboratory; 4University of California Santa Barbara

9:20 AM Invited

Designing Materials with Heterogeneous Microstructure via Additive Manufacturing: Matteo Seita1; Karl Sofinowski2; Shubo Gao2; Crystal Feng Ji²; ¹University of Cambridge; ²Nanyang Technological University

9:50 AM

Progress in Heterostructured Materials: Yuntian Zhu1; 1City University of Hong Kong

10:10 AM Break

10:30 AM Invited

Mechanics of Extremely Heterogeneous Materials: Ting Zhu1; ¹Georgia Institute of Technology

11:00 AM Invited

Constitutive Model and Finite Element Analysis of Heterostructured Materials: Hyoung Seop Kim1; Yongju Kim1; 1Pohang University of Science and Technology

11:30 AM Invited

Work Hardening and Radiation Response of Gradient Alloys: Tianyi Sun¹; Zhongxia Shang¹; Xinghang Zhang¹; ¹Purdue University

ADVANCED MATERIALS

High Performance Steels — High Performance Steels for Defense Applications

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Jonah Klemm-Toole, Colorado School of Mines; Ana Luiza Araujo, CBMM North America Inc.; C. Tasan, Massachusetts Institute of Technology; Richard Fonda, Naval Research Laboratory; Amit Behera, QuesTek Innovations LLC; Benjamin Adam, Oregon State University; Krista Limmer, DEVCOM Army Research Laboratory; Kester Clarke, Colorado School of Mines

Monday AM | March 20, 2023 Aqua F | Hilton

Session Chairs: Krista Limmer, Army Research Laboratory; Richard Fonda, Naval Research Laboratory

8:30 AM Invited

Designing the Precipitation Sequence in Triple Nano-precipitate Strengthened Austenitic Steel: Colin Stewart¹; Richard Fonda¹; Keith Knipling¹; Patrick Callahan¹; Paul Lambert²; ¹US Naval Research Laboratory; ²US Naval Surface Warfare Center, Carderock Division

9:00 AM

Atomistic Modeling of a Nano-precipitate Strengthened Alloy: Edwin Antillon¹; Colin Stewart¹; Noam Bernstein¹; Michelle Johannes¹; Richard Fonda¹; Keith Knipling¹; Patrick Callahan¹; ¹Naval Research Laboratory

9:20 AM

Contribution of Two Different Microstructural Morphologies on the Mechanical Responses in Medium-Mn Steels: *Jeongho Han*¹; ¹Hanyang University

9:40 AM

High-fidelity Crystal Plasticity Finite Element Modeling of Multi-phase Medium-Mn TWIP-TRIP Steel: Considerations In Microstructure Reconstruction and Meshing for Capturing the Influences of Phase Constituents: Pengfei Shen¹; Yang Liu²; Jake Benzing³; Xiang Zhang¹; ¹University of Wyoming; ²Imperial College London; ³National Institute of Standards and Technology

10:00 AM Break

10:20 AM

Ultra-high Strength Steel for Defense Applications: *Katelyn Adkison*¹; Stephane Forsik¹; Daniel Roup¹; Colleen Tomasello¹; ¹Carpenter Technology

10:40 AM

Advancing AF96: Next Generation Strong/Tough Steels: Michael Rupinen¹; Amy Clarke¹; John Speer¹; ¹Colorado School of Mines

11:00 AM

Extreme Strengthening of Ausformed M54 through Ambient Temperature Rolling: Joshua Edwards¹; Nicholas Derimow²; Jake Benzing²; Thomas Kozmel³; Jeffrey Lin³; Suveen Mathaudhu¹; ¹Colorado School of Mines; ²National Institute of Standards and Technology; ³QuesTek Innovations LLC

11:20 AM

Improving the Low-temperature Toughness of Ni-Cr-Mo Low-Alloy Steel Castings via Short Intercritical Heat Treatments: *Matt Frichtl*¹; Sreeramamurthy Ankem¹; ¹University of Maryland

11·40 AM

The Effect of Varying Carbon Equivalents on Temper Embrittlement Mechanisms in Nickel-Chromium-Molybdenum Steels: Aphrodite Strifas¹; Matthew Draper²; Sreeramamurthy Ankem¹; ¹University of Maryland; ²Naval Surface Warfare Center - Carderock

MECHANICS & STRUCTURAL RELIABILITY

High Temperature Creep Properties of Advanced Structural Materials — Creep Behavior of Superalloys

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Gianmarco Sahragard-Monfared, University of California, Davis; Mingwei Zhang, Lawrence Berkeley National Lab; Jeffery Gibeling, University of California, Davis

Monday AM | March 20, 2023 Sapphire P | Hilton

Session Chairs: Gianmarco Sahragard-Monfared, University of California, Davis; Mingwei Zhang, Lawrence Berkeley National Laboratory; Jeffery Gibeling, University of California, Davis

8:30 AM Introductory Comments

8:35 AM Invited

A Microstructure Sensitive Model to Account for the Non-isothermal Creep Behavior of Ni-based Single Crystal Superalloys: *Jonathan Cormier*¹; ¹ENSMA - Institut Pprime - UPR CNRS 3346

9:05 AM

Creep and Creep-ratcheting Behaviour of Selective Laser Melted (SLM) Additively Manufactured (AM) Inconel 718: Vincent Masse-Denicourt¹; Hosea Watson¹; Milo Kral¹; ¹University of Canterbury

9:25 AM

Creep and Tensile Properties of Five Novel, Computationally Designed Ni-based SX Superalloys: Abel Rapetti¹; Cervellon Alice¹; Menou Edern²; Rame Jérémy³; Cormier Jonathan¹; ¹Institut Pprime UPR CNRS 3346; ²Safran Tech; ³Safran Aircraft Engines

9:45 AM

On the High Temperature Strength of Single Crystal Ni-base Superalloys: Marc Sirrenberg¹; David Bürger¹; Alireza Parsa¹; Stefan Guth²; Gunther Eggeler¹; ¹Ruhr-University Bochum; ²Karlsruher Institut für Technologie (KIT)

10:05 AM Break

10:20 AM Invited

The Elevated Temperature Creep, Fatigue, and Fracture Behavior of Nickel-based Superalloys Manufactured by Direct Metal Laser Sintering: Michael Kassner¹; Theophil Oros¹; Kwangtae Son²; Lyle Levine³; Thien Phan⁴; ¹University of Southern California; ²Oregon State University; ³National Institute of Standards and Technology; ⁴Lawrence Livermore National Laboratory

10:50 AM

Creep Behavior at Elevated Temperatures of Several Polycristalline
Ni-based Superalloys Strengthened by MC-carbides: Patrice
Berthod¹; Safa Tlili¹; Dame Assane Kane¹; ¹University of Lorraine

11:10 AM

Effect of the Casting Process on the Microstructure and Creep Properties of a Cast Ni-Based Alloy: Govindarajan Muralidharan¹; Jiten Shah²; Ram Krishnamurthy³; James Myers⁴; ¹Oak Ridge National Laboratory; ²PDA LLC; ³Haynes International; ⁴MetalTek International

11:30 AM

Threshold Creep Behaviour of Ni-based Superalloy IN740H: Chandan Kumar¹; Pavan A.H.V.²; *Praveen Kumar*³; ¹Interdisciplinary Centre for Energy Research, Indian Institute of Science, Bangalore; ²BHEL Corporate R&D Division, Hyderabad; ³Indian Institute of Science, Bangalore

11:50 AM

Induction of Alternative Shearing Pathways during Creep Deformation of Nickel Based Superalloys via Local Phase **Transformation Strengthening**: Ashton Egan¹; Fei Xue²; Emmanuelle Marquis²; Michael Mills¹; ¹Ohio State University; ²University of Michigan

MATERIALS PROCESSING

High Temperature Electrochemistry V — Session I

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Prabhat Tripathy, Batelle Energy Alliance (Idaho National Laboratory); Guy Fredrickson, Idaho National Laboratory

Monday AM | March 20, 2023 28B | SDCC

Session Chair: Guy Fredrickson, Idaho National Laboratory

8:30 AM Introductory Comments

8:35 AM Invited

Optimisation of the Anodic and Cathodic Current Densities during Nd Electrowinning Process: Mathieu Gibilaro1; Christophe Remazeilles¹; Laurent Massot¹; Pierre Chamelot¹; ¹University of Toulouse

Thermodynamic Properties of Nd-Fe Alloys via EMF Measurements in Molten Salts: Sanghyeok Im1; Hojong Kim1; 1Pennsylvania State University

9:35 AM

On the Separation of Niobium and Tantalum Metals via Molten Sulfide Electrolysis: Charles Boury¹; Antoine Allanore¹; ¹Massachusetts Institute of Technology

9:55 AM

Formation of Carbon Layer on Ni and Mo Through Electrochemical Reduction of Carbonate Ions in Molten LiCl: Chongrui Zhuang¹; Xin Lu¹; Osamu Takeda¹; Hongmin Zhu¹; ¹Tohoku University

10:15 AM Break

10:35 AM

Chloro-aluminate Species Distribution Correlation with Electrical Conductivity of 1-ethyl-3-methyl Imidazolium Chloride (EMIC)-Aluminum Chloride (AlCl3) System: Aninda Nafis Ahmed¹; Md Khalid Nahian¹; Ramana Reddy¹; ¹University of Alabama Tuscaloosa

10:55 AM

A Revised High Temperature Synthesis of UCl3 via Reaction of U with FeCl2: Jacob Yankey1; Jarom Chamberlain1; Marisa Monreal2; Matt Jackson²; Michael Simpson¹; ¹University of Utah; ²Los Alamos **National Laboratory**

11:15 AM

Blind Identification and Quantification of Analytes in Molten LiCl-KCl Eutectic: Tyler Williams¹; Greg Chipman¹; Ranon Fuller¹; Mark Schvaneveldt¹; Jason Torrie¹; Devin Rappleye¹; ¹Brigham Young University

11:35 AM

Study of Potentiometry for Monitoring Activity of GdCl3 in Molten LiCl-KCl Salt: Guoping Cao1; Steven Herrmann1; Guy Fredrickson1; Robert Hoover¹; ¹Idaho National Laboratory

MATERIALS DESIGN

Hume-Rothery Symposium on First-Principles Materials Design — Interface First-principle Method with Thermodynamics and Kinetics

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Bin Ouyang, Florida State University; Mark Asta, University of California, Berkeley; Geoffroy Hautier, Dartmouth College; Wei Xiong, University of Pittsburgh; Anton Van der Ven, University of California, Santa Barbara

Monday AM | March 20, 2023 Cobalt 501C | Hilton

Session Chair: Mark Asta, University of California Berkey

8:30 AM Keynote

William Hume-Rothery Award Lecture: Ab initio Thermodynamics and Kinetics from Alloys to Complex Oxides: Gerbrand Ceder1; ¹University of California, Berkeley

9:10 AM Invited

Double Descent, Linear Regression, and Fundamental Questions in Alloy Model Building: Gus Hart¹; ¹Brigham Young University

9:40 AM Invited

Linking Phenomenological Theories of Materials to Electronic Structure: Anton Van der Ven1; Brian Puchala2; Derick Ober1; ¹University of California, Santa Barbara; ²University of Michigan

10:10 AM Break

10:30 AM Invited

Holistic Integration of Experimental and Computational Data and Simple Empirical Models for Diffusion Coefficients of Metallic Solid Solutions: Wei Zhong¹; Ji-Cheng Zhao¹; ¹University of Maryland

CORROSION

Local Ordering in Materials and Its Impacts on Mechanical Behaviors, Radiation Damage, and Corrosion — Session I

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Nuclear Materials Committee, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Fadi Abdeljawad, Clemson University; Irene Beyerlein, University of California, Santa Barbara; Enrique Lavernia, University of California, Irvine; Robert Ritchie, University of California, Berkeley

Monday AM | March 20, 2023 Sapphire 411A | Hilton

Session Chairs: Penghui Cao, University of California, Irvine; Robert Ritchie, University of California, Berkeley; Yang Yang, The Pennsylvania State University

8:30 AM Invited

Short Range Order and the Evolution of Deformation Mechanisms in Both High and Low Entropy Alloys: Andrew Minor¹; ¹University of California-Berkeley

9:00 AM

Assessing Local Order in Alloys Using Total Scattering, Pair Distribution Functions and Reverse Monte Carlo Simulations: Lewis Owen1; 1University of Sheffield

9:20 AM Invited

Ordering in Ti-V-Nb-Hf Refractory High-Entropy Alloys with Al Alloying: C. Tasan1; Shaolou Wei1; Michael Xu1; James Lebeau1; ¹Massachusetts Institute of Technology

9:50 AM

Comparing Short-range Ordering Behavior in Novel Austenitic Steels via Fluctuation Electron Microscopy Techniques: Po-Cheng Kung¹; Jian-Min Zuo¹; Toshihiro Tsuchiyama²; Brian Somerday¹; Petros Sofronis¹; Jessica Krogstad¹; ¹University of Illinois at Urbana-Champaign; 2Kyushu University

10:10 AM Break

10:25 AM Invited

Solute-strengthening in Alloys with Short-range Order: William Curtin¹; Shankha Nag²; Xin Liu¹; ¹Epfl Sti Igm Lammm; ²TU Darmstadt

10:55 AM

Dislocation Motions in Refractory High-entropy Alloys and Effects of Chemical Order and Disorder: Xinyi Wang¹; Francesco Maresca²; Penghui Cao¹; ¹University of California, Irvine; ²Engineering and Technology Institute Groningen, Faculty of Science and Engineering, University of Groningen

11:15 AM Invited

Neural-network Based Atomistic Simulation on Chemical Order Formation Kinetics in Medium Entropy Alloys: Shigenobu Ogata1; Jun-ping Du¹; ¹Osaka University

11:45 AM

Structural Transitioning in Near Boundary Segregation Zones due to Chemical Ordering in NbMoTaW: Doruk Aksoy1; Megan McCarthy2; Ian Geiger¹; Timothy Rupert¹; ¹University of California, Irvine; ²Sandia National Laboratories

LIGHT METALS

Magnesium Technology 2023 — Keynote Session

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Steven Barela, Terves, Inc; Aeriel Murphy-Leonard, Ohio State University; Petra Maier, University of Applied Sciences Stralsund; Neale Neelameggham, IND LLC; Suveen Mathaudhu, Colorado School of Mines; Victoria Miller, University of Florida

Monday AM | March 20, 2023 30C | SDCC

Session Chairs: Steven Barela, Terves, Inc.; Petra Maier, Stralsund University of Applied Sciences; Aeriel Leonard, The Ohio State University

8:30 AM Keynote

Sustainable Domestic Manufacturing and Protecting IP in a Post-AIA World: Andrew Sherman1; 1Terves LLC

9:15 AM Keynote

Reductant Consideration in Thermal Pathways to Primary ¹Big Blue Magnesium Metal Production: Aaron Palumbo¹; **Technologies**

10:00 AM Presentation of Magnesium Technology Awards

10:15 AM Break

10:35 AM Keynote

Metastable - stable: Norbert Hort¹; ¹Helmholtz-Zentrum Hereon

11:20 AM Keynote

Engineered Bioabsorption for Implant Applications: Jacob Edick1; Carolyn Woldring¹; Joshua Caris²; Nicholas Farkas²; Anuvi Gupta²; Andrew Sherman²; ¹Magsorbeo Biomedical; ²Terves Inc.

CHARACTERIZATION

Material Behavior Characterization via Multi-Directional Deformation of Sheet Metal — Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Daniel Coughlin, United States Steel Corp; Cody Miller, Los Alamos National Laboratory; Kester Clarke, Colorado School of Mines; Piyush Upadhyay, Pacific Northwest National Laboratory; John Carsley, Novelis, Inc.

Monday AM | March 20, 2023 Aqua 309 | Hilton

Session Chairs: Daniel Coughlin, United States Steel Corporation; Cody Miller, Los Alamos National Laboratory

8:30 AM Invited

Comparison of Plasticity and Fracture Behaviors of Conventional and 3rd Gen. AHSS: Sriram Sadagopan¹; Hong Zhu¹; Gang Huang¹; Brian Lin¹; ¹ArcelorMittal Global R&D

9:00 AM Invited

A Practical Edge Fracture Limit for the Advanced High Strength Steels: Hua-Chu Shih1; 1United States Steel

9:30 AM Invited

Characterization and Modeling of Anisotropic Fracture of Advanced High Strength Steels: Jun Hu¹; ¹Cleveland-Cliffs Steel

10:00 AM Break

10:20 AM

Examining Temperature, Strain Rate, and Strain State on TRIPassisted Steel Forming Behavior: Christopher Finfrock¹; Nathan Smith²; Melissa Thrun¹; Amy Clarke¹; Kester Clarke¹; ¹Colorado School of Mines; ²Colorado School of Mines/Montana Tech

NUCLEAR MATERIALS

Materials and Chemistry for Molten Salt Systems — **Corrosion, Wear and Corrosion Products**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Raluca Scarlat, University of California, Berkeley; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Nathaniel Hoyt, Argonne National Laboratory

Monday AM | March 20, 2023 27A | SDCC

Session Chair: Stephen Raiman, University of Michigan

In-situ Corrosion Monitoring of 316 SS L Natural Convection Loop by Radioactive Isotope Tracking: Yafei Wang¹; Cody Falconer¹; Aeli Olson¹; Ivan Mitchell¹; Brian Kelleher¹; Jonathan Engle¹; Kumar Sridharan¹; Adrien¹; ¹University of Wisconsin-Madison

8:50 AM

Long-Term Corrosion Behavior of 316SS and Alloy 601 in Elevated Temperature Molten Nitrate Salt: Andrew Dong¹; Camilla Stitt²; Peter Hosemann¹; George Young²; ¹University of California Berkeley; ²Kairos Power

9:10 AM

Salt Impurities: Measuring Them, Getting Them Out, and Learning to Live with Them: Stephen Raiman¹; Kyle Williams²; ¹The University of Michigan; ²Texas A&M University

9:30 AM

Diffusion Dynamics of Molten FLiNaK Quantified with Quasi-elastic Neutron Scattering: Brent Heuser¹; Golam Rakib¹; Yang Zhang¹; Shao-Chun Lee¹; ¹University of Illinois

Effects of Impurities on Corrosion of 316H Stainless-Steel in Molten FLiNaK Salt: Dino Sulejmanovic1; Timothy Hall2; Holly Garich2; Bruce Pint¹; ¹Oak Ridge National Laboratory; ²Faraday Technology

10:10 AM Break

10:30 AM

Chromium Solution in Molten Uranium-Sodium Chloride Salts Investigated by Ab Initio Molecular Dynamics Simulations: David Andersson¹; Gaoxue Wang¹; Bo Li¹; Ping Yang¹; ¹Los Alamos National Laboratory

10:50 AM

Determination of Instantaneous Corrosion Current Densities of Materials in Molten FLiNaK Salts: Elena Romanovskaja¹: Ho Lun Chan¹; Francisco Garfias¹; Sara Mastromarino²; Raluca Scarlat²; John Scully¹; ¹University of Virginia; ²University of California, Berkeley

Friction and Wear Measurements of Candidate Metal Alloys for Fluoride Salt Pump Bearing and Shaft Materials: Michael Borrello¹; Lorenzo Vergari¹; Raluca Scarlat¹; Lewis Handy-Cardena²; Mark Anderson²; ¹UC Berkeley; ²University of Wisconsin, Madison

11:30 AM

Speciation of Metal Ion Solutes in Molten Salt Matrices for Reactor Applications using Advanced Spectroscopy Techniques: Ruchi Gakhar¹; Kaustubh Bawane¹; William Phillips¹; Michael Woods¹; ¹Idaho National Laboratory

MATERIALS DESIGN

Materials Genome, CALPHAD, and a Career over the Span of 20, 50, and 60 Years: An FMD/SMD Symposium in Honor of Zi-Kui Liu — Overview

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Yu Zhong, Worcester Polytechnic Institute; Richard Otis, Jet Propulsion Laboratory; Bi-Cheng Zhou, University of Virginia; Chelsey Hargather, New Mexico Institute of Mining and Technology; James Saal, Citrine Informatics; Carelyn Campbell, National Institute of Standards and Technology

Monday AM | March 20, 2023 Sapphire L | Hilton

Session Chair: Yu Zhong, Worcester Polytechnic Institute

8:30 AM Invited

Zentropy: Zi-Kui Liu1; 1Pennsylvania State University

9:00 AM Invited

The Materials Genome and Cross Effects in Transport Phenomena: John Agren¹; ¹Royal Institute of Technology

9:30 AM Invited

Genomic Materials Design: The Concurrency Frontier: Gregory Olson¹; ¹Massachusetts Institute of Technology; QuesTek Innovations LLC

10:00 AM Break

10:20 AM Invited

Magnesium & Mentoring - 15 Years of Science and Friendship with Prof. Liu.: Suveen Mathaudhu1; 1Colorado School of

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components III — Ferritic Alloys I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Assel Aitkaliyeva, University of Florida; Clarissa Yablinsky, Los Alamos National Laboratory; Osman Anderoglu, University of New Mexico; Eda Aydogan, Middle East Technical University; Kayla Yano, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Djamel Kaoumi, North Carolina State University

Monday AM | March 20, 2023 28D | SDCC

Session Chairs: Kayla Yano, PNNL; Eda Aydogan, METU

8:30 AM Invited

Microstructure-aware Predictions of the Creep Response of Metals Subjected to Nuclear Environments: Laurent Capolungo¹; Arul Kumar¹; Aritra chakraborty¹; Aaron Kohnert¹; Andrea Rovinelli¹; Ricardo Lebensohn¹; ¹Los Alamos National Laboratory

9:00 AM

Examining Microstructures and Mechanical Properties of Neutron and Ion Irradiated T91, HT9 and 800H Alloys: Pengcheng Zhu1; Shradha Agarwal¹; Steven Zinkle¹; ¹University of Tennessee, Knoxville

9:20 AM

Irradiation and Nanomechanical Performance of Additively Manufactured, In Situ Tempered Grade 91 Steel: Calvin Lear¹; Emily Proehl²; Todd Steckley¹; Matthew Chancey¹; Hyosim Kim¹; Yongqiang Wang¹; Tuhin Mukherjee³; Jeff Bickel⁴; Tarasankar DebRoy³; Peter Hosemann⁴; Thomas Lienert⁵; Stuart Maloy⁶; ¹Los Alamos National Laboratory; ²University of Tennessee, Knoxville; ³Pennsylvania State University; ⁴University of California, Berkeley; ⁵Optomec, Inc; ⁶Pacific Northwest National Laboratory

9:40 AM

Fracture Toughness of Highly Irradiated RPV Steels: Mikhail Sokolov¹; Xian Chen¹; Takuya Yamamoto²; Robert Odette²; Randy Nanstad3; 1ORNL; 2UCSB; 3R&S Consulting

10:00 AM Break

10:20 AM

Microstructure and Mechanical Properties of Neutron Irradiated Tantalum-alloyed Ferritic Martensitic Steels: Weicheng Zhong¹; Lizhen Tan¹; Thak Sang Byun¹; Ying Yang¹; ¹Oak Ridge National Laboratory

10:40 AM

Impact of Electrolytic Hydrogen Charging on Fatigue Crack Propagation in Reactor Steels: Melissa Weihrauch¹, Maulik Patel¹; Eann Patterson¹; ¹University of Liverpool

Estimating the Strengthening Parameters for Irradiated Alloys using Atomic Scale: Osetsky Yury¹; German Samolyuk¹; ¹Oak Ridge National Laboratory

BIOMATERIALS

Mechanics and Physiological Adaptation of Hard and Soft Biomaterials and Biological Tissues — Soft Materials & Adaptation

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Bernd Gludovatz, UNSW Sydney; Elizabeth Zimmermann, McGill University; Steven Naleway, University of Utah

Monday AM | March 20, 2023 Sapphire 400B | Hilton

Session Chairs: Elizabeth Zimmermann, McGill University; Bernd Gludovatz, UNSW Sydney

8:30 AM Introductory Comments

8:35 AM Keynote

Materials for Mechanochemistry and Mechanobiology: Pavithra Jayathilaka¹; Thomas Molley¹; Yuwan Huang¹; Meredith Silberstein²; Jay Kruzic¹; Kristopher Kilian¹; ¹UNSW Sydney; ²Cornell University

9:15 AM Kevnote

Mechanics and Applications of Bioinspired Bioadhesives for Tissue Repair: $Jianyu Li^2$: $^1McGill University$

9:55 AM Break

10:15 AM Invited

Bone Adaptation as a Response to Mechanical Loading in Zebrafish: Bjorn Busse¹; ¹University Medical Center Hamburg

10:45 AM Invited

Bone's Adaptation to Hyperglycemia in Diabetes: Claire Acevedo¹; ¹University of Utah

11:15 AM

Adaptation of Hard and Soft Tissues Structures to Physiological Loading Patterns: Elizabeth Zimmermann¹; ¹McGill University

NUCLEAR MATERIALS

Methods, Techniques, and Materials Discovery of Irradiation Effect Using In-situ Microscopy — In-situ Microscopy under Irradiation

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Wei-Ying Chen, Argonne National Laboratory; Xuan Zhang, Argonne National Laboratory; Kevin Field, University of Michigan; Donald Brown, Los Alamos National Laboratory; Aida Amroussia. GE Global Research

Monday AM | March 20, 2023 25A | SDCC

Session Chair: Wei-Ying Chen, Argonne National Laboratory

8:30 AM Invited

High Throughput Assessment of Advanced Nuclear Materials via In-situ TEM: Osman El-Atwani¹; Enrique Martinez²; Andrew Alvarado¹; Meimei Li³; ¹Los Alamos National Laboratory; ²Clemson University; ³Argonne National Laboratory

9:00 AM

Effect of Stacking Fault Energy on Microstructural Evolution of Compositionally Complex Alloys under In situ Dual-beam Heavy-ion Irradiation: *Calvin Parkin*¹; Boris Maioriv²; Kumar Sridharan¹; Wei-Ying Chen³; Meimei Li³; Adrien Couet¹; ¹University of Wisconsin-Madison; ²Los Alamos National Laboratory; ³Argonne National Laboratory

9:20 AM

Observations of 'Far from Equilibrium' Phenomena under in Reactor Thermal Conditions Using In Situ TEM: Sriram Vijayan¹; Kaustubh Bawane²; Lingfeng He²; Fidelma Di Lemma²; Joerg Jinschek³; ¹The Ohio State University; ²Idaho National Laboratory; ³Technical University of Denmark (DTU)

9·40 AM

Discovering the Mechanisms of Helium Channel Evolution Via In-situ Annealing and Observation in TEM: Digvijay Yadav¹; Ryan Schoell²; Eric Lang²; Benjamin Derby³; Jon Kevin Baldwin³; Nan Li³; Khalid Hattar²; Michael Demkowicz¹; Kelvin Xie¹; ¹Texas A&M University; ²Sandia National Laboratory; ³Los Alamos National Laboratory

10:00 AM Break

10:20 AM Invited

Rare-earth Titanates Ln2TiO5 Crystal Chemistry and Radiation Response. A Review.: Rob Aughterson¹, ¹Australian Nuclear Science and Technology Organisation

10:50 AM

Radiation Tolerance of Amorphous Alumina Cladding Coatings for Heavy Liquid Metal Cooled Fast Reactors: Temperature and Dose Effect.: Davide Loiacono¹; Mattia Cabrioli¹; Wei Ying Chen²; Meimei Li²; Fabio Di Fonzo³; ¹Politecnico di Mllano; ²Argonne national Laboratory; ³IIT

11:10 AM

Understanding the Amorphization Limit in Irradiated Ceramics via Repeated In situ Recrystallization Experiments: Nathan Madden¹; Matthew Janish²; Wei-Ying Cheng³; Meimei Li³; Blas Uberuaga²; Jessica Krogstad¹; ¹University of Illinois at Urbana-Champaign; ²Los Alamos National Laboratory; ³Argonne National Laboratory

11:30 AM

Helium Effects on Defect Evolution of In-situ Irradiated Additive-manufactured Grade 91 Steel: Yan-Ru Lin¹: Arunodaya Bhattacharya¹: Wei-Ying Chen²: Steven Zinkle³: ¹Oak Ridge National Laboratory: ²Argonne National Laboratory; ³University of Tennessee

NUCLEAR MATERIALS

Microstructural, Mechanical and Chemical Behavior of Solid Nuclear Fuel and Fuel-cladding Interface — Uranium Dioxide Fuels I

Sponsored by: TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee

Program Organizers: Yi Xie, Purdue University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida

Monday AM | March 20, 2023 26B | SDCC

Session Chair: Yi Xie, Purdue University

8:30 AM Introductory Comments

8:35 AM

Characterization of the Radial Microstructural Evolution in Commercial LWR UO, with Different Power Histories: Casey McKinney¹; Nathan Capps¹; Jason Harp¹; Tyler Gerczak¹; ¹Oak Ridge **National Laboratory**

8:55 AM Invited

Spark Plasma Sintering - Innovative Approaches for High Temperature Creep Testing and Transient Behavior of Nuclear Fuels: Jie Lian1; 1Rensselaer Polytechnic Institute

9:20 AM

Observations from Microscopy on High Burnup Light Water Reactor Fuel Before and After LOCA Testing: Jason Harp¹; Rachel Seibert¹; Jesse Werden¹; Chad Parish¹; Tyler Gerczak¹; Nathan Capps¹; ¹Oak Ridge National Laboratory

9:45 AM

Improved Model of Microcracking Behavior in High Burnup UO2 Fuel: Walter Brinkley¹; Oliver Baldwin¹; Jonathan Norman¹; Nathan Capps2; Brian Wirth1; 1UTK; 2ORNL

10:05 AM Break

10:20 AM

Cr-doped UO, Studied Using XAS and Neutron Scattering: Arjen van Veelen¹; Adrien Terricabras¹; Scarlett Widgeon Paisner¹; Tarik Saleh¹; Joshua White¹; ¹Los Alamos National Laboratory

Small-scale Mechanics Quantification of UO2 Fracture Toughness: Brent Heuser¹; Shen Dillon¹; Andrew Nelson²; Sarah Finkeldei²; ¹University of Illinois; ²ORNL

Fracturing and Fragmentation of Cr2O3-doped UO2 Pellets with Controlled Microstructure Under Prototypic LOCA and RIA Thermal Transients: Dong Zhao¹; Kun Yang¹; Andre Broussard¹; Heng Ban²; Jie Lian¹; ¹Rensselaer Polytechnic Institute; ²University of Pittsburgh

11:20 AM

Performance of FeCrAl Alloys Under Long-term Graphite Exposure: Maria Kosmidou¹; Hyosim Kim¹; Nan Li¹; Mehadi Hassan¹; Erofili Kardoulaki¹; ¹Los Alamos National Laboratory

Interconnectivity Quantification and Corrosion Mechanisms in Zr Alloys: Hongliang Zhang¹; William Howland²; Adrien Couet¹; ¹University of Wisconsin Madison; ²Naval Nuclear Laboratory

In Situ EBSD Studies of Blocky Grain Growth in Welded Zircaloy-4: Thomas Britton¹; Ruth Birch²; ¹University of British Columbia; ²Imperial College London

12:20 PM

Determination of the Hydrogen Heat of Transport in Zircaloy-4: Soyoung Kang¹; Pei-Hsun Huang²; Victor Petrov²; Annalisa Manera²; Taehwan Ahn²; Arthur Motta¹; ¹Pennsylvania State University; ²University of Michigan-Ann Arobor

NANOSTRUCTURED MATERIALS

Nanostructured Materials in Extreme Environments Nanostructured Metals in Irradiation **Environments**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nuclear Materials Committee

Program Organizers: Haiming Wen, Missouri University of Science and Technology; Nan Li, Los Alamos National Laboratory; Youxing Chen, University of North Carolina Charlotte; Yue Fan, University of Michigan; Niaz Abdolrahim, University of Rochester; Khalid Hattar, University of Tennessee Knoxville; Ruslan Valiev, UFA State Aviation Technical University; Zhaoping Lu, University of Science and Technology Beijing

Monday AM | March 20, 2023 Aqua 303 | Hilton

Session Chair: Haiming Wen, Missouri University of Science and Technology

8:30 AM Introductory Comments

8:35 AM Invited

Nanostructured Ferritic Alloys for Advanced Nuclear Reactors: Stuart Maloy¹; David Hoelzer²; Eda Aydogan³; G.R. Odette⁴; ¹Pacific Northwest National Laboratory; ²ORNL; ³METU; ⁴UCSB

9:00 AM Invited

Role of Electronic Energy Loss on Interface Stability of Nanostructured High-Entropy Alloys: Yanwen Zhang1; Chinthaka Silva²; Timothy Lach¹; Matheus Tunes³; Philip Rack⁴; Stephen Donnelly⁵; William Weber⁴; ¹Oak Ridge National Laboratory; ²Lawrence Livermore National Laboratory; ³Los Alamos National Laboratory; 4University of Tennessee; 5University of Huddersfield

9:25 AM Invited

Global Compositional Patterning and Self-organization in Irradiated Alloys: Gabriel Bouobda Moladje¹; Sourav Das¹; Amit Verma¹; Robert Averback¹; Pascal Bellon¹; ¹University of Illinois at Urbana-Champaign

9:50 AM

Microstructural Evolution in Dilute Nanocrystalline Al Alloys During Ion-irradiation: Sourav Das1; Sung Eun Kim1; Pascal Bellon1; Robert Averback¹; ¹University of Illinois, Urbana-Champaign

10:10 AM Break

10:30 AM Invited

Nanostructured Mechanical Martensites in Ni Alloys: Defects and Ordering Effects: Janelle Wharry1; Caleb Clement1; Chao Yang¹; Daniel Hong²; Yu Lu³; Sheng Cheng³; Peter Anderson²; Donna Guillen4; David Gandy5; 1Purdue University; 2The Ohio State University; ³Boise State University; ⁴Idaho National Laboratory; ⁵Electric Power Research Institute

10:55 AM Invited

Nanostructured BCC Materials for Applications in Extreme Environments: Osman El-Atwani¹; Enrique Martinez²; Saryu Fensin¹; Stuart Maloy³; Jonathan Gigax¹; Hyosim Kim¹; ¹Los Alamos National Laboratory; ²Clemson University; ³Pacific Northwest National Laboratory

11:20 AM

Study of the Microstructural Evolution of Ultrafine-grained Austenitic Stainless Steel Irradiated by Neutrons by Atom Probe Tomography and Transmission Electron Microscopy: Frederic Habiyaremye¹; Bertrand Radiguet¹; Auriane Etienne¹; Solène Rouland¹; Xavier Sauvage¹; Benoit Tanguy²; Joël Malaplate²; Christophe Domain³; Remy Bonzom³; Nariman Enikeev⁴; Marina Abramova⁵; ¹Université et INSA de Rouen; ²Université Paris-Saclay; ³EDF Lab; ⁴Ufa State Aviation Technical University; ⁵Saint Petersburg State University

11:40 AM

Irradiation Response of Nanostructured HEAs: Matthew Luebbe¹; Haiming Wen¹; Khalid Hattar²; ¹Missouri University of Science and Technology; ²Sandia National Laboratory

12:00 PM

Review of Irradiation-induced Grain Growth in Nanocrystalline FCC Metals: Marie Thomas¹; Eric Lang²; Trevor Clark²; Heather Salvador³; Khalid Hattar²; Suveen Mathaudhu³; ¹Colorado School of Mines; ²Sandia National Laboratories; ³University of California, Riverside

CHARACTERIZATION

Neutron and X-ray Scattering in Materials Science — Atomic Dynamics in Crystalline Materials

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Jennifer Niedziela, Oak Ridge National Lab; Hillary Smith, Swarthmore College

Monday AM | March 20, 2023 Aqua 311B | Hilton

Session Chair: Hillary Smith, Swarthmore College

8:30 AM Invited

Inelastic Neutron Scattering Studies of New Spectral Features from Nonlinear Phonon Interactions: Brent Fultz¹; Vladimir Ladygin¹; Camille Bernal-Choban¹; Claire Saunders¹; Yang Shen¹; ¹California Institute of Technology

9:00 AM Invited

Atomic Tunneling in Crystalline Materials: Raphael Hermann¹, ¹Oak Ridge National Laboratory

9:30 AM Invited

Understanding the Origin of Kohn Anomalies in Alpha-Uranium: *Dipanshu Bansal*¹; Aditya Roy¹; Naini Bajaj¹; Ranjan Mittal²; P D Babu²; ¹IIT Bombay; ²BARC

10:00 AM Break

10:15 AM Invited

Modification of Phonon Group Velocity in Doped Sapphire: Shuonan Chen¹; Javier Garay²; Fariborz Kargar¹; Tao Hong³; Alexander Balandin¹; *Chen Li*¹; ¹University of California-Riverside; ²University of California, San Diego; ³Oak Ridge National Laboratory

10:45 AM Invited

Lattice Dynamics of Incommensurate Crystals: Michael Manley¹; Andrew May¹; Barry Winn¹; Douglas Abernathy¹; Raffi Sahul²; Raphael Hermann¹; ¹Oak Ridge National Laboratory; ²Amphenol Corporation

11:15 AM

Temperature Dependence of Anharmonic Effects in NaBr by Inelastic Neutron Scattering and Interatomic Potentials from Machine Learning: Vladimir Ladygin¹; Claire Sounders¹; Camille Bernal-Choban¹; Douglas Abernathy²; Michael Manley²; Brent Fultz¹; ¹California Institute of Technology; ²Oak Ridge National Laboratory

11:35 AM

Validating First-principles Phonon Lifetimes via Inelastic Neutron Scattering: *Hao Ma*¹; Enda Xiao²; Chris Marianetti²; Michael Manley¹; ¹ORNL; ²Columbia University

ENERGY & ENVIRONMENT

New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of Patrick R. Taylor — Keynote Session

Sponsored by: Society for Mining Metallurgy and Exploration, TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Materials Characterization Committee, TMS: Energy Committee, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Ramana Reddy, University of Alabama; Corby Anderson, Colorado School of Mines; Erik Spiller, Colorado School of Mines; Edgar Vidal, NobelClad; Camille Fleuriault, Eramet Norway; Alexandra Anderson, Gopher Resource; Mingming Zhang; Christina Meskers, SINTEF

Monday AM | March 20, 2023 33C | SDCC

Session Chairs: Thomas Battle; Merete Tangstad, Norwegian University of Science and Technology

8:30 AM Introductory Comments: Ramana Reddy for the introduction of Patrick Taylor Symposium

8:40 AM Introductory Comments: Chrisinta Meskers to introduce EPD Award Lecture

8:45 AM Keynote

EPD Distinguished Award Lecture: New Directions for Biotechnology Practices in Metals Extraction: Corale Brierley¹; ¹Brierley Consultancy LLC

9:25 AM Keynote

New Directions in Decarbonization of Metals Production: *Ramana Reddy*¹; ¹University of Alabama

10:05 AM Break

10:25 AM Keynote

Development of Ironmaking Technology by the Direct Gaseous Reduction of Iron Concentrate: Hong Yong Sohn¹; ¹University of Utah

11:05 AM Keynote

Domestic Strategic & Critical Metal & Material Production With NSC & ASL Hydrometallurgical Technologies.: Corby Anderson¹; ¹Colorado School of Mines

NUCLEAR MATERIALS

Phase Stability in Extreme Environments — Phase Stability in Nuclear Environments I

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Andrew Hoffman, GE Research; Kinga Unocic, Oak Ridge National Laboratory; Janelle Wharry, Purdue University; Kaila Bertsch, Lawrence Livermore National Laboratory; Raul Rebak, GE Global Research

Monday AM | March 20, 2023 28C | SDCC

Session Chairs: Pin Lu, Questek Innovations Llc; Djamel Kaoumi, North Carolina State University

8:30 AM Invited

Advanced Additively Manufactured Materials for Fission and Fusion Nuclear Applications: Pin Lu¹; Tanner Kirk¹; ¹QuesTek Innovations LLC

9:00 AM

Dynamic Sink Strength Effects of Irradiation-induced Precipitates in Advanced Steels for Fusion Reactor Applications: T.M. Kelsy Green¹; Tim Graening²; Weicheng Zhong²; Ying Yang²; Kevin Field¹; ¹University of Michigan Ann Arbor; ²Oak Ridge National Laboratory

9:20 AM

Influence of Crystal Structure on Helium-induced Nano-tendril Formation in a Multiphase, Multicomponent Alloy: Amy Gandy¹; Svenja Lohmann²; Gregor Hlawacek²; Rene Hübner²; Le Ma¹; Russell Goodall¹; ¹University of Sheffield; ²Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf

9:40 AM Invited

Phase Transformations Driven by Non-Equilibrium Lattice Point Defects: Fe-based Alloys under Irradiation: Maylise Nastar¹; Quentin Tencé¹; Lisa Belkacemi¹; Estelle Meslin¹; Marie Loyer-Prost¹; ¹C.E.A

10:10 AM Break

10:30 AM

Examining the Contribution of Solute Nano-clustering in MA957 to Neutron Irradiation Induced Hardening and Embrittlement: Samara Levine¹; Steven Zinkle¹; Jonathan Poplawsky²; David Hoelzer²; Arunodaya Bhattacharya²; ¹University of Tennessee; ²Oak Ridge National Laboratory

10:50 AM

Reversible Disorder Transformation of Fe3O4 under Ion Irradiation Evidence by In-situ TEM: Angelica Lopez Morales¹; Djamel Kaoumi¹; ¹North Carolina State University

11:10 AM

Exploring Temperature and Radiation Damage Induced Phase Transformations in Ta-V-Ti (W,Cr,Fe) Multicomponent Alloys: Amy Gandv¹: Christina Hofer²: Paul Bagot²: Michael Moodv²: Dhinisaben Patel¹; Hamed Shahmir¹; David Armstrong²; Junliang Liu²; Alexander Carruthers³; Ed Pickering³; Russell Goodall¹; Shavkat Akhmadaliev⁴; ¹University of Sheffield; ²University of Oxford; ³University of Manchester; ⁴Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf

ELECTRONIC MATERIALS

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXII — **Advanced Electronic Materials**

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hiroshi Nishikawa, Osaka University; Shihkang Lin, National Cheng Kung University; Chao-hong Wang, National Chung University; Chih-Ming Chen, National Chung Hsing University; Jae-Ho Lee, Hongik University; Zhi-Quan Liu, Shenzhen Institutes of Advanced Technology; Ming-Tzer Lin, National Chung Hsing University; Yee-wen Yen, National Taiwan University of Science and Technology; A.S.Md Abdul Haseeb, Bangladesh University of Engineering and Technology (BUET); Ligang Zhang, Central South University; Sehoon Yoo, KITECH; Vesa Vuorinen, Aalto University; Yu-chen Liu, National Cheng Kung University; Ting-Li Yang, National Yang Ming Chiao Tung University

Monday AM | March 20, 2023 Sapphire E | Hilton

Session Chairs: Jae-Ho Lee, Hongik University; Chih-Ming Chen, National Chung Hsing University

8:30 AM Keynote

Alternative Metal with Lower Resistivity than Cu: A First-principles Study: Tae Gon Ha¹; Youngmin Lee²; Jungwoo Choi²; Hyuck Mo Lee²; ¹Samsung; ²KAIST

9:00 AM

Cu Sintering Process Modified by Adding a Low Temperature **Liquid Sintering Step**: Bo Rong Huang¹; ¹National Central University

Thermal Stability of Highly (111)-oriented Nanotwinned Ag Thin Film during Annealing Process: Wei-Cheng Chang¹; Leh-Ping Chang¹; Fan-Yi Ouyang¹; ¹National Ching Hua University

9:40 AM

Multistep Electroplating for the Uniform Composition of Invar Electroplating: Na-Young Kang¹; Jaeho Lee¹; ¹Hongik University

10:00 AM Break

10:20 AM

Employment of Diamond-like Carbon and Chromium Carbide Coatings as Diffusion Barrier Layers against Ga-based Thermal Interface Materials (TIMs): Efficacy and Impact on Heat Transfer: Yifan Wu¹; Amy Marconnet¹; Carol Handwerker¹; ¹Purdue University

10:40 AM

Mechanism of Microstructure Evolution between Bi-Sn Layer Deposition and Substrate Elements: Ching Yu Yeh1; 1National Central University

11:00 AM

Flip-chip Encapsulation with Hybrid Organic Inorganic Passivation of Perovskite Solar Cells: Tse-Lin Lai¹; ¹National Central University

PHYSICAL METALLURGY

Phase Transformations and Microstructural Evolution — Ferrous Alloys I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Ashley Paz y Puente, University of Cincinnati; Mark Aindow, University of Connecticut; Sriswaroop Dasari, University of North Texas; Ramasis Goswami, Naval Research Laboratory; Megumi Kawasaki, Oregon State University; Eric Lass, University of Tennessee-Knoxville; Josh Mueller, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Le Zhou, Marguette University

Monday AM | March 20, 2023 25C | SDCC

Session Chair: Eric Lass, University of Tennessee-Knoxville

8:30 AM

Microstructural Evolution of Pressure Vessel Carbon Steel Plate during Hydrogen Creep Testing: Jenna Krynicki¹; Brandon Rollins²; Kenneth Bagnoli³; Timothy Weihs¹; ¹Johns Hopkins University; ²DNV GL USA, Inc.; ³Engineering Mechanics Corporation

8:50 AM

A Comprehensive Investigation on the Sintering Behavior of CaO-SiO2-CaF2-Al2O3 Slags System: Liang Yu1; Shaopeng Gu2; Guanghua Wen¹; Chunhua Ran³; Funian Han¹; Zhe Wang¹; ¹Chongqing University; ²North China University of Science and Technology; ³Teacher's College for Vocational Studies of JiuLongPo District

9:10 AM

Can We Make an Electron Beam Weld 'Disappear'?: Kirstie Bruce¹; Mark Taylor¹; Jonathan Fellowes¹; Luke Burling²; John Francis¹; Ed Pickering¹; ¹University of Manchester; ²Rolls-Royce plc

9:30 AM

Chemical Heterogeneity and Quench Rate Considerations for Quench and Partition Processing: Douglas Smith¹; Kester Clarke¹; Amy Clarke1; 1Colorado School of Mines

9:50 AM Break

10:10 AM

Surrogate Model to Predict Microstructure and Mechanical Properties in Stainless Steel Cladding under Reactor Operating Conditions: William Frazier¹; Yucheng Fu¹; Lei Li¹; Ram Devanathan¹; ¹Pacific Northwest National Laboratory

In-situ SEM Study of Hydrogen-dislocation Interactions in Ferritic Stainless-steel: Kyung-Shik Kim1; Cem Tasan1; 1Massachusetts Institute of Technology

ELECTRONIC MATERIALS

Printed Electronics and Additive Manufacturing: Functional Materials, Processing Techniques, and **Emerging Applications — Session I**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Rahul Panat, Carnegie Mellon University; Yong Lin Kong, University of Utah; Konstantinos Sierros, West Virginia University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ravindra Nuggehalli, New Jersey Institute of Technology

Monday AM | March 20, 2023 Sapphire 411B | Hilton

Session Chairs: Paul Ohodnicki, University of Pittsburgh; Masoud Mahjouri-Samani, Auburn University; Christine Fisher, City University of New York

8:30 AM Invited

Functional Sensing Material Enabled Fiber Optic Sensors for Electric Grid Assets: Paul Ohodnicki¹; Yang-Duan Su¹; Dolendra Karki¹; ¹University of Pittsburgh

8:55 AM Invited

Multimaterial Dry Printing and Additive Nanomanufacturing of Flexible Hybrid Electronics and Sensors: Masoud Mahjouri-Samani; Zabihollah Ahmadi¹; Aarsh Patel¹; Seungjong Lee¹; Nima Shamsaei¹; Raymond Unocic²; ¹Auburn University; ²Oak Ridge National Laboratory

9:20 AM

3D Printing of Customized Embedded Sensors for Soft Robotic Applications: Akshay Kakar¹; Derrick Banerjee¹; Evan Helgeson¹; Konstantinos Sierros¹; Edward Sablosky¹; Emrah Demirkal¹; ¹West Virginia University

9:40 AM

Analysis of Coaxial Direct Ink Writing for Embedded Sensors in Soft Robotic Applications: John Burke¹; Derrick Banerjee¹; Craig Joiner¹; Domenic Cipollone¹; Edward Sabolsky¹; Konstantinos Sierros¹; ¹West Virginia University

10:00 AM Break

10:20 AM Invited

Closing the Loop on Aerosol Jet Printing: Optical Process Monitoring to Support Reliable Fabrication of Electronics: Ethan Secor1; 1lowa State University

10:45 AM Invited

In-situ Sensors Enabling and Enabled by Additive Electronics: Benjamin LaRiviere¹; M. Ericson¹; ¹Oak Ridge National Laboratory

11:10 AM

Aerosol-Jet Printed Sensors for Environmental, Safety, and Health Monitoring: Christine Fisher¹; Lydia Skolrood¹; Kai Li¹; Pooran Joshi¹; Tolga Aytug¹; ¹Oak Ridge National Laboratory

11:30 AM

Ball Milling Assisted Liquid Exfoliation and Aerosol Jet Printing of Ternary Transition Metal Dichalcogenides: Fereshteh Rajabi Kouchi¹; Alireza Ahmadiparidari²; Amin Salehi-Khojin²; David Estrada¹; ¹Boise State University; ²University of Illinois at Chicago

MATERIALS PROCESSING

Rare Metal Extraction & Processing — Processing for **Rare Earth**

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Takanari Ouchi, University of Tokyo; Kerstin Forsberg, KTH Royal Institute of Technology; Gisele Azimi, University of Toronto, Shafiq Alam, University of Saskatchewan: Neale Neelameggham, IND LLC; Hojong Kim, Pennsylvania State University; Alafara Baba, University of Ilorin; Hong (Marco) Peng, University of Queensland; Athanasios Karamalidis, Pennsylvania State University; Shijie Wang, Coeur Mining, Inc

Monday AM | March 20, 2023 30B | SDCC

Session Chairs: Gisele Azimi, University of Toronto; Neale Neelameggham, IND LLC

9:35 AM Introductory Comments

9:40 AM

Rare Earth Elements Extraction from an Ionic Clay from South America: Gisele Azimi1; 1University of Toronto

Leaching of Neodymium from Recycled NdFeB Magnet Powders Using Citric Acid: Srujan Rokkam¹; Quang Truong¹; Jonas Baltrusaitis²; Manoj Silva²; ¹Advanced Cooling Technologies, Inc.; ²Lehigh University

10:20 AM Break

10:40 AM Introductory Comments

Separation of Rare Earth Elements from Monazite via Sulfidation: Caspar Stinn¹; Zachary Adams¹; Vasu Kaker¹; Antoine Allanore¹; ¹Massachusetts Institute of Technology

Experimental Investigation of Liquid Metal Leaching for Rare Earth Magnet Recycling: Chinenye Chinwego¹; Adam Powell¹; ¹Worcester Polytechnic Institute

11:25 AM

Recycling of Rare Earth Elements (REEs) from Scrap Nd-Fe-B Magnets: Nityanand Singh1; Pankaj Kumar Choubey1; Rekha Panda¹; Rajesh Kumar Jyothi²; Manis Kumar Jha¹; ¹CSIR-National Metallurgical Laboratory; ²Korea Institute of Geoscience & Mineral Resources (KIGAM)

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Materials and Science — Separations/Forensics

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: J. Rory Kennedy, Idaho National Laboratory; Taylor Jacobs, Los Alamos National Laboratory; Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Don Wood, Idaho National Laboratory

Monday AM | March 20, 2023 28A | SDCC

Session Chairs: Rory Kennedy, INL; Don Wood, Idaho National Laboratory

8:30 AM Introductory Comments

8:35 AM Invited

Next Steps for Actinide Separations & Reprocessing: Jenifer Shafer¹; ¹Colorado School of Mines

9:05 AM Invited

Actinide Electrochemistry at Metal Oxide Electrodes: Christopher Dares¹; Jeffrey McLachlan¹; Xiangyang Hou¹; Evan Jones¹; Gabriela Ortega¹; Travis Grimes²; ¹Florida International University; ²Idaho National Laboratory

9:35 AM

Methodology and Density of PuCl₃-NaCl Mixtures: Michael Woods¹; Toni Karlsson¹; Ruchi Gakhar¹; ¹Idaho National Laboratory

9:55 AM

Melting Temperature Method for Determining the Concentration of Pu-metal in PuCl3 Salt: Toni Karlsson¹; Cynthia Adkins¹; ¹Idaho **National Laboratory**

10:15 AM Break

10:35 AM Invited

Actinide Science for Post Detonation Nuclear Forensic Analyses: Mathew Snow1; David Chichester1; James Johnson1; Tommy Holschuh¹; Jessica Meiers¹; Jacob Brookhart¹; ¹Idaho National Laboratory

11:05 AM Invited

Local Structure and Distribution of Impurities in Plutonium Materials for Nuclear Forensics: Sarah Hickam¹; Kasey Hanson¹; Harry Jang¹; Arjen van Veelen¹; Daniel Olive¹; Nicholas Edwards²; Alison Pugmire¹; ¹Los Alamos National Laboratory; ²SLAC National Accelerator Laboratory

MATERIALS DESIGN

Thermodynamics and Kinetics of Alloys — Session I

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Ji-Cheng Zhao, University of Maryland; Wei Xiong, University of Pittsburgh; Chuan Zhang, CompuTherm LLC; Shuanglin Chen, CompuTherm LLC

Monday AM | March 20, 2023 Sapphire M | Hilton

Session Chairs: Ji-Cheng Zhao, University of Maryland; Kil-Won Moon, National Institute of Standards and Technology; Yijia Gu, Missouri University of Science & Technology

8:30 AM Invited

Thermodynamic Assessments and Experimental Validation of Iron "Impurity" in Cast Aluminum Alloys: Alan Luo1; Siva Balasubramani1; Michael Moodispaw¹; Jianyue Zhang¹; Gabriel Garcia¹; ¹The Ohio State University

8:50 AM Invited

First-principles Based Calculation of Thermodynamic and Kinetic Properties in Non-Dilute Mg Alloys Using CASM: Brian Puchala¹; Anton Van der Ven²; ¹University of Michigan; ²University of California, Santa Barbara

9:10 AM

A First-principles Analysis of the Phase Stability of B2/BCC High Entropy Alloys: Julian Brodie¹; Maryam Ghazisaeidi¹; ¹Ohio State University

Twin Nucleation from Stacking Fault Networks in Magnesium: Kehang Yu1; Xin Wang1; Subhash Mahajan2; Irene Beyerlein3; Penghui Cao¹; Timothy Rupert¹; Julie Schoenung¹; Enrique Lavernia¹; ¹University of California, Irvine; ²University of California, Davis; ³University of California, Santa Barbara

9:50 AM

On the Effect of Different Elements on the Phase Stability of Bulk Alloys, Which Compositions Were Derived from Co-base Superalloys: Maik Rajkowski¹; Mike Schneider¹; Aleksander Kostka¹; Christoph Somsen¹; Guillaume Laplanche¹; ¹Ruhr-Universität Bochum

10:10 AM Break

10:30 AM Invited

Interfacial and Volumetric Melting Regimes of Sn Nanoparticles: Lucas Robinson¹; John Blendell¹; Carol Handwerker¹; Edwin Garcia¹; ¹Purdue University

10:50 AM

Evaluation and Assessment of Interdiffusion Coefficients and Atomic Mobility in FCC Al-Cu-V: Yang Yang1, David Christianson1, Michele Manuel¹; ¹University of Florida

11:10 AM

Low Temperature Phase Equilibria Investigation and Phase Identification in the Cu-In-Sn System: Fu-Ling Chang1; Han-Tang Hung¹; I-Chieh Fang¹; Yu-Hsin Lin¹; C.Robert Kao¹; ¹National Taiwan University

Experimental Investigation and Thermodynamic Assessment of the Cr-Si Binary System: Kazushige Ioroi¹; Yuki Aono¹; Xiao Xu¹; Toshihiro Omori¹; Ryosuke Kainuma¹; ¹Tohoku University

11:50 AM

Thermodynamic Assessment of the V-Ti-B System: Mustafa Yazlak¹; Hans-Jürgen Christ¹; Weiguang Yang²; Georg Hasemann³; Manja Krüger³; Bronislava Gorr⁴; ¹Universität Siegen; ²Forschungszentrum Jülich; 3Otto-von-Guericke Universität Magdeburg; 4Karlsruher Institut für Technologie

NUCLEAR MATERIALS

Transmutation Effects in Fusion Reactor Materials: Critical Challenges & Path Forward — Facilities, **Characterization & Experimental Validation**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Arunodaya Bhattacharya, Oak Ridge National Laboratory; Steven Zinkle, University of Tennessee; Philip Edmondson, The University of Manchester; Aurelie Gentils, Université Paris-Saclay; David Sprouster, Stony Brook University; Takashi Nozawa, National Institutes for Quantum and Radiological Science and Technology (QST); Martin Freer, University of Birmingham

Monday AM | March 20, 2023 27B | SDCC

Session Chairs: Grace Burke, Oak Ridge National Laboratory; Philip Edmondson, University of Manchester

8:30 AM Invited

Irradiation Spectrum, Transmutation, and Supporting Materials Use Next Generation Fusion Systems: Lance Snead1; David Sprouster2; Steven Zinkle³; Brian Wirth³; Yutai Katoh⁴; Ethan Peterson⁵; ¹Stony Brook University; Massachusetts Institute of Technology; ²Stony Brook University; ³University of Tennessee; ⁴Oak Ridge National Laboratory; 5 Massachusetts Institute of Technology

9:10 AM

The University of Birmingham Accelerator Driven Neutron Facility: Martin Freer¹; ¹University of Birmingham

Advanced Synchrotron Characterization Techniques for Fusion Materials Science: David Sprouster1; J Trelewicz1; T Koyanagi2; W Zhong²; Y Katoh²; L Snead¹; ¹Stony Brook University; ²Oak Ridge National Laboratory

9:50 AM

Tracking Neutron-irradiation Induced Transmutation Using Atom Probe Tomography and Neutron Inventory Calculations: Philip Edmondson¹; Mark Gilbert²; ¹The University of Manchester; ²UKAEA

ADVANCED MATERIALS

2D Materials: Preparation, Properties, Modeling & Applications — Carbon Related Materials -**Processing, Properties & Applications II**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Sufian Abedrabbo, Khalifa University; Hesam Askari, University of Rochester; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Joshua Young, New Jersey Institute Of Technology; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Karine Mougin, CNRS, IS2M; Heinz Palkowski, Clausthal University of Technology

Monday PM | March 20, 2023 Aqua AB | Hilton

Session Chairs: Hesam Askari, University of Rochester; Sufian Abedrabbo, Khalifa University

2:00 PM Introductory Comments

2:05 PM Invited

Processing Approaches for the Efficient Liquid Exfoliation of Graphene Transport Enhancement between Subsequent Flakes: Konstantinos Sierros¹; Harrison Loh¹; ¹West Virginia University

2:30 PM

Q-Carbon Nanoballs and Diamond Nanodots: Nayna Khosla¹; Jagdish Narayan¹; ¹North Carolina State University

Synthesis and Implications of Antibacterial Graphene Coating on Nickel Substrates using Pulsed Laser Deposition: Ramesh Devadig¹; Venkata A.S. Kandadai¹; Bharat Jasthi¹; Venkataramana Gadhamshetty¹; ¹South Dakota School of Mines and Tech

3:10 PM Invited

Ultra-long Carbon Nano Tube

Changing the World of Materials: Shuki Yeshurun¹; ¹Tortech Nano **Fibers**

3:35 PM Break

3:50 PM Invited

"Temperature", a Key Parameter for Graphene Exfoliation In Water: lakovos Tzanakis¹; Amanpreet Kaur¹; Dmitry Eskin¹; ¹Oxford Brookes University

4:15 PM

An Overview of Graphene-based Nanomaterials in Electronic Skin **Biosensing**

: Raphael Ekun¹; Eribe Jonathan²; Okeke Emmanuel³; Best Atoe⁴; Ikhazuagbe Ifijen⁵; ¹ Cyprus International University; ²Benson Idahosa University; 3University of Benin; 4Worldwide Healthcare, Nigeria; 5Rubber Research Institute of Nigeria

4:35 PM

Utilizations of Graphene-based Nanomaterials for the Detection and Treatment of Mycobacterium Tuberculosis: Nyaknno U. Udokpoh¹; Jacob Jacob²; Ukeme Archibong²; Gregory Onaiwu³; Ikhazuagbe Ifijen¹; ¹Rubber Research Institute of Nigeria; ²University of Benin; ³Department of Chemistry, Benson Idahosa University

Heterostraining and Moiré Reconstruction in Bilayer Graphene: Aditya Dey1; Shoieb Chowdhury1; Hesam Askari1; 1University of Rochester

5:15 PM

Novel Approach to Produce Thick CNT Baseduckypaper for Shielding Applications: Syed Sajl¹; ¹Khalifa University

ADDITIVE TECHNOLOGIES

Additive Manufacturing Keynote Session — Additive **Manufacturing Keynote Session**

Sponsored by: TMS: Additive Manufacturing Committee

Program Organizer: Eric Lass, University of Tennessee-Knoxville

Monday PM | March 20, 2023

20A | SDCC

Session Chair: Eric Lass, University of Tennessee-Knoxville

2:00 PM Keynote

Putting More Refractory Metals in Additive Manufacturing: Moataz Attallah1; 1University of Birmingham

2:35 PM Question and Answer Period

2:40 PM Keynote

Novel Applications with Directed Energy Deposition (DED): Melanie Lang1; 1Formalloy

3:15 PM Question and Answer Period

3:20 PM Break

3:40 PM Keynote

Overview of Research to Standardization Efforts In Support of Additive Manufacturing Qualification and Certification: Mohsen Seifi1; 1ASTM International; Case Western Reserve University

4:15 PM Question and Answer Period

4:20 PM Keynote

TMS Young Innovator in the Materials Science of Additive Manufacturing Award: Microstructure Design Freedom in Metal AM: A LEGO Analogy: Matteo Seita1; 1University of Cambridge

4:55 PM Question and Answer Period

MATERIALS PROCESSING

Advanced Characterization of High-temperature Alloys: Phase Evolution during Manufacturing and Service-induced Deformation — Advanced **Characterisation of Deformation Mechanisms:** Microscopy

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Katerina Christofidou, University of Sheffield; Benjamin Adam, Oregon State University; Stoichko Antonov, Max-Planck Institut für Eisenforschung GmbH; James Coakley, University of Miami; Martin Detrois, National Energy Technology Laboratory; Paraskevas Kontis, Norwegian University of Science and Technology; Stella Pedrazzini, Imperial College London; Sophie Primig, University of New South Wales

Monday PM | March 20, 2023 29D | SDCC

Session Chairs: Stoichko Antonov, National Energy Technology Laboratory; Cynthia Rodenkirchen, Imperial College London

2:00 PM Invited

High-resolution Characterization of Grain Boundary Precipitates and Their Interfaces in Ni-based Superalloys with B and C Additions: Felix Theska1; Richard Buerstmayr1; Michael Lison-Pick2; Steven Street²; Sophie Primig¹; ¹UNSW Sydney; ²Western Australian Specialty Alloys (WASA)

2:30 PM Invited

STEM/SEM Study on the Microstructural Evolution and Deformation Mechanisms of Fe-25Cr-20Ni-1.4Nb-0.2C Steel Fabricated by Laser Powder-bed Fusion: Kinga Unocic¹; Rangasayee Kannan¹; Lisa Debeer-Schmitt¹; Ken Littrell¹; Peeyush Nandwana¹; Sebastien Dryepondt¹; ¹Oak Ridge National Laboratory

Advanced Characterization of Centrifugally Cast HP40 Reformer Tubes: Thibaut Dessolier¹; Thomas McAuliffe¹; Chrétien Hermse²; Wouter Hamer³; Thomas Britton⁴; ¹Imperial College London; ²Shell Nederland Chemie B.V.; ³Shell Global Solutions International; ⁴University of British Columbia

Microstructure Evolution and Mechanical Properties of \945\8242/\945\8243-Strengthened Ferritic Superalloys: Christopher Zenk¹; Andreas Bezold¹; Andreas Förner¹; Steffen Neumeier¹; Carolin Körner¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

3:40 PM Break

4:00 PM Invited

Characterization of Deformed Structures in Containing **Superalloys**: Akshat Godha¹; Karthick Sundar¹; Shashidhar Gangavarapu¹; Nithin Baler¹; Surendra Kumar Makineni¹; ¹Indian Institute of Science Bangalore

4:30 PM

An In-Situ Elevated Temperature Investigation of Plasticity and Damage Evolution in a Ni-based Superalloy: Prafull Pandey1; Shaolou Wei¹; Cemal Tasan¹; ¹MIT

4:50 PM

TEM Characterization of Tensile Behavior of Advanced Ni-based **Single-crystal Superalloys**: *Benoît Mansoz*¹; Jonathan Cormier²; Pierre Caron³; Florence Pettinari-Sturmel¹; ¹CEMES-CNRS; ²Institut Pprime; 3ONERA

CHARACTERIZATION

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session II

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials **Characterization Committee**

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; C. Tasan, Massachusetts Institute of Technology; Olivia Jackson, Sandia National Laboratories

Monday PM | March 20, 2023 Aqua 311A | Hilton

Session Chairs: Jaafar El-Awady, Johns Hopkins University; Ricardo Lebensohn, Los Alamos National Laboratory

2:00 PM Invited

Full Integration of FFT-based Methods for Optimization and Modelling of Micromechanical Data Obtained by Advanced Characterization Techniques: Ricardo Lebensohn¹; ¹Los Alamos **National Laboratory**

2:30 PM

Surface Roughness in Polycrystalline Copper under Cyclic Thermal Loading: FFT-based Thermomechanical Modelling with Experimental Verification for Accelerator Applications: Zhangxi Feng¹; Miroslav Zecevic²; Rodney McCabe²; Daniel Hooks²; Marko Knezevic¹; Ricardo Lebensohn²; ¹University of New Hampshire; ²Los Alamos National Laboratory

2:50 PM

Investigating the Influence of Precipitates on Strengthening Mechanisms in Mg Alloys Using Phase-field Simulations: Darshan Bamney¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

3:10 PM

Spatial Quantification of Deformation by Combining Data Collected from Digital Image Correlation and EBSD: Alex Forsey1; Ehsan Afshin¹; Suzanne Cheney¹; Salih Gungor¹; Richard Moat¹; ¹The Open University

3:30 PM Break

Three-dimensional Surface Morphology Reconstruction for Insitu Scanning Electron Microscope Experiments: An Alternative to Digital Image Correlation (DIC): Khalid El-Awady¹; Steven Lavenstein¹; Jaafar El-Awady¹; ¹Johns Hopkins University

4:10 PM

Crystallographic Slip System Activity Fields Identified Automatically from DIC Data for Intersecting, Diffuse and Cross Slip: Tijmen Vermeij¹; Ron Peerlings¹; Marc Geers¹; Johan Hoefnagels¹; ¹Eindhoven University Of Technology

Using the Digital Image Correlation Techniques in Unique Ways: Carl Cady¹; Cheng Liu¹; ¹Los Alamos National Laboratory

ADVANCED MATERIALS

Advanced Functional and Structural Thin Films and Coatings & Honorary Palkowski Session — Honorary Palkowski Session II

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, IS2M; Ravindra Nuggehalli, New Jersey Institute of Technology; Heinz Palkowski, Clausthal University of Technology

Monday PM | March 20, 2023 Aqua E | Hilton

Session Chairs: Ravindra Nuggehalli, New Jersey Institute of Technology; Karine Mougin, IS2M CNRS; Adele Carrado, University of Strasbourg, IPCMS, CNRS

2:00 PM Introductory Comments

2:05 PM Kevnote

Dry coatings: Modulating the Releasing of Plasma-grafted Biologically Active Molecules from Medical Devices to Impact the Biological Response: Diego Mantovani¹; Pascale Chevallier¹; Andranik Sarkissian²; ¹Laval University; ²Plasmionique Inc.

2:45 PM Invited

A Carbon Fiber Cloth / Calcium-deficient Hydroxyapatite Biomaterial as a Promising Patch for Bone Repair: F. Olivier¹; N. Rochet²; Sylvie Bonnamy¹; ¹CNRS, Univ. Orléans, ICMN; ²CNRS, INSERM, Univ. Côte d'Azur

3:15 PM Invited

Global Engagement - Taking the Example of the Institute of Metallurgy at Clausthal University of Technology: Astrid Abel¹; ¹Clausthal University of Technology

3:35 PM Break

3:55 PM Keynote

Development of Sandwich Materials from Automotive to Biomedical Applications: Adele Carrado¹; ¹University of Strasbourg - IUT LP / IPCMS - CNRS

4:35 PM Invited

Towards the Biomedical Applicability of Sandwich Materials Processed by Incremental Sheet Forming: Mohamed Harhash¹; Heinz Palkowski¹; ¹Clausthal University of Technology (TU Clausthal)

5:05 PM Invited

Thermal Stability and Residual Stresses in Nanolamellar CVD TiAlN Coatings Investigated by In Situ Synchrotron Diffraction: Kristine Bakken¹; Olof Bäcke¹; Mats Halvarsson¹; Magnus Hörnqvist Colliander¹; ¹Chalmers University of Technology

5:25 PM Concluding Comments

MATERIALS PROCESSING

Advanced Joining Technologies for Automotive **Lightweight Structures — Fundamental** Investigations

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yan Huang, Brunel University London; Carla Barbatti, Constellium

Monday PM | March 20, 2023 29C | SDCC

Session Chair: Shouxun Ji, Brunel University London

A Novel Approach for In-process Monitoring of Dissimilar Ultrasonic Welds of Multi-strand Aluminum Wires and Copper Terminals Utilizing the Seebeck Effect: Andreas Gester¹; Toni Sprigode¹; Guntram Wagner¹; ¹Chemnitz University of Technology

2:25 PM

Microstructure and Mechanical Properties of Electron Beam Welded AA2024 to AA6061 Dissimilar Joints: Jyotirmaya Kar1; ¹Malaviya National Institute of Technology Jaipur

Numerical Analysis of High-Velocity Riveted (HVR) Joints through Finite Element Modeling Supported by Experimental Data: Daniel Ramirez Tamayo¹; Lei Li¹; Benjamin Schuessler¹; Vineet Joshi¹; Ayoub Soulami¹; ¹Pacific Northwest National Laboratories

3:15 PM

Recent Advances in the Transformative Non-fusion Weld-brazing Process Used to Join Thin-gauge Alloys Used in the Automotive Industry: M. Shehryar Khan¹; Yong Hwan Cho¹; Frank Goodwin²; Y. Norman Zhou¹; ¹University of Waterloo; ²International Zinc Association

ENERGY & ENVIRONMENT

Advanced Materials for Energy Conversion and Storage 2023 — Energy Conversion with SOC

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Surojit Gupta, University of North Dakota; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania

Monday PM | March 20, 2023 32B | SDCC

Session Chairs: Uday Pal, Boston University; Prabhakar Singh, University of Connecticut

2:00 PM Keynote

Electrochemical Systems for Global Net-Zero and Zero Carbon Electricity Infrastructure: Prabhakar Singh¹; Amit Pandey²; ¹UConn, University of Connecticut; ²Lockheed Martin Space

Bioinspired Hydrogen Electrolyzer: Laura Carmona-Saldarriaga¹; Alex Ossa1: 1Universidad Eafit

2:50 PM

In-situ Mitigation of Chromium Poisoning in SOFC Air Electrodes: Michelle Sugimoto¹; Zhikuan Zhu²; Srikanth Gopalan²; Soumendra Basu²; Uday Pal²; ¹Saint-Gobain; ²Boston University

3:10 PM Invited

Protective Coatings on Porous Interconnects for SOFC Applications: Soumendra Basu¹; Zhikuan Zhu¹; Srikanth Gopalan¹; Uday Pal¹; ¹Boston University

3:35 PM Break

3:50 PM

Correlating Microstructural Evolution in Reversible Solid Oxide Electrochemical Cells to their Performance: Jillian Mulligan¹, Ayesha Akter¹; John-In Lee¹; Uday Pal¹; Srikanth Gopalan¹; Soumendra Basu¹; ¹Boston University

4:10 PM Invited

High Performance Reversible Solid Oxide Fuel Cells (RSOCs) Based on Ruddlesden-Popper Oxygen Electrodes for Grid Scale Energy Storage: Ayesha Akter¹; Hector Grande¹; Uday Pal¹; Soumendra Basu¹; Srikanth Gopalan¹; ¹Boston University

4:35 PM

Sulfur and Chromium Poisoning Mechanism of Lanthanum Nickelate Cathode Material: A Thermodynamic and Experimental Study: Rui Wang1; Lucas Parent2; Srikanth Gopalan3; Yu Zhong1; ¹Worcester Polytechnic Institute; ²University of Connecticut; ³Boston University

New Family of Interstitial Oxygen Ion Conductor Discovered by High-Throughput Computational Screening: Jun Meng¹; MD Sariful Sheikh¹; Ryan Jacobs¹; Dane Morgan¹; ¹University of Wisconsin-Madison

CHARACTERIZATION

Advanced Real Time Imaging — Joint Session: **Mechanical Response of Materials Investigated** through Novel In-situ Experiments and Modeling

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: **Biomaterials Committee**

Program Organizers: Jinichiro Nakano, US Department of Energy - National Engergy Technology Laboratory; David Alman, National Energy Technology Laboratory; Il Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology; Noritaka Saito, Kyushu University; Anna Nakano, US Department of Energy National Energy Technology Laboratory; Zuotai Zhang, Sourthern University of Science and Technology; Candan Tamerler, University of Kansas; Bryan Webler, Carnegie Mellon University; Wangzhong Mu, Kth Royal Institute of Technology; David Veysset, Stanford University; Pranjal Nautiyal, University of Pennsylvania

Monday PM | March 20, 2023 Aqua 310B | Hilton

Session Chairs: Tanaji Paul, Florida International University; Robert Wheeler, Microtesting Solutions LLC

2:00 PM

Energy Absorption Properties of Open-Cell Rhombic Dodecahedron Cellular Lattice Structures Under Shock Compression: Cyril Williams¹; ¹US Army Research Laboratory

Estimation of Interfacial Strain Response for a Bi-material Strip in Tensile and Shear Loading Using THz-TDS: Sushrut Karmarkar¹; Vikas Tomar¹; ¹Purdue University - School of Aeronautics and **Astronautics**

2:40 PM

Study of Fracture Behaviors of Epoxy-Alumina Composite Using Mechanical Testing Coupled with Micro-CT: Yichun Tang¹; Yuetong Hao1; Jing Du1; 1Penn State University

3:00 PM

Three-dimensional Assessment of Strain Localization at the Subgrain Level of a Ni-based Superalloy at Low and High Temperature Using Laser Scanning Confocal Microscopy: Damien Texier1; Malo Jullien¹; Ali Rouwane¹; Julien Genée¹; Jean-Charles Stinville²; Marc Legros³; Jean-Charles Passieux¹; ¹CNRS - Institut Clément Ader; ²University of Illinois, Urbana-Champaign; ³CEMES - UPR CNRS 8011

3:20 PM Break

3:40 PM Invited

Thermal Stability of fcc-bcc Nanolaminates Containing 3D Interfaces: Justin Cheng1; Zezhou Li2; Shuozhi Xu3; Jon Baldwin4; Mauricio De Leo¹; Irene Beyerlein⁵; Khalid Hattar6; Nathan Mara¹; ¹University of Minnesota Twin Cities; ²Beijing Institute of Technology; ³University of Oklahoma; ⁴Los Alamos National Laboratory; ⁵University of California Santa Barbara; ⁶Sandia National Laboratories

4:00 PM

4D Microstructural Evolution of Bismuth (Bi) Phase during Solidification of Sn-58Bi Solder: Amey Luktuke1; Hamid Torbati-Sarraf¹; Sridhar Niverty²; Alan Kastengren³; Viktor Nikitin³; Aniket Tekawade³; Rajkumar Kettimuthu³; Nikhilesh Chawla¹; ¹Purdue University; ²Pacific Northwest National Laboratory; ³Argonne National Laboratory

In-situ TEM Study of Rapidly Solidifed AlCuLi Based Alloys: Rostislav Králík¹; Lucia Bajtošová¹; Barbora Křivská¹; Miroslav Cieslar¹; ¹Charles University

4:40 PM Invited

The Influence of Temperature on Strength: Are Concentrated BCC Alloys Different than Elements and Dilute Alloys?: Daniel Miracle1; Satish Rao²; Oleg Senkov²; Carolina Frey³; Tresa Pollock³; ¹Air Force Research Laboratory; ²Air Force Research Laboratory; MRL Materials Resources LLC; 3University of California, Santa Barbara

ENERGY & ENVIRONMENT

Advances in Magnetic Materials — Magnetoelastic and Magnetocaloric Materials

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Jose Maria Porro, Bcmaterials; Huseyin Ucar, California Polytechnic University, Pomona; Patrick Shamberger, Texas A&M University; Min Zou, Lab Magnetics, A Quadrant Company; Gaoyuan Ouyang, Ames Laboratory; Alex Leary, NASA Glenn Research Center

Monday PM | March 20, 2023 33A | SDCC

Session Chair: Jose Maria Porro, BCMaterials & Ikerbasque

2:00 PM Invited

Magnetovolume Effects in Metamagnetic Shape Memory Heusler Compounds: Patricia Lazpita1; Victor L'vov2; Jesús Rodríguez Fernández³; Jose Manuel Barandiarán¹; Volodymyr Chernenko⁴; ¹University of Basque Country; ²Taras Shevchenko National University; 3University of Cantabria; 4lkerbasque, Basque Foundation for Science

2:30 PM

Fe-doping Influence on the Magnetostrictive Behaviour of Ni-Mn-Ga-Co-In-Fe Magnetic Shape Memory Alloys: Natalia Río-López¹; Patricia Lázpita²; Fernando Plazaola²; Volodymyr Chernenko³; Jose María Porro¹; ¹BCMaterials; ²University of the Basque Country; 3lkerbasque

2:50 PM Invited

The Search in the Vast High-entropy Alloy Space for Competitive Magnetocaloric Properties: Jia Yan Law¹; Álvaro Díaz-García¹; Luis M. Moreno-Ramírez¹; Victorino Franco¹; ¹Sevilla University

Mechanochemical Synthesis of Magnetostrictive Materials: Cedoped Galfenol and Alfenol: Alexander Baker¹; Alfred Amon¹; Jibril Shittu¹; Hunter Henderson¹; Emily Moore¹; Scott McCall¹; ¹Lawrence Livermore National Laboratory

3:40 PM Break

3:55 PM Invited

Magnetoelastic Resonance Sensors: The Importance of Their Geometry on the Most Recent Applications: Paula G.Saiz¹; Roberto Fernández-de-Luis¹; Andoni Lasheras²; José M. Porro¹; José Luis Vilas-Vilela²; Ana Catarina Lopes²; ¹BCMaterials; ²University of Basque Country

4:25 PM

Rhombic Magnetoelastic Sensors with MOF Active Layers: A Potential Tool for Wireless VOCs Detection: Paula Gonzalez¹; Roberto Fernandez²; Maria Isabel Arriortua²; Ana Catarina Lopes³; ¹Knight Campus; ²BCMaterials; ³UPV/EHU

4:45 PM Invited

Development of Magnetic Refrigeration Materials for Cryogenic Applications: Hossein Sepehri Amin¹; Xin Tang¹; J. Lai¹; Anton Bolyachkin¹; Tadakatsu Ohkubo¹; Kazuhiro Hono¹; ¹National Institute for Materials Science

ADVANCED MATERIALS

Advances in Multi-Principal Element Alloys II — Alloy **Development and Application II**

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; E-Wen Huang, National Yang Ming Chiao Tung University; Jennifer Carter, Case Western Reserve University; Srivatsan Tirumalai; Xie Xie, FCA US LLC; James Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Monday PM | March 20, 2023 Aqua D | Hilton

Session Chairs: Joseph Poon, University of Virginia; Jennifer Carter, Case Western Reserve University

2:00 PM Invited

The Challenges of High-Entropy Intermetallic Alloys: Joseph Poon¹; Jie Qi¹; ¹University of Virginia

2:20 PM Invited

Charged Particles: Unique Tools to Study Irradiation Resistance of High-entropy Alloys: Yanwen Zhang¹; Lumin Wang²; William Weber³; ¹Oak Ridge National Laboratory; ²University of Michigan; ³The University of Tennessee

2:40 PM Invited

Developing TRansformation-Induced-Plasticity TiZrHf(VNbTa)x High-entropy Alloys via Bo-Md Diagram: Gian Song¹; Yunjong Jung¹; Kangjin Lee¹; Jiwoon Lee¹; Junhee Han²; Ke An³; Chanho Lee⁴; Peter Liaw⁵; ¹Kongju National University; ²Korea Institute for Rare Metals, Korea Institute of Industrial Technology (KITECH); 3Oak Ridge National Laboratory; 4Los Alamos National Laboratory; ⁵The University of Tennessee

3:00 PM Invited

Ion-beam Modification of High-entropy Oxides: William Weber1; Candice Kinsler-Fedon¹; Lauren Nuckols¹; Anamul Mir²; Brianna Musico¹; Ashish Gupta³; Ritesh Sachan³; Christopher Nelson⁴; David Mandrus¹; Yanwen Zhang⁴; Veerle Keppens¹; ¹University of Tennessee; ²University of Huddersfield; ³Oklahoma State University; ⁴Oak Ridge National Laboratory

3:20 PM Invited

High Entropy Alloy Metamaterials: Dustin Gilbert1; Corisa Kons1; Cameron Jorgensen¹; ¹University of Tennessee

3:40 PM Break

4:00 PM Invited

Combined Machine Learning - Graph Theory Based Framework for the Design of New High Entropy Alloy Chemistries: Scott Broderick1; Krishna Rajan¹; ¹University at Buffalo

4:20 PM Invited

Compositionally Complex Ceramics (CCCs): Recent Discoveries of Long- and Short-Range Ordering and Order-Disorder Transitions: Jian Luo¹; ¹University of California, San Diego

Development of Coherent Ru-based BCC + B2 Alloys with High Thermal Stability: Carolina Frey1; Haojun You1; Sebastian Kube1; Kaitlyn Mullin¹; Andrew Detor²; Scott Oppenheimer²; Tresa Pollock¹; ¹University of California, Santa Barbara; ²GE Research

5:00 PM Invited

Deformation Behavior of CoCrFeMnNi High Entropy Alloy Highly Strained by Torsion at Elevated Temperatures: Nobuhiro Tsuji¹; Reza Gholizadeh¹; Shuhei Yoshida¹; Yu Bai²; Shu Kurokawa¹; Akinobu Shibata³; ¹Kyoto University; ²Dalian University of Technology; ³National Institute for Materials Science (NIMS)

5:20 PM Invited

Simulations and Modelling of the High Temperature Yield Behavior of Compositionally Complex Concentrated BCC Alloy: Satish Rao1; Brahim Akdim²; Oleg Senkov¹; Glenn Balbus³; Eric Payton³; ¹MRL Materials Resources LLC; ²UES Inc.; ³Air Force Research Laboratory

MATERIALS PROCESSING

Advances in Powder and Ceramic Materials Science High Entropy Ceramics II

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Materials Characterization Committee, TMS: Powder Materials Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Faqin Dong, Southwest University of Science and Technology; Jinhong Li, China University of Geosciences; Ruigang Wang, The University of Alabama; Alexander Dupuy, University of California, Irvine

Monday PM | March 20, 2023 30A | SDCC

Session Chairs: William Bowman, University of California Irvine; Stefano Curtarolo, Duke University

2:00 PM Introductory Comments

2:05 PM Invited

Multifunctional High-entropy Ceramics: Stefano Curtarolo¹; Corey Oses¹; Cormac Toher²; Arrigo Calzolari³; Marco Esters¹; ¹Duke University; 2U. Texas Dallas; 3CNR

2:25 PM

Dislocation-based Room Temperature Plasticity in High Entropy Oxides: Xin Wang¹; Justin Cortez¹; Alexander Dupuy¹; William Bowman²; Julie Schoenung¹; ¹University of California Irvine; ²University of California Irvine; Irvine Materials Research Institute

Mechanical Behavior of Multiphase Entropy Stabilized Oxides: Salma El-Azab1; Luz Gomez1; Alexander Dupuy1; Julie Schoenung1; ¹University of California Irvine

Enhanced Li-ion Conductivity in Compositionally Complex Perovskite Oxides: Shu-Ting Ko1; Dawei Zhang1; Tom Lee2; Ji Qi1; Shyue Ping Ong¹; Xiaoqing Pan²; Jian Luo¹; ¹University of California, San Diego; ²University of California, Irvine

3:25 PM

Dual Cubic Perovskite Phases in Macro-Equimolar High Entropy Oxides: Imrongnaro Longkumer¹; Ashutosh Gandhi¹; ¹IIT Bombay

MATERIALS PROCESSING

Advances in Pyrometallurgy: Developing Low Carbon Pathways — Keynote

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Camille Fleuriault, Eramet Norway; Joalet Steenkamp, XPS Glencore; Dean Gregurek, RHI Magnesita; Jesse White, KTH Royal Institute of Technology; Quinn Reynolds, Mintek; Phillip Mackey, P.J. Mackey Technology, Inc.; Lina Hockaday, Curtin University, WASM

Monday PM | March 20, 2023 29B | SDCC

Session Chairs: Phillip Mackey, P.J. Mackey Technologies Inc.; Joalet Steenkamp, XPS Glencore

2:00 PM Introductory Comments

2:10 PM Keynote

The HYBRIT Demonstration of a Fossil-free Iron- and Steelmaking Value Chain: Amanda Ohman¹; ¹Hybrit Development AB

2:35 PM Keynote

Decarbonisation of High-temperature Processes in the Australian Context: G.J. 'Gus' Nathan1; 1University of Adelaide

3:00 PM Keynote

The Pathway to CO2-Reduction in the Refractory Industry: Thomas Drnek1; 1RHI Magnesita GmbH

3:25 PM Break

3:45 PM Keynote

Electrification to Decrease the Carbon Footprint of Iron and Steelmaking: Petrus Pistorius¹; ¹Carnegie Mellon University

4:10 PM Keynote

Roadmap for Reduction of Fossil CO2 Emissions in Eramet Mn Alloys: Benjamin Ravary¹; Pierre Gueudet²; ¹Eramet Norway AS; ²Eramet SA

4:35 PM Keynote

Towards Net Zero PyroMetallurgical Processing with the ISASMELT™ and ISACYCLE™: Stuart Nicol¹; Stanko Nikolic¹; Ben Hogg¹; ¹Glencore Technology

5:00 PM Panel Discussion

MATERIALS DESIGN

Advances in Titanium Technology — Session II

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Zachary Kloenne, Ohio State University; Fan Sun, CNRS - PSL Research University; Stoichko Antonov, National Energy Technology Laboratory; Rongpei Shi, Harbin Institute of Technology (Shenzhen)

Monday PM | March 20, 2023 Cobalt 500 | Hilton

Session Chair: Fan Sun, CNRS - PSL Research University

2:00 PM Invited

Design of Compositionally Modulated Ti-Alloys for Novel Microstructures and Exceptional Properties: Yunzhi Wang¹; ¹Ohio State University

2:30 PM Invited

The Effects of Fe and Al Additions on the Microstructure and Mechanical Property Evolution of Ti-11at.%Cr Alloys: JoAnn Ballor1; Ashiq Shawon¹; Alex Zevalkink¹; Scott Misture²; Jonathan Poplawsky³; Carl Boehlert¹; ¹Michigan State University; ²Alfred University; ³Oak Ridge National Laboratory

In-situ Observation of Twinning Pathways in TRIP/TWIP Ti-12Mo Alloy: Fan Sun1; Bingnan Qian2; Lola Lilensten1; Philippe Vermaut1; Frédéric Prima¹; ¹CNRS - PSL Research University; ²Southern University of Science and Technology

3:20 PM Break

3:40 PM

High Strain Rate Deformation in Metastable -Titanium Alloys: A Case Study of Ti-1023: Abhishek Sharma¹; Mohan Sai Kiran Nartu¹; Ravisankar Haridas¹; Sriswaroop Dasari¹; Srinivas Aditya Mantri¹; Jeffrey T Lloyd²; Rajarshi Banerjee¹; ¹University of North Texas; ²DEVCOM Army Research Laboratory

4:00 PM

Stress Induced Martensitic Transformation and Twinning in Beta Titanium Alloys with Increased Oxygen Content: Mariano Casas Luna¹; Jií Kozlík¹; Dalibor Preisler¹; Hanuš Seiner¹; Tomáš Chráska¹; Josef Strasky¹; ¹Charles University

MATERIALS DESIGN

AI/Data Informatics: Computational Model **Development, Validation, and Uncertainty Quantification — Session II**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Saurabh Puri, Microstructure Engineering: Francesca Tavazza, National Institute of Standards and Technology; Dennis Dimiduk, BlueQuartz Software LLC; Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Shreyas Honrao, NASA Ames Research Center; Ashley Spear, University of Utah; Houlong Zhuang, Arizona State University

Monday PM | March 20, 2023 Cobalt 520 | Hilton

Session Chairs: Saaketh Desai, Sandia National Laboratories; Amit Verma, LLNL

2:00 PM

Addressing Semantic Challenges towards Data Mining using Natural Language Processing: Amit Verma¹; Zhisong Zhang²; Benjamin Glaser²; Robin Kuo²; Jason Zhang²; Nicholas David²; Emma Strubell²; Anthony Rollett²; ¹LLNL; ²Carnegie Mellon University

A Data Facilitation Platform for Materials Science Literature Mining: Vipul Gupta1; Florian Pyczak1; Ingo Schmitt2; 1Helmholtz-Zentrum Hereon; ²BTU Cottbus-Senftenberg

Compactness Matters: Improving Bayesian Optimization Efficiency of Materials Formulations through Invariant Search Spaces: Sterling Baird¹; Jason Hall²; Taylor Sparks¹; ¹University of Utah; ²Northrop **Grumman Innovation Systems**

3:00 PM

Using Categorical Structures in Model Analysis & Development: Kalan Kucera¹; John Nychka¹; Glenn Hibbard²; ¹University of Alberta; ²University of Toronto

3:20 PM

Intrinsic Dimensionality Estimates for Microstructural Data: Megna Shah¹; Veera Sundararaghavan²; Jeff Simmons¹; ¹Air Force Research Laboratory; ²University of Michigan

3:40 PM Break

4:00 PM

XenonPy: An Open Source Platform for Data-driven Materials Design with Small Data: Stephen Wu¹; Chang Liu¹; Ryo Yoshida¹; ¹The Institute of Statistical Mathematics

4:20 PM

Uncertainty and Domain Quantification in Machine Learning Regression Models for Materials Properties: Dane Morgan¹; Glenn Palmer²; Lane Schultz¹; Yiqi Wang¹; Ryan Jacobs¹; ¹University of Wisconsin-Madison; 2Duke University

4:40 PM

A Quantitative Approach to Explainable AI in DIW AM: Jennifer Ruddock¹; Robert Weeks²; Ezra Ameperosa¹; James Hardin¹; Jennifer Lewis²; ¹Air Force Research Lab; ²Harvard University

5:00 PM

The interp5DOF Matlab Toolbox: Grain Boundary Energy Models and Uncertainty Quantification: Oliver Johnson¹; Sterling Baird²; Eric Homer¹; David Fullwood¹; Gus Hart¹; ¹Brigham Young University; ²University of Utah

MATERIALS DESIGN

Alloy Behavior and Design Across Length-Scales: An SMD Symposium Honoring Easo George — Point **Defects and High Temperature Materials**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Michael Mills, Ohio State University; George Pharr, Texas A&M University; Robert Ritchie, University of California, Berkeley

; Muralidharan Govindarajan, Oak Ridge National Laboratory

Monday PM | March 20, 2023 Cobalt 502B | Hilton

Session Chair: Govindarajan Muralidharan, Oak Ridge National Laboratory

2:00 PM Invited

Strong Effects of Tiny Compositional Changes on Structural and Functional Material Properties: Gunther Eggeler¹; ¹Ruhr-Universität Bochum

2:30 PM Invited

Some Unusual Aspects of the Deformation Behavior of FeAl: lan Baker1; 1Dartmouth College

3:00 PM Invited

Solid Solution Hardening Effects on Thermal Stability and Mechanical **Properties** of Nanostructured Ni-enriched CrMnFeCoNi High Entropy Alloys: Tom Keil¹; Enrico Bruder¹; Karsten Durst¹; ¹Technical University Darmstadt

3:30 PM Break

3:50 PM Invited

Deformation Mechanisms in Compositionally Complex Polycrystalline CoNiCr-based Superalloys: Steffen Neumeier¹; Andreas Bezold¹; Mathias Goeken¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

4:20 PM Invited

Heat-Resistant Cr-Alloys, Microstructure, Oxidation and Creep: Uwe Glatzel1; Mathias Galetz2; Anke Silvia Ulrich1; 1University Bayreuth; 2DECHEMA Forschungsinstitut

MATERIALS DESIGN

Alloy Development for Energy Technologies: ICME Gap Analysis — Machine Learning and Deformation Modeling

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Ram Devanathan, Pacific Northwest National Laboratory; Raymundo Arroyave, Texas A & M University; Carelyn Campbell, National Institute of Standards and Technology; James Saal, Citrine Informatics

Monday PM | March 20, 2023 Sapphire I | Hilton

Session Chairs: Raymundo Arroyave, Texas A&M University; Carelyn Campbell, National Institute of Standards and Technology; James Saal, Citrine Informatics; Ram Devanathan, Pacific Northwest National Laboratory

2:00 PM Invited

Voxelized Representations of Atomic Systems for Machine **Learning Applications**: Surva Kalidindi¹; Matthew Barry¹; Pranoy Ray¹; ¹Georgia Institute of Technology

2:30 PM

Unsupervised Techniques for Outlier Identification in Alloy Datasets: Madison Wenzlick¹; Osman Mamun²; M.F.N. Taufique²; Ram Devanathan²; Keerti Kappagantula²; Kelly Rose¹; Jeffrey Hawk¹; ¹National Energy Technology Laboratory; ²Pacific Northwest National Laboratory

2:50 PM

VPSC's New Clothes: Developing a Modern MATLAB API for Automating High-throughput VPSC Experiments: Benjamin Begley¹; Victoria Miller¹; ¹University of Florida

3:10 PM Invited

ExtremeMat: towards Microstructure and Composition Sensitive Models for the Creep Deformation of Engineering Steels: Laurent Capolungo¹; Arul Kumar¹; Ricardo Lebensohn¹; Michael Glazoff²; Michael Gao³; Yuki Yamamoto⁴; ¹Los Alamos National Laboratory; ²Idaho National Laboratory; ³National Energy Technology Laboratory; 4Oak Ridge National Laboratory

3:40 PM Break

4:10 PM

Data Quality Evaluation and Influence on the Predictability of Data-Driven Alloy Design: Sunyong Kwon¹; Yukinori Yamamoto¹; Jian Peng¹; Michael Brady¹; Dongwon Shin¹; ¹Oak Ridge National Laboratory

Design of Creep-resistant Additively Manufactured Stainless Steels for Nuclear Reactors: Pedro Rivera-Diaz-Del-Castillo1; Wei Wen¹; Weiling Wang¹; Hossein Eskandari Sabzi¹; ¹Lancaster University

ELECTRONIC MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XI — Session II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Chiao Tung University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Cnrs Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute For Materials Science; Wan-Ting Chiu, Tokyo Institute of Technology; Chenguang Fu, Zhejiang University

Monday PM | March 20, 2023 Sapphire A | Hilton

Session Chairs: Yoshisato Kimura, Tokyo Institute of Technology; Hsin-Jay Wu, National Chiao Tung University

2:00 PM Invited

Mg2Sn Epitaxial Thin Film for Thermoelectric Application: Takeaki Sakurai¹; Mariana Lima¹; Takashi Aizawa²; Isao Ohkubo²; Takao Mori²; ¹University of Tsukuba; ²National Institute for Materials Science

2:20 PM

A Robust Thermoelectric Module Based on MgAgSb/Mg3(Sb,Bi)2 with a Conversion Efficiency of 8.5% and a Maximum Cooling of 72 K: Pingjun Ying1; Lennart Wilkens1; Heiko Reith1; Nicolas Rodriguez1; Xiaochen Hong¹; Qionggiong Lu¹; Christian Hess¹; Kornelius Nielsch¹; Ran He¹: ¹Leibniz Institute of Solid State and Materials Science

2:40 PM Invited

Effects of Doping Element Addition on Phase Equilibria and Mg,Si-Mg₂Sn Two-phase Microstructure Formation in Thermoelectric Mg_(Si, Sn)-based Alloys: Yoshisato Kimura¹; Naoki Ueda¹; Yaw Wang Chai¹; Manabu Watanabe¹; Yonghoon Lee¹; ¹Tokyo Institute of Technology

3:00 PM Invited

Thermoelectric Modules Based on Thin Films for Localized Heat Harvesting: Paolo Mele¹; Giovanna Latronico¹; Marco Fronzi¹; Hiroki Shigemune¹; Motoki Maeda¹; Kimiyoshi Usami¹; Cedric Bourges²; Takao Mori²; ¹Shibaura Institute of Technology; ²NIMS

3:20 PM Break

3:40 PM Invited

Full-Heusler Compounds: Unconfined Prospects for Tuning Thermoelectricity: Ernst Bauer1; Alexander Riss1; Michael Parzer1; Fabian Garmroudi¹; Takao Mori²; ¹Technische Universität Wien; ²NIMS Tsukuba

4:00 PM

Modulating Doping Concentration via Thermodynamic Approach for High-Performance p-type Bi₂Te₂ Thermoelectrics: Hung-Wei Chen1; Hsin-Jay Wu1; 1National Yang Ming Chiao Tung University

Mixing Amorphous and Crystalline Structures for High Performance **n-type Bi₂Te₃ Thermoelectrics**: Wan-Ting Yen¹; Hsin-jay Wu¹; Kuang-Kuo Wang²; ¹National Yang Ming Chiao Tung University; ²National Sun Yat-sen University

4:40 PM

Effect of Interfacial Stability of Bi2Te3 Thin Film Modules on Thermoelectric Property: Kai-Wen Cheng¹; Albert T. Wu¹; ¹National Central University

5:00 PM Invited

Thermoelectric Effect Under Photon Excitation: A Connector between Thermoelectrics and Photovoltaics: Heng Wang¹; ¹Illinois Institute of Technology

LIGHT METALS

Alumina & Bauxite — Session I

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Errol Jaeger, The Business Consultants FZ-LLC; Stephan Broek, Kensington Technology Inc.

Monday PM | March 20, 2023 31B | SDCC

Session Chairs: Errol Jaeger, The Business Consultants FZ-LLC; Roberto Seno, Cba

2:00 PM

Process Simulation with Tertiary Cyclone for Kaolinite Removal from Amazonian Bauxite Reduction in Mineral Processing: Allan Reis¹; Geraldo Magela Duarte¹; Eslyn Neves¹; Geovan Oliveira¹; Thiago Jatobá²: ¹Hydro Mineração Paragominas; ²Mineral Processing Solutions

2:25 PM

Granulometry Impact on Digestion Efficiency and Cost-economics in Alumina Refinery for East Coast Bauxite (INDIA): Suchita Rail; M.J. Chaddha¹; Prachiprava Pradhan¹; K. J. Kulkarni¹; M. Panchal¹; A. Agnihotri¹; ¹Jawaharlal Nehru Aluminium Research Development and Design Centre

2:50 PM

Effect of Thermal Activation Temperature on Pre-desilication of Low-grade Bauxite: Chaojun Fang¹; Tianrui Cai¹; Bo Lv¹; Xiaowei Deng¹; Jinming Zhang¹; Zeya Zhao¹; Bobing Dong¹; Polytechnic University

3:15 PM

Study of Repeatability and Reproducibility in Analyzes of Available Alumina and Reactive Silica in Bauxites: Paula Lima1; Danielle Matos¹; Walter Santana¹; Jaqueline Pinho¹; Janyne Ramos¹; ¹Hydro

3:40 PM Break

Zero Waste Alumina Production: Casper Van Der Eijk1; Camilla Sommerseth1: 1SINTEF

Statistical Modelling of Operating Parameters on Bauxite Slurry Hyperbaric Filtration: Clara Souza¹; Eduardo Moreira¹; Enio Laubyer¹; Fabricia Ferreira¹; Antonio Silva¹; Raimundo Neto¹; ¹Hydro Alunorte

Reduction of GHG Emissions and Increase Operational Reliability using Immersed Electrode Boiler in an Alumina Refinery: Rodrigo Neves¹; Fernando Melo¹; Everton Mendonça¹; Erinaldo Filho¹; Jeferson Carneiro¹; ¹Norsk Hydro

5:10 PM

Steam Grid Stability using Advanced Process Control and Real Time Optimization in an Alumina Refinery: Rodrigo Neves¹; Fernando Melo¹; Danilo Arcodaci¹; Daniella Costa¹; João Freitas¹; Ediciano Junior¹; Juvenal Sousa¹; ¹Norsk Hydro

LIGHT METALS

Aluminum Alloys, Characterization and Processing Processing and Heat Treatment I

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Julie Levesque, Quebec Metallurgy Center; Stephan Broek, Kensington Technology Inc.

Monday PM | March 20, 2023 32A | SDCC

Session Chair: Mihaiela Isac, McGill Metals Processing Centre

2:00 PM

Comparison of TiB2 and TiC Grain Refiners' Impact on Surface Quality, Edge Cracking, and Rolling Performance of AA5182 DC-Cast Ingot: Joshua Lawalin1; Pascal Gauthier2; Tao Wang2; ¹Commonwealth Rolled Products; ²Rio Tinto Aluminum

The Influence of Crystallographic Texture Gradients on the Deformation Response of Aluminum Extrusions: Warren Poole¹; Andrew Zang¹; Yu Wang¹; Mary Wells¹; Nick Parson¹; ¹University of British Columbia

2:50 PM

Mechanical Properties and Microstructures of Cold Rolling Sheets of a Low-cost Continuous Cast Al-1.5Cu Alloy with Potential Application in Auto Sheets: Xiyu Wen¹; Yan Jin¹; Wei Li¹; ¹University of Kentucky

3:15 PM

Challenges in the Production of 5754 Automotive Alloy Sheet via Twin Roll Casting Route: Dionysios Spathis¹; John Tsiros¹; Andreas Mavroudis¹; ¹ELVAL SA

3:40 PM Break

3:55 PM

Fabrication of Bright-rolled Aluminum Suitable for Design **Elements in the Automotive Industry**: Anita Gruendlinger¹; Peter Uggowitzer²; Josef Berneder¹; ¹AMAG rolling GmbH; ²ETH Zürich

4:20 PM

Effects of Aging Conditions on Fracture Characteristics of Al-Mg-Si Alloys: Zeynep Tutku Ozen¹; Ilyas Artunc Sari¹; Anil Umut Ozdemir¹; Gorkem Ozcelik¹; Abdullah Kagan Kinaci¹; Alptug Tanses¹; Emre Cankaya¹; ¹Asas Aluminyum As

Evaluation of EN AW 3003 Aluminium Alloy Homogenization with Specific Electrical Resistivity Measurement: Maja Voncina1; Mitja Petrič¹; Sebastian Kastelic¹; Tilen Balaško¹; Stanislav Kores²; Jožef Medved¹; ¹University of Ljubljana; ²Talum d.d.

SPECIAL TOPICS

Beyond Apprenticeship: Navigating the Stages of Academia — Navigating an Academic Career

Sponsored by: TMS: Education Committee

Program Organizers: Alexis Lewis, National Science Foundation; Suveen Mathaudhu, Colorado School of Mines; Michael Groeber, The Ohio State University

Monday PM | March 20, 2023 23A | SDCC

Session Chairs: Suveen Mathaudhu, Colorado School of Mines: Alexis Lewis, National Science Foundation

2:00 PM Invited

Navigating the Proposal Process at the National Science Foundation: Jonathan Madison¹; ¹National Science Foundation

2:30 PM

Research Integrity Investigations at the NSF Office of Inspector General: Beth Masimore¹; ¹National Science Foundation

2:50 PM

Beyond Apprenticeship: Transforming Your Academic Jargon into Plain Language: Marlit Hayslett, Pha1: 1Hayslett Consulting, LLC

Beyond Apprenticeship: How to "Know" Your Audience: Marlit Hayslett, Phd1; 1Hayslett Consulting, LLC

3:30 PM Break

3:50 PM

Mental Health of a Diverse and Inclusive Academic Community: Arezoo Zare¹; ¹Johns Hopkins University

Engagement with DoD Program Managers: Michael Bakas¹; ¹Army Research Office

BIOMATERIALS

Bio-Nano Interfaces and Engineering Applications — Session II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Kalpana Katti, North Dakota State University; Hannes Schniepp William & Mary; Terry Lowe, Colorado School of Mines; Po-Yu Chen, National Tsing Hua University

Monday PM | March 20, 2023 Sapphire 400A | Hilton

Session Chairs: Kalpana Katti, North Dakota State University; Terry Lowe, Colorado School of Mines

2:00 PM Invited

DNA-templated Dye Aggregate Design for Excitonic Applications: Lan Li¹; ¹Boise State University

Hierarchical Surface Restructuring for Next Generation Implantable Neural Interfacing Applications: Shahram Amini¹; ¹Pulse Technologies Inc.

2:55 PM

Sisal-inspired Multilevel Structure for Fog Collection Fabricated by Additive Manufacturing and Surface Modification: Yan-Jie Huang¹; Haw-Kai Chang¹; Phuong Uyen Mai¹; Po-Yu Chen¹; ¹National Tsing Hua University

3:15 PM

Influence of Fluid Flow on Inducing Bone Metastasis through use of a Novel Bioreactor with In Vitro Cancer Models: Kalpana Katti¹; Haneesh Jssuja¹; Sharad Jaswandkar¹; Dinesh Katti¹; ¹North Dakota State University

3:45 PM Break

4:05 PM

Self-assembled Flavoprotein Putrescine Oxidase System Offers Enhanced Thermal Stability: Taylor Bader¹; Emina Derakovic¹; Nilan Kamathewatta¹; Chris Johnson¹; Cindy Berrie¹; Candan Tamerler¹; ¹University of Kansas

4:25 PM

Chemical, Thermal and Bio-responsive Polystyrene Basedphotonic Crystals: A Concise Review: Doreen Omorogbe¹; Stanley Omorogbe²; Ikhazuagbe Ifijen²; ¹F.C.T Universial Basic Education Board, Abuja; ²Rubber Research Institute of Nigeria

4:45 PM Invited

Enzymatic Mechanism of Self-healing in Concrete and Carbonnegative Construction Material: Nima Rahbar1; Polytechnic Institute

A Carbon-negative Self-healing Construction Materials: Shuai Wang¹; Suzanne Scarlata¹; Nima Rahbar¹; ¹Worcester Polytechnic Institute

BIOMATERIALS

Biological Materials Science — Biological Materials Science II

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Jing Du, Pennsylvania State University; David Restrepo, University of Texas at San Antonio; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Ling Li, Virginia Polytechnic Institute

Monday PM | March 20, 2023 Sapphire 402 | Hilton

Session Chairs: Ning Zhang, University of Alabama; Du Jing, Pennsylvania State University

2:00 PM Invited

Ultrasonic Characterization of Wave Propagation in Biomineralized Materials: Horacio Espinosa¹; Nicolas Alderete¹; Maroun Abi Ghanem²; ¹Northwestern University; ²Institut Lumière Matière -Université Claude Bernard Lyon 1

Sensitivity Analysis of Bio-inspired Phononic Materials Using the Hypercomplex Taylor Series Expansion Method: Juan C. Velasquez-Gonzalez¹; Juan David Navarro¹; William Beck¹; David Restrepo¹; ¹The University of Texas at San Antonio

Bioinspired Materials Inspired by Biological Structural Design Elements: Steven Naleway¹; Debora Lyn Porter¹; Tony Yin¹; Josh Fernquist¹; Maddie Schmitz¹; Elise Hotz¹; ¹University of Utah

3:10 PM Invited

Biological Designs that Prevent Catastrophic Damage: Jung-Eun Lee1; Jack Connolly2; Devis Montroni3; Wei Huang4; Taifeng Wang1; Phani Saketh Dasika²; Pablo Zavattieri²; David Kisailus¹; ¹University of California-Irvine; ²Purdue University; ³University of Bologna; ⁴Hong Kong University of Science and Technology

3:40 PM Break

4:00 PM Invited

Exploring the Mechanics of Force Transduction in the Toothstylus-radula System of Chitons: John (Jack) Connolly1; Phani Saketh Dasika¹; Jungeun Lee²; Taifeng Wang²; David Kisailus²; *Pablo* Zavattieri¹; ¹Purdue University; ²University of California, Irvine

Bio-Inspired Composites and Metamaterials

from High-aspect Ratio Ribbons: Hannes Schniepp¹; Ben Skopic¹; ¹William & Mary

4:50 PM

Mechanical Behavior and Response of the Horse Hoof Wall's Internal Architecture using In-situ MicroCT: Benjamin Lazarus1; Rachel Luu¹; Samuel Ruiz-Pérez²; Victor Leung¹; Matthew Wong¹; Iwona Jasiuk³; Marc Meyers¹; ¹University of California San Diego; ²Universidad Nacional Autónoma de México; ³University of Illinois Urbana-Champaign

5:10 PM

Biomineralized Architected Microlattice in Starfish Ossicles: Structure, Mechanics, Morphogenesis, and Bio-Inspired Design: Ling Li¹; ¹Virginia Polytechnic Institute

ADVANCED MATERIALS

Bulk Metallic Glasses XX — Novel Alloys, Processing or Manufacturing Methods

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Robert Maass, Federal Institute of Materials Research and Testing (BAM); Peter Derlet, Paul Scherrer Institut; Katharine Flores, Washington University in St. Louis; Yonghao Sun, The Chinese Academy of Sciences; Lindsay Greer, University of Cambridge; Peter Liaw, University of Tennessee

Monday PM | March 20, 2023 Aqua C | Hilton

Session Chair: Katharine Flores, Washington University in St. Louis

2:00 PM Invited

Thermal Drawing of Bulk Metallic Glasses within Polymer Fibers: Challenges and Opportunities: Fabien Sorin¹; ¹Ecole Polytechnique Fédérale de Lausanne

2:20 PM

Employment of Joule Heating and Simple Mechanical Loading to Stretch Bulk Metallic Glass Rod into Wire: Fiachra Robinson¹; Philip Meagher¹; David Browne¹; ¹University College Dublin

2:40 PM

Rejuvenation of the Supercooled Liquid State by Straining during Cooling: Ethen Lund¹; Rodrigo Mota¹; Sungwoo Sohn¹; David Browne²; Jan Schroers¹; ¹Yale University; ²University College Dublin

Development and Properties of Marginal Zr-based Bulk Glassy Alloys: Akihisa Inoue1; F.L. Kong1; S.L. Zhu2; A.L. Greer3; 1Josai International University; ²Tianjin University; ³University of Cambridge

3:20 PM Break

3:40 PM

Tuning Microstructure and Enhancing Mechanical Properties of Co-Ni-V and Co-Ni-V-Al Medium Entropy Alloy Thin Films via Deposition Power: Qingping Cao1; 1Zhejiang University

4:00 PM

Processability of Cu-Ti-based Metallic Glasses via Laser Powder Bed Fusion: Erika Soares Barreto¹; Erika Soares Barreto²; Maximilian Frey³; Jan Wegner⁴; Stefan Kleszczynski⁴; Ralf Busch³; Lutz Mädler¹; Lutz Mädler²; Nils Ellendt¹; Nils Ellendt²; ¹Leibniz Institute for Materials Engineering-IWT; ²University of Bremen; ³Saarland University; ⁴University of Duisburg-Essen

LIGHT METALS

Cast Shop Technology — Molten Metal Cleanliness and Analysis

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Halldor Gudmundsson, Century - Nordural; Stephan Broek, Kensington Technology Inc.

Monday PM | March 20, 2023 31C | SDCC

Session Chair: Volker Ohm, HOESCH Metallurgie GmbH

2:00 PM Introductory Comments Mr. Halldor Gudmundsson

Electromagnetic Priming of Filtration Systems: Pyrotek EM-DF: Robert Fritzsch¹; Joseph Whitworth¹; Paul Bosworth¹; Jason Midgley¹; ¹Pyrotek

2:30 PM

Automated Metal Cleanliness Analyzer (AMCA): Digital Image Analysis Phase Differentiation and Benchmarking Against PoDFA-derived Cleanliness Data: Hannes Zedel¹; Robert Fritzsch¹; Ragnhild Aune²; Shahid Akhtar³; ¹Metallurgical Insight and Quality; ²Norwegian University of Science and Technology; ³Norsk Hydro

Automated Image Analysis of Metallurgical Grade Samples Reinforced with Machine Learning: Anish Nayak1; Hannes Zedel2; Shahid Akhtar³; Robert Fritzsch²; Ragnhild Aune²; ¹Norwegian University of Science and Technology (NTNU); Institute of Chemical Technology Mumbai (IndianOil Odisha Campus); ²Norwegian University of Science and Technology (NTNU); ³Norsk Hydro, Karmøy Primary Production

3:20 PM Break

Characterization of Low- and High Mg-containing Aluminum White Dross Using Deterministic Image Analysis of EPMA Scans: Cathrine Solem¹; Hannes Zedel¹; Ragnhild Aune¹; ¹Norwegian University of Science and Technology (NTNU)

4:00 PM

Assessment of Separation and Agglomeration Tendency of Non-metallic Inclusions in an Electromagnetically Stirred Aluminum Melt: Cong Li¹; Thien Dang²; Mertol Gokelma³; Sebastian Zimmermann⁴; Jonas Mitterecker⁴; Bernd Friedrich¹; ¹IME - Process Metallurgy and Metal Recycling Institute, RWTH Aachen University; ²TRIMET Aluminium SE; ³Izmir Institute of Technology; ⁴Former Student of IME Process Metallurgy and Metal Recycling, RWTH **Aachen University**

4:25 PM

Microalloying of Liquid Al-Mg Alloy Studied In-situ by Laserinduced Breakdown Spectroscopy: Kristjan Leosson¹; Sveinn Gudmundsson¹; Arne Ratvik²; Anne Kvithyld²; ¹DTE ehf.; ²SINTEF

CHARACTERIZATION

Characterization of Materials through High Resolution Coherent Imaging — Algorithms for High Resolution Coherent Imaging of Materials

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Richard Sandberg, Brigham Young University; Ross Harder, Argonne National Laboratory; Xianghui Xiao, Brookhaven National Laboratory; Brian Abbey, La Trobe University; Saryu Fensin, Los Alamos National Laboratory; Ana Diaz, Paul Scherrer Institute; Mathew Cherukara, Argonne National Laboratory

Monday PM | March 20, 2023 Aqua 310A | Hilton

Session Chair: Ross Harder, Advanced Photon Source, Argonne National Laboratory

2:00 PM Invited

3D Nanoscale Crystalline Microscopy: The Interest of 3D Bragg Ptychography for Material Science: Virginie Chamard¹; ¹Institut Fresnel

2:30 PM

Using Automatic Differentiation to Solve the Phase Problem in X-ray Bragg Ptychography: Tao Zhou¹; Mathew Cherukara¹; Stephan Hruszkewyzcz¹; Saugat kandel¹; Martin Holt¹; ¹Argonne National Laboratory

2:50 PM

Near Atomic Resolution BCDI through Materials Modeling: Jason Meziere¹; Ross Harder²; Anastasios Pateras³; Richard Sandberg¹; ¹Brigham Young University; ²Argonne National Laboratory; 3Deutsches Elektronen-Synchrotron DESY

3:10 PM

The Application of Advanced Coherent Imaging Technique and Element Analysis on a Self-organized Loop Structure: Yao Li¹; Arunodaya Bhattacharya²; Yajie Zhao¹; Jean Henry³; Steven Zinkle¹; ¹University Of Tennessee Knoxville; ²Oak Ridge National Laboratory; ³Commissariat à l'Energie Atomique

3:30 PM Break

3:50 PM

Fluctuation Analysis of Coherent Electron Diffuse Scattering for Diffractive Imaging: Jian Min Zuo1; Saran Pidaparthy1; Haoyang Ni1; Robert Busch¹; hanyu Hou¹; ¹University of Illinois

4:10 PM Invited

Method Developments for High-efficient X-ray Coherent Diffraction Imaging: Yudong Yao1; Junjing Deng1; Henry Chan1; Jeffrey Klug1; Yi Jiang¹; Barbara Frosik¹; Zhonghou Cai¹; Ross Harder¹; Barry Lai¹; Mathew Cherukara¹; ¹Argonne National Laboratory

"Similarity Mapping" Using Precession Electron Diffraction Data: Marcus Hansen¹; Ainiu Wang¹; Jiaqi Dong¹; Kelvin Xie¹; ¹Texas A&M University

5:00 PM

Advances in Phase Retrieval for In Situ Observation of Dislocation Dynamics in Gold Microcrystals: Jason Porter1; Ross Harder2; Wonsuk Cha²; Siddharth Maddali²; Yueheng Zhang³; Matthew Wilkin³; Anastasios Pateras⁴; Landon Schnebly¹; Joshua Miller¹; Robert Suter³; Anthony Rollett³; Richard Sandberg¹; Young University; ²Argonne National Laboratory; ³Carnegie-Mellon University; ⁴Deutsches Elektronen-Synchrotron

5:20 PM

Characterisation of Material Defects via Plasmon-enhanced Phase Imaging: Brian Abbey1; 1La Trobe University

CHARACTERIZATION

Characterization of Minerals, Metals and Materials — Advanced Characterization Methods II

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Mingming Zhang; Zhiwei Peng, Central South University; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological Úniversity; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, Eurofins EAG Materials Science LLC; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, DEVCOM ARL Army Research Office; Shadia Ikhmayies

Monday PM | March 20, 2023 Aqua 313 | Hilton

Session Chairs: Bowen Li, Michigan Technological University; Rajiv Soman, Eurofins EAG Materials Science LLC

2:00 PM

On the Feasibility of Back-scattered or Ion-induced Secondary **Electron Imaging to Determine Grain Orientations**: Marc De Graef¹; ¹Carnegie Mellon University

Structure and Interfaces of MBE Grown Fe Thin Films on GaAs: Ramasis Goswami¹; ¹Naval Research Laboratory

Development of Bearing Temperature Monitoring Technology in Railway Vehicle: Jeongguk Kim¹; ¹Korea Railroad Research Institute

3:00 PM

Enhancing the Reliability of Reconstruction for Small Grains Using Novel Laboratory Diffraction Contrast Tomography (Lab DCT) Acquisition and Reconstruction Approaches: Eshan Ganju¹; Eugenia Nieto-Valeiras²; Javier LLorca²; Nikhilesh Chawla¹; ¹Purdue University; 2IMDEA Materials Institute

3:20 PM

Film Structure of Polymerized Synthetic Dopamine by Neutron Reflectometry: Matthew Herman¹; Erik Watkins¹; John Yeager¹; ¹Los Alamos National Laboratory

3:40 PM Break

3:55 PM

Material Characterization by Neutron Imaging and Neutron Grating Interferometry: Yuxuan Zhang1; Leslie Butler2; Hassina Bilheux1; Kyungmin Ham2; Jean Bilheux1; Erik Stringfellow1; Wieslaw Stryjewski²; Michael Vincent²; ¹Oak Ridge National Laboratory; ²Louisiana State University

4:15 PM

Quantitative 3D Imaging of Multi-type Chemical Short-range Order in a Medium-entropy Alloy: Yue Li¹; Zhangwei Wang²; Baptiste Gault¹; ¹Max-Planck-Institut Fur Eisenforschung; ²Central South University

4:35 PM

Structure and Substructure Characterization of Ni50.3Ti29.7Hf20 High-temperature Shape Memory Alloy: Jiagi Dong1; Umale Tejas1; Benjamin Young¹; Dexin Zhao¹; Ibrahim Karaman¹; Kelvin Xie¹; ¹Texas A&M University

4:55 PM

Nano-scale Spatially Resolved Analysis of Hydrogen in Stainless Steels: Dallin Barton¹; Mark Wirth¹; Dan Nguyen¹; Mengkong Tong¹; Tingkun Liu¹; Zihua Zhu¹; Daniel Perea¹; Arun Devaraj¹; ¹Pacific Northwest National Laboratory

5:15 PM

Curing Behavior of Plasmonic Spiky Gold Nanoparticles Integrated in an Epoxy System: Cynthia Sangang¹; ¹Texas Tech University

NUCLEAR MATERIALS

Composite Materials for Nuclear Applications II — **Tungsten Composites and TRISO Fuel**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Composite Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Anne Campbell, Oak Ridge National Laboratory; Dong Liu, University of Bristol; Rick Ubic, Boise State University; Lauren Garrison, Commonwealth Fusion Systems; Peng Xu, Idaho National Laboratory; Johann Riesch, Max-Planck-Insitut Fuer Plasmaphysik

Monday PM | March 20, 2023 24B | SDCC

Session Chairs: Johann Riesch, Max-Planck-Institut für Plasmaphysik; Dong Liu, University of Bristol

2:00 PM Invited

Progress in the Development of Tungsten Fibre-reinforced Copper Composites for Heat Sink Applications in Plasma-facing Components: Alexander Von Mueller¹; Maximilian Fuhr¹; Katja Hunger¹; Patrick Junghanns¹; Rudolf Neu¹; Johann Riesch¹; Jeong-Ha You¹; Markus Milwich²; Lena Müller²; Michael Decius³; Selanna ¹Max-Planck-Institut fuer Plasmaphysik; ²Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF); 3TEC-KNIT CreativCenter für technische Textilien GmbH; ⁴ENEA Frascati Research Center

2:30 PM

Recent Progress in the Development of Tungsten Fibre-reinforced Tungsten Composite: Johann Riesch¹; Jan Coenen²; Alexander Feichtmayer¹; Maximilian Fuhr¹; Lauren Garrison³; Henri Greuner¹; Till Höschen¹; Alexander Lau²; Robert Lürbke¹; Yiran Mao²; Wolfgang Pantleon⁴; Daniel Schwalenberg²; Thomas Schwarz-Selinger¹; Rudolf Neu¹; ¹Max-Planck-Insitut Fuer Plasmaphysik; ²Forschungszentrum Jülich; ³Oak Ridge National Laboratory; ⁴ Technical University of Denmark

2:50 PM

Is there Residual Stress in Tungsten Fiber Reinforced Tungsten Composites: Hanns Gietl¹; Johann Riesch²; T. Höschen²; S. Schönen³; Ch. Le Bourlot⁴; J-Y. Buffière⁴; Wolfgang Pantleon⁵; J.W. Coenen⁶; ¹Idaho National Laboratory; ²Max-Planck-Insitut Fuer Plasmaphysik; ³Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, Partner of the Trilateral Euregio Cluster (TEC); ⁴Laboratoire de Mécanique des Contact et des Solides, INSA de Lyon; ⁵Technical University of Denmark; ⁶Forschungszentrum Jülich GmbH, Institut für Energie und Klimaforschung, Partner of the Trilateral Euregio Cluster (TEC)

Effect of Hot Rolling and High Temperature Annealing on the Microstructure and Mechanical Properties of Hot-rolled 90W7Ni3Fe WHA: Md Ershadul Alam1; Charles Henager Jr.2; Jing Wang²; Wahyu Setyawan²; G.R. Odette¹; ¹University of California, Santa Barbara; ²Pacific Northwest National Laboratory, Richland

3:30 PM Break

3:50 PM Invited

W₂C-reinforced Tungsten: A Promising Candidate for EU DEMO **Divertor Material**: Petra Jenus¹; *Aljaž Iveković*¹; Matej Kocen¹; Anže Abram¹; Andreja Šestan Zavašnik¹; Sabina Markelj¹; Andrei Galatanu²; Magdalena Galatanu³; Elena Tejado⁴; Jose Ygnacio Pastor⁴; Marius Wirtz⁵; Saša Novak¹; Gerald Pintsuk⁵; ¹Jožef Stefan Institute; ²National Institute of Materials Physics, Magurele, Romania; 3National Institute of Materials Physics, Magurele, Romania; ⁴Dpto. de Ciencia de Materiales-CIME. Universidad Politécnica de Madrid, Spain; ⁵Institute for Energy and Climate Reseach, Forschungszentrum Juelich GmbH

4:20 PM

Thermal Properties of Dispersoid-strengthened Tungsten Alloys for Fusion Applications: Chase Hargrove¹; Trevor Marchhart¹; Nathan Reid²; Xing Wang¹; Jean Paul Allain¹; ¹Pennsylvania State University; ²Oak Ridge National Laboratory

4:40 PM

Oxidation Response of Irradiated and Unirradiated TRISO Fuel: Tyler Gerczak¹; Darren Skitt¹; Rachel Seibert¹; John Hunn¹; ¹Oak Ridge **National Laboratory**

5:00 PM

Correlating Heterogeneous Pore Distribution with Stochastic Fracture in the Pyrocarbon Buffer Layer in TRISO Fuel Particles: Yongfeng Zhang¹; Aashique Rezwan¹; Claire Griesbach¹; Ramathasan Thevamaran¹; Wen Jiang²; Tyler Gerczak³; Karim Ahmed⁴; ¹University of Wisconsin; ²Idaho National Laboratory; ³Oak Ridge National Laboratory; 4Texas University A&M

MATERIALS DESIGN

Computational Discovery and Design of Materials —

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering

Program Organizers: Houlong Zhuang, Arizona State University; Duvu Chen, University of California, Santa Barbara: Ismaila Dabo. Pennsylvania State University; Yang Jiao, Arizona State University; Sara Kadkhodaei, University of Illinois Chicago; Mahesh Neupane, Army Research Laboratory; Xiaofeng Qian, Texas A&M University; Arunima Singh, Arizona State University; Natasha Vermaak, Lehigh University

Monday PM | March 20, 2023 Cobalt 502A | Hilton

Session Chairs: Ismaila Dabo, Penn State University; Arunima Singh, Arizona State University

2:00 PM

Designing Ohmic and Schottky Interfaces for Oxide Electronics: Valentino Cooper¹; Matthew Brahlek¹; ¹Oak Ridge National Laboratory

2:30 PM Invited

Searching for New "Quantum Defects" through High-throughput Computational Screening: Geoffroy Hautier¹; ¹Dartmouth College

3:00 PM

Electronic and Structural Properties of Ab-initio Predicted B, Al, N Alloy Structures: Cody Milne¹; Arunima Singh¹; Tathagata Biswas¹; ¹Arizona State University

3:20 PM

Crystal to PNG (xtal2png): A Screening Tool to Accelerate Domain Transfer from State-of-the-art Image-processing Models to Materials Informatics and a Case Study on Denoising Diffusion Probabilistic Models: Sterling Baird1; Kevin Jablonka2; Michael Alverson³; Hasan Sayeed¹; Faris Khan¹; Colton Seegmiller⁴; Berend Smit²; Taylor Sparks¹; ¹University of Utah; ²École Polytechnique Fédérale de Lausanne; ³University of Southern California; ⁴Utah Valley University

PHYSICAL METALLURGY

Computational Thermodynamics and Kinetics — **Defects and GBs I**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Solidification Committee

Program Organizers: Hesam Askari, University of Rochester; Damien Tourret, IMDEA Materials Institute; Eva Zarkadoula, Oak Ridge National Laboratory; Enrique Martinez Saez, Clemson University; Frederic Soisson, Cea Saclay; Fadi Abdeljawad, Clemson University; Ziyong Hou, Chongqing University

Monday PM | March 20, 2023 26A | SDCC

Session Chairs: Danny Perez, Los Alamos National Laboratory; Timofey Frolov, Lawrence Livermore National Laboratory

2:00 PM Invited

Strong Entropic Contributions to Thermally-activated Kinetics: A Case-study in Dislocation Nucleation: Soumendu Bagchi¹; Danny Perez¹; ¹Los Alamos National Laboratory

Expanding Insights into Disconnections: Spencer Thomas1; Jason Trelewicz¹; ¹Stony Brook University

2:50 PM

Universal Transition in Segregation Structures near Twin-boundary Disconnections: Chongze Hu¹; Stéphane Berbenni²; Douglas Medlin¹; Remi Dingreville¹; ¹Sandia National Laboratories; ²Université de Lorraine, CNRS, Arts et Métiers ParisTech

3:10 PM

A Lattice Monte Carlo Approach to Spectral Grain Boundary **Segregation**: *Thomas Matson*¹; Christopher Schuh¹; ¹Massachusetts Institute of Technology

3:30 PM Break

3:50 PM

On the Variability of Grain Boundary Motion from a Diffusion Standpoint: Anqi Qiu1; Ian Chesser2; Elizabeth Holm1; 1Carnegie Mellon University; ²George Mason University

4:10 PM

Propagation and Quantification of Microstructural Uncertainty in Molecular Dynamic Simulations of Polycrystalline Nickel: Meizhong Lyu¹; Anqi Qiu¹; Elizabeth Holm¹; ¹Carnegie Mellon University

4:30 PM Invited

Modeling Grain Boundary Mediated Plasticity with Massively Parallel Atomistic Simulations: Timofey Frolov¹; Nicolas Bertin¹; Alexander Chernov¹; Tomas Oppelstrup¹; ¹Lawrence Livermore National Laboratory

NANOSTRUCTURED MATERIALS

Deformation Mechanisms, Microstructure Evolution, and Mechanical Properties of Nanoscale Materials - Size Effects

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Niaz Abdolrahim, University of Rochester; Matthew Daly, University of Illinois-Chicago; Hesam Askari, University of Rochester; Eugen Rabkin, Technion; Jeffrey Wheeler, Femto Tools Ag; Wendy Gu, Stanford University

Monday PM | March 20, 2023 Agua 300AB | Hilton

Session Chairs: Eugen Rabkin, Technion; Anuj Bisht, Technion

2:00 PM Invited

Nanoparticles under High Pressure: Assembly and Formation of Active Nanostructures: Hongyou Fan¹; ¹Sandia National Laboratories

The Effect of Ion Irradiation on Strength of Ni Nanoparticles: Anuj Bisht¹; Yuanshen Qi²; Eugen Rabkin¹; ¹Technion; ²GTIIT

2:50 PM

Atomistic Modeling of Peierls Barriers to Dislocation Glide in Metals: Yipin Si¹; David L. McDowell¹; Ting Zhu¹; ¹Georgia Institute of Technology

3:10 PM

In-situ Investigation of Tension-compression Anisotropic Behaviour of Ni-SiOC Nanocomposites: Binggiang Wei¹; Wengian Wu¹; Jian Wang¹; ¹University of Nebraska-Lincoln

3:30 PM Break

3:50 PM Invited

How are Natural Structural Materials Toughened from the Nanoscale?: Ottman Tertuliano1; 1University of Pennsylvania

Multi-stage Superelasticity in SrNi₂P₂ Intermetallic Compound via Lattice Collapse and Expansion and the Influence of Cryogenic Temperature: Shuyang Xiao1; Vladislav Borisov2; Adrian Valadani2; Guilherme Gorgen-Lesseux³; Roser Valentí²; Paul Canfield³; Seok-Woo Lee1; 1University of Connecticut; 2Goethe University; 3Iowa State University

4:40 PM

Grain Size Refinement Altering Yielding Mechanism in an Ultrafinegrained High-Mn Austenitic Steel: Chang-Yu Hung1; Yu Bai2; Tomotsugu Shimokawa³; Ya-Peng Yu¹; Nobuhiro Tsuji²; Mitsuhiro Murayama¹; ¹Virginia Tech; ²Kyoto University; ³Kanazawa University

5:00 PM

Mechanical and Microstructural Analysis of a Nanocrystalline Supersaturated Solid Solution Cr-Cu Coatings: Michael Burtscher¹; Markus Alfreider¹; Christina Kainz¹; Daniel Kiener¹; ¹Montanuniversitaet Leoben

LIGHT METALS

Electrode Technology for Aluminum Production — **Anode Raw Materials**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Roy Cahill, Rio Tinto; Stephan Broek, Kensington Technology Inc.

Monday PM | March 20, 2023 31A | SDCC

Session Chair: Barbara Cramer. BP

2:00 PM

Partial Replacement of Coke with Biocoke: Effect of Biocoke Production Temperature on Anode Quality: Belkacem Amara1; Duygu Kocaefe¹; Yasar Kocaefe¹; Jules Côté²; André Gilbert³; ¹University of Quebec at Chicoutimi; ²Aluminerie Alouette; ³Boisaco Inc.

2:25 PM

Method for Calcined Petroleum Coke Evaluation to Improve the Anode Quality: Sheetal Gupta¹; Suwarna Mahajan¹; Amit Gupta¹; Vilas Tathavadkar¹; ¹Aditya Birla Science & Technology Company, Ltd

2:50 PM

Influence of Crusher Type and Particle Shape on the Bulk Density of Blended Shaft and Hearth Calcined Anode Grade Petroleum Coke: Howard Childs¹; Barry Sadler²; Mike Davidson¹; ¹BP; ²Net Carbon Consulting Pty Ltd

3:15 PM

Managing Green Petroleum Coke Properties Variations on Prebaked Anodes Quality in Aluminium Bahrain "Alba": Hesham Hassan Buhazza¹; Vasantha Kumar Rangasamy¹; Nabeel Ebrahim Mohd Al Jallabi¹; Taleb Al Ansari¹; Abdulmohsin Hasan Radhi¹; Francois Morales²; Abdulla Habib Ahmed Ali¹; ¹Aluminium Bahrain B.S.C. (Alba); ²SCCR Consultant

3:40 PM Break

3:55 PM

New Methods to Determine PAH Emission Dynamics during Electrode Mass Processing: Ole Kjos1; Thor Aarhaug1; Heiko Gaertner¹; Bente Håland²; Jens Christian Fjelldal²; Katarina Jakovljevic³; Oscar Espeland⁴; Ida Kero¹; ¹Sintef As; ²Elkem Carbon; ³Norwegian university of science and technology (NTNU); ⁴Nemko Norlab

ELECTRONIC MATERIALS

Electronic Packaging and Interconnection — Pb Free Solder Alloys I

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Kazuhiro Nogita, University of Queensland; Mohd Arif Mohd Salleh, Universiti Malaysia Perlis; Dan Li, Beijing University of Technology; David Yan, San Jose State University; Fan-Yi Ouyang, National Tsing Hua University; Patrick Shamberger, Texas A&M University; Tae-Kyu Lee, Cisco Systems; Christopher Gourlay, Imperial College London; Albert T. Wu, National Central University

Monday PM | March 20, 2023 Sapphire D | Hilton

Session Chairs: Chris Gourlay, Imperial College London; Arif Salleh, Universiti Malaysia Perlis

2:00 PM Introductory Comments

Effects of Anisotropic Indium Solder on Cu Diffusion under a Temperature Gradient: Pei Ni Jiang¹; ¹National Tsing Hua University

2:25 PM

Characterising the Thermal Expansion Behaviour in In-Sn Superconducting Solder Joints by In-situ Synchrotron Powder X-ray Diffraction: Jiye Zhou1; Xin Fu Tan1; Qinfen Gu2; Stuart McDonald¹; Kazuhiro Nogita¹; ¹The University of Queensland; ²Australian Synchrotron

2:45 PM

Microalloying Effects of Sb and Ag on the Strain-Rate Sensitivity and Microstructural Evolution of Eutectic SnBi Alloys: Hannah Fowler¹; Sukshitha Achar Puttur Lakshminarayana¹; Sui Xiong Tay¹; Ganesh Subbarayan¹; John Blendell¹; Carol Handwerker¹; ¹Purdue University

3:05 PM

The Effects of Sb on the Properties of Hypo-eutectic Sn-Bi Alloys: Xin Tan¹; Qichao Hao¹; Qinfen Gu²; Stuart McDonald¹; Keith Sweatman³; Michael Bermingham¹; Kazuhiro Nogita¹; ¹University of Queensland; 2ANSTO; 3Nihon Superior Co., Ltd

3:25 PM Break

3:45 PM Invited

Kinetics of the Accumulation of Bismuth at the Anode of a Sn-Bi Based Solder Joint during Current Stressing: Eric Cotts¹; Faramarz Hadian¹; Javier Flores¹; Sitaram Panta¹; Mohammed Genanu¹; ¹Binghamton University

4:10 PM

Surface Precipitation and Growth of Bismuth Particles in Sn-Bi **Solder Alloys**: *John Wu*¹; Amey Luktuke¹; Nikhilesh Chawla¹; ¹Purdue University

4:30 PM

Study of Sn-Bi-In Ternary Solders with Compositions of Lines between Binary Eutectic Points to Ternary Eutectic Points: Hoon Choi¹; Hoo-Jeong Lee¹; ¹Sungkyunkwan University

ENERGY & ENVIRONMENT

Energy Technologies and CO2 Management Energy Efficiency, Decarbonization and CO2 **Management**

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Shafiq Alam, University of Saskatchewan; Donna Guillen, Idaho National Laboratory; Fiseha Tesfaye, Metso Outotec Finland Oy; Lei Zhang, University of Alaska Fairbanks; Lina Hockaday, Curtin University, WASM; Neale Neelameggham, IND LLC; Hong (Marco) Peng, University of Queensland; Nawshad Hague, Commonwealth Scientific and Industrial Research Organization; Liu Yan, Northestern University

Monday PM | March 20, 2023 33B | SDCC

Session Chairs: Shafiq Alam, University of Saskatchewan; Hong (Marco) Peng, University of Queensland; Liu Yan, Northestern University

2:00 PM Invited

CO2 Mineralization and Critical Battery Metals Recovery from Olivine and Nickel Laterites: Fei Wang¹; David Dreisinger¹; ¹The University of British Columbia

2:20 PM Invited

Decarbonization Pathways for an Aluminum Rolling Mill and **Downstream Processes**: Alexander Wimmer¹; ¹Constantia Teich

2:40 PM

Rethinking the Decomposition of Refractory Aluminosilicates: Opportunities for Energy-efficient Li Recovery from LCT Pegmatites: Joanne Gamage McEvoy1; Yves Thibault1; Nail Zagrtdenov¹; Dominique Duguay¹; ¹Natural Resources Canada, CanmetMINING

3:00 PM Break

3:20 PM Invited

Energy-saving Green Technologies in the Mining and Mineral Processing Industry: Shafiq Alam¹; ¹University of Saskatchewan

3:40 PM Invited

Extraction of Valuables Metals from Luanshya Copper Smelting Slag with Minimal Waste Generation: Namiluko Yaki¹; Yotamu Hara¹; Nachikonde Fumpa¹; Agabu Shane¹; Rainford Hara¹; Makwenda Ngomba¹; Ireen Musukwa¹; Stephen Parirenyatwa¹; Ronald Hara¹; ¹Copperbelt University

4:00 PM

Carbon Footprint Assessment of Waste PCB Recycling Process through Black Copper Smelting Route in Australia: Aulia Qisthi Mairizal¹; Agung Yoga Sembada¹; Kwong Ming Tse¹; Nawshad Haque²; M. Akbar Rhamdhani¹; ¹Swinburne University of Technology; ²CSIRO

Screening High Entropy Alloys for Carbon Dioxide Reduction Reaction using Alchemical Perturbation Density Functional Theory: Mohamed Hendy¹; Okan Orhan¹; Homin Shin²; Ali Malek³; Mauricio Ponga¹; ¹The University of British Columbia; ²Security and Disruptive Technologies Research Centre, National Research Council Canada; ³Energy, Mining and Environment Research, National Research Council Canada

CORROSION

Environmental Degradation of Multiple Principal Component Materials — High Temperature Corrosion II

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Wenjun Cai, Virginia Polytechnic Institute and State University; XiaoXiang Yu, Novelis Global Research Center; Vilupanur Ravi, California State Polytechnic University Pomona; Christopher Weinberger, Colorado State University; Élizabeth Opila, University of Virginia; Bai Cui, University of Nebraska-Lincoln; Mark Weaver, University of Alabama; Bronislava Gorr, Karlsruhe Institute of Technology (KIT); Gerald Frankel, Ohio State University; ShinYoung Kang, Lawrence Livermore National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Monday PM | March 20, 2023 Sapphire 410A | Hilton

Session Chairs: Xiaoxiang Yu, Novelis Global Research Center; Bronislava Gorr, Karlsruhe Institut für Technologie

2:00 PM Invited

High Temperature Oxidation of NbTiZr and HfNbTaTiZr RMPEAs: Charlotte Brandenburg¹; David Beaudry²; Elaf Anber²; Jean-Philippe Couzinie³; Loic Perriere³; Mitra Taheri²; Elizabeth Opila¹; ¹University of Virginia; ²Johns Hopkins University; ³ICMPE - Institut de Chimie et des Matériaux Paris-Est

2:20 PM

Hot Corrosion of TP347H in Coal Ash - an Electrochemical Noise Investigation: Shanshan Hu¹; Xingbo Liu¹; ¹West Virginia University

2:40 PM

Intermediate and High-Temperature Oxidation Behavior of an Equiatomic CrTaTi Alloy from 800°C to 1400°C: Noah Welch¹; Maria Quintana¹; Todd Butler²; Peter Collins¹; ¹Iowa State University; ²Air Force Research Laboratory, WPAFB

3:00 PM Invited

Limitations of Equiatomic Refractory High Entropy Alloys: Role of Reactive Elements in Al-containing HfNbTaTiZr: $Elaf\ Anber^1$; David Beaudry¹; Daniel Foley¹; Lavina Backman²; Michael Waters³; Jean Phillippe Couzinie⁴; James Rondinelli³; Elizabeth Opila²; Mitra Taheri¹; ¹Johns Hopkins University; ²university of virginia; ³Northwestern University; 4University Paris-Est Créteil (UPEC) - IUT

3:20 PM Break

3:35 PM Invited

Novel Refractory Metal-based High Entropy Silicide-Borides and their Oxidation at 1100°C: Mathias Galetz1; Anke Ulrich1; Georg Hasemann²; Manja Krüger²; ¹DECHEMA-Forschungsinstitut; ²Universität Magdeburg

On the High-temperature Oxidation of Complex Concentrated Alloys FeAlCrNi, V.: Eliska Jaca1, Peter Minarik1, Stanislav Daniš1; Jozef Veselý¹; ¹Cĥarles University

Tailoring Oxidation Behavior of MPEAs Through Microstructural Modification: Michael Pavel¹; Mark Weaver¹; ¹University of Alabama Tuscaloosa

4:35 PM

Tuning of Hierarchical Oxide Evolution in NbTiZr-based RMPEAs: David Beaudry¹; Michael Waters²; Charlotte Brandenburg³; Daniel Foley¹; Elaf Anber¹; Jean-Philippe Couzinie⁴; Loic Perriere⁴; Keith Knipling⁵; Benjamin Redemann¹; Tyrel McQueen¹; Elizabeth Opila³; James Rondinelli²; Mitra Taheri¹; ¹Johns Hopkins University; ²Northwestern University; ³University of Virginia; ⁴Univ Paris Est Creteil, CNRS, ICMPE; 5U.S. Naval Research Laboratory

CORROSION

Environmentally Assisted Cracking: Theory and Practice — Hydrogen Embrittlement I

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska-Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Monday PM | March 20, 2023 Sapphire 410B | Hilton

Session Chairs: Reiner Kirchheim, University of Goettingen; Dierk Raabe, Max-Planck Institute

2:00 PM Invited

Hydrogen Affecting Defect Density and Mobility in Metals and Vice Versa: Reiner Kirchheim¹; ¹University of Goettingen

2:30 PM

Some Recent Advances on Hydrogen Embrittlement in Martensitic Steels: From Diffusion and Trapping of Hydrogen to Mechanisms of Damage: Abdelali Oudriss¹; Xavier Feaugas¹; ¹Lasie Cnrs Umr 7356

2:50 PM

Effect of Hydrogen on the Yield Stress of Austenitic Stainless Steels: A Stress Orientation Dependent Contribution: Fernando Leon-Cazares¹; Samuel Parry¹; Brian Kagay²; Xiaowang Zhou¹; Coleman Alleman¹; Joseph Ronevich¹; Chris San Marchi¹; ¹Sandia National Laboratories; ²MPA University of Stuttgart

3:10 PM

Understanding Hydrogen Embrittlement Effects on the Deformation Mechanisms in Developmental Austenitic Steels: Quinten Yurek¹; Po-Cheng Kung¹; Hoon Lee²; James Stubbins³; Brian Somerday⁴; Petros Sofronis⁴; Tsuchiyama Toshihiro⁵; Jessica Krogstad¹; ¹Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign; ²Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign; 3Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign; ⁴Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign; 5Department of Materials Science and Engineering, Kyushu University

3:30 PM Break

3:50 PM Invited

Atomic-scale Analysis of Hydrogen Embrittlement in Highstrength Al Alloys: Dierk Raabe¹; Huan Zhao¹; Batiste Gault¹; Tilmann Hickel¹; Dirk Ponge¹; Binhan Sun¹; ¹Max-Planck Institute

4:20 PM

Mechanical Behavior of Wrought Aluminum in Hydrogen Environments: Adam Freund1; Kester Clarke1; Amy Clarke1; Suveen Mathaudhu¹; ¹Colorado School of Mines

4:40 PM

The Impacts of Hydrogen on the Elasticity, Plasticity and Damage Mechanisms of Pure Nickel: Abdelali Oudriss¹; Siva Pasad Murugan¹; Yasmine Ben Jedidia¹; Nadjib Iskounen¹; Marie Landeiro Dos Reis¹; Jamaa Bouhattate¹; Xavier Feaugas¹; ¹Lasie Cnrs Umr 7356

5:00 PM

A Combined Micromechanics/Materials Science Approach to Understanding High Temperature Hydrogen Attack: Kshitij Vijayvargia¹; Mohsen Dadfarnia²; Petros Sofronis¹; Masanobu Kubota³; Aleksandar Staykov³; Kentarou Wada³; John Pugh⁴; Tom Eason⁵; ¹University of Illinois Urbana-Champaign; ²Seattle University; ³International Institute for Carbon Neutral Energy Research; ⁴Other; ⁵BP Products North America

MATERIALS DESIGN

Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling — **Applications of Machine Learning and Data Science** to Fatigue Studies

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Additive Manufacturing Committee

Program Organizers: Jean-Charles Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Ashley Spear, University of Utah; Antonios Kontsos, Drexel University; Brian Wisner, Ohio University; Orion Kafka, National Institute of Standards and Technology

Monday PM | March 20, 2023 Sapphire H | Hilton

Session Chairs: Ashley Spear, University of Utah; Orion L. Kafka, National Institute of Standards and Technology

2:00 PM Invited

Capturing Spatial Fields of Deformation ahead of Fatigue Cracks in Alloys Using Dictionary-based Data Reduction Strategies on In Situ High-energy X-ray Diffraction Data: Kelly Nygren¹; Daniel Banco²; Akihide Nagao³; Shuai Wang⁴; Matthew Miller¹; Eric Miller²; Darren Pagan⁵; ¹Cornell University; ²Tufts University; ³Air Liquide; ⁴Southern University of Science and Technology; ⁵Pennsylvania State University

2:30 PM

Using Computer Vision to Identify Crack Initiation and Link to Fatigue Life: Katelyn Jones¹; Paul Shade²; Reji John²; William Musinski²; Elizabeth Holm¹; Anthony Rollett¹; ¹Carnegie Mellon University; ²Air Force Research Laboratory

A Machine Learning Model to Predict Fatigue Progression Using 3D Topology Data of Materials Obtained from X-ray Microscope: Gunjick Lee¹; Leslie Tiong²; Donghun Kim²; Seok Su Sohn¹; ¹Korea University; ²Korea Institute of Science and Technology

3:10 PM

Intelligent Data-guided Process Design for Fatigue-resistant Steel Components with Bainitic Microstructure (iBain): Ingo Steinbach1; ¹Ruhr-University Bochum

3:30 PM

Machine Learning Segmentation Methods for Fatigue Fracture Surface Defect Analyses: Austin Ngo1; David Scannapieco1; Oluwatumininu Adeeko¹; Shuheng Zhang¹; Shuyue Bian¹; Collin Sharpe¹; John Lewandowski¹; ¹Case Western Reserve University

MATERIALS PROCESSING

Friction Stir Welding and Processing XII — Friction **Stir Processing**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Anton Naumov, Peter The Great St. Petersburg Polytechnic University; Nilesh Kumar, University of Alabama, Tuscaloosa

Monday PM | March 20, 2023 29A | SDCC

Session Chairs: Nilesh Kumar, University of Alabama, Tuscaloosa; Hrishikesh Das, Pacific Northwest National Laboratory

2:00 PM

Enhanced Tensile and Tear Toughness Properties of Thin-wall Vacuum-assisted High-pressure Die-cast Aural-5 Alloy by Friction Stir Processing: Avik Samanta1; Hrishikesh Das1; Glenn Grant1; Saumyadeep Jana¹; ¹Pacific Northwest National Laboratory

2:20 PM

Effect of Friction Stir Processing on the Microstructure and Mechanical Properties of Thick Al-6061 Alloy: Amlan Kar1; Eric Pickron¹; Todd Curtis¹; Bharat Jasthi¹; Grant Crawford¹; ¹Arbegast Materials Processing and Joining Laboratory (AMP),

2:40 PM

Effect of Microstructure on Mechanical Properties of Friction Stir Processed Al Alloy: Rajashekara Sarvesha1; David Garcia2; Richard Eberheim³; Kenneth Ross²; Arvind Agarwal¹; Tanaji Paul¹; ¹FIU College of Engineering and Computing; ²Pacific Northwest National Laboratory; 3Solvus Global

3:00 PM

Surface Alloying Due to WC Tool Wear during FSP and Its Effects on the Microstructure and Mechanical Properties of Topmost Steel Layer: Hajime Yamamoto¹; Yudai Imagawa¹; Yuji Yamamoto¹; Kazuhiro Ito¹; ¹Joining and Welding Research Institute, Osaka University

3:20 PM Break

3:40 PM

Graphite-Reinforced 6201 Aluminum Alloy Fabricated by In-situ Friction Stir Processing: Process, Microstructure and Mechanical/ **Electrical Properties**: Yijun Liu¹; Gaoqiang Chen¹; Fangzheng Shi¹; Mengran Zhou¹; Shuai Zhang¹; Gong Zhang¹; Qingyu Shi¹; ¹Tsinghua University

4:00 PM

Fabrication and Characterization of Mono and Hybrid Composites Using Friction Stir Processing with Soda-lime Glass and Polymer Reinforcements: Ankita Mohanty¹; Nishkarsh Srivastava¹; Mo Rizwan Qureshi¹; Amit Arora¹; ¹Indian Institute of Technology Gandhinagar

MATERIALS PROCESSING

Frontiers in Solidification: An MPMD Symposium Honoring Jonathan A. Dantzig — Peritectics & **Eutectics**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Light Metals Division, TMS Structural Materials Division, TMS: Aluminum Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Andre Phillion, McMaster University; Michel Rappaz, Ecole Polytechnique Fédérale De Lausanne; Melis Serefoglu, Marmara University; Damien Tourret, IMDEA Materials Institute

Monday PM | March 20, 2023 28E | SDCC

Session Chairs: Julien Zollinger, University of Lorraine - IJL; Hani Henein, University of Alberta

2:00 PM Invited

Phase-field Simulations of Peritectic Coupled Growth: Mathis Plapp¹; ¹Ecole Polytechnique

2:30 PM Invited

About the Complexity of Using a 'Simple' Transparent Model Alloy to Study Peritectic Couple Growth in Microgravity: Andreas Ludwig¹; Johann Mogeritsch¹; ¹Montanuniversitaet Leoben

Microstructure Evolution during Solidification of Fe-C-Mn-Si Peritectic Steels: Olajide Akintayo¹; Muhammad Nabeel¹; André Phillion¹; ¹McMaster University

3:20 PM Break

3:40 PM Invited

Formation of Locked-lamellar Grains in a Slightly Hypereutectic Al-Al2Cu Alloy during Thin-sample Directional Solidification: Sabine Bottin-Rousseau¹; Silvère Akamatsu¹; Mehdi Medjkoune²; ¹Sorbonne University; ²IM2NP

4:10 PM

Eutectic Growth Dynamics during Directional Solidification with Velocity Ramps: In-situ Investigations in Microgravity: Victor Witusiewicz¹; Ulrike Hecht¹; Sabine Bottin-Rousseau²; Silvere Akamatsu³; ¹Access e.V.; ²Sorbonne University; ³Cnrs

Tomographic Analysis of Microstructure Evolution in Ternary Al-Cu-Aq Eutectic: Amber Genqu¹: Jessica Friess¹: Philipp Rayling¹: ¹University of Alabama at Birmingham

Nanoscopic View of Irregular Eutectic Solidification: Shanmukha Kiran Aramanda¹; Paul Chao¹; Ashwin Shahani¹; ¹University of Michigan

5:10 PM

Microstructural Evaluation of Containerless Solidification of Al-Ce Alloys: Jonas Valloton1; Akankshya Sahoo1; Marcelino da Silva Dias Filho¹; Sven Vogel²; Hani Henein¹; ¹University of Alberta; ²Los Alamos **National Laboratory**

NANOSTRUCTURED MATERIALS

Functional Nanomaterials 2023 — Session II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Nanomaterials Committee, TMS: Composite Materials Committee

Program Organizers: Yong Lin Kong, University of Utah; Sarah Ying Zhong, University of South Florida; Mostafa Bedewy, University of Pittsburgh; Woochul Lee, University of Hawaii at Mnoa; Changhong Cao, McGill University; Kiyo Fujimoto, Idaho National Laboratory; Surojit Gupta, University of North Dakota; Michael Cai Wang, University of South Florida

Monday PM | March 20, 2023 Aqua 305 | Hilton

Session Chairs: Changhong Cao, McGill University; Michael Cai Wang, University of South Florida; Mostafa Bedewy, University of Pittsburgh

2:00 PM Keynote

Mechanical Reliability of 2D Materials: Tobin Filleter¹; ¹University of Toronto

2:40 PM Invited

Synthesis, Characterization and Molecular Simulation of Polymers Enhanced with Halloysite Nanotubes: Ronald Miller1; Rafaela Aguiar²; Oren Petel¹; ¹Carleton University; ²University of Toronto

3:10 PM Invited

Exploring Lubrication Mechanisms One Layer of Atoms at a Time: Philip Egberts¹; Chaochen Xu¹; Peng Gong¹; Zahra Abooalizadeh¹; Nicholas Chan¹; ¹University of Calgary

3:40 PM Break

4:00 PM Keynote

Morphological Stability of Micro- and Nano-structures: Carl Thompson¹: ¹Massachusetts Institute of Technology

5:00 PM Invited

Mechanical Insights into 2D Metal Halide Perovskite Structures: From Bulk Crystals to Molecular Sheets: Qing Tu1; 1Texas A&M University

4:40 PM

Epitaxial Growth of Single Crystal Nanostructure Arrays through Thermomechanical Nanomolding: Guannan Liu¹; Sungwoo Sohn¹; Naijia Liu¹; Arindam Raj¹; Udo Schwarz¹; Jan Schroers¹; ¹Yale University

CHARACTERIZATION

Heterostructured and Gradient Materials (HGM V): **New Mechanistic Discoveries Enabling Superior** Properties — Heterostructured Materials II: Structure Design

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Shaping and Forming Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Nanyang Technological University; Ke Lu, Institute of Metal Research; Suveen Mathaudhu, Colorado School of Mines; Xiaolei Wu, State Institute of Mechanics, Chinese Academy of Sciences

Monday PM | March 20, 2023 Aqua 314 | Hilton

Session Chairs: Kei Ameyama, Ritsumeikan University; Andrea Hodge, University of Southern California

2:00 PM Invited

Design of Heterostructured High Entropy Alloys for Superior Mechanical Properties at Cryogenic-to-ambient Temperatures: Cheng Zhang¹; Enrique Lavernia¹; ¹University of California Irvine

2:30 PM Invited

Deformation Domains in Heterogeneous Nanostructured Inconel: Andrea Hodge1; 1University of Southern California

3:00 PM

Application of Harmonic Structure Design to a CrMnFeCoNi High Entropy Alloy: Kei Ameyama¹; Hiroshi Fujiwara¹; ¹Ritsumeikan

3:20 PM Break

3:40 PM

Multiscale and Hierarchical Laminated Steel Structures with Superior Strength-ductility Synergy via Additive Manufacturing: Xipeng Tan¹; Shubham Chandra²; ¹National University of Singapore; ²Nanyang Technological University

ADVANCED MATERIALS

High Performance Steels — Novel Steels and Extreme Environments

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Jonah Klemm-Toole, Colorado School of Mines; Ana Luiza Araujo, CBMM North America Inc.; C. Tasan, Massachusetts Institute of Technology; Richard Fonda, Naval Research Laboratory; Amit Behera, QuesTek Innovations LLC; Benjamin Adam, Oregon State University; Krista Limmer, DEVCOM Army Research Laboratory; Kester Clarke, Colorado School of Mines

Monday PM | March 20, 2023 Aqua F | Hilton

Session Chairs: Kester Clarke, Colorado School of Mines; Cem Tasan, Massachusetts Institute of Technology

2:00 PM Invited

Influence of N and Mn on Performance of Advanced Austenitic Stainless Steels: Guocai Chai1; 1Alleima

2:30 PM

Nano-engineering of High Performance Steels: Wenwen Song¹; ¹RWTH Aachen

2:50 PM

Low-density, Medium-Mn Steels: Influence of Al Content on Microstructure Related Properties: Tomas Scuseria¹; Kelcey Garza²; Dean Pierce³; Jerry Arnold²; Amy Clarke¹; Kester Clarke¹; ¹Colorado School of Mines; ²Cleveland-Cliffs; ³Oak Ridge National Laboratory

On the Development of High-strength High-damping Steels: A CALPHAD Assisted Alloy Design Study: Julian Rackwitz1; Cemal Tasan¹; Gregory Olson¹; ¹Massachusetts Institute of Technology

3:30 PM Break

3:50 PM

Very Strong High-entropy Steel Strengthened by Multiphase of Multiscale: Yi-Hsuan Sun1; Zen-Hao Lai1; Jui-Fan Tu2; Yu-Jen Tseng¹; Hung-Wei Yen¹; ¹National Taiwan University; ²China Steel Corporation

4:10 PM

B2 Precipitation Strengthened Medium Mn Steel Processed by Intercitical Annealing and Aging: Jinyoung Kim¹; Jinkyung Kim¹; ¹Hanyang University

4:30 PM

Carbide Precipitation Strengthening Behaviour in an Additively Manufactured High-speed Steel with Unprecedented Strength: Huayue Zhang¹; Hui Peng²; Hongbo Guo²; Stuart Robertson³; Paul Bagot⁴; Michael Moody⁴; Bo Chen¹; ¹University of Leicester; ²Beihang University; ³Loughborough University; ⁴University of Oxford

4:50 PM

Analysing the Corrosion of T91 in Liquid Lead-bismuth-Eutectic: Minyi Zhang¹; Guanze He¹; Mark Lapington¹; Weiyue Zhou²; Michael Short²; Paul Bagot¹; Felix Hofmann¹; Michael Moody¹; ¹University of Oxford; 2Massachusetts Institute of Technology

MECHANICS & STRUCTURAL RELIABILITY

High Temperature Creep Properties of Advanced Structural Materials — Creep Behavior of Steels and **Multi-Principal Element Alloys**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Gianmarco Sahragard-Monfared, University of California, Davis; Mingwei Zhang, Lawrence Berkeley National Lab; Jeffery Gibeling, University of California, Davis

Monday PM | March 20, 2023 Sapphire P | Hilton

Session Chairs: Gianmarco Sahragard-Monfared, University of California, Davis; Mingwei Zhang, Lawrence Berkeley National Laboratory; Jeffery Gibeling, University of California, Davis

2:00 PM Introductory Comments

Role of Cr Content on Creep-rupture Performance in Aluminaforming Austenitic Alloys: Yukinori Yamamoto¹; Qing-Qiang Ren¹; Michael Brady¹; ¹Oak Ridge National Laboratory

Creep Ratcheting of a HP+NbW (MA) Steam Methane Reformer Tube Alloy: Mackenzie Caughey¹; Milo Kral¹; ¹University of Canterbury

2:45 PM Invited

Creep Behaviors of High-entropy Alloys: Lia Amalia¹; Di Xie¹; Shuying Chen1; Weidong Li1; Dongyue Li2; Yong Zhang2; Chelsey Hargather3; Yanfei Gao1; Peter Liaw1; 1University of Tennessee; 2University of Science and Technology Beijing; ³New Mexico Institute of Mining and Technology

3:15 PM

Mechanisms of Creep in Additively Manufactured NiCoCr and ODS-NiCoCr Multi-principal Element Alloys: Gianmarco Sahragard-Monfared¹; Mingwei Zhang²; Timothy Smith³; Easo George⁴; Jeffery Gibeling¹; ¹University of California, Davis; ²Lawrence Berkeley National Laboratory; ³NASA Glenn Research Center; ⁴The University of Tennessee. Knoxville

MATERIALS PROCESSING

High Temperature Electrochemistry V — Session II

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Prabhat Tripathy, Batelle Energy Alliance (Idaho National Laboratory); Guy Fredrickson, Idaho National Laboratory

Monday PM | March 20, 2023 28B | SDCC

Session Chair: Hojong Kim, Pennsylvania State University

2:00 PM Introductory Comments

2:05 PM Invited

Relative Performance of Platinum, Iridium, and Ruthenium as Oxygen-Evolving Anodes during the Electrolytic Reduction of Uranium Oxide in Molten LiCl-Li2O: Steven Herrmann¹; Prabhat Tripathy¹; James King¹; Guoping Cao¹; Kevin Tolman¹; ¹Idaho National Laboratory

2:45 PM

Evaluating the Electrochemical Recovery of Gd Using a Reactive Liquid Bi Electrode: Stephanie Castro Baldivieso¹; Sanghyeok Im¹; Nathan Smith¹; Hojong Kim¹; ¹Pennsylvania State University

3:05 PM

Cyclic Voltammetry for Real-time Oxide Ion Concentration Measurements of a Molten CaCl2: Forest Felling¹; Olivia Dale¹; Mario Gonzalez¹; Michael Simpson¹; ¹University of Utah

3:25 PM

Electrochemical Behavior of Bismuth in molten LiCl-KCl-CaCl2: Greg Chipman¹; Bryant Johnson¹; Devin Rappleye¹; ¹Brigham Young University

3:45 PM Break

4:05 PM

Electrochemical Properties of Ca-Sb Metal Battery with a Molten Chloride Electrolyte: Peyman Asghari-Rad¹; Sanghyeok Im¹; Kelly Elizabeth Varnell¹; Hojong Kim¹; ¹Pennsylvania State University

4:25 PM

Numerical Modelling and Phase Field Modelling of Silicon Electrodeposition for Solar Cells at High Temperatures using Molten Salts: Aditya Moudgal¹; Tyler Melo¹; Alexander Alonzo¹; Andrew Charlebois¹; Evan Costa¹; Peter Catalino¹; Adam Powell¹; Yu Zhong¹; Uday Pal²; ¹Worcester Polytechnic Institute; ²Boston University

4:45 PM

Evaluating the Effects of Mixed Cation Molten Salt Electrolytes within the Li-Sb-Sn Liquid Metal Battery System: Kelly Varnell1; Sanghyeok Im¹; Peyman Asghari-Rad¹; Hojong Kim¹; ¹Pennsylvania State University

MATERIALS DESIGN

Hume-Rothery Symposium on First-Principles Materials Design — Interface First-principle Method with the Discovery of Energy Materials

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Bin Ouyang, Florida State University; Mark Asta, University of California, Berkeley; Geoffroy Hautier, Dartmouth College; Wei Xiong, University of Pittsburgh; Anton Van der Ven, University of California, Santa Barbara

Monday PM | March 20, 2023 Cobalt 501C | Hilton

Session Chairs: Pieremanuele Canepa, National University of Singapore; Bin Ouyang, Florida State University

2:00 PM Invited

Disorder and Degradation in Rock-salt-type Lithium-ion Battery Cathodes: Alexander Urban¹; ¹Columbia University

2:30 PM Invited

First Principle Design of High Entropy Materials for Energy Storage and Conversion: Bin Ouyang¹; Gerbrand Ceder²; ¹Florida State University; 2University of California Berkeley

3:00 PM Invited

Computational Materials Design and Discovery for Next-generation Solid-state Batteries: Yan Wang¹; ¹Samsung Semiconductor, Inc.

3:30 PM Break

3:50 PM Invited

Millisecond-ion Transport in Mixed Polyanion in Energy Materials: Zeyu Deng¹; Tara Mishra¹; Eunike Mahayoni²; Jean-Noel Chotard²; Vincent Seznec²; Christian Masquelier²; Gopalakrishnan Sai Gautam³; Pieremanuele Canepa¹; ¹National University of Singapore; ²Laboratoire de Réactivité et de Chimie des Solides: ³Indian Institute of Science

4:20 PM Invited

Understanding Complex Materials and Interfaces through Molecular Dynamics Simulations: Yifei Mo1; 1University of Maryland, College Park

4:50 PM Invited

Matterverse.ai - A Graph Deep Learning Database of Materials **Properties**: Shyue Ping Ong¹; Chi Chen¹; ¹University of California-San

LIGHT METALS

Light Metals Subject Awards Presentation — Light Metals Subject Awards Presentation

Sponsored by: TMS: Aluminum Committee

Program Organizer: Stephan Broek, Kensington Technology Inc.

Monday PM | March 20, 2023 30E | SDCC

1:45 PM Awards Presentation: Please join us as we recognize the award recipients of the TMS Light Metals Subject Best Papers from TMS2022.

CORROSION

Local Ordering in Materials and Its Impacts on Mechanical Behaviors, Radiation Damage, and Corrosion — Session II

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Nuclear Materials Committee, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Fadi Abdeljawad, Clemson University; Irene Beyerlein, University of California, Santa Barbara; Enrique Lavernia, University of California, Irvine; Robert Ritchie, University of California, Berkeley

Monday PM | March 20, 2023 Sapphire 411A | Hilton

Session Chairs: Irene Beyerlein, University of California, Santa Barbara; Yang Yang, The Pennsylvania State University; Robert Ritchie, University of California, Berkeley; Penghui Cao, University of California, Irvine

2:00 PM Invited

Multi-scale Investigation of Chemical Short-range Order and Dislocation Glide in the MoNbTi and TaNbTi Refractory Multiprincipal Element Alloys: Shyue Ping Ong¹; Hui Zheng¹; Lauren Fey²; Xiang-Guo Li¹; Yong-Jie Hu³; Liang Qi⁴; Shuozhi Xu²; Irene Beyerlein²; ¹University of California, San Diego; ²University of California, Santa Barbara; ³Drexel University; ⁴University of Michigan, Ann Arbor

Symmetry Considerations for Ordering in High-entropy Alloys Flynn Walsh¹; Robert Ritchie¹; Mark Asta¹; ¹Lawrence Berkeley National Laboratory

Short Range Order Prediction in High Throughput from First Principles: A Descriptor-based Screening Process: Nathan Smith1; Chris Wolverton¹; ¹Northwestern University

3:10 PM Invited

Strengthening Mechanisms In Refractory High Entropy Alloys Based on Athermal Atomic-sized Dislocation Imperfections: Jaime Marian¹; ¹University of California, Los Angeles

3:40 PM Break

3:55 PM Invited

Local and Short-range Chemical Order in High/Medium Entropy Alloys: Evan Ma1; 1Xi'an Jiaotong University, China

Computational and Characterization Methods to Quantify Chemical Ordering in Compositionally Complex Alloys: Annie Barnett¹; Daniel Foley¹; Elaf Anber¹; Yevgeny Shlafstein¹; Alejandro Perez²; Partha Das²; Douglas Spearot³; Irene Beyerlein⁴; Michael Falk¹; Mitra Taheri¹; ¹Johns Hopkins University; ²NanoMEGAS SPRL; ³University of Florida; ⁴University of California Santa Barbara

4:45 PM

Observation of Fe and Mn Chemical Ordering in High Mn Steels by Neutron Diffraction: Lawrence Cho1; Pawan Kathayat1; Yuran Kong¹; John Speer¹; Kip Findley¹; Donald Brown²; Bjorn Clausen²; Sven Vogel²; Samantha Lawrence²; ¹Colorado School of Mines; ²Los Alamos National Laboratory

LIGHT METALS

Magnesium Technology 2023 — Microstructure **Evolution**

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Steven Barela, Terves, Inc; Aeriel Murphy-Leonard, Ohio State University; Petra Maier, University of Applied Sciences Stralsund; Neale Neelameggham, IND LLC; Suveen Mathaudhu, Colorado School of Mines; Victoria Miller, University of Florida

Monday PM | March 20, 2023 30C | SDCC

Session Chairs: Benjamin Anthony, University of Florida; Kiran Solanki, Arizona State University

2:00 PM

Effects of Ca and Zn Additions on the Static Recrystallization Kinetics and Texture Evolution in Wrought Magnesium Alloys: Tracy Berman¹; John Allison¹; ¹University of Michigan

2:20 PM

A Theoretical Model for Predicting Stacking Fault Energies of Ternary Magnesium Alloys Based on High-throughput Calculation and Machine Learning: Qiwen Qiu1; Jun Song1; 1McGill University

2:40 PM

Precipitation Behavior in Low-alloyed Mg-Ca-Zn Alloys: Zehao Li¹; Taisuke Sasaki¹; Du Cheng²; Kang Wang²; Bi-cheng Zhou²; Akira Uedono³; Tadakatsu Ohkubo¹; Kazuhiro Hono¹; ¹National Institute for Materials Science; ²University of Virginia; ³University of Tsukuba

3:00 PM

Multiscale, Multimodal Characterization of Recrystallized and Non-recrystallized Grains during Recrystallization in a Hotcompressed Mg-3.2Zn-0.1Ca wt.% Alloy: Sangwon Lee1; Ashley Bucsek¹; Tracy Berman¹; Can Yildirim²; Carsten Detlefs²; John Allison¹; ¹University of Michigan; ²European Synchrotron Radiation Facility

3:20 PM Break

3:40 PM Invited

Combined Effect of Alloying and Grain Size on the Deformation Behavior of Magnesium Alloys: Mariyappan Arul Kumar¹; ¹Los Alamos National Laboratory

4:00 PM

Quantifying the Role of Coarse Intermetallic Particles on Twinning Behavior: Benjamin Anthony¹; Victoria Miller¹; ¹University of Florida

4:20 PM

Optimization of the Microstructure and Performance of Aluminum Alloy Cold Spray Coatings on Magnesium Alloys: Sridhar Niverty¹; Rajib Kalsar¹; Anthony Naccarelli²; Timothy Eden²; Glenn Grant¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory; ²Pennsylvania State University

CHARACTERIZATION

Material Behavior Characterization via Multi-Directional Deformation of Sheet Metal — Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Daniel Coughlin, United States Steel Corp; Cody Miller, Los Alamos National Laboratory; Kester Clarke, Colorado School of Mines; Piyush Upadhyay, Pacific Northwest National Laboratory; John Carsley, Novelis, Inc.

Monday PM | March 20, 2023 Aqua 309 | Hilton

Session Chairs: Kester Clarke, Colorado School of Mines; Piyush Upadhyay, Pacific Northwest National Laboratory

2:00 PM Invited

Predicting Strength and Ductility of Multi-directionally Deformed Steel Plate: a Coupled Distortional Hardening and Continuum Damage Mechanics: Myoung-Gyu Lee1; Seonghwan Choi1; Soo-Chang Kang²; ¹Seoul National University; ²POSCO

2:30 PM Invited

Simplifying Complex Loading for Training Advanced Constitutive Models: Treating Sheet Metal Like It's Not 2D

: Zachary Brunson¹; Aaron Stebner¹; ¹Georgia Institute of Technology

3:00 PM

A Novel Anisotropic Continuum Damage Evolution Model Coupled with Anisotropic Hardening under Non-proportional Deformation Paths: Seonghwan Choi¹; Soo-Chang Kang²; Myoung-Gyu Lee¹; ¹Seoul National University; ²Steel Solution Research Lab, POSCO

Determination of Optimum Tension-compression Loops/Cycles for Estimating Yoshida-Uemori Constitutive Model Parameters for Advanced Lightweighting Materials: Dilip Banerjee¹; William Luecke¹; Mark Iadicola¹; Evan Rust¹; ¹National Institute of Standards and Technology

3:40 PM Break

4:00 PM Invited

Characterization of Commercially Pure Titanium Twinning under Proportional Loading Paths: Jinjin Ha¹; Abrar Ebrahim¹; Jinjae Kim¹; Brad Kinsey¹; ¹University of New Hampshire

4:30 PM

Anisotropic Behaviour and Deformation Mechanism of Ti407 Sheets with Reduced Al Content: Saeed Tamimi¹; Giri Sivaswamy¹; Tabassam Yasmeen¹; Salah Rahimi¹; ¹AFRC- University of Strathclyde

NUCLEAR MATERIALS

Materials and Chemistry for Molten Salt Systems — **Corrosion and Speciation**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Raluca Scarlat, University of California, Berkeley, Jinsuo Zhang, Virginia Polytechnic Institute and State University; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Nathaniel Hoyt, Argonne National Laboratory

Monday PM | March 20, 2023 27A | SDCC

Session Chair: Nathaniel Hoyt, Argonne National Laboratory

2:00 PM Invited

Flibe Chemistry Control for Fluoride Salt-Cooled High-Temperature Reactors: Francesco Carotti¹; Augustus Merwin¹; Kaitlin Johnson¹; Sam Mossadeghian¹; Jacob McMurray¹; Michael Hanson¹; Alan Kruizenga¹; ¹Kairos Power

2:30 PM

Fundamental Aspects of Chromium Corrosion in Molten Fluoride Salts: Ho Lun Chan¹; Elena Romanovskaia¹; Minsung Hong²; Valentin Romanovski¹; Peter Hosemann²; John Scully¹; ¹University of Virginia; ²University of California Berkeley

Thermodynamics and Kinetics of Extrinsic Corrosion Impurities in Molten Salts: Jicheng Guo¹; Amber Polke¹; Timothy Lichtenstein¹; Sumit Bhattacharya¹; Nathaniel Hoyt¹; ¹Argonne National Laboratory

Modeling the Evolution of Structural Alloy Microstructure Due to Molten Salt Corrosion: Chaitanya Bhave1; Michael Tonks1; Kumar Sridharan²; Adrien Couet²; ¹University of Florida; ²University of Wisconsin-Madison

3:30 PM Break

3:50 PM

Exploring the Effect of Radiation and Temperature on the Local Structure of Metal Ions in Molten Salt Environments using X-ray Absorption Spectroscopy: Nirmalendu Patra1; Kazuhiro Iwamatsu1; Mehmet Topsakal¹; Alejandro Ballesteros²; Ruchi Gakhar³; Michael Woods³; Simon Pimblott³; Jay LaVerne²; James Wishart¹; Anatoly Frenkel⁴; Simerjeet Gill¹; ¹Brookhaven National Laboratory; ²University of Notre Dame; ³Idaho National Laboratory; ⁴Stony Brook University

4:10 PM

High Temperature X-ray Scattering and MD Simulation of Molten Fluoride Salts: Anubhav Wadehra¹; Yifan Zhang²; Haoxuan Yan¹; Alexander Levy¹; Jicheng Guo³; Daniel Olds⁴; Karl Ludwig¹; Uday Pal¹; Yu Zhong²; Adam Powell²; ¹Boston University; ²Worcester Polytechnic Institute; ³Argonne National Laboratory; ⁴Brookhaven **National Laboratory**

4:30 PM

Operando Synchrotron X-ray Nano-tomography and Multimodal Studies on the Evolution of Metals in Molten Chloride Salts: Yuchen Karen Chen-Wiegart¹; ¹Stony Brook University / Brookhaven **National Laboratory**

4:50 PM

Evaluation of the Lanthanide Electrolytic Extraction on Li-Bi Liquid in Molten Fluorides: Pierre Chamelot1; Mathieu Gibilaro1; Laurent Massot¹; ¹Laboratoire de Génie Chimique UMR5503

5:10 PM

Keep It Lewis-Basic: Stability of NaSICON Separators in AlCl,-NaI Catholytes for Molten Sodium Batteries: Adam Maraschky1; Melissa Meyerson¹; Stephen Percival¹; Amanda Peretti¹; Erik Spoerke¹; Leo Small¹; ¹Sandia National Laboratories

MATERIALS DESIGN

Materials Genome, CALPHAD, and a Career over the Span of 20, 50, and 60 Years: An FMD/SMD Symposium in Honor of Zi-Kui Liu — CALPHAD

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Yu Zhong, Worcester Polytechnic Institute; Richard Otis, Jet Propulsion Laboratory; Bi-Cheng Zhou, University of Virginia; Chelsey Hargather, New Mexico Institute of Mining and Technology; James Saal, Citrine Informatics; Carelyn Campbell, National Institute of Standards and Technology

Monday PM | March 20, 2023 Sapphire L | Hilton

Session Chair: Richard Otis, NASA Jet Propulsion Laboratory

2:00 PM Invited

Computational Design of Engineering Materials: Tools and Applications: Rainer Schmid-Fetzer1; Yong Du2; Jincheng Wang3; Shuhong Liu²; Jianchuan Wang²; ¹Clausthal University of Technology; ²Central South University; ³Northwestern Polytechnic University

2:30 PM Invited

Rapidly Generating Calphad Databases with High-throughput First-principles Calculations: Brandon Bocklund¹; Aurélien Perron¹; ¹Lawrence Livermore National Laboratory

3:00 PM Invited

CALPHAD Supported by Advanced Materials Analytics: Hans Seifert1; 1Karlsruhe Institute of Technology

3:30 PM Break

3:50 PM Invited

A New Modeling Approach for Co-base Superalloys: Ursula Kattner¹; Júlio Pereira dos Santos²; Chuan Liu²; Sean Griesemer³; Peisheng Wang⁴; Carelyn Campbell¹; ¹National Institute of Standards and Technology; ²CHiMaD; ³Northwestern University; ⁴Central South University

4:20 PM Invited

Thermochemical and Thermophysical Properties of Metal Diborides (MB2 | M = Ti, Zr, Nb, Hf, Ta) up to 3150 C: Scott Mccormack¹; Stuart Ness¹; Fox Thrope¹; Elizabeth Sobalvarro²; James Cahil²; Gabrella King²; Wyatt Du Frane²; Joshua Kuntz²; ¹University of California, Davis; ²Lawrence Livermore National Laboratory

4:50PM Invited

Applications of the CALPHAD Approach to Nuclear Materials Design: Chao Jiang¹; ¹Idaho National Laboratory

MATERIALS PROCESSING

Materials Processing Fundamentals — Process Optimization

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process **Technology and Modeling Committee**

Program Organizers: Samuel Wagstaff, Oculatus Consulting; Alexandra Anderson, Gopher Resource; Adrian Sabau, Oak Ridge National Laboratory

Monday PM | March 20, 2023 25B | SDCC

Session Chair: Samuel Wagstaff, Oculatus Consulting

2:00 PM Introductory Comments

2:05 PM

Magnetohydrodynamics Computational Framework Submerged Arc Furnace: A Review: Yonatan Afework Tesfahunegn¹; Pascal Bayrasy²; Hákon Haraldsson¹; Thordur Magnusson³; Merete Tangstad⁴; Gudrun Saevarsdottir¹; ¹Reykjavik University; ²Fraunhofer Institute for Algorithms and Scientific Computing SCAI; 3Stakksberg ehf; ⁴Norwegian University of Science and Technology

2:25 PM

Modeling of Macro-scale Reaction Effects in a Secondary Lead Reverberatory Furnace: Nicholas Walla¹; Emily Higley¹; Armin Silaen¹; Alexandra Anderson²; Joseph Grogan²; Chenn Zhou¹; ¹Purdue University Northwest; ²Gopher Resource

2:45 PM

A Study on Behavior of Post Combustion in 2-Ton Converter Simulator: Jia Lee1; Jeong Whan Han1; 1Inha University

Post Processing Approach to Model Microsilica Formation: Kurian J. Vachaparambil¹; Kristian Etienne Einarsrud²; Stefan Andersson¹; Halvor Dalaker¹; ¹SINTEF Industry; ²Norwegian University of Science and Technology (NTNU)

3:25 PM Break

3:45 PM

Comparative Statistical Analysis of Gold Processing Plant Recovery Data: Martin Beyuo1; Eric Agorhom1; Ishmael Quaicoe1; Clement Owusu¹; ¹University of Mines and Technology

4:05 PM

Correlation Between Edge Failure and Edge Geometry of Advanced High-Strength Steels Using the Image Processing: Kyucheol Jeong¹; Yuhyeong Jeong¹; Gisuk Chung²; Jaewook Lee²; Jonghun Yoon¹; ¹Hanyang University; ²POSCO Global R&D Center

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components III - Ferritic Alloys II

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Assel Aitkaliyeva, University of Florida; Clarissa Yablinsky, Los Alamos National Laboratory; Osman Anderoglu, University of New Mexico; Eda Aydogan, Middle East Technical University; Kayla Yano, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Djamel Kaoumi, North Carolina State University

Monday PM | March 20, 2023 28D | SDCC

Session Chairs: Clarissa Yablinsky, LANL; Osman Anderoglu, University of New Mexico

2:00 PM Invited

Evaluating ATF Cladding Mechanical Behavior: Benjamin Eftink¹; Peter Beck¹; Nan Li¹; Cheng Liu¹; Mathew Hayne¹; Hyosim Kim¹; Tarik Saleh¹; ¹Los Alamos National Laboratory

2:30 PM

Mechanical and Microstructural Characterization of Neutron Irradiated HT-9 Heats at LWR and Fast Reactor Relevant **Temperatures**: Ramprashad Prabhakaran¹; Indrajit Charit²; Dan Edwards¹; Mychailo Toloczko¹; Stuart Maloy¹; Kumar Sridharan³; ¹Pacific Northwest National Laboratory; ²University of Idaho; ³University of Wisconsin-Madison

2:50 PM

The Origin of Superior IASCC Resistance of Additively Manufactured 316L Stainless Steel after Hot Isostatic Pressing in Oxygenated BWR Water: Jingfan Yang¹; Laura Hawkins²; Lingfeng He²; Miao Song³; Yu Lu⁴; Gary Was³; Xiaoyuan Lou¹; ¹Purdue University; ²Idaho National Laboratory; ³University of Michigan—Ann Arbor; ⁴Boise State University

3:10 PM

Musings on Advanced Cladding Qualification: Tarik Saleh¹; ¹Los Alamos National Laboratory

3:30 PM Break

3:50 PM

High Throughput Nanoindentation Creep Testing in Nuclear Reactor Steels: Moujhuri Sau1; Eric Hintsala2; Douglas Stauffer2; Laurent Capolungo³; Nathan Mara¹; ¹University of Minnesota; ²Bruker Nano Inc.; ³Los Alamos National Laboratory

4:10 PM

Deformation Characteristics of Additively Manufactured 316L Stainless Steels after Neutron Irradiation: Thak Sang Byun¹; Maxim Gussev¹; Timothy Lach¹; Annabelle Le Coq¹; Kory Linton¹; ¹Oak Ridge **National Laboratory**

BIOMATERIALS

Mechanics and Physiological Adaptation of Hard and Soft Biomaterials and Biological Tissues — Bone Mineralization & Hard Tissue Mechanics

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Bernd Gludovatz, UNSW Sydney; Elizabeth Zimmermann, McGill University; Steven Naleway, University of Utah

Monday PM | March 20, 2023 Sapphire 400B | Hilton

Session Chairs: Bernd Gludovatz, UNSW Sydney; Elizabeth Zimmermann, McGill University

2:00 PM Invited

Bone Quality and Mineralization from Vibrational Spectroscopy: Eve Donnelly1; 1Cornell University

2:30 PM Invited

Multi-scale Characterization of Ear Bone Mechanics: Alessandra Carriero¹; ¹The City College of New York

3:00 PM Invited

Mineral Ellipsoids and Nanochannel Structures in Bone: Tengteng (Toni) Tang1; Alyssa Williams1; Chiara Micheletti1; Mike Phaneuf2; Nabil Bassim¹; Aurelien Gourrier³; Kathryn Grandfield¹; ¹McMaster University; ²Fibics Inc.; ³Université Grenoble Alpes

3:30 PM Break

3:50 PM Keynote

Learning from Nature - How Biological Hard Tissues Cope with Stress: Rizhi Wanq¹; ¹University of British Columbia

4:30 PM

Impact of Test Environment on the Fracture Resistance of Cortical Bone: Bernd Gludovatz¹; Mihee Shin¹; Min Zhang¹; Annika vom Scheidt²; Matthew Pelletier¹; William Walsh¹; Penny Martens¹; Jamie Kruzic1; Björn Busse2; 1UNSW Sydney; 2University Medical Center Hamburg

4:50 PM

Mimicking the Structure and Properties of Bone with Freeze Casting: Steven Naleway1; Tony Yin1; Josh Fernquist1; Debora Lyn Porter¹; Maddie Schmitz¹; Elise Hotz¹; ¹University of Utah

NUCLEAR MATERIALS

Methods, Techniques, and Materials Discovery of Irradiation Effect Using In-situ Microscopy — In-situ **Observation of Material Response under Extreme Environments**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Wei-Ying Chen, Argonne National Laboratory; Xuan Zhang, Argonne National Laboratory; Kevin Field, University of Michigan; Donald Brown, Los Alamos National Laboratory; Aida Amroussia, GE Global Research

Monday PM | March 20, 2023 25A | SDCC

Session Chair: Donald Brown, LANL

2:00 PM Invited

Evolution of Vacancy/Interstitial Dislocation Loops in Pure Zr and Ti at Elevated Temperatures Observed by In-situ TEM Annealing: Fei Long¹; Matthew Topping¹; Zhongwen Yao¹; Malcolm Griffiths¹; Mark Daymond¹; ¹Queens University

2:30 PM Invited

Industrial Nuclear Materials Applications for In-situ Microscopy: Andrew Hoffman¹; Rajnikant Umretiya¹; Nathan Almirall¹; Raul Rebak¹; ¹GE Research

3:00 PM

Transient Grating Spectroscopy of Defect Annealing Kinetics and Microstructural Evolution in Self-ion Implanted Tungsten with Insitu Annealing: Mohamed Abdallah Reza¹; Kenichiro Mizohata²; Cody Dennett³; Guanze He¹; Hongbing Yu⁴; Felix Hofmann¹; ¹University Of Oxford; ²University of Helsinki; ³Massachusetts Institute of Technology; 4Canadian Nuclear Laboratories

3:20 PM Break

3:40 PM Invited

Simultaneous Proton Irradiation Changes Molten Fluoride Salt Corrosion Rates and Mechanisms: Weiyue Zhou1; Nouf AlMousa2; Yang Yang³; Kevin Woller¹; Michael Short¹; ¹Massachusetts Institute of Technology; ²Princess Nourah Bint Abdulrahman University; ³Pennsylvania State University

4:10 PM Invited

Is a TEM Foil "Bulk Enough" to Study the Parabolic Air-ingress Oxidation of W PFM in In-situ Environmental TEM?: Bharath Krupa Mekala¹; Rajat Sainju¹; Lichun Zhang¹; *Yuanyuan Zhu*¹; ¹University of Connecticut

NUCLEAR MATERIALS

Microstructural, Mechanical and Chemical Behavior of Solid Nuclear Fuel and Fuel-cladding Interface -**Uranium Dioxide Fuels II**

Sponsored by: TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee

Program Organizers: Yi Xie, Purdue University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida

Monday PM | March 20, 2023 26B | SDCC

Session Chair: Mia Jin, Pennsylvania State University

2:00 PM Introductory Comments

2:05 PM Invited

Multiphysics Modeling of Nuclear Fuels at the Mesoscale: Karim Ahmed1; 1Texas A&M University

Comparing the Impact of Thermal Stresses and Bubble Pressure on Intergranular Fracture in UO2 Using 2D Phase Field Fracture Simulations: Shuaifang Zhang¹; Wen Jiang²; Kyle Gamble²; Michael Tonks³; ¹Oak Ridge National Laboratory; ²Idaho National Laboratory; ³University of Florida

2:50 PM

Extended Defect Coalescence in Kr Irradiated UO2 During High Temperature Annealing: Joshua Ferrigno1; Chang-Yu Hung2; Lingfeng He³; Marat Khafizov¹; ¹The Ohio State University; ²Johns Hopkins University; 3Idaho National Laboratory

3:10 PM

Modeling Stoichiometry Controlled Defect **Densification in UO_{2+X}**: Brandon Battas¹; Michael Cooper²; Michael Tonks¹; ¹University of Florida; ²Los Alamos National Laboratory

3:30 PM Break

3:45 PM

Modeling Fission Gas Release Behavior from Microcracking and Thermal Diffusion at High Burnup in UO2 Fuel in BISON: Oliver Baldwin¹; Walter Brinkley¹; Jonathan Norman¹; Nathan Capps²; Brian Wirth¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

4:05 PM

Uncertainty Quantification of Thermal Performance of UO2 Fuel Pellets: Robert Annewandter¹; ¹Nuclear Futures Institute

Atomistically-informed Cluster Dynamics Modelling of Defect Evolution in Irradiated ThO2: Sanjoy Mazumder¹; Maniesha Singh¹; Tomohisa Kumagai¹; Anter El-Azab¹; ¹Purdue University

Modeling Low-temperature Hydrided Zircaloy Cladding Failure Under a Reactivity-initiated Accident: Katheren Nantes¹; Miaomiao Jin¹; Arthur Motta¹; ¹Pennsylvania State University

5:05 PM

Diffusion Coefficients of Zr- and Cr-based Binary Systems for Simulation of Cr-coated Zircaloy Nuclear Fuel Cladding: Ella Kartika Pek1; Wei Zhong1; Ji-Cheng Zhao1; 1University of Maryland

5:25 PM

Molecular Dynamics Study of the Anisotropic Elastic Response of **Defects in Alpha-Uranium**: Yuhao Wang¹; Benjamin Beeler²; Andrea Jokisaari³; ¹University of Michigan; ²North Carolina State University; 3Idaho National Laboratory

NANOSTRUCTURED MATERIALS

Nanostructured Materials in Extreme Environments Nanostructured Metals in High Temperature **Environments**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nuclear Materials Committee

Program Organizers: Haiming Wen, Missouri University of Science and Technology; Nan Li, Los Alamos National Laboratory; Youxing Chen, University of North Carolina Charlotte; Yue Fan, University of Michigan; Niaz Abdolrahim, University of Rochester; Khalid Hattar, University of Tennessee Knoxville; Ruslan Valiev, UFA State Aviation Technical University; Zhaoping Lu, University of Science and Technology Beijing

Monday PM | March 20, 2023 Aqua 303 | Hilton

Session Chair: Nan Li, Los Alamos National Laboratory

2:00 PM Invited

Interface Mediated Strain at High Temperatures: Shen Dillon1; ¹University of California, Irvine

2:25 PM Invited

Can Engineered Nanostructures Enhance the Performance of Tungsten for Extreme Environments?: Jason Trelewicz¹; **Brook University**

2:50 PM

Uncovering the Transition from Helium Clustering to Bimodal Cavity Distributions in Tungsten: Cormac Killeen¹; Yang Zhang¹; David Sprouster¹; Jason Trelewicz¹; ¹Stony Brook University

3:10 PM

Microstructural Evolution of Refractory-based Nanomultilayers at Elevated Temperatures: Kyle Russell¹; Andrea Hodge¹; ¹University of Southern California

3:30 PM Break

3:50 PM Invited

Nanostructured Metals with Dispersed Nanoparticles: Xiaochun Li¹; Enrique Lavernia²; Diran Apelian²; Julie Schoenung²; ¹University of California, Los Angeles; ²University of California, Irvine

4:15 PM Invited

Nb Solubility in Cu Grain Boundaries: Emmeline Sheu1; Jon Baldwin2; Darrick Williams²; Michael Demkowicz¹; ¹Texas A&M University; ²Los Alamos National Laboratory

4:40 PM

High-temperature Evolution of Nano-structured High-entropy Alloys and Stainless Steel as Studied by In-situ Neutron and Synchrotron X-ray Diffraction: Klaus-Dieter Liss1; Xiaojing Liu1; Jae-Kyung Han²; Yusuke Onuki³; Malte Blankenburg⁴; Megumi Kawasaki²; ¹Guangdong Technion - Israel Institute of Technology (GTIIT); ²Oregon State University; ³Ibaraki University; ⁴Deutsches Elektronen-Synchrotron (DESY)

5:00 PM

Multicomponent Nanostructured Al-based High-performance Alloys for Elevated Temperature Structural Applications: Gourav Mundhra1; Hsin-Chieh Chao2; Ya-Jing Lee3; Jien-Wei Yeh3; B. S. Murty4; ¹Indian Institute of Technology, National Tsing Hua University; ²MSS Corps. Co. LTD.; 3National Tsing Hua University; 4Indian Institute of Technology

CHARACTERIZATION

Neutron and X-ray Scattering in Materials Science — **Amorphous and Magnetic Materials**

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Jennifer Niedziela, Oak Ridge National Lab; Hillary Smith, Swarthmore College

Monday PM | March 20, 2023 Aqua 311B | Hilton

Session Chair: Michael Manley, Oak Ridge National Laboratory

2:00 PM Invited

High-frequency Transverse Phonons in Metallic Glasses: Xiyang Li1; Huaping Zhang²; Si Lan³; Doug Abernathy⁴; Maozhi Li²; Xun-li Wang¹; ¹City University of Hong Kong; ²Remin University; ³Nanjing University of Science and Technology; 4Oak Ridge National Laboratory

2:30 PM Invited

In Situ Inelastic Neutron Scattering Measurements of Glassy Liquids: Hillary Smith¹; Marios Demetriou²; Brent Fultz³; ¹Swarthmore College; 2Glassimetal; 3Caltech

Inelastic Neutron Scattering Across the Melt: the Role of Vibrational Entropy in Latent Heat: Camille Bernal-Choban¹; Claire Saunders¹; Yang Shen¹; Stefan Haegeli Lohaus¹; Vladimir Ladygin¹; Shiva Mudide¹; Douglas Abernathy²; Brent Fultz¹; ¹California Institute of Technology; ²Oak Ridge National Laboratory

3:20 PM

X-ray Free-electron Laser Heating of Water at Picosecond Time Scale: Eva Zarkadoula¹; Yuya Shinohara¹; Takeshi Egami²; ¹Oak Ridge National Laboratory; ²University of Tennessee / Oak Ridge National Laboratory

3:40 PM Break

3:55 PM

Use of Neutron and X-ray Total Scattering to Map Short-range Order and Improve Nucleation Modelling in Engineering Materials: Monika Rolinska¹; Joakim Odqvist¹; Peter Hedström¹; ¹KTH

4:15 PM

Dynamic Imaging of Twin Formation in NiMnGa Based Magnetic Shape Memory Alloys under Cyclic Magnetic Field.: Saurabh Kabra¹; Anton Tremsin²; Winfried Kockelmann¹; ¹Science & Technology Facilities Council; ²University of California Berkley

Frustration-induced Diffusive Scattering Anomaly and Dimension Change in FeGe₂: Yaokun Su¹; Hillary Smith²; Matthew Stone³; Douglas Abernathy³; Mark Lumsden³; Carl Adams⁴; Chen Li¹; ¹University of California, Riverside; ²Swarthmore College; ³Oak Ridge National Laboratory; 4St. Francis Xavier University

4:55 PM

Intriguing Magnetism of Topological Kagome Material TbMn6Sn6: Charles Mielke¹; Zurab Guguchia¹; ¹Paul Scherrer Institut

ENERGY & ENVIRONMENT

New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of Patrick R. Taylor — **Pyrometallurgy**

Sponsored by: Society for Mining Metallurgy and Exploration, TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Materials Characterization Committee, TMS: Energy Committee, TMS: Recycling and Environmental **Technologies Committee**

Program Organizers: Ramana Reddy, University of Alabama; Corby Anderson, Colorado School of Mines; Erik Spiller, Colorado School of Mines; Edgar Vidal, NobelClad; Camille Fleuriault, Eramet Norway; Alexandra Anderson, Gopher Resource; Mingming Zhang; Christina Meskers, SINTEF

Monday PM | March 20, 2023 33C | SDCC

Session Chairs: Muhammad Akbar Rhamdhani, Swinburne University of Technology; Divakar Mantha, Collins Aerospace (a Raytheon Technologies company)

2:00 PM Invited

A Multi-scale View of Scalability Challenges in Hydrogen-Based Ironmaking: Leora Dresselhaus-Marais¹; ¹Stanford University

Carbon Formation in MIDREX Hot Briquetted Iron: Emmanuel De Moor¹; Michelle Herrera¹; Christopher Harris¹; ¹Advanced Steel Processing and Products Research Center, Colorado School of Mines

2:50 PM

Application of Fiber Optics in Metallurgical Processes Temperature Monitoring of Metallurgical Furnace with Distributed Temperature Sensing (DTS): Luis Gonzalez1; Luis Chambi1; Stefany Huanca Choque¹, Carlos Javier Acho Quispe¹, ¹Universidad Mayor de San **Andres**

3:10 PM

Lead Bleed-off from Dust of Copper Smelter: Kifu Matsuura1; Satoshi Shibata¹; Kifu Matsuura¹; Fumito Tanaka¹; ¹Mitsubishi **Materials Corporation**

3:30 PM Break

3:50 PM

Ga, In and Ge Extraction from Zinc Plant Residues by Chlorine **Metallurgy**: Santiago Iriarte Aguirre¹; Patrick Taylor¹; Stephen James¹; ¹Colorado School of Mines

4:10 PM

Alternatives to Pyrometallurgical Recovery of Copper and Gold from Waste Printed Wiring Boards: Process Flow and **Environmental Impacts Assessment**: Eric Schwartz¹; *Haoyang He*¹; Oladele Ogunseitan¹; Julie Schoenung¹; ¹University of California, Irvine

NUCLEAR MATERIALS

Phase Stability in Extreme Environments — Phase Stability in Nuclear Environments II

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Andrew Hoffman, GE Research; Kinga Unocic, Oak Ridge National Laboratory; Janelle Wharry, Purdue University; Kaila Bertsch, Lawrence Livermore National Laboratory; Raul Rebak, GE Global Research

Monday PM | March 20, 2023 28C | SDCC

Session Chairs: Andrew Hoffman, GE Research; Jia-Hong Ke, Idaho **National Laboratory**

2:00 PM Introductory Comments

2:10 PM Invited

Effect of $\alpha \dot{}$ Chromium-rich Precipitates on the Tensile Properties of Commercial FeCrAl Alloy: Hamdy Abouelella¹; Andrew Hoffman²; Rajnikant Umretiya²; Nathan Almirall²; Benjamin Beeler¹; Raul Rebak²; ¹North Carolina State University; ²Ge Research

2:40 PM

Reduced Alpa-prime Precipitation during Thermal Annealing and Irradiation in Ultrafine-grained or Nanocrystalline FeCrAl Alloys: Haiming Wen¹; Maalavan Arivu¹; Rinat Islamgaliev²; ¹Missouri University of Science and Technology; ²Ufa State Aviation Technical University

Aging-Induced α' Precipitates in FeCrAl Alloys and Its Effects on Corrosion Behavior: Rupesh Rajendran¹; Rajnikant Umretiya²; Andrew Hoffman²; Richard Blair²; Christopher Perlee²; Raul Rebak²; ¹Georgia Institute of Technology; ²GE Global Research

3:20 PM Break

3:50 PM Invited

Effects of Aluminum Addition and Point Defects on Cr-rich α ' Phase Stability in FeCrAl Alloys: Jia-Hong Ke1; Andrea Jokisaari1; 1Idaho National Laboratory

4:20 PM

Atom Probe Characterization of Al/Mo Effects on α ' Precipitation in FeCrAl Cladding Alloys: Nathan Almirall¹; Andrew Hoffman¹; Rajnikant Umretiya¹; Michael Worku¹; Christopher Perlee¹; Raul Rebak¹; Hamdy Abouelella¹; ¹GE Research

4:40 PM

Determining the Phase Boundary between and $\alpha \cdot \alpha'$ at Lowtemperatures with Proton Irradiations and APT: Yajie Zhao1; Pengcheng Zhu¹; Jonathan Poplawsky²; Arunodaya Bhattacharya²; Jean Henry³; Steven Zinkle⁴; ¹University of Tennessee, Knoxville; ²Oak Ridge National Laboratory; ³CEA, DEN, Service de Recherches Métallurgiques Appliquées, Laboratoire d'Analyse Microstructurale des Matériaux, Université Paris-Saclay; 4University of Tennessee, Knoxville; Oak Ridge National Laboratory

5:00 PM

Phase-field Modeling of Laves Phase Precipitate in Accident Tolerant Cladding: Jeonghwan Lee¹; Kunok Chang¹; ¹Kyung Hee University

ELECTRONIC MATERIALS

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXII — **Phase Stability of Electronic Materials**

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hiroshi Nishikawa, Osaka University; Shihkang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Chung University; Chih-Ming Chen, National Chung Hsing University; Jae-Ho Lee, Hongik University; Zhi-Quan Liu, Shenzhen Institutes of Advanced Technology; Ming-Tzer Lin, National Chung Hsing University; Yee-wen Yen, National Taiwan University of Science and Technology; A.S.Md Abdul Haseeb, Bangladesh University of Engineering and Technology (BUET); Ligang Zhang, Central South University; Sehoon Yoo, KITECH; Vesa Vuorinen, Aalto University; Yu-chen Liu, National Cheng Kung University; Ting-Li Yang, National Yang Ming Chiao Tung University

Monday PM | March 20, 2023 Sapphire E | Hilton

Session Chairs: Yee-Wen Yen, National Taiwan University of Science and Technology; Yu-chen Liu, National Cheng Kung University

2:00 PM Invited

SAC-In,Bi(Sb) Solder Joints with Multiphase Microstructures and Their Mechanical Properties Guided by CALPHAD Design: Xiaojing Wang¹; Shanshan Cai²; Yuhang Wang¹; ¹Jiangsu University of Science and Technology; 2Yunnan Tin Group (Holding) Co. Ltd

2:25 PM

Composition Design of Coherent Precipitate-strengthening Multiprincipal Element Alloys by High-throughput CALPHAD-type Calculation: Shao-Yu Yen1; Hao-che Wang1; Hideyuki Murakami2; Shih-kang Lin¹; ¹National Cheng-Kung University; ²National Institute for Materials Science

2:45 PM

Use of Molecular Dynamics Simulations to Examine Crystal Growth from the Melt in Pure Sn Systems: Andrea Papaleo1; Bruce White1; Stephen Whitelam²; Eric Cotts¹; ¹Binghamton University; ²Lawrence Berkeley National Laboratory

Ab Initio Exploration of Alloying Elements for Stabilizing Nanoprecipitates in Al-Zn-Mg Alloys: Yu-ning Chiu1; Shao-yu Yen1; Chung-yi Yu²; Shih-kang Lin¹; ¹National Cheng Kung University; ²China Steel Corp, Aluminum Prod R&D Sect

3:25 PM Break

3:45 PM

Ag and Cu Whisker Formation: Sinn-wen Chen1; Pin- Shuo Huang1; Yohanes Hutabalian¹; ¹National Tsing Hua University

3d-transition Metal-tin Compounds: Andreas Leineweber¹; Stefan Martin¹; ¹Tu Bergakademie Freiberg

Thermal and Mechanical Evaluation of Anisotropic Cu-Solder Composite Joint on High Temperature Storage: Hiroaki Tatsumi¹; Hiroshi Nishikawa¹; ¹Osaka University

4:45 PM

3D Electromagnetic Simulation and Experimental Measurements of Performance of Antenna at mm-wave Frequencies: Surface Finish Effect: Ying-Chih Chiang¹; Pei-Chia Hsu¹; Chun-Jou Yu¹; Cheng-Hsien Chou²; Cheng-En Ho¹; ¹Yuan Ze University; ²Unitech Printed Circuit Board Corp.

5:05 PM

Study of Interfacial Stability for Medium-temperature GeTe-based Thermoelectric Modules: Cheng-Hao Kung¹; Albert T. Wu¹; ¹National Central University

PHYSICAL METALLURGY

Phase Transformations and Microstructural Evolution — Ferrous Alloys II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Ashley Paz y Puente, University of Cincinnati; Mark Aindow, University of Connecticut; Sriswaroop Dasari, University of North Texas; Ramasis Goswami, Naval Research Laboratory; Megumi Kawasaki, Oregon State University; Eric Lass, University of Tennessee-Knoxville; Josh Mueller, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Le Zhou, Marquette University

Monday PM | March 20, 2023 25C | SDCC

Session Chair: Megumi Kawasaki, Oregon State University

2:00 PM

Study of the Martensitic Transformation by Deformation of Traction in the Steels AISI 304 Through Electrical Resistivity: Edgar Apaza Huallpa¹; Hélio Goldenstein²; Esequiel Nicolas Collado Cardenas¹; Elmer Antonio Mamani Calcina¹; Juan Carlos Negron Lopez¹; Lino Reynaldo Quispe Cardenas¹; Alejandro Boris Marquez Guevara¹; Erick Omar Tunqui Labra¹; ¹Universidad Nacional de San Agustin de Arequipa, Perú; ²Universidade de São Paulo

Effect of High Temperatures on the Delamination Susceptibility of Chromium Carbide Overlays: Alejandro Alvarez1; Lingyun Wei1; Jonas Svantesson¹; Jan-Erik Hedin¹; Petter Eklof¹; ¹SSAB

2:40 PM

Monte Carlo Simulations for Synthetic Microstructure Generation of M23C6 Precipitation in 347H Stainless Steels: William Frazier¹; Arun Sathanur¹; Ram Devanathan¹; Keerti Kappagantula¹; ¹Pacific Northwest National Laboratory

3:00 PM

Development of a Phase Field Model of Microstructural Evolution in Fe-C Steels during Induction Coupled Thermomagnetic Processing: Christopher Lovenduski¹; Michael Tonks¹; ¹The University

ELECTRONIC MATERIALS

Printed Electronics and Additive Manufacturing: Functional Materials, Processing Techniques, and **Emerging Applications — Session II**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Rahul Panat, Carnegie Mellon University; Yong Lin Kong, University of Utah; Konstantinos Sierros, West Virginia University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ravindra Nuggehalli, New Jersey Institute of Technology

Monday PM | March 20, 2023 Sapphire 411B | Hilton

Session Chairs: David Estrada, Boise State University; Pooran Joshi, Oak Ridge National Laboratory; Anming Hu, The University of Tennessee

2:00 PM Invited

Printed Electronics for Space-based Applications: Emily Heckman¹;

2:25 PM Invited

3D-printed Sensors Optimized for Remote Monitoring of Declared Hazardous and Nuclear Containers: Stylianos Chatzidakis¹; ¹Purdue

2:50 PM Invited

Additive Manufacturing for Passive In-pile Sensors: Kiyo Fujimoto¹; David Estrada²; Tommy Holschuh¹; Lance Hone¹; Nicholas Der Garabedian³; Troy Unruh¹; Michael McMurtrey¹; ¹Idaho National Laboratory; ²Boise State University; ³Villanova University

Printed High Temperature Irradiation Resistant Thermocouples for Real-time Monitoring of Nuclear Reactor Components: Josh Eixenberger¹; David Estrada¹; Katelyn Wada¹; Nicholas McKibben¹; Richard Fink²; ¹Boise State University; ²Applied Nanotech, Inc.

3:35 PM Break

3:55 PM

Recent Progresses of Nanojoining: Fundamentals and Applications for Single-wire Devices: Anming Hu1; 1University of Tennessee

MATERIALS PROCESSING

Rare Metal Extraction & Processing — Processing for Precious Metals and Rare Metals / Electrochemical **Processing for Rare Metals**

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Takanari Ouchi, University of Tokyo; Kerstin Forsberg, KTH Royal Institute of Technology; Gisele Azimi, University of Toronto; Shafiq Alam, University of Saskatchewan; Neale Neelameggham, IND LLC; Hojong Kim, Pennsylvania State University; Alafara Baba, University of Ilorin; Hong (Marco) Peng, University of Queensland; Athanasios Karamalidis, Pennsylvania State University; Shijie Wang, Coeur Mining, Inc

Monday PM | March 20, 2023 30B | SDCC

Session Chairs: Athanasios Karamalidis, Pennsylvania State University; Shijie Wang, Coeur Mining, Inc; Hojong Kim, Pennsylvania State University; Takanari Ouchi, The University of Tokyo

2:00 PM Invited

An Innovated Hydrometallurgical Process for Recoveries of Critical and Rare Metals from Copper Anode Slimes: Shijie Wang¹; ¹Coeur Mining, Inc

2:30 PM

Eutectic Freeze Crystallization for Recovery of Cobalt Sulfate in the Recycling of Li-ion Batteries: Yiqian Ma¹; Amanda Sjögren¹; Michael Svärd¹; Xiong Xiao¹; James Gardner¹; Richard Olsson¹; Kerstin Forsberg¹; ¹KTH Royal Institute of Technology

2:50 PM

Studies on the Hydrometallurgical Recovery of Metals from Used and End of Life PCBs: Om Dinkar¹: Rekha Panda¹: Pankai Choubev¹: Manis Jha¹; Balram Ambade¹; ¹CSIR-National Metallurgical Laboratory

3:10 PM

Extraction of Tungsten, Yttrium and Uranium from Tantalum - Niobium Ore from Muchinga Province in Zambia: Douglas Musowoya¹; Yotamu Hara¹; Fredrick Chilese¹; Janet Mundundu¹; Stephen Parirenyatwa¹; ¹Copperbelt University

3:30 PM Break

3:50 PM

Production of High-purity Mg Metal from Various MgO Resources through a Novel Electrolytic Process Using a Cu Cathode and Vacuum Distillation: Hyeong-Jun Jeoung¹; Tae-Hyuk Lee¹; Youngjae Kim¹; Jin-Young Lee¹; Young Min Kim²; Toru H. Okabe³; Kyung-Woo Yi4; Jungshin Kang1; 1Korea Institute of Geoscience and Mineral Resources; ²Korea Institute of Materials Science; ³The University of Tokyo; 4Seoul National University

4:10 PM

Recovery of Copper Metal from Discarded Printed Circuit Boards (PCBs) by Hydro and Electro Metallurgical Processes: Om Shankar Dinkar¹; Rukshana Parween¹; Rekha Panda¹; Pankaj Kumar Choubey¹; Balram Ambade²; Manis Kumar Jha¹; ¹CSIR-National Metallurgical Laboratory; 2National Institute of Technology

LIGHT METALS

Scandium Extraction and Use in Aluminum Alloys Scandium - Extraction/Mining and Master Alloy **Production**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Timothy Langan, Sunrise Energy Metals; Samuel Wagstaff, Oculatus Consulting; Phil Chataigneau, PDU Consulting; Efthymios Balomenos, Mytilineos S.A., Metallurgy Bu; Thomas Dorin, Deakin University; Muhammad Akbar Rhamdhani, Swinburne University of Technology; Dimitrios Filippou, Rio Tinto Iron & Titanium; Henk van der Laan, V.I.C. Van der Laan International Consultancy BV; Frank Palm, Airbus Defence and Space GmbH

Monday PM | March 20, 2023 30D | SDCC

Session Chair: Henk van der Laan, V.I.C. Van der Laan International Consultancy BV

2:00 PM Introductory Comments

2:05 PM

Investigations into Optimized Industrial Pilot Scale BR Leaching for Sc Extraction: Efthymios Balomenos¹; Panagiotis Davris¹; Alexandra Apostolopoulou¹; Danai Marinos²; Elena Mikeli²; Aikaterini Toli²; Dimitris Kotsanis²; Grigoris Paschalis¹; Dimitrios Panias²; ¹Mytilineos S.A., Metallurgy Bu; 2NTUA

2:30 PM

Solvent Extraction of Scandium from Titanium Process Solutions: Dimitrios Filippou¹; Michel Paquin¹; Yves Pépin¹; Mike Johnson²; Niels Verbaan²; ¹Rio Tinto Iron & Titanium; ²SGS Canada Inc.

2:55 PM

State of the Art Technologies for Scandium Recovery, Purification, and Aluminum-Scandium Alloy Production: Anne Marie Reyes1; Gomer Abrenica¹; Ghazaleh Nazari¹; ¹Coherent

3:20 PM

FEA Materials - AlSc Master Alloy Production Technology: Eugene Prahin¹; Rick Salvucci¹; Brian Hunt¹; ¹FEA Materials LLC

3:45 PM Break

4:00 PM Invited

Scandium Master Alloy Production via Sulfidation and Vacuum Aluminothermic Reduction: Caspar Stinn¹; Ethan Benderly-Kremen¹; Antoine Allanore¹; ¹Massachusetts Institute of Technology

4:25 PM Invited

European Scandium for a Lighter and Greener Future: Henk van der Laan¹; Beate Orberger²; ¹V.I.C. Van der Laan International Consultancy BV; 2CATURA Geoprojects

4:35 PM Panel Discussion Scandium Supply

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Materials and Science — Panel/Actinide Physics

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: J. Rory Kennedy, Idaho National Laboratory; Taylor Jacobs, Los Alamos National Laboratory; Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Don Wood, Idaho National Laboratory

Monday PM | March 20, 2023 28A | SDCC

Session Chair: Krzysztof Gofryk, Idaho National Laboratory

2:00 PM Panel Discussion

3:30 PM Break

3:50 PM Invited

The Central Role of f-electron Correlations in the Spin Triplet Superconductor UTe2: Nicholas Butch¹; ¹University of Maryland

4:20 PM Invited

DFT+U in Uranium Dioxide: Occupation Matrix Control and Phonons: Shuxiang Zhou¹; Hao Ma²; Enda Xiao³; Krzysztof Gofryk¹; Chao Jiang¹; Michael Manley²; David Hurley¹; Chris Marianetti³; ¹Idaho National Laboratory; ²Oak Ridge National Laboratory; ³Columbia University

Synthesis, Characterization, and Magnetic Property Measurements of Some A2M4U6S17 (A = K, Rb, Cs; M = Pd, Pt) and Ba3MUQ6 (M = transition metal; Q = S, Se) Compounds: Logan Breton¹; ¹University of South Carolina

MATERIALS DESIGN

Thermodynamics and Kinetics of Alloys — Session II

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Ji-Cheng Zhao, University of Maryland; Wei Xiong, University of Pittsburgh; Chuan Zhang, CompuTherm LLC; Shuanglin Chen, CompuTherm LLC

Monday PM | March 20, 2023 Sapphire M | Hilton

Session Chairs: Bi-Cheng Zhou, University of Virginia; Shalini Roy Koneru, The Ohio State University

2:00 PM Invited

Effect of N and/or B Additions on the Precipitation Kinetics in Isothermally Aged and Creep Ruptured 347H Stainless Steels: Qing-Qiang Ren¹; Yukinori Yamamoto¹; Michael Brady¹; Jonathan Poplawsky¹; Martin Detrois²; Paul Jablonski²; Jeffrey Hawk²; ¹Oak Ridge National Laboratory; 2National Energy Technology Laboratory

Accelerated CALPHAD-based Design of a 7xxx High Strength Aluminum Plate Alloy: Maria-Ioanna Tzini1; Gregory Olson1; ¹Massachusetts Institute of Technology

2:40 PM

Al-Ce Alloy Development Using Computational Thermodynamics: Emily Moore1; Hunter Henderson1; David Weiss2; Scott McCall1; Orlando Rios³; Aurélien Perron¹; ¹Lawrence Livermore National Laboratory; ²Eck Industries Inc.; ³University of Tennessee, Knoxville

3:00 PM

CALPHAD and Data-driven Approach for Phase Prediction Model in Refractory High-entropy Alloys: Jiwon Park1; Chang-Seok Oh1; ¹Korea Institute of Materials Science

3:20 PM Break

3:40 PM Invited

Tunable Heterogeneous Microstructures in a High Throughput Architecture: Markus Short1; 1Karlsruhe Institute for Technology

Impact of Magnetic Excitation and Transition on Atomic Diffusion in Fe Alloys: Chu-Chun Fu¹; Anton Schneider¹; Kangming Li¹; ¹Université Paris-Saclay, CEA, Service de Recherches de Métallurgie Physique

Effect of Ti on the Diffusional Growth of A15 Nb₃Sn: Sang-Ho Oh¹; Yang-Jin Jeong²; Sin-Hye Na²; Iksang Shin²; Jiman Kim²; Byeong-Joo Lee¹; ¹Pohang University of Science and Technology; ²Kiswire Advanced Technology Ltd.

4:40 PM

The Selection of Solidification Pathway in Rapid Solidification Processes: Nima Najafizadeh1; Yijia Gu1; 1Missouri University of Science and Technology

Study on Densification Kinetics of the Binder Jetted Fine 316L SS Powder: Mohammad Jamalkhani¹; Maciej Dorula¹; Elijah Roberts¹; Julia Deguia¹; Amir Mostafaei¹; ¹Illinois Institute of Technology

NUCLEAR MATERIALS

Transmutation Effects in Fusion Reactor Materials: Critical Challenges & Path Forward — Experiments & Multiscale Modeling of Solid-state Transmutation

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Arunodaya Bhattacharya, Oak Ridge National Laboratory; Steven Zinkle, University of Tennessee; Philip Edmondson, The University of Manchester; Aurelie Gentils, Université Paris-Saclay; David Sprouster, Stony Brook University; Takashi Nozawa, National Institutes for Quantum and Radiological Science and Technology (QST); Martin Freer, University of Birmingham

Monday PM | March 20, 2023 27B | SDCC

Session Chairs: David Sprouster, Stony Brook University; Sergei Dudarev, UK Atomic Energy Authority

2:00 PM Invited

The Effect of Chemical Element Inventory Evolution on Recoil Production and Its Effect on Defect Cluster Evolution in Tungsten: Jaime Marian¹; Mark Gilbert²; ¹University of California, Los Angeles; ²UKAEA

Analytical TEM Examination of Re and Os Segregation in Neutron Irradiated Tungsten: Michael Klimenkov¹; Ute Jäntsch¹; Michael Dürrschnabel¹; Michael Rieth¹; Dmitry Terentyev²; Wouter Van Renterghem²; ¹Karlsruhe Institute of Technology; ²Belgian Nuclear Research Centre

3:00 PM

Co-Segregation of Transmuted Re and Os in Neutron Irradiated Tungsten: First-principles Prediction and Experimental Validation: Duc Nguyen-Manh¹; Matthew Lloyds²; Jan Wrobel³; Michael Klimenkov⁴; Luca Messina⁵; Enrique Martinez⁶; Mark Gilbert¹; ¹UK Atomic Energy Authority; ²Singapore University of Technology and Design; 3Warsaw University of Technology; 4Karsruhe Institute of Technology; 5CEA; 6Clemson University

3:20 PM

Ab Initio Study of Tungsten-based Alloys Under Fusion Powerplant Conditions: Yichen Qian¹; Mark Gilbert²; Lucile Dezerald³; Duc Nguyen-Manh²; David Cereceda¹; ¹Villanova University; ²Culham Centre For fusion Energy; ³Universite de Lorraine

3:40 PM Break

4:00 PM Invited

Experimental Validation of Simulated Transmutation Predictions for Fusion Materials: Mark Gilbert1; Arunodaya Bhattacharya2; Philip Edmondson³; Jean-Christophe Sublet⁴; ¹Ukaea; ²ORNL; ³University of Manchester; 4IAEA

4:40 PM

Ab Initio and Classical Molecular Dynamics Study of Re Transport in W: Osetsky Yury1; German Samolyuk1; 10ak Ridge National Laboratory

5:00 PM

Modelling of Re/Os Transmutation Product Segregation in Irradiated W Using Atomistic Kinetic Monte Carlo: Matthew Lloyd¹; Robert Simpson¹; Enrique Martinez²; Duc Nguyen-Manh³; ¹Singapore University of Technology and Design; ²Clemson University; ³United Kingdom Atomic Energy Authority

ADVANCED MATERIALS

2D Materials: Preparation, Properties, Modeling & Applications — Processing, Characterization & Applications I

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Sufian Abedrabbo, Khalifa University; Hesam Askari, University of Rochester; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Joshua Young, New Jersey Institute Of Technology; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Karine Mougin, CNRS, IS2M; Heinz Palkowski, Clausthal University of Technology

Tuesday AM | March 21, 2023 Aqua AB | Hilton

Session Chairs: Ramana Chintalapalle, University of Texas at El Paso; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS

8:00 AM Introductory Comments

Investigation of Defects Produced by H and O Ion Irradiations in MoS2: Aaron Rabin¹; Assel Aitkaliyeva¹; Zhihan Hu²; Lin Shao²; ¹University of Florida; ²Texas A&M University

8:25 AM Invited

Synthesis of Transition Metal Dichalcogenides on Oxide Surfaces: Maria Gabriela Sales¹; Peter Litwin¹; Stephen McDonnell¹; ¹University of Virginia

8:50 AM Invited

Stimuli Responsive Multi-functional 2D and 3D Nanoporous Materials in Condensed Phases: Mohammad R. Momeni¹; ¹University of Missouri - Kansas City

9:15 AM Invited

2-dimensional and Layered Nanomaterial Inks for Additive Electronic Manufacturing: Dave Estrada¹; ¹Boise State University

9:40 AM Break

10:00 AM Invited

Dual-frequency Ultrasound-assisted Exfoliation of Graphene: Mechanisms and Implementation: Dmitry Eskin1; Anastasia Tyurnina¹; Justin Morton²; Amanpreet Kaur²; Nicole Grobert³; Kyriakos Porfyrakis⁴; Jiawei Mi⁵; Iakovos Tzanakis²; ¹Brunel University; ²Oxford Brookes University; ³University of Oxford; ⁴University of Greenwich; 5University of Hull

10:25 AM Invited

Transferrable Computational Framework based on Density Functional Theory for Study and Design of 2D Materials: From Battery to Sensing Applications: Mohsen Asle Zaeem¹; ¹Colorado School of Mines

LIGHT METALS

60 Years of Taking Aluminum Smelting Research and Development from New Zealand to the World: An LMD Symposium in Honor of Barry J. Welch — **Barry Welch Honorary Symposium**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mark Dorreen, CSIRO; Alan Tomsett, Rio Tinto Pacific Operations; David Wong, Atmolite Consulting Pty Ltd; Linus Perander, Yara International; Barry Sadler, Net Carbon Consulting Pty Ltd; Stephan Broek, Kensington Technology Inc.

Tuesday AM | March 21, 2023 30E | SDCC

Session Chair: James Metson, University of Auckland

8:00 AM Introductory Comments

8:10 AM Keynote

Barry Welch's Honorary Keynote: Svein Brandtzaeg¹; ¹Brandtzaeg

8:35 AM Invited

Barry Welch - A Mentor Driving Improvement in Industry Through Leadership and Technology: Jennifer Purdie¹; ¹BHP

Highlights of Aluminium Smelting Research Inspired by Barry Welch at UNSW from 1985 to Present: Maria Skyllas-Kazacos1; ¹University of New South Wales

9:25 AM Invited

What Makes TMS Special? Let Us Consider a Case Study in Volunteer Excellence: Barry J. Welch: James Robinson¹, ¹The Minerals, Metals & Materials Society

9:50 AM Break

10:05 AM Invited

Meeting the Requirements of Potline Customers - the Largely Unmet Challenges Set by Barry Welch to Carbon Anode Producers: Barry Sadler¹; Alan Tomsett²; ¹Net Carbon Consulting Pty Ltd; ²Rio **Tinto Pacific Operations**

10:30 AM Invited

Barry Welch, Professor and Mentor for the Aluminium Industry: Martin Iffert1; 1Martin Iffert Consulting GmbH

10:55 AM

Contribution of Professor Barry Welch to the Development of EGA's Reduction Technologies: Nadia Ahli¹; Sergey Akhmetov¹; Abdalla Alzarooni¹; ¹Emirates Global Aluminium

11:20 AM Concluding Comments with an opportunity for any former students of Barry to say a few words

ADDITIVE TECHNOLOGIES

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials — Shape Memory Alloys and Steels I

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Magnetic Materials Committee, TMS: Additive Manufacturing Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Emily Rinko, Iowa State University; Emma White, DECHEMA Forschungsinstitut; Kyle Johnson, Sandia National Laboratories; Andrew Kustas, Sandia National Laboratories; Iver Anderson, Iowa State University Ames Laboratory

Tuesday AM | March 21, 2023 23C | SDCC

Session Chair: Andrew Kustas, Sandia National Laboratories

8:00 AM Invited

Additive Manufacturing of Cu-based Shape Memory Alloys: Challenges and Perspectives: Jose San Juan¹; Mikel Pérez-Cerrato¹; Lucía Del-Río¹; Ernesto Urionabarrenetxea²; Josu Leunda³; Iban González4; Iban Quintana3; Fernando Carreño5; Nerea Burgos2; María Nó¹; ¹Universidad del Pais Vasco; ²CEIT-Basque Research and Technology Alliance (BRTA); 3TEKNIKER, Basque Research and Technology Alliance (BRTA); 4LEITAT; 5CENIM-CSIC

8:30 AM

Improving Tensile Strengths of Laser-Direct Energy Deposited (L-DED) NiTiHf Alloys by Printing Dislocation Structures: Soumya Mohan¹; Aaron Stebner¹; ¹Georgia Institute of Technology

8:50 AM

Controlling Martensitic Transformation Characteristics in Defectfree NiTi Shape Memory Alloys Fabricated Using Laser Powder Bed Fusion: Ibrahim Karaman¹; L. Xue¹; Kadri Atli¹; Chen Zhang¹; Alaa Elwany¹; Raymundo Arroyave¹; ¹Texas A&M University

Electron Beam Powder Bed Fusion of Binary Ni-Ti Shape Memory Alloys - On the Impact of TiC on the Functional Properties: Philipp Krooss¹; Christian Lauhoff¹; Tobias Gustmann²; Julia Hufenbach²; Thomas Niendorf¹; ¹Institute of Materials Engineering, University of Kassel; ²Leibniz Institute for Solid State and Materials Research Dresden

9:30 AM

Additive Manufacturing of NiTi Shape Memory Alloy via Laser Metal Deposition and Laser Powder Bed Fusion: Happeng Shen1; Kun Yang¹; Daniel East¹; Daniel Liang¹; Anthony Murphy¹; Ma Qian²; Ryan Watkins³; Douglas Hofmann³; ¹CSIRO; ²RMIT; ³Jet Propulsion Laboratory

9:50 AM Break

10:05 AM Invited

Opportunities and Challenges for Fabrication of Electrical Machine Components by Additive Manufacturing: Marco Simonelli1; lan Ashcroft¹; Nesma Aboulkhair¹; Michele Garibaldi¹; Leonidas Gargalis¹; Cassidy Silbernagel¹; Julan Wu¹; Richard Hague¹; ¹University of Nottingham

10:35 AM

Consequences of Powder Reuse on Microstructure Evolution during Laser Powder Bed Fusion of 316L Stainless Steel: Madelyn Madrigal-Camacho¹; Mitchell Keeler¹; Joy Gockel¹; Suveen Mathaudhu¹; ¹Colorado School of Mines

10:55 AM

Directed Energy Deposition of a Martensitic Steel - Microstructure Evolution and Mechanical Response: Shubham Chandra¹; Mehmet Cagirici¹; Upadrasta Ramamurty¹; ¹Nanyang Technological University

Fabrication of HSLA Steel Si-Bronze Aluminum Functionally Graded Material Using Wire Arc Additive Manufacturing: Hanadi Salem¹; Marwan El-Husseiny²; Ehab El-Danaf²; ¹American University in Cairo; 2Cairo University

ADDITIVE TECHNOLOGIES

Additive Manufacturing Fatigue and Fracture: Effects of Surface Roughness, Residual Stress, and Environment — Session II

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; John Lewandowski, Case Western Reserve University; Nima Shamsaei, Auburn University; Steve Daniewicz, University of Alabama; Mohsen Seifi, ASTM International/Case Western Reserve

Tuesday AM | March 21, 2023 22 | SDCC

Session Chair: Nima Shamsaei, Auburn University

8:00 AM Invited

Effects of Process Conditions and Flaws/Surface Roughness on Fracture and Fatigue of AM-processed Alloys: John Lewandowski1; ¹Case Western Reserve University

8:30 AM

Effects of Scan Strategy Induced Microstructural Differences on Thin-Wall SLM IN718 Fatigue Performance: Connor Varney¹, Imran Noor¹; Paul Rottmann¹; ¹University of Kentucky

8:50 AM

Effect of Defect Variability in Aluminum Alloys on Ultrasonic Fatigue Performance Across Additive Manufacturing Platforms: Harsha Phukan¹; Rob Rhein¹; Niloofar Sanaei¹; Eric Johnson¹; Jason Carroll¹; ¹Eaton Corporation

9:10 AM Invited

The Influence of Surface Finish and Build Orientation on the Low Cycle Fatigue Behaviour of Laser Powder Bed Fused Stainless Steel 316L: Robert Lancaster¹; William Beard²; Thomas Jones²; Nicholas Barnard¹; ¹Swansea University; ²Rolls-Royce

9:40 AM Break

10:00 AM

Isolated Influence of Upward and Downward Facing Surface Roughness on the Fatigue Life of Laser Powder Bed Fusion Ti-6Al-4V: Jason Rogers¹; Martin Leary¹; Ma Qian¹; Chris Wallbrink²; Joe Elambasseril¹; ¹RMIT University; ²Defence Science Technology

10:20 AM

Effect of Microstructure and Surface Roughness on Fatigue Behavior of PBF-LB 316L Stainless Steel: Garrison Hommer¹; Jorge Ramirez¹; Simon Richardsen¹; Jonah Klemm-Toole¹; Joy Gockel¹; ¹Colorado School of Mines

10:40 AM

Post-Processing Surface Finishing of Additively Manufactured Aluminum and Titanium Alloys for Optimal Mechanical and Corrosion-Resistance Performance: Joshua Boykin¹; Agustin Diaz¹; Patrick McFadden¹; Justin Michaud¹; ¹REM Surface Engineering

11:00 AM

Effect of a Build Stop on the Fatigue Behavior of Laser Powder Bed Fusion 316L Stainless Steel with As-printed Surfaces: Simon Richardsen¹; Jorge Ramirez¹; Charles Smith¹; Garrison Hommer¹; Jonah Klemm-Toole¹; Joy Gockel¹; ¹Colorado School of Mines

ADDITIVE TECHNOLOGIES

Additive Manufacturing for Energy Applications V — Properties, Performance Testing and Modeling I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Nuclear Materials Committee

Program Organizers: Isabella Van Rooyen, Pacific Northwest National Laboratory; Subhashish Meher, Idaho National Laboratory; Xiaoyuan Lou, Purdue University; Kumar Sridharan, University of Wisconsin-Madison; Michael Kirka, Oak Ridge National Laboratory; Yi Xie, Purdue University

Tuesday AM | March 21, 2023 23A | SDCC

Session Chair: Kumar Sridharan, University of Wisconsin-Madison

8:00 AM Introductory Comments

8:05 AM Invited

Irradiation Response and Mechanical Property Changes of Conventionally and Additively Manufactured 316L Stainless Steels: Lin Shao1: 1Texas A&M University

8:40 AM

Creep Behavior of an Additively Manufactured Al-Ce-Ni-Mn-Zr Alloy: Sumit Bahl1; Richard Michi1; Jonathan Poplawsky1; Lawrence Allard¹; Kevin Sisco²; Ryan Dehoff¹; Alex Plotkowski¹; Amit Shyam¹; ¹Oak Ridge National Laboratory; ²University of Tennessee-Knoxville

Creep of Wire Arc Additive Manufactured Stainless Steels for Power Generation Applications: Juan Gonzalez1; Luc Hagen1; Stephen Tate¹; Jonah Klemm-Toole¹; ¹Colorado School of Mines

9:20 AM

Creep Properties of Additively Manufactured 316L Stainless Steel: Performance and Microstructure: Xuan Zhang¹; Wei-Ying Chen¹; Chris Carter¹; Jun-Sang Park¹; Peter Kenesei¹; Aniket Tekawade¹; Yashas Satapathy¹; Meimei Li¹; ¹Argonne National Laboratory

9:40 AM Break

9:55 AM

Creep Resistance and Microstructure of Binary Al-Ce Alloy Produced by Casting and Laser Powder Bed Fusion: Jillian Stinehart1; Le Zhou1; 1Marquette University

10:15 AM Invited

The Key Role of High-Temperature Testing & Post-Test Characterization to Qualify Advanced Manufacturing Methods and Materials for Energy Applications: John Shingledecker¹; David Gandy¹; Alex Bridges¹; ¹EPRI

10:50 AM

High Temperature Tribology of AM Ni-based Alloys 699XA and 400: Emma White1; Beyza Oeztuerk1; Mathias Galetz1; 1DECHEMA Forschungsinstitut

11:10 AM

Nanomechanical Properties of Heat-Treated High Entropy Alloys: Modupeola Dada1; Patricia Popoola1; Evlly Mtileni1; Lindokuhle Ntanzi¹; ¹Tshwane University of Technology

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Metals: Applications of Solidification Fundamentals — Physics-based and **Data-based Modeling I**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Solidification Committee

Program Organizers: Wenda Tan, The University of Michigan; Alex Plotkowski, Oak Ridge National Laboratory; Lang Yuan, University of South Carolina; Lianyi Chen, University of Wisconsin-Madison

Tuesday AM | March 21, 2023 21 | SDCC

Session Chairs: Wenda Tan, University of Michigan; Lang Yuan, University of South Carolina

8:00 AM

Challenges in Wire-Arc Additive Manufacturing of Fe-Based Shape Memory Alloy: Soumyajit Koley1; Kuladeep Rajamudili1; Supriyo Ganguly¹; ¹Cranfield University

8:20 AM

A Machine Learning Approach to Fast Microstructure Predictions in Laser Powder Bed Fusion: Mason Jones¹; Jean-Pierre Delplanque¹; Theron Rodgers²; Daniel Moser²; ¹University of California Davis; ²Sandia National Laboratories

8:40 AM

Assessment of Phase Evolution in Titanium-Niobium based Alloys $\textbf{During Rapid-Solidification}: \ \textit{Theo Mossop1; David Heard2; Mert}$ Celikin¹; ¹University College Dublin; ²Stryker

9:00 AM

Bayesian Optimization of an Exponentially Modified Gaussian Heat Source Model for Laser-Based Additive Manufacturing: John Coleman¹; Gerry Knapp¹; Matt Rolchigo¹; Benjamin Stump¹; Alex Plotkowski¹; ¹ORNL

9:20 AM

Effect of Laser Dwell Time on Pore Elimination in Selective Laser Melting of Metal Matrix Composites: Experimentally Validated Modeling: Ifeanyichukwu Olumor¹; Andrii Maximenko¹; Eugene Olevsky¹; ¹San Diego State University

9:40 AM Break

9:55 AM

In-situ Alloying of High Entropy Alloys by Laser Powder Bed Fusion: Insights from Molecular Dynamics Simulations: Yulia Klunnikova¹; Arne J. Klomp¹; Karsten Albe¹; ¹TU Darmstadt

10:15 AM

Microstructure Evolution in an As-Built IN625 Thin-wall Fabricated Via Laser Powder Bed Fusion: Pardis Mohammadpour¹; Andre Phillion1; Hui Yuan1; 1McMaster University

10:35 AM

Modeling Microstructural Evolution during Laser Processing of Metallic Powders using a Hybrid Mesoscale-Continuum Approach: Ching Chen1; Sergey Galitskiy1; Dmitry Ivanov2; Ranadip Acharya3; Vijay Jagdale³; Avinash Dongare¹; ¹University of Connecticut; ²Lebedev Physical Institute; ³Collins Aerospace

10:55 AM

Modeling Non-Equilibrium Partitioning in Concentrated Cu-Fe Alloys Manufactured by Laser Powder-fed Directed Energy **Deposition**: Daniel Yin¹; Amit Misra¹; ¹University of Michigan

Modeling the Hot Crack Susceptibility of Nickel-Based Superalloys by Laser Powder Bed Fusion.: Marcus Lam¹; ¹Monash University

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Beyond on the Beam IV — **Process Development and Optimization**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: James Paramore, US Army Research Laboratory; Daniel Lewis, Texas A&M University; Kyle Tsaknopoulos, Worcester Polytechnic Institute; Paul Prichard, Kennametal Inc.

Tuesday AM | March 21, 2023 24A | SDCC

Session Chairs: Kyle Tsaknopoulos, Worcester Polytechnic Institute; Paul Prichard, Kennametal Inc.; Daniel Lewis, Texas A&M University

8:00 AM Invited

Engineering Powder Characteristics of WC-Co for Binderjet **Processing**: Paul Prichard¹; Zhuqing Wang¹; Hadi Miyanaji¹; ¹Kennametal Inc.

8:20 AM

Electroplating Powder for Cold Spray Applications: Elizabeth Hodges¹; Gilbeom Seo¹; Victor Champagne²; Robert Hyers¹; ¹University of Massachusetts-Amherst; ²Cold Spray Innovations International

8:40 AM

A New Approach to the Manufacturing of Metallic Lattice Parts by Combining Polymer Additive Manufacturing and Electroplating: Roozbeh Neshani¹; Olgun Yılmazer¹; Atalay Balta¹; Davis McGregor²; Sameh Tawfick²; William King²; İshak Karakaya¹; Sezer Ozerinc¹; ¹Middle East Technical University; ²University of Illinois at Urbana-Champaign

9:00 AM

Optimization of Mechanical Performance of Cold Sprayed Niobium: Brady Butler¹; Van Pham²; Bradley Robinson²; Charles Ribardo²; Ion Powell²; Zachary Nolan²; Isaac Nault¹; James Paramore¹; ¹DEVCOM-ARL; 2Texas A&M University

9:20 AM

Through-Process Experimental Approach for Optimization of Powder Feedstock for Cold Spray Additive Manufacturing: Kyle Tsaknopoulos¹; Bryer Sousa¹; Jack Grubbs¹; Danielle Cote¹; ¹Worcester Polytechnic Institute

9:40 AM Break

9:55 AM

Liquid Metal Jetting Based Additive Manufacturing of Cu-Al-Fe Bronze Alloy: Kellen Traxel1; Chinthaka Silva1; Eric Elton1; Viktor Sukhotskiy¹; Luke Thornley¹; Andrew Pascall¹; Jason Jeffries¹; ¹Lawrence Livermore National Laboratory

10:15 AM

Recycled Ti-6Al-4V Powder Processed by Fusion Deposition Modelling (FDM): Marcus Rackel¹; Stephan Schulze¹; Kai Steinberg¹; Henrik Lüneburg¹; Florian Pyczak¹; Wolfgang Limberg¹; Thomas Ebel¹; ¹Helmholtz-Zentrum Hereon

10:35 AM

Solid State Additive Manufacturing of Oxide Dispersion Strengthened FeCrAl Alloy through Metal Extrusion Method: Saumyadeep Jana¹; Zachary Kennedy¹; Amrita Lall¹; Michelle Fenn¹; ¹Pacific Northwest National Laboratory

Solid State Additive Manufacturing of Magnesium via Friction Stir Deposition: Sameehan Joshi¹; Shreyash Patil¹; Shashank Sharma¹; Sangram Mazumder¹; Daniel Riley¹; Shelden Dowden¹; Rajarshi Banerjee¹; Narendra Dahotre¹; ¹University of North Texas

Teaching Printers How to Print: From G-Code to Integrating Al and Cloud Computing into Additive Manufacture: James Hardin¹; Erick Braham¹; Jennifer Ruddock¹; Nicholas Arn¹; ¹Air Force Research Laboratory

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response — Microstructural Features

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Meysam Haghshenas, University of Toledo; Andrew Birnbaum, US Naval Research Laboratory; Robert Lancaster, Swansea University; Xinghang Zhang, Purdue University; Aeriel Leonard

Tuesday AM | March 21, 2023 23B | SDCC

Session Chairs: Keivan Davami, The University of Alabama; Vikas Tomar, Purdue University

8:00 AM

Toward Developing **Processing-Microstructure-Property** Prediction to Enable Digital Twins of Additive Manufacturing Process: Mohsen Taheri Andani¹; Veera Sundararaghavan¹; Amit Misra1; 1University of Michigan

Kinetically-Driven Microstructure and Mechanical Properties of 3D Micro-architected Metal Alloys formed via Hydrogel Infusion Additive Manufacturing (HIAM): Thomas Tran¹; Rebecca Gallivan¹; Julia Greer¹; ¹California Institute of Technology

8:40 AM

A Novel Continuous-wave Laser and SEM Coupling: Application to Engineer an Additively Manufactured Microstructure: Juan Guillermo Santos Macias¹; Alexandre Tanguy¹; Manas Upadhyay¹; ¹Ecole Polytechnique

9:00 AM

A Multiscale Study of the Interconnection between Unit Cell Design, Processing Conditions, Microstructure, and Mechanical Properties of Additively Manufactured Titanium Metamaterials: Massimiliano Casata¹; Conrado Garrido¹; Toby Wilkinson¹; Enrique Alabort²; Daniel Barba¹; ¹Universidad Politécnica de Madrid; ²Alloyed

9:20 AM

Effect of Grain Microstructure on the Deformation Behaviour of Inconel 718 Fabricated by Laser Powder-bed Fusion: An In-situ Study: Jalal Al-Lami¹; Thibaut Dessolier¹; Talha Pirzada²; Minh-Son Pham1; 1Imperial College London; 2University of Oxford

9:40 AM Break

10:00 AM

Local Control of Strain, Microstructure, and Properties in Ti-5553 Lattice Materials: Caleb Andrews1; Jenny Wang2; Maria Strantza2; Manyalibo Matthews²; Mitra Taheri¹; ¹Johns Hopkins University; ²Lawrence Livermore National Laboratory

10:20 AM

Impact of Nanoscale Intermetallic Dispersions in Al-Ce Alloys for Selective Laser Melting: Hunter Henderson¹; Alfred Amon¹; Alexander Wilson-Heid¹; Zachary Sims¹; Orlando Rios²; Ryan Ott³; Scott McCall¹; ¹Lawrence Livermore National Laboratory; ²University of Tennessee-Knoxville; 3Ames Laboratory

Enhanced Tensile Ductility of an Additively Manufactured AlSi10Mg Alloy by Reducing the Density of Melt Pool Boundaries: Haoxiu Chen¹; Yu Zou¹; ¹University of Toronto

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Materials Design and Alloy Development V - Design Fundamentals -Aluminum Alloys I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Behrang Poorganji, University of Toledo; Hunter Martin, HRL Laboratories LLC; James Saal, Citrine Informatics; Jiadong Gong, Questek Innovations LLC; Orlando Rios, University of Tennessee; Atieh Moridi, Cornell University

Tuesday AM | March 21, 2023 24C | SDCC

Session Chair: Hunter Martin, HRL

8:00 AM Invited

Al-Ce Alloys for Additive Manufacturing: Ryan Ott1, Seungjin Nam1; Nicolas Argibay¹; Hunter Henderson²; Orlando Rios³; Scott McCall²; ¹Ames National Laboratory (USDOE); ²Lawrence Livermore National Laboratory; 3University of Tennessee Knoxville

8:30 AM

Design of an Aluminum Alloy Based on Stable Nanoparticles for Eliminating Process Instability in Laser Metal Additive Manufacturing: Minglei Qu1; Qilin Guo1; Luis Izet Escano1; Ali Nabaa¹; S. Mohammad H. Hojjatzadeh¹; Lianyi Chen¹; ¹University of Wisconsin-Madison

8:50 AM

Finding "Printing" Alloys: A New Category of Aluminum(-Cerium) Alloys in an Untapped Composition Space: Alfred Amon¹; Seungjin Nam²; Emily Moore¹; Hunter Henderson¹; Orlando Rios³; Ryan Ott²; Scott McCall¹; ¹Lawrence Livermore National Laboratory; ²Ames Laboratory; 3University of Tennessee Knoxville

Laser Powder Bed Fusion of Al-Ce Alloys: Holden Hyer1; Abhishek Mehta¹; Le Zhou²; Brandon McWilliams³; Kyu Cho³; Yongho Sohn¹; ¹University of Central Florida; ²Marquette University; ³DEVCOM Army Research Laboratory

9:30 AM Break

9:50 AM

Impact of Starting Particle Content and Laser Powder Bed Fusion Processing on Microstructure and Material Properties in A6061-RAM Alloys: Chloe Johnson¹; Michael Kaufman²; Adam Polizzi¹; Jeremy Iten¹; Amy Clarke²; ¹Elementum 3D; ²Colorado School of Mines

10:10 AM

Designing High-Strength Aluminum and Superalloys for Laser Powder Bed Fusion: Analyzing Cases of Success and Failure: Marcus Lam1; 1Monash University

10:30 AM

Using 'Interfaces as Templates for Planar L12 Precipitation in Additively Manufactured AlCuMnZr Alloys: Jonathan Poplawsky1; Richard Michi¹; Lawrence Allard¹; Sumit Bahl¹; Dongwon Shin¹; Alex Plotkowski¹; Amit Shyam¹; ¹Oak Ridge National Laboratory

Additive Manufacturing of Highly-reinforced Metal Matrix Composites: Ethan Parsons¹; ¹MIT Lincoln Laboratory

New Feedstock Design for Additive Manufacturing Using a Commercial Alloy Powder Mixture: Daozheng Li¹; Wei Xiong¹; ¹University of Pittsburgh

MATERIALS PROCESSING

Advanced Characterization of High-temperature Alloys: Phase Evolution during Manufacturing and Service-induced Deformation — Deformation **Determined In-service Performance**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Katerina Christofidou, University of Sheffield; Benjamin Adam, Oregon State University; Stoichko Antonov, Max-Planck Institut für Eisenforschung GmbH; James Coakley, University of Miami; Martin Detrois, National Energy Technology Laboratory; Paraskevas Kontis, Norwegian University of Science and Technology; Stella Pedrazzini, Imperial College London; Sophie Primig, University of New South Wales

Tuesday AM | March 21, 2023 29D | SDCC

Session Chairs: Martin Detrois, National Energy Technology Laboratory; Katerina Christofidou, The University of Sheffield

8:00 AM Invited

Monotonic Mechanical Behavior of a Nickel-based Single Crystal Superalloy with a Bimodal Precipitation: Jérémy Rame¹; Dominique Eyidi²; Anne Joulain²; Jonathan Cormier³; ¹Safran Aircraft Engines; ²Institut Pprime - University of Poitiers; ³ENSMA - Institut Pprime -UPR CNRS 3346

8:30 AM Invited

A Microscopy Investigation on the Nucleation and Propagation of Superlattice Stacking Faults in Nickel-based Superalloys: Fernando Leon-Cazares1; Regina Schluetter2; Francesco Monni2; Mark Hardy³; Catherine Rae²; ¹University of Cambridge and Sandia National Laboratories; ²University of Cambridge; ³Rolls-Royce Plc

The Role of Ru on the Deformation Mechanism of a Single Crystal Superalloy during Thermomechanical Fatigue: Paraskevas Kontis¹; Zhicheng Ge²; Guang Xie²; Di Wan¹; Jinghao Xu³; Mikael Segersäll³; Viktor Norman³; Johan Moverare³; Jian Zhang²; ¹Norwegian University of Science and Technology; ²Institute of Metal Research; ³Linköping University

9:20 AM

Variations in Formers and Refractory Elements for Enhanced Creep Resistance and Phase Stability of Alloy 282: Martin Detrois¹; Stoichko Antonov¹; Chantal Sudbrack¹; Jonathan Poplawsky²; Paul Jablonski¹; ¹National Energy Technology Laboratory; ²Oak Ridge National Laboratory

9:40 AM Break

10:00 AM Invited

Comparison of Laboratory-generated and Ex-service Fractography for a 4th Generation Single Crystal Ni-based Superalloy: Jane Woolrich¹; Simon Gray²; Ian Edmonds¹; Edward Saunders¹; Catherine Rae³; ¹Rolls-Royce; ²Cranfield University; ³University of Cambridge

Creep Assisted Phase Transformation Deformation Mechanisms in Polycrystalline Ni-based Superalloys and Their Impact on the Creep Performance: Daniel Barba1; Ashton Egan2; Satoshi Utada1; Yilun Gong³; Yuanbo Tang¹; Veronika Mazanova²; Michael Mills²; Roger Reed¹; ¹University of Oxford; ²The Ohio State University; ³Max-Planck-Institut für Eisenforschung GmbH

10:50 AM

Superalloys by Computational Optimization: Phase Evolution and Creep Properties: Tobias Gaag1; Julius Weidinger1; Jakob Bandorf1; Christopher Zenk¹; Carolin Körner¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

11:10 AM

High Temperature Creep Properties along Concentration Gradients in Superalloys: Lukas Haussmann¹; Steffen Neumeier¹; Mathias Göken¹; ¹FAU Erlangen

CHARACTERIZATION

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session III

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; C. Tasan, Massachusetts Institute of Technology; Olivia Jackson, Sandia National Laboratories

Tuesday AM | March 21, 2023 Aqua 311A | Hilton

Session Chairs: Dalton Shadle, Cornell University; Ramamurty Upadrasta, Nanyang Technological University

8:00 AM Invited

Size Effects and Failure Regimes in Notched Micro-cantilever Beam Fracture: Devashish Rajpoot¹; Parag Tandaiya¹; R Lakshmi Narayan²; Ramamurty Upadrasta³; ¹IIT-Bombay; ²IIT-Delhi; ³Nanyang Technological University

8:30 AM

Kink Band Formation in Nano Metallic Laminates: Yifan Zhang¹; Rodney McCabe¹; Miroslav Zecevic¹; Thomas Nizolek¹; Nan Li¹; Ricardo Lebensohn¹; John Carpenter¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

Understanding Deformation Behavior in an Al Alloy via Multimodal **3D Characterization**: Andrew Polonsky¹; Philip Noell¹; Julia Deitz¹; Hojun Lim¹; John Emery¹; Kyle Johnson¹; ¹Sandia National Laboratories

9:10 AM

In Situ Thermomechanical Loading of Nanocrystalline Alloys: Thomas Koenig¹; Hongyu Wang²; Yong Zhu²; Ankit Gupta³; Alicia Koenig¹; Garritt Tucker³; Gregory Thompson¹; ¹University of Alabama; ²North Carolina State University; ³Colorado School of Mines

9:30 AM Break

9:50 AM

Characterization of the Impact of Grain-Neighborhoods on Cyclic Twinning in Magnesium Alloys Using High Energy X-Ray Diffraction: Duncan Greeley¹; Mohammadreza Yaghoobi¹; Katherine Shanks²; Darren Pagan²; Veera Sundararaghavan¹; John Allison¹; ¹University of Michigan; ²Cornell High Energy Synchrotron Source

10:10 AM

Effect of Strain Rate on Slip Activation in a Mg-Al alloy by In-situ 3DXRD: Gaoming Zhu1; Anatoly Shabalin1; Ulrich Lienert1; Leyun Wang²; ¹Deutsches Elektronen-Synchrotron (DESY); ²Shanghai Jiao Tong University

Measurement and Modeling of Grain Scale Tensorial Stresses in Notched Zirconium Specimens: 3D-XRD vs CPFE: Karim Louca1; Katherine Shanks²; Darren Pagan²; Hamidreza Abdolvand²; ¹University of Western Ontario; ²Cornell High Energy Synchrotron Source (CHESS)

10:50 AM Invited

Extending High Energy Diffraction Microscopy to Track Localized Deformation with an Intragranular Signature during Cyclic Loading: Dalton Shadle¹; Kelly Nygren²; Matthew Miller¹; ¹Cornell University; ²Cornell High Energy Synchrotron Source

ADVANCED MATERIALS

Advanced Functional and Structural Thin Films and Coatings & Honorary Palkowski Session — Thin Films and Nanostructures for Optoelectronics I

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, IS2M; Ravindra Nuggehalli, New Jersey Institute of Technology; Heinz Palkowski, Clausthal University of Technology

Tuesday AM | March 21, 2023 Aqua E | Hilton

Session Chairs: Gerald Ferblantier, University of Strasbourg, ICube Laboratory, CNRS; Ramana Chintalapalle, University of Texas at El Paso

8:00 AM Introductory Comments

Optical Properties of Silicon in the Infrared: Allyson Tarifa1; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

8:25 AM Keynote

Infrared Plasmonics Based on Doped Silicon Nanostructures: Caroline Bonafos¹; Jean-Marie Poumirol¹; Meiling Zhang¹; Nicolas Chery¹; Clément Majorel²; Arnaud Arbouet²; Hervé Rinnert³; Etienne Talbot⁴; Peter Wiecha⁵; Rémi Demoulin⁵; Fuccio Cristiano⁵; G Larrieu⁵; S Kerdiles⁶; P. Acosta-Alba⁶; A Royet⁶; Fabrice Gourbilleau⁷; Vincent Paillard⁷; ¹CEMES-CNRS; ²CEMES-CNRS, Université de Toulouse; ³Université de Lorraine, CNRS; ⁴GPM-CNRS, Université de Rouen Normandie; ⁵LAAS-CNRS, Université de Toulouse; ⁶LETI; ⁷CIMAP, Normandie Université

9:05 AM

Fabrication and Structure-Optical Property Optimization of Wide Band Gap Oxide Thin Films Made by Pulsed Laser Deposition: Ramana Chintalapalle¹; ¹University of Texas at El Paso

9:25 AM Break

9:40 AM Invited

New Eco-friendly « Chameleon » Inks: Karine Mougin¹; Feriel Ghellal²; Guillaume Caffier³; Arnaud Spangenberg¹; ¹CNRS, IS2M; ²CNRS, IS2M; Bic Ecriture 2000; ³Bic Ecriture 2000

10:10 AM Concluding Comments

ENERGY & ENVIRONMENT

Advanced Materials for Energy Conversion and Storage 2023 — Energy Storage with Battery I

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Surojit Gupta, University of North Dakota; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania

Tuesday AM | March 21, 2023 32B | SDCC

Session Chairs: Partha Mukherjee, Purdue University; Leon Shaw, Illinois Institute of Technology

8:00 AM Keynote

Understanding Reactive Metals for Future Batteries - Lithium vs. **Sodium**: Shirley Meng¹; ¹The University of Chicago

8:30 AM Invited

3D Detailed Modeling Framework of Electrochemo-mechanics Behavior in SiO/Gr Composite Anode for High Energy Density Lithium-ion Battery: Xiang Gao¹; Jun Xu¹; ¹UNC Charlotte

Advanced Na-metal Halide Batteries for Long Duration Energy Storage Applications: Guosheng Li¹; ¹Pacific Northwest National Laboratory

Apparent Microstructurally Induced Phase Separation in Porous **LiNiMnCoO2 Cathodes**: Abhas Deva¹; *Edwin Garcia*¹; University

9:35 AM Break

9:55 AM

Application of Electrodeposited Zinc Thin Film to Anode of Zn-Ni Secondary Battery for Thousands of Charge-Discharge Cycles: Masatsugu Morimitsu1; Yusuke Tachida1; Mayu Yasuda1; Takuya Kuruma²; Kyohei Yamaguchi²; Hiroki Sawamoto²; ¹Doshisha University; 2Mitsui Mining & Smelting Co., Ltd.

10:15 AM Keynote

Challenges of ASSB development for Future Electric Vehicle Application: Toshikazu Kotaka¹; Koichiro Aotani¹; Yuichi Aihara¹; Balachandran Radhakrishnan²; Shigemasa Kuwata²; ¹Nissan Motor Co., Ltd.; ²Alliance Innovation Lab in Silicon Valley, Nissan North America Inc.

10:45 AM Invited

Elucidating the Governing Forces Behind Chemo-Mechanical Instabilities in Electrodes for Alkali Metal-ion Batteries: Omer Ozgur Capraz¹; ¹Oklahoma State University

11:10 AM Invited

Enabling High-energy-density Cathodes by Coupling Electrochemistry and Mechanics across Length Scales: Scott Roberts¹; Jeffrey Horner¹; ¹Sandia National Laboratories

11:35 AM Invited

Multiphysics Models for Understanding and Enhancing Cycle and Calendar Life of Silicon-rich Lithium-ion Batteries: Ankit Verma¹; Peter Weddle¹; Andrew Colclasure¹; ¹National Renewable Energy Laboratory

BIOMATERIALS

Advances in Biomaterials for 3D Printing of Scaffolds and Tissues - Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Biomaterials Committee

Program Organizers: Changxue Xu, Texas Tech University; Jun Yin, Zhejiang University; Zhengyi Zhang, Huazhong University of Science and Technology; Yifei Jin, University Of Nevada Reno; Heqi Xu, Texas Tech University

Tuesday AM | March 21, 2023 Sapphire 400B | Hilton

Session Chair: Md Shahriar, Texas Tech University

8:00 AM Invited

Electrohydrodynamic 3D Printing of Aqueous Solutions: Ander Reizabal¹; ¹BCMaterials - Basque Center for Materials, Applications

8:30 AM

Development of Propolis Modified Scaffolds for Tissue Engineering: Alex Ossa¹; Alejandro Pelaez²; Claudia Garcia³; ¹Universidad Eafit; ²Universidad Cooperativa de Colombia; ³Universidad Nacional de Colombia

8:50 AM

Effects of Corona Treatment on Cellular Attachment and Morphology on Polydimethylsiloxane Micropillar Substrates: Md Shahriar¹; Eduardo Pena¹; Jiachen Liu¹; Zhengyi Zhang²; Changxue Xu1; 1Texas Tech University; 2Huazhong University of Science and Technology

9:10 AM

Fabrication of Hierarchically Porous 316L Stainless Steel Scaffolds by Freeze Casting and 3D-printed Sacrificial Templating Techniques: Cheng Tsai¹; Kuan-Cheng Lai¹; Haw-Kai Chang¹; Po-Yu Chen¹; ¹National Tsing Hua University

9:30 AM Break

9:50 AM

High Speed and High-Resolution 3D Printing of Self-healing and Ion-conductive Hydrogels via µCLIP: Wenbo Wang¹; Siying Liu¹; Luyang Liu¹; Xiangfan Chen¹; ¹Arizona State University

10:10 AM

Inkjet Bioprinting of Cell-laden Biomaterials for Constructing 3D Multicell and Multimaterial Scaffolds: Dengke Zhao1; Jun Yin1; ¹Zhejiang University

10:30 AM

Cell-Laden Bioink Circulation-Assisted Inkjet-Based Bioprinting to Mitigate Cell Sedimentation and Cell Aggregation: Jiachen Liu1; Md Shahriar¹; Changxue Xu¹; ¹Texas Tech University

ENERGY & ENVIRONMENT

Advances in Magnetic Materials — Rare-earth Lean **Permanent Magnets**

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Jose Maria Porro, Bcmaterials; Huseyin Ucar, California Polytechnic University, Pomona; Patrick Shamberger, Texas A&M University; Min Zou, Lab Magnetics, A Quadrant Company; Gaoyuan Ouyang, Ames Laboratory; Alex Leary, NASA Glenn Research Center

Tuesday AM | March 21, 2023 33A | SDCC

Session Chair: Huseyin Ucar, California Polytechnic University, Pomona

8:00 AM Invited

Enhanced Powder-Processed Alnico Magnets by Novel Solid-State Engineering of the Microstructure and Nanostructure: Iver Anderson¹; Emily Rinko¹; Wei Tang¹; Matthew Kramer¹; Nicolas Argibay¹; ¹Iowa State University Ames Laboratory

Denitrogenation Process in ThMn12 Nitride by In Situ Neutron Powder Diffraction: Jose Maria Porro¹; Alex Aubert²; Ines Puente-Orench³; Sorana Luca⁴; Jose Javier S. Garitaonandia⁵; Jose Manuel Barandiaran⁵; George C. Hadjipanayis⁶; ¹BCMaterials & Ikerbasque; ²TU Darmstadt; ³Institut Laue Langevin; ⁴Univ. Grenoble Alpes, CEA LITEN; 5University of the Basque Country (UPV/EHU); 6University of Delaware

8:50 AM

Enhancing Stability and Magnetism of ThMn12-type Ceriumiron Intermetallics by Site Substitution: Churna Bhandari¹; Durga Paudyal¹; ¹Ames Laboratory

9:10 AM

Development of the Sintered (NdMM)-(FeCo)-B Based Magnets Substituted Nd by Less Critical Rare Earth (MM= La, Ce): Wei Tang¹; Harshida Parmar¹; Jing Wang¹; Xubo Liu¹; Ikenna Nlebedim¹; Ryan Ott1; Scott McCall2; David Parker3; Jun Cui1; 1Ames National Laboratory; ²Lawrence Livermore National Laboratory; ³Oak Ridge **National Laboratory**

9:30 AM Break

9:50 AM Invited

Grain Boundary Engineering for High Performance Heavy Rare-Earth Free Permanent Magnets: Matthew Kramer¹; Wei Tang¹; Gaoyuan Ouyang¹; Jun Cui¹; Iver Anderson¹; ¹Ames Laboratory

10:20 AM

Towards One-step Castable Cerium-based Gap Magnet: Andriy Palasyuk¹; Arne Swanson¹; Matthew Besser¹; ¹Ames Laboratory

ADVANCED MATERIALS

Advances in Multi-Principal Element Alloys II — **Structures and Characterization**

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; E-Wen Huang, National Yang Ming Chiao Tung University; Jennifer Carter, Case Western Reserve University; Srivatsan Tirumalai; Xie Xie, FCA US LLC; James Brechtl, Oak Ridge National Laboratory; Gongyao Wana, Globus Medical

Tuesday AM | March 21, 2023 Aqua D | Hilton

Session Chairs: Tirumalai Srivatsan, The University of Akron; Mitra Taheri, Johns Hopkins University

8:00 AM Invited

Chemical Short-range Order in Multi-principal Element Alloys: Takeshi Egami¹; ¹University of Tennessee

8:20 AM Invited

Role of Local Chemical Order on Phase Stability and Passivation in High Entropy Alloys: Elaf Anber¹; Debashish Sur²; Daniel Foley¹; Diana Farkas³; Peter Liaw⁴; John Scully²; Mitra Taheri¹; ¹Johns Hopkins University; ²University of Virginia; ³Virginia Tech; ⁴ university of tennessee

8:40 AM Invited

Uncovering Unique Multi-Principal Element Alloy Properties Using Atom Probe Tomography: Jonathan Poplawsky¹; Ying Yang¹; Xing Wang²; Rui Feng¹; ¹Oak Ridge National Laboratory; ²Penn State University

9:00 AM Invited

Study of Microstructural Evolution of Two Magnesium-based Multi-element High Entropy Alloys: Srivatsan Tirumalai¹; Khin Tun¹; Manoj Gupta¹; ¹The University of Akron

9:20 AM Invited

Microstructural Evolution and Deformation Mechanisms in Compositionally Complex Alloys: Zachary Kloenne¹; Jean-Philippe Couzinié²; Gopal Viswanathan¹; William Clark¹; Yunzhi Wang¹; Hamish Fraser¹; ¹Ohio State University; ²Univ. Paris Est Creteil, CNRS

9:40 AM Break

10:00 AM Invited

Structure-induced Local Lattice Distortions in a Refractory Highentropy Alloy: Jian Min Zuo1; Haw-Wen Hsiao1; 1University of Illinois

10:20 AM Invited

Powder Properties Characterization of AlO.1CoCrFeNi High-Entropy Alloy Fabricated by Gas Atomization Process: Sung-Jae Jo¹; Min-Woo Shin¹; Ji-Woon Lee¹; Kwangtae Son²; Andy Fan²; Baldur Steingrimsson³; Peter Liaw⁴; Soon-Jik Hong¹; ¹Kongju National University(CAMP2); ²Oregon State University; ³Imagars LLC, ; ⁴University of Tennessee

10:40 AM Invited

Defect Detection and Characterization of Additively Manufactured AlO.1CoCrFeNi High Entropy Alloy: Kwangtae Son1; Andy Fan1; Baldur Steingrimsson²; Peter Liaw³; Soon-Jik Hong⁴; Ji-Woon Lee⁴; ¹Oregon State University; ²Imagars LLC; ³University of Tennessee, Knoxville; 4Kongju National University

11:00 AM

Characterizing Deformation Mechanisms in BCC/B2 Refractory Multi-principal Element Alloys via a Model BCC/B2 Alloy in the Fe-Al-Ni System: Bryan Crossman¹; Milan Heczko¹; Veronika Mazanova¹; Junxin Wang¹; Julian Brodie¹; Loic Perriere²; Jean-Philippe Couzinie²; Michael Mills¹; Maryam Ghazisaeidi¹; ¹The Ohio State University; ²Institute of Chemistry and Materials Science (ICMPE)

11:20 AM Invited

Lattice Distortion and Phase Transitions in AlxCoCrFeNi HEAs under Pressure: Qiaoshi Zeng1; 1Hpstar

MATERIALS PROCESSING

Advances in Powder and Ceramic Materials Science - Advances in Ceramic Materials and Processes I

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Materials Characterization Committee, TMS: Powder Materials Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Faqin Dong, Southwest University of Science and Technology; Jinhong Li, China University of Geosciences; Ruigang Wang, The University of Alabama; Alexander Dupuy, University of California, Irvine

Tuesday AM | March 21, 2023 30A | SDCC

Session Chair: Bowen Li, Michigan Technological University

8:00 AM Introductory Comments

8:05 AM

Development of High Voltage Multilayer Ceramic Capacitor: Hyungsuk Kim¹; ¹Hyundai Motors

Magnetron Sputtering of Ti3AlC2 MAX Phase Coating on Carbon Nanofiber and Its Electrochemical Performance: Shuang Song; Xiang Wang¹; Xunrui Wang²; Jinhong Li²; ¹State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences; 2School of Materials Science and Technology, China University of Geosciences

8:45 AM

CeO2-x Nanorods as Effective Cathode Host Materials in Li-S Batteries: Zhen Wei¹; Sakibul Azam¹; Randeja Warren¹; Dariya Jones¹; Zephyr Barlow¹; Ruigang Wang¹; ¹University of Alabama

9:05 AM

Ceramic Additive Manufacturing: Applications in High-Temperature Electronics: Bhargavi Mummareddy¹; Pedro Cortes¹; ¹Youngstown State University

9:25 AM Break

9:45 AM

Development of an Experimentally Derived Model for Molybdenum Carbide (Mo2C) Synthesis in a Fluidized-bed Reactor: Maureen Chorney¹; Jerome Downey¹; K. V. Sudhakar¹; ¹Montana Technological University

Effects of Temperature on Domain Wall Mobility in Single Crystal BaTiO3: Quinten Yurek1; Jessica Krogstad1; 1University of Illinois at Urbana-Champaign

MATERIALS PROCESSING

Advances in Pyrometallurgy: Developing Low Carbon Pathways — Hydrogen

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Camille Fleuriault, Eramet Norway; Joalet Steenkamp, XPS Glencore; Dean Gregurek, RHI Magnesita; Jesse White, KTH Royal Institute of Technology; Quinn Reynolds, Mintek; Phillip Mackey, P.J. Mackey Technology, Inc.; Lina Hockaday, Curtin University, WASM

Tuesday AM | March 21, 2023 29B | SDCC

Session Chairs: Quinn Reynolds, MINTEK; Jesse White, KTH Royal Institute of Technology

8:00 AM Invited

Hydrogen, a Promising Carbon Substitute in Metallurgy?: Juergen Antrekowitsch1; 1University of Leoben

8:30 AM Invited

Use of H2 in Mn-ferroalloy Production: Merete Tangstad1; Trygve Schanche¹; Faan Du Preez²; ¹Norwegian University of Science and Technology; 2North West University

9:00 AM Invited

Development of Fossil Free Technologies for the Metallurgical Industry - Swerim Pilot and Industrial Experiences: Guozhu Ye1; Ida Heintz¹; Elsayed Mousa¹; ¹Swerim

9:30 AM Break

9.50 AM

Investigation of High-H2 Reducing Gas Delivery through Shaftlevel Tuyeres with Computational Fluid Dynamics: Tyamo Okosun¹; Samuel Nielson¹; Orlando Ugarte¹; Chenn Zhou¹; ¹Purdue University Northwest

10:10 AM

Hydrogen Plasma Reduction of Iron Oxides: Dierk Raabe1; Hauke Springer¹; Isnaldi Souza Filho¹; Yan Ma¹; ¹Max-Planck Institute

Hydrogen Plasma Reduction of Metal Oxides: Halvor Dalaker¹; Even Hovig1; 1Sintef

10:50 AM

Hydrogen-based Direct Reduction of Iron Oxides: Dierk Raabe¹; Hauke Springer¹; Yan Ma¹; Isnaldi Souza Filho¹; ¹Max-Planck Institute

MATERIALS DESIGN

Advances in Titanium Technology — Session III

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Zachary Kloenne, Ohio State University; Fan Sun, CNRS - PSL Research University; Stoichko Antonov, National Energy Technology Laboratory; Rongpei Shi, Harbin Institute of Technology (Shenzhen)

Tuesday AM | March 21, 2023 Cobalt 500 | Hilton

Session Chair: Stoichko Antonov, National Energy Technology Laboratory

8:00 AM Invited

Tuning the Reversibility of Stress-induced Martensitic Transformation in β-metastable Titanium Alloys by Low Temperature Heat Treatment: Philippe Castany¹; Gaëtan Cabon¹; Doïna Gordin¹; Thierry Gloriant¹; ¹INSA Rennes

8:30 AM Invited

Caracterisation of the Microstructure and the Plastic Deformation in Ti-6al-4v Produced via Directed Energy Deposition: Silvia Lopez-Castaño¹; Florence Pettinari-Sturmel²; Samuel Hemery³; Patrick Villechaise³; Philippe Emile⁴; Claude Archambeau⁴; Joël Douin²; ¹AIRBUS; ²CEMES - Université de Toulouse; ³Pprime Institut, ENSMA - CNRS; ⁴AIRBUS Operation S.A.S.

Mechanisms of Grain Boundary Precipitation in the Metastable -Titanium Ti-5Al-5Mo-5V-3Cr: Stoichko Antonov¹; T.S. Prithiv²; Zachary Kloenne³; Yufeng Zheng⁴; Rongpei Shi⁵; Hamish Fraser³; Baptiste Gault²; ¹National Energy Technology Laboratory; ²Max-Planck-Institut fur Eisenforschung GmbH; ³The Ohio State University; ⁴University of Nevada Reno; ⁵Harbin Institute of Technology (Shenzhen)

9:20 AM Break

9:40 AM

Suppression of -phase Formation in Prototypical Metastable -Ti Alloys: Martin Luckabauer1; Florian Brumbauer2; Wolfgang Sprengel²; Norihiko L Okamoto³; Tetsu Ichitsubo³; ¹University of Twente; ²Graz University of Technology; ³Institute for Materials Research, Tohoku University

10:00 AM

Effect of Loading Rate and Applied Potential on the Environmentassisted Cracking Behavior of ST/A Beta-C Titanium Exposed to Marine Environments: Zachary Harris¹; James Burns²; ¹University of Pittsburgh; ²University of Virginia

10:20 AM

Investigation of Fine-scaled Alpha Microstructure in Metastable Beta Titanium Alloys: Deepak Pillai¹; Ahsan Habib Munna¹; Cameron Tucker¹; Dian Li¹; Yufeng Zheng¹; ¹University of Nevada Reno

MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Validation, and Uncertainty Quantification — Session III

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Francesca Tavazza, National Institute of Standards and Technology; Dennis Dimiduk, BlueQuartz Software LLC; Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Shreyas Honrao, NASA Ames Research Center; Ashley Spear, University of Utah; Houlong Zhuang, Arizona State University

Tuesday AM | March 21, 2023 Cobalt 520 | Hilton

Session Chair: Ashley Spear, University of Utah

8:00 AM

Adversarial Hierarchical Variational Autoencoder: A Novel Autoencoder Architecture for Microstructure Synthesis and Feature Extraction: Simon Mason¹; Mengfei Yuan²; Ashley Lenau¹; Octavian Donca¹; Dennis Dimiduk³; Steve Niezgoda¹; ¹Ohio State University; ²Ping An Insurance; ³BlueQuartz Software LLC

8:20 AM

Automated Classification of Powder X-ray Diffraction Data Using Deep Learning: *Jerardo Salgado*¹; Zhaotong Du¹; Samuel Lerman¹; Chenliang Xu¹; Niaz Abdolrahim¹; ¹University of Rochester

8:40 AM

Comparison of U-Net and Mask R-CNN Neural Network for Detection of Helium Bubbles and Voids in Nuclear Reactor Materials: Shradha Agarwal¹; Sydney Copp²; July Reyes²; Steven Zinkle¹; ¹University of Tennessee and Oak Ridge National Laboratory; ²University of Tennessee

9:00 AM

Computer Vision Assisted Automated Grain Segmentation and High-Throughput Composition Analysis with Scanning Electron Transmission Microscopy: Doruk Aksoy¹; Jenna Wardini¹; Timothy Rupert¹; William Bowman¹; ¹University of California, Irvine

9:20 AM

Weakly-Supervised Segmentation of Microstructure Images with Deep Convolutional Neural Networks: Bo Lei¹; Elizabeth Holm¹; ¹Carnegie Mellon University

9:40 AM Break

10:00 AM

Utilizing and Understanding Deep Learning for 3D Microstructure Synthesis: *Neal Brodnik*¹; Devendra Jangid¹; McLean Echlin¹; B. S. Manjunath¹; Samantha Daly¹; Tresa Pollock¹; ¹University of California Santa Barbara

10:20 AM

Physics-Based Deep Learning Methods for Enforcing Stress Equilibrium in GAN Generated Stress Fields: Ashley Lenau¹; Dennis Dimiduk²; Stephen Niezgoda¹; ¹Ohio State University; ²BlueQuartz Software LLC

10:40 AM

Generation of 3D Synthetic Polycrystalline Microstructures using Gaussian Random Fields and Two Point Spatial Correlations: *Michael Buzzy*; Andreas Robertson¹; Surya Kalidindi¹; ¹Georgia Institute of Technology

11:00 AM

Synthetic Data Development towards Automated Defect Detection of Irradiated Materials: Matt Lynch¹; Priyam Patki¹; Ryan Jacobs²; Steven Chen¹; Gabriella Bruno¹; Dane Morgan²; Kevin Field¹; ¹University of Michigan - Ann Arbor; ²University of Wisconsin - Madison

MATERIALS DESIGN

Alloy Behavior and Design Across Length-Scales: An SMD Symposium Honoring Easo George — Small-Scale Mechanical Behavior and Alloy Modeling

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Michael Mills, Ohio State University; George Pharr, Texas A&M University; Robert Ritchie, University of California, Berkeley; Muralidharan Govindarajan, Oak Ridge National Laboratory

Tuesday AM | March 21, 2023 Cobalt 502B | Hilton

Session Chair: George Pharr, Texas A&M University

8:00 AM Invited

Easo George – Advancing Understanding of Mechanical Behavior through Test Material Preparation: William Nix¹, ¹Stanford University

8:30 AM Invited

Ambient-temperature Plasticity of Brittle Intermetallics at Micron-meter Size Scales: *Haruyuki Inui*¹; Kyosuke Kishida¹; ¹Kyoto University

9:00 AM Invited

Theory-guided Design of High-strength, Ductile, Single-phase BCC High Entropy Alloys: William Curtin¹; You Rao¹; Carolina Baruffi¹; Anthony De Luca²; Christian Leinenbach²; ¹Epfl Sti Igm Lammm; ²EMPA

9:30 AM Break

9:50 AM Invited

The Interplay between Phase Transformation and Mechanical Properties in High Entropy Alloys: Maryam Ghazisaeidi¹; ¹The Ohio State University

10:20 AM Invited

Deformation Twinning in HCP Ti: The Role of Interfacial Complexions and Interstitial Solutes: Mohammad Hooshmand¹; Buyu Zhang²; Enze Chen²; Timofey Frolov³; Ruopeng Zhang⁴; Yan Chong⁴; Andrew Minor²; *Mark Asta*²; ¹University of California, Berkeley; ²University of California, Berkeley; Lawrence Berkeley National Laboratory; ³Lawrence Livermore National Laboratory; ⁴Lawrence Berkeley National Laboratory

ELECTRONIC MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XI — Session III

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Chiao Tung University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Cnrs Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute For Materials Science; Wan-Ting Chiu, Tokyo Institute of Technology; Chenguang Fu, Zhejiang University

Tuesday AM | March 21, 2023 Sapphire A | Hilton

Session Chairs: Yi-Fen Tsai, National Yang Ming Chiao Tung University; I-Lun Jen, National Yang Ming Chiao Tung University

8:00 AM Invited

Bi2Te3 Based Compounds Made via Mechanical Alloying: Defect Chemistry and Phase Diagram: Franck Gascoin1; Amélie Galodé1; ¹Cnrs Crismat Unicaen

8:20 AM Invited

Enhancement of Phonon Scattering in Thermoelectric Half-Heusler Compounds by Non-equilibrium Synthesis: Ran He¹; ¹|FW-Dresden

8:40 AM

Influence of Connectivities and Length Scales of Eutectic Alloys on Thermoelectric Properties: Panithi Sireesha¹; Shriparna Mukherjee¹; Shanmukha Kiran Aramanda¹; Kamanio Chattopadhyay¹; ¹Indian Institute of Science

9:00 AM Invited

Young Leaders International Scholar - JIM: Discovery of Triple Half-Heusler with Low Thermal Conductivity: Kazuki Imasato¹; Philipp Sauerschinig¹; Shashwat Anand²; Takao Ishida¹; Atsushi Yamamoto¹; Michihiro Ohta¹; ¹National Institute of Advanced Industrial Science and Technology; ²Lawrence Berkeley National Laboratory

9:30 AM Break

9:50 AM Invited

Doping as a Tuning Mechanism for Magneto-thermoelectric Effects to Improve zT in Weyl Semimetals: Sarah Watzman¹; ¹University of Cincinnati

10:10 AM Invited

Carrier Concentration Adjustment and Texturation Processing on Thermoelectric Silicide: David Berthebaud¹; ¹French National Center for Scientific Research

10:30 AM

Order-disorder Transitions in Zr-doped NbCoSn Heusler Alloys **Enable Tunable n-p Transitions**: Nathan Johnson¹; University

10:50 AM

In-situ Creep Deformation Electrical Conductivity Measurement of I-doped PbTe: Muath Almalki¹; Yukun Liu¹; James Male¹; Vinayak Dravid¹; David Dunand¹; G. Jeffrey Snyder¹; ¹Northwestern University

Enhanced Mechanical Properties of Ti-rich Medium Entropy Alloys via Phase Diagram Engineering: Wen-Chi Yang¹; Ping-Yuan Deng¹; Hsin-Jay Wu¹; ¹National Yang Ming Chiao Tung University

LIGHT METALS

Aluminum Alloys, Characterization and Processing Processing and Heat Treatment II

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Julie Levesque, Quebec Metallurgy Center; Stephan Broek, Kensington Technology Inc.

Tuesday AM | March 21, 2023 32A | SDCC

Session Chair: Warren Poole, University of British Columbia

8:00 AM

The Effect of Octagonal Ingot Shape on AA6xxx Hot Rolling Performance: Joshua Lawalin1; Pascal Gauthier2; Tao Wang2; ¹Commonwealth Rolled Products: ²Rio Tinto Aluminum

8:25 AM

The Low-carbon Production of Wrought Aluminum Alloys based on Post-consumer Scrap: Varuzan Kevorkijan¹; Sandi Žist¹; Matjaz Godec²; ¹Impol R in R d.o.o.; ²Institute of Metals and Technology

Reducing the Inclusion Levels in Aluminum: Bader Almuhana¹; Abdullah Alqarni; ¹Ma'aden Aluminum

9:15 AM

Effect of Iron and Manganese Content on Microstructure and Mechanical Properties of AlSi11 Alloy in Wheels Produced by LPDCprocess: Sergey Matveev1; Dmitry Moiseev1; Tatyana Bogdanova2; Roman Vakhromov¹; Aleksandr Krokhin³; ¹Light Materials and Technologies Institute UC RUSAL; ²LMZ SCAD LLC; ³JSC RUSAL Management

9:40 AM Break

9:55 AM

Shear Assisted Processing and Extrusion of Unhomogenized Aluminum Alloy 6063 Castings with High Iron Content: Scott Whalen¹; Nicole Overman¹; Brandon Taysom¹; Md. Reza-E-Rabby¹; Timothy Skszek¹; Massimo DiCiano²; ¹Pacific Northwest National Laboratory; ²Magna International, Inc.

10:20 AM

Solutionization via Severe Plastic Deformation: Effect on Natural Aging in an Al-Mg-Si-(Mn) Alloy: Brian Milligan1; B. Scott Taysom1; Xiaolong Ma¹; Scott Whalen¹; ¹Pacific Northwest National Laboratory

Manufacture of Nano-to-Micron-scale Tic Particulate Reinforced Aluminium Composites By Ultrasound-assisted Stir Casting: Guangyu Liu1; Abdallah Abu Amara1; Dmitry Eskin1; Brian McKay1; ¹Brunel University London

11:10 AM

Effect of Mn Content on Quench Sensitivity on 6082 Alloys: Emrah Ozdogru¹; Aleyna Gümüsoy¹; Hilal Colak¹; *Isik Kaya*¹; ¹TRI Metalurji A.S.

LIGHT METALS

Aluminum Waste Management and Utilization — Aluminum Waste Management and Utilization

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Pernelle Nunez, International Aluminium Institute; Lavinya Kugaswaran, International Aluminium Institute

Tuesday AM | March 21, 2023 31A | SDCC

Session Chair: Miles Prosser, International Aluminium Institute

8:55 AM Introductory Comments

9:05 AM

Recovery of Value Added Products from Bauxite Residue: *Himanshu Tanvar*¹; Brajendra Mishra¹; ¹Worcester Polytechnic Institute

9:30 AM Invited

Current Status and Proposed Economic Incentives for Higher Utilization of Bauxite Residue to Enhance Sustainability of the Aluminum Industry: Subodh Das¹; Muntasir Shahabuddin²; ¹Phinix LLC; ²Worcester Polytechnic Institute

9:55 AM Invited

Aluminium Bahrain (Alba) SPL Sustainable Solution from Landfill to Valuable Feedstock "HiCal30": Nabeel Aljallabī[‡]; Khalid Ahmed Shareef¹; Bernie Cooper²; Mohsen Qaidi Ghulam¹; Fuad A. Hussain Alasfor¹; Vijay Rajendran¹; ¹Aluminium Bahrain Bsc; ²Regain Technologies

10:20 AM Break

10:35 AM

Valorization of Treated Spent Potlining in Cement Industry: Laurent Birry¹; Jean Lavoie¹; Victor Brial²; Claudiane Ouellet-Plamondon²; Hang Tran³; Luca Sorelli³; David Conciatori³; ¹Rio Tinto Aluminium; ²Ecole de Technologie Superieure, Montreal; ³Universite Laval, Quebec

11:00 AM

Aluminum Recycling and Recovery of Other Components from Waste Tetra Pak Aseptic Packages: Ilgm Baltaci¹; Selcuk Kan¹; Ahmet Turan²; Onuralp Yücel¹; ¹Istanbul Technical University; ²Yeditepe University

BIOMATERIALS

Biological Materials Science — Biological Materials Science III

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Jing Du, Pennsylvania State University; David Restrepo, University of Texas at San Antonio; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Ling Li, Virginia Polytechnic Institute

Tuesday AM | March 21, 2023 Sapphire 402 | Hilton

Session Chairs: Li Ling, Virginia Polytechnic Institute; Claire Acevedo, University of Utah

8:00 AM

Mechanics of Bioinspired Hierarchical Tape-springs: Kristiaan Hector¹; Phani Saketh Dasika¹; Adwait Trikanada¹; Nilesh Mankame²; Wei Huang³; Jesus Rivera³; David Restrepo⁴; David Kisailus³; *Pablo Zavattieri*¹; ¹Purdue University; ²General Motors Research and Development; ³University of California, Irvine; ⁴Purdue University/ University of Texas

8:20 AM

Real-time Investigations of Tensile and Fracture Behavior of Fibers from the Venus Flower Basket (Euplectella Aspergillum): Swapnil Morankar¹; Yash Mistry²; Dhruv Bhate²; Clint Penick³; Nikhilesh Chawla¹; ¹Purdue University; ²Arizona State University; ³Kennesaw State University

8:40 AM

Relationship between Structure, Material Property and Function in Locust Cuticle: Chuchu Li¹; Hamed Rajabi²; Stanislav Gorb¹; ¹Functional Morphology and Biomechanics, Institute of Zoology, Kiel University; ²Division of Mechanical Engineering & Design, School of Engineering, London South Bank University, London, UK

9:00 AM Invited

Unraveling the Mystery of Mammalian Enamel Microstructure: Carli Marsico¹; Cameron Renteria¹; Jack Grimm¹; Donna Guillen¹; Susana Estrada¹; Julians Fernández-Arteaga¹; E. Alex Ossa¹; *Dwayne Arola*¹; ¹University of Washington

9:30 AM Break

9:50 AM

Finite Element Analyses of Cracks in Lateral Incisors under Quantitative Percussion Conditions: Omid Komari¹; Jie Shen¹; Cherilyn Sheets²; James Earthman¹; ¹University of California, Irvine; ²Newport Coast Oral Facial Institute

10:10 AM

Notched 3D Printed Replica Teeth for In Vitro Characterization of Dental Cracks with Quantitative Percussion Diagnostics: *Jie Shen*¹; Haocheng Yang¹; Cherilyn Sheets²; James Earthman¹; ¹University of California Irvine; ²Newport Coast Oral Facial Institute

10:30 AM

Micromechanical Investigations of the Remarkable Damage Tolerance in Tooth-enamel of Hadrosaurid Dinosaurs: Soumya Varma¹; Sid Pathak¹; Gregory Erickson²; Brandon Krick²; Jakob Schwiedrzik³; Johann Michler³; Arun Devaraj⁴; Michael Thompson⁵; ¹lowa State University; ²Florida State University; ³EMPA; ⁴Pacific Northwest National Laboratory; ⁵Los Alamos National Laboratory

10:50 AM

A Novel Glass-based Material for Vital Pulp Therapy: Biocompatibility and Physiochemical Properties: Jerry Howard¹; Krista Carlson¹; John Colombo²; ¹University of Nevada, Reno; ²University of Nevada, Las Vegas

SPECIAL TOPICS

Bladesmithing 2023 — Bladesmithing I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Samuel Wagstaff, Oculatus Consulting; David Sapiro, USNC-Tech

Tuesday AM | March 21, 2023 Sapphire I | Hilton

Session Chairs: Samuel Wagstaff, Oculatus Consulting; David Sapiro, Ultra Safe Nuclear

8:00 AM Introductory Comments

8:05 AM Keynote

Reverse Engineering of Historical Swords: David Sapiro¹; ¹Schonpiro Materials

8:45 AM

Aggie Frontier Knife: Berkeley Rhoads¹; Charles Schmidt¹; ¹Texas A&M

9:05 AM

The Pegasus: Arjav Singh1; Nandagopal P1; 1IIT Madras

9:25 AM Break

9:45 AM

Material Characterization of Medieval Dagger: Kira Martin¹; Abby Sreden¹; Adam Slafsky¹; Bailey Wooldridge¹; ¹University of Illinois Urbana-Champaign

10:05 AM

The Zhànshi Jian: Jin Kim1; 1University of North Texas

Bladesmithing from a Modern Standpoint with Historical Regards: Hans Pommerenke¹; Jeremiah Cohn¹; Logyn Siders¹; Michael Fritzmaurice¹; ¹Missouri University of Science and Technology

ADVANCED MATERIALS

Bulk Metallic Glasses XX — Structural Dynamics and **Local Strains**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Robert Maass, Federal Institute of Materials Research and Testing (BAM); Peter Derlet, Paul Scherrer Institut; Katharine Flores, Washington University in St. Louis; Yonghao Sun, The Chinese Academy of Sciences; Lindsay Greer, University of Cambridge; Peter Liaw, University of Tennessee

Tuesday AM | March 21, 2023 Aqua C | Hilton

Session Chair: Robert Maass, Federal Institute of Materials Research and Testing (BAM)

8:00 AM Invited

A Spatially Resolved View on Heterogeneous Dynamics in Metallic Glasses: Gerhard Wilde¹; ¹University of Muenster

8:20 AM Invited

Pressure Dependence of the Collective Motion in Metallic Glasses Studied with Coherent X-rays: Beatrice Ruta¹; Antoine Cornet¹; ¹Univ Lyon 1 and CNRS

8:40 AM

Long-time Structural Evolution of Metallic Glasses: Robert Maass¹; Birte Riechers²; Amlan Das³; Zengquan Wang²; Eric Dufresne⁴; Peter Derlet⁵; ¹Federal Institute of Materials Research and Testing (BAM), University of Illinois at Urbana-Champaign; ²Federal Institute of Materials Research and Testing (BAM); 3Cornell High Energy Synchrotron Source; ⁴Advanced Photon Source, Argonne National Laboratory; 5Condensed Matter Theory Group, Paul Scherrer Institut

9:00 AM

Low-temperature Relaxation and Crystallization Processes in Metallic Glasses: Dmitri Louzguine¹; ¹WPI-AIMR, Tohoku University

9:20 AM

Origin of -relaxation in Metallic Liquids: Chae Woo Ryu1; Takeshi Egami¹; ¹University of Tennessee

9:40 AM Break

10:00 AM Invited

Non-affine Strains in Glassy Solids: Wojciech Dmowski¹; Chae Woo Ryu¹; Hui Wang¹; Takeshi Egami¹; ¹University of Tennessee

10:20 AM

Stress-strain Measurements on Cyclically Sheared Colloidal Glasses: J. Zsolt Terdik1; David Weitz1; Frans Spaepen1; 1Harvard University

10:40 AM

Local Strain Analysis by 4D-STEM on Zr50Cu40Al10 Subjected to High Pressure Torsion: Katsuaki Nakazawa¹; Sangmin Lee¹; Kazutaka Mitsuishi¹; Shinji Kohara¹; Koichi Tsuchiya¹; ¹National Institute for Materials Science

11:00 AM

Structural Symmetry of Medium Range Ordering in Metallic Glasses Revealed by Angular Correlation Analysis of 4D-STEM Nanodiffraction: Gabriel Calderon¹; Jiyoung Kim²; Geun-Hee Yoo²; Chaoyi Liu³; Soohyun Im⁴; Minhazul Islam¹; Yue Fan³; Eun Soo Park²; Jinwoo Hwang¹; ¹Ohio State University; ²Seoul National University; ³University of Michigan; ⁴University of Wisconsin Madison

LIGHT METALS

Cast Shop Technology — Furnace Operations and Recycling

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Halldor Gudmundsson, Century - Nordural; Stephan Broek, Kensington Technology Inc.

Tuesday AM | March 21, 2023 31C | SDCC

Session Chair: Luke Mackenzie, HATCH

8:00 AM

Hydrogen Absorption of Aluminum-magnesium Melts from Humid Atmospheres: Stefan Tichy1; Philip Pucher2; Bernd Prillhofer2; Stefan Wibner¹; Helmut Antrekowitsch¹; ¹University of Leoben; ²AMAG casting GmbH

8:25 AM

Influence of Cryolite Content on the Thermal Properties and Coalescence Efficiency of NaCl-KCl Salt Flux: Veronica Milani¹; Alicia Vallejo Olivares²; Gabriella Tranell²; Giulio Timelli¹; ¹University of Padova; ²Norwegian University of Science and Technology

8:50 AM

Oxidation Study of Al-Mg Alloys in Furnace Atmospheres Using Hydrogen and Methane as Fuel: Martin Syvertsen¹; Anders Johansson²; Johannes Lodin³; Are Bergin⁴; Mari Ommedal⁵; Yngve Langsrud⁶; Ray Peterson⁷; ¹SINTEF Industry; ²Siemens Energy AB; 3Linde Gas AB; 4Hydro Aluminium ANS; 5Alcoa Norway ANS; ⁶Benteler Aluminium systems Norway AS; ⁷Real Alloy Recycling INC

9:15 AM

Towards the Efficient Recycling of Used Beverage Cans: Numerical Study and Experimental Validation: Nikolaos Chamakos¹; Malamatenia Koklioti¹; Theofani Tzevelekou¹; Athanasia Flampouri¹; Ioannis Contopoulos¹; Alexandros Anestis²; Grigorios Galeros²; Epameinondas Xenos²; Andreas Mavroudis²; ¹ELKEME SA; ²ElvalHalcor SA

9:40 AM Break

9:55 AM

A Novel Green Melt Technology for Aluminum Alloys: Kaborson Ke¹; Xiyu Wen²; Dongjie Ke¹; ¹Fuzhou Metal-new High Temperature Technology Incorporation Limited; ²University of Kentucky

10:20 AM

MagPump: Oscar Perez1; Eishin Takahashi2; Steve Iijima1; 1TST INC; ²TST Inc.

10:45 AM

Recycling of Aluminium from Aluminium Food Tubes: Sarina Bao¹; Anne Kvithyld²; Gry Aletta Bjørlykke³; Kurt Sandaunet¹; ¹SINTEF; ²SINTEF; ³Kavli AS

CHARACTERIZATION

Characterization of Materials through High Resolution Coherent Imaging — High Resolution Characterization of Materials with Phase Contrast **Imaging**

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials **Characterization Committee**

Program Organizers: Richard Sandberg, Brigham Young University; Ross Harder, Argonne National Laboratory; Xianghui Xiao, Brookhaven National Laboratory; Brian Abbey, La Trobe University; Saryu Fensin, Los Alamos National Laboratory; Ana Diaz, Paul Scherrer Institute; Mathew Cherukara, Argonne National Laboratory

Tuesday AM | March 21, 2023 Aqua 310A | Hilton

Session Chair: Richard Sandberg, Brigham Young University

8:00 AM Invited

Imaging Intact Human Organs across the Scales using Hierarchical Phase-contrast Tomography: Peter Lee¹; Claire Walsh¹; Paul Tafforeau²; Christopher Werlein³; Danny Jonigk³; Maximilian Ackermann⁴; ¹University College London; ²ESRF; ³Hannover Medical School; ⁴Johannes Gutenberg University Mainz

8:30 AM

Resolving the Morphology of a Polyphase Solidification Pattern via In-situ Nanotomography: Paul Chao1; Aramanda Kiran1; Ashwin Shahani¹; ¹University of Michigan

Imaging Laser Shockwave Dynamics in Defect-bearing Ablator Materials: Daniel Hodge¹; Silvia Pandolfi²; Andrew Leong³; David Montgomery³; Arianna Gleason²; Richard Sandberg¹; Young University; ²SLAC National Laboratory; ³Los Alamos National Laboratory

9:10 AM

Precise Registration Algorithm for High-resolution Imaging Applications: Xianghui Xiao¹; Zhengrui Xu²; Dong Hou²; Zhijie Yang²; Feng Lin²; ¹Brookhaven National Laboratory; ²Virginia Tech

9:30 AM Break

9:50 AM

Solving Complex Structures with Electron Ptychography: Yu-Tsun Shao1; Zhen Chen1; Yi Jiang1; Chenyu Zhang1; Harikrishnan K.P.1; David Muller¹; ¹Cornell University

10:10 AM Invited

MHz Microscopy at European XFEL: Patrik Vagovic1; Pablo Villanueva Perez²; Tokushi Sato³; Valerio Bellucci³; Sarlota Birsteinova³; Henry Kirkwood³; Richard Bean³; Romain Letrun³; Jayanath Koliyadu³; Rita Graceffa³; Antonio Bonucci³; Adrian Mancuso³; Alke Meents¹; Henry Chapman¹; ¹Center for Free Electron Laser Science, DESY; ²Lund University; 3European XFEL

10:40 AM

Ultrafast Dark-field X-ray Microscopy - A New Tool for Multiscale Analysis: Leora Dresselhaus-Marais1; 1Stanford University

11:00 AM

Coherent Surface Scattering Imaging with Nanometer Resolution for 3D Mesoscale Structures at Surfaces and Interfaces: Zhang Jiang¹; Peco Myint¹; Ashish Tripathi¹; Miaoqi Chu¹; Mathew Cherukara¹; Suresh Narayanan¹; Nicholas Schwarz¹; Jin Wang¹; ¹Argonne National Lab

CHARACTERIZATION

Characterization of Minerals, Metals and Materials — **Advanced Microstructural Characterization Methods**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Mingming Zhang; Zhiwei Peng, Central South University; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, Eurofins EAG Materials Science LLC; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, DEVCOM ARL Army Research Office; Shadia Ikhmayies

Tuesday AM | March 21, 2023 Aqua 313 | Hilton

Session Chairs: John Carpenter, Los Alamos National Laboratory; Jiann-Yang Hwang, Michigan Technological University

8:00 AM

Microstructural Effects on the Shock Hugoniot: David Jones¹; Daniel Martinez¹; Jesse Callanan¹; Darby Luscher¹; Saryu Fensin¹; ¹Los Alamos National Laboratory

8:20 AM

Quantitative Microstructural Characterization of Precipitates and their Distributions in Nickel Alloys: Chris Bilsland¹; Thomas Britton²; ¹Imperial College London; ²University of British Columbia

8:40 AM

Correlative Microscopy Characterization of Afterburner Thermal Barrier Coating: Bartlomiej Winiarski¹; ¹Thermo Fisher Scientific

9:00 AM

Electron Transport Properties in Metal Nanowhiskers: Gunther Richter¹; Olga Iaroslavtseva¹; ¹Mpi For Intelligent Systems

9:20 AM

Evaluation And Construction of Microstructural Property Distributions For Advanced Material Characterization: Noah Wade¹; Lori Graham-Brady¹; ¹Johns Hopkins University

9:40 AM Break

9:55 AM

Effect of Single Crystal Growth Techniques on Dendritic Microstructures and Small Orientation Defects in Ni-based Superalloys: Felicitas Werner¹; Felicitas Scholz¹; Paul Git²; Alexander Richter¹; Pascal Thome¹; Carolin Körner²; Gunther Eggeler¹; Jan Frenzel¹; ¹Ruhr-University Bochum; ²Friedrich-Alexander-University Erlangen-Nürnberg

10:15 AM

Optical Parameters of ZnO Thin Films: Shadia Ikhmayies¹; ¹Jabal El-Hussain

10:35 AM

Correlative Microscopy Materials Characterization Using fs-laser Plasma FIB-SEM: Bartlomiej Winiarski¹; Remco Geurts¹; ¹Thermo Fisher Scientific

10:55 AM

Optical Properties of Iridium at High Temperatures: Minsu Oh1; John McElearney¹; Kevin Grossklaus¹; Thomas Vandervelde¹; ¹Tufts University

NUCLEAR MATERIALS

Composite Materials for Nuclear Applications II — **Composite Metallic Systems**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Composite Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Anne Campbell, Oak Ridge National Laboratory; Dong Liu, University of Bristol; Rick Ubic, Boise State University; Lauren Garrison, Commonwealth Fusion Systems; Peng Xu, Idaho National Laboratory; Johann Riesch, Max-Planck-Insitut Fuer Plasmaphysik

Tuesday AM | March 21, 2023 24B | SDCC

Session Chairs: Johann Riesch, Max-Planck-Institut für Plasmaphysik; Anne Campbell, Oak Ridge National Laboratory

8:00 AM Invited

An Innovative Additive Manufacturing Route for Metal Matrix Composites for Nuclear Applications: Taegyu Lee1; Wonjong Jeong¹; SeunhHyeok Chung¹; Ho Jin Ryu¹; ¹KAIST

8:30 AM

Effect of Interfacial Features on the Strengthening Behavior of B4C/Al Composites: Juyeon Han1; Hansol Son1; Yoonjung Won1; Kisub Cho¹; Hyunjoo Choi¹; ¹Kookmin university

Development and Additive Manufacturing of ODS IN-718 Alloys for Nuclear Applications: Eda Aydogan¹; Yesim Yalcin¹; Bora Derin²; Bahattin Koc³; ¹Middle East Technical University; ²Istanbul Technical University; 3Sabanci University

9:10 AM

Ion Beam Synthesis of Nano-Oxides in FeCr: Towards an **Understanding of Precipitation in Oxide Dispersion Strengthened** Steels: Stephanie Jublot-Leclerc1; Martin Owusu-Mensah2; Aurélie Gentils¹; ¹Université Paris-Saclay, CNRS/IN2P3, IJCLab; ²Kwame Nkrumah University of Science and Technology

9:30 AM Break

9:50 AM

Characterization of the Effects of Intermediate Temperature Neutron Irradiation on Model Fe-Cr Alloys: Dhriti Bhattacharyya1; Alan Xu¹; Takuya Yamamoto²; G. Robert Odette²; ¹Australian Nuclear Science and Technology Organization; ²UCSB

10:10 AM

Effect of Copper Fiber in RAFM Steel Composite on Improving the Thermal Conductivity: Yong Hwan Cho1; Hyun Joon Yang1; Chang-Hoon Lee2; Woong-Ryeol Yu1; Heung Nam Han1; 1Seoul National Univ; ²Korea Institute of Material Science

10:30 AM

Microstructure and Thermophysical Property Characterization of U-ZrHx Fuel Fabricated by Powder Metallurgy: Tyler Smith1; Caitlin Taylor¹; Michael Hahn¹; Erik Luther¹; Thomas Nizolek¹; Aditya Shivprasad¹; ¹Los Alamos National Laboratory

MATERIALS DESIGN

Computational Discovery and Design of Materials — Session III

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Houlong Zhuang, Arizona State University; Duyu Chen, University of California, Santa Barbara; Ismaila Dabo, Pennsylvania State University; Yang Jiao, Arizona State University; Sara Kadkhodaei, University of Illinois Chicago; Mahesh Neupane, Army Research Laboratory; Xiaofeng Qian, Texas A&M University; Arunima Singh, Arizona State University; Natasha Vermaak, Lehigh University

Tuesday AM | March 21, 2023 Cobalt 502A | Hilton

Session Chairs: Yang Jiao, Arizona State University; Duyu Chen, University of California, Santa Barbara; Houlong Zhuang, Arizona State University

8:00 AM Invited

Adaptive Discovery and Mixed-variable Bayesian Optimization of Next Generation Synthesizable Microelectronic Materials: Wei Chen¹; Hengrui Zhang¹; ¹Northwestern University

8:30 AM Invited

Computer Vision Problems in Transmission Electron Microscopy: Huolin Xin1; 1University of California - Irvine

Developing an Ab Initio-Kinetic Passivation Model for Highthroughput Screening of Material Stability: Rachel Gorelik1; Arunima Singh1; 1Arizona State University

9:20 AM Break

9:40 AM Invited

Data- and Physics-driven Approaches to Discovering the Governing Equations for Complex Phenomena in Heterogeneous Materials: Muhammad Sahimi¹; ¹University of Southern California

An Inverse Materials Design Route Based on Structure-property Linkages Leveraging 3D Convolutional Neural Network and Bayesian Optimization: Xiao Shana¹; Yu Zou¹; ¹University of Toronto

PHYSICAL METALLURGY

Computational Thermodynamics and Kinetics — Defects and GBs II

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Solidification Committee

Program Organizers: Hesam Askari, University of Rochester; Damien Tourret, IMDEA Materials Institute; Eva Zarkadoula, Oak Ridge National Laboratory; Enrique Martinez Saez, Clemson University; Frederic Soisson, Cea Saclay; Fadi Abdeljawad, Clemson University; Ziyong Hou, Chongqing University

Tuesday AM | March 21, 2023 26A | SDCC

Session Chairs: Steven Kenny, Loughborough University Ziyong Hou, Chongqing University

8:00 AM Invited

Phase Field Modeling of Microstructures in Titanium Alloys: Benoit Appolaire¹; Yann Le Bouar²; Alphonse Finel²; ¹Universite de Lorraine; ²LEM CNRS-ONERA

An Atomistic Approach of the Impact of Hydrogen on the Formation of Vacancy Clusters in Fcc Metals: Marie Landeiro Dos Reis¹; Abdelali Oudriss¹; Xavier Feaugas¹; ¹Lasie Cnrs Umr73

8:50 AM

Robustness, Sensitivity and Expressivity of Simple Many-body Potentials: Application to -Zr: Alessandra Del Masto¹; Céline Varvenne¹; Jean Baccou²; Guy Tréglia¹; Fabienne Ribeiro²; ¹CNRS, CINaM: 2IRSN

9:10 AM

A Statistical Perspective on Embrittling Potency for Intergranular Fracture: Miguel Fernandez¹; Remi Dingreville²; Douglas Spearot¹; ¹University of Florida; ²Sandia National Laboratories

9:30 AM Break

9:50 AM

Rationalizing the Impact of Experimental Preparation Routes on Impurity Content Using Ab-initio Phase Diagrams: Mira Todorova¹; Su-Hyun Yoo¹; Poulami Chakraborty¹; Tilmann Hickel¹; Se-Ho Kim¹; Baptiste Gault¹; Joerg Neugebauer¹; ¹Max-Planck-Insitut Fuer Eisenforschung

10:10 AM

Handling Conditional Convergence in Point Defect Calculations: Celine Varvenne¹; Emmanuel Clouet²; Thomas Jourdan²; ¹CINaM, CNRS, Aix-Marseille Univ.; 2Université Paris-Saclay, CEA

10:30 AM Invited

Atomistic Modelling of Thin Film Growth: Steven Kenny¹; ¹Loughborough University

MATERIALS PROCESSING

Deformation-induced Microstructural Evolution during Solid Phase Processing: Experimental and Computational Studies — Deformation Induced **Microstructural Evolution I**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Arun Devaraj, Pacific Northwest National Laboratory; Pascal Bellon, University of Illinois at Urbana-Champaign; Suhas Eswarappa Prameela, Massachusetts Institute of Technology; Mostafa Hassani, Cornell University

Tuesday AM | March 21, 2023 29C | SDCC

Session Chair: Arun Devaraj, Pacific Northwest National Laboratory

8:00 AM Introductory Comments

8:05 AM Invited

Crystal Rotation Kinematics and the Activation of Different Twinning Systems due to Tribological Loading: Christian Greiner¹;

8:35 AM

Shear Deformation of Fe-Mn Alloys by High-speed Rotational Diamond Anvil Cell (HS-RDAC): Tingkun Liu1; Julian D Escobar Atehortua¹; Changyong Park¹; Arun Devaraj¹; ¹Pacific Northwest **National Laboratory**

8:55 AM

Robotic Blacksmithing: Towards the Autonomous Control of Geometry and Microstructure Via Iterative, Open-Die Forming: Michael Groeber¹; Steve Niezgoda¹; Glenn Daehn¹; Tobias Mahan¹; ¹The Ohio State University

9:15 AM Break

9:30 AM Invited

Chemistry and Phase Formation at Lattice Defects: Equilibrium Cases and Kinetics: Dierk Raabe¹; ¹Max-Planck Institute

Continuous Metal Processing of Ultrafine-grained Copper Sheets through Cold Angular Rolling Process: Isshu Lee1; Jae-Kyung Han¹; Yun-Hsuan Wu¹; Lukas Daut¹; Brain Bay¹; Melissa Santala¹; Roberto Figueiredo²; Megumi Kawasaki¹; ¹Oregon State University; ²Universidade Federal de Minas Gerais

Development of Solid-state Processing of Electrical Steels for Cost-efficient Electric Motors: Shivakant Shukla1; Hrishikesh Das1; Piyush Upadhyay¹; ¹Pacific Northwest National Laboratory

Studies on Defect- and Chemical Diffusion Driven Rapid Consolidation of New Ni Alloys: Yannick Naunheim1; Christopher A Schuh¹; ¹Massachusetts Institute of Technology

11:00 AM

Ultrafine-grained Bonding Interface of 316L Stainless Sheets Processed by Ultrasonic Spot Welding: Jheyu Lin¹; Hue-En Chu¹; ¹National Taipei University of Technology

NANOSTRUCTURED MATERIALS

Deformation Mechanisms, Microstructure Evolution, and Mechanical Properties of Nanoscale Materials - Phase Transformation Plasticity

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Niaz Abdolrahim, University of Rochester; Matthew Daly, University of Illinois-Chicago; Hesam Askari, University of Rochester; Eugen Rabkin, Technion; Jeffrey Wheeler, Femto Tools Ag; Wendy Gu, Stanford University

Tuesday AM | March 21, 2023 Agua 300AB | Hilton

Session Chairs: Niaz Abdolrahim, University of Rochester; Matthew Daly, UIC

8:00 AM Invited

First Principles Study of Local Phase Transformation in Ni Base Superalloys: Maryam Ghazisaeidi¹; Naga Sri Harsha Gunda¹; Michael Mills¹; ¹Ohio State University

8:30 AM

Measurement of Transformation Stress in Metastable HEAs by Nanoindentation: Yingjie Lu1; Junaid Ahmed1; Matthew Daly1; ¹University of Illinois at Chicago

8:50 AM

In-situ TEM Annealing Reveals Oxide-metal Interface is Initiation Site for Phase Transformation in TiO2 Nanotubes: Jerry Howard¹; Hammad Malik¹; Brian Van Devener²; Swomitra Mohanty²; Krista Carlson¹; ¹University of Nevada, Reno; ²University of Utah

9:10 AM Invited

About the Plasticity of Metals upon Phase Transformation - A High Temperature Nanoindentation Study: Verena Maier-Kiener¹; Lea Lumper¹; ¹Montanuniversitaet Leoben

9:40 AM Break

Size Effects on the Stress-induced Martensitic Transformation in Cu-based Shape Memory Alloys: Jose Gómez-Cortés¹; María Nó¹; Mikel Pérez-Cerrato¹; Isabel Ruiz-Larrea¹; Tomasz Breczewski¹; Jose San Juan¹; ¹Universidad del Pais Vasco

10:20 AM

Stress-assisted Structural Phase Transformation in Molybdenumbased Composites: Lijie He¹; Linh Vu¹; Zheming Guo¹; Ali Shargh¹; Niaz Abdolrahim¹; ¹University of Rochester

10:40 AM

Characterization of Dislocations in Shape Memory Alloy Using Large Scale MD Simulation: David Farache1; Shivam Tripathi2; Alejandro Strachan¹; ¹Purdue; ²Istituto Italiano di Tecnologia

Probing the Plasticity and Microstructure Evolution of an Icosahedral Quasicrystal i-Al-Pd-Mn at Small Scales: Yu Zou1; ¹University of Toronto

ELECTRONIC MATERIALS

Electronic Packaging and Interconnection — **Emerging Interconnection Technology**

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Kazuhiro Nogita, University of Queensland; Mohd Arif Mohd Salleh, Universiti Malaysia Perlis; Dan Li, Beijing University of Technology; David Yan, San Jose State University; Fan-Yi Ouyang, National Tsing Hua University; Patrick Shamberger, Texas A&M University; Tae-Kyu Lee, Cisco Systems; Christopher Gourlay, Imperial College London; Albert T. Wu, National Central University

Tuesday AM | March 21, 2023 Sapphire D | Hilton

Session Chairs: Patrick Shamberger, Texas A&M University; Dan Li, Beijing University of Technology

8:00 AM Introductory Comments

8:05 AM Invited

Flexible Packaging by Microwave Bonding for Flexible Electronics: Tae-Ik Lee¹; Minjeong Sohn¹; Min-Su Kim¹; Dongyurl Yu¹; So Jeong Lee¹; ¹Korea Institute of Industrial Technology

Effect of Synthesized Variables on Characteristics for Cu Nanoparticle: Ping-Hsuan Chen1; Albert T. Wu1; 1National Central University

Low Temperature Direct Bonding in Atmosphere by Nanocrystalline Ag: Cheng Jie Yang¹; Fan-Yi OuYang¹; ¹National Tsing Hua University

9:10 AM

Pad Connectivity Induced Capacitance Effect in Electroless Copper Plating Interconnection: Yu-Chun Lin1; Po-Shao Shih1; Jeng-Hau Huang¹; Simon Johannes Gräfner¹; Chang-Hsien Shen¹; C. Robert Kao¹; ¹National Taiwan University

9:30 AM Break

Impact of Non-linear Phase Change Processes on Thermal Impedance of an Electronics Package: Patrick Shamberger¹; Alison Hoe¹; Juan Carlos Lago¹; Colton Brietzke¹; Veronica Gonzalez¹; ¹Texas A&M University

10:10 AM

Sintered Ag-In Alloy Paste as Die-attach Material for Power Electronic Packaging: Chin-Hao Tsai1; Wei-Chen Huang1; C. R. Kao1; ¹National Taiwan University

10:30 AM

Microstructural Effect of Cu Substrate on Join Properties for Cuto-Cu Direct Bonding: Hung Wang¹; Albert T. Wu¹; ¹National Central University

ENERGY & ENVIRONMENT

Energy Technologies and CO2 Management — Thermal Management, Environmental and Energy **Technologies**

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Shafiq Alam, University of Saskatchewan; Donna Guillen, Idaho National Laboratory; Fiseha Tesfaye, Metso Outotec Finland Oy; Lei Zhang, University of Alaska Fairbanks; Lina Hockaday, Curtin University, WASM; Neale Neelameggham, IND LLC; Hong (Marco) Peng, University of Queensland; Nawshad Hague, Commonwealth Scientific and Industrial Research Organization; Liu Yan, Northestern University

Tuesday AM | March 21, 2023 33B | SDCC

Session Chairs: Nawshad Haque, Commonwealth Scientific and Industrial Research Organization; Joseph Hamuyuni, Metso Outotec

8:30 AM

Novel Thermal Conductivity Measurement Technique Utilizing a Transient Multilayer Analytical Model of a Line Heat Source Probe for Extreme Environments: Katelyn Wada1; Austin Fleming2; David Estrada¹; ¹Boise State University; ²Idaho National Laboratory

8:50 AM

The Effect of Reduced Flue Gas Suctioning on Superstructure and Gas Temperatures: Brandon Velasquez1; Sarah DiBenedetto1; Yonatan Tesfahunegn¹; María Gudjonsdottir¹; Gudrun Saevarsdottir¹; ¹Reykjavik University

9:10 AM

Environmental Life Cycle Assessment of Gold Production in Nevada: Ehsan Vahidi¹; Saeede Kadivar¹; ¹University of Nevada-Reno

9:30 AM

Polymeric Composite Dense Membranes Applied for the Flue Gas Treatment: Dragutin Nedeljkovic¹; ¹American University of the Middle East

9:50 AM Break

10:10 AM

Molten Salt Mg-air Battery Improvement and Recharging: Mahya Shahabi¹; Nicholas Masse¹; Amanda Lota¹; Lucien Wallace¹; Heath Bastow¹; Adam Powell¹; ¹Worcester Polytechnic Institute

10:30 AM Invited

Superconductor Busbar Systems in the Light of Increased Energy Costs: Wolfgang Reiser1; Till Reek2; Claus Hanebeck1; Peter Abrell1; ¹Vision Electric Super Conductors Gmbh; ²Consultant Engineer

10:50 AM

Critical Metals for Clean Energy: Extraction of Rare Earth Elements from Coal Ash: Sara Penney1; Shafiq Alam1; 1University of Saskatchewan

CORROSION

Environmental Degradation of Additively Manufactured Alloys — Environmental Degradation of Additively Manufactured Materials at High **Temperatures and Radiation Environments**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Kinga Unocic, Oak Ridge National Laboratory; Jenifer Locke, Ohio State University; Sebastien Dryepondt, Oak Ridge National Laboratory; Brendy Rincon Troconis, University of Texas at San Antonio; Andrew Hoffman, GE Research; Xiaoyuan Lou, Purdue University

Tuesday AM | March 21, 2023 Sapphire 400A | Hilton

Session Chairs: Kinga Unocic, Oak Ridge National Laboratory; Sebastien Dryepondt, Oak Ridge National Laboratory

8:00 AM Invited

The Process-Structure-Performance Correlations of Additively Manufactured Steels Exposed to High Dose Neutron Irradiations: Kevin Field¹; Pengyuan Xiu²; Niyanth Sridharan³; ¹University of Michigan; ²University of Michigan; Now at: Intel Corporation; ³Lincoln Electric - India

8:30 AM

Thermal response of Additive Manufactured Alloys Submitted to Transient High Heat Flux Testing: John Saputo1; Felipe Caliari1; Sanjay Sampath¹; ¹Stony Brook University

8:50 AM Invited

Enhanced High-temperature Oxidation of Additively Manufactured Ni-base Alloy IN625: Microstructure or Chemical Composition?: Anton Chyrkin¹; Kerem Gunduz²; Irina Fedorova¹; Wojciech Nowak³; Mohammad Sattari¹; Mats Halvarsson¹; Jan Froitzheim¹; Krystyna Stiller¹; ¹Chalmers University of Technology; ²Chalmers University of Technology; Gebze Technical University; 3Rzeszow University of Technology

9:20 AM Break

9:40 AM

High-temperature Oxidation Behavior of Additively Manufactured Haynes 282 Samples in Direct-fired Supercritical CO, Power Cycle Environments: Casey Carney1; Nicholas Lamprinakos2; Richard Oleksak³; Omer Doğan³; Anthony Rollett²; ¹LRST; ²Carnegie Mellon University; 3National Energy Technology Laboratory

10:00 AM

Impact of the Gas Composition on Oxide Scales formed on Ni-based Alloys in Metal Dusting Conditions: Clara Schlereth¹; Martin Weiser²; Emma White¹; Mathias Galetz¹; ¹DECHEMA-Forschungsinstitut; ²FAU Erlangen-Nürnberg

10:20 AM

Metal Dusting and Surface Treatment of Additively Manufactured Ni-Cu Alloys and Alloy 699XA: Till König¹; Ceyhun Oskay¹; Clara Schlereth¹; Emma White¹; Lukas Reiff²; Katrin Jahns²; Anke Silvia Ulrich¹; Ulrich Krupp²; Mathias Galetz¹; ¹DECHEMA Research Institute; 2IEHK, RWTH Aachen

CORROSION

Environmental Degradation of Multiple Principal Component Materials — Aqueous Corrosion and **Embrittlement I**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Wenjun Cai, Virginia Polytechnic Institute and State University; XiaoXiang Yu, Novelis Global Research Center; Vilupanur Ravi, California State Polytechnic University Pomona; Christopher Weinberger, Colorado State University; Elizabeth Opila, University of Virginia; Bai Cui, University of Nebraska-Lincoln; Mark Weaver, University of Alabama; Bronislava Gorr, Karlsruhe Institute of Technology (KIT); Gerald Frankel, Ohio State University; ShinYoung Kang, Lawrence Livermore National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Tuesday AM | March 21, 2023 Sapphire 410A | Hilton

Session Chairs: Wenjun Cai, Virginia Tech; Xiaoxiang Yu, Novelis Global Research Center

8:00 AM

A High, Medium to Low Throughput Study of Aqueous Passivation in FeCoNi-(Crx-Aly) Alloys across Classical Cr Threshold Concentration: Debashish Sur1; William Blades2; Emily Holcombe3; Elaf Anber³; Lauren Walters⁴; Ben Redeman³; Brian DeCost⁵; Jean-Philippe Couzinie⁶; Howie Joress⁵; James Rondinelli⁴; Tyler McQueen³; Karl Sieradzki²; Mitra Taheri³; John Scully¹; ¹University of Virginia; ²Arizona State University; ³Johns Hopkins University; ⁴Northwestern University; ⁵National Institute of Standards and Technology; 6CNRS-UPEC

8:20 AM

Cold Working Enhanced Thermal Stability of Native Oxide Solar Absorbers on FeMnNiAlCr High Entropy Alloys for Concentrated Solar Power System: Xiaoxue Gao1; Edwin Jiang1; Andrew Pike1; Ian Baker¹; Geoffroy Hautier¹; Jifeng Liu¹; ¹Dartmouth College

Corrosion and Mechanical Behavior of High-Entropy Alloys: Michael Gao¹; Alvaro Rodriguez¹; Zongrui Pei¹; Joseph Tylczak¹; Paul Jablonski¹; Martin Detrois¹; Margaret Ziomek-Moroz¹; Jeffrey Hawk¹; ¹National Energy Technology Laboratory

9:00 AM Invited

Corrosion Behavior of High-Entropy Alloys: Lia Amalia¹; Yunzhu Shi²; Rui Feng¹; Yanfei Gao¹; Peter Liaw¹; ¹University of Tennessee; ²University of Science and Technology Beijing

9:20 AM Break

9:35 AM

Determining Elemental Distributions across Thin Corrosion Films on Multi-principal Element Alloys via Atom Probe Tomography: Elizabeth Kautz¹; Angela Gerard²; Sten Lambeets¹; Daniel Perea¹; John Scully²; Daniel Schreiber¹; ¹Pacific Northwest National Laboratory; ²University of Virginia

9:55 AM

Influence of Hydrogen on the Low Cycle Fatigue Behavior of the Equiatomic CrMnFeCoNi High Entropy Alloy: Dayane Marques Oliveira1; Christopher San Marchi2; Easo George3; Jeffery Gibeling1; ¹University of California, Davis; ²Sandia National Laboratories, Livermore; 3Oak Ridge National Laboratory

10:15 AM

Understanding Elemental Effects on the Accelerated Corrosion of FeCrAl Alloy System in Steam Environments: Atharva Chikhalikar¹; Indranil Roy¹; Hamdy Abouelella¹; Rajnikant Umretiya¹; Andrew Hoffman¹; Raul Rebak¹; ¹GE Research Center

CORROSION

Environmentally Assisted Cracking: Theory and Practice — Innovative Techniques in Corrosion Research

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska-Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Tuesday AM | March 21, 2023 Sapphire 410B | Hilton

Session Chairs: Khalid Hattar, University of Tennessee Knoxville; Yongfeng Lu, University Of Nebraska - Lincoln

8:00 AM Invited

In-situ Electron Microscopy Degradation in Extreme Environments: Eric Lang¹; Kathryn Small¹; Ryan Schoell¹; Nathan Madden¹; Nan Li²; Benjamin Derby²; Khalid Hattar¹; ¹Sandia National Laboratories; ²Los Alamos National Lab

8:30 AM

Creep Degradation of Austenitic Steels in CO2 Environment: Kyle Rozman¹; Richard Oleksak²; Ömer Doan²; ¹Site Support Contractor; ²National Energy Technology Laboratory

8:50 AM

Investigation of Mechanical Properties of Corrosion Products in AA7075-T651 Using In Situ Nanoindentation: Ankit Kumar¹; Amey Luktuke¹; Hamidreza Torbati-Sarraf¹; Daniel Sinclair¹; Nikhilesh Chawla¹; ¹Purdue University

9:10 AM

Environmentally Assisted Cracking of Nickel-Based Alloys in Molten Salts Containing Tellurium: Mohammad Umar Farooq Khan¹; Lesley Frame²; Stephen Raiman³; ¹University of MIchigan; ²University of Connecticut; ³University of Michigan

9:30 AM Break

9:50 AM Invited

A Portable Solution to Corrosion Remediation of Sea Ships to Desensitize Severely Sensitized Aluminum Alloys Using Lasers: Yongfeng Lu1; Leimin Deng1; Bai Cui1; 1University of Nebraska -Lincoln

Site Specific Multimodal In-situ Study of Early-Stage Corrosion of Model Fe-Cr-Ni Alloys Using Electrochemical Atomic Force Microscopy: Tingkun Liu1; Cheng-Han Li1; Matthew Olszta1; Jinhui Tao¹; Arun Devaraj¹; ¹Pacific Northwest National Laboratory

10:40 AM

Exploring Environmentally-Assisted Cracking in Liquid Metal and Molten Salt Advanced Reactor Coolant Environments: Samuel Briggs¹; Dustin Mangus¹; Jake Quincey; Xavier Quintana¹; Guillaume Mignot¹; Julie Tucker¹; ¹Oregon State University

11:00 AM

Liquid Metal Embrittlement Behavior of Dual-Phase Steels: The Influence of Microstructure and Strain Rate.: Pallavi Pant¹; Benjamin Hilpert²; Holger Shubert²; Luke Brewer¹; ¹The University of Alabama; ²Mercedes Benz AG

MATERIALS DESIGN

Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling — Advanced Experimental Characterization of Microstructurally Driven Fatigue Behavior

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Additive Manufacturing Committee

Program Organizers: Jean-Charles Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Ashley Spear, University of Utah; Antonios Kontsos, Drexel University; Brian Wisner, Ohio University; Orion Kafka, National Institute of Standards and Technology

Tuesday AM | March 21, 2023 Sapphire H | Hilton

Session Chair: Garrett Pataky, Clemson University

8:00 AM Invited

Characterising Fatigue Crack Tip Deformation States in Nickel Base Superalloys: Slip Character, Strain Accumulation and Oxidation Effects: Philippa Reed¹; Andrew Hamilton²; ¹University of Southampton; ²University of Southampton

8:30 AM Invited

Monitoring of Fatigue Evolution by In-Situ Measurement Methods and Micromagnetic Analysis: Ramin Hajavifard¹; Lukas Lücker¹; Julian Rozo Vasquez¹; Yashar Sarafraz¹; Simon Strodick¹; Nikolas Baak¹; Frank Walther¹; TU Dortmund University

8:50 AM

Fatigue Damage Evolution in Duplex Steel Investigated by μLaue Diffraction Using a 3D Energy-dispersive Detector: Carolin Leidigkeit¹; Ullrich Pietsch²; Hans-Jürgen Christ¹; ¹Universität Siegen - Institut für Werkstofftechnik; ²Universität Siegen - Festkörperphysik

9:10 AM

Build Orientation and Stress Ratio Effects on the Fatigue Crack Growth Properties of Laser Powder Bed Fused Ti-6Al-4V: Mikyle Paul¹; Shuai Shao¹; Nima Shamsaei¹; ¹Auburn University

9:30 AM Break

9:50 AM

High-throughput Characterization of Small Crack Growth Behavior in Ti-6-4: *Michelle Harr*¹; Bradley Rucker²; Ayman Salem³; Adam Pilchak³; T. Broderick⁴; S.I. Rao³; ¹Wright Patterson Air Force Laboratories; MRL Materials Resources LLC; ²MRL Materials Resources LLC; ³Wright Patterson Air Force Laboratories; MRL Materials Resources LLC; ⁴Wright Patterson Air Force Laboratories

10:10 AM

High Resolution Microcrack Growth Analysis in Thermomechanical Fatigue Loading: Nicolas Leost¹; Djamel Missoum-Benziane¹; Laurent Cameriano²; François Comte²; Vincent Maurel¹; ¹Le Centre des Matériaux de MINES PARIS - PSL University; ²Safran Aircraft Engines

10:30 AM

Ultrasonic Fatigue Investigations for High and Very-High Cycle Fatigue Applications of A356 Cast Aluminum Alloys: Hayden Furcolo¹; Anthony Spangenberger¹; Qigui Wang²; Diana Lados¹; ¹Worcester Polytechnic Institute; ²General Motors

MATERIALS PROCESSING

Friction Stir Welding and Processing XII — Modeling & Validation

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Anton Naumov, Peter The Great St. Petersburg Polytechnic University; Nilesh Kumar, University of Alabama, Tuscaloosa

Tuesday AM | March 21, 2023 29A | SDCC

Session Chairs: Ayoub Soulami, Pacific Northwest National Laboratory; Dwight Burford, University of North Texas

8:00 AM Invited

Smoothed Particle Hydrodynamics Model for Friction Stir Processing of 316 L Stainless Steel: Process Modeling and Microstructure Evolution Analysis: Ayoub Soulami¹; Lei Li¹; Neil Henson¹; Erin Barker¹; Eric Smith¹; ¹Pacific Northwest National Laboratory

8:20 AM

Validation of Models for Predicting Bonding Behavior in Friction Stir Welding Processes: Christian Kocak¹; Yanfei Gao¹; Hyojin Park¹; Hahn Choo¹; Martin McDonnell²; Zhili Feng³; ¹University of Tennessee; ²Ground Vehicle Systems Center; ³Oak Ridge National Laboratory

8:40 AM Invited

Analysis of Torque Data from Friction Stir Welds in Aluminum Alloys: Kevin Colligan¹; ¹Concurrent Technologies Corporation

9:00 AM Invited

The Influence of Flow Stress Data and Friction Models on 2D and 3D Simulations of Friction Stir Welding in AA 2219-T76: Kennen Brooks¹; Bryan Ramos¹; Michael Miles¹; Tracy Nelson¹; ¹Brigham Young University

9:20 AM

Temperature Matching of Friction Stir Welding: 3D Simulation: *Ryan Melander*¹; Matthew Goodson¹; Michael Miles¹; Troy Munro¹; ¹Brigham Young University

9:40 AM Break

10:00 AM

A Coupled SPH-FEM Framework to Predict Residual Stresses during Friction Stir Processing: Ayoub Soulami¹; Lei Li¹; *Kranthi Balusu*¹; Choi Kyoo Sil¹; ¹Pacific Northwest National Laboratory

10:20 AM

3D Modeling and Experimental Validation of Linear Friction Welding Process: *Srujan Rokkam*¹; Quang Truong¹; Michael Eff²; Don Weaver³; ¹Advanced Cooling Technologies, Inc.; ²Edison Welding Institute; ³Air Force Research Laboratory

MATERIALS PROCESSING

Frontiers in Solidification: An MPMD Symposium Honoring Jonathan A. Dantzig — X-ray In Situ Investigations

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Light Metals Division, TMS Structural Materials Division, TMS: Aluminum Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Andre Phillion, McMaster University; Michel Rappaz, Ecole Polytechnique Fédérale De Lausanne; Melis Serefoglu, Marmara University; Damien Tourret, IMDEA Materials Institute

Tuesday AM | March 21, 2023 28E | SDCC

Session Chairs: Sabine Bottin-Rousseau, Sorbonne University; Peter Lee, University College London

8:00 AM Invited

Measuring Key Phenomena in Solidification Using X-ray Imaging: Insung Han¹; Shikang Feng¹; Enzo Liotti¹; Patrick Grant¹; ¹University of Oxford

In Situ X-ray Synchrotron Imaging Investigation of Solidification: Nathalie Mangelinck-Noel¹; Guillaume Reinhart¹; Gabrielle Regula¹; Henri Nguyen-Thi¹; ¹IM2NP CNRS AMU UMR 7334

9:00 AM Invited

Observation of Growing Dendrites by Time-resolved Tomography and Image Processing Using a Phase-field Model: Hideyuki Yasuda¹; Arisa Nishiguchi; Ryoji Katsube¹; Taka Narumi¹; Tomohiro Takaki²; ¹Kyoto University; ²Kyoto Institute of Technology

9:30 AM Break

9:50 AM

In Situ Synchrotron X-ray Diffraction Resolves the Transition from Ferritic to Metastable Austenitic Solidification in Fe-Ni-Cr Alloys: Joseph Aroh1; Seunghee Oh1; S. Thomas Britt1; Emma Barake1; Andrew Chuang²; P. Chris Pistorius¹; Anthony Rollett¹; ¹Carnegie Mellon University; ²Argonne National Laboratory

10:10 AM

In Situ X-ray Tomographic Investigations of Dendritic Patterns in a Co-base Alloy during Solidification: Mohammed Azeem1; Tim Wigger²; Andrew Kao³; Nghia Vo⁴; Robert Atwood⁴; Peter Lee²; ¹University of Leicester; ²University College London; ³University of Greenwich; ⁴Diamond Light Source Ltd

10:30 AM

In situ Synchrotron Radiography Investigation of Graphite Nodule **Evolution during Solidification in Ductile Cast Iron**: Xiangmei Ding¹; Tim Wigger²; Niels Tiedje³; Yasuda Hideyuki⁴; Narumi Taka⁴; Jenny Shepherd¹; Peter Lee²; Mohammed Azeem⁵; ¹University of Leicester; ²University College London, Harwell Campus; ³Technical University of Denmark; 4Kyoto University; 5University of Leicester, Harwell Campus

10:50 AM

The Impact of Melt Flow on Solidification Patterns in a Ternary Ga-In-Bi Alloy: Natalia Shevchenko¹; Olga Budenkova²; Guy Chichignoud²; Sven Eckert¹; ¹Helmholtz-Zentrum Dresden-Rossendorf; 2Univ. Grenoble Alpes, CNRS

Machine Learning Enhanced Operando Study of the Nucleation and Evolution of Complex Intermetallic Phases in Solidification: Kang Xiang¹; Jiawei Mi¹; ¹University of Hull

11:30 AM

In Situ Synchrotron X-ray Radio- and Tomography Analysis of Grain Boundary Formation during Directional Solidification of a Mg Alloy: Maral Sarebanzadeh¹; Alberto Orozco-Caballero²; Federico Sket³; Damien Tourret3; Javier LLorca1; 1IMDEA Materials & Universidad Politécnica de Madrid; ²Universidad Politécnica de Madrid; ³IMDEA Materials Institute

NANOSTRUCTURED MATERIALS

Functional Nanomaterials 2023 — Session III

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Nanomaterials Committee, TMS: Composite Materials Committee

Program Organizers: Yong Lin Kong, University of Utah; Sarah Ying Zhong, University of South Florida; Mostafa Bedewy, University of Pittsburgh; Woochul Lee, University of Hawaii at Mnoa; Changhong Cao, McGill University; Kiyo Fujimoto, Idaho National Laboratory; Surojit Gupta, University of North Dakota; Michael Cai Wang, University of South Florida

Tuesday AM | March 21, 2023 Aqua 305 | Hilton

Session Chairs: Woochul Lee, University of Hawaii at Manoa; Ying Zhong, University of South Florida; Kiyo Fujimoto, Idaho National Laboratory; Mostafa Bedewy, University of Pittsburgh

8:00 AM Invited

One-dimensional Nano-carbon Additives for Flexible Lithium Rechargeable Battery: Yoon Hwa¹; ¹Arizona State University

8:30 AM Invited

Synthesis and Ion Transport Study for the Development of Graphene Aerogel Electrodes: Multiscale Computations: Seungha *Shin*¹; Yu-Kai Weng¹; Md Abdullah Al Hasan¹; Kenneth Kihm¹; Douglas Aaron¹; ¹University of Tennessee

9:00 AM Keynote

Nanoscale Phenomena in Advanced Batteries - From Thin Film Battery Platform to Practical Batteries: Shirley Meng¹; University of Chicago

9:40 AM Break

Coupling of Electric Field Driven Ion Transport with Convective Flow in Graphene Nanochannels: Md Abdullah Al Hasan¹; Yu-Kai Weng¹; Seungha Shin¹; Kenneth Kihm¹; Doug Aaron¹; ¹University of Tennessee

10:20 AM

Application of 2D Materials as Additives In Hybrid Perovskite Solar Cells for Improved Performance and Stability: Chang-Yong Nam¹; ¹Brookhaven National Laboratory

10:40 AM Invited

Covellite Enveloped Spherical Carbon Nanoparticles Decorated Polyurethane Foam as Solar Evaporator for Efficient Interfacial Water Evaporation: Suman Chhetri¹; Anh Nguyen¹; Woochul Lee¹; ¹University of Hawaii at Manoa

11:00 AM Invited

Feature Classification of Evaporation-driven Multi-scale 3D Printing: Samannoy Ghosh1; Marshall Johnson2; Rajan Neupane1; James Hardin³; John Berrigan³; Surya Kalidindi³; Yong Lin Kong¹; ¹University of Utah; ²Georgia Institute of Technology; ³Air Force Research Laboratory

CHARACTERIZATION

Heterostructured and Gradient Materials (HGM V): **New Mechanistic Discoveries Enabling Superior Properties — Processing and Properties**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Shaping and Forming Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Nanyang Technological University; Ke Lu, Institute of Metal Research; Suveen Mathaudhu, Colorado School of Mines; Xiaolei Wu, State Institute of Mechanics, Chinese Academy of Sciences

Tuesday AM | March 21, 2023 Aqua 314 | Hilton

Session Chairs: Nobuhiro Tsuji, Kyoto University; Rajiv Mishra, University of Northern Texas

8:00 AM Invited

Heterogeneous Microstructure Driven Strength-ductility Synergy in Laser Powder Bed Additively Manufactured Alloys: Rajiv Mishra¹; ¹University of North Texas

Effect of Grain Refinement on Plastic Deformation and Fracture in a Si-added High-Mn Austenitic Steel: Sukyoung Hwang¹; Yu Bai²; Si Gao¹; Akinobu Shibata³; Nobuhiro Tsuji¹; ¹Kyoto University; ²Dalian University of Technology; 3National Institute for Materials Science (NIMS)

8:50 AM

High Strength and Ductility in a Heterostructured Nanotwinned Ni Film: Rohit Berlia¹; Jagannathan Rajagopalan¹; ¹Arizona State

9:10 AM

Improving Local Fracture Properties of W-CuZn Nanocomposites by Microstructure Tailoring: Daniel Kiener¹; Klemens Schmuck¹; Markus Alfreider¹; Michael Burtscher¹; Michael Wurmshuber¹; ¹University of Leoben

9:30 AM Break

Modeling of Back Stresses in Additively Manufactured Stainless Steel: Kunqing Ding¹; Yin Zhang¹; David McDowell¹; Ting Zhu¹; ¹Georgia Institute of Technology

Quasi-static and Dynamic Mechanical Behavior of Metal Composites with Co-continuous Phase Distributions: Lauren Poole¹; Avery Samuel¹; Ashley Hilmas²; Frank Zok¹; ¹University of California Santa Barbara; ²Air Force Research Laboratory

ADVANCED MATERIALS

High Performance Steels — Microstructure Development and Advanced Characterization I

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Jonah Klemm-Toole, Colorado School of Mines; Ana Luiza Araujo, CBMM North America Inc.; C. Tasan, Massachusetts Institute of Technology; Richard Fonda, Naval Research Laboratory; Amit Behera, QuesTek Innovations LLC; Benjamin Adam, Oregon State University; Krista Limmer, DEVCOM Army Research Laboratory; Kester Clarke, Colorado School of Mines

Tuesday AM | March 21, 2023 Aqua F | Hilton

Session Chairs: Amit Behera, Questek Innovations; Benjamin Adam, Oregon State University

8:00 AM Invited

Metastability of Martensite and Bainitic Ferrite as Carbon Supersaturated Structures: Francisca Caballero1; Jonathan Poplawsky2; Esteban Urones-Garrote³; ¹National Centre for Metallurgical Research (CENIM-CSIC); ²ORNL; ³Spanish National Centre for Electron Microscopy (CNME-UCM)

In Situ & Post Mortem Investigations of Carbide-free Bainitic Transformations during Continuous Cooling: Cécile Rampelberg¹; Guillaume Geandier¹; Florimonde Lebel¹; Sebastien Allain¹; Julien Teixeira¹; Thomas Sourmail²; ¹Institut Jean Lamour; ²Ascometal

8:50 AM

Tempering of Low Carbon Martensite, Experimental Results and Model Development: Juan Macchi¹; Julien Teixeira¹; Guillaume Geandier¹; Sabine Denis¹; Frédéric Bonnet²; Sébastien Allain¹; ¹Institut Jean Lamour Ijl (Cnrs Umr7198); ²ArcelorMittal Research SA

9:10 AM

A Modified Model for Predicting Retained Austenite Using Informed Compositional Modeling: Melissa Thrun1; Amy Clarke1; Kester Clarke¹; ¹Colorado School of Mines

9:30 AM Break

9:50 AM

A New Approach for Optimizing Heat Treatment Parameters in Q&P Steel: Casey Gilliams¹; Kip Findley¹; John Speer¹; ¹Colorado School Of Mines

10:10 AM

Semi In-situ Observation of Micro-crack Formation in Dual-phase Steels: Hung-Wei Yen¹; Ming-Yu Tseng¹; Yi-Fan Hu¹; Kuo-Cheng Yang²; Kangying Zhu³; ¹National Taiwan University; ²China Steel Corporation; ³ArcelorMittal Maizières

Nucleation during Static Recrystallization of Austenite - A Combined Experimental and Modeling Approach: Pablo Garcia Chao¹; Vitesh Shah²; Jonathan Joe Eipe¹; Jesus Galan-Lopez¹; Monika Krugla³; Winfried Kranendonk³; Jilt Sietsma¹; Cornelis Bos³; Sven Erik Offerman¹; ¹Delft University of Technology; ²Max-Planck-Institut für Eisenforschung; ³Tata Steel, Research & Development

10:50 AM

Numerical Investigations of Interface-controlled Transformations during Intercritical Annealing of DP Steels: Clelia Couchet¹; Julien Teixeira¹; Sébastien Allain¹; Guillaume Geandier¹; Frédéric Bonnet²; ¹Institut Jean Lamour-Ijl (Cnrs Umr 7198); ²ArcelorMittal Maizières Research

MECHANICS & STRUCTURAL RELIABILITY

High Temperature Creep Properties of Advanced Structural Materials — Modeling and Simulation of Creep in Advanced Structural Alloys

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Gianmarco Sahragard-Monfared, University of California, Davis; Mingwei Zhang, Lawrence Berkeley National Lab; Jeffery Gibeling, University of California, Davis

Tuesday AM | March 21, 2023 Sapphire P | Hilton

Session Chairs: Gianmarco Sahragard-Monfared, University of California, Davis; Mingwei Zhang, Lawrence Berkeley National Laboratory; Jeffery Gibeling, University of California, Davis

8:00 AM Introductory Comments

8:05 AM Invited

CALPHAD Alloy Design for Diffusion-mediated Plasticity-Induced Phase Transformations for Creep Resistant Multicomponent Principal Elemental Alloy: Jennifer Carter¹; Sipei Li¹; ¹Case Western Reserve University

8:35 AM

Crystal Plasticity Creep Modeling in Cobalt Based Superalloys: Shahriyar Keshavarz¹; Carelyn Campbell¹; Andrew Reid¹; ¹NIST

Effect of Alloying Additions on Twinning in Ni-based Superalloys: Valery Borovikov¹; Mikhail Mendelev¹; Timothy Smith¹; John Lawson¹; ¹NASA

9:15 AM Break

9:35 AM Invited

Creep Simulations of Refractory High Entropy Alloys: Xin Chen1; Saro San²; Fei Wang¹; Bai Cui¹; Dongsheng Li³; Shanshan Hu⁴; Xingbo Liu⁴; David Alman²; *Michael Gao*²; ¹University of Nebraska Lincoln; ²National Energy Technology Laboratory; ³Advanced Manufacturing LLC; 4West Virginia University

10:05 AM

Thermal Creep Models Derived from a Comprehensive Multiple Heat 9Cr Tempered Martensitic Steels Database: Md Ershadul Alam¹; Takuya Yamamoto¹; G.R. Odette¹; ¹University of California, Santa Barbara

MATERIALS PROCESSING

High Temperature Electrochemistry V — Session III

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Prabhat Tripathy, Batelle Energy Alliance (Idaho National Laboratory); Guy Fredrickson, Idaho National Laboratory

Tuesday AM | March 21, 2023 28B | SDCC

Session Chair: Prabhat Tripathy, Batelle Energy Alliance (Idaho National Laboratory)

8:00 AM Introductory Comments

8:05 AM Invited

The Impact of Moisture on the Electrochemical Behavior of Molten Calcium Chloride: Marah Fuller¹; Devin Rappleye¹; ¹Brigham Young University

8:45 AM

Electrochemical Reduction of Nd2O3+Fe2O3 Mixed Oxide Precursors in Calcium Chloride Melt: Kunal Mondal¹; Prabhat Tripathy¹; ¹Idaho National Laboratory

9:05 AM

Oxide Ion Ceramic Sensor in Molten CaCl2 for Real Time Monitoring of the Direct Oxide Reduction Process: Olivia Dale¹; Forest Felling¹; Michael Simpson¹; ¹University of Utah

The Demonstration and Optimization of Thin-cell Electrochemical Measurements in Molten LiCl-KCl Eutectic: Cameron Vann¹; Tyler Williams¹; Devin Rappleye¹; ¹Brigham Young University

MATERIALS DESIGN

Hume-Rothery Symposium on First-Principles Materials Design — Interface First-principle Method with the Discovery of Complex Materials

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Bin Ouyang, Florida State University; Mark Asta, University of California, Berkeley; Geoffroy Hautier, Dartmouth College; Wei Xiong, University of Pittsburgh; Anton Van der Ven, University of California, Santa Barbara

Tuesday AM | March 21, 2023 Cobalt 501C | Hilton

Session Chairs: Jeffrey Hoyt, McMaster University; Wenhao Sun, University of Michigan, Ann Arbor

8:00 AM Invited

The Stewardship of a Materials Genome: Kristin Persson¹; ¹University of California, Berkeley

8:30 AM Invited

Computational Design of Multicomponent Nanoparticle Morphologies: Christopher Wolverton¹; ¹Northwestern University

9:00 AM Invited

Plasmonic High-entropy Carbides: Stefano Curtarolo¹; Arrigo Calzolari²; ¹Duke University; ²CNR-NANO Research Center S3

9:30 AM Break

9:50 AM Invited

Computational Discovery of Materials with Fast Oxygen Kinetics: Dane Morgan¹; Ryan Jacobs¹; Jun Meng¹; Md Sariful Sheikh¹; Jian ¹University of Wisconsin-Madison; ²DOE National Energy Technology Laboratory

10:20 AM Invited

From Atom to System - How to Build Better Batteries: Shirley Meng¹; ¹The University of Chicago

CORROSION

Local Ordering in Materials and Its Impacts on Mechanical Behaviors, Radiation Damage, and Corrosion — Session III

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Nuclear Materials Committee, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Fadi Abdeljawad, Clemson University; Irene Beyerlein, University of California, Santa Barbara; Enrique Lavernia, University of California, Irvine; Robert Ritchie, University of California, Berkeley

Tuesday AM | March 21, 2023 Sapphire 411A | Hilton

Session Chairs: Robert Ritchie, University of California, Berkeley; Penghui Cao, University of California, Irvine; Yang Yang, The Pennsylvania State University; Irene Beyerlein, University of California, Santa Barbara

8:00 AM Invited

Different Scales of Chemical and Structural Ordering in Advanced High Strength Steels: Dierk Raabe¹; Dirk Ponge¹; Binhan Sun¹; ¹Max-Planck Institute

8:30 AM

In-situ TEM Study of the Role of Short-range-order in the **Deformation of Medium Entropy Alloy**: Yang Yang¹; Ying Han¹; Yongwen Sun¹; Mark Asta²; Robert Ritchie²; Andrew Minor²; ¹The Pennsylvania State University; ²Lawrence Berkeley National Laboratory

8:50 AM Invited

Short-range Order Effects on Dislocation Mobilities in Highentropy Alloys from Atomistic Simulations: Sheng Yin¹; Anas Abu-Odeh²; David Olmsted²; Jun Ding³; Wenqing Wang²; Flynn Walsh²; Robert Ritchie¹; Mark Asta²; ¹Lawrence Berkeley National Laboraory; ²University of California, Berkeley; ³Xi'an Jiaotong University

9:20 AM Break

9:40 AM Invited

Local Phase Transformations Associated with Extended Defects in Ni-base Superalloys: Michael Mills1; Ashton Egan1; Semanti Mukhopadhyay¹; Steven Niezgoda¹; Maryam Emmanuelle Marquis²; Fei Xue²; Yunzhi Wang¹; Tim Smith³; ¹Ohio State University; ²University of Michigan; ³NASA Glenn Research Center

Diffusion Kinetics and Formation of Chemical Short-range Order in Alloys: Bin Xing1; Penghui Cao1; 1University of California, Irvine

10:30 AM Invited

Integrating In Situ Experiment and Atomistic Modeling to Decipher Grain Boundary Deformation Mechanisms: Ting Zhu¹; ¹Georgia Institute of Technology

Mean-field Prediction of Short-range Ordering/Clustering Kinetics in Binary FCC Solid Solution Alloys: Anas Abu-Odeh1; Blas Uberuaga²; Mark Asta¹; ¹University of California Berkeley; ²Los Alamos National Laboratory

LIGHT METALS

Magnesium Technology 2023 — Corrosion and Coatings

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Steven Barela, Terves, Inc; Aeriel Murphy-Leonard, Ohio State University; Petra Maier, University of Applied Sciences Stralsund; Neale Neelameggham, IND LLC; Suveen Mathaudhu, Colorado School of Mines; Victoria Miller, University of Florida

Tuesday AM | March 21, 2023 30C | SDCC

Session Chairs: Petra Maier, Stralsund University of Applied Sciences; Josh Caris, Terves, Inc.

8:00 AM

Open-air Plasma Assisted Si-O-C Layer Deposition on AZ91D Mg Alloy for Corrosion Mitigation: Jiheon Jun1; Yong Chae Lim1; Yi-Feng Su¹; Daphne Pappas²; Andrew Sy²; Ryan Robinson²; ¹Oak Ridge National Laboratory; ²Plasmatreat USA

Integrating Multimodal Corrosion with Correlative Microscopy Across Multiple Length Scales: Sridhar Niverty¹; Rajib Kalsar¹; Lyndi Strange¹; Venkateshkumar Prabhakaran¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

8:40 AM

Protective Micro-arc Oxidation Surface Coating on AZ80 Forged Magnesium Alloy: Xin Pang1; Yuna Xue2; Hamid Jahed3; ¹CanmetMATERIALS, Natural Resources Canada; ²Xi'an Shiyou University; 3University of Waterloo

Effect of Deformation Speed on Stress Corrosion and Fracture Toughness of Extruded Mg10Dy and Mg10Dy1Nd using C-ring Tests: Petra Maier1; Benjamin Clausius1; Norbert Hort2; 1University of Applied Sciences Stralsund; ²Helmholtz-Zentrum Hereon

9:20 AM Break

9:35 AM

A Comparative Study about Hydroxyapatite Coated AZ31 and AZ91 Mg Alloys: Serkan Baslayici¹; Mehmet Bugdayci²; Kagan Benzesik³; Ozan Coban⁴; Onuralp Yucel³; Ercan Acma³; ¹Istanbul Medipol University; ²Yalova University; ³stanbul Technical University; ⁴Istanbul Gedik University

9:55 AM

In Situ Study of the Degradation Behaviour Under Load of Mg1.8Y0.6Zn(1Ag) Using Synchrotron Tomography: Domonkos *Tolnai*¹; Birte Hindenlang¹; Jan Bohlen²; Joao Pereira da Silva¹; Jianan Gu¹; Anais Louapre¹; Florian Wieland¹; Fabian Wilde³; ¹Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon; ²Institute of Material and Process Design, Helmholtz-Zentrum Hereon; 3Institute of Materials Physics, Helmholtz-Zentrum Hereon

10:15 AM

In Vitro Degradation Assessment of Magnesium Wire in Sternalclosure-like Conditions: Adam Griebel1; Natalie Romick1; 1Fort Wayne Metals

10:35 AM

Influence of Corrosion Extent on Residual Tensile Strength and Corrosion Fatigue Properties of an Mg-Y-Nd Alloy Characterized by μCT: Benjamin Clausius¹; Nils Wegner²; Sharmajeya Jeyavalan¹; Hendrik Hartweg²; Frank Walther²; Petra Maier¹; ¹University of Applied Sciences Stralsund; 2TU Dortmund University

Materials and Chemistry for Molten Salt Systems — **Novel Materials and Properties**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Raluca Scarlat, University of California, Berkeley; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Nathaniel Hoyt, Argonne National Laboratory

Tuesday AM | March 21, 2023 27A | SDCC

Session Chair: Kumar Sridharan, University of Wisconsin

8:00 AM

Microstructural Evolution and Hardness Changes in Ion irradiated Ni-based Superalloys: Qinyun Chen¹; Ryan Thier¹; Yan-Ru Lin²; Wang Ling³; Steven Zinkle¹; ¹University of Tennessee; ²Oak Ridge National Laboratory; 3SLAC National Accelerator Laboratory

8:20 AM

Interest of Nickel Based Alloys Additive Manufacturing for Molten Salt Reactors: First Elements of Behavior under Ion Irradiation.: Martin Madelain¹; Pascal Aubry¹; Alexandre Legris²; Yann de Carlan¹; ¹Université Paris-Saclay, CEA; ²UMET, Polytech Lille

Residual Stress in Cobalt Free Cladding Systems for Molten Salt **Reactors**: Behrooz Tafazzolimoghaddam¹; *Richard Moat*¹; ¹The Open University

9:00 AM

ICME Development of a Cold Spray Enabled Corrosion Resistant **Bimetallic Structure for Nuclear Reactors**: *Pin Lu*¹; Joseph Heelan²; Vilupanur Ravi³; ¹QuesTek Innovations LLC; ²Solvus Global; ³Cal Poly Pomona

9:20 AM

Corrosion Behavior of Compositionally Gradient Additively Manufactured 316L Stainless Steel Doped with Hafnium in Eutectic NaCl-MgCl2 Molten Salt at 700 °C: Laura Hawkins1; Jingfan Yang2; Michael Woods³; Trishelle Copeland-Johnson³; Ruchi Gakhar³; Lin Shao¹; Xiaoyuan Lou²; Daniel Murray³; Lingfeng He³; ¹Texas A&M University; ²Purdue University; ³Idaho National Laboratory

9:40 AM Break

Investigate on Dechromization in Converter during Vanadium Extraction and Semi-steel Steelmaking Processes Based on the Ion and Molecule Coexistence Theory: Wang Zhou1; Zhao Chen1; Xiaoxi Chen¹; Bailin Luo¹; Changfa Zhou¹; Gai Fu¹; Xiaowen Yu¹; ¹Chongqing CEPREI Industiral Technology Research Institute Co., Ltd.

Thermal Conductivity Measurements of FLiNaK, FMgNaK, and LiCl-KCl: Troy Munro¹; Brian Merritt¹; Benjamin Wright¹; Noah Cahill¹; Noah Cahill¹; ¹Brigham Young University

Cover Gas Selection for Molten Salts: Adam Burak¹; Minghui Chen²; ¹University of Michigan; ²University of New Mexico

10:55 AM

Uncertainty Quantification and Propagation for Thermodynamic Models of Molten Salts: Jorge Paz Soldan Palma¹; Jacob Yingling¹; Juliano Schorne-Pinto¹; Johnathon Ard¹; Mina Aziziha¹; Clara Dixon¹; Ronald Booth¹; Amir Mofrad¹; Theodore Besmann¹; ¹University of South Carolina

MATERIALS DESIGN

Materials Genome, CALPHAD, and a Career over the Span of 20, 50, and 60 Years: An FMD/SMD Symposium in Honor of Zi-Kui Liu — Materials Genome

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Yu Zhong, Worcester Polytechnic Institute; Richard Otis, Jet Propulsion Laboratory; Bi-Cheng Zhou, University of Virginia; Chelsey Hargather, New Mexico Institute of Mining and Technology; James Saal, Citrine Informatics; Carelyn Campbell, National Institute of Standards and Technology

Tuesday AM | March 21, 2023 Sapphire L | Hilton

Session Chair: James Saal, Citrine Informatics

8:00 AM Invited

The Materials Genome Initiative: James Warren¹; ¹NIST

8:30 AM Invited

Alloy Design Based on Automated CALPHAD Composition Search and Machine Learning: Alan Luo1; 1The Ohio State University

9:00 AM Invited

Design of Compositional Pathways for Functionally Graded Materials in Additive Manufacturing: Allison Beese¹; ¹Pennsylvania State University

9:30 AM Break

9:50 AM Invited

CALPHAD-based ICME Design for Additive Manufacturing of Functionally Graded Alloys: Wei Xiong¹; ¹University of Pittsburgh

10:20 AM Invited

Thermodynamics of lodine Terminated MXenes from Firstprinciples Calculations and CALPHAD Modeling: Yong-Jie Hu¹; Ervin Rems¹; David Bugallo Ferron¹; Yury Gogotsi¹; ¹Drexel University

10:50 AM Invited

Big Data-Assisted Digital Twins for the Smart Design and Manufacturing of Advanced Materials: From Atoms to Products: William Yi Wang¹; Jinshan Li¹; Xingyu Gao²; Feng Sun³; Qinggong Jia³; Bin Tang¹; Xi-Dong Hui⁴; Haifeng Song²; Zi-Kui Liu⁵; ¹Northwestern Polytechnical University; ²Institute of Applied Physics and ³Western Computational Mathematics: Superconducting Technologies Co., Ltd; 4University of Science and Technology Beijing; 5The Pennsylvania State University

Mechanical Behavior of Nuclear Reactor Materials and Components III - Ferritic Alloys III

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Assel Aitkaliyeva, University of Florida; Clarissa Yablinsky, Los Alamos National Laboratory; Osman Anderoglu, University of New Mexico; Eda Aydogan, Middle East Technical University; Kayla Yano, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Djamel Kaoumi, North Carolina State University

Tuesday AM | March 21, 2023 28D | SDCC

Session Chairs: Caleb Massey, Oak Ridge National Laboratory; Eda Aydogan, METU

8:00 AM Invited

A New Microcrack Healing Mechanism in an Annealed 14YWT Nanostructured Ferritic Alloy: Md Ershadul Alam¹; Soupitak Pal¹; Nicholas Cunningham¹; G. R. Odette¹; ¹University of California, Santa Barbara

8:30 AM

Preliminary Studies on Creep Behavior of Commercial FeCrAl Alloy (APMT): Hamdy Abouelella¹; Benjamin Beeler¹; Jacob Eapen¹; Korukonda Murty¹; ¹North Carolina State University

Investigating Environmentally-Assisted Cracking in 316 Stainless Steel U-Bend Specimens Exposed to Liquid Sodium: Dustin Mangus¹; Xavier Quintana¹; Guillaume Mignot¹; Wade Marcum¹; Julie Tucker¹; Samuel Briggs¹; ¹Oregon State University

Effect of Irradiation on the Tensile Strength of Select Layers and Layer Interfaces of TRISO-coated Nuclear Fuel Particles: Tanner Mauseth¹; Mary Lou Dunzik-Gougar¹; Fei Teng²; Subhashish Meher³; ¹Idaho State University; ²Idaho National Laboratory; ³Idaho National Laboratory

9:30 AM Break

9:50 AM

Fatigue Assessment of Metastable Austenitic AISI 347 Pipe Components for Nuclear Engineering: Kai Donnerbauer¹; Tobias Bill²; Peter Starke²; Ruth Acosta³; Christian Boller³; Jens Arndt⁴; Klaus Heckmann⁴; Jürgen Sievers⁴; Tim Schopf⁵; Frank Walther¹; ¹TU Dortmund, Chair of Materials Test Engineering (WPT); ²University of Applied Sciences Kaiserslautern, Department of Materials Science and Materials Testing (WWHK); ³Saarland University, Chair of Nondestructive Testing and Quality Assurance (LZfPQ); ⁴Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH; ⁵University of Stuttgart, Materials Testing Institute (MPA)

ODS Cu Materials for Fusion Application Produced by Mechanical Alloying: Carsten Bonnekoh¹; Andrei Galatanu²; David Bürger³; Thomas Gietzelt¹; Michael Rieth¹; ¹Karlsruhe Institute of Technology; ²National Institute of Materials Physics; ³Ruhr-University Bochum

10:30 AM

Additively Manufactured Digital Image Correlation for Nuclear Materials: Kaelee Novich1; Timothy Phero1; Sarah Cole1; Michael McMurtrey²; David Estrada¹; Brian Jaques¹; ¹Boise State University; ²Idaho National Laboratory

CHARACTERIZATION

Mechanical Response of Materials Investigated through Novel In-situ Experiments and Modeling — Session I

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization; Dongchan Jang, Korea Advanced Institute of Science and Technology; Shailendra Joshi, University of Houston; Minh-Son Pham, Imperial College London; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Josh Kacher, Georgia Institute of Technology

Tuesday AM | March 21, 2023 Aqua 310B | Hilton

Session Chairs: Josh Kacher, Georgia Institute of Technology; Ashley Bucsek, University of Michigan

8:00 AM Invited

Effect of Defect Spatial Distribution on Ductile Failure in Additively Manufactured 316L: David Rowenhorst¹; Aeriel Leonard²; ¹Naval Research Laboratory; ²Ohio State University

8:30 AM

Direct Measurement of the Effective Mechanical Properties of Additively Manufacturing Octet Truss Lattices using High Energy X-ray Diffraction: Nathan Johnson¹; ¹Stanford University

8:50 AM

Load Transfer in Ni-CrC Composites Studied by Synchrotron X-ray Diffraction and X-ray Microtomography: Lewei He¹; Eshan Ganju²; Nikhilesh Chawla²; Mostafa Hassani¹; ¹Cornell University; ²Purdue University

9:10 AM

Transmission X-Ray Microscopy Reveals Role of Secondary Cracks in Hydrogen Embrittlement: Andrew Lee1; Abhinav Parakh1; Wendy Gu1; 1Stanford University

9:30 AM Break

9:50 AM Invited

Three-dimensional In-situ Measurements of Martensitic Phase Transformation Across Length Scales using X-ray Topotomography and Dark-field X-ray Microscopy: Ashley Bucsek1; 1University of Michigan

10:20 AM

Damage Evolution in Al Alloys Assessed via X-ray Computed Tomography and Crystallographic Orientation Data: Philip Noell¹; Raiyan Seede²; Kyle Johnson¹; ¹Sandia National Laboratories; ²Lawrence Livermore National Laboratory

10:40 AM

Assessment of Phase-field Fracture Simulations of Brittle Fracture in Polycrystalline Materials: Mythreyi Ramesh1; Sara Gorske2; Jean-Michel Scherer²; Blaise Bourdin³; Kaushik Bhattacharya²; Katherine Faber²; Peter Voorhees¹; ¹Northwestern University; ²California Institute of Technology; 3McMaster University

11:00 AM

On the Deformation Mechanisms of Ductility Enhanced Mg-X-Ca Alloys at Elevated Temperatures: Mohammed Said1; David Collins1; ¹University of Birmingham

Methods, Techniques, and Materials Discovery of Irradiation Effect Using In-situ Microscopy — **Advances in Microstructure Characterization and Data Analysis**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Wei-Ying Chen, Argonne National Laboratory; Xuan Zhang, Argonne National Laboratory; Kevin Field, University of Michigan; Donald Brown, Los Alamos National Laboratory; Aida Amroussia, GE Global Research

Tuesday AM | March 21, 2023 25A | SDCC

Session Chair: Kevin Field, University of Michigan

8:00 AM Invited

Utilizing High-energy X-rays for Microstructural Characterization of Metallic Hydrides: Reeju Pokharel¹; Samantha Lawrence¹; Travis Carver¹; Sangwon Lee¹; Donald Brown¹; ¹Los Alamos National Laboratory

8:30 AM

Deep Learning Defect Detection in Electron Microscopy of Radiation Damage in Metals: Dane Morgan¹; Ryan Jacobs¹; Mingren Shen1; Priyam Patki2; Matthew Lynch2; Kevin Field2; 1University of Wisconsin-Madison; ²University of Michigan, Ann Arbor

Uncovering Transient Grain Boundary Absorption States Using **Deep Learning Object Detection**: *Emily Hopkins*¹; Sicong He²; Ryan Jacobs³; Priyam Patki⁴; Chang-Yu Hung¹; James Nathaniel⁵; Dane Morgan³; Kevin Field⁴; Jaime Marian²; Mitra Taheri¹; ¹Johns Hopkins University; ²University of California - Los Angeles; ³University of Wisconsin - Madison; 4University of Michigan; 5Sandia National Laboratories, CA

9:10 AM Invited

Advanced In Situ Mechanical Testing Approaches to Evaluate the Degradation of Nuclear System Components: Maxim Gussev¹; David McClintock¹; Kevin Field²; Ercan Cakmac¹; Travis Dixon¹; ¹ORNL; ²University of Michigan

9:40 AM Break

10:00 AM

Precipitate and Cavity Evolution in Alloy 718 Under High Temperature In-situ Ion Irradiation using Machine Learning: Stephen Taller1; Timothy Lach1; Kai Sun2; 10ak Ridge National Laboratory; ²University of Michigan

Particle-induced X-ray Emission Spectroscopy (PIXE) for In Situ Monitoring of Corrosion Under Proton Irradiation in the Irradiationcorrosion Experiment (ICE): Franziska Schmidt¹; Matthew Chancey²; Hyosim Kim²; Yongqiang Wang²; Peter Hosemann¹; ¹University of California Berkeley; ²Los Alamos National Laboratory

NUCLEAR MATERIALS

Microstructural, Mechanical and Chemical Behavior of Solid Nuclear Fuel and Fuel-cladding Interface — **Uranium Carbides, Nitrides and Silicides**

Sponsored by: TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee

Program Organizers: Yi Xie, Purdue University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida

Tuesday AM | March 21, 2023 26B | SDCC

Session Chair: Jennifer Watkins, Idaho National Laboratory

8:00 AM Introductory Comments

8:05 AM Invited

Accelerating the Qualification of Nuclear Fuels Through Advanced Characterization and Multiscale Modeling: Joshua White1; 1Los Alamos National Laboratory

8:30 AM Invited

Chemical Structures and Thermodynamics of Uranium Nitride and Uranium Carbide: Xiaofeng Guo1; Vitaliy Goncharov1; Juejing Liu1; Arjen van Veelen²; Joshua White²; Hongwu Xu²; ¹Washington State University; ²Los Alamos National Laboratory

8:55 AM

Fabrication and Characterization of Uranium Carbide: Adrien Terricabras¹; Arjen van Veelen¹; Erofili Kardoulaki¹; Scarlett Widgeon Paisner¹; Timothy Coons¹; Joshua White¹; ¹Los Alamos National Laboratory

9:15 AM

Nuclear Fuels and Interfaces for Advanced Specialty Microreactors: Erofili Kardoulaki¹; Najeb Abdul-Jabbar¹; Josh White¹; Scarlett Widgeon-Paisner¹; Maria Kosmidou¹; Mehadi Hassan¹; Ken McClellan¹; ¹Los Alamos National Laboratory

9:35 AM Break

9:50 AM

Chemical Interaction and Compatibility of Uranium Nitride and Alumina Forming Austenitic Alloys: Andre Broussard¹; Dong Zhao¹; Jie Lian¹; Bruce Pint²; Jiheon Jun²; Jason Harp²; Erofili Kardoulaki³; ¹Rensselaer Polytechnic Institute; ²Oak Ridge National Laboratory; 3Los Alamos National Laboratory

10:10 AM

Modeling of Fission Gas Behavior in Uranium Nitride Fuel: Jason Rizk1; Christopher Matthews1; Michael Cooper1; Anders Andersson1; ¹Los Alamos National Laboratory

10:30 AM

High Temperature Steam Oxidation Performance of Alloyed, High Density Fuel Composite: U,Si, + 50wt% UB,: Geronimo Robles1; Joshua White²; Scarlett Widgeon Paisner²; Elizabeth Sooby¹; ¹University of Texas at San Antonio; ²Los Alamos National Laboratory

Assessment of High-density Fuels During Hydrogen Interaction: Adrian Gonzales¹; Elizabeth Sooby¹; Joshua White²; ¹The University of Texas at San Antonio; ²Los Alamos National Laboratory

11:10 AM

Assessing the Influence of Microstructure on Uranium Hydride Size Distributions via Small Angle Neutron Scattering: Zachary Harris¹; Elena Garlea²; Tasha Boyd²; Lisa DeBeer-Schmitt³; Kenneth Littrell³; Sean Agnew⁴; ¹University of Pittsburgh; ²Y-12; ³Oak Ridge National Laboratory; 4University of Virginia

NANOSTRUCTURED MATERIALS

Nanostructured Materials in Extreme Environments Nanostructured Metals in Coupled or Multiple **Extreme Environments**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nuclear Materials Committee

Program Organizers: Haiming Wen, Missouri University of Science and Technology; Nan Li, Los Alamos National Laboratory; Youxing Chen, University of North Carolina Charlotte; Yue Fan, University of Michigan; Niaz Abdolrahim, University of Rochester; Khalid Hattar, University of Tennessee Knoxville; Ruslan Valiev, UFA State Aviation Technical University; Zhaoping Lu, University of Science and Technology Beijing

Tuesday AM | March 21, 2023 Aqua 303 | Hilton

Session Chair: Youxing Chen, University of North Carolina, Charlotte

8:00 AM Invited

Coupled Extreme Environments the True Challenge for Nuclear Materials: Peter Hosemann¹; Minsung Hong²; Franziska Schmidt³; Rasheed Auguste²; John Scully⁴; Ho Lun Chan⁴; Farida Selim⁵; Djamel Kaoumi⁶; ¹University of California at Berkeley; ²University of California, Berkeley; 31University of California, Berkeley; 4University of Virginia; ⁵Bowling Green State University; ⁶North Carolina State University

8:25 AM Invited

Solute Partitioning and its Influence on Stability and Mechanical Behavior in Nanocrystalline Alloys: Thomas Koenig¹; Ilias Bikmukhametov¹; Ankit Gupta²; Garritt Tucker²; *Gregory Thompson*¹; ¹University of Alabama; ²Colorado School of Mines

8:50 AM Invited

Critical Assessment of Grain Size Stability and its Role on Microstructure Preservation Under Extreme Stimuli: Billy Hornbuckle¹; Kris Darling¹; Anit Giri¹; Anthony Roberts¹; Cyril Williams¹; Scott Turnage¹; Dan Casem¹; ¹US Army Research Laboratory

Nanoindentation Measurements at Combined High Strain Rates and Elevated Temperatures: Benoit Merle¹; Christopher Walker²; Christopher Zenk³; George Pharr²; ¹University of Kassel; ²Texas A&M University; 3FAU Erlangen-Nuernberg

9:35 AM Break

9:55 AM Invited

Nanostructured Metallic Materials with Thick Grain Boundaries: Jie Ding¹; Ruizhe Su¹; Dajla Neffati²; Yashashree Kulkarni²; Xinghang Zhang¹; ¹Purdue University; ²University of Houston

Radiation Instability of Thermally Stable Nanocrystalline Pt-Au System: Ryan Schoell¹; Chris Barr¹; Douglas Medlin¹; Dave Adams¹; Yasir Mahmood²; Remi Dingreville¹; Fadi Abdeljawad²; Brad Boyce¹; Khalid Hattar¹; ¹Sandia National Laboratory; ²Clemson University

10:40 AM

Irradiation and Corrosion Behavior of Nanostructured Grade 91 and FeCrAl Alloys for Nuclear Applications: Joshua Rittenhouse¹; Matthew Luebbe¹; Mahmut Cinbiz²; Lingfeng He²; Haiming Wen¹; ¹Missouri University of Science and Technology; ²Idaho National Laboratory

11:00 AM

A Stable and Irradiation Resistant Ultrafine-grained Aluminum Crossover Alloys: Patrick Willenshofer¹; Matheus Tunes²; Oliver Renk¹; Peter Uggowitzer¹; Stefan Pogatscher¹; ¹Montanuniversitaet Leoben; ²Los Alamos National Laboratory

11:20 AM Invited

A New Type of Nuclear Materials: Nanocrystalline ODS Steels: Tongde Shen1; 1Yanshan University

CHARACTERIZATION

Neutron and X-ray Scattering in Materials Science — **Energy Materials**

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Jennifer Niedziela, Oak Ridge National Lab; Hillary Smith, Swarthmore

Tuesday AM | March 21, 2023 Aqua 311B | Hilton

Session Chair: Chen Li, University of California, Riverside

8:00 AM Invited

Atomic Dynamics in Energy Materials: Olivier Delaire1; 1Duke University

8:30 AM Invited

Two-dimensional Local Lattice Distortions in Inorganic Halide Perovskites: Stephan Rosenkranz¹; Matthew Krogstad¹; Xing He²; Tyson Lanigan-Atkins²; Feng Ye³; Yaohua Liu³; Duck-Young Chung¹; Olivier Delaire²; Raymond Osborn¹; ¹Argonne National Laboratory; ²Duke University; ³Oak Ridge National Laboratory

Characterization of Heterogeneously Disordered Oxides with Total Scattering Experiments: Eric O'Quinn1; Igor Gussev1; Maik Lang1; ¹University of Tennessee

9:20 AM

Mutual Spin-phonon Driving Effects and Phonon Eigenvector Renormalization in Nickel (II) Oxide: Qiyang Sun1; Bin Wei2; Yaokun Su¹; Hillary Smith³; Jiao Lin⁴; Douglas Abernathy⁴; Chen Li¹; ¹University of California, Riverside; ²Henan Polytechnic University; ³Swarthmore College; 4Oak Ridge National Laboratory

9:40 AM Break

9:55 AM

Probing the Gas Sorption Mechanism in Spin-crossover MOFs by Neutron Scattering: Jose Alberto Rodriguez-Velamazan¹; Angel ¹Institut Laue-Langevin; Fernandez-Blanco¹; Roberta Poloni²; ²CNRS, Grenoble-INP, SIMaP, University of Grenoble Alpes

10:15 AM

Quasi-elastic Neutron Scattering Measurements of Hydrogen Diffusion in Zirconium: Brent Heuser¹; Timothy Prisk²; Jun-Li Lin¹; Tanya Dax²; Yongfeng Zhang³; ¹University of Illinois; ²NIST; ³INL

10:35 AM

Entropy Contributions to Explain Thermal Expansion: Thermodynamics of the Invar Effect: Stefan Lohaus1; Pedro Guzman¹; Camille Bernal-Choban¹; Claire Saunders¹; Brent Fultz¹; ¹California Institute of Technology

ENERGY & ENVIRONMENT

New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of Patrick R. Taylor — High **Temperature Fundamentals**

Sponsored by: Society for Mining Metallurgy and Exploration, TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Materials Characterization Committee, TMS: Energy Committee, TMS: Recycling and Environmental **Technologies Committee**

Program Organizers: Ramana Reddy, University of Alabama; Corby Anderson, Colorado School of Mines; Erik Spiller, Colorado School of Mines; Edgar Vidal, NobelClad; Camille Fleuriault, Eramet Norway; Alexandra Anderson, Gopher Resource; Mingming Zhang; Christina Meskers, SINTEF

Tuesday AM | March 21, 2023 33C | SDCC

Session Chairs: Alexandra Anderson, Gopher Resource; Camille Fleuriault, Eramet Norway

8:00 AM Invited

Simulation and Post Mortem Studies: The Holistic Approach for Optimized and Engineered Lining Concepts: Dean Gregureh¹; Günter Unterreiter¹; Clemens Lind¹; Alfred Spanring¹; *Ulrich Marschall*²; ¹RHI Magnesita; ²RHI Magnesita GmbH

8:30 AM

Mixture Solidification Model for Simulation of Freeze Lining: Christian Rodrigues¹; Menghuai Wu¹; Andreas Ludwig¹; ¹University of Leoben

8:50 AM

A Kinetic Description of Physico-chemical Processes Taking Place in the Burden of HCFeMn Submerged Arc Furnaces: Ainur Nigmetova¹; Haoxue Han¹; Astrid Hecquet¹; Bertil Farjaudon¹; Gilles Nussbaum¹; ¹Eramet Ideas

9:10 AM

Lanthanum-light Metal Alloys Production using Secondary Resources - Thermodynamic Analysis: Ahmad Rizky Rhamdani¹; M. Akbar Rhamdhani¹; Geoffrey Brooks¹; Mark I. Pownceby²; Yudi Nugraha Thaha³; Trevor Abbott¹; John Grandfield⁴; Chris Hartley⁵; ¹Swinburne University of Technology; ²CSIRO; ³National Research and Innovation Agency; 4Grandfield Technology Pty Ltd; 5Platina Resources

9:30 AM Break

9:50 AM

Selective Chlorination as an Innovative Extraction Method for Valuable Metals from Iron Containing Matrix: Stefan Steinlechner¹; Kerrin Witt¹; Lukas Höber¹; ¹Montanuniversität Leoben

10:10 AM

Decarbonizing Steelmaking: Nanoscale Mechanisms in Ha-Based Reduction of Iron Oxides: Lauren Moghimi¹; Xueli Zheng¹; Subhechchha Paul¹; Fan Zhang²; Leora Dresselhaus-Marais¹; ¹Stanford University; ²National Institute of Standards and Technology

10:30 AM

High Vacuum Solar Thermal Dissociation for Metal and Oxide Extraction: Matthew Shaw¹; Geoffrey Brooks¹; M. Akbar Rhamdhani¹; Alan Duffy¹; Mark Pownceby²; ¹Swinburne University of Technology;

10:50 AM

Development of Dynamic Model of Collision and Coalescence for Molten Matte Droplets in Copper Smelting Reaction Shaft Considering Interfacial Deformation: Yuko Goto1; Shungo Natsui2; Hiroshi Nogami²; ¹Sumitomo Metal Mining Co., Ltd.; ²Tohoku University

11:10 AM

Kinetic Study of Reduction of ZnFe2O4: Xuefeng Bai¹; Chengbo Wu¹; Yang Wang¹; Zhihui Guo¹; ¹Chongqing University

NUCLEAR MATERIALS

Phase Stability in Extreme Environments — Phase Stability in Nuclear Environments III

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Andrew Hoffman, GE Research; Kinga Unocic, Oak Ridge National Laboratory; Janelle Wharry, Purdue University; Kaila Bertsch, Lawrence Livermore National Laboratory; Raul Rebak, GE Global Research

Tuesday AM | March 21, 2023 28C | SDCC

Session Chairs: Tiankai Yao, Idaho National Laboratory; Stephen Taller, Oak Ridge National Laboratory

8:00 AM Invited

Phase Stability of δ -U-50wt%Zr under Thermal Treatment and Irradiation: Amrita Sen1; Tiankai Yao2; Mukesh Bachhav2; Janelle Wharry¹; ¹Purdue University; ²Idaho National Laboratory

8:30 AM

Precipitate Evolution in Post-AM Heat Treated and HFIR Irradiated Inconel 718 Alloys: Stephen Taller¹; Lukas Metzger²; Matthew Lynch³; ¹Oak Ridge National Laboratory; ²Virginia Polytechnic Institute and State University; 3University of Michigan

8:50 AM

Long-range Ordering in Alloy 690 via Isothermal Aging and Irradiation: Julie Tucker1; Cole Evered1; Nicholas Aerne1; Luanne Rolly¹; David Sprouster²; ¹Oregon State University; ²Stony Brook University

9:10 AM

Quantitative Phase Field Modeling of Morphological Evolution of Voids under Ion Irradiation: Sreekar Rayaprolu1; Cuncai Fan1; Xinghang Zhang¹; Anter El-Azab¹; ¹Purdue University

9:30 AM Break

9:50 AM

Damage Dependence of Radiation Induced Segregation at Fully Characterized Grain Boundaries in Proton Irradiated 316L Stainless Steel: Sara Wonner¹; Pascal Bellon¹; ¹The University of Illinois, Urbana Champaign

10:10 AM

Effect of Dose Rate and Composition on the Precipitation Behavior of RPV Steels: Anshul Kamboj¹; Nathan Almirall²; Emmanuelle Marquis¹; G. Robert Odette³; ¹University of Michigan Ann Arbor; ²General Electric Research; ³University of California, Santa Barbara

10:30 AM

Synergetic Effects of Mn, Ni, and Si on the Formation of Mn-Ni-Si Clusters in the Reactor Pressure Vessel Model Steels: Deepak Sharma¹; Auriane Etienne¹; Philippe Pareige¹; Bertrand Radiguet¹; ¹Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634

10:50 AM

Fundamental Ionizing and Ballistic Radiation Effects in Multicomponent Mineral Phases: Sean Drewry1; Katharine Page1; Kurt Sickafus¹; Chris Wetteland¹; ¹University of Tennessee Knoxville

ELECTRONIC MATERIALS

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXII — **Interconnection Materials**

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hiroshi Nishikawa, Osaka University; Shihkang Lin, National Cheng Kung University; Chao-hong Wang, National Chung University; Chih-Ming Chen, National Chung Hsing University; Jae-Ho Lee, Hongik University; Zhi-Quan Liu, Shenzhen Institutes of Advanced Technology; Ming-Tzer Lin, National Chung Hsing University; Yee-wen Yen, National Taiwan University of Science and Technology; A.S.Md Abdul Haseeb, Bangladesh University of Engineering and Technology (BUET); Ligang Zhang, Central South University; Sehoon Yoo, KITECH; Vesa Vuorinen, Aalto University; Yu-chen Liu, National Cheng Kung University; Ting-Li Yang, National Yang Ming Chiao Tung University

Tuesday AM | March 21, 2023 Sapphire E | Hilton

Session Chairs: Shih-kang Lin, National Cheng Kung University; Sehoon Yoo, Korea Institute of Industrial Technology

8:00 AM Invited

Microstructure and Interface Evolution of Bare Cu-Cu Bonding Using Cu-Ag Composite Paste during High Temperature Application: Chuantong Chen1; Takuya Sekiguchi2; Katsuaki Suganuma¹; ¹Osaka University; ²Toppan Forms Co., Ltd.

8:25 AM Invited

Machine Learning Models of Ultimate Tensile Strength and Elongation for Low-temperature Solder: Yu-chen Liu1; Ahmad Kholik¹; Shih-kang Lin¹; ¹National Cheng Kung University

8:50 AM

Effect of Trace Bi on the Mechanical Strength of Sn Solder Before and After Thermal Aging: Yu-An Shen1; 1Feng Chia University

Effect of Cu Addition on Mechanical Properties of In-Sn Alloy Before and After Isothermal Aging: Hiroshi Nishikawa¹; Han Le Duy²; Hiroaki Tatsumi¹; ¹Osaka University; ²Hanoi University of Science and Technology

9:30 AM Break

9:50 AM

A Novel Synthesis Method of Cu NWs by Nucleation Control: Kuan Lin Fu1; 1National Central University

Dissolution Behavior in the Cu-2.0 wt% Be Alloy (Alloy 25) in Molten Sn. SAC305, and Sn-58Bi Solders: Andromeda Laksono¹: Yee-wen Yen¹; ¹National Taiwan University of Science and Technology

10:30 AM

Interfacial Reactions in the Lead-free Solders/Cu-Fe Alloy(C194) Couples: Yi Chin Liu¹; Yu-Yen Lee¹; Yee-Wen Yen¹; ¹National Taiwan University of Science and Technology

10:50 AM

Solid/Solid State Interfacial Reactions between Lead-free Solders and Cu-Ti Alloy(C1990HP): Hsiang Yu Chiu1; 1National Taiwan University of Science and Technology

11:10 AM

Electric Current-induced Lattice Strain and Grain Orientation Change in Silver Strip: Shih-kang Lin1; Yu-chen Liu1; Ciou-Ren Lee1; ¹National Cheng Kung University

PHYSICAL METALLURGY

Phase Transformations and Microstructural **Evolution — Aluminum Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Ashley Paz y Puente, University of Cincinnati; Mark Aindow, University of Connecticut; Sriswaroop Dasari, University of North Texas; Ramasis Goswami, Naval Research Laboratory; Megumi Kawasaki, Oregon State University; Eric Lass, University of Tennessee-Knoxville; Josh Mueller, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Le Zhou, Marquette University

Tuesday AM | March 21, 2023 25C | SDCC

Session Chair: Ramasis Goswami, Naval Research Laboratory

An Investigation of Nanomechanical Properties of Nanocrystal Embedded Marginal Metallic Glasses: Can Okuyucu¹; Douhan Sarıtürk¹; Mohammad Abboud²; Amir Motallebzadeh³; Sezer Özerinç¹; Ilkay Kalay⁴; Yunus Kalay¹; ¹Middle East Technical University; ²Technische Universitat Darmstadt; ³Koc University; ⁴Çankaya University

8:20 AM

Microstructural Evolution in an Aluminum-Cerium Alloy under Long Term Aging Conditions: Opemipo Adetan1; Dinc Erdeniz1; ¹University of Cincinnati

8:40 AM

Effect of Mn on Eutectic Phase Equilibria in Al-rich Al-Ce-Ni alloys: Alice Perrin¹; Ying Yang¹; Richard Michi²; Kevin Sisco³; Alex Plotkowski¹; Amit Shyam¹; ¹Oak Ridge National Lab; ²Owens Corning; ³University of Tennessee

9:00 AM

The Effect of Thermomagnetic Processing on the Properties and Microstructure of Aluminum and Ferrous Alloys: Michael Kesler¹; Michael Thompson²; Hunter Henderson³; David Weiss⁴; Zachary Tener¹; Ramon Padin-Monroig⁵; Megan Hurley⁵; Steven Flynn⁵; Bart Murphy¹; Orlando Rios²; Gerard Ludtka⁵; Aurelien Perron³; Victoria Miller⁵; Michael Tonks⁵; Michele Manuel⁵; ¹Oak Ridge National Laboratory; ²University of Tennessee; ³Lawrance Livermore National Lab; 4Eck Industries; 5University of Florida

9:20 AM Break

9:40 AM

Diffusion Pathway of Dopant Elements in Grain Boundary Engineered Al Alloys: Tianjiao Lei¹; Jungho Shin²; Daniel Gianola²; Timothy Rupert¹; ¹University of California Irvine; ²University of California Santa Barbara

10:00 AM

Experimental Investigation to Understand the Relationship between Microstructure and Electrical/Thermal Properties of Al-Ni alloys: Sunyong Kwon1; Richard Michi2; Amit Shyam1; Dongwon Shin¹; ¹Oak Ridge National Laboratory; ²Northwestern University

ADDITIVE TECHNOLOGIES

Powder Materials Processing and Fundamental Understanding — Synthesis

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Eugene Olevsky, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Kennametal Inc.; Wenwu Xu, San Diego State University

Tuesday AM | March 21, 2023 25B | SDCC

Session Chairs: Olivia Graeve, University of California, San Diego; Stephen Heywood, Montana State University

8:00 AM

Combustion Synthesis of ZrC-TiC Composite Nanoparticle by Self-Propagating High Temperature Synthesis (SHS) in ZrO2 - TiO2 - Mg / Al - C System: Mehmet Bugdayci¹; Ozan Coban²; ¹Yalova University; 2Istanbul Gedik University

8:20 AM

Design and Synthesis of Alkaline-earth Doped Hexaborides with Sodium and Potassium Dopants: Alan Hirales¹; Justin Nakamura¹; Olivia Graeve¹; ¹University of California San Diego

8:40 AM

Scalable Synthesis of Flowable Porous Copper Powders and Nanoscale Welding for High Surface Area 3D Printed Parts: Natalya Kublik¹; Stanislau Niauzorau¹; Bruno Azeredo¹; ¹Arizona State University

9:00 AM Invited

Synthesis and Crystallography of High Entropy Metal Carbides: A New Class of Ultrahigh Temperature Ceramics: Olivia Graeve1; ¹University of California San Diego

9:30 AM Break

9:50 AM

Tailored Morphology of TaC Nanoparticles by Introduction of Transition Metal Dopants: Stephanie Ortega1; Jixuan Dong1; Jamie Doan¹; Katada Siraj¹; Olivia Graeve¹; ¹University of California San Diego

10:10 AM

LLZO Powder Synthesis & Design for Maintaining Li Stoichiometry in Powders and Dense Membranes: Stephen Heywood¹; Stephen Sofie¹; David Driscoll¹; ¹Montana State University

10:30 AM

Fabrication of Nanoporous Aluminum Powders via Thermal and Chemical Processing: Jodie Baris¹; Jonah Erlebacher¹; **Hopkins University**

10:50 AM

Synthesis of Ti-Al Intermetallic Compound Fine Powder Using Shuttle of Proportionation and Disproportionation Reactions in Molten Salt: Terigele Terigele¹; Xin Lu¹; Osamu Takeda¹; Hongmin Zhu¹; ¹Tohoku University

ELECTRONIC MATERIALS

Printed Electronics and Additive Manufacturing: Functional Materials, Processing Techniques, and **Emerging Applications — Energy Storage Devices**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Rahul Panat, Carnegie Mellon University; Yong Lin Kong, University of Utah; Konstantinos Sierros, West Virginia University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ravindra Nuggehalli, New Jersey Institute of Technology

Tuesday AM | March 21, 2023 Sapphire 411B | Hilton

Session Chairs: Changyong Cao, Case Western Reserve University; Majid Beidaghi, Auburn University; Konstantinos Sierros, West Virginia University

8:00 AM Invited

3D Printing of Energy Storage Devices Based on MXenes: Majid Beidaghi¹; ¹Auburn University

8:25 AM Invited

Synchrotron Nano-tomography and Coherent X-ray Scattering Investigation of 3D Printed Batteries: Dean Yen¹; Karol Dyro¹; Xiaoyin Zheng¹; Cheng-Hung Lin²; David Sprouster²; Xiaojing Huang³; Mingyuan Ge³; Lutz Wiegart³; Yu-chen Karen Chen-Wiegart²; ¹Stony Brook University; ²Stony Brook University / Brookhaven National Laboratory; 3Brookhaven National Laboratory

Direct 4D Printing of Stretchable Supercapacitors Using Hybrid Composite Materials: Changyong Cao¹; ¹Case Western Reserve University

9:10 AM

Creating Stretchable Solid-State Lithium Battery Arrays Using **Direct Ink Writing**: Nicholas Winch¹; Domenic Cipollone¹; Derrick Banerjee¹; Harrison Loh¹; Konstantinos Sierros¹; ¹West Virginia University

9:30 AM Break

9:50 AM Invited

Laser Nanostructured Al for High Performance of Al-air Batteries for Driving Drones: Anming Hu¹; ¹University of Tennessee

Additively Manufactured Sodium-ion Battery Electrodes via Digital **Light Processing**: Sina Bakhtar Chavari¹; Bharat Yelamanchi¹; Alexis Maurel²; Ana C. Martínez²; Eric MacDonald²; Cameroun Sherrard³; Pedro Cortes¹; ¹Youngstown State University; ²University of Texas at El Paso; 3NASA

10:35 AM Invited

Direct Ink Writing of 3D Printed Graphene Based Electrodes Material for Supercapacitors: Ying Zhang¹; ¹Zhengzhou University

MATERIALS PROCESSING

Rare Metal Extraction & Processing — New Extractant and Biometallurgical Processing

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Takanari Ouchi, University of Tokyo; Kerstin Forsberg, KTH Royal Institute of Technology; Gisele Azimi, University of Toronto; Shafiq Alam, University of Saskatchewan; Neale Neelameggham, IND LLC; Hojong Kim, Pennsylvania State University; Alafara Baba, University of Ilorin; Hong (Marco) Peng, University of Queensland; Athanasios Karamalidis, Pennsylvania State University; Shijie Wang, Coeur Mining, Inc

Tuesday AM | March 21, 2023 30B | SDCC

Session Chairs: Shafiq Alam, University of Saskatchewan; Kerstin Forsberg, KTH Royal Institute of Technology

8:00 AM Invited

New Insights on Titanium(IV) Speciation to Improve the Purification of Concentrated Phosphoric Acid: Alexandre Chagnes1; Lucas Mangold¹; Hubert Halleux²; Gerard Cote³; ¹Universite De Lorraine-Georess; ²Prayon; ³IRCP

Di-phenols Functionalized Chitosan as Selective Adsorbents for Extraction of Germanium: Madhav Patel¹; Athanasios Karamalidis¹; ¹Penn State University

8:50 AM

Recycling of Copper and Gold from Waste Printed Circuit Boards by Leaching Followed by Solvent Extraction: Kamalesh Singh1; Mudila Dhanunjaya Rao²; ¹Indian Institute of Technology (Banaras Hindu University); ²Indian Institute of Technology (Banaras Hindu University), CSIR- National Metallurgical Laboratory

9:10 AM Invited

Recovery and Separation of Vanadium and Tungsten from Spent SCR Catalyst by Hydrometallurgical/ Hybrid Routes: Rajesh Kumar Jyothi¹; Ana Belen Cueva Sola²; Jong Hyuk Jeon¹; Jin-Young Lee²; ¹Korea Inst of Geoscience & Mineral Resources; ²Korea University of Science and Technology (UST)

9:40 AM Break

Removal of Selenium from Chloride Media using Bioadsorbent: Mohamed Abdallah¹; Shafiq Alam¹; ¹University of Saskatchewan

Biosorption as a Vital Tool for Metal Recovery in Effluent Treatment: Review: Shilpa Kalamani Bawkar1; Pramod Singh2; Pankaj Kumar Choubey¹; Rekha Panda¹; Jhumki Hait¹; Manis K Jha¹; ¹CSIR-National Metallurgy Laboratory; 2Netaji Subhas University

LIGHT METALS

Scandium Extraction and Use in Aluminum Alloys — **Scandium Containing Aluminum Alloys**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Timothy Langan, Sunrise Energy Metals; Samuel Wagstaff, Oculatus Consulting; Phil Chataigneau, PDU Consulting; Efthymios Balomenos, Mytilineos S.A., Metallurgy Bu; Thomas Dorin, Deakin University; Muhammad Akbar Rhamdhani, Swinburne University of Technology; Dimitrios Filippou, Rio Tinto Iron & Titanium; Henk van der Laan, V.I.C. Van der Laan International Consultancy BV; Frank Palm, Airbus Defence and Space GmbH

Tuesday AM | March 21, 2023 30D | SDCC

Session Chair: Timothy Langan, Sunrise Energy Metals

8:00 AM Introductory Comments Timothy Langan

8:05 AM Keynote

Formation of Al3Sc Dispersoids and Associated Strengthening Mechanisms: Thomas Dorin¹; Lu Jiang¹; Timothy Langan²; ¹Deakin University; ²Sunrise Energy Metals

8:55 AM Invited

Use of Sc to Improve the Properties of AA5083 Cast and Rolled Products: Paul Rometsch¹; Jerome Fourmann¹; Emad Elgallad²; X.-Grant Chen²; ¹Rio Tinto Aluminium; ²University of Québec at Chicoutimi

Efficiency of Sc for Strengthening and Formability Improvement of 5XXX BiW Sheets: Alexander Gradoboev¹; Margarita Nikitina¹; Dmitriy Ryabov¹; Roman Vakhromov¹; Aleksandr Krokhin²; Viktor Mann²; Dror Shaked¹; ¹Lmti Llc (Uc Rusal); ²UC RUSAL

9:45 AM Break

10:00 AM

Effect of Sc and Zr Additions on Dispersoid Microstructure and Mechanical Properties of Hot-rolled AA5083 Alloys: Ahmed Algendy¹; Kun Liu¹; Paul Rometsch²; Nick Parson²; X.-Grant Chen¹; ¹University of Quebec at Chicoutimi; ²Rio Tinto Aluminum

Effect of Cooling Rate on W-phase Formation in Al-Cu-Sc Alloys: Austin DePottey¹; Lu Jiang²; Thomas Dorin²; Thomas Wood¹; Timothy Langan³; Paul Sanders¹; ¹Michigan Technological University; ²Deakin University; 3Sunrise Energy Metals

10:50 AM Invited

Solute Clustering during Natural Ageing in Al-Cu-(Sc)-(Zr) Alloys: Lu Jiang¹; Kathleen Wood²; Robert Knott²; Anna Sokolova²; Timothy Langan³; Thomas Dorin¹; ¹Deakin University; ²ANSTO; ³Sunrise **Energy Metals**

11:15 AM

Effect of Zr and Sc on Intermetallic Morphology and Hardening of an Al-Fe Alloy: Suwaree Chankitmunkong1; Dmitry Eskin2; Chaowalit Chaowalit Limmaneevichitr3; Phromphong Pandee3; Onnjira Diewwanit³; ¹King Mongkut's Institute of Technology Ladkrabang; ²Brunel University London; ³King Mongkut's University of Technology Thonburi

Seaborg Institutes: Emerging Topics in Actinide Materials and Science — Characterization/ **Separation II**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: J. Rory Kennedy, Idaho National Laboratory; Taylor Jacobs, Los Alamos National Laboratory; Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Don Wood, Idaho National Laboratory

Tuesday AM | March 21, 2023 28A | SDCC

Session Chairs: Jean-Christophe Griveau, ITU Karlsruhe; Don Wood, INL

8:00 AM Invited

How to Figure Out Local Order Against Average Order in UO2?: Lionel Desgranges¹; Gianguido Baldinozzi²; ¹CEA; ²CNRS

8:30 AM Invited

Thermochemical Behavior and Microstructural Characterization of Advanced Fuels in Oxidizing and Reducing Atmospheres: Elizabeth Sooby¹; ¹University of Texas at San Antonio

A 69Ga NMR Study of Aging in 7 at.% Ga Stabilized -Plutonium: Seth Blackwell¹; Filip Ronning¹; Michihiro Hirata¹; Eric Bauer¹; Joe Thompson¹; Jeremy Mitchell¹; Paul Tobash¹; Tomas Martinez¹; Carlos Archuleta¹; Mike Ramos¹; ¹Los Alamos National Laboratory

9:20 AM

High Energy X-Ray Characterization of Microstructure at Macroscopic Depths in Pu Alloys: Dale Carver1; Donald Brown1; Taylor Jacobs¹; Alice Smith¹; Peter Kenesei¹; Jun-Sang Park¹; ¹Los Alamos National Laboratory

9:40 AM Break

10:00 AM Invited

Clarifying the Electronic Phase Space for U-based Materials with the ThCr2Si2-type Structure: Ryan Baumbach¹; ¹National High Magnetic Field Laboratory

10:30 AM Invited

The Use of Capillary Electrophoresis assisted by Ligand Complexation for Efficient Separation of Actinides and Lanthanides: Thibaut Lecrivain¹; Chloe Tolbert¹; Robert Fox¹; ¹Idaho **National Laboratory**

11:00 AM

Comparison of the Electronic Transport of UN and ThN versus ThC: Barbara Szpunar1; Jayangani Ranasinghe1; Jerzy Szpunar1; ¹University of Saskatchewan

MATERIALS DESIGN

Thermodynamics and Kinetics of Alloys — Session III

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Ji-Cheng Zhao, University of Maryland; Wei Xiong, University of Pittsburgh; Chuan Zhang, CompuTherm LLC; Shuanglin Chen, CompuTherm LLC

Tuesday AM | March 21, 2023 Sapphire M | Hilton

Session Chairs: Qing-Qiang Ren, Oak Ridge National Laboratory; Kamalnath Kadirel, CompuTherm, LLC

8:00 AM Invited

A Quantitative Model for the Electrodeposition of Metals and Alloys Based on In Situ Characterizations: Yifan Ma¹; Jakub Pepas¹; Hailong Chen¹; ¹Georgia Institute of Technology

8:20 AM Invited

An investigation and selected applications of the effective bond energy formalism: Giancarlo Trimarchi¹; Qing Chen¹; ¹Thermo-Calc Software AB

Phase diagram determination of ternary systems for understanding the TCP phase formation in Ni-based superalloys: Chuangye Wang¹; Ji-Cheng Zhao1; 1University of Maryland

9:00 AM

First-principles Calculations and Thermodynamic Modeling of the Mq-In System with Order-disorder Transitions: Yuanchen Gao1; Bi-Cheng Zhou¹; ¹University of Virginia

9:20 AM Break

9:40 AM Invited

High-throughput Design of Multi-principal Element Allovs with Spinodal Decomposition Assisted Microstructures: Shalini Koneru¹; Kamalnath Kadirvel²; Yunzhi Wang¹; ¹The Ohio State University; ²CompuTherm LLC

10:00 AM Invited

Understanding Precipitation and Age Hardening Of FeCrAl Alloy Using Explainable Artificial Intelligence: Indranil Roy1; Subhrajit Roychowdhury¹; Sandipp Krishnan Ravi¹; Bojun Feng¹; Rajnikant Umretiya¹; Andrew Hoffman¹; Raul Rebak¹; ¹GE Global Research

10:20 AM

Density-based Phase-field Modelling of the Interplay between Grain Boundary Segregation Transition and Structure: Reza Darvishi Kamachali¹; Theophilus Wallis¹; ¹Federal Institute for Materials Research and Testing (BAM)

Thermal Grooving and Grain Growth in a Polycrystalline Thin Film: A Phase-field Study: Miral Verma¹; Sandeep Sugathan²; Saswata Bhattacharya³; Rajdip Mukherjee⁴; ¹KU Luven Belgium; ²Kookmin University; 3Indian Institute of Technology Hyderabad; 4Indian Institute of Technology Kanpur

11:00 AM

Spinodal-mediated Microstructural Design via Phase Transformation Pathways in High-entropy Alloys (HEAs) Using Phase-field Modelling: Kamalnath Kadirvel¹; Shalini Koneru¹; Hamish Fraser¹; Yunzhi Wang¹; ¹The Ohio State University

Transmutation Effects in Fusion Reactor Materials: Critical Challenges & Path Forward — Helium, Tritium and Hydrogen Effects I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Arunodaya Bhattacharya, Oak Ridge National Laboratory; Steven Zinkle, University of Tennessee; Philip Edmondson, The University of Manchester; Aurelie Gentils, Université Paris-Saclay; David Sprouster, Stony Brook University; Takashi Nozawa, National Institutes for Quantum and Radiological Science and Technology (QST); Martin Freer, University of Birmingham

Tuesday AM | March 21, 2023 27B | SDCC

Session Chairs: Steven Zinkle, University of Tennessee; Hiroyasu Tanigawa, QST Japan

8:00 AM Invited

He Irradiation of W First-wall Materials: Parameters at Stake for the Bubble Creation, Behaviour and Impact on Tritium Trapping: Elodie Bernard¹; Ryuichi Sakamoto¹; Céline Martin¹; Floriane Montupet-Leblond¹; Mickaël Payet¹; Etienne Hodille¹; Arkadi Kreter¹; Loic Corso¹; Frédéric Leroy¹; Stefano Curiotto¹; Christian Grisolia¹; ¹CEA

8:40 AM

Thermonuclear Fusion: Some Open Issues Concerning Tritium: Christian Grisolia¹; Elodie Bernard¹; Etienne Hodille¹; Floriane Montupet-Leblond¹; Mickael Payet¹; Marco Utili¹; Silvano Tosti¹; Ion Cristescu¹; samuel Peillon¹; François Gensdarmes¹; Arnaud Bultel¹; ¹CEA Cadarache

9:00 AM

Optimization of Tritium Breeding in Molten Salt Blankets: Materials and Geometries: Vittorio Badalassi¹; ¹Oak Ridge National Laboratory

9:20 AM

Tritium Retention in Beryllium and Titanium Beryllide under Neutron Irradiation to High Damage Doses: Vladimir Chakin¹; Ramil Gaisin¹; Rolf Rolli¹; Michael Duerrschnabel¹; Michael Klimenkov¹; ¹Karlsruhe Institute of Technology

9:40 AM Break

10:00 AM Invited

Helium Effects on Mechanical Properties of (RA)FM Steels: Jean Henry¹; Yong Dai²; Ermile Gaganidze³; ¹Université Paris-Saclay, CEA; ²Paul Scherrer Institut; ³Karlsruhe Institute of Technology

10:40 AM

The Effect of Helium on Cavity Swelling in Dual-ion Irradiated Fe and Fe-10Cr Ferritic Alloys: Yan-Ru Lin¹; Arunodaya Bhattacharya¹; Steven Zinkle²; ¹Oak Ridge National Laboratory; ²University of Tennessee

11:00 AM

Effect of Helium on Low-temperature Hardening/Embrittlement (LTHE) in Neutron Irradiated Isotopically Tailored RAFM Steels: Arunodaya Bhattacharya¹; Steven Zinkle²; Samara Levine²; Mark Gilbert³; Charles Kessel⁴; Hiroyasu Tanigawa⁵; ¹Oak Ridge National Laboratory; ²University of Tennessee; ³UKAEA; ⁴Oak Ridge National Lab; ⁵QST

SPECIAL TOPICS

TMS2023 All-Conference Plenary

Tuesday PM | March 21, 2023 20A | SDCC

Session Chair: W. Jud Ready, Georgia Institute of Technology

12:00 PM Plenary

Gigaton Opportunities at the Intersection of Materials and Climate Technology: David T. Danielson¹; ¹Breakthrough Energy Ventures; Former U.S. Assistant Secretary of Energy Efficiency & Renewable Energy (EERE)

ADVANCED MATERIALS

2D Materials: Preparation, Properties, Modeling & Applications — Processing, Characterization & Applications II

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Sufian Abedrabbo, Khalifa University; Hesam Askari, University of Rochester; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Joshua Young, New Jersey Institute Of Technology; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Karine Mougin, CNRS, IS2M; Heinz Palkowski, Clausthal University of Technology

Tuesday PM | March 21, 2023 Aqua AB | Hilton

Session Chairs: Heinz Palkowski, Clausthal University of Technology; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS

2:30 PM Introductory Comments

2:35 PM Invited

2D-binary, Ternary and Quaternary Crystals for Space Applications: *Narasimha Prasad*¹; Ching Su²; Meghan Brandt³; Eric Bowman³; Bradley Arnold³; Fow-Sen Choa³; Brian Cullum³; Narsingh Singh³; ¹NASA langley Research Center; ²NASA Marshall Space Flight Center; ³University of Maryland Baltimore County

3:00 PM Keynote

2D Materials in Advance Electronic and Optoelectronic Applications: Sina Najmaei¹; ¹DEVCOM Army Research Laboratory

3:30 PM Invited

A Rapid, Fully Automated Electrochemical Modular Platform using 2D Materials as a Porous Electrode for Sensing Biological and Chemical Moieties of Interest: Sreerag Kaaliveetil¹; Yu-Hsuan Cheng¹; Li Zhenglong¹; Sagnik Basuray¹; ¹New Jersey Institute of Technology

3:55 PM Invited

Controlled Synthesis of 2D Transition Metal Dichalcogenides for Electronic Biosensors: Mengqiang Zhao¹; ¹New Jersey Institute of Technology

4:20 PM Break

4:40 PM Invited

Introduction of Two-dimensional Nanomaterials for Thin, Elastomeric, Durable Barriers for Chemical Protection (2D@CB): Tracee Whitfield¹; ¹Defense Threat Reduction Agency

5:05 PM Keynote

Membranes for Breathable Barrier/Protective Coatings for Toxic Gases/Vapors and Chemical Warfare Agents: Kamalesh Sirkar1; ¹New Jersey Institute of Technology

5:35 PM Invited

Parameter Space of Ferroelectrics and Metals Interfacing with Two-dimensional Materials for Neuromorphic Device Applications: Wendy Sarney¹; M. G. Sales²; A. Mazzoni¹; P.J. Taylor¹; J. Pearson¹; S. McDonnell²; Sina Najmaei¹; ¹DEVCOM Army Research Laboratory; ²University of Virginia

LIGHT METALS

60 Years of Taking Aluminum Smelting Research and Development from New Zealand to the World: An LMD Symposium in Honor of Barry J. Welch — Joint Barry Welch Honorary Symposium - Reduction & Electrodes Technology Session

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mark Dorreen, CSIRO; Alan Tomsett, Rio Tinto Pacific Operations; David Wong, Atmolite Consulting Pty Ltd; Linus Perander, Yara International; Barry Sadler, Net Carbon Consulting Pty Ltd; Stephan Broek, Kensington Technology Inc.

Tuesday PM | March 21, 2023 30E | SDCC

Session Chair: Evan Andrews, Boyne Smelters Limited

2:30 PM Introductory Comments

2:40 PM Invited

The Need to Respect to the Interlink between Science, Physics, and Cell Design in an Environmentally Responsible Manner -The Next Big Challenge for Aluminium Smelting: Barry Welch1; ¹University of Auckland; University of New South Wales

3:05 PM

Anode Quality Optimisation - Industry Learnings from the Research Supervised by Barry Welch: Alan Tomsett1; Barry Sadler2; ¹Rio Tinto Pacific Operations; ²Net Carbon Consulting

3:30 PM Invited

Process Recovery to Unlock Power Efficiency Improvement at BSL: Evan Andrews¹; Thomas Booby¹; Murray Ure¹; Hao Zhang²; ¹Boyne Smelters Limited; ²Transformation and Technical Support, Pacific Operations

3:55 PM

A Smart Individual Anode Current Measurement System and Its Applications: Choon-Jie Wong1; Jing Shi1; Jie Bao1; Barry Welch1; Maria Skyllas-Kazacos¹; Ali Jassim²; Mohamed Mahmoud²; Konstantin Nikandrov²; ¹University of New South Wales; ²Emirates Global Aluminium

4:20 PM Break

4:35 PM

Light Metals Research at the University of Auckland: James Metson¹; Ron Etzion¹; Margaret Hyland²; ¹University of Auckland; ²Victoria University of Wellington

5:00 PM

Impact of Aluminium Reduction Cell Parameters on Feeder Hole Condition: Pascal Lavoie1; Mark Taylor2; 1Alcoa; 2University of Auckland

5:25 PM

A Dynamic Coupled Mass and Thermal Model for the Top Chamber of the Aluminium Smelting Cells: Luning Ma1; Choon-Jie Wong1; Jie Bao¹; Maria Skyllas-Kazacos¹; Barry Welch¹; Nadia Ahli²; Mohamed Mahmoud²; Konstantin Nikandrov²; Amal Aljasmi²; ¹The University of New South Wales; ²Emirates Global Aluminium

5:50 PM Concluding Comments

SPECIAL TOPICS

Acta Materialia Symposium — Acta Materialia Award Session

Program Organizer: Carolyn Hansson, University of Waterloo

Tuesday PM | March 21, 2023 Sapphire D | Hilton

Session Chair: Carolyn Hansson, University of Waterloo

2:30 PM Introductory Comments

2:40 PM Presentation of Acta Student Awards

3:00 PM Invited

Acta Materialia Gold Medal Lecture: Have Alloy Design and Discovery Fundamentally Changed?: Tresa Pollock1; 1University of California - Santa Barbara

3:20 PM Question and Answer Period

3:30 PM Invited

Acta Materialia Silver Medal Lecture: Multi-Disciplinary Systems Optimization Approaches to Alloy Design: Raymundo Arroyave1; ¹Texas A&M University

3:50 PM Question and Answer Period

4:00 PM Invited

Acta Materialia Hollomon Award for Materials and Society: Bringing Materials and Manufacturing Technology Together: Charles Ward¹; ¹US Air Force Research Laboratory

4:20 PM Question and Answer Period

4:30 PM Invited

Acta Materialia Mary Fortune Global Diversity Lecture: Diversity & Diffraction: Ben Britton¹; ¹Imperial College London

4:50 PM Question and Answer Period

5:00 PM Brief break to prepare for reception

5:10 PM Wine and Cheese Reception with Posters:

Student Award Winners in Acta Materialia Symposium:

- Glenn Balbus Disordered Interfaces Enable High Temperature Thermal Stability and Strength in a Nanocrystalline Aluminum Alloy
- Bárbara Bellon Directional Solidification and Microstructure Length Scale Predictions in Binary Alloys
- Avanish Chandan Temperature-dependent Deformation Behavior and Stacking Fault Energy of Fe40Mn40Co10Cr10 Alloy
- Chuchu Li Biomechanical Strategies to Reach a Compromise between Stiffness and Flexibility in Specialized Femoral Cuticle
- Mackenzie Perry Tracing Plastic Deformation Path and Concurrent Grain Refinement during Additive Friction Stir Deposition
- Gabriel Spartacus Characterization of the Nature and Morphology of Coarse Precipitation in Various Oxide Dispersion Strengthened Steels
- Chihiro Tabata Quantitative Analysis of Sulfur Segregation at the Oxide/Substrate Interface in Ni-base Single Crystal Superalloy

ADDITIVE TECHNOLOGIES

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials — Hard and Soft Magnets

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Magnetic Materials Committee, TMS: Additive Manufacturing Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Emily Rinko, Iowa State University; Emma White, DECHEMA Forschungsinstitut; Kyle Johnson, Sandia National Laboratories; Andrew Kustas, Sandia National Laboratories; Iver Anderson, Iowa State University Ames Laboratory

Tuesday PM | March 21, 2023 23C | SDCC

Session Chair: Daniel Salazar, BCMaterials

2:30 PM Invited

In Situ Analysis of the Phase Evolution in AlNiCo: Emily Rinko1; Andrrew Chuang²; Emma White³; Jordan Tiariks¹; Iver Anderson⁴; Matthew Kramer⁴; ¹lowa State University; ²Argonne National Laboratory; 3DECHEMA Forschungsinstitut; 4Ames Laboratory

2:55 PM Invited

Structural Magnetic Materials Build by Cold Spray Additive Manufacturing: Fabrice Fabrice¹; Jean-Michel Lamarre¹; ¹National Research Council Canada

3:20 PM

Powder Fabrication and Directed Energy Deposition of AlNiCo Permanent Magnets: Saikumar Dussa¹; Sameehan Joshi¹; Narendra Dahotre¹; Rajarshi Benerjee¹; ¹University of North Texas

3:40 PM Invited

Alignment of Magnetic Particles during Additive Manufacturing of Anisotropic Bonded Permanent Magnets: Ikenna Nlebedim¹; ¹Ames National Laboratory, US-DOE

4:05 PM Break

4:20 PM Invited

Magnetocaloric Composites for Fused Filament Fabrication: Victorino Franco¹; Álvaro Díaz-García¹; Luis M. Moreno-Ramírez¹; Jorge Revuelta¹; Jia Yan Law¹; ¹Universidad de Sevilla

4:45 PM

Electrohydrodynamic 3D Printing of Magnetic Composites: Ander Reizabal¹; ¹BCMaterials - Basque Center for Materials, Applications and Nanostructures

5:05 PM

Effect of Chromium Content on the Magnetic Behavior of Direct Energy Deposited FeNiCo Alloys: Madhavan Radhakrishnan¹; Michael McKinstry¹; Sai Kiran Nartu¹; Varun Chaudhary²; Raju Ramanujan²; Rajarshi Banerjee¹; Narendra Dahotre¹; ¹University of North Texas; ²Nanyang Technological University

Process-microstructure-property Relationships in Additively Manufactured Fe-Si-B-Nb-Cu Soft Magnetic Alloy: Erin Barrick1; Andrew Kustas¹; Joseph Boro¹; Eric Theisen²; Todd Monson¹; Levi Van Bastian¹; Frank Delrio¹; Jonathan Peques¹; Matthew Jones³; Carl Frick⁴; ¹Sandia National Laboratories; ²Metglas Inc.; ³University of Wyoming; 4Colorado School of Mines

5:45 PM

Development of Additively Manufactured FeCo-2V and Fe-80Ni-5Mo Soft Magnetic Alloys for Spacecraft Magnetic Shielding **Applications**: Samad Firdosy¹; Nicholas Ury¹; Katherine Dang¹; Pablo Narvaez¹; Vilupanur Ravi²; R. Peter Dillon¹; ¹Nasa Jet Propulsion Laboratory; ²California State Polytechnic University, Pomona

ADDITIVE TECHNOLOGIES

Additive Manufacturing Fatigue and Fracture: Effects of Surface Roughness, Residual Stress, and **Environment — Session III**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; John Lewandowski, Case Western Reserve University; Nima Shamsaei, Auburn University; Steve Daniewicz, University of Alabama; Mohsen Seifi, ASTM International/Case Western Reserve University

Tuesday PM | March 21, 2023 22 | SDCC

Session Chair: Mohsen Seifi, ASTM International/Case Western Reserve University

2:30 PM Invited

Assessment of Fatigue Evolution and Damage Tolerance in Additive Manufactured Metals: Mustafa Awd1; Daniel Kotzem1; Felix Stern¹; Mirko Teschke¹; Jochen Tenkamp¹; Frank Walther¹; ¹TU **Dortmund University**

Role of the Oxide Layer in Cold Sprayed Metallic Structures: Mobin Vandadi¹; Nima Rahbar¹; Winston Soboyejo¹; ¹Worcester Polytechnic Institute

3:20 PM

Evaluating Residual Stress Effects on Fatigue Crack Growth Behaviour of AM Stainless Steel Processed via DED and PBF: Christine Smudde¹; Christopher San Marchi²; Michael Hill¹; Jeffery Gibeling¹; ¹University of California, Davis; ²Sandia National Laboratories, Livermore

3:40 PM

Tunable Fatigue Performance in Laser Powder Bed Fusion Titanium Alloy via Laser Shock Peening: Nik Hrabe¹; Tom Berfield²; Jake Benzing¹; Newell Moser¹; Orion Kafka¹; Nicholas Derimow¹; ¹National Institute of Standards and Technology; ²University of Louisville

4:00 PM Break

4:20 PM

The Influence of Sample Thickness, Residual Stress, and Surface Condition on Ultrasonic Fatigue Behavior of LPBF 316L: Megan Trombley¹; John Allison¹; ¹University of Michigan

4.40 PM

Influence of Post-Processing Techniques on Process-induced Defects in AM AlSi10Mg and CP-Ti: Austin Ngo1; Hannah Sims1; John Lewandowski¹; ¹Case Western Reserve University

Fatigue of L-PBFTi-6242 under Different Heat Treatment Processes, and Comparisons to Ti64: Amir Hadadzadeh1; Mahdi Habibnejad Korayem²; Reza Molaei¹; ¹University of Memphis; ²AP&C Advanced Powder and Coating, a GE Additive Company,

5:20 PM Invited

Development of Metal Powders for Additive Manufacturing Applications: Lorena Perez¹; Luke Brewer¹; ¹University of Alabama

ADDITIVE TECHNOLOGIES

Additive Manufacturing for Energy Applications V — **Properties, Performance Testing and Modeling II**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Nuclear Materials Committee

Program Organizers: Isabella Van Rooyen, Pacific Northwest National Laboratory; Subhashish Meher, Idaho National Laboratory; Xiaoyuan Lou, Purdue University; Kumar Sridharan, University of Wisconsin-Madison; Michael Kirka, Oak Ridge National Laboratory; Yi Xie, Purdue University

Tuesday PM | March 21, 2023 23A | SDCC

Session Chair: Michael Kirka, Oak Ridge National Laboratory

2:30 PM Introductory Comments

2:35 PM Invited

Failure Phenomena of Additively Manufactured Ni-base Superalloys at Various Temperatures under Static and Cyclic Loadings: Shuai Shao¹; Nima Shamsaei¹; ¹Auburn University

Elevated Temperature Fretting Wear Analysis of Additively Manufactured Inconel 625: Manisha Tripathy¹; LLoyd Hackel²; Keivan Davami³; Ali Beheshti¹; ¹George Mason University; ²Curtiss Wright Surface Technologies; 3The University of Alabama

3:30 PM

The Effects of Process Parameters and Scan Strategy on the Corrosion Properties of Laser Powder Bed Fusion Additively Manufactured Haynes 282: Junwon Seo1; Nicholas Lamprinakos1; Youyang Zhao²; Anthony Rollett¹; ¹Carnegie Mellon University; ²National Renewable Energy Laboratory

3:50 PM Break

4:05 PM Invited

Role of Predictive Modeling and Uncertainty Quantification in Qualification of Additively Manufactured Alloys: David Andersson¹; Mariyappan Kumar¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

4:40 PM

Quantification of Uncertainties in Metal Additive Manufacturing **Processes in Support of Qualification**: Daniel Moser¹; Helen Cleaves¹; Michael Heiden¹; Scott Jensen¹; Kyle Johnson¹; Mario Martinez¹; Theron Rodgers¹; David Saiz¹; Michael Stender¹; ¹Sandia National Laboratories

5:00 PM

Surface Roughness of Heat Exchanger Flow Channels Manufactured with Directed Energy Deposition: Luis Nuñez1; Minseop Song¹; Sunming Qin¹; Piyush Sabharwall¹; Isabella van Rooyen²; ¹Idaho National Laboratory; ²Pacific Northwest National Laboratory

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Large-scale Metallic Components — Steels

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Sougata Roy, University of North Dakota; Sneha Prabha Narra, Carnegie Mellon University; Andrzej Nycz, Oak Ridge National Laboratory; Yousub Lee, Oak Ridge National Laboratory; Chantal Sudbrack, National Energy Technology Laboratory; Albert To, University of Pittsburgh; Yashwanth Bandari, AddiTec Technologies LLC

Tuesday PM | March 21, 2023 24A | SDCC

Session Chairs: Sougata Roy, University of North Dakota; Andrzej Nycz, Oak Ridge National Laboratory

2:30 PM

Assessment of As-printed Performance in Wire-Arc Additively Manufactured 410NiMo Steel Components: Yukinori Yamamoto¹; Wei Tang¹; Andres Marquez Rossy¹; Andrzej Nycz¹; Josh Vaughan¹; Donovan Leonard¹; Luke Meyer¹; Derek Vaughan¹; Yousub Lee¹; Paul Beckman²; ¹Oak Ridge National Laboratory; ²Carl Zeiss Industrial Metrology, LLC

2:50 PM

Mechanical Properties and Fatigue Performance of a Wire Arc Additive Manufactured ER100S-G Steel for HY-80 Applications: Garrett Webster¹; Kathleen Chou²; Riyanka Ribble²; Ajay Krishnamurthy²; Shahab Zekriardehani²; Joseph Lawrence¹; *Meysam* Haghshenas¹; ¹University of Toledo; ²Eaton Corporation

3:10 PM

Quantifying the Influence of Plastic Anisotropy on the Prediction of Residual Stress and Distortion of Large Scale Additively Manufactured 316L Stainless Steel: Jason Mayeur1; Yousub Lee1; Yukinori Yamamoto¹; Andrzej Nycz¹; ¹Oak Ridge National Laboratory

Large Scale Metal Additive Manufacturing - Towards Qualification and Certification: Sudarsanam Babu1; Obed Acevedo1; Andrzej Nycz²; Yukinori Yamamoto²; ¹University of Tennessee, Knoxville; ²Oak Ridge National Laboratory

4:00 PM Break

4:20 PM

The Effect of Build Platform Temperature and Thermal Post-Processing on the Ferritic/Martensitic T-91 Stainless Steel Additively Manufactured via Directed Energy Deposition Laser technique: Shmuel Samuha¹; Jeff Bickel¹; Tuhin Mukherjee²; Tarasankar DebRoy²; Thomas Lienert³; Stuart Maloy⁴; Calvin Lear⁴; Peter Hosemann¹; ¹University of California - Berkeley; ²The Pennsylvania State University; 3Optomec; 4Los Alamos National Laboratory

4:40 PM

Unique Aspects of Structure-Properties Relationships within Large-scale Structural Components of Fusion Additively Manufactured Stainless Steel: Saket Thapliyal¹; Patxi Fernandez-Zelaia¹; Andres Rossy¹; Quinn Campbell¹; Michael Kirka¹; Rangasayee Kannan¹; Andrzej Nycz¹; Anand Kulkarni²; Kyle Stoodt²; ¹Oak Ridge National Laboratory; ²Siemens Energy Inc.

5:00 PM

Wire + Arc Additive Manufacturing of Functionally -graded HSLA and Austenitic Stainless Steel Bi-material Structures: Jose Luis Galan Argumedo¹; Mahdi Mahmoudiniya²; Marcel Hermans¹; Vera Popovich¹; ¹TU Delft; ²Ghent University

5:20 PM

Large Scale Metal Additive Manufacturing for Infrastructure Repair: Zackery Mcclelland¹; Kyle Dunsford¹; ¹US Army ERDC

Operando Neutron Diffraction Characterization of Wire-Arc Deposited Steels: Alex Plotkowski¹; Kyle Saleeby¹; Chris Fancher¹; James Haley¹; Ke An¹; Guru Madireddy¹; Yousub Lee¹; Tom Feldhausen¹; Dunji Yu¹; Clay Leach¹; ¹Oak Ridge National Laboratory

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Metals: Applications of Solidification Fundamentals — Physics-based and Data-based Modeling II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Solidification Committee

Program Organizers: Wenda Tan, The University of Michigan; Alex Plotkowski, Oak Ridge National Laboratory; Lang Yuan, University of South Carolina; Lianyi Chen, University of Wisconsin-Madison

Tuesday PM | March 21, 2023 21 | SDCC

Session Chair: Lang Yuan, University of South Carolina

2:30 PM

Simulation of Microstructures Produced by Laser Powder Bed Fusion: Theophile Camus¹; Daniel Maisonnette²; Oriane Baulin²; Oriane Senninger¹; Gildas Guillemot¹; Charles-Andre Gandin¹; ¹PSL University; 2CETIM

2:50 PM

Prediction of Large-scale 3D Solidification Microstructure Evolution during Metal Additive Manufacturing with High Efficiency and Resolution: Shunyu Liu¹; Yung Shin²; ¹Clemson University; ²Purdue University

3:10 PM

Investigation of Scan Rotation Effects in Additive Manufacturing Using Cellular Automata-based Microstructure Modeling: Matthew Rolchigo¹; John Coleman¹; Gerry Knapp¹; Jamie Stump¹; ¹Oak Ridge **National Laboratory**

3:30 PM

Testing Analytic Models and Heuristics for Microstructure Evolution with 3D, Dendrite-resolved Phase-field Simulations of Entire Spot Melts: Stephen DeWitt¹; Christopher Newman²; Stephen Nichols¹; Jean-Luc Fattebert¹; Balasubramaniam Radhakrishnan¹; John Coleman¹; Gerry Knapp¹; James Belak³; John Turner¹; ¹Oak Ridge National Laboratory; ²Los Alamos National Laboratory; ³Lawrence Livermore National Laboratory

3:50 PM

Switching of Controlling Mechanisms during the Rapid Solidification of a Melt Pool in Additive Manufacturing: Yijia Gu¹; ¹Missouri University of Science and Technology

4:10 PM Break

Prediction of Solidification Cracking in Rene 80 Superalloy during the Directed Energy Deposition Process: Hamed Hosseinzadeh¹; Lang Yuan¹; Luke Mohr²; Lee Kerwin²; Anindya Bhaduri³; Arushi Dhakad²; Chen Shen³; Shenyan Huang³; Changjie Sun³; Alexander Kitt²; ¹University of South Carolina; ²EWI; ³GE Research

4:45 PM

The Effects of Non-equilibrium Interfaces and Partial Solute Drag on Morphological Stability: Christopher Hareland¹; Gildas Guillemot²; Charles-André Gandin²; Peter Voorhees¹; ¹Northwestern University; ²Mines Paris - PSL University

5:05 PM

Predicting Phase and Morphology for Use in Site Specific Control of Microstructures in L-PBF Stainless Steel: Michael Haines¹; Maxwell Moyle¹; Nima Haghdadi¹; Sophie Primig¹; ¹University of New South

5:25 PM

Eliminating Hot Tearing in Laser Powder Bed Fusion of High Strength Aluminium Alloy 2139 Through Parameter Optimisation and Grain Refinement: Joe Elambasseril¹; Michael Benoit²; Suming Zhu¹; Mark Easton¹; Edward Lui¹; Craig Brice³; Ma Qian¹; Milan Brandt¹; ¹RMIT University; ²University of British Columbia; ³Colarado School of Mines

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response — Deformation **Mechanisms and Mechanical Properties**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Meysam Haghshenas, University of Toledo; Andrew Birnbaum, US Naval Research Laboratory; Robert Lancaster, Swansea University; Xinghang Zhang, Purdue University; Aeriel Leonard

Tuesday PM | March 21, 2023 23B | SDCC

Session Chairs: Somayeh Pasebani, Oregon State University; Xinghang Zhang, Purdue University

2:30 PM Invited

Understanding the Strength and Ductility of Additively Manufactured Metals across Various Length Scales: Yinmin (Morris) Wang¹; ¹University of California - Los Angeles

2:50 PM

Multi-scale Tensile Deformation of Wire Arc Additive Manufactured Titanium from Microscopic Beads to Macroscopic Component: Tanaji Paul¹; Blanca Palacios¹; Denny John¹; Kazue Orikasa¹; Tyler $Dolmetsch^{1}\!; \quad Sohail \quad Mohammed^{1}\!; \quad Gonzalo \quad Seisdedos^{1}\!; \quad Sean$ Langan¹; Alex Michelson¹; Cheng Zhang¹; Arvind Agarwal¹; ¹Florida International University

Characterizing Inhomogeneous Deformation Across Melt Pool Boundaries in Additively Manufactured Parts: John Fite1; Suhas Prameela¹; John Slotwinski²; Tim Weihs¹; ¹Johns Hopkins University; ²JHU Applied Physics Lab

3:30 PM

Mechanical Response of Tailored 304L Stainless Steels, Processed with L-PBF, under Different Stress States: Christos Sofras¹; Jan Capek¹; Markus Strobl¹; Efthymios Polatidis¹; ¹Paul Scherrer Institute

3:50 PM Break

4:10 PM

Deformation Behavior of Aluminum Alloys Deposited by Laser Hot-wire Manufacturing: Gerald Knapp¹; Maxim Gussev¹; Amit Shyam¹; Thomas Feldhausen¹; Alex Plotkowski¹; ¹Oak Ridge National Laboratory

4:30 PM

Microstructures and Deformation Mechanisms in Additively Manufactured 316L Stainless Steels: Thomas Voisin1; Marissa Linne¹; Jean-Baptiste Forien¹; Nicolas Bertin¹; Tatu Pinomaa²; Anssi Laukkanen²; Kirubel Teferra³; Margaret Wu¹; Sylvie Aubry¹; Y. Morris Wang⁴; Nathan Barton¹; ¹Lawrence Livermore National Laboratory; ²VTT Technical Research Center of Finland; ³US Naval Research Laboratory; 4University of California Los Angeles

4:50 PM

Utilizing Profilometry-based Indentation Plastometry, Nanomechanical **Property** Mapping and Flat-punch Nanoindentation to Unveil Dynamic Recrystallization-to-Plasticity Relations in Cold Spray Additive Manufacturing: Bryer Sousa1; Danielle Cote¹; ¹Worcester Polytechnic Institute

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Materials Design and Alloy Development V - Design Fundamentals -Aluminum Alloys II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Behrang Poorganji, University of Toledo; Hunter Martin, HRL Laboratories LLC; James Saal, Citrine Informatics; Jiadong Gong, Questek Innovations LLC; Orlando Rios, University of Tennessee; Atieh Moridi, Cornell University

Tuesday PM | March 21, 2023 24C | SDCC

Session Chair: Orlando Rios, UTK

2:30 PM Invited

Hypereutectic Al-Si-Cu Alloy for Laser Powder Bed Fusion: Andrew Bobel¹; Yoojin Kim²; Lee Casalena³; Anil Sachdev¹; ¹General Motors Corporation; ²Populus Group; ³Thermo Fisher Scientific

3:00 PM

A Powder-free Methodology to Develop New High-strength Alalloys with Unique Microstructures and Mechanical Properties: Giuseppe Del Guercio¹; David McCartney¹; Christopher Tuck¹; Marco Simonelli¹; ¹University of Nottingham

3:20 PM

Microstructure and Mechanical Properties of Near-eutectic Al-Ce-Ni-Fe Alloys Produced by Laser Powder-bed Fusion: Tiffany Wu¹; Amit Shyam²; Alex Plotkowski²; David Dunand¹; ¹Northwestern University; 2Oak Ridge National Laboratory

Microstructure and High-temperature Mechanical Properties of a Novel Al-Ni-Fe-Zr Alloy Processed by Laser Powder Bed Fusion: Joshua Dorn¹; Hyeji Park²; Joseph Croteau¹; Nhon Vo¹; David Dunand²; ¹NanoAl LLC; ²Northwestern University

4:00 PM Break

4:20 PM

Physics-constrained, Inverse Design of High-temperature, Highstrength, Creep-resistant Printable Al Alloys Using Machine Learning Methods: S. Mohadeseh Taheri-Mousavi¹; ¹Carnegie Mellon University

Laser Powder Bed Fusion of Nanoparticles-Enabled High-Zinc Al-Zn-Mg-Cu Alloys: Tianqi Zheng¹; Shiqi Zheng¹; Jingke Liu¹; Bingbing Li²; Xiaochun Li¹; ¹University of California, Los Angeles; ²California State University, Northridge

5:00 PM

Microstructure and Mechanical Properties of Al-5Mg2Si-2Mg Alloy Processed by Laser Powder Bed Fusion: Shouxun Ji¹; Hailin Yang²; ¹Brunel University London; ²Central South University

In-situ Reactive Printing of Aluminum Matrix Composite with Ultra-high Volume Fraction Reinforcement: Chenxi Tian1; Atieh Moridi¹; ¹Cornell University

BIOMATERIALS

Advanced Biomaterials for Biomedical Implants — Advanced Biomaterials for Biomedical Implants

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Jing Du, Pennsylvania State University

Tuesday PM | March 21, 2023 Sapphire 400B | Hilton

Session Chairs: Du Jing, Pennsylvania State University; Thomas Vinoy, University of Alabama at Birmingham

2:30 PM Invited

Biofunctional Drug-free Anti Inflammatory/Antimicrobial Bone Implants with Enhanced Osseointegration: Tolou Shokuhfar¹; ¹University of Illinois at Chicago

3:05 PM

Analysis of Biometal Alloys in a Clinically Relevant In Vivo Arterial Implant Model: Roger Guillory¹; Patrick Bowen²; ¹Michigan Technological University; ²Deringer-Ney

3:25 PM

Characterization of Zn-Li-WC Nanocomposite for Biodegradable Implants: Jingke Liu1; Chase Linsley1; Yingchao Su2; Yuxin Zeng1; Benjemin Wu¹; Donghui Zhu²; Xiaochun Li¹; ¹University of California Los Angeles; 2State University of New York at Stony Brook

3:45 PM

ZnO-NPs-Coated Implants with Osteogenic Properties for Enhanced Osseointegration: Kate Mokobia1; Ikhazuagbe Ifijen2; Esther Ikhuoria³; ¹Department of Science Laboratory Technology, Delta State Polytechnic, Otefe-Oghara, Delta State, Nigeria; 2Rubber Research Institute of Nigeria; 3University of Benin, Benin City, Edo State, Nigeria

4:05 PM Break

4:25 PM Invited

Characterization of Spicule Structure: Fariborz Tavangarian¹; Jennifer Gray²; Trevor Clark²; Chao Gao³; ¹Pennsylvania State University Harrisburg; ²Pennsylvania State University; ³Norwegian University of Science and Technology

5:00 PM

Candida Albicans Biofilm Formation of an Additive-manufactured Titanium Alloy: Mari Koike1; Tetsuro Horie1; Richard Mitchell2; Susan Hummel³; Toru Okabe⁴; ¹Nippon Dental University; ²University of Kentucky College of Dentistry; 3Harry S. Truman Memorial Veterans' Hospital; ⁴Baylor College of Dentistry

5:20 PM

The Stress-corrosion-cracking Resistance of Zinc-based Alloys Designed for Bioresorbable Medical Implants: Morteza Shaker Ardakani¹; Henry Summers¹; Stephen Kampe¹; Jaroslaw Drelich¹; ¹Michigan Tech

5:40 PM

Effects of Grain Size and Inclusions on the Mechanical and Biocorrosion Properties of ZX10 Mg Alloy: Sreenivas Raguraman¹; John Fite¹; Adam Griebel²; Timothy Weihs¹; ¹Johns Hopkins University; ²Fort Wayne Metals

MATERIALS PROCESSING

Advanced Characterization of High-temperature Alloys: Phase Evolution during Manufacturing and Service-induced Deformation — Role of Deformation in Phase Transformations and Microstructural Evolution

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Katerina Christofidou, University of Sheffield; Benjamin Adam, Oregon State University; Stoichko Antonov, Max-Planck Institut für Eisenforschung GmbH; James Coakley, University of Miami; Martin Detrois, National Energy Technology Laboratory; Paraskevas Kontis, Norwegian University of Science and Technology; Stella Pedrazzini, Imperial College London; Sophie Primig, University of New South Wales

Tuesday PM | March 21, 2023 29D | SDCC

Session Chairs: Stella Pedrazzini, Imperial College London; Paraskevas Kontis, Norwegian University of Science and Technology; Cynthia Rodenkirchen, Imperial College London

2:30 PM Invited

Leveraging Local Phase Transformation Strengthening to Achieve Superior Next Generation Superalloys: *Timothy Smith*¹; Timothy Gabb¹; Nikolai Zarkevich²; Mikhail Mendelev²; Valery Borovikov²; Christopher Kantzos¹; Ashton Egan³; John Lawson²; Michael Mills³; ¹NASA Glenn Research Center; ²NASA Ames Research Center; ³The Ohio State University

3:00 PM

Quantifying Creep Deformation Behavior of Optimized Local Phase Transformation Strengthened Next Generation Superalloys: Ashton Egan¹; Longsheng Feng¹; Timothy Smith²; Yunzhi Wang¹; Michael Mills¹; ¹Ohio State University; ²NASA Glenn Research Center

3:20 PM

Microstructural Control of LPBF Inconel 718 through Post Processing of Intentionally Placed AM Discontinuity Distributions: Elaine Livera¹; Katerina Christofidou¹; Daniel Ryan²; Iain Todd¹; ¹University of Sheffield; ²Solar Turbines

3:40 PM

Temporal Evolution of Precipitate in HAYNES 282 during Ageing: Growth and Coarsening Kinetics, Solute Partitioning and Lattice Misfit: Shreya Mukherjee¹; Bibhu Sahu²; Aniruddha Biswas³; Sujoy Kar⁴; Soumitra Tarafder⁵; ¹Indian Institute of Science; ²University of Michigan; ³BARC, Mumbai; ⁴IIT Kharagpur; ⁵CSIR NML

4:00 PM Break

4:30 PM Invited

Effect of Temperature, Stress and Environment on Preferential and Internal Oxidation of Ni-base Alloys: Karen Kruska¹; Elizabeth Kautz¹; Ziqing Zhai¹; Matthew Olszta¹; Daniel Schreiber¹; ¹PNNL

5:00 PM

Local Phase Transformation Strengthening in CoNi-base Superalloys: Andreas Bezold¹; Nicolas Karpstein¹; Erdmann Spiecker¹; Mathias Goken¹; Steffen Neumeier¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

5:20 PM

Microstructural Characterization of Cost-effective Inconel 738LC Superalloy after Tensile Deformation at Various Temperatures: *Hyo Ju Bae*¹; Kwang Kyu Ko¹; Eun Hye Park¹; Joong Eun Jung²; Jung Gi Kim¹; Hyokyung Sung¹; Jae Bok Seol¹; ¹Gyeongsang National University; ²Korea Institute of Materials Science

CHARACTERIZATION

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session IV

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; C. Tasan, Massachusetts Institute of Technology; Olivia Jackson, Sandia National Laboratories

Tuesday PM | March 21, 2023 Aqua 311A | Hilton

Session Chairs: Yifan Zhang, Los Alamos National Laboratory; Donald Brown, Los Alamos National Laboratory

2:30 PM Invited

Coupled Neutron Diffraction and Modeling Study of the Formation and Recovery of Dislocations in Elemental Tantalum and Ferritic HT-9 Steel: Donald Brown¹; Reeju Pokharel¹; Aaron Kohnert¹; Laurent Capolungo¹; Levente Balogh¹; Bjorn Clausen¹; Tarik Saleh¹; ¹Los Alamos National Laboratory

3:00 PM

Coded Apertures for Fast Depth Resolved Diffraction and In-situ Characterization: *Dina Sheyfer*¹; Doga Gursoy¹; Jon Tischler¹; Wenjun Liu¹; Michael Wojcek¹; ¹Argonne National Laboratory

3:20 PM

Monitoring Defect Structure Evolution in Titanium Alloys using High-Energy X-ray Diffraction: Kenneth Peterson¹; Joel Bernier²; Jacob Ruff³; Darren Pagan¹; ¹Pennsylvania State University; ²Lawrence Livermore National Laboratory; ³Cornell High Energy Synchrotron Source

3:40 PM

Resolving Intragranular Stress Fields in Plastically Deformed Titanium Using Point-focused High-energy Diffraction Microscopy: Wenxi Li¹; Hemant Sharma²; Kenesei Peter²; Sidharth Ravi³; Huseyin Sehitoglu³; Ashley Bucsek¹; ¹University of Michigan; ²Argonne National Laboratory; ³University of Illinois at Urbana-Champaign

4:00 PM Break

4:20 PM

Understanding Variant Selections during Phase Transformation and Deformation Twinning in BCC Metals: Avinash Dongare¹; Aadhithyan Kannan¹; Ke Ma¹; Avanish Mishra¹; ¹University of Connecticut

4:40 PM

Using Deep Learning to Reconstruct Grains from Simulated Far-Field Diffraction Data: Ashley Lenau¹; Yuefeng Jin²; Ashley Bucsek²; Stephen Niezgoda¹; ¹Ohio State University; ²University of Michigan

5:00 PM

3D Grain Interactions after Fatigue Loading in an Al-Li Binary Alloy via High Resolution X-ray Characterization Techniques: Sven Gustafson¹; Wolfgang Ludwig²; Katherine Shanks³; Raquel Rodriguez-Lamas⁴; Can Yildirim⁴; Carsten Detlefs⁴; Michael Sangid¹; ¹Purdue University; ²University Lyon I; ³Cornell High Energy Synchrotron Source; ⁴European Synchrotron Radiation Facility

ADVANCED MATERIALS

Advanced Functional and Structural Thin Films and Coatings & Honorary Palkowski Session — Thin Films and Nanostructures for Optoelectronics II

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, IS2M; Ravindra Nuggehalli, New Jersey Institute of Technology; Heinz Palkowski, Clausthal University of Technology

Tuesday PM | March 21, 2023 Aqua E | Hilton

Session Chairs: Karine Mougin, CNRS, IS2M; Ramana Chintalapalle, University of Texas at El Paso

2:30 PM Introductory Comments

2:35 PM Keynote

Plasma Polymerization: Thin Films and Nanostructures: Jamerson Carneiro De Oliveira¹; Aissam Airoudj¹; Florence Bally-Le Gall¹; Vincent Roucoules²; ¹Université de Haute-Alsace, Université de Strasbourg, CNRS, IS2M; ²Université de Haute-Alsace, Université de Strasbourg, CNRS, IS2M

3:15 PM Invited

Investigation of n- and p-doped Silicon-rich Silicon Oxynitride Thin Films Prepared by ECR-PECVD to Synthesize Doped Silicon Nanocrystals: Gerald Ferblantier¹; Emilie Steveler¹; Corine Ulhaq-Bouillet²; Dominique Muller¹; Yann Le Gall¹; ¹University of Strasbourg, ICube Laboratory-CNRS; ²University of Strasbourg, IPCMS-CNRS

Localized Surface Plasmon Resonance in Highly Doped Si Nanocrystals Embedded in a Silica Matrix: Herve Rinnert¹, Clavel Berclis Kengne Choumele¹; Mathieu Stoffel¹; Xavier Devaux¹; Etienne Talbot²; Jean-Marie Poumirol³; Michel Vergnat¹; Caroline Bonafos³; Alix Valdenaire¹; ¹Universite de Lorraine - Institut Jean Lamour; ²Normandie Univ., Groupe de Physique des Matériaux; ³CEMES-**CNRS**

4:15 PM Break

4:35 PM

Electrodeposition of Nickel Oxides Nano Thin Films on 3-D Porous Nickel for Ultracapacitor Application: Balwant Singh¹; Debabrata Das¹; C Ramana¹; ¹The University of Texas at El Paso

3D Microstructuration by Direct Laser Writing: Xingyu Wu¹; Quentin Bauerlin¹; Sébastien Dominici¹; Karine Mougin¹; Arnaud Spangenberg¹; ¹Université de Haute-Alsace, CNRS, IS2M; Université de Strasbourg

Alloying Refractory Diboride Thin Films as a Route to Nanocrystallinity: Samyukta Shrivastav¹; Dana Yun¹; Kinsey Canova¹; John Abelson¹; Jessica Krogstad¹; ¹University of Illinois at Urbana-Champaign

5:35 PM Concluding Comments

ENERGY & ENVIRONMENT

Advanced Materials for Energy Conversion and Storage 2023 — Functional Materials for Energy

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Surojit Gupta, University of North Dakota: Soumendra Basu, Boston University: Paul Ohodnicki. University of Pittsburgh; Eric Detsi, University of Pennsylvania

Tuesday PM | March 21, 2023 32B | SDCC

Session Chairs: Jung Pyung Choi, Pacific Northwest National Laboratory; Soumendra Basu, Boston University

2:30 PM

Elucidation of the Structure Property Relationships that Enable Grotthuss Diffusion in Prussian Blue Electrodes for Fast Hydrogen Ion Batteries: Weiyi Zhang¹; Jordan Barr²; Yanke Fu¹; Scott Beckman²; Xiulei Ji³; Peter Greaney¹; ¹University of California, Riverside; ²Washington State University; ³Oregon State University

New Compounds with Distinct Porous Morphology: Raj Singh Gaur¹; ¹SH Chemicals

3:10 PM

Assembled MXene/Carbon Nanotube **Electrodes** Anomalous Electrochemical Response: Kyle Matthews1; Armin VahidMohammadi¹; Teng Zhang¹; Yury Gogotsi¹; ¹Drexel University

Mitigate Plating in Graphite Using Electrode Microstructure Simulations: Affan Malik¹; Hui-Chia Yu¹; ¹Michigan State University

Synthesis, Characterization and Determination of Electrical Properties of Potassium Jarosite Powders: Eduardo Cerecedo-Sáenz¹; Carlos O. González-Morán²; Juan Hernández-Ávila¹; José G. M. Miranda-Hernández²; Alberto Arenas-Flores¹; J. Rubén Serralde-Lealba¹; Otilio A. Acevedo-Sandoval¹; E Salinas¹; ¹Univ Autónoma Del Estado De Hidalgo; ²Universida Auónoma del Estado de México

4:10 PM Break

4:30 PM

The Compatibility of Metallic Phase Change Materials and Alumina Coating on Steel Housing Material: Carolina Villada Vargas¹; Nuria Navarrete Argilés¹; Anthony Rawson¹; Florian Kargl¹; ¹Institute of Materials Physics in Space, German Aerospace Center DLR

4:50 PM

The Energy Saving Potential of Thermo-responsive Desiccants for Air Dehumidification: Yi Zeng¹; Jason Woods¹; Shuang Cui²; ¹National Renewable Energy Laboratory; ²University of Texas at Dallas

5:10 PM

Thermal and Rheological Properties of Sodium Sulfate Decahydrate Phase Change Materials with various Thickening and Stabilization Mechanisms: Damilola Akamo1; Navin Kumar2; Yuzhan Li3; Cotton Pekol1; Kai Li4; Jason Hirschey5; Tim LaClair4; Monojoy Goswami⁴; Orlando Rios¹; Kyle Gluesenkamp⁴; ¹University of Tennessee Knoxville; ²Gas Technology Institute; ³University of Science and Technology Beijing; 4Oak Ridge National Laboratory; ⁵Georgia Institute of Technology

ENERGY & ENVIRONMENT

Advances in Magnetic Materials — High Energy **Product Permanent Magnets**

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Jose Maria Porro, Bcmaterials; Huseyin Ucar, California Polytechnic University, Pomona; Patrick Shamberger, Texas A&M University; Min Zou, Lab Magnetics, A Quadrant Company; Gaoyuan Ouyang, Ames Laboratory; Alex Leary, NASA Glenn Research Center

Tuesday PM | March 21, 2023 33A | SDCC

Session Chair: Gaoyuan Ouyang, Ames Laboratory

2:30 PM Invited

A Semi-continuous Hot Deformation Method for Making Anisotropic Nd-Fe-B Magnet: Chaochao Pan¹; Gaoyuan Ouyang²; Wei Tang²; Jun Cui¹; ¹Iowa State University; ²Ames Laboratory

Increased Energy Product of Nd, Fe,4B-based Magnets Processed by Concurrent HDDR within Applied Magnetic Fields: Zachary Tener¹; Xubo Liu²; Ikenna Nlebedim²; Matthew Kramer²; Michael McGuire¹; Michael Kesler¹; ¹Oak Ridge National Laboratory; ²Ames Laboratory

3:20 PM

Investigations into the Processing and Magnetic Properties of Nd-Fe-B Magnets Produced by Extrusion: Alexander Ruediger¹; Sven Gall²; Sören Müller¹; ¹Extrusion Research and Development Center FZS, Technische Universität Berlin; ²INGWERK GmbH

3:40 PM

On Dysprosium Utilisation in Multi-main-phase Nd-Dy-Fe-B Magnets with Core-shell Microstructures: Hanshena Chen¹: Zhiheng Zhang²; Jiaying Jin²; Xiaolian Liu³; Wei Li⁴; Mi Yan²; Simon Ringer¹; ¹The University of Sydney; ²Zhejiang University; ³Hangzhou Dianzi University; ⁴Nanchang Hangkong University

4:00 PM Break

4:15 PM

Hard Magnetic SmCo5-Cu Nanocomposites Produced by Severe Plastic Deformation: Franziska Staab¹; Enrico Bruder¹; Karsten Durst¹; ¹Technical University Darmstadt

4:35 PM

Influence of Severe Plastic Deformation on the Magnetic Properties of SmCo Permanent Magnets: Alexander Paulischin¹; Lukas Weissitsch¹; Stefan Wurster¹; Heinz Krenn²; Reinhard Pippan¹; Andrea Bachmaier¹; ¹Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences; ²Institute of Physics, University of Graz

4:55 PM

Toughening Sm-Co Sintered Magnets by Additive-modified Microstructure Engineering: Baozhi Cui¹; Xubo Liu¹; Cajetan Ikenna Nlebedim¹; Jun Cui¹; ¹Ames Laboratory

ADVANCED MATERIALS

Advances in Multi-Principal Element Alloys II — Alloy **Design and Manufacturing**

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; E-Wen Huang, National Yang Ming Chiao Tung University; Jennifer Carter, Case Western Reserve University; Srivatsan Tirumalai; Xie Xie, FCA US LLC; James Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Tuesday PM | March 21, 2023 Aqua D | Hilton

Session Chairs: Peter Liaw, The University of Tennesee; Xinghang Zhang, Purdue University

2:30 PM Keynote

2023 Institute of Metals Lecture/Robert Franklin Mehl Award: Metallurgical Engineering to Materials Science and Engineering: Evolution of a Profession and TMS: Carl Koch¹; ¹North Carolina State University

3:00 PM Keynote

Challenges in the Synthesis and Processing of Complex Concentrated Alloys: Calvin Belcher1; Sakshi Bajpai1; Benjamin MacDonald¹; Diran Apelian¹; Enrique Lavernia¹; ¹University of California Irvine

3:30 PM Invited

Computational Studies of Interfaces in High Entropy Ceramics.: Sam Daigle¹; Jon Hagelstein¹; Donald Brenner¹; ¹North Carolina State University

3:50 PM Invited

Additive Manufacturing of Multi-principal Element Ni Alloys with Nanoprecipitates: Bo Yang1; Benjamin Stegman1; Zhongxia Shang¹; Jack Lopez¹; William Jarosinski²; Xinghang Zhang¹; ¹Purdue University; ²Praxair Surface Technologies Inc.

4:10 PM Break

4:30 PM Invited

Unique Magnetism, Hydriding and Irradiation Behaviors of Some Multi-Principal Element Alloys: Tongde Shen¹; ¹Yanshan University

4:50 PM

Recent Developments of Body-centered-cubic (BCC) Highentropy Alloys: Lia Amalia¹; Xuesong Fan¹; Hugh Shortt¹; Baldur Steingrimsson¹; Fangfei Liu²; Yong Zhang²; Yanfei Gao¹; Peter Liaw¹; ¹University of Tennessee; ²University of Science and Technology

5:10 PM

Unraveling Hydrogen Embrittlement of Model High Entropy Alloys: Michela Geri¹; Menglei Jiang¹; Cemal Tasan¹; ¹MIT

5:30 PM Invited

Interplay of Lattice Distortion and Ordering in Refractory Highentropy Alloys: Wei Chen1; Geroge Kim1; Chenyang Li1; Peter Liaw; Peter Liaw²; ¹Illinois Institute of Technology; ²University of Tennessee

5:50 PM Invited

Structural and Compositional Inheritances of Intermetallic Phases in High-entropy Alloys: Ruei-Chi Tsai¹; Keng-Che Chang¹; An-Chen Fan¹; Daniel Miracle²; Ming-Hung Tsai¹; ¹National Chung Hsing University; ²AF Research Laboratory

MATERIALS PROCESSING

Advances in Powder and Ceramic Materials Science Advances in Ceramic Materials and Processes II

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Materials Characterization Committee, TMS: Powder Materials Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Faqin Dong, Southwest University of Science and Technology; Jinhong Li, China University of Geosciences; Ruigang Wang, The University of Alabama; Alexander Dupuy, University of California, Irvine

Tuesday PM | March 21, 2023 30A | SDCC

Session Chairs: Ruigang Wang, University of Alabama; Faqin Dong, Southwest University of Science and Technology

2:30 PM Introductory Comments

2:35 PM Invited

Energy Efficient Spark Plasma Sintering Fabricating Transparent Alumina: Eugene Olevsky1; CheolWoo Park1; Elisa Torresani1; Chris Haines²; ¹San Diego State University; ²US Army DEVCOM - Army Research Laboratory

2:55 PM Invited

Developing Transparent Ceramics for Laser Power Scaling and Laser Welding: Y Kodera¹; Xingzhong Wu¹; E. Penilla¹; Javier Garay¹; ¹UCSD

3:15 PM

Fabrication of Ultra-lightweight and Highly Porous Alumina Scaffolds by a Novel Sol-gel/Freeze-casting Hybrid Method: Pei-Chieh Ho1; Haw-Kai Chang1; Po-Yu Chen1; 1National Tsing Hua University

3:35 PM

Plasma Sprayed Carbon Nano Fillers Reinforced Lanthanumcerate Hybrid Composite Coating with Outstanding Toughness: Pushpender Singh¹; Niranjan Pandit¹; Anup Kumar Keshri¹; ¹Indian Institute of Technology Patna

3:55 PM Break

4:10 PM Invited

Surface-engineered Metal Oxide Nanocrystals: Redox Chemistry, Catalysis and Beyond: Ruigang Wang¹; ¹The University of Alabama

4:30 PM

Energy Dispersive X-ray Diffraction with Synchrotron Radiation for Measurement of Residual Elastic Mismatch Strain in Composites and Coating Systems for Extreme Environments. John Ferguson¹; J.Y. Peter Ko²; Kelly Nygren²; Michael Sangid¹; ¹Purdue University; ²Materials Solutions Network at CHESS

4:50 PM

Effect of Y2O3 and Al Addition on Mechanical Properties and Micrographic Features of Invar Based ODS Alloy Prepared by Mechanical Alloying + Spark Plasma Sintering: Arpan Arora¹; Suhrit Mula1; 1IIT Roorkee

MATERIALS PROCESSING

Advances in Pyrometallurgy: Developing Low Carbon Pathways — Energy Valorization in Metallurgy

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Camille Fleuriault, Eramet Norway; Joalet Steenkamp, XPS Glencore; Dean Gregurek, RHI Magnesita; Jesse White, KTH Royal Institute of Technology; Quinn Reynolds, Mintek; Phillip Mackey, P.J. Mackey Technology, Inc.; Lina Hockaday, Curtin University, WASM

Tuesday PM | March 21, 2023 29B | SDCC

Session Chairs: Camille Fleuriault, Eramet Norway; Quinn Reynolds, Mintek

2:30 PM Invited

The Use of Concentrating Solar Energy for Thermal Decomposition in Oxide and Carbonate Minerals: Lina Hockaday¹; Quinn Reynolds²; ¹Gam Aesa; ²Mintek

3:00 PM

Linde's Industrial Gas Technology in Nonferrous Processing: Combining CFD with Partial Experimental Verification & Validation: William Mahoney¹; Adrian Deneys²; Ahmed Abdelwahab¹; Jiaye Gan¹; ¹Linde Technology Center; ²Linde, Inc.

3:20 PM

Sulphuric Acid Plants in Metallurgical Facilities: Options for Energy Optimization: Shailesh Sampat¹; Joseph Kelly¹; Maria De Campos¹; Sina Mostaghel¹; ¹SNC-Lavalin

3:40 PM

Experimental Analysis of Zinc Melting Using CSP: Pieter Bezuidenhout¹: Willem le Roux²: Joalet Steenkamp³: ²University of Pretoria; ³University of the Witwatersrand

4:00 PM Break

4:20 PM

Effect of Ore Pre-heating on Furnace Operation in High Carbon Ferromanganese Production - Lessons Learnt from Pilot-scale **Testwork**: Samuel Moholwa¹; Sello Tsebe¹; Derek Hayman¹; Pieter Bezuidenhout¹; Martin Sitefane¹; Joalet Steenkamp²; ²University of the Witwatersrand

4:40 PM

A Desktop Study on the Potential use of South African Slags as Thermal Storage Medium: Sifiso Sambo¹; Joalet Steenkamp²; Pieter Bezuidenhout¹; ¹Mintek; ²University of the Witwatersrand

CO2 Free FeMn/Mn Production through Molten Oxide Electrolysis: Karen Osen¹; Halvor Dalaker¹; Ana Maria Martinez¹; Henrik Gudbrandsen¹; Ida Kero¹; Zhaohiu Wang¹; ¹SINTEF

Ferronickel Production from Nickel Laterite via Sulfide Chemistry: Caspar Stinn¹; Antoine Allanore¹; ¹Massachusetts Institute of Technology

5:40 PM Invited

Application and Results of MPOT Diluted Combustion in Aluminum Furnaces and the Complete Carbon Free Future Technology: Curtis Bermel¹; Michael Potesser¹; ¹MPOT LLC

MATERIALS DESIGN

Advances in Titanium Technology — Session IV

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Zachary Kloenne, Ohio State University; Fan Sun, CNRS - PSL Research University; Stoichko Antonov, National Energy Technology Laboratory; Rongpei Shi, Harbin Institute of Technology (Shenzhen)

Tuesday PM | March 21, 2023 Cobalt 500 | Hilton

Session Chair: Zachary Kloenne, The Ohio State University

2:30 PM Invited

Effect of the Vibratory Peening Parameters on Surface Properties of Ti-6Al-4V: Maxime Paques1; Benoit Changeux2; Anindya Das1; Hongyan Miao¹; Martin Levesque¹; Sylvain Turenne¹; Etienne Martin¹; ¹Polytechnique Montréal; ²Safran Tech

3:00 PM Invited

Computational Studies of Deformation Twinning in Metastable Titanium Alloys: Ganlin Chen¹; Liang Qi¹; ¹University of Michigan

3:30 PM Invited

On the Heterogeneous and Cooperative Deformation in Highstrength (+) Titanium Alloys: John Foltz1; Shaolou Wei2; C Tasan2; Bhuvi Nirudhoddi¹; ¹ATI Specialty Materials; ²Massachusetts Institute of Technology

4:00 PM Break

4.20 PM

Transformation-mediated Twin Nucleation and the Temperature Dependence in Hexagonal Close-packed Metals: Lei Cao¹; Mehrab Lotfpour¹; Amir Hassan Zahiri¹; Jamie Ombogo¹; ¹University of Nevada

4:40 PM

Twin Interface Structures and Fault-energetics in HCP Materials: Gorkem Gengor¹; Ahmed Sameer Khan Mohammed²; Huseyin Sehitoglu²; ¹University of Illinois Urbana Champaign; ²University of Illinois Urbana Champaign

Cottrell Atmospheres around Screw Dislocations in alpha-Ti Alloys: Eric Rothchild¹; Siying Li²; Daryl Chrzan²; David Jany²; ¹Sandia National Laboratories; ²University of California, Berkeley

5:20 PM

Atomistic Molecular Dynamics Simulations of Crack Tip Behavior in alpha-Ti: Satish Rao1; Michelle Harr1; Vikas Sinha1; Adam Pilchak1; Tom Broderick¹; ¹MRL Materials Resources LLC

MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Validation, and Uncertainty Quantification — Session IV

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Francesca Tavazza, National Institute of Standards and Technology; Dennis Dimiduk, BlueQuartz Software LLC; Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Shreyas Honrao, NASA Ames Research Center; Ashley Spear, University of Utah; Houlong Zhuang, Arizona State University

Tuesday PM | March 21, 2023 Cobalt 520 | Hilton

Session Chair: Praveen Kumar, Indian Institute of Science

2:30 PM

Closed-loop Discovery of Materials with Simultaneous Electronic and Mechanical Property Targets: Christopher Stiles1; Elizabeth Pogue¹; Alexander New¹; Brandon Wilfong²; Gregory Bassen²; Izze Hedrick²; Edwin Gienger¹; Christine Piatko¹; Janna Domenico¹; Kyle McElroy¹; Timothy Montalbano¹; Michael Pekala¹; Nam Le¹; Christopher Ratto¹; Andrew Lennon¹; Tyrel McQueen²; ¹Johns Hopkins University Applied Physics Laboratory; ²Johns Hopkins University

2:50 PM

An Information Theory Based Approach for Training Machine Learned Potentials: Jason Gibson¹; Jan Janssen¹; Laura Lopes¹; Richard Hennig²; Danny Perez¹; ¹Los Alamos National Laboratory; ²University Of Florida

3:10 PM

Extraction of Creep Parameters from Indentation Creep Experiment: An Artificial Neural Network-Based Approach: Raj Mahat¹; Vikram Jayaram¹; Praveen Kumar¹; ¹Indian Institute of Science

3:30 PM

Interlaced Characterization and Calibration: Online Bayesian Optimal Experimental Design for Constitutive Model Calibration: Denielle Ricciardi¹; Tom Seidl¹; Brian Lester¹; Amanda Jones¹; Elizabeth Jones¹; ¹Sandia National Laboratories

3:50 PM

Machine Learning-based Multi-objective Optimization for Efficient Identification of Crystal Plasticity Model Parameters: Marko Knezevic1; 1University of New Hampshire

4:10 PM Break

4:30 PM

Robust and Efficient Method for Calibration of Thermal Models for Additive Manufacturing: Michael Groeber¹; Joy Forsmark¹; Yang Huo1; 1The Ohio State University

4:50 PM

A Deep Neural Network Formulation for Anisotropic Yield **Prediction**: Anderson W Paiva do Nascimento¹; Sharan Roongta²; Martin Diehl³; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²Max-Planck-Institut für Eisenforschung; ³Katholieke Universiteit, Leuven

5:10 PM

Training Material Models Using Gradient Descent Algorithms: Tianju Chen¹; Mark Messner¹; ¹Argonne National Laboratory

MATERIALS DESIGN

Algorithm Development in Materials Science and **Engineering — Multiscale Algorithms for Crystal Plasticity and Damage Mechanics I**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Adrian Sabau, Oak Ridge National Laboratory; Ebrahim Asadi, University of Memphis; Enrique Martinez Saez, Clemson University; Garritt Tucker, Colorado School of Mines; Hojun Lim, Sandia National Laboratories; Vimal Ramanuj, Oak Ridge National Laboratory

Tuesday PM | March 21, 2023 Aqua 310A | Hilton

Session Chair: Hojun Lim, Sandia National Laboratories

2:30 PM Invited

A New AI/ML Framework for Materials Innovation: Surva Kalidindi¹; Georgia Institute of Technology

A Non-local Formulation of the Elastoplastic Self-consistent Crystal Plasticity Model: Applications to Modeling Deformation and Recrystallization: Zhangxi Feng1; Miroslav Zecevic2; Ricardo Lebensohn²; Marko Knezevic¹; ¹University of New Hampshire; ²Los Alamos National Laboratory

3:30 PM

A Peridynamic-based Approach to Study the Influence of Oxide on Impact and Bonding in Cold Spray: Baihua Ren¹; Jun Song¹; ¹McGill University

3:50 PM

Crystal Plasticity Finite Element Analysis of Crystalline Thermomechanical Constitutive Response: Anderson W Paiva do Nascimento; Akhilesh Pedgaonkar¹; Curt A Bronkhorst¹; Irene ¹University of Wisconsin-Madison; ²University of Beyerlein²; California. Santa Barbara

4:10 PM Break

4:25 PM

Data-Driven Bayesian Model-Based Prediction of Fatigue Crack Nucleation in Ni-based Superalloys: Somnath Ghosh¹; George Weber²; Maxwell Pinz¹; ¹Johns Hopkins University; ²NASA Langley

4:45 PM

Data-driven Plastic Anisotropy Predictions Using Crystal Plasticity and Deep Learning Models: Hojun Lim1; Taejoon Park2; David Montes de Oca Zapiain¹; Farhang Pourboghrat²; ¹Sandia National Laboratories; 2The Ohio State University

Exascale Fracture Mechanics with Peridynamics: Sam Reeve1; Pablo Seleson¹; ¹Oak Ridge National Laboratory

5:25 PM

Finite Element Implementation of a Dislocation Thermomechanics Model: Application to Study Dislocation Structure Evolution during Laser Scanning: Gabriel Lima Chaves1; Manas Upadhyay1; 1Ecole Polytechnique

MATERIALS DESIGN

Alloy Behavior and Design Across Length-Scales: An SMD Symposium Honoring Easo George — Alloy **Design and Behavior**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Michael Mills, Ohio State University; George Pharr, Texas A&M University; Robert Ritchie, University of California, Berkeley; Muralidharan Govindarajan, Oak Ridge National Laboratory

Tuesday PM | March 21, 2023 Cobalt 502B | Hilton

Session Chair: Robert Ritchie, University of California, Berkeley

2:30 PM Invited

Functional High Entropy Alloys: Dierk Raabe1; Zhiming Li1; Liuliu Han1; Ziyuan Rao1; 1Max-Planck Institute

3:00 PM Invited

Utilizing Nanoprecipitates to Modulate Phase Transformation, Strength, and Ductility of HEAs: Ying Yang¹; Eva Zarkadoula¹; Easo George¹; ¹Oak Ridge National Laboratory

3:30 PM Invited

Fracture Properties of High-entropy Alloys: Bernd Gludovatz1; Robert Ritchie²; ¹UNSW Sydney; ²Lawrence Berkeley National Laboratory

4:00 PM Break

4:20 PM Invited

Factors Affecting Mechanical Twinning in Single-phase FCC and Polycrystalline MEAs and HEAs: Guillaume Laplanche1; 1Ruhr-University Bochum

4:50 PM Invited

Predicting High Entropy Alloy Phase Stability across Length Scales: James Morris¹; German Samolyuk²; Yury Osetsky²; G. Malcolm Stocks²; ¹Ames Laboratory; ²Oak Ridge National Lab

5:20 PM Invited

Low Temperature Deformation Mechanisms of CrMnFeCoNi Highentropy Alloy Polycrystals: Werner Skrotzki1; G. Dan Sathiaraj2; Rolf Schaarschuch¹; Carl-Georg Oertel¹; Paul Chekhonin³; Robert Chulist⁴; Christian Gadelmeier⁵; Uwe Glatzel⁵; Easo P George⁶; ¹TU Dresden; ²IIT Indore; ³Helmholtz-Zentrum Dresden-Rossendorf; ⁴Polish Academy of Sciences, Krakow; 5University of Bayreuth; 6University of Tennessee

ELECTRONIC MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XI — Session IV

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Chiao Tung University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Cnrs Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute For Materials Science; Wan-Ting Chiu, Tokyo Institute of Technology; Chenguang Fu, Zhejiang University

Tuesday PM | March 21, 2023 Sapphire A | Hilton

Session Chairs: Wan-ting Chiu, Tokyo Institute of Technology; Bo-Chia Chen, National Yang Ming Chiao Tung university

2:30 PM Invited

A Tentative of an Initial Materials Specification of the Process Influence on Sulfide-based Ceramics for Enhancing their Thermoelectric Performances: Cedric Bourges¹; Guillaume Lambard¹; Toshiyuki Nishimura¹; Satoshi Ishii¹; Takao Mori¹; ¹National Institute For Materials Science

2:50 PM Invited

Cluster-Based Molybdenum Chalcogenide Compounds for Thermoelectricity. Dream or Reality? A (Partial) Answer from **Theory**: Jean-Francois Halet¹; ¹Laboratory for Innovative Key Materials and Structures (LINK)

3:10 PM Invited

Enhancing the SnS-Based Solar Cells by Crystallographic Orientation Engineering and Interfacial Band Alignment Using an Eco-friendly Zinc-Tin-Oxide Buffer Layer: Li-Chyong Chen¹; Thi-Thong Ho²; Zi-Liang Yang¹; Fang-Yu Fu¹; Efat Jokar¹; Shaham Quadir²; Kuei-Hsien Chen²; ¹National Taiwan University; ²Academia Sinica

3:30 PM Invited

Leveraging Additive Manufacturing to Tailor Thermoelectric Device Configuration, Leg Shape, and Transport Properties: Saniya Leblanc¹; ¹George Washington University

3:50 PM Break

4:10 PM Invited

Spin-mediated Thermal Transport in Low-dimensional Quantum Magnets: Xi Chen1; 1University of California, Riverside

4:30 PM Invited

Manipulation of Bi-doping of Polycrystalline Ni-Mn-Ga and Fabrication of Grain Particles for Smart Ni-Mn-Ga/polymer Composites: Wan-Ting Chiu¹; Pimpet Sratong-On²; Masaki Tahara¹; Volodymyr Chernenko³; Hideki Hosoda¹; ¹Tokyo Institute of Technology; 2Thai-Nichi Institute of Technology; 3UPV/EHU Science Park

4:50 PM

Stability Study of Cesium-based Triple Cation Perovskite Solar Cells in Elevated Environmental Ambients: Sujan Aryal¹; Anupama Kaul¹; Mahdi Temsal¹; Ehsan Ghavaminia¹; ¹University of North Texas

5:10 PM Concluding Comments

LIGHT METALS

Aluminum Alloys, Characterization and Processing - Characterization and Processes

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Julie Levesque, Quebec Metallurgy Center; Stephan Broek, Kensington Technology Inc.

Tuesday PM | March 21, 2023 32A | SDCC

Session Chair: Etienne Martin, École Polytechnique

2:30 PM

Characterization of Aluminium Conductors Steel Reinforced in Overhead Transmission Lines: Meysam Hassanipour¹; Miguel Diago Martinez¹; Denis Valiquette¹; Fédéric Guay¹; André Leblond¹; ¹Institut de Recherche d'Hydro-Québec

Mechanical Properties and Electrical Properties of Permanent Mold Cast Eutectic Al-1.8Fe Alloy: Sufeng Liu¹; Anita Hu¹; Ali Dhaif¹; Wutian Shen¹; Hongfa Hu¹; ¹University of Windsor

3:20 PM

Effects of the Friction Stir Welding Sliding and Sticking Mechanisms on the Microhardness, Texture, and Element Concentration: Nicholas Sabry¹; Joshua Stroh¹; Dimitry Sediako¹; ¹The University of British Columbia

Experimental Investigation of the Effect of High Temperature Shot Peening on the Surface Integrity of 7010-T7452 Aluminum Alloy: Abouthaina Sadallah¹; Anindya Das¹; Benoit Changeux²; Hong-Yan Miao¹; Etienne Martin¹; Sylvain Turenne¹; *Maxime Pauques*¹; ¹École Polytechnique Montreal; ²Safran Tech.

4:10 PM Break

4:25 PM

Quality Assessment and Features of Microdrilled Holes in Aluminum Alloy Using Ultrafast Laser: Suman Chatterjee1; Abhijit Cholkar¹; David Kinahan¹; Dermot Brabazon¹; ¹Dublin City University

4:50 PM

Surface Characterization Methods to Evaluate Adhesive Bonding **Performance of 6xxx Automotive Alloys**: Greunz Theresia¹; *Martina* Hafner¹; Ralph Gruber²; Tomasz Wojcik³; Jiri Duchoslav⁴; David ¹AMAG rolling GmbH; ²CEST Competence Centre for Electrochemical Surface Technology GmbH; 3Vienna University of Technology; 4Johannes Kepler University Linz

Investigation of Resistance of Intergranular Attack for Various Heat Treated 2011 Alloys After Hard Anodizing: Ilyas Artunc Sari¹; Gorkem Ozcelik¹; Zeynep Tutku Ozen¹; Onuralp Yucel²; ¹ASAS Aluminum; ²Istanbul Technical University

LIGHT METALS

Aluminum Industry Emissions Measurement, Reporting & Reduction — Aluminum Industry **Emissions Measurement, Reporting & Reduction**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizer: Pernelle Nunez, International Aluminium Institute

Tuesday PM | March 21, 2023 31A | SDCC

Session Chair: Marlen Bertram, International Aluminium Institute

2:30 PM Introductory Comments

2:35 PM

Reaching Zero Carbon Emissions in Aluminium Electrolysis: Gudrun Saevarsdottir¹; Sai Krishna Padamata¹; Brandon Velasquez¹; Halvor Kvande²; ¹Reykjavik University; ²Previously NTNU

Individual Pot Sampling for Low-voltage PFC Emissions Characterization and Reduction: Brian Zukas¹; Julie Young¹; ¹Alcoa

3:25 PM

Determination of PFC with Canister Sampling and Medusa GC-MS Analysis in Comparison to General IPCC Estimation Methods: Henrik Aasheim¹; Morten Isaksen¹; Norbert Schmidbauer²; Ove Hermansen²: Chris Lunder²: ¹Hvdro Aluminium AS: ²Norwegian Institute for Air Research

3:50 PM Break

4:05 PM

Heavy Metal Emissions through Dust from Aluminium Electrolysis: Fride Muller¹; Thor Anders Aarhaug²; Gabriella Tranell¹; Norwegian University of Science and Technology; ²SINTEF Industry

4:30 PM

Verification of Open-path Dust Laser for Continuous Monitoring of Diffuse Emissions: Lars Moen Strømsnes1; Heiko Gaertner2; Steinar Olsen³; Peter Geiser³; Bernd Wittgens²; ¹SINTEF Helgeland; ²SINTEF AS; 3NEO Monitors AS

4:55 PM

Characterization of Industrial Hydrocarbon Samples from Anode Baking Furnace Off-gas Treatment Facility: Kamilla Arnesen¹; Alexandre Albinet²; Claudine Chatellier²; Nina Huynh²; Thor Aarhaug³; Kristian Einarsrud¹; Gabriella Tranell¹; ¹Norwegian University of Science and Technology; 2National Institute for Industrial Environment and Risks (INERIS); 3SINTEF

BIOMATERIALS

Biological Materials Science — Biological Materials Science IV

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Jing Du, Pennsylvania State University; David Restrepo, University of Texas at San Antonio; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Ling Li, Virginia Polytechnic Institute

Tuesday PM | March 21, 2023 Sapphire 402 | Hilton

Session Chairs: Hannes Schniepp, William and Mary; Steven Naleway, University of Utah

2:30 PM Invited

Mechanical Properties of Stretchable, Mechanochemically Active Hydrogels: Jamie Kruzic1; Yuwan Huang1; Alaa Ajam1; Zihao Li1; P. Jayathilaka¹; Md. Islam¹; Meredith Silberstein²; Kristopher Kilian¹; ¹University of New South Wales; ²Cornell University

3D Printed Stimuli-responsive Hydrogels for Drug Delivery: Jeffrey Bates1; 1University of Utah

Antibacterial Activity of Chitosan-based Spiky Gold Nanoparticleshydrogel: Cynthia Sangang¹; Jenny Qiu¹; ¹Texas Tech University

3:40 PM Invited

Probing Dynamic Structure-function Relationship of Bone at the Nanoscale: Ottman Tertuliano1; 1University of Pennsylvania

4:10 PM Break

4:30 PM Invited

Probing Function and Degeneration in Elastic Biopolymers: Anna Tarakanova¹; ¹University of Connecticut

5:00 PM

Reusable Hydrogel Drug Delivery Devices and Their Release Kinetics: Jeffrey Bates1; 1University of Utah

5:20 PM

Novel Zn-Cu-Al-TiC Nanocomposites for Biodegradable Stent Application: Yuxin Zeng¹; Chase Linsley¹; Jingke Liu¹; Benjamin Wu¹; Xiaochun Li¹; ¹University of California Los Angeles

5:40 PM Invited

Bioactive Tissue Derived Nanocomposite Gel for Permanent Arterial Embolization: Jingjie Hu1; 1North Carolina State University

SPECIAL TOPICS

Bladesmithing 2023 — Bladesmithing II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Samuel Wagstaff, Oculatus Consulting; David Sapiro, USNC-Tech

Tuesday PM | March 21, 2023 Sapphire I | Hilton

Session Chairs: Samuel Wagstaff, Oculatus Consulting; David Sapiro, Ultra Safe Nuclear

2:30 PM Introductory Comments

The NeverDull Blade: Gianluca Roscioli¹; ¹Massachusetts Institute of Technology

2:55 PM

Characterization of the Differential Heat Treatment of a Sunnobi Tanto: Megan Klein1; 1University of Michigan

3:15 PM

MA Blade Smithing Proposal: Juvenal Rodela¹; Abraham Enchinton¹; David Santacruz¹; Nicole Jimenez¹; ¹University of Texas at El Paso

This is the Way - Discovering the Secrets of Beskar Metallurgy: Suveen Mathaudhu¹; ¹Colorado School of Mines

ADVANCED MATERIALS

Bulk Metallic Glasses XX — Atomic Structure

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Robert Maass, Federal Institute of Materials Research and Testing (BAM); Peter Derlet, Paul Scherrer Institut; Katharine Flores, Washington University in St. Louis; Yonghao Sun, The Chinese Academy of Sciences; Lindsay Greer, University of Cambridge; Peter Liaw, University of Tennessee

Tuesday PM | March 21, 2023 Aqua C | Hilton

Session Chair: Amlan Das, Cornell University

2:30 PM Invited

Crystal Nucleation from a Hard-sphere Liquid: Frans Spaepen¹; Zizhao Wang¹; David Weitz¹; ¹Harvard University

2:50 PM

Ordering and Intermittent Structural Relaxation in a Model Binary Solid System: Zengquan Wang¹; Peter Derlet²; Robert Maass³; ¹Federal Institute of Materials Research and Testing (BAM); ²Paul Scherrer Institut; ³Federal Institute of Materials Research and Testing (BAM), University of Illinois at Urbana-Champaign

3:10 PM

Two-step Annealing Induced Structural Rejuvenation: A Cause for Memory Effect in Metallic Glasses: Xiaodong Wang¹; ¹Zhejiang University

3:30 PM Invited

Enhanced Stability of Metallic Glass Thin Films using an Ion Beam at Room Temperature: Vrishank Jambur¹; Chengrong Cao¹; Carter Francis¹; John Perepezko¹; Izabela Szlufarska¹; Paul Voyles¹; ¹University of Wisconsin

3:50 PM Break

4:10 PM

Ultrastable States in Bulk Metallic Glasses: Weihua Zhou¹; Yi Li¹; A. Lindsay Greer2; 1Institute of Metal Research, Chinese Academy of Sciences; ²University of Cambridge

4:30 PM

Correlating Rejuvenation within the Elastic Limit with Anelasticity in Metallic Glasses: Miguel B. Costa1; Alan Greer1; 1University of Cambridge

4:50 PM

Structural Dynamics in the Microplastic Regime of a Zr-based Metallic Glass: Amlan Das1; Birte Riechers2; Peter Derlet3; Eric Dufresne⁴; Robert Maaß⁵; ¹Cornell High Energy Synchrotron Source, Cornell University; ²Federal Institute of Materials Research And Testing (BAM); ³Condensed Matter Theory Group, Paul Scherrer Institute; ⁴Advanced Photon Source, Argonne National Laboratory; ⁵Federal Institute of Materials Research and Testing (BAM), University of Illinois at Urbana-Champaign

Across the Field of Bulk Metallic Glass - The Second Amorphous Phase: Sydney Corona¹; Jong Na²; Qi An³; Yidi Shen³; William Goddard¹; Konrad Samwer⁴; William Johnson¹; ¹California Institute of Technology; ²Glassimetal Technologies; ³University of Nevada, Reno; 4University of Göttingen

LIGHT METALS

Cast Shop Technology — DC Casting and Grain Refinement

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Halldor Gudmundsson, Century - Nordural; Stephan Broek, Kensington Technology Inc.

Tuesday PM | March 21, 2023 31C | SDCC

Session Chair: Philippe Khalil, HATCH

2:30 PM

Recent Studies Using HR-TEM on the Fundamental Mechanism of Nucleation of α Aluminium on TiB2 in High Efficiency Grain Refiners: John Courtenay¹; ¹Mqp Limited

2:55 PM

A Cellular Automaton Model for Qualifying Current Grain Refiners and Prescribing Next-generation Grain Refiners for Aluminium Alloys: Georges Salloum-Abou-Jaoude1; Samah Sami1; Alain Jacot2; Luc Rougier²; ¹Constellium C-TEC; ²ESI group

Modelling Contactless Ultrasound Treatment in a DC Casting Launder: Christopher Beckwith¹; Georgi Djambazov¹; Dmitry Eskin²; Tungky Subroto³; Koulis Pericleous¹; ¹University Of Greenwich; ²Brunel University; ³Constellium

Numerical Analysis of Channel-type Segregations in DC Casting Aluminum Slab: Keisuke Kamiya¹; Takuya Yamamoto²; Corporation; 2Tohoku University

4:10 PM Break

4:25 PM

Stability of SiC and Al2O3 Reinforcement Particles in Thermomechanical Processed Direct Chill Cast 6xxx Al MMnCs: Abdallah Abu Amara¹; Guangyu Liu¹; Dmitry Eskin¹; Brian McKay¹; ¹Brunel University London

Ceramic Materials for Nuclear Energy Research and Applications — Processing and Evaluation of **Alternative Fuels and Materials**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Energy Committee

Program Organizers: Walter Luscher, Pacific Northwest National Laboratory; Xian-Ming Bai, Virginia Polytechnic Institute and State University; Lingfeng He, North Carolina State University; Sudipta Biswas, Idaho National Laboratory; Simon Middleburgh, Bangor University

Tuesday PM | March 21, 2023 28B | SDCC

Session Chair: Simon Middleburgh, Bangor University

2:30 PM Invited

Zirconia-coated Uranic Fuel Particles Processing and In Situ Sintering Characterisation: Phylis Makurunje¹; Gareth Stephens¹; Simon Middleburgh¹; ¹Nuclear Futures Institute

3:00 PM Invited

Oxidation Behavior and Mechanisms of the SiC Coating in TRISO Fuel Particles: Haiming Wen1; Adam Bratten1; Visharad Jalan1; ¹Missouri University of Science and Technology

Phase Equilibria and Thermodynamics of Tri-carbide Fuels for Nuclear Thermal Propulsion: Ronald Booth¹; Juliano Schrone Pinto¹; Erofili Kardoulaki²; Ken Mcclellan²; Jhonathan Rosales³; Theodore Besmann¹; ¹University of South Carolina; ²Los Alamos National Laboratory; 3NASA

3:50 PM

Thermomechanical Characterization of Advanced Reactor Allovs and Composites Exposed to High-temperature Gas Environments: William Searight¹; Leigh Winfrey²; ¹Pennsylvania State University; ²SUNY Maritime College

4:10 PM Break

4:30 PM Invited

Improving Uranium Mononitride Behaviour using Uranium Diboride Addition: Joel Turner¹; Tim Abram¹; Qusai Mistarihi¹; James Buckley¹; ¹University of Manchester

5:00 PM

Silica Formation on SiC Following Steam Attack: Dina ElGewaily¹; Jacob Eapen¹; ¹North Carolina State University

5:20 PM

Exploring Irradiation-induced Phase Evolution in WC: Charles Hirst¹; Diana Shklover¹; Paola Amadeo¹; Scott Middlemas²; Samuel Humphry-Baker³; Michael Short¹; ¹Massachusetts Institute of Technology; ²Idaho National Laboratory; ³Imperial College London

Radiation Studies on the TiZrNbHfTa High Entropy Alloy and Its Hydrides: Christopher Moore¹; Alberto Fraile¹; Caitlin Taylor²; Michael Rushton¹; Simon Middleburgh¹; ¹Bangor University; ²Los Alamos National Laboratory

CHARACTERIZATION

Characterization of Minerals, Metals and Materials — **Characterization of Mechanical Properties**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Mingming Zhang; Zhiwei Peng, Central South University; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia: Rajiv Soman, Eurofins EAG Materials Science LLC: Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, DEVCOM ARL Army Research Office; Shadia Ikhmayies

Tuesday PM | March 21, 2023 Aqua 313 | Hilton

Session Chairs: Andrew Brown, Army Research Laboratory; Juan Escobedo-Diaz, University of New South Wales

2:30 PM

Considering Creep in a Thermo-mechanical Finite Element Analysis of a Drum Furnace Lining: Guenter Unterreiter¹; Dean Gregurek¹; ¹RHI Magnesita GmbH

Deformation Behavior of Advanced Metallic Materials Studied using Ultra-high-speed Imaging and Acoustic Emission **Techniques**: *Michal Knapek*¹; Tomas Tayari¹; Adam Gres¹; ¹Charles University

3:10 PM

Dynamic and Quasi-static Mechanical Response and Associated Microstructural Evolution of Damascus Steels: Alec Wackwitz1; Ali Ameri¹; Jianshen Wang¹; Paul Hazell¹; Hongxu Wang¹; Juan Escobedo-Diaz1; 1University of New South Wales

3:30 PM

High Strain-rate Testing of Brittle Materials using Miniature Allberyllium Split-hopkinson Pressure Bars: Bryan Zuanetti¹; Kyle Ramos¹; Carl Cady¹; Chris Meredith²; Dan Casem²; Adam Golder³; Cynthia Bolme¹; ¹Los Alamos National Laboratory; ²DEVCOM Army Reserach Laboratory; 3Intuitive Surgical Instruments

3:50 PM Break

4:05 PM

Mechanical **Properties** Investigation of the (Zr30Hf25Al20Ni10Co10Cu5)99.9Y0.1 Bulk Metallic Glass by Controlled Crystallization: Fatma Güven¹; Yunus Kalay¹; ¹Middle East Technical University

Evaluation of Feature Engineering Methods for the Prediction of Sheet Metal Properties by an Artificial Neural Network from Punching Force Curves: Marcel Goerz¹; Adrian Schenek¹; Mathias Liewald¹; Kim Riedmüller¹; ¹Institute for Metal Forming Technology

4:45 PM

Integrated Simulation, Machine Learning, and Experimental Approaches in Small-scale Mechanical Characterization of Materials: Xing Liu¹; Christos Athanasiou¹; Nitin Padture¹; Brian Sheldon¹; Huajian Gao²; ¹Brown University; ²Nanyang Technological University

5:05 PM

Investigation of the Failure Mechanism of a 35CrMo Polycrystalline Diamond Compact Drill Bit: Xingjie Li¹; ¹Sinopec Oilfield Equipment Corporation

Composite Materials for Nuclear Applications II — **Graphite/Carbon Composites**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Composite Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Anne Campbell, Oak Ridge National Laboratory; Dong Liu, University of Bristol; Rick Ubic, Boise State University; Lauren Garrison, Commonwealth Fusion Systems; Peng Xu, Idaho National Laboratory; Johann Riesch, Max-Planck-Insitut Fuer Plasmaphysik

Tuesday PM | March 21, 2023 24B | SDCC

Session Chairs: Dong Liu, University of Bristol; Rick Ubic, Boise State University

2:30 PM Invited

Nuclear Graphite as a Core Composite Material: Willliam Windes¹; ¹Idaho National Laboratory

3:00 PM

Oxidation Effects on the Microstructure of Nuclear Graphite: Jose Arregui-Mena¹; Phillip Edmondson¹; James Spicer²; Cristian Contescu¹; Paul Mummery³; Lee Margetts³; Nidia Gallego¹; ¹Oak Ridge National Laboratory; ²Johns Hopkins University; ³The University of Manchester

3:20 PM

Ruthenium and Silver Diffusion in Nuclear Graphite: Dina ElGewaily¹; Jacob Eapen¹; ¹North Carolina State University

3:40 PM Invited

Role and Structure of HTGR Matrix Material: Tyler Gerczak¹; Anne Campbell¹; Grant Helmreich¹; William Cureton¹; Elizabeth Sooby²; Ryan Latta³; Gerald Jellison¹; John Hunn¹; ¹Oak Ridge National Laboratory; ²University of Texas San Antonio; ³Kairos Power

4:10 PM Break

4:30 PM

Irradiation Effects in the Composite Phases of Graphite and Carbon-Based Materials: Anne Campbell¹; Jose Arregui-Mena¹; ¹Oak Ridge National Laboratory

ENHANCED Shield: A Critical Materials Technology Enabling Compact Superconducting Tokamaks: David Sprouster1; B Cheng1; J Trelewicz¹; G Khose²; E Peterson²; S Zinkle³; Lance Snead¹; ¹Stony Brook University; ²Massachusetts Institute of Technology; 3University of Tennessee Knoxville

MATERIALS DESIGN

Computational Discovery and Design of Materials — **Session IV**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering

Program Organizers: Houlong Zhuang, Arizona State University; Duyu Chen, University of California, Santa Barbara; Ismaila Dabo, Pennsylvania State University; Yang Jiao, Arizona State University; Sara Kadkhodaei, University of Illinois Chicago; Mahesh Neupane, Army Research Laboratory; Xiaofeng Qian, Texas A&M University; Arunima Singh, Arizona State University; Natasha Vermaak, Lehigh University

Tuesday PM | March 21, 2023 Cobalt 502A | Hilton

Session Chairs: Natasha Vermaak, Lehigh University; Xiaofeng Qian, Texas A&M University

2:30 PM Invited

Applying Data-driven Models in Materials Science: Unraveling Hidden Relationships between Structures and Properties: Mingjie Liu¹; ¹University of Florida

3:00 PM Invited

Computational Design for Metallic Meso-architected Materials for **Dynamics**: *H Alicia Kim*¹; Brianna McNider¹; Ryan Fancher¹; Po-Shun Chiu¹; Jaeyub Hyun¹; Nicholas Boechler¹; ¹University of California, San Diego

3:30 PM

Crystal Structure Generation using Wasserstein Generative Adversarial Network: Zahra Gholami Shiri¹; Michael Alverson¹; Taylor Sparks¹; Hasan Sayeed¹; ¹University of Utah

3:50 PM Break

4:10 PM Invited

Atomistic Modeling of Electronic Transport and Electrochemistry: Yuanyue Liu¹; ¹University of Texas at Austin

4:40 PM

Design and Development of High Strength High Conductivity Alloys using ICMD® Approach: Qiaofu Zhang¹; Tom Kozmel¹; Peter Jacobson¹; Jiadong Gong¹; Greg Olson¹; ¹QuesTek Innovations LLC

PHYSICAL METALLURGY

Computational Thermodynamics and Kinetics — **Phase Stability and Diffusion Kinetics**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Solidification Committee

Program Organizers: Hesam Askari, University of Rochester; Damien Tourret, IMDEA Materials Institute; Eva Zarkadoula, Oak Ridge National Laboratory; Enrique Martinez Saez, Clemson University; Frederic Soisson, Cea Saclay; Fadi Abdeljawad, Clemson University; Ziyong Hou, Chongqing University

Tuesday PM | March 21, 2023 26A | SDCC

Session Chairs: Sara Kadkhodaei, University of Illinois Chicago; Frederic Soisson, Cea Saclay

2:30 PM Invited

A New First Principles Approach for Modeling Diffusion Kinetics in Structurally Unstable Phases: Sara Kadkhodaei¹; Seyyedfaridoddin Fattahpour¹; ¹University of Illinois Chicago

3:00 PM

Modeling of Location-Specific Microstructures in Additive Manufacturing of Metallic Alloys by Combining Nonequilibrium Phase-Field and Fast Thermal Models: Jose Mancias¹; Robert Saunders²; Damien Tourret³; Raymundo Arroyave¹; ¹Texas A&M University; ²U.S. Naval Research Laboratory; ³IMDEA Materials Institute

3:20 PM

Modelling the Kinetics of Phase Transformations with Nonconservative Point Defects: Frederic Soisson¹: ¹CEA Saclav

3:40 PM

Exploring Short-range Order and Phase Stability of CrCoNi Using Machine Learning Potentials: Sheuly Ghosh¹; Vadim Sotskov²; Alexander Shapeev²; Joerg Neugebauer¹; Fritz Koermann¹; ¹Max-Planck-Institut für Eisenforschung GmbH; 2Skolkovo Institute of Science and Technology

4:00 PM Break

4:20 PM Invited

On the Nonlinear Kinetics of Electrodeposition in Metal-Ion **Electrodes**: Vahid Attari¹; Raymundo Arroyave¹; ¹Texas A&M University

4:50 PM

Phase-Field Modeling of Iron Oxide Reduction with Hydrogen: Dierk Raabe¹; Yang Bai¹; Jaber Rezaei Mianroodi¹; Alisson Kwiatkowski da Silva¹; Bob Svendsen¹; Xuyang Zhou¹; ¹Max-Planck Institute

5:10 PM Invited

Diffusion and Chemo-mechanics of Li-metal Alloys: Anton Van der Ven¹; Sesha Behara¹; ¹University of California, Santa Barbara

MATERIALS PROCESSING

Deformation-induced Microstructural Evolution during Solid Phase Processing: Experimental and Computational Studies — Deformation Induced Microstructural Evolution II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Arun Devaraj, Pacific Northwest National Laboratory; Pascal Bellon, University of Illinois at Urbana-Champaign; Suhas Eswarappa Prameela, Massachusetts Institute of Technology; Mostafa Hassani, Cornell University

Tuesday PM | March 21, 2023 29C | SDCC

Session Chair: Mostafa Hassani, Cornell University

2:30 PM Introductory Comments

2:35 PM Invited

Dynamic Recrystallization in Face-centered Cubic Particles during High-velocity Impacts: Mauricio Ponga¹; ¹The University of British

3:05 PM

Heterogeneous Microstructural Evolution in Cold Sprayed Copper Coatings Using Local Zener-Hollomon Parameter and Strain: Yu Zou1: 1University of Toronto

Effect of Post Deposition Heat Treatment on the Microstructural Evolution and Mechanical Properties of GRCop-42 and HR-1 Cold Spray Deposits: Bharat Jasthi¹; Venkata Kandadai¹; Terrence Kuca¹; Marius Ellingsen²; Todd Curtis¹; ¹South Dakota School of Mines & Technology; ²VRC Metal Systems

3:45 PM

Aging Kinetics in Cold Sprayed AA 7050 Material: Lorena Perez1; Luke Brewer¹; ¹University of Alabama

4:05 PM Break

Recrystallization and Microstructural Evolution in Cold Sprayed SS304L: Christopher Roper¹; Anita Heczel¹; Ke An²; Luke Brewer¹; ¹University of Alabama; ²Oak Ridge National Laboratory

4:40 PM

Single Particle Impacts Experiments for **Fundamental** Understanding of Cold Spray Deposition with Refractory Metals: Brett Tucker Roper¹; Timothy Eastman²; Andrew Deal²; Luke Brewer¹; ¹Univerisity Of Alabama Tuscaloosa; ²Kansas City National Security Campus

Microparticle Impact Testing at Elevated Temperatures: Ian *Dowding*¹; Christopher Schuh¹; ¹Massachusetts Institute of Technology

5:20 PM

Process Effects on the Heterogenous Microctructure of an Impact Welded Interface: Anupam Vivek1; Brian Thurston1; Anil Singh1; Manny Gonzalez²; Glenn Daehn¹; ¹The Ohio State University; ²Air Force Research Laboratory

NANOSTRUCTURED MATERIALS

Deformation Mechanisms, Microstructure Evolution, and Mechanical Properties of Nanoscale Materials 2D Materials and Multilayers

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Niaz Abdolrahim, University of Rochester; Matthew Daly, University of Illinois-Chicago; Hesam Askari, University of Rochester; Eugen Rabkin, Technion; Jeffrey Wheeler, Femto Tools Ag; Wendy Gu, Stanford University

Tuesday PM | March 21, 2023 Aqua 300AB | Hilton

Session Chairs: Hesam Askari, University of Rochester; Shoeib Chowdhury, University of Rochester

2:30 PM Invited

Microstructural Evolution of Nanomultilayers with Various Types of Interfaces: Andrea Hodge¹; ¹University of Southern California

Inter-relationship of Stress and Microstructure in BCC and 'Beta' Tungsten Films: Jonathan Johnson¹; Tong Su²; Eric Chason³; Gregory Thompson¹; ¹University of Alabama; ²Brown University; ³Brown University

3:20 PM

High Peak Hardness in Al-Ni Multilayer Thin Films Originate from Intermetallic Interface Contributions: Nicolas Peter1; Marilaine Moreira de Lima¹; Xi Li¹; Ruth Schwaiger¹; ¹Forschungszentrum Jülich

3:40 PM

Deformation Behavior of the Crystalline/Amorphous Al/Si Nanocomposite Having Nanolaminate and Nano-fiber Morphology: Bibhu Sahu¹; Wenqian Wu²; Jian Wang²; Amit Misra¹; ¹University of Michigan; ²University of Nebraska-Lincoln

4:00 PM Break

4:20 PM

Dislocation Formation and Evolution in Moiré Reconstructed Twisted Bilayer Graphene: Shoieb Ahmed Chowdhury¹; Aditya Dey¹; Hesam Askari¹; ¹University of Rochester

4:40 PM

Mechanistic Design of Advanced Hierarchical Ti-Ti, AlC Metal-MAX Multilayered Nanolaminates: Skye Supakul¹; Krishna Yaddanapudi²; Garritt Tucker³; Sid Pathak¹; ¹lowa State University; ²University of California, Davis; 3Colorado School of Mines

5:00 PM

The Effect of Annealing on the Mechanical Behaviors and Failure Mechanisms of Nano Metallic Laminates: Yifan Zhang¹; Rodney McCabe¹; Jonathan Gigax¹; Nan Li¹; Thomas Nizolek¹; John Carpenter¹; Matthew Schneider¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

ENERGY & ENVIRONMENT

Energy Technologies and CO2 Management — **Energy Technologies**

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Shafiq Alam, University of Saskatchewan; Donna Guillen, Idaho National Laboratory; Fiseha Tesfaye, Metso Outotec Finland Oy; Lei Zhang, University of Alaska Fairbanks; Lina Hockaday, Curtin University, WASM; Neale Neelameggham, IND LLC; Hong (Marco) Peng, University of Queensland; Nawshad Hague, Commonwealth Scientific and Industrial Research Organization

; Liu Yan, Northestern University

Tuesday PM | March 21, 2023 33B | SDCC

Session Chairs: Shafiq Alam, University of Saskatchewan; Joseph Hamuyuni, Metso Outotec

2:30 PM

Investigation of Slag and Condensate from the Charge Top in a FeSi75 Furnace: Marit Folstad1; Karin Jusnes2; Merete Tangstad1; ¹Norwegian University of Science and Technology; ²Finnfjord AS

2:50 PM Invited

Lithium Extraction from Natural Resources to Meet the High Demand in EV and Energy Storage: Valan Namq1; Shafiq Alam1; ¹University of Saskatchewan

CORROSION

Environmental Degradation of Additively Manufactured Alloys — Environmentally Assisted Cracking (Hydrogen Embrittlement and SCC) / Bio-Corrosion

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Kinga Unocic, Oak Ridge National Laboratory; Jenifer Locke, Ohio State University; Sebastien Dryepondt, Oak Ridge National Laboratory; Brendy Rincon Troconis, University of Texas at San Antonio; Andrew Hoffman, GE Research; Xiaoyuan Lou, Purdue University

Tuesday PM | March 21, 2023 Sapphire 400A | Hilton

Session Chairs: Andrew Hoffman, GE Research, US; Kinga Unocic, ORNL; Sebastien Dryepondt, ORNL

2:30 PM

Combining NanoSIMS and EBSD Analysis to Define Hydrogen Trapping in Additively-manufactured Stainless Steel 316L: Kaila Bertsch¹; P.K. Weber¹; Shohini Sen-Britain¹; Thomas Voisin¹; Chris San Marchi²; Brandon Wood¹; ¹Lawrence Livermore National Laboratory; ²Sandia National Laboratories

2:50 PM

Stress Corrosion Cracking Growth in Additively Manufactured 316L Stainless Steel: Ainsley Pinkowitz1; Tressa White1; 1Naval Nuclear Laboratory

3:10 PM

Evaluation of Hydrogen Diffusivity, Uptake, and Trapping in Additively Manufactured 17-4 PH Stainless Steel and Possible Consequences Towards Stress Corrosion Cracking: Lauren Singer¹; Zachary Harris¹; John Scully¹; ¹University of Virginia

3:30 PM

Hydrogen Embrittlement of Cathodically Pre-charged Inconel 718 Fabricated via Selective Laser Melting: Claudia Santos Maldonado¹; Alfredo Zafra¹; Emilio Martinez-Pañeda¹; Roberto Morana¹; Minh-Son Pham¹; ¹Imperial College

3:50 PM

The Effect of Hydrogen Embrittlement on Additively Manufactured IN718 in Dependency of the Delta Phase Volume Fraction: Andreas Kirchmayer¹; Jan-Oliver Hücking¹; Felfer Peter¹; Mathias Göken¹; Steffen Neumeier¹; ¹Friedrich-Alexander Universität Erlangen-Nürnberg

4:10 PM Break

4:30 PM

Biocorrosion Response of Heterogeneous Microstructure in Laser Additively Deposited CoCrMo: Sangram Mazumder¹; Selvamurugan Palaniappan¹; Mangesh V. Pantawane¹; Madhavan Radhakrishnan¹; Shreyash M. Patil¹; Narendra Dahotre¹; ¹University of North Texas

4:50 PM

Biocorrosion Response of Laser Additively Deposited TiNbSn Alloy in Physiological Medium: Selvamurugan Palaniappan¹; Sangram Mazumder¹; Madhavan Radhakrishnan¹; Alberto Canales-Cantu¹; Narendra B. . Dahotre¹; ¹University of North Texas

5:10 PM

Microstructure and Electrochemical Response of Selective Laser Melted NiTi: Anurag Srivastava¹; Chaudhry Usman²; Bilal Mansoor²; Chen Zhang¹; Ibrahim Karaman¹; Alaa Elwany¹; University; 2Texas A&M University at Qatar

CORROSION

Environmental Degradation of Multiple Principal Component Materials — Aqueous Corrosion and **Embrittlement II**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Wenjun Cai, Virginia Polytechnic Institute and State University; XiaoXiang Yu, Novelis Global Research Center; Vilupanur Ravi, California State Polytechnic University Pomona; Christopher Weinberger, Colorado State University; Elizabeth Opila, University of Virginia; Bai Cui, University of Nebraska-Lincoln; Mark Weaver, University of Alabama; Bronislava Gorr, Karlsruhe Institute of Technology (KIT); Gerald Frankel, Ohio State University; ShinYoung Kang, Lawrence Livermore National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Tuesday PM | March 21, 2023 Sapphire 410A | Hilton

Session Chairs: Elizabeth Opila, University of Virginia; Wenjun Cai, Virginia Tech

2:30 PM

Effect of Niobium Addition on the Passivity and Corrosion Resistance of TiHfZrNbx High-entropy Alloys in a Hanks' Solution: Ayoub Tanji¹; Xuesong Fan²; Ridwan Sakidja³; Peter K Liaw²; Hendra Hermawan¹; ¹University Laval; ²university of Tennessee; ³Missouri State University

2:50 PM Invited

How Alloying Elements Affect Passivation and Dissolution in the NiCrFeCoMn System: New Insights Using Element-resolved Electrochemistry: Kevin Ogle¹; Chenyang Xie¹; Fan Sun¹; Junsoo Han1; 1Chimie ParisTech, PSL University

3:10 PM

Hydrogen Diffusion towards Notch Tips in Zirconium Alloys: Alireza Tondro¹; Hamidreza Abdolvand¹; ¹University of Western Ontario

Effects of pH on the Corrosion and Tribocorrosion Behavior of AlO.1CrCoFeNi High Entropy Alloys in O.6 M NaCl Solution: Jia Chen¹; Zhengyu Zhang²; Jonathan Poplawsky³; Chang-Yu Hung²; Wenbo Wang²; Yi Yao⁴; Lin Li⁴; Hongliang Xin²; Wenjun Cai²; ¹Virginia Polytechnic Institute; ²Virginia Polytechnic Institute and State University; 3Oak Ridge National Laboratory; 4University of Alabama

3:50 PM Break

4:05 PM Invited

Passivation and Corrosion Resistance of Compositionally Complex Alloys: Effects of Cr: John Scully1; Angela Gerard1; Samuel Inman1; Debashish Sur¹; Junsoo Han¹; Elena Romanovskaia¹; Jie Qi¹; Mark Wischhusen¹; Gerald Frankel²; Pin Lu³; James Saal³; SJ Poon¹; Sean Agnew¹; Elizabeth Kautz⁴; Daniel Schreiber⁴; Kevin Ogle⁵; ¹University of Virginia; ²The Ohio State University; ³QuesTek Innovations LLC; ⁴Pacific Northwest National Laboratory; ⁵Chimie ParisTech, PSL Research University

4:25 PM

The Hydrogen Charging-induced Surface Degradation on Highentropy Alloys Studied via In-situ Techniques: Dong Wang¹; Xu Lu¹; Zhiming Li²; Roy Johnsen¹; ¹Norwegian University of Science and Technology; 2Max-Planck-Institut für Eisenforschung

CORROSION

Environmentally Assisted Cracking: Theory and Practice — Corrosion Fatigue and Cracking

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska-Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Tuesday PM | March 21, 2023 Sapphire 410B | Hilton

Session Chairs: Ting Zhu, Georgia Institute of Technology; Xin Pang, Canmetmaterials, Natural Resources Canada

2:30 PM Invited

Multiscale Modeling of Fatigue Crack Growth and Environmental Effects: Ting Zhu¹; ¹Georgia Institute of Technology

3:00 PM

Atomic Mechanism of Near Threshold Fatigue Crack Growth in Vacuum as a Basis for Understanding Environmental Effects: Derek Warner¹; Mingjie Zhao¹; Wenjia Gu¹; ¹Cornell University

3:20 PM

Measuring Crack Tip pH to Elucidate Corrosion Fatigue Susceptibility Differences between Al-Cu-Mg and Al-Zn-Mg-Cu Alloys: Gabby Montiel1; Jenifer Locke1; 1The Ohio State University

Advancing the Understanding of the Impact of Atmospheric Environments on Corrosion Fatigue Crack Growth Rates of AA7085-T7451: Jenifer Locke1; Brandon Free1; Mary Cefaratti1; Sarah Dorman¹; ¹Ohio State University

4:00 PM Break

4:20 PM

A Meshless Peridynamics Framework for Physics-based Modeling of Corrosion Crack Dynamics and Fracture: Srujan Rokkam¹; Masoud Behzadinasab¹; Max Gunzburger²; Sachin Shanbhag²; Nam Phan³; ¹Advanced Cooling Technologies, Inc.; ²Florida State University; ³Naval Air Systems Command

4:40 PM

Modelling Environmentally Assisted Cracking (EAC) in Ni-based Superalloys: Sakina Rehman

MATERIALS DESIGN

Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling — Cyclic Plastic Localization, Crack Nucleation, and Propagation I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Additive Manufacturing Committee

Program Organizers: Jean-Charles Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Ashley Spear, University of Utah; Antonios Kontsos, Drexel University; Brian Wisner, Ohio University; Orion Kafka, National Institute of Standards and Technology

Tuesday PM | March 21, 2023 Sapphire H | Hilton

Session Chair: J.C. Stinville, University of Illinois at Urbana-Champaign

2:30 PM Invited

Strain Localisation in Engineering Alloys – Quantifying Discrete Shear to Improve Understanding of Plasticity and Crack Initiation: *Michael Preuss*¹; ¹Monash University

2:55 PM

Slip Localization, Slip Transfer at Grain Boundaries and Crack Initiation during Fatigue of Solution-hardened Ni-based Superalloys: Ignacio Escobar-Moreno¹; Javier Llorca¹; ¹IMDEA Materials Institute & Technical University of Madrid

3:15 PM

Dwell Fatigue Behavior of a Fine-grain Ni-based Superalloy 718 at High Temperature: From Strain Localization to Crack Initiation: Melanie Bordas-Czaplicki¹; Damien Texier²; Jonathan Cormier³; Patrick Villechaise³; Vincent Roué⁴; ¹Ensma - Institut Pprime -Safran Aircraft; ²Institut Clement Ader (ICA) - UMR CNRS 5312, Université de Toulouse, CNRS, INSA, UPS, Mines Albi, ISAE-SUPAERO; ³Institut Pprime - ISAE-ENSMA; ⁴Safran Aircraft Engines

3:35 PM

Early Stages of Fatigue Crack Initiation in the Cast and Wrought Polycrystalline Nickel-base Superalloy AD730TM: Julien Prouteau¹; Patrick Villechaise¹; Jonathan Cormier¹; Loic Signor¹; ¹Institut Pprime, ISAE ENSMA, CNRS UPR3346

3:55 PM

On the Mechanism of Cyclic Plastic Accumulation in a Polycrystalline Nickel-Based Superalloy.: Rephayah Black¹; Patrick Villechaise²; Valéry Vallé²; Jean-Charles Stinville¹; ¹University of Illinois at Urbana-Champaign; ²Institut PPRIME, Université de Poitiers

4:15 PM Break

4:30 PM Invited

From Slip Activity to Fatigue Crack Nucleation at Basal Twist Grain Boundaries in Titanium Alloys: Cyril Lavogiez¹; Patrick Villechaise¹; Jean-Charles Stinville²; Fulin Wang³; Marie-Agathe Charpagne²; Meghan Emigh³; Tresa Pollock³; Valery Valle¹; Samuel Hemery⁴; Institut Pprime; ²UIUC; ³UCSB; ⁴Institute Prime - Ensma

4:55 PM

In-site Characterisation of Load Shedding in Macrozones during Dwell Fatigue in Ti-64 Alloy: Yu Cao¹; Yang Liu¹; Fionn Dunne¹; ¹Imperial College London

5:15 PM

Role of Microstructural Constituents on Deformation under Monotonic Tensile Strain of Additively Manufactured Ni-Al Bronze: Veronika Mazanova¹; Jean-Charles Stinville²; Aeriel Leonard¹; ¹Ohio State University; ²University of Illinois Urbana-Champaign

5:35 PM

Fatigue Crack Initiation in Very High Cycle Fatigue of C103: Madeline Vailhe¹; Chris Torbet¹; Leah Mills¹; Tresa Pollock¹; ¹University of California, Santa Barbara

5:55 PM

Crack Nucleation and Propagation in Structural Alloys – Design and Certification Considerations: *Michael Gorelik*¹; ¹Federal Aviation Administration

MATERIALS PROCESSING

Friction Stir Welding and Processing XII — FSW of High Melting Temperature Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Anton Naumov, Peter The Great St. Petersburg Polytechnic University; Nilesh Kumar, University of Alabama, Tuscaloosa

Tuesday PM | March 21, 2023 29A | SDCC

Session Chairs: Kenneth Ross, Pacific Northwest National Laboratory; Arnold Wright, Bond Technologies

2:30 PM Invited

Advances in Steel FSW: Stephen Cater¹; Jonathan Peter Martin¹; ¹TWI

2:50 PM Invited

Assessing Manufacturability of the Oxide Dispersion Strengthened (ODS) 14YWT Alloy Fuel Cladding Tube using SolidStirTM Technology: Shubhrodev Bhowmik¹; Pranshul Varshney¹; Osman El Atwani²; Stuart Maloy³; Kumar Kandasamy⁴; *Nilesh Kumar*¹; ¹University of Alabama, Tuscaloosa; ²Los Alamos National Lab; ³Pacific Northwest National Lab; ⁴Enabled Engineering

3:10 PM

Friction Stir Welding of Nickel-based Superalloys: Mageshwari Komarasamy¹; Christopher Smith¹; Woongjo Choi¹; Jens Darsell¹; Glenn Grant¹; ¹Pacific Northwest National Laboratory

3:30 PM

Friction Stir Welding of Thick Steel Plate by Silicon Nitride Tool: Yoshiaki Morisada¹; Masakazu Mori²; Yasushi Hara³; Yusuke Katsu³; Hidetoshi Fujii¹; ¹Osaka University; ²Ryukoku University; ³NGK Spark Plug Co, LTD

3:50 PM Break

4:10 PM

Friction Stir Welding of Steel with Steel Tool: Takuya Miura¹; Yoshiaki Morisada¹; Kohsaku Ushioda¹; Hidetoshi Fujii¹; ¹Osaka University

Post-Irradiation Examination of High-dose Ion Irradiated Friction Stir Welding (FSW) MA956 ODS Alloy: Yu Lu1, Ramprashad Prabhakaran²; Yaqiao Wu¹; Megha Dubey¹; Lin Shao³; ¹Boise State University; ²Pacific Northwest National Laboratory; ³Texas A&M University

4:50 PM Invited

Effect of Locally Beta-transformed Area on Fatigue Crack Propagation Resistance in a FSWed Ti-6Al-4V: Masakazu Okazaki¹; Satoshi Hirano²; ¹Niigata Institute of Technology; ²Hitachi Research

MATERIALS PROCESSING

Frontiers in Solidification: An MPMD Symposium Honoring Jonathan A. Dantzig — Modeling: From **Atomistic to Meso- to Macro-scales**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Light Metals Division, TMS Structural Materials Division, TMS: Aluminum Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Andre Phillion, McMaster University; Michel Rappaz, Ecole Polytechnique Fédérale De Lausanne; Melis Serefoglu, Marmara University; Damien Tourret, IMDEA Materials Institute

Tuesday PM | March 21, 2023 28E | SDCC

Session Chairs: Alain Karma, Northeastern University; Ingo Steinbach, Ruhr-University Bochum

2:30 PM Invited

Dealloying of Metals in Molten Salts - From Atomistic to Mesoscale Simulations: Nathan Bieberdorf¹; Nick Winner¹; Luke Langford¹; Andrea Hwang¹; Raluca Scarlat¹; Laurent Capolungo²; Mark Asta¹; ¹University of California, Berkeley; ²Los Alamos National Laboratory

Development of Phase Field Type Theories for Modelling Solidification Across Multiple Length Scales: Nikolas Provatas¹; ¹McGill University

3:30 PM Invited

Molecular Dynamics Simulations of Solid-liquid Interfaces: A Progress Report: Jeffrey Hoyt¹; ¹McMaster University

4:00 PM Break

4:20 PM

Growth and Melting of Crystals: Molecular Dynamics versus Phase Field Modeling: Peter Galenko¹; ¹Friedrich Schiller University Jena

4:40 PM

An Integrated Machine Learning and Phase-field Approach for Accurate Prediction of Dendritic Arm Spacing: Sepideh Kavousi¹; Mohsen Asle Zaeem¹; ¹Colorado School of Mines

5:00 PM

About the Solidification Path in Multicomponent Alloys: Multiphase-field Simulations versus Gulliver-Scheil: Markus Apeli; Bernd Böttger¹; Bei Zhou¹; ¹Access e.V.

5:20 PM

New Insights in Controlling Freckle Defect Formation Using Magnetic Fields: Xianqiang Fan¹; Natalia Shevchenko²; Catherine Tonry³; Samuel Clark⁴; Robert Atwood⁵; Sven Eckert²; Koulis Pericleous³; Peter Lee¹; Andrew Kao³; ¹UCL; ²HZDR; ³University of Greenwich; ⁴Argonne National Lab; ⁵Diamond Light Source

5:40 PM

Modelling of Interface Evolution in Advanced Welding (Mintweld): Hongbiao Dong1; 1University of Leicester

SPECIAL TOPICS

Frontiers of Materials Award Symposium: Ultra-Wide **Bandgap Materials and Heterostructures for Next** Generation Power, RF and Quantum Applications — **Ultra-Wide Bandgap Materials and Heterostructures** for Next Generation Power, RF and Quantum **Applications**

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizer: Yuji Zhao, Rice University

Tuesday PM | March 21, 2023 Aqua 309 | Hilton

Session Chair: Yuji Zhao, Rice University

2:30 PM Keynote

Ultrawide Bandgap Materials: Properties, Synthesis and Devices: Yuji Zhao1; 1Rice University

2:55 PM Invited

Epitaxial Growth of c-BN on Diamond and Strategies for Electronic Applications: Avani Patel¹; Saurabh Vishwakarma¹; Ali Ebadi Yekta¹; Jesse Brown¹; David Smith¹; Robert Nemanich¹; ¹Arizona State University

3:20 PM Invited

Gallium Oxide Semiconductors: Recent Progress and Future Prospective: Huili Grace Xing1; 1Cornell University

3:45 PM Invited

Nanoscale Engineering of III-Nitride Heterostructures for High Efficiency UV Optoelectronics and Quantum Photonics: Zetian Mi¹; ¹University of Michigan

4:10 PM Break

4:30 PM Invited

AlN-based Microelectronics for Extreme High Temperature Environments: Savannah Eisner¹; ¹Stanford University

4:55 PM Invited

Quantum Technologies with Diamond: Shuo Sun1; 1University of Colorado Boulder

NANOSTRUCTURED MATERIALS

Functional Nanomaterials 2023 — Session IV

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Nanomaterials Committee, TMS: Composite Materials Committee

Program Organizers: Yong Lin Kong, University of Utah; Sarah Ying Zhong, University of South Florida; Mostafa Bedewy, University of Pittsburgh; Woochul Lee, University of Hawaii at Mnoa; Changhong Cao, McGill University; Kiyo Fujimoto, Idaho National Laboratory; Surojit Gupta, University of North Dakota; Michael Cai Wang, University of South Florida

Tuesday PM | March 21, 2023 Aqua 305 | Hilton

Session Chairs: Ying Zhong, University of South Florida; Changhong Cao, McGill University; Michael Cai Wang, University of South Florida

2:30 PM Keynote

Controlled Epitaxial Growth and Fabrication of Nanostructured Hybrid Halide Perovskites: Sheng Xu¹, ¹University of California, San Diego

3:10 PM Invited

van der Waals Semiconductors and Their Heterostructures for Nanoelectronics: Joonki Suh1; 1UNIST

3:40 PM Invited

Extreme Environment Nanocrystalline Soft Magnetic Materials: Paul Ohodnicki¹; Yuankang Wang¹; Lauren Wewer¹; Tyler Paplham¹; Alex Leary¹; Sam Kernion¹; Kevin Byerly¹; ¹University of Pittsburgh

4:10 PM Break

4:30 PM Keynote

3D Printing Active Electronic Devices: *Michael Mcalpine*¹; ¹University of Minnesota

5:10 PM

Corona Discharge Enabled Electrostatic Printing (CEP) for Ultrafast Printing and 3D Structure Construction: Zijian Weng¹; Marcelo Farfan¹; Parinitha Giridharan¹; Evan Williams¹; David Murphy¹; Long Wang²; Ying Zhong¹; ¹University of South Florida; ²California Polytechnic State University

5:30 PM

Magnetic Robot with Localized Flexibility (MR-LF): Taylor Greenwood¹; Henry Cagle¹; Benson Pulver¹; On Shun Pak²; Yong Lin Kong¹; ¹University of Utah; ²Santa Clara University

CHARACTERIZATION

Heterostructured and Gradient Materials (HGM V): New Mechanistic Discoveries Enabling Superior Properties — Deformation Mechanisms

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Shaping and Forming Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Nanyang Technological University; Ke Lu, Institute of Metal Research; Suveen Mathaudhu, Colorado School of Mines; Xiaolei Wu, State Institute of Mechanics, Chinese Academy of Sciences

Tuesday PM | March 21, 2023 Aqua 314 | Hilton

Session Chairs: Nan Li, Los Alamos National laboratory; Megumi Kawasaki, Oregon State University

2:30 PM Invited

In Situ Pillar Compression to Understand Dislocation-grain Boundary Interactions in Cu: Nan Li¹; Dongyue Xie¹; Muh-Jang Chen²; Mohammed Zikry²; Darby Luscher¹; Abigail Hunter¹; Saryu Fensin¹; ¹Los Alamos National Laboratory; ²North Caroline State University

3:00 PM Invited

Is an Internal Length Gradient (ILG) Extension of Classical Laws Necessary for Understanding Gradient Materials?: Elias Aifantis1; ¹Aristotle University of Thessaloniki

3:30 PM

Strain-dependent Phase Transformation Mapping of Diffusionbonded Nanocrystalline Aluminum-magnesium by High-energy Synchrotron X-rays: Megumi Kawasaki¹; Klaus-Dieter Liss²; ¹Oregon State University; ²Guangdong Technion – Israel Institute of Technology

3:50 PM Invited

Significant Bauschinger Effect and Back Stress Strengthening in an Ultrafine Grained Pure Aluminum Fabricated by Severe Plastic **Deformation Process**: *Nobuhiro Tsuji*¹; Si Gao¹; Kota Yoshino¹; Daisuke Terada²; Yoshihisa Kaneko³; ¹Kyoto University; ²Chiba Institute of Technology; 3Osaka Metropolitan University

4:20 PM Break

4:40 PM Invited

Understanding Interfacial Kinetic Processes during Sintering to Enable Heterostructuring: Fadi Abdeljawad¹; Omar Hussein¹; Keith Coffman²; Eric Lang³; Khalid Hattar³; Shen Dillon⁴; ¹Clemson University; ²University of Illinois; ³Sandia National Laboratories; ⁴University of California at Irvine

5:10 PM

Strengthening of 3D Printed Cu Micropillar in Cu-Ni Core-shell Structure: Manish Jain1; Amit Sharma2; Patrik Schürch3; Nicolo Maria Della Ventura²; Wabe Koelmans³; Xavier Maeder²; Jakob Schwiedrzik²; Johann Michler²; ¹University of New South Wales; ²Empa-Swiss Federal Laboratories for Materials Science and Technology; 3Exaddon AG

5:30 PM

Strengthening Mechanisms in a Heterostructured and Antimicrobial Stainless Steel: Liliana Romero Resendiz1; Yuntian Zhu1; 1City University of Hong Kong

ADVANCED MATERIALS

High Performance Steels — Microstructure Development and Advanced Characterization II

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Jonah Klemm-Toole, Colorado School of Mines; Ana Luiza Araujo, CBMM North America Inc.; C. Tasan, Massachusetts Institute of Technology; Richard Fonda, Naval Research Laboratory; Amit Behera, QuesTek Innovations LLC; Benjamin Adam, Oregon State University; Krista Limmer, DEVCOM Army Research Laboratory; Kester Clarke, Colorado School of Mines

Tuesday PM | March 21, 2023 Aqua F | Hilton

Session Chairs: Richard Fonda, Naval Research Laboratory; Benjamin Adam, Oregon State University

2:30 PM Invited

Advanced Microstructural Characterization of Long-term Thermal Ageing Effects in Ferritic-Martensitic Steels: David Sprouster¹; B Adam²; A Koziol²; L Rolly²; C Huotilainen³; J Tucker²; ¹Stony Brook University; ²Oregon State University; ³TerraPower LLC

3:00 PM

Intercritical Annealing of DP Steels Investigated by In Situ High Energy X-ray Diffraction Experiments: Clelia Couchet1; Kuan Hong Cheong¹; Sébastien Allain¹; Julien Teixeira¹; Guillaume Geandier¹; Frédéric Bonnet²; ¹Institut Jean Lamour-Ijl (Cnrs Umr 7198); ²ArcelorMittal Maizières Research

3:20 PM

Improved Toughness of Warm-rolled Medium-Mn Steels Through Nano-sandwich Microstructure: Mun Sik Jeong1; Jeongho Han1; ¹Hanyang University

Precipitate and Texture Evolution in a Thick-gauge Niobiummicroalloyed Line Pipe Steel: Monowar Hossain¹; Xingshuo Wen²; Matthew Enloe³; Aaron Litschewski³; Murali Manohar²; Bertram Ehrhardt⁴; Gregory Thompson¹; *Nilesh Kumar*¹; Alabama, Tuscaloosa; ²ArcelorMittal - Global Research and Development; 3CBMM North America, Inc.; 4AM/NS Calvert

4:00 PM Break

4:20 PM

Post-partitioning Treatment to Improve Strength-ductility Combination in a Quench and Partitioning Steel: Berk Soykan1; Jiyun Kang¹; Narayan Pottore²; Hong Zhu²; C. Tasan¹; ¹Massachusetts Institute of Technology; ²ArcelorMittal - Global Research and Development

4:40 PM

Characterization of Ductility and Microstructure Evolution in HSLA Microalloyed Steel during Continuous Casting: Alyssa Stubbers¹; John Balk¹; ¹University of Kentucky

MATERIALS DESIGN

Hume-Rothery Symposium on First-Principles Materials Design — Interface First-principle Method with Machine Learning and Data Mining

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Bin Ouyang, Florida State University; Mark Asta, University of California, Berkeley; Geoffroy Hautier, Dartmouth College; Wei Xiong, University of Pittsburgh; Anton Van der Ven, University of California, Santa Barbara

Tuesday PM | March 21, 2023 Cobalt 501C | Hilton

Session Chair: Maria Chan, Argonne National Laboratory

2:30 PM Invited

Machine Learning Assisted Materials Generation: Jeffrey Grossman¹; 1MIT

3:00 PM Invited

Advances in Natural Language Processing for Building Datasets in Materials: Elsa Olivetti¹; ¹Massachusetts Institute of Technology

3:30 PM Invited

Learning Rules for High-throughput Screening of Materials **Properties and Functions**: Thomas Purcell¹; Matthias Scheffler¹; ¹The NOMAD Laboratory at the FH of the Max Planck Society and the Humboldt U.

4:00 PM Break

4:20 PM Invited

Available Methods for Predicting Materials Synthesizability Using Computational and Machine Learning Approaches: Anubhav Jain1; ¹Lawrence Berkeley National Laboratory

4:50 PM Invited

Machine Learning for Simulating Complex Energy Materials with Non-crystalline Structures: Nong Artrith¹; ¹Debye Institute for Nanomaterials Science, Utrecht University

5:20 PM Invited

Probabilistic Approach to Materials Modeling: Fei Zhou¹; ¹Lawrence Livermore National Laboratory

CORROSION

Local Ordering in Materials and Its Impacts on Mechanical Behaviors, Radiation Damage, and Corrosion — Session IV

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Nuclear Materials Committee, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Fadi Abdeljawad, Clemson University; Irene Beyerlein, University of California, Santa Barbara; Enrique Lavernia, University of California, Irvine; Robert Ritchie, University of California, Berkeley

Tuesday PM | March 21, 2023 Sapphire 411A | Hilton

Session Chairs: Yang Yang, The Pennsylvania State University; Penghui Cao, University of California, Irvine; Irene Beyerlein, University of California, Santa Barbara

2:30 PM Invited

Chemical Short-range Order and Passivation of Binary FCC and BCC Single-Phase Alloys: Karl Sieradzki¹; Ian McCue²; James Rondinelli²; John Cavin²; ¹Arizona State University; ²Northwestern University

3:00 PM Invited

Optimizing Passivation in Multiprincipal Element Alloys through Local Order: Mitra Taheri¹; ¹Johns Hopkins University

3:30 PM Invited

The Role of Short Range Ordering on the Corrosion Behavior of Structural Materials: John Scully¹; Ho Lun Chan¹; Debashish Sur¹; Elena Romanovskaia¹; ¹University of Virginia

4:00 PM Break

4:15 PM Invited

Dynamic Atomic-scale Understanding of the Initial Stages of Cu Oxidation Revealed by Correlated Environmental TEM and Theoretical Simulations: Judith Yang¹; ¹Brookhaven National Laboratory

4:45 PM Invited

Multiscale Irradiation-induced Ordering in Metal Oxides: Janelle Wharry¹; Hui Xiong²; Tristan Olsen²; Cyrus Koroni²; Andy Lau²; Dewen Hou²; Chao Yang¹; Caleb Clement¹; Khalid Hattar³; Yongqiang Wang⁴; Wei-Ying Chen⁵; ¹Purdue University; ²Boise State University; ³Sandia National Laboratories; ⁴Los Alamos National Laboratory; ⁵Argonne **National Laboratory**

5:15 PM Invited

Ordering and Disordering of Helium Bubbles and Precipitates in Materials Studied Using Small Scale Mechanical Testing: Peter Hosemann¹; Mehdi Balooch¹; Yujun Xie²; H. V. Tin³; David Frazer⁴; ¹University of California, Berkeley; ²University of California-Berkeley; ³Los Alamos National Laboratory; ⁴Idaho National Laboratory

5:45 PM Invited

Exploring the Thermal, Mechanical, and Radiation Stability of Refractory High Entropy Alloys via In-situ Electron Microscopy: Khalid Hattar¹; Eric Lang¹; ¹Sandia National Laboratories

LIGHT METALS

Magnesium Technology 2023 — Deformation and **Advanced Processing**

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Steven Barela, Terves, Inc; Aeriel Murphy-Leonard, Ohio State University; Petra Maier, University of Applied Sciences Stralsund; Neale Neelameggham, IND LLC; Suveen Mathaudhu, Colorado School of Mines; Victoria Miller, University of Florida

Tuesday PM | March 21, 2023 30C | SDCC

Session Chairs: Domonkos Tolnai, Helmholtz-Zentrum Hereon; Vineet Joshi, Pacific Northwest National Laboratory

2:30 PM

Barrel Finishing of Magnesium Alloys: Nina Petersen¹; Björn Wiese¹; Norbert Hort1; 1Helmholtz-Zentrum Hereon

Influence of Preforging in Extrusion as well as in Equal-channel Angle Extrusion (ECAPEX) on the Properties of Magnesium Rods: René Nitschke¹; Sören Müller¹; ¹TU Berlin

Microstructure and Properties of Wrought Mg-Gd-Y-Zn-Zr Alloy (VW94) Alloy: Joshua Caris¹; Janet Meier²; Vincent Hammond³; Alan Luo²; ¹Terves, LLC.; ²The Ohio State University; ³US Army Research Laboratory

3:30 PM Invited

Recent Advances in PRISMS-plasticity Software for Simulation of Deformation in Mg Alloys: Mohammadreza Yaghoobi¹; Duncan Greeley¹; Zhe Chen¹; Tracy Berman¹; John E. Allison¹; Veera Sundararaghavan¹; ¹University of Michigan

3:50 PM Break

The Mechanisms to Improve Creep Resistance in a Die-cast MgREMnAl Alloy: Xixi Dong¹; Lingyun Feng¹; Eric Nyberg²; Shouxun Ji¹; ¹Brunel University London; ²Kaiser Aluminum

Solid Phase Processing of Mg-Al-Mn-Ca for High Strength and Ductility: David Garcia¹; Hrishikesh Das¹; Kumar Sadayappan²; Peter Newcombe²; Darrel Herling¹; Glenn Grant¹; Mageshwari Komarasamy¹; ¹Pacific Northwest National Laboratory; ²CANMET -Materials Technology Laboratory

4:45 PM

The Effects of Temperature and Strain Rate on the Tensile Behaviour of Die-cast Magnesium Alloy AE44: Trevor Abbott¹; Hua Qian Ang²; Suming Zhu³; Mark Easton²; ¹Magontec Limited; ²RMIT University; 3Monash University

Materials and Chemistry for Molten Salt Systems — **Mechanisms of Corrosion in Molten Salt**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Raluca Scarlat, University of California, Berkeley; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Nathaniel Hoyt, Argonne National Laboratory

Tuesday PM | March 21, 2023 27A | SDCC

Session Chair: Raluca Scarlat, University of California, Berkeley

2:30 PM

Ab-initio Molecular Dynamics Examination of Critical Steps for Molten Salt Corrosion of Stainless Steels: Anton Schneider1; Lin-Chieh Yu¹; Yongfeng Zhang¹; ¹University of Wisconsin Madison

Atomistic Kinetics Monte Carlo Simulations of Molten Salt Corrosion of Ni-Cr Alloys: Lin-Chieh Yu1; Anton Schneider1; Yongfeng Zhang¹; ¹University of Wisconsin-Madison

Solid-Solution Alloying Effects in Molten Chloride Salt Corrosion: Touraj Ghaznavi¹; Suraj Persaud²; Roger Newman¹; ¹University of Toronto; ²Queen's University

Corrosion and Dealloying Phenomena of Binary Ni-Cr Alloys in Molten FLiNaK Salts: Ho Lun Chan¹; Elena Romanovskaia¹; Valentin Romanovski¹; Minsung Hong²; Peter Hosemann²; John Scully¹; ¹University of Virginia; ²University of California Berkeley

3:50 PM

4D-STEM/EDS Characterization of Molten Salt Corrosion in NiCr Alloy: Sean Mills1; Ryan Hayes1; Steven Zeltmann1; Raluca Scarlat1; Andrew Minor¹; ¹University of California-Berkeley

4:10 PM Break

4:25 PM

Understanding the Mechanisms of Corrosion in 316 Stainless Steels and Advanced Ni-based Alloys in Molten FLiNaK at 700oC: William Doniger¹; Govindarajan Muralidharan²; Adrien Couet¹; Kumar Sridharan¹; ¹University of Wisconsin-Madison; ²Oak Ridge National Laboratory

4:45 PM

Electrochemical Corrosion Testing in Molten Fluoride (FLiNaK) Salts: Matthew Lawson¹; Drew Glenna¹; Haiyan Zhao¹; ¹University of Idaho

5:05 PM

Accelerated Corrosion of Nickel-Chromium by Europium Trifluoride in FLiNaK: Ryan Hayes1; Sean Mills1; Andrew Minor1; Raluca Scarlat1; ¹University of California Berkeley

Systematic Corrosion Model for Non-isothermal Molten Salt Loop: Jinsuo Zhang¹; ¹Virginia Polytechnic Institute and State University

5:45 PM

Assessing Environmentally-Assisted Cracking of 316L in Molten FLiNaK: Xavier Quintana1; Dustin Mangus1; Jake Quincey1; Julie Tucker¹; Samuel Briggs¹; ¹Oregon State University

MATERIALS DESIGN

Materials Genome, CALPHAD, and a Career over the Span of 20, 50, and 60 Years: An FMD/SMD Symposium in Honor of Zi-Kui Liu — Density **Functional Theory**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Yu Zhong, Worcester Polytechnic Institute; Richard Otis, Jet Propulsion Laboratory; Bi-Cheng Zhou, University of Virginia; Chelsey Hargather, New Mexico Institute of Mining and Technology; James Saal, Citrine Informatics; Carelyn Campbell, National Institute of Standards and Technology

Tuesday PM | March 21, 2023 Sapphire L | Hilton

Session Chair: Bi-Cheng Zhou, University of Virginia

2:30 PM Invited

Ab Initio Descriptors to Guide Materials Design in High-dimensional Chemical and Structural Configuration Spaces: Fritz Koermann¹; Tilmann Hickel¹; Joerg Neugebauer¹; ¹MPI fuer Eisenforschung

3:00 PM Invited

A Solution to the Temperature Evolution of Multi-well Free-energy: Yi Wang¹; Tiannan Yang¹; Shun-Li Shang¹; Long-Qing Chen¹; Zi-Kui Liu1; 1Penn State

3:30 PM Invited

Understanding Interstitial and Substitutional Alloying of Refractory Metals: Anton Van der Ven¹; ¹University of California, Santa Barbara

4:00 PM Break

4:20 PM Invited

Melting Temperature Prediction via Integrated First Principles and Deep Learning: Qijun Hong1; 1Arizona State University

4:50 PM Invited

Stability of Transition Metal High Entropy Alloys: From Firstprinciples and Machine Learning: Ying Chen1; Nguyen-Dung Tran1; Chang Liu²; Xinming Wang³; Jun Ni³; ¹Tohoku University; ²Institute of Statistical Mathematics; 3Tsinghua University

5:20 PM Invited

A Comprehensive First-principles and Machine Learning Study of Pure Elements and Alloys: From Pure Shear Deformation to Data-driven Insights into Mechanical Properties: Shun-Li Shang¹; Yi Wang¹; Jingjing Li¹; Allison Beese¹; Zi-Kui Liu¹; ¹Pennsylvania State University

Mechanical Behavior of Nuclear Reactor Materials and Components III - Modeling

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Assel Aitkaliyeva, University of Florida; Clarissa Yablinsky, Los Alamos National Laboratory; Osman Anderoglu, University of New Mexico; Eda Aydogan, Middle East Technical University; Kayla Yano, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Djamel Kaoumi, North Carolina State University

Tuesday PM | March 21, 2023 28D | SDCC

Session Chairs: Clarissa Yablinksy, Los Alamos National Laboratory; Assel Aitkaliyeva, University of Florida

2:30 PM Invited

A Mesoscale Model of Creep in Monolithic UMo Fuels: Shenyang Hu¹; Benjamin Beeler²; ¹Pacific Northwest National Laboratory; ²North Carolina State University

3:00 PM

Modeling Long-term Radiation Effects on the Concrete Biological Shield: Amani Cheniour¹; Yann Le Pape¹; Eva Davidson¹; Mehdi Asgari¹; Benjamin Spencer²; Tara Pandya¹; Mark Baird¹; Benjamin Collins³; Andrew Godfrey¹; ¹Oak Ridge National Laboratory; ²Idaho National Laboratory; 3University of Texas at Austin

3:20 PM

Robust Constitutive Modeling with Artificial Neural Networks: Qing-Jie Li¹; Mahmut Cinbiz²; Yin Zhang¹; Geoffrey Beausoleil II²; Ju Li¹; ¹Massachusetts Institute of Technology; ²Idaho National Lab

Liquid Lead Embrittlement: Experiments and Molecular Dynamics Simulations: Alberto Fraile¹; Simon Middleburgh¹; Nicholas Barron²; Paolo Ferroni³; Michael Ickes³; ¹Nuclear Futures Institute; ²National Nuclear Laboratory Limited; 3Westinghouse Electric Company

4:00 PM Break

4:20 PM

Simulating Irradiation Induced Creep with Coupled Rate Theory and Plasticity Models: Aaron Kohnert¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

Molecular Dynamics Studies of Helium Bubble Effects on Grain Boundary Fracture Vulnerabilities in an Fe70Ni11Cr19-1%H Austenitic Stainless Steel: Xiaowang Zhou¹; Michael Foster¹; Ryan Sills¹; ¹Sandia National Laboratories

CHARACTERIZATION

Mechanical Response of Materials Investigated through Novel In-situ Experiments and Modeling — Session II

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization; Dongchan Jang, Korea Advanced Institute of Science and Technology; Shailendra Joshi, University of Houston; Minh-Son Pham, Imperial College London; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Josh Kacher, Georgia Institute of Technology

Tuesday PM | March 21, 2023 Aqua 310B | Hilton

Session Chairs: Manas Upadhyay, Ecole Polytechnique, LMS, CNRS; Tijmen Vermeij, Eindhoven University Of Technology

2:30 PM Invited

Directional Hardening in Metals: GND / Bowout Mechanism: Robert Wagoner¹; Stephen Niezgoda¹; David Fullwood²; Guowei Zhou³; Ehsan Taghipour¹; ¹Ohio State University; ²Brigham Young University; 3Shanghai Jiao Tong University

3:00 PM Invited

Effect of Macrozone Stereology on Crack Growth Rate Predictions in Ti-6Al-4V: Jaylen James¹; Reji John²; Sushant Jha³; Adam Pilchak⁴; Raymundo Arroyave¹; Eric Payton²; ¹Texas A&M University; ²Air Force Research Laboratory; 3University of Dayton Research Institute; 4MRL Materials Resources, LLC

Explicit Separation of Edge and Screw Dislocation Mobility and Density Evolution Law in BCC Single Crystal Plasticity Model: Cathy Bing¹; Philip Eisenlohr¹; ¹Michigan State University

3:50 PM

Integrated Experimental-numerical Testing of "2D" Steel Microstructures: Tijmen Vermeij¹; Job Wijnen¹; Ron Peerlings¹; Marc Geers¹; Johan Hoefnagels¹; ¹Eindhoven University of Technology

4:10 PM Break

4:30 PM Invited

What Happens to a Microstructure after Solidification During Metal Additive Manufacturing? - an Experiment-modeling Synergistic **Study**: Manas Upadhyay¹; ¹Institut Polytechnique de Paris

5:00 PM Invited

Multiscale Scattering Modeling from Deforming Titanium Alloy Polycrystals: Darren Pagan¹; Kenneth Peterson¹; Joel Bernier²; Jacob Ruff³; ¹Pennsylvania State University; ²Lawrence Livermore National Laboratory; 3Cornell High Energy Synchrotron Source

Interfacial Plasticity Mechanism of Hexagonal Dislocation Network in BCC Iron: Hadi Ghaffarian¹; Dongchan Jang¹; ¹Korea Advanced Institute of Science and Technology

Methods, Techniques, and Materials Discovery of Irradiation Effect Using In-situ Microscopy — Applications of X-ray/Neutron Diffraction and **Imaging Techniques**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Wei-Ying Chen, Argonne National Laboratory; Xuan Zhang, Argonne National Laboratory; Kevin Field, University of Michigan; Donald Brown, Los Alamos National Laboratory; Aida Amroussia, GE Global Research

Tuesday PM | March 21, 2023 25A | SDCC

Session Chair: Xuan Zhang, Argonne National Laboratory

2:30 PM Invited

Perspectives on Quasi-in-situ Characterization of Nuclear Materials Using Synchrotron X-rays: Maria Okuniewski¹; Alejandro Figueroa Bengoa¹; Sri Tapaswi Nori²; Peter Kenesei³; Jun-Sang Park³; Jonathan Almer³; ¹Purdue University; ²NOMATEN Centre of Excellence; ³Argonne National Laboratory

3:00 PM Invited

Revealing 3D Microstructures in Nuclear Materials with Highenergy X-rays: Jonathan Almer¹; Peter Kenesei¹; Jun-Sang Park¹; Hemant Sharma¹; Xuan Zhang¹; Meimei Li¹; ¹Argonne National Laboratory

3:30 PM

In-situ 3D High-energy X-ray Diffraction Study on Deformation Behavior of Neutron-irradiated Fe-9%Cr: Dominic Piedmont¹; Jun-Sang Park2; Peter Kenesei2; Jonathon Almer2; Matthew Kasemer3; Ezra Mengiste³; James Stubbins¹; Meimei Li²; Xuan Zhang²; ¹University Of Illinois At Urbana-Champaign; ²Argonne National Laboratory; 3University of Alabama

3:50 PM Break

4:10 PM Invited

Quantifying the Recovery of Irradiated and Cold-worked Zr-2.5Nb Using X-ray and Neutron Diffraction Line Profile Analysis: Levente Balogh¹; Thalles Lucas¹; Fei Long¹; Aaron Barry²; Mark Daymond¹; Donald Brown³; ¹Queen's University; ²Royal Military College of Canada; 3Los Alamos National Laboratory

4:40 PM

Revealing Heat-treatment Induced Stoichiometric Variations in **Neutron-irradiated**

Yttrium Hydrides Using In Situ Synchrotron Radiation Diffraction: Mahmut Cinbiz¹; Mehmet Topsakal²; Annabelle Le Coq³; Kory Linton³; ¹INL; ²Brookhaven National Laboratory; ³Oak Ridge National Laboratory

5:00 PM

Laboratory-based 3D X-ray Imaging of Neutron-irradiated TRISO Fuel: Nikolaus Cordes1; Brian Gross2; William Chuirazzi2; Rahul Kancharla²; Fei Xu²; Joshua Kane²; John Stempien²; ¹Los Alamos National Laboratory; 2Idaho National Laboratory

NUCLEAR MATERIALS

Microstructural, Mechanical and Chemical Behavior of Solid Nuclear Fuel and Fuel-cladding Interface -**Metallic Fuels**

Sponsored by: TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee

Program Organizers: Yi Xie, Purdue University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida

Tuesday PM | March 21, 2023 26B | SDCC

Session Chair: Joshua White, Los Alamos National Laboratory

2:30 PM Introductory Comments

2:35 PM Invited

The Evolution of the Microstructure of Low-enriched Uranium Fuels During Irradiation in the Advanced Test Reactor: Dennis Keiser¹; Brandon Miller¹; Jan-Fong Jue¹; Adam Robinson¹; Charlyne Smith¹; ¹Idaho National Laboratory

3:00 PM Invited

Characterization of Crystal Structure Evolution in U-2wt.%Zr Using Neutron Diffraction with Particular Focus on the Beta-Uranium Phase: Sven Vogel¹; Michael Benson²; Jason M. Harp³; Yi Xie⁴; ¹Los Alamos National Laboratory; 2Idaho National Laboratory; 3Oak Ridge National Laboratory; 4Purdue University

3:25 PM Invited

Lower Length Scale Fuel Performance Modeling of U-Mo Fuel: Benjamin Beeler¹; Bei Ye²; Zhi-Gang Mei²; Yongfeng Zhang³; Shenyang Hu⁴: Maria Okuniewski⁵: Sourabh Kadambi⁶: Linu Malakkal⁶: ¹North Carolina State University; ²Argonne National Laboratory; ³University of Wisconsin-Madison; ⁴Pacific Northwest National Laboratory; ⁵Purdue University; ⁶Idaho National Laboratory

3:50 PM Break

4:05 PM

Microstructure and Phase Evolutions of U-Zr System in Thermal Cycling Neutron Diffraction Experiments: Yi Xie1; Sven Vogel2; Michael Benson³; Jason Harp⁴; ¹Purdue University; ²Los Alamos National Laboratory; 3Idaho National Laboratory; 4Oak Ridge National Laboratory

4:25 PM

The Fabrication, Advanced Characterization, Advanced Test Reactor Irradiation, Post Irradiation Examination, and Materials Informatics for Annular U-10Zr Metallic Fuel: Tiankai Yao¹; Mukesh Bachhav¹; Fei Xu¹; Luca Capriotti¹; Benson Michael¹; Lingfeng He¹; Jason Harp²; ¹Idaho National Laboratory; ²Oak Ridge National Laboratory

Nanoindentation Creep of Metallic Uranium Alloys: Tzu-Yi Chang¹; Gavin Vandenbroeder¹; David Frazer²; Yushu Dewen²; Tianyi Chen¹; ¹Oregon State University; ²Idaho National Laboratory

5:05 PM

Creep Testing of 70% Theoretical Density U10Zr: Jake Fay1; Fidelma Di Lemma²; Luca Capriotti³; Jie Lian¹; ¹Rensselaer Polytechnic Institute; 2Idaho National Laboratory; 3Idaho National Laboratory

5:25 PM

Characterization of U-10Mo Fuel Exposed to Intermediate Temperature Irradiation Conditions at the High Flux Isotope Reactor: Peter Doyle¹; Jason Harp¹; Dylan Richardson¹; Tash Ulrich¹; Ian Greenquist¹; Andrew Nelson¹; Rachel Seibert¹; Grant Helmreich¹; Randy Fielding²; Caleb Massey¹; ¹Oak Ridge National Laboratory; ²Idaho National Laboratory

5:45 PM

Magnetism and Finite Temperature Effects in -UZr2: A Density Functional Theory Analysis: Shehab Shousha1; Benjamin Beeler1; ¹North Carolina State University

6:05 PM

Molecular Dynamics Based Microstructural Evaluation of the Surviving Defects in -U Induced by a Single Displacement Cascade: Khadija Mahbuba¹; Benjamin Beeler¹; Andrea Jokisaari¹; ¹North Carolina State University

NANOSTRUCTURED MATERIALS

Nanostructured Materials in Extreme Environments Nanostructured Ceramics in Extreme Environments

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nuclear Materials Committee

Program Organizers: Haiming Wen, Missouri University of Science and Technology; Nan Li, Los Alamos National Laboratory; Youxing Chen, University of North Carolina Charlotte; Yue Fan, University of Michigan; Niaz Abdolrahim, University of Rochester; Khalid Hattar, University of Tennessee Knoxville; Ruslan Valiev, UFA State Aviation Technical University; Zhaoping Lu, University of Science and Technology Beijing

Tuesday PM | March 21, 2023 Aqua 303 | Hilton

Session Chair: Yue Fan, University of Michigan

2:30 PM Invited

Irradiation Effects in Nanostructured Ceramics: William Weber¹; Chien-Hung Chen¹; Jagdish Narayan²; Yanwen Zhang³; ¹University of Tennessee; ²North Carolina State University; ³Oak Ridge National Laboratory

2:55 PM Invited

Layering and Interfacial Effects on Radiation Resistance of Covalently-bonded Materials: Izabela Szlufarska¹; ¹University of Wisconsin-Madison

3:20 PM Invited

Design Amorphous Ceramic Composites Through Tailoring Compositions and Heterogeneities: Jian Wang¹; Binggiang Wei¹; ¹University of Nebraska-Lincoln

3:45 PM Invited

Defect Transport and Microstructural Evolution in Irradiated Nanocrystalline Oxides: Nachiket Shah¹; Nathan Madden²; Khalid Hattar²; Jessica Krogstad¹; ¹University of Illinois at Urbana-Champaign; ²Sandia National Laboratory

4:10 PM Break

4:30 PM Invited

Enhanced Corrosion Resistance of Nanostructured Pyrochlore and its Mechanistic Understanding: Jie Lian¹; ¹Rensselaer Polytechnic Institute

4:55 PM Invited

Stability and Behavior of MoS2 in Extreme Radiation Environments: Aaron Rabin¹; Zhihan Hu²; Kory Burns¹; Lin Shao²; Khalid Hattar³; Assel Aithaliyeva¹; ¹University of Florida; ²Texas A&M University; ³Sandia National Laboratories

5:20 PM Invited

Experimental and Computational Studies of Defect and Microstructure Evolution under Irradiation in Cathode Battery Materials: Muhammad Rahman¹; Feng Lin¹; Xian-Ming Bai¹; ¹Virginia Polytechnic Institute and State University

Microstructural Dependence of Defect Formation in Iron-oxide Thin Films: Benjamin Derby¹; Sean Mills²; Sahil Agarwal³; James Valdez¹; J. Baldwin¹; Matthew Schneider¹; Andrew Minor²; Blas Uberuaga¹; Farida Selim³; Nan Li¹; ¹Los Alamos National Laboratory; ²University of California - Berkeley; ³Bowling Green State University

Strength, Plasticity and Stability of Dual Phase Ti-SiOC Ceramic Nanocomposites: Bingqiang Wei¹; Kaisheng Ming²; Jian Wang¹; ¹University Of Nebraska-Lincoln; ²Hebei University of Technology

CHARACTERIZATION

Neutron and X-ray Scattering in Materials Science — Techniques, Instrumentation, and Facilities

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Jennifer Niedziela, Oak Ridge National Lab; Hillary Smith, Swarthmore

Tuesday PM | March 21, 2023 Aqua 311B | Hilton

Session Chair: Jennifer Niedziela, Oak Ridge National Laboratory

2:30 PM Invited

Neutron Scattering Opportunities for Materials Science at Oak Ridge National Laboratory: Georg Ehlers¹; Kenneth Littrell¹; ¹Oak Ridge National Laboratory

3:00 PM Invited

In Situ High Pressure Neutron Scattering for Materials Characterization: Bianca Haberl1; Mary-Ellen Donnelly1; Malcolm Guthrie¹; Garrett Granroth¹; Reinhard Boehler¹; ¹Oak Ridge National Laboratory

3:30 PM

Initial Instruments at the Second Target Station: Leighton Coates1; ¹Oak Ridge National Laboratory

PIONEER and VERDI, Two Next Generation Neutron Diffractometers for Materials Science at the Second Target Station: Yaohua Liu¹; ¹Oak Ridge National Laboratory

4:10 PM Break

4:25 PM

Operando Neutron Diffraction Reveals Insights into Transient Phases and Residual Stresses during Directed Energy Deposition Additive Manufacturing: Chris Fancher¹; Kyle Saleeby¹; Ke An¹; James Haley1; Guru Madireddy1; Thomas Feldhausen1; Yousub Lee1; Dunji Yu¹; Clay Leach¹; Alex Plotkowski¹; ¹Oak Ridge National Laboratory

4:45 PM

Polychromatic Multiplexing Stress-strain Diffractometer: Sean Fayfar¹; Boris Khaykovich¹; Theodore Cremer²; ¹Massachusetts Institute of Technology; 2Adelphi Technology

5:05 PM

Coded Apertures for Depth Resolved Diffraction: Dina Sheyfer1; Doga Gursoy¹; Wenjun Liu¹; Jon Tischler¹; Michael Wojcik¹; ¹Argonne **National Laboratory**

5:25 PM

Scalable Rietveld Refinements of Diffraction: Daniel Savage¹; Christopher Biwer¹; Michael McKerns¹; Cynthia Bolme¹; Sven Vogel¹; ¹Los Alamos National Laboratory

Evaluation of Boron Carbide's Full Elasticity Tensor via Thermal Diffuse X-ray Scattering: Arezoo Zare1; B. Wehinger2; A. Mirone2; D.J. Magagnosc³; M.R. He¹; M. Straker⁴; M. Spencer⁴; T.C. Hufnagel¹; K.T. Ramesh¹; ¹Johns Hopkins University; ²European Synchrotron Radiation Facility; ³Army Research Laboratory; ⁴Morgan State University

ENERGY & ENVIRONMENT

New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of Patrick R. Taylor — **Education**

Sponsored by: Society for Mining Metallurgy and Exploration, TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Materials Characterization Committee, TMS: Energy Committee, TMS: Recycling and Environmental **Technologies Committee**

Program Organizers: Ramana Reddy, University of Alabama; Corby Anderson, Colorado School of Mines; Erik Spiller, Colorado School of Mines; Edgar Vidal, NobelClad; Camille Fleuriault, Eramet Norway; Alexandra Anderson, Gopher Resource; Mingming Zhang; Christina Meskers, SINTEF

Tuesday PM | March 21, 2023 33C | SDCC

Session Chairs: Alexandra Anderson, Gopher Resource; Adamantia Lazou, Norwegian University of Science and Technology

Examples of Innovations in Metallurgical Engineering Education and Curriculum Development at the University of Utah: Michael Free1: 1University of Utah

3:00 PM Invited

Extractive Metallurgy Education - On the Rim of Extinction or in the Beginning of a New Era: Merete Tangstad¹; ¹Norwegian University of Science and Technology

3:30 PM Invited

Options for Sustaining Metallurgical Engineering Education: Evgueni Jak1; Peter Hayes1; Maurits Van Camp; 1University of Queensland

4:00 PM Break - Sharing Skills and Best Practices in PYROmetallurgy (SPYRO) - VR Training Demonstration (available during the break): Presenter: Gaurav Tripathi, Eramet - This demonstration utilizes Virtual Reality to offer a rare glimpse of a full scale industrial environment in an immersive and interactive manner. This unique training module exposes the learner to the challenges and potential hazards present in a pyrometallurgical plant with an emphasis on safety.

4:20 PM Invited

Art • Engineering at South Dakota Mines: Brett Carlson¹; ¹South **Dakota Mines**

4:50 PM Invited

Open Innovation in Battery Recycling R&D: Joseph Grogan¹; ¹Gopher Resource

5:20 PM Panel Discussion

NUCLEAR MATERIALS

Phase Stability in Extreme Environments — Hydrogen in Extreme Environments

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Andrew Hoffman, GE Research; Kinga Unocic, Oak Ridge National Laboratory; Janelle Wharry, Purdue University; Kaila Bertsch, Lawrence Livermore National Laboratory; Raul Rebak, GE Global Research

Tuesday PM | March 21, 2023 28C | SDCC

Session Chair: Caitlin Taylor, Los Alamos National Laboratory

2:30 PM Invited

Martensitic Transformations and Shear-band Interactions in Austenitic Stainless Steel: Effects of Hydrogen: Douglas Medlin1; Julian Sabisch²; James Nathaniel¹; Joshua Sugar¹; Joseph Ronevich¹; Christopher San Marchi¹; ¹Sandia National Laboratories; ²University of Oklahoma

3:00 PM Invited

Density Functional Study of Short-range Order in Cantor Alloy and Its Effect on Point-defects: Artur Tamm¹, Shinyoung Kang²; ¹University of Tartu; ²Lawrence Livermore National Laboratory

3:30 PM

Phase Stability of Metal Hydrides under Combined Radiation and Thermal Environments: Caitlin Taylor¹; Matheus Tunes¹; Yongqiang Wang¹; Matthew Chancey¹; Tyler Smith¹; Aditya Shivprasad¹; Thomas Nizolek¹; Erik Luther¹; Tarik Saleh¹; ¹Los Alamos National Laboratory

3:50 PM

Revisiting the Atomic Scale Mechanisms of Stress Corrosion Cracking of Fe-based Alloys with State-of-the-Art Microscopy and Computational Modelling: Arun Devaraj¹; Dallin Barton¹; Tingkun Liu¹; sten Lambeets¹; Cheng-han Li¹; Tanvi Ajantiwalay¹; Mark Wirth¹; Daniel Perea¹; Jinhui Tao¹; matthew Olszta¹; Maria Sushko¹; ¹Pacific Northwest National Laboratory

ELECTRONIC MATERIALS

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXII — Reliability of Advanced Electronic Materials

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hiroshi Nishikawa, Osaka University; Shihkang Lin, National Cheng Kung University; Chao-hong Wang, National Chung University; Chih-Ming Chen, National Chung Hsing University; Jae-Ho Lee, Hongik University; Zhi-Quan Liu, Shenzhen Institutes of Advanced Technology; Ming-Tzer Lin, National Chung Hsing University; Yee-wen Yen, National Taiwan University of Science and Technology; A.S.Md Abdul Haseeb, Bangladesh University of Engineering and Technology (BUET); Ligang Zhang, Central South University; Sehoon Yoo, KITECH; Vesa Vuorinen, Aalto University; Yu-chen Liu, National Cheng Kung University; Ting-Li Yang, National Yang Ming Chiao Tung University

Tuesday PM | March 21, 2023 Sapphire E | Hilton

Session Chairs: Hiroshi Nishikawa, Osaka University; Chuantong Chen, Osaka University

2:30 PM Invited

Competitive Degradation Mechanisms and Design Considerations for On-chip Resistor Structures: Ping-Chuan Wang¹; Lina McCary¹; Rachmadian Wulandana¹; ¹SUNY New Paltz

2:55 PM Invited

Two Phase Stability Affecting Electromigration Failure Mechanism of Solder Alloys: Choong-un Kim¹; ¹University of Texas at Arlington

Research on the Mechanism of ENEPIG/Solder Joint Reliability: Ya-Hui Hsu¹; ¹National Central University

Synchrotron White X-ray Nanodiffraction Study of Tin Whisker Growth Driven by Electric Current: Wan-Zhen Hsieh¹; Pei-Tzu Lee¹; Cheng-Yu Lee1; Cheng-En Ho1; 1Yuan Ze University

4:00 PM Break

4.20 PM

Electric Current Effects upon & 'Cu6Sn5 Intermetallic Compound: Shubhayan Mukherjee¹; Yu-chen Liu¹; Shih-kang Lin¹; ¹National Cheng Kung University

4:40 PM

Electromigration-induced Abnormal IMC Volume Expansion in Micro Joints with Au/Pd(P)/Ni(P) Surface Finish: Cheng-Yu Lee1; Shun-Cheng Chang¹; Chih-Tsung Chen¹; Pei-Tzu Lee¹; Cheng-En Ho¹; ¹Yuan Ze University

5:00 PM

Solder Joint Properties of Nickel-less Surface Finishes - Direct Electroless Gold (DEG) and Electroless Palladium Immersion Gold (EPIG): So-Yeon Jun1; Tae-Young Lee1; Min-Su Kim1; Deok-Gon Han2; Tae-Ho Lee²; Sehoon Yoo¹; ¹Korea Institute of Industrial Technology; ²MK Chem&Tech.

PHYSICAL METALLURGY

Phase Transformations and Microstructural Evolution — Shape Memory Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Ashley Paz y Puente, University of Cincinnati; Mark Aindow, University of Connecticut; Sriswaroop Dasari, University of North Texas; Ramasis Goswami, Naval Research Laboratory; Megumi Kawasaki, Oregon State University; Eric Lass, University of Tennessee-Knoxville; Josh Mueller, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Le Zhou, Marquette University

Tuesday PM | March 21, 2023 25C | SDCC

Session Chair: Eric Payton, University of Cincinnati

2:30 PM Invited

Unexpected Mechanical and Functional Behavior in Shape Memory Alloys Beyond Shape Memory and Superelasticity: Ibrahim Karaman¹; ¹Texas A&M University

3:00 PM

Mechanisms of Shock Strength Exhibited by a Nickel-Rich Nickel-Titanium-Hafnium Alloy: Tyler Knapp¹; Aaron Stebner¹; ¹Georgia Institute of Technology

3:20 PM Invited

Mean-field Approach for High-temperature Shape Memory Alloys: Jean-Briac le Graverend¹; ¹Texas A&M University

3:50 PM Break

4:10 PM

Low-fatigue Ti-based Shape Memory Alloy for Bulk Elastocaloric Material: Wook Ha Ryu1; Ji Young Kim1; Eun Soo Park1; 1RIAM, Seoul National University, South Korea

Cyclic Degradation of Superelasticity of Fe-Mn-Al-Ni Shape Memory Alloy Studied Complementary In Situ Characterization Techniques: Robert Lehnert1; Moritz Müller2; Malte Vollmer3; Philipp Krooß³; Thomas Niendorf³; Horst Biermann¹; Anja Weidner¹; ¹Technische Universität Bergakademie Freiberg; ²Universität Bergakademie Freiberg; 3University of Kassel

5:10 PM

Investigating the Effect of L-PBF Process Parameters on 3D Printed Nitinol Part Properties: Josiah Chekotu¹; Dermot Brabazon¹; ¹Dublin City University

A New Crystal Plasticity Modeling Framework for Fully Implicit Time Integration of Coupled Phase Transformation and Slip in Shape Memory Alloys: Rupesh Kumar Mahendran¹; Surya Kalidindi¹; Aaron Stebner¹; ¹Georgia Institute of Technology

ADDITIVE TECHNOLOGIES

Powder Materials Processing and Fundamental Understanding — Sintering

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Eugene Olevsky, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Kennametal Inc.; Wenwu Xu, San Diego State University

Tuesday PM | March 21, 2023 25B | SDCC

Session Chairs: Elisa Torresani, San Diego State University; Diletta Giuntini, Eindhoven University of Technology

2:30 PM Invited

Sintering Mechanism for Polycrystalline Diamond: Randall German1; 1San Diego State University

3:00 PM

Gravitation Effects on Sintering: Elisa Torresani¹; Randall German¹; Eugene Olevsky¹; ¹San Diego State University

Minimizing Anisotropy and Cracking During Co-sintering of Layered Ceramics: Examples for Electronics, Energy and Catalysis: Diletta Giuntini¹; ¹Eindhoven University of Technology

Analytical Models for Initial and Intermediate Stages of Sintering of Stainless Steel Manufactured by Binder Jetting: Alberto Cabo Rios¹; Eugene Olevsky¹; Eduard Hryha²; ¹San Diego State University; ²Chalmers University

4:00 PM

Multi-scale Modeling of the Electric Field Assisted Sintering Process: Larry Aagesen¹; Stephanie Pitts¹; Lucas Robinson²; R. Garcia²; ¹Idaho National Laboratory; ²Purdue University

4:20 PM Break

4:40 PM Invited

Powder Metallurgy Co Base Superalloys and High Entropy Alloys: Beyond Ni-base Superalloys for High-temperature Applications: Jose Torralba¹; Venkatesh Kumaran¹; Alexander Mejia-Reinoso²; Alberto Meza³; Ahad Mohammadzadeh³; Dariusz Garbiec⁴; Monica Campos²; ¹Universidad Carlos III Madrid-IMDEA Materials Institute; ²Universidad Carlos III Madrid; ³IMDEA Materials Institute; ⁴Poznan Institute of Technology

5:10 PM

Manufacturing of Porous Tungsten via Place-Holder Spark Plasma Sintering for Nuclear Fusion Applications: Trevor Marchhart¹; Camila Lopez-Perez¹; Martin Nieto-Perez¹; Jean Paul Allain¹; ¹Pennsylvania State University

5:30 PM

A New Hybrid Manufacturing Approach to Diffusion Bond and Functionally Grade Materials Demonstrated Through Titanium Alloys and Nickel-based Superalloys: Samuel Lister¹; Oliver Levano Blanch¹; Martin Jackson¹; ¹University of Sheffield

ELECTRONIC MATERIALS

Printed Electronics and Additive Manufacturing: Functional Materials, Processing Techniques, and **Emerging Applications — Session III**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Rahul Panat, Carnegie Mellon University; Yong Lin Kong, University of Utah; Konstantinos Sierros, West Virginia University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ravindra Nuggehalli, New Jersey Institute of Technology

Tuesday PM | March 21, 2023 Sapphire 411B | Hilton

Session Chairs: Yong Lin Kong, University of Utah; Rahul Panat, Carnegie Mellon University; Kai Li, Oak Ridge National Laboratory

2:30 PM Invited

Reducing Variability Within Printed Electronics Through Process and Material Innovations: Joseph Andrews¹; ¹University of Wisconsin Madison

2:55 PM

Miniaturizing Direct-write of Porous Graphene Lines by Combining Fiber Laser-induced Carbonization with Photoinitiator Printing: Soumalya Ghosh¹; Moataz Abdulhafez¹; Mirza Sahaluddin¹; Mostafa Bedewy¹; ¹University of Pittsburgh

Study & Analysis of Ring Assisted Electrohydrodynamic Jet (e-jet) Printing of Micro & Nano Structures: Savan Suri¹; Konstantinos Sierros¹; ¹West Virginia University

Unconventional Materials and Device Architectures for Tomorrow's System Needs: Harish Subbaraman¹; ¹Boise State University

4:00 PM Break

4:20 PM

Development of a Metamaterial Honeycomb Structure for Radar Absorbing Materials: Mariam Mansoori¹; Safieh Almahmoud¹; Daniel Choi¹; ¹Khalifa University

4:40 PM

Wet Chemical Synthesis of Patterned Bismuth Ferrite Thin Films by Direct Writing (Printing) and Characterization Using Printed **Electrodes**: Sanjeev Patil¹; Parasuraman Swaminathan¹; Institute of Technology, Madras

MATERIALS PROCESSING

Rare Metal Extraction & Processing — Process **Development and Optimization**

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Takanari Ouchi, University of Tokyo; Kerstin Forsberg, KTH Royal Institute of Technology; Gisele Azimi, University of Toronto; Shafiq Alam, University of Saskatchewan; Neale Neelameggham, IND LLC; Hojong Kim, Pennsylvania State University; Alafara Baba, University of Ilorin; Hong (Marco) Peng, University of Queensland; Athanasios Karamalidis, Pennsylvania State University; Shijie Wang, Coeur Mining, Inc

Tuesday PM | March 21, 2023 30B | SDCC

Session Chairs: Alafara Baba, University of Ilorin; Hong Peng, The University of Queensland

2:30 PM

Formation Rates of Different Zinc Oxide Crystal Morphologies Associated with the Recycling of Zn-ion Batteries: Billy Hoogendoorn¹; Xiong Xiao¹; Veerababu Polisetti¹; Fritjof Nilsson¹; Kåre Tjus²; Kerstin Forsberg¹; Richard Olsson¹; ¹KTH Royal Institute of Technology; ²IVL Swedish Environmental Research Institute

2:50 PM

Production of Micro-sized Metallic Tungsten Particles from Natural Wolframite and Scheelite via Sulfide Chemistry: Charles Boury¹; Sierra Green¹; Antoine Allanore¹; ¹Massachusetts Institute of Technology

3:10 PM

Purification of an Indigenous Barite Mineral for Sustainability of Operation in the Nigerian Oil and Gas Industries: Alafara Baba¹; Fausat Akanji²; Abdul Ganiyu Alabi³; Abdullah Ibrahim¹; Kuranga Ayinla¹; Mustapha Raji¹; Seyi Adeboye⁴; Rasheed Agava⁵; M. Haruna⁵; ¹University of Ilorin; ²SHEDA Science and Technology Complex; ³Kwara State University, Malete; ⁴National Biotechnology Development Agency; 5 National Agency for Science and Engineering Infrastructure (NASENI)

Pyrolysis of Waste Printed Circuit Boards: Optimization Using Response Surface Methodology and Characterization of Solid **Product**: Kurniawan Kurniawan¹; Sookyung Kim²; Jae-chun Lee²; ¹Korea University of Science and Technology; ²Korea Institute of Geoscience and Mineral Resources (KIGAM)

3:50 PM

Tantalum Recovery Technique for Recycling of Tantalum Coated Composite Materials: Akanksha Gupta¹; Brajendra Mishra¹; ¹Worcester Polytechnic Institute

ADVANCED MATERIALS

Refractory Metals 2023 — General Session -**Ultimate Plus**

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Brady Butler, US Army Research Laboratory; Todd Leonhardt, Rhenium Alloys Inc.; Matthew Osborne, Global Advanced Metals; Zachary Levin, Los Alamos National Laboratory

Tuesday PM | March 21, 2023 Sapphire P | Hilton

Session Chair: Brady Butler, US Army Research Laboratory / Texas A&M University

2:30 PM Introductory Comments

2:35 PM Invited

ULTIMATE: Refractory Metal Alloys for Gas Turbine Applications - A New Age of Ultrahigh Temperature Materials: Zhigang Fang¹; ¹University of Utah

3:00 PM

ULTIMATE: Machine Learning Guided Oxide Dispersion Strengthened Refractory HEA Discovery: John Sharon¹; Ryan Deacon¹; Soumalya Sarkar¹; Kenneth Smith¹; Anthony Ventura¹; GV Srinivasan¹; Alexandru Cadar¹; Michael Gao²; ¹Raytheon Technologies Research Center; 2National Energy Technology Laboratory

3:20 PM

Refractory Alloys for Future Aerospace Applications: Samuel Kuhr¹; Todd Butler¹; Noah Philips²; John Rotella¹; Donald Weaver¹; David Mahaffey¹; ¹Air Force Research Lab; ²ATI Specialty Alloys and Components

Study of the Interactions of Niobium with Oxygen from First Principles with Bayesian Uncertainty Quantification: Colleen Reynolds¹; Tresa Pollock¹; Anton Van der Ven¹; ¹University of California, Santa Barbara

4:00 PM

Thermal Transport Modeling in Refractory Multi-principal Element Alloys: A High-throughput Density-functional Theory Approach: Prashant Singh¹; Brent Vela²; Raymundo Arroyave²; Duane D. Johnson¹; ¹Ames Laboratory; ²Texas A&M University

4:20 PM Break

4:35 PM Invited

Bcc-Superalloy Nano-structured Tungsten and Refractory High entropy Alloys: Alexander Knowles¹; ¹University of Birmingham

5:05 PM

The Phase, Microstructure and Mechanical Properties of High Entropy Mo-Nb-Ti-V-W-Zr Ultrahigh Temperature Refractory Alloy: Lavanya Raman¹; Marcia Ahn¹; Arindam Debnath¹; Shuang Lin¹; Adnan Eghtesad¹; Adam Krajewski¹; Shunli Shang¹; Wesley Reinhart¹; Allison Beese¹; Bed Poudel¹; Zi-Kui Liu¹; Wenjie Li¹; Shashank Priya¹; ¹Pennsylvania State University

ULtrahigh TEmperature Refractory Alloys (ULTERA) Database and Data Quality Assurance: Adam Krajewski¹; Arindam Debnath¹; Shuang Lin¹; Marcia Ahn¹; Hui Sun¹; Allison Beese¹; Wesley Reinhart¹; Zi-Kui Liu¹; ¹The Pennsylvania State University

5:45 PM

Chromium-based bcc-Superalloys Tailored by Iron Addition: Kan Ma¹; Thomas Blackburn¹; Pedro Ferreirós¹; Christina Hofer²; Paul Bagot²; Michael Moody²; Tatu Pinomaa³; Mathias Galetz⁴; Alexander Knowles¹; ¹University of Birmingham; ²University of Oxford; 3VTT Technical Research Centre of Finland Ltd; 4DECHEMA-Forschungsinstitut

6:05 PM

Morphological Impacts on the Stress Relaxation and Strain Rate Sensitivity in Tungsten Heavy Alloy (WHA): Zachary Levin1; Taylor Jacobs¹; K. T. Hartwig²; ¹Los Alamos National Laboratory; ²Texas A&M University

LIGHT METALS

Scandium Extraction and Use in Aluminum Alloys - Scandium Containing Aluminum Alloys - Power Transmission and Additive Manufacturing

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Timothy Langan, Sunrise Energy Metals; Samuel Wagstaff, Oculatus Consulting; Phil Chataigneau, PDU Consulting; Efthymios Balomenos, Mytilineos S.A., Metallurgy Bu; Thomas Dorin, Deakin University; Muhammad Akbar Rhamdhani, Swinburne University of Technology; Dimitrios Filippou, Rio Tinto Iron & Titanium; Henk van der Laan, V.I.C. Van der Laan International Consultancy BV; Frank Palm, Airbus Defence and Space GmbH

Tuesday PM | March 21, 2023 30D | SDCC

Session Chair: Thomas Dorin, Deakin University

2:30 PM

Effect of Sc, Zr and Other REE on the 1XXX Conductive Aluminium Alloys Properties: Alexander Gradoboev¹; Dmitry Ryabov¹; Ruslan Aliev1; Viktor Mann1; Aleksandr Krokhin1; Roman Vakhromov1; Dror Shaked1: 1Lmti Llc (Uc Rusal)

2:55 PM

Developing Al-Zr-Sc Alloys as High-temperature-resistant Conductors for Electric Overhead Powerline Applications: Quan Shao¹; Emad Elgallad¹; Alexandre Maltais²; X.-Grant Chen¹; ¹University of Quebec at Chicoutimi; 2Rio Tinto Aluminum

3:20 PM

The Development of New Aluminum Alloys for the Laser Powderbed Fusion Process: Nathan Smith¹; Mostafa Yakout²; Mohamed Elbestawi¹; Phil Chataigneau³; Peter Cashin³; ¹McMaster University; ²University of Alberta; ³Imperial Mining Group Ltd.

3:45 PM

Sustainable Scandium Recovery Method from Metallic 3D Printing Powders: Bengi Yagmurlu¹; Carsten Dittrich²; ¹TU Clausthal; ²MEAB Chemie Technik GmbH

4:10 PM Break

4:25 PM

New Scandium Containing Aluminium Welding Wires for Wire + Arc Additive Manufacturing: Thomas Dorin1; Lu Jiang1; Andrew Sales²; ¹Deakin University; ²AML3D Ltd

4:50 PM

Comparative Study of Al-Mg-Ti(-Sc-Zr) Alloys Fabricated by Cold Metal Transfer and Electron Beam Additive Manufacturing: Jianggi Zhu¹; Xingchen Yan²; Tim Langan³; Jian-Feng Nie¹; ¹Monash University; ²Guangdong Academy of Science; ³Sunrise Energy Metals

5:15 PM

Dissolution and Development of Al3(Sc,Zr) Dispersoids in 5025 Structures Produced via Wire Arc Additive Manufacturing: Sonja Blickley¹; Tori Nizzi¹; Anna Palmcook¹; Austin Schaub¹; Timothy Langan²; Carson Williams³; Paul Sanders¹; ¹Michigan Technological University; ²Sunrise Energy Metals; ³Hobart Brothers, LLC

5:40 PM Panel Discussion

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Materials and Science — Actinide Synthesis and **Physics**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: J. Rory Kennedy, Idaho National Laboratory; Taylor Jacobs, Los Alamos National Laboratory; Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Don Wood, Idaho National Laboratory

Tuesday PM | March 21, 2023 28A | SDCC

Session Chairs: Eteri Svanidze, MPI CPfS; Krzysztof Gofryk, Idaho National Laboratory

2:30 PM Invited

The Quest for Californium(II) and the Importance of Trail Markers from Other Transuranium Elements and Lanthanides: Thomas Albrecht-Schoenzart1; 1Colorado School of Mines

3:00 PM Invited

End to End Plutonium Processing at LLNL: Kiel Holliday¹; ¹Lawrence Livermore National Laboratory

From Mild Hydrothermal to High Temperature Solutions: Crystal Growth of New Uranium and Transuranium Phases: Hans-Conrad Zur Loye¹; Kristen Pace¹; Travis Deason¹; Gregory Morrison¹; Theodore Besmann¹; Jake Amoroso²; David DiPrete²; ¹University of South Carolina; ²Savannah River National Laboratory

3:50 PM

The Path Toward Molecular Beam Epitaxy of Single Crystalline Actinide Materials: Kevin Vallejo1; Brelon May1; Cody Dennett1; Paul Simmonds²; David Hurley¹; Krzysztof Gofryk¹; ¹Idaho National Laboratory; 2Boise State University

4:10 PM Break

4:30 PM Invited

Enhanced Spin Orbit Coupling in the Actinides: Peter Riseborough¹; ¹Temple University

5:00 PM Invited

Magnetic and Electronic Properties of Actinides Affected by Polar Bonding: Ladislav Havela¹; ¹Charles University

MATERIALS DESIGN

Thermodynamics and Kinetics of Alloys — Session IV

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Ji-Cheng Zhao, University of Maryland; Wei Xiong, University of Pittsburgh; Chuan Zhang, CompuTherm LLC; Shuanglin Chen, CompuTherm LLC

Tuesday PM | March 21, 2023 Sapphire M | Hilton

Session Chairs: Chuan Zhang, CompuTherm, LLC; Giancarlo Trimarchi, Thermo-Calc Software AB

2:30 PM Invited

Improvement of Co-Cr-Ni-Ta Mobility Descriptions: Kil-Won Moon¹; Carelyn Campbell¹; ¹National Institute of Standards and Technology

2:50 PM Invited

Calculation of Pourbaix Diagrams for Aqueous Corrosion: Kang Wang¹; Bi-Cheng Zhou¹; ¹University of Virginia

Thermodynamics and Kinetics of Li-metal Alloys: Sesha Behara1; Anton Van der Ven¹; ¹University of California Santa Barbara

Prediction of the Microstructure and Corrosion Behavior for the Co. Cr. Fe. Mn. Ni. High-Entropy Alloys by the CALPHAD Method: Yu-Xuan Ho1; Sin-Yi Chen1; Yee-Wen Yen1; 1National Taiwan University of Science and Technology

3:50 PM Break

Calculation of Critical Points: Shuanglin Chen; Rainer Schmid-Fetzer¹; John Morral²; ¹Clausthal University of Technology; ²The Ohio State University

4:30 PM

Symbolic Regression Search for a General Free Energy Function for BCC Alloys: Luke Wirth¹; Snigdhansu Chatterjee²; Alexander Urban³; Dallas Trinkle¹; ¹University of Illinois Urbana-Champaign; ²University of Minnesota; 3Columbia University

Interfacial Properties and Crystal Growth of Ni, Ti and Ni₅₀Al₅₀ from Molecular Dynamics Simulations: Roberto Rozas¹; Pedro Toledo²; ¹University of Bío Bío; ²University of Concepción

NUCLEAR MATERIALS

Transmutation Effects in Fusion Reactor Materials: Critical Challenges & Path Forward — Helium, **Tritium and Hydrogen Effects II**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Arunodaya Bhattacharya, Oak Ridge National Laboratory; Steven Zinkle, University of Tennessee; Philip Edmondson, The University of Manchester; Aurelie Gentils, Université Paris-Saclay; David Sprouster, Stony Brook University; Takashi Nozawa, National Institutes for Quantum and Radiological Science and Technology (QST); Martin Freer, University of Birmingham

Tuesday PM | March 21, 2023 27B | SDCC

Session Chairs: Jean Henry, CEA-Saclay, University of Paris-Saclay; Arunodaya Bhattacharya, Oak Ridge National Lab

2:30 PM Keynote

Critical Evaluation of High Temperature Helium Embrittlement Phenomena in Structural Materials: Steven Zinkle¹; Zehui Qi¹; Arunodaya Bhattacharya²; ¹University of Tennessee; ²Oak Ridge **National Laboratory**

3:10 PM

The Effects of High-dose He and H Ion Implantation on the Microstructural Development in EUROFER-ODS Steel: Olga Emelyanova¹; Aurelie Gentils²; Katia March³; Yuriy Yagodzinskyy⁴; Vladimir Borodin⁵; Pavel Dzhumaev⁶; Pavel Vladimirov⁷; ¹Université Paris-Saclay, CNRS/IN2P3, IJCLab and National Research Nuclear University MEPhl; ²Université Paris-Saclay, CNRS/IN2P3, IJCLab; ³Eyring Materials Center, Arizona State University; ⁴Aalto University, School of Engineering; 5National Research Nuclear University MEPhI and NRC "Kurchatov Institute"; 6 National Research Nuclear University MEPhI; 7Karlsruhe Institute of Technology

3:30 PM Invited

Studies on Transmutation Effects in Reduced Activation Ferritic/ Martensitic Steels in Japan: Hiroyasu Tanigawa¹; Yoshiyuki Watanabe¹; Masami Ando¹; Dai Hamaguchi¹; Naoyuki Hashimoto²; Shuhei Nogami³; Takashi Nozawa¹; ¹National Institutes for Quantum Science and Technology; ²Hokkaido University; ³Tohoku University

4:10 PM Break

4:30 PM Invited

Modeling the Effect of He/dpa Rate on Microstructural Evolution in Ferritic-martensitic Alloys: Brian Wirth¹; ¹University of Tennessee

5:10 PM

Synergistic Effects between Radiation Damage and H/He Co-Injection on Swelling in Candidate Fusion Structural Materials: Logan Clowers¹; Gary Was¹; Zhijie Jiao¹; ¹University of Michigan

ADVANCED MATERIALS

2D Materials: Preparation, Properties, Modeling & **Applications — Modeling & Simulation**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Sufian Abedrabbo, Khalifa University; Hesam Askari, University of Rochester; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Joshua Young, New Jersey Institute Of Technology; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Karine Mougin, CNRS, IS2M; Heinz Palkowski, Clausthal University of Technology

Wednesday AM | March 22, 2023 Aqua AB | Hilton

Session Chairs: Joshua Young, New Jersey Institute of Technology; Karine Mougin, CNRS - IS2M

8:30 AM Introductory Comments

8:35 AM Invited

A New Experimentally Guided Computational Database for 2D Metal-organic Frameworks: Zeyu Zhang¹; Dylan Valente¹; Yuliang Shi¹; Dil Limbu¹; Farnaz Shakib¹; ¹New Jersey Institute of Technology

Carrier Mobility in 2D Semiconductors: Insights and Predictions from First Principles: Yuanyue Liu¹; ¹University of Texas at Austin

9:25 AM Invited

Modeling of Optoelectronic Properties of Charged Defects, Dopants, and Complexes in 2D Materials: Richard Hennig¹; Anne Tan²; Biswas Rijal¹; Christoph Freysoldt³; ¹University of Florida; ²Nanyang Technological University; ³Max Planck Institut für Eisenforschung

9:50 AM Break

10:05 AM

Modelling and Validation of Multiple Bubbles Dynamics and Their Effect on Liquid Phase Exfoliation of 2D Materials: Ling Qin1; Jiawei Mi¹; ¹University of Hull

10:25 AM

Monolayer-like Lattice Dynamics in Bulk WSe2: Qingan Cai¹; Chen Li¹; Qiyang Sun¹; Ayman Said²; Bin Wei³; ¹University of California-Riverside; ²Argonne National Laboratory ; ³Henan Polytechnic University

10:45 AM

Phase Field Modeling of Localized Thermal Oxidation of Monolayer WS2: Maryam Kazemzadeh-Atoufi¹; Ye Fan²; Ryo Mizuta²; Stephan Hofmann²; Peter Voorhees¹; ¹Northwestern University; ²University of Cambridge

11:05 AM

Theory of the Mechanical Exfoliation of 2D Materials: Haoye Sun¹; Hannah Gramling¹; Vu Nguyen¹; Ali Javey¹; Hayden Taylor¹; Joel Ager¹; Daryl Chrzan¹; ¹University of California

11:25 AM

Tunable Adsorption and Catalysis on Two Dimensional Ferroelectric Materials and Heterostructures: Mo Li¹; Joshua Young¹; ¹New Jersey Institute of Technology

LIGHT METALS

60 Years of Taking Aluminum Smelting Research and Development from New Zealand to the World: An LMD Symposium in Honor of Barry J. Welch -Joint Barry Welch Honorary Symposium - Reduction **Technology Session- Alumina Feeding, Process** Control, Modelling & Industry 4.0

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mark Dorreen, CSIRO; Alan Tomsett, Rio Tinto Pacific Operations; David Wong, Atmolite Consulting Pty Ltd; Linus Perander, Yara International; Barry Sadler, Net Carbon Consulting Pty Ltd; Stephan Broek, Kensington Technology Inc.

Wednesday AM | March 22, 2023 30E | SDCC

Session Chairs: Martin Segatz, Hydro Aluminium Limited; Sylvain Fardeau, Trimet France

8:30 AM Introductory Comments

8:35 AM

Following Alumina Dissolution Kinetics with Electrochemical and Video Analysis Tools: Daniel Marinha¹; Astrid Meyer²; Marian Kucharik²; Sylvie Bouvet¹; Miroslav Boca³; Frantisek Simko³; Michal Korenko³; Vladimir Danielik³; ¹Rio Tinto Aluminium; ²Hydro Aluminium; 3Slovak Academy of Sciences

Monitoring Cell Conditions and Anode Freeze Dissolution with Model-based Soft Sensor After Anode Change: Choon-Jie Wong¹; Jie Bao¹; Maria Skyllas-Kazacos¹; Ali Jassim²; Mohamed Mahmoud²; Alexander Arkhipov²; ¹University of New South Wales; ²Emirates Global Aluminium

9:25 AM Invited

EGA's First Holistic Mobile Application for Smelter Operations : Ahmed Al Haddad¹: ¹Emirates Global Aluminium

9:50 AM Invited

Testing Feeding Alumina in Three Channels in a Wide Cell: Marc Dupuis¹; Valdis Bojarevics²; ¹GeniSim Inc.; ²Greenwich University

10:15 AM Break

10:30 AM

A Pragmatic Model for Bath Temperature Evolution during Alumina Feeding: Kurian J. Vachaparambil¹; Stein Tore Johansen¹; Asbjørn Solheim¹; Kristian Etienne Einarsrud²; ¹SINTEF; ²Norwegian University of Science and Technology (NTNU)

10:55 AM

A New Strategy for Transient Heat Transfer Models with Phase Change for the Aluminum Electrolysis Industry: Bastien Pansiot¹; Marc Lebreux¹; Martin Désilets¹; Francis Lalancette¹; Jean-Francois Bilodeau²; Alexandre Blais²; ¹Université de Sherbrooke; ²Rio Tinto Alcan

11:20 AM

Development and Deployment Measures in PLC-based Pot Control System at Low Amperage Aluminium Reduction Cell: Rajeev Yadav¹; Shanmukh Rajgire¹; Md.Imroz Ahmad²; Goutam Das²; Ravi Pandey²; Mahesh Sahoo²; Amit Gupta¹; ¹Aditya Birla Science and Technology Company (P) Ltd; ²Hindalco Industries Ltd

A Discussion on Thermal Impact of Anode Change in Aluminum Reduction Cell: Zhibin Zhao¹; Wei Liu¹; Yafeng Liu¹; Michael Ren²; ¹Shenyang Aluminum and Magnesium Engineering and Research Institute Co. Ltd.; 2Sunlightmetal Consulting Inc.

MATERIALS DESIGN

Accelerated Discovery and Insertion of Next Generation Structural Materials — Accelerated Discovery of Structural Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Soumya Nag, Oak Ridge National Laboratory; Andrew Bobel, General Motors Corporation; Bharat Gwalani, North Carolina State University; Jonah Klemm-Toole, Colorado School of Mines; Antonio Ramirez, Ohio State University; Matthew Steiner, University of Cincinnati

Wednesday AM | March 22, 2023 Sapphire M | Hilton

Session Chairs: Soumya Nag, ORNL; Bharat Gwalani, PNNL; Antonio Ramirez, Ohio State University

Design of a Compact Morphology Cobalt-based Superalloy for Additive Manufacturing: Krista Biggs¹; Brandon Snow¹; Benjamin Graybill¹; Christopher Kiehl¹; Gregory Olson¹; ¹Massachusetts Institute of Technology

8:50 AM

High-throughput Prediction of Fracture and Brittle to Ductile Transition in Tungsten using Variable Temperature Nanoindentation: Kevin Schmalbach¹; Radhika Laxminarayana¹; Douglas Stauffer¹; William Gerberich²; Nathan Mara²; ¹Bruker Nano; ²University of Minnesota

Computational Design of an Ultra-strong High-entropy Alloy: Mauricio Ponga¹; ¹The University of British Columbia

9:30 AM

Computational Design of High Entropy Alloy Hardmetals: Joshua Berry¹; Robert Snell¹; Magnus Anderson¹; Olivier Messe²; Iain Todd¹; Katerina Christofidou¹; ¹University of Sheffield; ²Oerlikon AM Europe **GmbH**

Machine Learning-assisted Discovery of Novel High Temperature Ni-rich NiTiHfZr Multi-component Shape Memory Alloys: John Broucek¹; Daniel Salas¹; William Trehern¹; Ibrahim Karaman¹; ¹Texas A&M University

10:10 AM Break

10:30 AM

Data Efficient Bayesian ICME Workflow for the Design of Targeted Mechanical Properties of Structural Materials: Anssi Laukkanen¹; Tatu Pinomaa¹; Matti Lindroos¹; Sicong Ren¹; Abhishek Biswas¹; Napat Vajragupta¹; Tom Andersson¹; Tomi Suhonen¹; ¹VTT Technical Research Center of Finland

10:50 AM

Accelerated Discovery of Novel Titanium Alloys using Highthroughput Manufacturing, Characterization and Testing: Dian Li¹; Sydney Fields¹; Yufeng Zheng¹; ¹University of Nevada-Reno

A Diffusion Couple Approach to β-Ti Alloy Development: Evaluating the Oxidation Performance of Ti-Fe-X+ Alloys: Paraic O'Kelly1; Alexander Knowles¹; ¹University of Birmingham

11:30 AM

Using Machine Intuitive Learning to Predict Advanced Steel Properties: Krista Limmer¹; Andrew Garza¹; Heather Murdoch¹; Benjamin Szajewski¹; Daniel Field¹; Christopher Rinderspacher¹; Levi McClenny¹; Mulugeta Haile¹; ¹DEVCOM Army Research Laboratory

Rapid Characterisation of Active Slip Systems in Titanium Orderedbcc Compounds using an Algorithm for Automated Indentation Slip Trace Analysis.: Vincent Gagneur¹; Alexander Knowles¹; ¹University of Birmingham

ADDITIVE TECHNOLOGIES

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials — Structural Materials

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Magnetic Materials Committee, TMS: Additive Manufacturing Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Emily Rinko, Iowa State University; Emma White, DECHEMA Forschungsinstitut; Kyle Johnson, Sandia National Laboratories; Andrew Kustas, Sandia National Laboratories; Iver Anderson, Iowa State University Ames Laboratory

Wednesday AM | March 22, 2023 23C | SDCC

Session Chair: Iver Anderson, Iowa State University Ames Laboratory

8:30 AM Invited

Functional and Structural Materials Enabled by Advanced Manufacturing: Ryan Ott¹; Emrah Simsek¹; Rakesh Chaudhary¹; Seungjin Nam¹; Jun Cui¹; Matthew Kramer¹; Laboratory

Development of Metallic Matrix Composites and Powders for Metal Additive Manufacturing (MAM) Technologies: James Rosero-Romo¹; Paula G. Saiz¹; Daniel Salazar¹; ¹BCMaterials, Basque Center for Materials, Applications and Nanostructures

Microstructure Evolution and Mechanical Behavior of Ni-NiAl Functionally Integrated Materials (FIMs) Processed via Directed Energy Deposition (DED): Xin Wang¹; Baolong Zheng¹; Benjamin MacDonald¹; Calvin Belcher¹; Penghui Cao¹; Lorenzo Valdevit¹; Enrique Lavernia¹; Julie Schoenung¹; ¹University of California, Irvine

Effect of Wire Directed Laser Energy Deposition Parameters and Heat Treatment on the Microstructure and Mechanical Properties of NAB C95800: Ryan Doyle1; Somayeh Pasebani1; Jakub Preis1; ¹Oregon State University

10:00 AM Break

Fatigue Behavior of Additively Manufactured Haynes 230 at Room and Elevated Temperatures: Muztahid Muhammad¹; Rukesh Gusain¹; Reza Ghiaasiaan¹; Paul Gradl²; Shuai Shao¹; Nima Shamsaei¹; ¹Auburn University; ²NASA Marshall Space Flight Center

On Enhancing the Mechanical Properties of DED Fabricated Ti-6Al-4V by Boron Addition and In-situ Reheating: Kavindu Wijesinghe¹; Ajit Achuthan¹; ¹Clarkson University

10:55 AM

Ceramic Reinforced Graded Metal Matrix Composites Using Directed Energy Deposition: Alberto Canales Cantu¹; Shashank Sharma¹; Yuqi Jin¹; Sameehan Joshi¹; Narendra Dahotre¹; ¹University of North Texas

11:15 AM

Hollow-Strut Metal Lattices by Laser Powder Bed Fusion: Jordan Noronha¹; Ma Qian¹; Martin Leary¹; Milan Brandt¹; Elizabeth Kyriakou¹; ¹Royal Melbourne Institute of Technology

Friction Stir Additive Manufacturing Bulk Metal Matrix Composites: Andrew Yob1; Shiqin Yan1; Michael Kellam1; David Renshaw1; Ling Chen1; Michel Givord1; Daniel Liang1; Robert Wilson1; 1CSIRO

11:55 AM Invited

Additive Manufacturing of Soft and NdFeB Bonded Permanent Magnets: Prospects and Challenges: Mariappan Paranthaman¹; ¹Oak Ridge National Laboratory

ADDITIVE TECHNOLOGIES

Additive Manufacturing Fatigue and Fracture: Effects of Surface Roughness, Residual Stress, and **Environment — Session IV**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; John Lewandowski, Case Western Reserve University; Nima Shamsaei, Auburn University; Steve Daniewicz, University of Alabama; Mohsen Seifi, ASTM International/Case Western Reserve University

Wednesday AM | March 22, 2023 22 | SDCC

Session Chair: John Lewandowski, Case Western Reserve University

8:30 AM Invited

Fatigue Crack Initiation in Additively Manufactured Alloys: Synergistic Effect of Microstructure and Volumetric Defects: Shuai Shao1; Nima Shamsaei1; 1Auburn University

Fatigue Crack Propagation in Additively Manufactured Titanium Alloy with Lamellar and Bi-lamellar Microstructures: Zhiying Liu1; Yu Zou¹; ¹University of Toronto

Hot Isostatic Pressing to Increase Isotropic Behavior of Wire DED Ti-6Al-4V: LaRico Treadwell¹; Jonathan Pegues¹; Shaun Whetten¹; Tyler Chilson¹; ¹Sandia National Laboratories

Characterizing Surface Roughness and Linking to Process Parameters in Powder Bed Fusion AM: Srujana Rao Yarasi¹; Elizabeth Holm¹; Anthony Rollett¹; ¹Carnegie Mellon University

10:00 AM Break

10:20 AM Invited

Predicting Microstructure-sensitive Fracture Behavior in AM IN625 Using a Damage-enabled Elasto-viscoplastic FFT Framework: Ashley Spear¹; Carter Cocke¹; Brian Phung¹; Laura Ziegler¹; Elliott Marsden¹; Vignesh Babu Rao¹; ¹University of Utah

10:50 AM

Predicting the Influence of Inherent Pores on Mechanical Properties of Additive-Manufactured Ti6Al4V via an Empirical Model: Mu Gao¹; ¹Monash Centre of Additive Manufacturing

11:10 AM

Microstructural Origin of Fatigue Resistance in Additively Manufactured Steels: Punit Kumar¹; Jayaraj Radhakrishnan²; Alexis Bryl³; James McKinnell³; Upadrasta Ramamurty²; Berkeley National Laboratory; ²Nanyang Technological University;

11:30 AM Invited

Rapid Qualification of Additively Manufactured Fatigue-Limited Applications via Hybrid Experimental/Model Approach: Amber Andreaco¹; Krzysztof Stopka²; Andrew Desrosiers¹; Tyler Nicodemus¹; Nicholas Krutz³; Michael Sangid²; ¹GE Additive; ²Purdue University; 3Timet

ADDITIVE TECHNOLOGIES

Additive Manufacturing for Energy Applications V — Characterization

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Nuclear Materials Committee

Program Organizers: Isabella Van Rooyen, Pacific Northwest National Laboratory; Subhashish Meher, Idaho National Laboratory; Xiaoyuan Lou, Purdue University; Kumar Sridharan, University of Wisconsin-Madison; Michael Kirka, Oak Ridge National Laboratory; Yi Xie, Purdue University

Wednesday AM | March 22, 2023 23A | SDCC

Session Chair: Subhashish Meher, INL

8:30 AM Introductory Comments

8:35 AM Invited

High-throughput Testing and Characterization of Materials for Nuclear Applications: Gregory Wallace1; Myles Stapelberg1; Elena Botica Artalejo¹; Eleni Mowery¹; Isabel Alvarez¹; Alexander Siemenn¹; James George Serdy¹; Tonio Buonassisi¹; *Michael Short*¹; ¹Massachusetts Institute of Technology

9:10 AM Invited

Directional Recrystallization of an Additively Manufactured Nibase Superalloy: Zachary Cordero¹; ¹Massachusetts Institute of Technology

9:45 AM

Microstructural Evolution of Solid State and Liquid State Advanced Manufacturing Processes for 316L Stainless Steel.: Isabella Van Rooyen¹; Saumyadeep Jana¹; Scott Whalen¹; Luis Nunez²; Piyush Sabharwall²; Kennneth Ross¹; Amrita Lall²; ¹Pacific Northwest National Laboratory; 2Idaho National Laboratory

10:05 AM Break

10:20 AM

Characterization of LPBF and DED Additive-manufactured RAFM/ Tungsten Bi-layered Specimens for Nuclear Fusion Applications: Natan Garrivier¹; Malgorzata Makowska¹; ¹Paul Scherrer Institute

10:40 AM

Compositionally Graded Transition from Tungsten to Ferritic-Martensitic Steels via Directed Energy Deposition: Deniz Ebeperi¹; Adam Bebak¹; Raiyan Seede¹; Austin Whitt¹; Ibrahim Karaman¹; Raymundo Arroyave¹; Alaa Elwany²; ¹Texas A&M University Department of Materials Science and Engineering; ²Texas A&M University Department of Industrial & Systems Engineering

11:00 AM

Investigation into the Effect of Recrystallization and Microstructure Control on the Properties of GammaPrint™-1100, a High-γ' crack-resistant Ni-base Superalloy for 3D-printed Parts in Gas Turbines: Ning Zhou¹; Stephane Forsik¹; Austin Dicus¹; Tao Wang¹; Gian Colombo¹; QQ Ren²; Jonathan Poplawsky²; Mario Epler¹; ¹Carpenter Technology Corporation; ²Oak Ridge National Laboratory

11:20 AM

Laser Powder Bed Fusion of Crack-Free High Gamma Prime Rene 77 Superalloy: Processing, Heat Treatment, Mechanical Properties and Applications: Marcus Lam¹; ¹Monash University

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Large-scale Metallic Components — Aluminum and Titanium Alloys/Insitu Monitoring

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Sougata Roy, University of North Dakota; Sneha Prabha Narra, Carnegie Mellon University; Andrzej Nycz, Oak Ridge National Laboratory; Yousub Lee, Oak Ridge National Laboratory; Chantal Sudbrack, National Energy Technology Laboratory; Albert To, University of Pittsburgh; Yashwanth Bandari, AddiTec Technologies LLC

Wednesday AM | March 22, 2023 25A | SDCC

Session Chair: Albert To, University of Pittsburgh

8:30 AM

Augmenting Operando Neutron Diffraction Measurement of WAAM with Multispectral Thermal Imaging: James Haley¹; Kyle Saleeby¹; Clay Leach¹; Christopher Fancher¹; Thomas Feldhausen¹; Guru Madireddy¹; Yousub Lee¹; An Ke¹; Alex Plotkowski¹; ¹Oak Ridge National Laboratory

8:50 AM

Understanding Stress Evloution in Wire Arc Additive Manufacturing of LTT Alloy Using Finite Element Methods: Guru Charan Reddy Madireddy¹; Yousub Lee¹; Kyle Saleeby¹; James Haley¹; Christopher Fancher¹; Ke An¹; Wei Tang¹; Thomas Feldhausen¹; Alex Plotkowski¹; ¹Oak Ridge National Laboratory

9:10 AM

High Deposition Rate Wire Arc Additive Manufacturing of "Unweldable" Precipitation Hardened Aluminum Alloys: Joe Kleindienst¹; Alex Yearsley¹; Nick Bagshaw²; Jeff Lints²; Jeremy Iten³; Xun Liu⁴; Dennis Harwig⁴; Zhenzhen Yu¹; Jonah Klemm-Toole¹; ¹Colorado School of Mines; ²Fortius Metals; ³Elementum 3D; ⁴The Ohio State University

9:30 AM Invited

Ultrasonic Effects on Gas Tungsten Arc Based Wire Additive Manufacturing of Aluminum Nanocomposite: Xun Liu¹; Tianzhao Wang¹; ¹Ohio State University

10:00 AM Break

10:20 AM Invited

In-Situ Monitoring and Control for Large-Scale Metal AM: Melanie Lang¹; Jeffrey Riemann¹; ¹Formalloy

10:50 AM

Rapid Process Qualification for W-DED Ti-6Al-4V: Jonathan Pegues¹; Brian Hoover²; Timothy Ruggles¹; Luis Jauregui¹; Shaun Whetten¹; Andrew Kustas¹; ¹Sandia National Laboratories; ²Advanced Optical Technologies, Inc.

11:10 AM Invited

Thermal Model of Hot-wire Additive Manufacturing of Ti-6Al-4V: Lonnie Smith¹; Andrew Huck¹; *Petrus Pistorius*¹; ¹Carnegie Mellon University

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Metals: Applications of Solidification Fundamentals — In-situ Monitoring and Sensing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Solidification Committee

Program Organizers: Wenda Tan, The University of Michigan; Alex Plotkowski, Oak Ridge National Laboratory; Lang Yuan, University of South Carolina; Lianyi Chen, University of Wisconsin-Madison

Wednesday AM | March 22, 2023 21 | SDCC

Session Chairs: Lianyi Chen, University of Wisconsin-Madison; Wenda Tan, University of Michigan

8:30 AM

Rapid Characterization of Solidification Phase Transition of Additive Aluminum Alloy: Fan Zhang¹; Andrew Iams¹; Feng Yi¹; David LaVan¹; Jordan Weaver¹; Brandon Lane¹; Qilin Guo²; Jiandong Yuan²; Lianyi Chen²; Andrew Chuang³; Darby LaPlant⁴; John Martin⁴; ¹National Institute of Standards and Technology; ²University of Wisconsin, Madison; ³Argonne National Laboratory; ⁴HRL Laboratory

8:50 AM

Pore Dynamics and Formation Mechanisms during Directed Energy Deposition Additive Manufacturing: Kai Zhang¹; Yunhui Chen¹; Xianqiang Fan¹; Sebastian Marussi¹; Imogen Cowley¹; Maureen Fitzpatrick²; Shishira Bhagavath¹; Martyn Jones³; Chu Lun Alex Leung¹; Peter Lee¹; ¹University College London; ²European Synchrotron Radiation Facility; ³Rolls Royce plc.

9:10 AM

In-situ X-ray Characterization for Additive Manufacturing of Inoculants-treated Aluminum Alloy: Sen Liu¹; Vivek Thampy²; Peiyu Quan¹; Christopher Tassone²; ¹Stanford University; ²SLAC National Accelerator Laboratory

9:30 AM

In-situ/Ex-situ Visualization of Microstructure Evolution in Aluminum Alloys under Additive Manufacturing Conditions: Oliver Hesmondhalgh¹; Alec Saville¹; Brian Rodgers¹; Adriana Eres Castellanos¹; Joseph McKeown²; Kester Clarke¹; Alain Karma³; Amy Clarke¹; ¹Colorado School of Mines; ²Lawrence Livermore National Laboratory; ³Northeastern University

9:50 AM Break

10:05 AM Invited

Phase Transformation Dynamics in Laser Additive Manufacturing of Metals: Lianghua Xiong¹; Wenjun Liu²; Yang Ren³; Peter Kenesei²; Chris Benmore²; John Low²; Anping Dong¹; Baode Sun¹; Andrew Chuang²; ¹Shanghai Jiao Tong University; ²Argonne National Laboratory; ³City University of Hong Kong

10:25 AM

Operando Synchrotron X-ray Diffraction Reveals Stages of Directional Solidification in Additive Manufacturing: Adrita Dass¹; Chenxi Tian¹; Darren Pagan²; Atieh Moridi¹; ¹Cornell University; ²Pennsylvania State University

10:45 AM

Automatic Melt Pool Segmentation and Tracking in the X-ray Image Sequence: Maede Maftouni¹; Bo Shen¹; Andrew Law¹; Rongxuan Wang¹; Zhenyu Kong¹; ¹Virginia Tech

11:05 AM

Solidification Modes during Additive Manufacturing Thermal Conditions Revealed by High-speed X-ray Diffraction: Hans-Henrik Konig¹; Niklas Holländer Pettersson¹; A Durga¹; Steven Van Petegem²; Daniel Grolimund²; Andrew Chihpin Chuang³; Qilin Guo⁴; Lianyi Chen⁴; Christos Oikonomou⁵; Fan Zhang⁵; Greta Lindwall¹; ¹KTH Royal Institute of Technology; ²Paul Scherrer Institute; ³Argonne National Laboratory; ⁴University of Wisconsin-Madison; ⁵Uddeholm AB

11:25 AM

Operando Tomography during Laser-based Powder Bed Fusion -Towards 4D Imaging of Melt Pool Dynamics: Malgorzata Makowska1; ¹Paul Scherrer Institut

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Refractory Metallic Materials — Additive Manufacturing of W-based **Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Antonio Ramirez, Ohio State University; Jeffrey Sowards, NASA Marshall Space Flight Center; Omar Mireles, NASA; Eric Lass, University of Tennessee-Knoxville; Faramarz Zarandi, Raytheon Technologies; Matthew Osborne, Global Advanced Metals; Joao Oliveira, FCT-UNL

Wednesday AM | March 22, 2023 24A | SDCC

Session Chairs: Antonio Ramirez, The Ohio State University; Omar Mireles, NASA MFSC - EM32

8:30 AM

Rhenium Modified Spherical Tungsten Powder for Additive Manufacturing: Adriana Wrona¹; Marcin Lis¹; Krzysztof Pecak¹; Anna Janoszka¹; Adam Sekua¹; Monika Czerny¹; Jacek Mazur¹; Adrian Kukofka¹; ¹Lukasiewicz Research Network — Institute of Non-Ferrous Metals

8:50 AM

Crack Mitigation Strategies for Pure Tungsten via Laser Powderbed-fusion: Alberico Talignani¹; Shiqi Zheng¹; Philip DePond²; Maria Strantza²; Jianchao Ye²; Y. Morris Wang¹; ¹University of California, Los Angeles; ²Lawrence Livermore National Laboratory

9:10 AM

Development of W-based Alloys for High Temperature Applications by Additive Manufacturing: Ishtiaq Ahmed Fazle Rabbi¹; Narendra Dahotre¹; ¹University of North Texas

9:30 AM

ICME Analysis Microcracking of Tungsten in Rapid Solidification: Tatu Pinomaa¹; Jukka Aho¹; Matias Haapalehto¹; Joni Kaipainen¹; Sicong Ren¹; Paul Jreidini²; Joseph McKeown³; Jesper Byggmästar⁴; Kai Nordlund⁴; Nikolas Provatas²; Anssi Laukkanen¹; ¹VTT Technical Research Centre of Finland Ltd; ²McGill University; ³Lawrence Livermore National Laboratory; 4University of Helsinki

9:50 AM Break

10:10 AM

Materials and Processing Design for Binder Jet Additive Manufacturing of Tungsten Alloys: Daozheng Li¹; Wei Xiong¹; ¹University of Pittsburgh

Processing, Structure, and Properties of Electron Beam Melting Additively Manufactured Pure Tungsten: Christopher Ledford¹; Patxi Fernandez-Zelaia¹; Tim Graening¹; Yutai Kato¹; Michael Kirka¹; ¹Oak Ridge National Laboratory

10:50 AM

Investigating AM High Temperature Multi-materials with Nickel and Niobium Alloys: Soumya Nag1; Brian Jordan1; Ke An1; Chuan Zhang²; Fan Zhang²; Raymond Unocic¹; Jonathan Poplawsky¹; Jaimie Tiley¹; ¹Oak Ridge National Laboratory; ²Computherm LLC

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response - Modeling

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Meysam Haghshenas, University of Toledo; Andrew Birnbaum, US Naval Research Laboratory; Robert Lancaster, Swansea University; Xinghang Zhang, Purdue University; Aeriel Leonard

Wednesday AM | March 22, 2023 23B | SDCC

Session Chairs: Andrew Birnbaum, NRL; Sezer Özerinç, Middle East Technical University

8:30 AM

Analytic Model for the Softening Factor within Stages of Work Hardening: Alan Jankowski¹; ¹Sandia National Laboratories

8:50 AM

Machine Learning of Inherent Strains for Residual Stress Modeling in Metal Additive Manufacturing: Kahraman Demir¹; Zhizhou Zhang¹; Grace Gu¹; ¹University of California Berkeley

9:10 AM

A Mixed Analytical/Empirical Model for Synthetic Generation of As-Printed Microstructures: Alexander Chadwick1; Peter Voorhees1; ¹Northwestern University

9:30 AM

Mesostructure-Based Model for Failure in Ti-6Al-4V Printed by Laser Powder-Bed Fusion: Kartikey Joshi¹; Patcharapit ¹Institute of High Performance Promoppatum²; *Mark Jhon*¹; Computing; ²King Mongkut's University of Technology Thonburi

9:50 AM Break

Crystal Plasticity Study on Porosity and Anisotropic Fracture Behavior of Additively-manufactured 316L Stainless Steel: Ziyi Ding1; Jun Song1; 1McGill University

Microscale Modeling of Solidification and Residual Stress in As-Built Additively Manufactured Parts: Lukasz Kuna¹; Kirubel Teferra¹; ¹Naval Research Lab

Slip Localization in an Additively Manufactured 316L Stainless Steel: Christopher Bean1; Fulin Wang2; Marie Charpagne1; Patrick Villechaise³; Valery Valle³; Sean Agnew⁴; Dan Gianola⁵; Tresa Pollock⁵; Jean-Charles Stinville¹; ¹University of Illinois Urbana-Champaign; ²Shanghai Jiao Tong University; ³École nationale supérieure de mécanique et d'aérotechnique; ⁴University of Virginia; ⁵University of California Santa Barbara

11:10 AM

Hierarchical Investigations of Heterogeneities in an As-fabricated Electron Beam Melted Ni-based Superalloy: Bryan Lim1; Andrew Breen¹; Xiaozhou Liao¹; Sophie Primig²; Simon Ringer¹; ¹The University of Sydney; ²University of New South Wales

11:30 AM

Additive Manufacturing of Platinum-based Alloys for Industrial High Temperature Structural Applications: Parastoo Jamshidi¹; Biao Cai²; Moataz Attallah²; Selassie Dorvlo³; Ian Campbell³; Martin Bach³; ¹University of Birmingham; Cooksongold; ²University of Birmingham; ³Cooksongold

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Materials Design and Alloy Development V - Design Fundamentals — Ferous Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Behrang Poorganji, University of Toledo; Hunter Martin, HRL Laboratories LLC; James Saal, Citrine Informatics; Jiadong Gong, Questek Innovations LLC; Orlando Rios, University of Tennessee; Atieh Moridi, Cornell University

Wednesday AM | March 22, 2023 24C | SDCC

Session Chair: Atieh Moridi, Cornell University

8:30 AM

Effect of Carbon Content on the Microstructure and Mechanical Properties of Steels Additively Manufactured by Laser Powder Bed Fusion: Thinh Hyunh¹; Nemanja Kljestan²; Abhishek Mehta¹; Kevin Graydon¹; Marko Knezevic²; Brandon McWilliams³; Kyu Cho³; Yongho Sohn¹; ¹University of Central Florida; ²University of New Hampshire; ³DEVCOM Army Research Laboratory

8:50 AM

Ultra-High Strength and Ductility in a Lightweight Fe-Mn-Al-C Austenitic Steel Fabricated via Laser Powder Bed Fusion: Raiyan Seede¹; Jiahui Ye²; Austin Whitt³; Sean Gibbons⁴; Philip Flater⁴; Bernard Gaskey⁴; Alaa Elwany²; Raymundo Arroyave²; Ibrahim Karaman²; ¹Lawrence Livermore National Laboratory; ²Texas A&M University; ³NASA Glenn Research Center; ⁴Air Force Research Laboratory

9:10 AM

Manufacturing of MS1-P20 Hybrid Steels via Laser Powder Bed Fusion: Sajad Shakerin¹; Mohsen Mohammadi¹; ¹Marine Additive Manufacturing Centre of Excellence (MAMCE)

9:30 AM

Unique Microstructure and Phase Transformation Pathway in an Additively Manufactured 316L-ceramic Composite: Mo-Rigen He¹; Joesph Sopcisak²; Christopher Marvel³; Samuel Price⁴; Ian McCue⁴; Jason Trelewicz⁵; Steven Storck²; Kevin Hemker¹; ¹Johns Hopkins University; ²Johns Hopkins University Applied Physics Laboratory; ³Lehigh University; ⁴Northwestern University; ⁵Stony Brook University

9:50 AM

The Development of a Directed Energy Deposition (DED) Printability Framework for Improving Part Density and Performance in High Strength Martensitic Steels: Matthew Vaughan¹; Michael Elverud¹; Jiahui Ye¹; Raiyan Seede¹; Sean Gibbons²; Philip Flater²; Bernard Gaskey²; Alaa Elwany¹; Raymundo Arroyave¹; Ibrahim Karaman¹; ¹Texas A&M University; ²AFRL-EGLIN

10:10 AM Break

10:25 AM

Design of a low Manganese TRIP and TWIP steel through additive manufacturing of dissimilar steels: Noah Sargent¹; Samad Firdosy²; Xin Wang¹; Richard Otis²; Jonathan Poplawsky³; Wei Xiong¹; ¹University of Pittsburgh; ²Jet Propulsion Laboratory, California Institute of Technology; ³Center for Nanophase Materials Sciences, Oak Ridge National Laboratory

O:45 AM

Capturing the Effect of a Novel Inoculant on the Microstructure and Mechanical Properties in a Stainless Steel 316L Alloy Produced by Laser Powder Bed Fusion: Aakifa Farooq¹; Sam Tammas-Williams²; Arunabhiram Chutia³; Nghia Vo⁴; Peter Lee⁵; Mohammed Azeem¹; Peter Lee⁶; Mohammed Azeem⁶; ¹University of Leicester; ²The University of Edinburgh; ³University of Lincoln; ⁴National Synchrotron Light Source II; ⁵Harwell; ⁶University College London

11:05 AM

Laser Powder Bed Fusion Processing of Mechanically Alloyed 4wt% TiC Nanoparticle Reinforced 316L Stainless Steel: Ryan Anderson¹; Stephen Cooke¹; Joseph Sims¹; Madelyne Rushing¹; Melissa Forton¹; ¹Quadrus Advanced Manufacturing

11:25 AM

Effects of Oxygen Exposure and Powder Chemistry on Oxide Dispersion Strengthened Steels Printed with Gas Atomization Reaction Synthesis (GARS) Powders: Matthew deJong¹; Sourabh Saptarshi¹; Iver Anderson²; Christopher Rock¹; Timothy Horn¹; Djamel Kaoumi¹; ¹North Carolina State University; ²Ames Laboratory

11:45 AM

Enhanced Magnetic Properties of Additive Manufactured Fe-Ni Permalloy through the Optimizing the Production Parameters: Farahnaz Haftlang¹; Eun Seong Kim¹; Hyoung Seop Kim¹; ¹Pohang University of Science and Technology

BIOMATERIALS

Advanced Biomaterials for Biomedical Implants — Advanced Biomaterials for Implants I

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Jing Du, Pennsylvania State University

Wednesday AM | March 22, 2023 Sapphire 400B | Hilton

Session Chairs: Tolou Shokuhfar, University of Illinois Chicago; Du Jing, Pennsylvania State University; Fariborz Tavangarian, Pennsylvania State University Harrisburg

8:30 AM Invited

A Combined Experimental and Computational Study of Dental Implant: Jing Du¹; ¹Pennsylvania State University

9:05 AM

Development of Advanced Bioabsorbable Zn-based Materials Using Powder-metallurgy Techniques: Matjaz Godec¹; Irena Paulin¹; Crtomir Donik¹; Aleksandra Kocijan¹; Dalibor Vojtěch²; Jií Kubásek²; ¹Institute of Metals and Technology; ²University of Chemistry and Technology Prague

9:25 AM

Hemocompatibility and Biocompatibility Evaluation of an Mg-Ca-Sr Alloy for Vascular Stent Applications: Sonia Ezenwajiaku¹; Vidhya Ramaswamy²; Hunter Henderson³; Josephine Allen¹; Michele Manuel¹; ¹University of Florida; ²Boston Scientific; ³Lawrence Livermore National Laboratory

9:45 AM

Polymeric Biodegradable Biomaterials for Tissue Bioengineering and Bone Rejuvenation: Eribe Jonathan¹; Andrew Ohifuemen²; Jacob Jacob³; Aaron Y. Isaac⁴; Ikhazuagbe Ifijen²; ¹Benson Idahosa University; ²Rubber Research Institute of Nigeria; ³University of Benin; 4University of Ilorin

10:05 AM Break

10:25 AM Invited

Plasma Reduction Process for Nanostructured Biomaterials and 3D-Scaffold Surfaces: Vinoy Thomas¹; ¹University of Alabama at Birmingham

11:00 AM

Real-time Raman Spectroscopy of Binder Setting in Bioactive Glass Composite Bone Tissue Scaffolds: Marzieh Matinfar¹; John Nychka¹; Kalan Kucera¹; ¹University of Alberta

11:20 AM

Synthesis and Characterization of Novel Antibacterial Ti-Nb-Cu/ Ga Alloys for Load-bearing Implant Applications: Mariana Calin¹; Ludovico Andrea Alberta¹; Jithin Vishnu¹; Avinash Hariharan¹; Stefan Pilz¹; Annett Gebert¹; ¹IFW Dresden

11:40 AM

Laser Induced Micro/Nano Structured Stainless Steel Surfaces for Biological and Food Storage Applications: Gopinath Perumal¹; Mark Swayne¹; Dermot Brabzon¹; ¹Dublin City University

MATERIALS PROCESSING

Advanced Characterization of High-temperature Alloys: Phase Evolution during Manufacturing and Service-induced Deformation — Advanced **Characterisation of Deformation Mechanisms: Diffraction, NDA and Modelling Methods**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Katerina Christofidou, University of Sheffield; Benjamin Adam, Oregon State University; Stoichko Antonov, Max-Planck Institut für Eisenforschung GmbH; James Coakley, University of Miami; Martin Detrois, National Energy Technology Laboratory; Paraskevas Kontis, Norwegian University of Science and Technology; Stella Pedrazzini, Imperial College London; Sophie Primig, University of New South Wales

Wednesday AM | March 22, 2023 29D | SDCC

Session Chairs: Benjamin Adam, Oregon State University; James Coakley, University of Miami

9:00 AM Invited

Understanding Phase Evolution and Deformation in High Temperature Materials via In-situ/Operando Neutron Diffraction: Ke An1; 1Oak Ridge National Laboratory

Phase- and Orientation-specific Mechanical Response during High-temperature Deformation of a γ' Strengthened Ni-based Superalloy: Nitesh Raj Jaladurgam¹; Stefanus Harjo²; Magnus Colliander¹; ¹Chalmers University of Technology; ²Japan Atomic **Energy Agency**

9:50 AM

Microstructure Evolution and Deformation Micromechanisms in Refractory High Entropy Superalloys: Muhammad Awais1; William Hixson¹; Howard Stone²; Nicholas Jones²; Ke An³; Dunji Yu³; Raj Banerjee⁴; James Coakley¹; ¹University of Miami; ²University of Cambridge; ³Oak Ridge National Laboratory; ⁴University of North Texas

10:10 AM Break

10:30 AM

In Situ High Energy Diffraction Investigation of the Dynamic and Meta-dynamic Recrystallization of Ni Base Superalloy Haynes 282: Emil Eriksson¹; Olof Bäcke¹; Yao Hu¹; Magnus Hörnqvist Colliander¹; ¹Chalmers University of Technology

10:50 AM

Phase-Field Modeling of Rafting in Ni-Based Superalloys with a Varying Lattice Misfit: Jose Dominic1; Jean-Briac le Graverend1; ¹Texas A&M University

Continuum Scale Approach to Characterization and Modeling of Deformation Mechanisms in Haynes 244 Alloy: Thomas Mann¹; Michael Fahrmann²; Marisol Koslowski¹; Michael Titus¹; ¹Purdue University; 2Haynes Intl.

11:30 AM Concluding Comments

CHARACTERIZATION

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session V

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; C. Tasan, Massachusetts Institute of Technology; Olivia Jackson, Sandia National Laboratories

Wednesday AM | March 22, 2023 Aqua 311A | Hilton

Session Chairs: Ram Devanathan, Pacific Northwest National Laboratory; Carlos Tome, Los Alamos National Laboratory

8:30 AM Invited

Elasto-visco-plastic Crystallographic Modeling of Thermal Ratcheting in Uranium: Carlos Tome1; Youngung Jeong2; Alamos National Laboratory; ²Changwon National University

9:00 AM

Experimental and Modeling Study of Steel Bending and Springback Using an Elasto-visco-plastic Self-consistent Polycrystal Model Interfaced with a Finite Element Code: Youngung Jeong¹; Mooyeong Joo¹; Bohye Jeong¹; Jaeseong Lee¹; Dirk Steglich²; Frederic Barlat²; Carlos Tome³; ¹Changwon National University; ²Pohang University of Science and Technology; 3Los Alamos National Laboratory

9:20 AM

Size Effect in Polycrystalline Nickel-Based Superalloys in The Presence of a Free-Surface: Identification of the Crystal Plasticity of Surface Grains Versus Core Grains: Damien Texier¹; Vincent Velay²; Antonio Castro-Moreno³; Daniel Monceau⁴; Eric Andrieu⁴; ¹CNRS -Institut Clément Ader; ²Institut Clément Ader - UMR CNRS 5312; ³IRT Saint-Exupery; 4CIRIMAT - UMR CNRS 5085

9:40 AM

On the Selection of Flow Rule and Slip System in Crystal Plasticity Simulations of Cyclic Deformation in Martensitic Steels: Tim Fischer¹; Carl Dahlberg¹; Peter Hedström¹; ¹KTH Royal Institute of Technology

10:00 AM Break

10:20 AM Invited

Alloy Rupture Strength Prediction Using Machine Learning and Microstructure Analysis: Ram Devanathan1; Osman Mamun1; Mohammad Taufique¹; William Frazier¹; Arun Sathanur¹; Keerti Kappagantula¹; Jing Wang¹; Marissa Masden¹; Madison Wenzlick²; Kelly Rose²; ¹Pacific Northwest National Laboratory; ²National Energy Technology Laboratory

Damage Accumulation during Creep in Metals: The Role of Microstructure: Andrea Rovinelli¹; Laurent Capolungo¹; Ricardo Lebensohn¹; ¹Los Alamos National Laboratory

Radiation Damage Defect Characterization Using In-situ Positron **Spectroscopy**: Rasheed Auguste¹; M. Oskar Liedke²; Maik Butterling²; Blas Uberuaga³; Farida Selim⁴; Peter Hosemann¹; ¹University of California, Berkeley; ²Helmholtz-Zentrum Dresden - Rossendorf; 3Los Alamos National Laboratory; 4Bowling Green State University

Application of Constant Contact Pressure Nanoindentation on Room Temperature Creep: Reliability and Advantage: Lizhong Lang¹; Zhiying Liu¹; Yu Zou¹; ¹University of Toronto

ENERGY & ENVIRONMENT

Advanced Materials for Energy Conversion and Storage 2023 — Sustainability and Energy

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Surojit Gupta, University of North Dakota; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania

Wednesday AM | March 22, 2023 32B | SDCC

Session Chairs: Surojit Gupta, University of North Dakota; Lan Li, **Boise State University**

8:30 AM Invited

Study of the Efficacy of a Perovskite Sensor-Based Non-Invasive Glucose Monitoring System Using Infrared Light Intensity **Correlations: Towards the Development of Measurement Metrics** Using Data Analytics: David Ryman¹; Muhilan Manimaran¹; *Prakhyat* Gautam¹; Darwyn Ward¹; Luke Davis¹; Brent Yang¹; Diana Govea¹; Carlos Moreno¹; Anmol Randhawa¹; Edgar Perez-Lopez²; Saquib Ahmed³; Sankha Banerjee¹; ¹California State University, Fresno; ²University of California, Merced; ³State University of New York, **Buffalo State**

8:55 AM Invited

First-Principles Studies of Metal Nanoparticles on Substrates for Advanced Manufacturing Applications: Lan Li¹; ¹Boise State University

9:20 AM

A Novel Equilibrium Monte Carlo Approach for Efficient Calculation of Phonon Conductivity in Nanostructured Thermoelectric Materials: S. Aria Hosseini¹; Alathea Davies²; Ian Dickey³; Giuseppe Romano¹; Laura de Sousa Oliveira²; Neophytos Neophytou⁴; Peter Greaney³; ¹Massachusetts Institute of Technology; ²University of Wyoming; ³University of California, Riverside; ⁴University of Warwick

9:40 AM Invited

Experimental Simulation of the Erosive-Corrosive Wear and Shear Rate Dependence of an Iron and Molten Al-Si Thermal Storage System: Nuria Navarrete Argiles¹; Carolina Villada Vargas¹; Anthony Rawson¹; Florian Kargl¹; ¹Deutsches Zentrum für Luft- und Raumfahrt

10:05 AM Break

10:25 AM

Triple-cation Perovskite Photoabsorbers and Solar Cells: Thomas Mather¹; Sujan Aryal¹; Mahdi Temsal¹; Anupama Kaul¹; ¹University of North Texas

10:45 AM Invited

Salt Hydrate Eutectics: Expanding the Palette of Phase Change Materials for Thermal Energy Storage: Patrick Shamberger¹; Sophia Ahmed¹; Haley Jones¹; Robert Mach¹; ¹Texas A&M University

11:10 AM Keynote

Fast-charging Aluminum-chalcogen Batteries Resistant to Dendritic Shorting: Donald Sadoway¹; ¹Massachusetts Institute of Technology

CHARACTERIZATION

Advanced Real Time Imaging — Additive Manufacturing

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: **Biomaterials Committee**

Program Organizers: Jinichiro Nakano, US Department of Energy National Engergy Technology Laboratory; David Alman, National Energy Technology Laboratory; Il Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology; Noritaka Saito, Kyushu University; Anna Nakano, US Department of Energy National Energy Technology Laboratory; Zuotai Zhang, Sourthern University of Science and Technology; Candan Tamerler, University of Kansas; Bryan Webler, Carnegie Mellon University; Wangzhong Mu, Kth Royal Institute of Technology; David Veysset, Stanford University; Pranjal Nautiyal, University of Pennsylvania

Wednesday AM | March 22, 2023 Aqua 310A | Hilton

Session Chairs: Wangzhong Mu, Kth Royal Institute of Technology; Jinichiro Nakano, US Department of Energy - National Engergy **Technology Laboratory**

8:30 AM Invited

Real Time Imaging of Laser Melting and Re-Solidification: Anthony Rollett¹; ¹Carnegie Mellon University

8:50 AM Invited

High-velocity Interactions of Laser-driven Tin Ejecta Microjets via X-ray Radiography: Yuchen Sun1; J Horwitz1; Kyle Mackay1; S Ali1; J Eggert¹; B Morgan¹; Fady Najjar¹; Hye-Sook Park¹; Y Ping¹; J Pino¹; C Stan¹; Alison Saunders¹; ¹Lawrence Livermore National Laboratory

9:10 AM

Prediction of Laser Absorptivity from Synchrotron X-ray Images Using Deep Convolutional Neural Networks: Runbo Jiang1; Joseph Aroh¹; Brian Simonds²; Tao Sun³; Anthony Rollett¹; Mellon University; ²National Institute of Standards and Technology; 3University of Virginia

9:30 AM

In-situ Monitoring and Post Operando Analysis of Additively Manufacturing Lunar Regolith Simulants Parts: Caterina lantaffi1; Chu Lun Alex Leung¹; Samy Hocine¹; Elena Ruck¹; Marta Majkut²; Martina Meisnar³; Thomas Rohr³; Peter D. Lee¹; ¹University College London; ²European Synchrotron Radiation Facility; ³European Space Agency

9:50 AM

Microstructure Evolution during Laser-based Powder Bed Fusion Studied by Operando X-ray Radiography: Steven Van Petegem¹; ¹Paul Scherrer Institut

10:10 AM Break

10:30 AM

Machine Learning for In-situ Detection of Local Heat Accumulation in Additive Manufacturing: David Guirguis1; Conrad Tucker1; Jack Beuth¹; ¹Carnegie Mellon University

10:50 AM

Mapping the Melt Pool Variability in L-PBF Additive Manufacturing by High-Speed Imaging: David Guirguis1; Conrad Tucker1; Jack Beuth¹; ¹Carnegie Mellon University

ENERGY & ENVIRONMENT

Advances in Magnetic Materials — Emerging Topics in Application and Characterization of Magnetic **Materials**

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Jose Maria Porro, Bcmaterials; Huseyin Ucar, California Polytechnic University, Pomona; Patrick Shamberger, Texas A&M University; Min Zou, Lab Magnetics, A Quadrant Company; Gaoyuan Ouyang, Ames Laboratory; Alex Leary, NASA Glenn Research Center

Wednesday AM | March 22, 2023 33A | SDCC

Session Chair: Min Zou, Lab Magnetics, A Quadrant Company

8:30 AM Invited

Using Soft X-ray Photon Correlation Spectroscopy to Study Magnetic Helical Dynamics: Sophie Morley¹; Arnab Singh¹; Emily Hollingworth²; Ryan Tumbleson¹; Peter Fischer¹; Frances Hellman²; Stephen Kevan¹; Sujoy Roy¹; ¹Lawrence Berkeley National Laboratory; ²University of California Berkeley

9:00 AM

Superparamagnetic Iron Oxide-based Bulk Nanocomposites: Diletta Giuntini¹; ¹Eindhoven University of Technology

Crystallization Characteristics in Co-based Magnetic Amorphous Nanocomposites: Alicia Koenig¹; Ronald Noebe²; Alex Leary²; Claudia Mewes¹; Tim Mewes¹; Gregory Thompson¹; ¹University of Alabama; 2NASA

9:30 AM Invited

R',R"1,,ScX: Magnetically Compensated Materials for Spin-based **Applications**: Tyler Del Rose¹; *Yaroslav Mudryk*¹; Daniel Haskel²; Arjun Pathak³; Kyle Dixon-Anderson⁴; Vitalij Pecharsky⁴; ¹Ames National Laboratory/Iowa State University; ²Advances Photon Source, Argonne National Laboratory of US DOE; 3SUNY Buffalo State; 4lowa State University

10:00 AM Break

10:15 AM

Incisive Review on Magnetic Iron Oxide Nanoparticles and Their Use in the Treatment of Bacterial Infections

: Muniratu Maliki¹; Stanley Omorogbe²; Ikhazuagbe Ifijen²; Oscar Aghedo³; Augustine Ighodaro⁴; ¹Edo State University Uzairue; ²Rubber Research Institute of Nigeria; ³University of Benin; ⁴Quantum **Pharmaceuticals**

10:30 AM Invited

The Impact of Packaging on Soft Magnetic Core Performance: Alex Leary¹; Ron Noebe¹; Vladimir Keylin²; Grant Feichter²; ¹NASA Glenn Research Center: 2HX5

11:00 AM

Mixed Magnetic Phases in AlxCoCrNiFe High Entropy Alloy: Cameron Jorgensen¹; Louis Santodonato¹; Namila Liyanage¹; Lizabeth Quigley¹; Peter Liaw¹; Dustin Gilbert¹; Lisa Debeer-Schmitt²; Raymond Unocic²; ¹University of Tennessee; ²Oak Ridge National Laboratory

High Throughput Evaluation of Magnetic Alloys for Energy Applications: Li Ping Tan1; Shakti Padhy1; Vijaykumar Varma1; Zviad Tsakadze¹; Varun Chaudhary¹; Raju Ramanujan¹; ¹Nanyang **Technological University**

ADVANCED MATERIALS

Advances in Multi-Principal Element Alloys II — Structures and Mechanical Properties I

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; E-Wen Huang, National Yang Ming Chiao Tung University; Jennifer Carter, Case Western Reserve University; Srivatsan Tirumalai; Xie Xie, FCA US LLC; James Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Wednesday AM | March 22, 2023 Agua D | Hilton

Session Chairs: Michael Gao, National Energy Technology Laboratory; Koichi Tsuchiya, NIMS

8:30 AM Invited

Tunability of Deformation Mechanisms through Integration of Compositional and Microstructural Domains: Rajiv Mishra1; ¹University of North Texas

8:50 AM Invited

Creep of High Entropy Alloys and Superalloys at NETL: Kyle Rozman¹; Michael Gao²; Martin Detrois²; Paul Jablonski²; Ömer Doğan²; ¹Site Support Contractor; ²National Energy Technology Laboratory

9:10 AM Invited

Mechanical Determination of Peak Short-range Ordering in CrCoNi via Nanoindentation: Mingwei Zhang¹; Qin Yu¹; Carolina Frey²; Flynn Walsh³; Madelyn Payne³; Punit Kumar¹; Dongye Liu³; Easo George⁴; Tresa Pollock²; Mark Asta¹; Robert Ritchie¹; Andrew Minor¹; ¹Lawrence Berkeley National Laboratory; ²University of California, Santa Barbara; 3University of California, Berkeley; 4University of Tennessee, Knoxville

9:30 AM Invited

Elastic and Plastic Behavior of Binary and Ternary Refractory Multi-principal-element Alloys: Rui Feng1; George Kim2; Dunji Yu1; Yan Chen¹; Wei Chen²; Peter Liaw³; Ke An¹; ¹Oak Ridge National Laboratory; ²Illinois Institute of Technology; ³The University of Tennessee, Knoxville

9:50 AM Invited

Deformation by Dislocations, Twinning, and Phase Transformations in Compositionally Complex FCC Solid Solutions: Michael Mills1; Jiashi Miao¹; Connor Slone²; Veronika Mazanova¹; Milan Heczko¹; Maryam Ghazisaeidi¹; ¹Ohio State University; ²Exponent Inc.

10:10 AM Break

10:30 AM Invited

High Strain Rate Deformation Behavior of Multi-Principal Element Alloys: Shristy Jha¹; Saideep Muskeri¹; Phillip Jannotti²; Jeffrey Lloyd²; Rajiv Mishra¹; Sundeep Mukherjee¹; ¹University of North Texas; ²DEVCOM Army Research Laboratory

10:50 AM Invited

Effect of High-pressure and Shear Strainig on FCC-HCP Transformation in Cr20Mn20Fe20Co40-xNix High Entropy Alloys: Koichi Tsuchiya¹; Jangho Yi¹; Sangmin Lee¹; Masashi Miyakawa¹; ¹National Institute for Materials Science

11:10 AM Invited

Low-temperature Deforamtion in High-entropy Alloys: M. Naeem¹; Haiyan He¹; Stefanus Harjo²; Takuro Kawasak²; Xun-li Wang¹; ¹City University of Hong Kong; ²Japan Atomic Energy Agency

11:30 AM

High-throughput Characterization and Nanoindentation of TiZrHfNbTa High-entropy Alloy Library with Gradient Composition: Changjun Cheng¹; Renfei Feng²; Michel Haché¹; Yu Zou¹; ¹University of Toronto; 2Canadian Light Source

Refractory Alloys with Ru-based B2 Precipitation-strengthened Microstructures: Sebastian Kube¹; Carolina Frey¹; Kaitlyn Mullin¹; Chiyo McMullin¹; Ravit Silverstein¹; Tresa Pollock¹; ¹University of California Santa Barbara

MATERIALS PROCESSING

Advances in Powder and Ceramic Materials Science Advances in Ceramic Materials and Processes III

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Materials Characterization Committee, TMS: Powder Materials Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Faqin Dong, Southwest University of Science and Technology; Jinhong Li, China University of Geosciences; Ruigang Wang, The University of Alabama; Alexander Dupuy, University of California, Irvine

Wednesday AM | March 22, 2023 30A | SDCC

Session Chair: Kathy Lu, Virginia Polytechnic Institute and State University

8:30 AM Introductory Comments

8:35 AM Invited

Selective Extraction of TiO, from Spent SCR Catalysts and Preparation of Fly Ash-based Photocatalysts: Xi Qian¹; Weihua Ao¹; ¹China University of Geosciences

8:55 AM

Understanding Enhanced Thermal Stability in Zirconia-based Aerogels: Nathaniel Olson¹; Jordan Meyer¹; Haiquan Guo²; Frances Hurwitz³; Jamesa Stokes⁴; *Jessica Krogstad*¹; ¹University of Illinois at Urbana-Champaign; ²Universities Space Research Association; ³NASA Glenn Research Center (Retired); ⁴NASA Glenn Research Center

9:15 AM

Modelling and Measuring Optical Properties of Polycrystalline Ceramics: Wenbo Zhou1; Meir Shachar1; Gottlieb Uahengo1; Javier Garay1; 1UCSD

9:35 AM

Lithium vs. Sodium Solid State Batteries: Multiscale Modelling Methodology for Diffusion and NMR Properties in Li and Na Ceramics Solid Electrolytes: Mahmoud Attia1; Said Yagoubi2; Jean Paul Crocombette³; Thibault Charpentier²; ¹CEA, CNRS, NIMBE; CEA, DEN, SRMP; 2CEA, CNRS, NIMBE; 3CEA, DEN, SRMP

MATERIALS DESIGN

Advances in Titanium Technology — Session V

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Zachary Kloenne, Ohio State University; Fan Sun, CNRS PSL Research University; Stoichko Antonov, National Energy Technology Laboratory; Rongpei Shi, Harbin Institute of Technology (Shenzhen)

Wednesday AM | March 22, 2023 Cobalt 500 | Hilton

Session Chair: Sriram Vijayan, The Ohio State University

8:30 AM Invited

Towards a Single Crack Nucleation Mechanism Involving Basal Twist Grain Boundaries in Ti Alloys: Cyril Lavogiez¹; Clement Dureau¹; Patrick Villechaise¹; Yves Nadot¹; Samuel Hemery¹; ¹Institut **Pprime**

9:00 AM Invited

Reorientation Induced Plasticity (RIP) in High-strength Titanium Alloys: An Insight into Underlying Mechanisms and Resulting Mechanical Properties: Odeline Dumas¹; Loic Malet¹; Frederic Prima²; Stephane Godet¹; ¹Université Libre de Bruxelles; ²PSL Chimie ParisTech

9:30 AM Invited

Deformation Micromechanisms Observed in Binary Beta Ti Alloys Using TEM In Situ Tensile Tests: Nicolas Bello1; Florence Pettinari-Sturmel¹; Joël Douin¹; Frédéric Mompiou¹; Fan Sun²; Frédéric Prima²; Philippe Vermaut²; Thierry Glorian³; Philippe Castany³; ¹CEMES -Université de Toulouse; ²IRCP, Chimie ParisTech; ³ISCR Rennes

10:00 AM Break

10:20 AM

Additive Manufacturing of Titanium - Boron Carbide In situ Composites: Mohan Sai Kiran Nartu¹; Srinivas Mantri¹; Thomas Scharf¹; Brandon Mcwilliams²; Kyu Cho²; Narendra Dahotre¹; Rajarshi Banerjee¹; ¹University of North Texas; ²US Army Research Laboratory

10:40 AM

Investigation to Density and Metallurgical Characteristics of Selective Laser Melted Ti-5Al-5V-5Mo-3Cr Vs. Ti-6Al-4V: David Yan¹; Roman Bolzowski¹; ¹San Jose State University

11:00 AM

Titanium Metal Matrix Composite Formation in Ternary and Quaternary Compositions and Amenability to Laser Powder Bed Fusion Techniques: William Hixson¹; Howard Stone²; Jonathan Poplawsky³; James Coakley¹; ¹University of Miami; ²University of Cambridge; 3Oak Ridge National Laboratory

11:20 AM

Understanding the Effect of Process Variables on Melt Pool Dynamics and Solidification Kinetics during Laser Spot Melting of Ti-6Al-4V Alloy Using In-situ Dynamic Synchrotron X-ray Radiography: Rakesh Kamath¹; Raymond Wysmierski¹; Ryan Heldt¹; Logan White1; Gerald Knapp2; John Coleman2; Samuel Reeve2; Kamel Fezzaa³; Hahn Choo¹; ¹University of Tennessee Knoxville; ²Oak Ridge National Laboratory; ³Argonne National Laboratory

11:40 AM

Additive Manufacturing of Ti-Nb-Ta-Zr Beta Ti-Alloys: Peter *Ibrahim*¹; Moataz Attallah¹; ¹University of Birmingham

MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Validation, and Uncertainty Quantification — Session V

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Francesca Tavazza, National Institute of Standards and Technology; Dennis Dimiduk, BlueQuartz Software LLC; Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Shreyas Honrao, NASA Ames Research Center; Ashley Spear, University of Utah; Houlong Zhuang, Arizona State University

Wednesday AM | March 22, 2023 Cobalt 520 | Hilton

Session Chairs: Ramsey Issa, University of Utah; Kamal Choudhary, National Institute of Standards and Technology

8:30 AM

Applications of Machine Learning Techniques for Materials Discovery: Suchismita Goswami¹; Ichiro Takeuchi²; ¹MEST; ²University of Maryland

8:50 AM

High-dimensional Formulation-based Bayesian Optimization of **Dental Composite Resins**: Ramsey Issa¹; Taylor Sparks¹; ¹University of Utah

9:10 AM

Accelerated Discovery of Ultra-high Temperature High Entropy Ceramics by Machine Learning and High Throughput Experiments: Kun Wang¹; Yonggang Yan¹; ¹Alfred University

A Generative AI Framework for Designing Nanoporous Silicon Nitride Membranes (NPM) with Optimized Mechanical Properties: Ali K. Shargh¹; Gregory R. Madejski¹; James McGrath¹; Niaz Abdolrahim¹; ¹University of Rochester

9:50 AM

Designing High-Temperature Multicomponent NiTiHfPd SMAs Using Machine Learning: Hatim Raji¹; Soheil Saedi¹; ¹Florida Institute of Technology

MATERIALS DESIGN

Algorithm Development in Materials Science and **Engineering — Multiscale Algorithms for Crystal Plasticity and Damage Mechanics II**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Adrian Sabau, Oak Ridge National Laboratory; Ebrahim Asadi, University of Memphis; Enrique Martinez Saez, Clemson University; Garritt Tucker, Colorado School of Mines; Hojun Lim, Sandia National Laboratories; Vimal Ramanuj, Oak Ridge National Laboratory

Wednesday AM | March 22, 2023 Cobalt 502B | Hilton

Session Chairs: Hojun Lim, Sandia National Laboratories; Enrique Saez, Clemson University

8:30 AM Invited

Algorithms for Computing Diffraction Patterns from Dislocation Networks Generated via Discrete Dislocation Dynamics Simulations: Darshan Bamney¹; Aaron Tallman²; Laurent Capolungo¹; Douglas Spearot3; 1Los Alamos National Laboratory; 2Florida International University; 3University of Florida

An Automated Approach to Data Extraction for SMAs: Dylan Kennedy¹; Aaron Stebner¹; Branden Kappes²; ¹Georgia Institute of Technology; ²KMMD, LLC

9:30 AM

Development of Structure-property Linkages for Damage in Crystalline Microstructures Using Bayesian Inference and Unsupervised Learning: David Montes De Oca Zapiain¹; Anh Tran¹; Hojun Lim¹; ¹Sandia National Laboratories

9:50 AM

Multifaceted Uncertainty Quantification for Structure-property Relationship: Anh Tran¹; Pieterjan Robbe¹; Hojun Lim¹; ¹Sandia National Laboratories

10:10 AM Break

10:25 AM

Novel Multi-scale Plasticity Modeling Using Defect Dynamics Element Method (DDEM): Nicole Aragon¹; Dongchan Jang²; Hojun Lim¹; Ill Ryu³; ¹Sandia National Laboratories; ²Korea Advanced Institute of Science and Technology; 3The University of Texas at Dallas

10:45 AM

Multiphase Microstructure-based Modeling for Rolling Contact Fatigue Life Prediction: Jinheung Park1; Kijung Lee1; Soonwoo Kwon²; Myoung-Gyu Lee¹; ¹Seoul National University; ²Hyundai **Motor Company**

11:05 AM

Prediction of Mechanical Properties in a Bulged and Annealed Steel Tube through a Multiscale Modeling Approach Based on CPFEM: Amir Asgharzadeh¹; Taejoon Park¹; Farhang Pourboghrat¹; ¹The Ohio State University

Symmetry Relation Database and Its Application to Ferroelectric Materials Discovery: Qiang Zhu1; Byungkyun Kang1; Kevin Parrish1; ¹University of Nevada, Las Vegas

11:45 AM

Coupling of a Multi-GPU Accelerated Elasto-visco-plastic Fast Fourier Transform Constitutive Model with the Implicit Finite Element Method: Marko Knezevic¹; ¹University of New Hampshire

LIGHT METALS

Alumina & Bauxite — Session II

Sponsored by: TMS Light Metals Division, TMS: Aluminum

Program Organizers: Errol Jaeger, The Business Consultants FZ-LLC; Stephan Broek, Kensington Technology Inc.

Wednesday AM | March 22, 2023 31B | SDCC

Session Chairs: Errol Jaeger, The Business Consultants FZ-LLC; Roberto Seno, Cba

8:30 AM

Improvement Seminars: Continuous Improvement and People'S **Engagement to Support the Sustainability**: Nathalia Cordeiro¹; Bruna Cabral¹; Renan Cruz¹; Raphael Costa¹; Silene Vendrasco¹; Jaise Carvallo¹; Gustavo Silva¹; Guilherme Silva¹; Karina Trindade¹; ¹Norsk Hydro Brasil

8:55 AM

Turning Bauxite Residue to Metal Adsorption Materials through a Low-cost Approach: Hong (Marco) Peng1; James Vaughan1; Shengchun Ma¹; Sicheng Wang¹; Xinyu Tian¹; ¹University of Queensland

9:20 AM

Hematite and Anatase Conversion to Magnetic Phases During Reductive Re-digestion of Gibbsitic Bauxite Residue: Paula Araújo1; Andre do Carmo¹; Fernando Gomes¹; Raphael da Costa²; Marcelo Montini²; Adriano Lucheta¹; Patrícia Silva¹; ¹SENAI Innovation Institute for Mineral Technologies; ²Norsk Hydro Brasil

9:45 AM

Digestion Efficiency Improvement of Gibbsite-boehmite Bauxite: Fengqin Liu¹; Songqing Gu¹; Huaitao Zhang²; Michael Ren³; Zegang Wu¹; Han Lu¹; Mingzhuang Xie¹; ¹University of Science and Technology; ²Shandong Xinfa Aluminum Group; ³Sunlightmetal Consulting Inc.

LIGHT METALS

Aluminum Alloys, Characterization and Processing Casting and Solidification

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Julie Levesque, Quebec Metallurgy Center; Stephan Broek, Kensington Technology Inc.

Wednesday AM | March 22, 2023 32A | SDCC

Session Chair: X.-Grant Chen, University of Quebec at Chicoutimi

8:30 AM

Fundamental Study on Modified Solidification of 1370 and AlSi7 with and without Commercial Grain Refiners: Robert Fritzsch1; Amund Ugelstad¹; Henrik Gobakken¹; Silje Li¹; Shahid Akhtar²; Lars Arnberg¹; Ragnhild Aune¹; ¹Norwegian University of Science and Technology (NTNU); 2Hydro Aluminium AS

8:55 AM

Improving the Mechanical Properties of Cast Aluminum via Ultrasonication-induced Microstructural Refinement: Katherine Rader¹; Jens Darsell¹; Jon Helgeland¹; Nathan Canfield¹; Timothy Roosendaal¹; Ethan Nickerson¹; Adam Denny¹; Aashish Rohatgi¹; ¹Pacific Northwest National Laboratory

9:20 AM

Microstructural Changes on the Al-Cu-Si Ternary Eutectic Alloy with Different Cooling Rates: Seunghwan Oh1; Youngcheol Lee1; ¹Korea Institute of Industrial Technology

Nanoparticle-enhanced Arc Welding of Aluminum Alloys: Narayanan Murali¹; Xiaochun Li¹; ¹University of California, Los **Angeles**

10:10 AM Break

10:25 AM

Phase Equilibria in Al-Fe Alloys: Jozef Medved¹; Maja Voncina¹; Joze Arbeiter¹; ¹University of Liubliana

10:50 AM

Secondary Phase Fracture in Molten Aluminum via Low Power Electric Current Processing: Jonathan Goettsch1; Aaron Gladstein1; David Weiss²; Ashwin Shahani¹; Alan Taub¹; ¹University of Michigan; ²Eck Industries

11:15 AM

Fluidity and Microstructural Analysis of Al-Ni Alloys with Varied Ni Concentrations: Vigneshwar Hari¹; Dong Xu¹; Stuart McDonald¹; Zherui Tong¹; Dongdong Qu¹; Kazuhiro Nogita¹; ¹The University of Queensland

BIOMATERIALS

Biological Materials Science — Biological Materials Science V

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Jing Du, Pennsylvania State University; David Restrepo, University of Texas at San Antonio; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Ling Li, Virginia Polytechnic Institute

Wednesday AM | March 22, 2023 Sapphire 402 | Hilton

Session Chairs: Restrepo David, The University of Texas at San Antonio; Ling Li, Virginia Polytechnic Institute

8:30 AM Invited

Effect of Collagen Molecular Damage at the Nanoscale on Different Hierarchical Levels: Claire Acevedo1; Michael Sieverts1; Yoshihiro Obata¹; Dula Parkinson²; Daan Pelt²; ¹University of Utah; ²Lawrence Berkeley National Laboratory

9:00 AM

Role of Graphene Nanoscrolls on the Properties of Chitosan-PCL Interconnected Membranes with Double Porosity: Dilip Depan1; Lillian Mambiri¹; ¹University of Louisiana at Lafayette

9:20 AM

Porous, Freeze-cast Fluorohydroxyapatite and Hydroxyapatitetitania Composites for Biomedical Applications: Tony Yin1; Sujee Jeyapalina¹; Steven Naleway¹; ¹University of Utah

9:40 AM Invited

Biofilms as Active Materials: Jing Yan1; 1Yale University

10:10 AM Break

10:30 AM

Graphene Foam as an Active Bioscaffold for Cartilage Tissue Engineering: Monet Alberts¹; Michael Eppel²; Olivia Nielson³; Josh Eixenberger²; Raquel Montenegro-Brown¹; David Estrada²; ¹Boise State University; ²Boise State University; ³University of Idaho

Effect of Calcium Phosphorous Molar Ratio on Biocompatibility of 316L Stainless Steel: Sreeparna Ghosh¹; P. K. Mitra¹; Mahua Ghosh Chaudhuri¹; ¹Jadavpur University

Investigation of Design Principles from the Cholla Cactus using Finite Element Simulations and In situ Mechanical Testing: Swapnil Morankar¹; Eugenia Nieto-Valeiras²; Amey Luktuke¹; Yash Mistry³; Dhruv Bhate³; Clint Penick⁴; Nikhilesh Chawla¹; ¹Purdue University; ²IMDEA Materials Institute; ³Arizona State University; ⁴Kennesaw State University

11:30 AM

Fungi-inspired Absorption Materials Made Using Different Biotemplating Methods: Debora Lyn Porter¹; Krista Carlson²; Steven Naleway¹; ¹University of Utah; ²University of Nevada Reno

Micro X-ray Computed Tomography Study of Moisture-induced Swelling in the Wood Cellular Structure: Joseph Jakes¹; Xavier Arzola²; Carlos Baez¹; Roderic Lakes²; Donald Stone²; ¹USDA FS Forest Products Laboratory; ²University of Wisconsin-Madison

ADVANCED MATERIALS

Bulk Metallic Glasses XX — Atomistic Simulations, **Modelling and Theory**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Robert Maass, Federal Institute of Materials Research and Testing (BAM); Peter Derlet, Paul Scherrer Institut; Katharine Flores, Washington University in St. Louis; Yonghao Sun, The Chinese Academy of Sciences; Lindsay Greer, University of Cambridge; Peter Liaw, University of Tennessee

Wednesday AM | March 22, 2023 Aqua C | Hilton

Session Chair: Thomas Hardin, Sandia National Laboratories

8:30 AM Invited

Elucidating the Structure of Glass: Bottom-up or Top-down?: Takeshi Egami¹; ¹University of Tennessee

Emergent Structural and Temporal Length Scales in Metallic Glasses - An Atomistic Simulation Perspective: Peter Derlet1; Robert Maass²; ¹Paul Scherrer Institut; ²Federal Institute of Materials Research and Testing (BAM)

9:10 AM

The Role of Structural Motifs and Outliers in the Deformation of Metallic Glasses: Porter Weeks¹; Suzanne Russo¹; Katharine Flores¹; ¹Washington University in St Louis

9:30 AM

Glass Formation and Shear Banding in CrMnFeCoNi High-entropy Metallic Glasses: A Molecular Dynamics Study: Marie Charrier1; Daniel Utt¹; Arne Klomp¹; Karsten Albe¹; ¹TU Darmstadt

9:50 AM

Origin of Low Temperature Mechanical Loss in Metallic Glass: Leo Zella¹; Jaeyun Moon²; Takeshi Egami¹; ¹University Tennessee Knoxville; ²Oak Ridge National Laboratory

10:10 AM Break

10:30 AM Invited

Metallic Glasses' Global Energy and Structural Heterogeneity Predicted by Machine Learning: Yuchu Wang¹; Yue Fan¹; ¹University of Michigan

10:50 AM

Machine Learning versus Human Learning in Complex Materials Discovery and Science: Predicting Glass-forming Ability of Metallic Glasses: Guannan Liu¹; Sungwoo Sohn¹; Sebastian Kube¹; Arindam Raj¹; Andrew Mertz¹; Anna Gilbert¹; Mark Shattuck¹; Corey O'Hern¹; Jan Schroers¹; ¹Yale University

11:10 AM

Development and Application of an Atomic Cluster Expansion Potential for the CuZr System: Niklas Leimeroth¹; Karsten Albe¹; Jochen Rohrer¹; ¹TU Darmstadt

11:30 AM

Quantifying the Local Structure of Metallic Glass as a Function of Composition, Atomic Size, and Processing History: Thomas Hardin¹; Michael Chandross¹; Murray Daw²; ¹Sandia National Laboratories; ²Clemson University

LIGHT METALS

Cast Shop Technology — Continuous Casting

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Halldor Gudmundsson, Century - Nordural; Stephan Broek, Kensington Technology Inc.

Wednesday AM | March 22, 2023 31C | SDCC

Session Chair: Halldor Gudmundsson. Nordural ehf

TRC Combi Box - A Compact Inline Melt Treatment Unit for Continuous Casting: Margarita Gorsunova-Balkenhol¹; Mark Badowski¹; Marion Betzing²; Jan Stotz²; Øystein Pedersen³; ¹Speira GmbH; ²Drache Umwelttechnik GmbH; ³Speira AS Karmøy

CFD Modeling of Thin Sheet Product Using The Horizontal Single Belt Casting Method: Daniel Gonzalez Morales¹; Mihaiela Isac¹; Roderick Guthrie¹; ¹McGill Metals Processing Centre

9:20 AM

Numerical and Experimental Investigation of Twin-roll Casting of Aluminum-lithium Strips: Olexandr Grydin1; Kai-Uwe Garthe1; Xueyang Yuan¹; Jette Broer²; Olaf Keßler²; Rostislav Králík³; Miroslav Cieslar³; Mirko Schaper¹; ¹Materials Science, Paderborn University; ²Materials Science, University of Rostock; ³Physics of Materials, **Charles University**

9:45 AM

Segregation Mechanisms and Their Effects on the Aluminium Flat Rolled Products (Sheet/Foil) Produced by Twin Roll Casting Tech: Onur Birbasar¹; Feyza Denizli¹; Eda Özkaya¹; Samet Sevinç¹; Ali Ulus¹; Canan nel¹; ¹Asas Alüminyum San. ve Tic. A.S.

10:10 AM Break

10:25 AM

Novel Methods for Roll Texturing: EDT and Sandblast Applications for Aluminum Twin Roll Cast and Cold Rolling: Yusuf Ozcetin1; Onur Birbasar¹; Ali Ulus¹; Koray Dündar¹; Feyza Denizli¹; Canan nel¹; ¹ASAS Aluminum I. Company

10:50 AM

Characterization of 8006 Aluminium Alloy Casted by TRC Technology with Steel-steel and Copper-copper Roll Pairs: Feyza Denizli¹; Onur Birbasar¹; Koray Dündar¹; Ali Ulus¹; Canan nel¹; Yusuf Özçetin¹; ¹Asas Aluminyum

11:15 AM

Tailoring the As-cast Microstructure of Twin-roll Cast AA3105 Alloy Produced by St/Cu Shell Pair: Cemil Isıksacan¹; Mert Gülver¹; Hikmet Kayacetin¹; Onur Meydanoglu¹; Erdem Atar²; ¹Assan Aluminum; ²Gebze Technical University

NUCLEAR MATERIALS

Ceramic Materials for Nuclear Energy Research and **Applications — Advanced Ceramics for Nuclear Applications**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Energy Committee

Program Organizers: Walter Luscher, Pacific Northwest National Laboratory; Xian-Ming Bai, Virginia Polytechnic Institute and State University; Lingfeng He, North Carolina State University; Sudipta Biswas, Idaho National Laboratory; Simon Middleburgh, Bangor University

Wednesday AM | March 22, 2023 28B | SDCC

Session Chair: Walter Luscher, Pacific Northwest National Laboratory

8:30 AM Invited

Relating Microstructural Evolution and Stoichiometry to Tritium Release from Ternary Lithium Ceramics: David Senor¹; Andy Casella¹; Weilin Jiang¹; ¹Pacific Northwest National Laboratory

9:00 AM Invited

Emulation of Microstructures and Tritium Behavior in Lithium **Aluminate by Ion Irradiation**: Weilin Jiang¹; Libor Kovarik¹; Zihua Zhu¹; Walter Luscher¹; Andrew Casella¹; David Senor¹; ¹Pacific Northwest National Laboratory

9:30 AM

Low-temperature Fabrication of Ceramic Tritium Breeder Materials, for Enhanced Control of Microstructure and Phase Formation: Enrique Casanas Montesdeoca¹; Amy Gandy¹; Megan Leyland²; Lyndsey Mooring²; Rachel Strickland²; Colm O'Regan¹; Rebecca Boston¹; ¹The University of Sheffield; ²United Kingdom Atomic Energy Authority

9:50 AM

Surface Modification Strategies for Hydrogen Retention in Hydride Moderators: Reid Bohanon¹; Felipe Caliari²; Sanjay Sampath²; Erik Luther³; Stephen Raiman¹; ¹Texas A&M University; ²Stony Brook University; 3Los Alamos National Laboratory

10:10 AM Break

10:30 AM Invited

Radiation Shielding Ceramics with Enhanced Performance and Scalability: Samuel Humphry-Baker¹; ¹Imperial College London

11:00 AM Invited

High-entropy Carbide Ceramics: New Materials for Extreme Environments in Nuclear Energy Applications: Bai Cui¹; Fei Wang¹; Lanh Trinh¹; Xueliang Yan¹; Yongfeng Lu¹; Kaustubh Bawane²; Zilong Hua2; Linu Malakkal2; Lingfeng He2; Cody Dennett2; 1University of Nebraska-Lincoln; 2Idaho National Laboratory

11:30 AM

Microstructural, Mechanical and Thermal Characterization of High Entropy Carbide Ceramics: Kaustubh Bawane¹; Zilong Hua¹; Linu Malakkal¹; Fei Teng¹; Jordan Hachtel²; Lanh Trinh³; Samuel Ruiz³; Fei Wang³; Yongfeng Lu³; Bai Cui³; Lingfeng He¹; ¹Idaho National Laboratory; ²Oak Ridge National Laboratory; ³University of Nebraska Lincoln

CHARACTERIZATION

Characterization of Minerals, Metals and Materials — Characterization of Polymers, Composites, Coatings and Ceramics

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Mingming Zhang; Zhiwei Peng, Central South University; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, Eurofins EAG Materials Science LLC; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, DEVCOM ARL Army Research Office; Shadia Ikhmayies

Wednesday AM | March 22, 2023 Aqua 313 | Hilton

Session Chairs: Sergio Monteiro, Instituto Militar de Engenharia; Shadia Ikhmayies, University of Jordan

8:30 AM Introductory Comments

Characterization of Natural Flax Fabric Impregnated with Shear Thickening Fluid of Silica Particles: Matheus Ribeiro¹; Pedro Henrique Da Silveira¹; Sergio Monteiro¹; ¹Military Institute Of Engineering

High Fidelity Explosive Mock Development for Dynamic Testing of New Generation Explosive Composites: Alexandra Burch¹; Hugh $Grennan^2; David \ Bahr^2; Bryce \ Tappan^1; Caitlin \ Woznick^1; John \ Yeager^1;$ ¹Los Alamos National Laboratory; ²Purdue University

Mechanical Behavior of Functional Ceramic Nanomultilayers: Danielle White1; Edoardo Rossi2; Marco Sebastiani2; Andrea Hodge1; ¹University of Southern California; ²"Roma TRE" University

On the Correlation of Dynamic Compressive Failure and Fragmentation with Flaw Distributions in an Advanced Ceramic: Arezoo Zare¹; Kshitiz Upadhyay¹; Kevin Hu¹; Elizabeth Hsieh¹; Qi Rong Yang²; Kent Christian²; Jun Du²; Richard Haber²; Matthew Shaeffer¹; K.T. Ramesh¹; ¹Johns Hopkins University; ²Rutgers University

9:55 AM Break

10:10 AM

Performance Study of 3D Printed Continuous Fiber-reinforced Composites: Xiaofang Liu¹; Anil Saigal¹; Michael Zimmerman¹; ¹Tufts University

10:30 AM Concluding Comments

MATERIALS DESIGN

Computational Discovery and Design of Materials — **Session V**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering

Program Organizers: Houlong Zhuang, Arizona State University; Duvu Chen, University of California, Santa Barbara: Ismaila Dabo. Pennsylvania State University; Yang Jiao, Arizona State University; Sara Kadkhodaei, University of Illinois Chicago; Mahesh Neupane, Army Research Laboratory; Xiaofeng Qian, Texas A&M University; Arunima Singh, Arizona State University; Natasha Vermaak, Lehigh University

Wednesday AM | March 22, 2023 Cobalt 502A | Hilton

Session Chairs: Sara Kadkhodaei, University of Illinois Chicago; Houlong Zhuang, Arizona State University

8:30 AM

Designing High-Tc Superconductors with BCS-inspired Screening, Density Functional Theory and Deep-learning: Kamal Choudhary¹; ¹National Institute of Standards and Technology

9:00 AM Invited

Bridging First-principles Calculations with Experiment: Insights from Case Studies on (Photo)Electrochemical Systems: Wennie Wang¹; ¹University of Texas at Austin

9:30 AM

Machine Learning Assisted Discovery of Composite Solid-state Electrolytes in Context of Li-ion Batteries: Hasan Muhammad Sayeed1; Taylor D. Sparks1; 1University Of Utah

9:50 AM

Design of Bistable Metamaterials for Desired Dynamic Behavior: Hesaneh Kazemi¹; Brianna MacNider¹; Jaeyub Hyun¹; Nicholas Boechler¹; H. Alicia Kim¹; ¹University of California San Diego

10:10 AM Break

10:30 AM Invited

Closed Loop Computational Materials Discovery: Raymundo Arroyave¹; Brent Vela¹; Danial Khatamsaz¹; Prashant Singh²; Duane Johnson²; Douglas Allaire¹; ¹Texas A&M University; ²Ames Lab

11:00 AM

Elucidating the Mechanisms for Fast Diffusion in Doped LLZO: Juan Verduzco¹; Alejandro Strachan¹; ¹Purdue University

PHYSICAL METALLURGY

Computational Thermodynamics and Kinetics — **Process Modeling and Thermodynamics**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Solidification Committee

Program Organizers: Hesam Askari, University of Rochester; Damien Tourret, IMDEA Materials Institute; Eva Zarkadoula, Oak Ridge National Laboratory; Enrique Martinez Saez, Clemson University; Frederic Soisson, Cea Saclay; Fadi Abdeljawad, Clemson University; Ziyong Hou, Chongqing University

Wednesday AM | March 22, 2023 26A | SDCC

Session Chairs: Hesam Askari, University of Rochester; Naga Sri Harsha Gunda, The Ohio State University

8:30 AM Invited

Effective Temperature Concept for Steady States in Driven Alloy Systems: Pascal Bellon¹; Robert Averback¹; Sourav Das¹; ¹University of Illinois at Urbana-Champaign

Energy: a Path Forward to Connect Radiation Damage Simulations and Experiments: Charles Hirst1; Rachel Connick1; Penghui Cao2; R. Scott Kemp¹; Michael Short¹; ¹Massachusetts Institute of Technology; ²University of California Irvine

9:20 AM

An Efficient and Accurate Linear Spline Interpolation Method of Implementing CALPHAD Thermodynamics in Phase Field **Models**: Kartikey Joshi¹; Siu Sin Jerry Quek¹; Yingzhi Zeng¹; David Wu¹; ¹Institute of High Performance Computing

9:40 AM

Development of Continuous Cluster Activation Method and Its Application to Grain Growth: Ryo Yamada1; Munekazu Ohno1; ¹Hokkaido University

10:00 AM Break

10:20 AM

Significance of Free Energy Contributions beyond Configurational Entropy in Superalloys and High Entropy Alloys: Naga Sri Harsha Gunda¹; Maryam Ghazisaeidi¹; ¹The Ohio State University

10:40 AM

Assessment of Spinodal Decomposition in Cr-W Based Smart and High-entropy Alloys from First-principles Modelling: Duc Nguyen-Manh¹; Jan Wrobel²; Damian Sobieraj²; ¹UK Atomic Energy Authority; ²Warsaw University of Technology

11:00 AM Invited

Data-driven Models of Plasticity and Thermodynamics: Discrete and Continuous State Spaces: Thomas Swinburne¹; ¹CNRS CRCN, Aix-Marseille University

MECHANICS & STRUCTURAL RELIABILITY

Deformation-induced Manipulation of Defect Structures and Hierarchical Microstructures -Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State Universtiy; Kester Clarke, Colorado School of Mines; Eric Lass, University of Tennessee-Knoxville; Vahid Tari, ATI - Allegheny Technologies Incorporated

Wednesday AM | March 22, 2023 Sapphire P | Hilton

Session Chairs: Bharat Gwalani, North Carolina State University; Vahid Tari, Allegheny Technologies Incorporated

8:30 AM Invited

Processing Heterostructures Using Deformation Techniques: Yuntian Zhu¹; ¹City University of Hong Kong

Nanostructural Hierarchy in Metallic Materials for Extended High Temperature Stability: Subhashish Meher¹; Sourabh Kadambi¹; Thomas Lillo¹; ¹Idaho National Laboratory

Exploiting Hydrogen Segregation Effects for Controlling Microstructure Evolution: Haoxue Yan¹; C. Cem Tasan¹; ¹Massachusetts Institute of Technology

9:35 AM

Microstructural Inelastic Deformation and Fracture Modes in Crystalline Materials: M. Chen1; Dongyue Xie,2; N. Li2; Mohammed Zikry¹; ¹North Carolina State University; ²Los Alamos National Laboratory

9:55 AM Invited

Under Pressure - Exploring the Synergy of High Pressure **Deformation Mechanisms of Metals and Rocks**: Suveen Mathaudhu¹; ¹Colorado School of Mines

10:15 AM Break

10:35 AM Invited

Phase Stability in Alloys during Severe Plastic Deformation in the High Strain Limit: Pascal Bellon¹; Robert Averback¹; Yinon Ashkhenazy²; ¹University of Illinois at Urbana-Champaign; ²Hebrew University of Jerusalem

11:00 AM Invited

Universal Trend in the Non-Equilibrium Evolution of Metastable Grain Boundaries at Extreme Conditions: Yue Fan1; 1University of Michigan

11:20 AM

Role of Cold Sprayed Microstructure on Tensile and Fatigue Behavior for AA7075: Christopher Williamson¹; Ning Zhu¹; Arthur Webb¹; Brian Jordon²; Luke Brewer¹; ¹University of Alabama; ²Baylor University

Self-lubricating Ni-based Superalloy Composites Processed by Severe Plastic Deformation: Manoel Kasalo¹; Sebastian Suarez²; Andrea Bachmaier¹; ¹Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences; ²Department of Materials Science, Campus D3.3, 66123 Saarbrücken, Germany

12:00 PM Invited

The Role of Deformation Induced Defects on Phase Evolution in High Entropy Alloys: Abhishek Sharma1; Sriswaroop Dasari1; Bharat Gwalani¹; Mohan Sai Kiran Nartu¹; Yao-Jen Chang²; Stephane Gorsse³; An-Chou Yeh²; Rajarshi Banerjee¹; ¹University of North Texas; ²National Tsing Hua University; ³University of Bordeaux

MATERIALS PROCESSING

Deformation-induced Microstructural Evolution during Solid Phase Processing: Experimental and Computational Studies — Deformation Induced Microstructural Evolution III

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Arun Devaraj, Pacific Northwest National Laboratory; Pascal Bellon, University of Illinois at Urbana-Champaign; Suhas Eswarappa Prameela, Massachusetts Institute of Technology; Mostafa Hassani, Cornell University

Wednesday AM | March 22, 2023 29C | SDCC

Session Chair: Pascal Bellon, University of Illinois Urbana-Champaign

8:30 AM Introductory Comments

8:35 AM Invited

Microstructural and Chemical Evolution of Frictional Contacts: Izabela Szlufarska¹; ¹University of Wisconsin-Madison

9:05 AM

Crystal Plasticity Finite Element Modeling Integrated with Transformation Induced Plasticity of Metastable Austenitic Steel at Low Temperature: Hyukjae Lee1; Tan Nguyen2; Jinwook Jung1; Sung-Tae Hong²; Myoung-Gyu Lee¹; Heung Nam Han¹; ¹Seoul National University; ²University of Ulsan

9:25 AM

Impact of the Plastic Deformation Microstructure in Metals on the Kinetics of Recrystallization: A Phase-field Study: Ahmed Hamed¹; Sreekar Rayaprolu¹; Grethe Winther²; Anter El-Azab¹; University; ²Technical University of Denmark

9:45 AM

Meshfree Simulation of Solid Phase Processing and Microstructure Analysis Using a Dislocation Density-based Constitutive Model: Lei Li1; Glenn Grant1; Ayoub Soulami1; 1Pacific Northwest National Laboratory

10:05 AM Break

10:20 AM Invited

Crystal Plasticity Simulation of In-grain Microstructure and Microtexture Evolution during Large Deformation of IF-steel: Karo Sedighiani¹; Konstantina Traka²; Martin Diehl³; Franz Roters⁴; Jilt Sietsma²; *Dierk Raabe*⁴; ¹Tata Steel; ²Delft University of Technology; 3KU Leuven; 4Max-Planck-Institut für Eisenforschung

10:50 AM

An Integrated PRISMS Framework for Simulating Twinning/ Detwinning in Mg and Mg alloys: David Montiel¹; Mohammadreza Yaghoobi¹; Brian Puchala¹; Zhe Chen¹; Tracy Berman¹; Qianying Shi¹; Anton Van der Ven¹; Katsuyo Thornton¹; Veera Sundararaghavan¹; John Allison¹; ¹University of Michigan

An integrated Computational and Experimental Study of the Alloying Effects on Texture Evolution in Mg Alloys: Tracy Berman¹; Ashley Bucsek¹; Yanjun Lyu¹; David Montiel¹; Mohammadreza Yaghoobi¹; Katsuyo Thornton¹; Veera Sundararaghavan¹; John Allison¹; ¹University of Michigan

11:30 AM

Phase-field Model of Friction Stir Welding Recrystallization and Grain Growth: Floyd Hilty1; Jacob Bair2; 1Pacific Northwest National Laboratory; ²Oklahoma State University

11:50 AM Invited

Young Leaders International Scholar - JIM: Strong and Ductile Metastable Single-phase High-entropy Alloys: Design, Processing, and Mechanical Behaviors. Daixiu Wei¹; ¹Tohoku University

Three-dimensional Phase-field **Simulation Static** Recrystallization in Aluminum Alloy Combined with Bayesian Data Assimilation: Kota Matsumoto¹; Eisuke Miyoshi¹; Yoshiki Mori²; Kishu Akiba³; Masato Ito³; Nobuhiro Kitahara³; Kenichi Yaguchi³; Akinori Yamanaka¹; ¹Tokyo University of Agriculture and Technology; ²MA Aluminum Corporation; 3Mitsubishi Materials Corporation

NANOSTRUCTURED MATERIALS

Deformation Mechanisms, Microstructure Evolution, and Mechanical Properties of Nanoscale Materials Small Scale and In-situ Testing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Niaz Abdolrahim, University of Rochester; Matthew Daly, University of Illinois-Chicago; Hesam Askari, University of Rochester; Eugen Rabkin, Technion; Jeffrey Wheeler, Femto Tools Ag; Wendy Gu, Stanford University

Wednesday AM | March 22, 2023 Agua 300AB | Hilton

Session Chairs: Jeffery Wheeler, FemtoTools AG; Eugen Rabkin, Technion

8:30 AM Invited

Understanding Deformation Mechanisms in Ultrafine Grained Thin Films by Quantitative In Situ TEM Deformation: Josh Kacher¹; ¹Georgia Institute of Technology

9:00 AM

Direct Measurement of Adhesion for Noble-metal Nanoparticles Using In Situ Transmission Electron Microscopy: Andrew Baker¹; Sai Bharadwaj Vishnubhotla¹; Sanjana Karpe¹; Yahui Yang¹; Goetz Veser¹; Tevis Jacobs¹; ¹University of Pittsburgh

Anisotropy Characterization via Correlated Mechanical Microscopy and EBSD: Jeffrey Wheeler1; 1Femto Tools Aq

Challenges in Cross Sectional Nanoindentation of Multilayers in Modern Electronics: Stanislav Zak¹; Megan Cordill¹; ¹Erich Schmid Institute of Materials Science, Austrian Academy of Sciences

10:00 AM Break

10:20 AM Invited

3D Synchrotron Imaging of Mechanical Properties of Nanoscale Materials: Marie-Ingrid Richard¹; Maxime Dupraz¹; Corentin Chatelier¹; Clément Atlan¹; Sarah Yehya²; David Simonne²; Stéphane Labat³; Steven Leake⁴; Ewen Bellec⁴; Olivier Thomas³; Eugen Rabkin⁵; ¹CEA Grenoble; ²Synchrotron SOLEIL; ³IM2NP-CNRS; ⁴ESRF; ⁵Technion

10:50 AM

In Situ Nano-identation of a Pt Nanoparticle Coupled with Bragg Coherent X-ray Diffraction Imaging: Sarah Yehya¹; Thomas Cornelius²; Marie-Ingrid Richard³; Felisa Berenguer¹; Eugen Rabkin⁴; Olivier Thomas²; Stéphane Labat²; ¹Synchrotron SOLEIL; ²AMU -CNRS; 3CEA of Grenoble; 4Technion Institute of Technology

11:10 AM

Recent Advances in Bragg Coherent Diffraction for Nanoscale Imaging of Strain: Ross Harder¹; ¹Argonne National Laboratory

11:30 AM Invited

Mechanical Properties of Nanowires: From In-situ Experiments to High Throughout, Statistically-significant Testing: Rodrigo Bernal¹; ¹University of Texas at Dallas

ELECTRONIC MATERIALS

Electronic Packaging and Interconnection — Pb Free Solder Alloys II

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Kazuhiro Nogita, University of Queensland; Mohd Arif Mohd Salleh, Universiti Malaysia Perlis; Dan Li, Beijing University of Technology; David Yan, San Jose State University; Fan-Yi Ouyang, National Tsing Hua University; Patrick Shamberger, Texas A&M University; Tae-Kyu Lee, Cisco Systems; Christopher Gourlay, Imperial College London; Albert T. Wu, National Central University

Wednesday AM | March 22, 2023 Sapphire E | Hilton

Session Chairs: Albert Wu, National Central University; Fan-Yi Ouyang, National Tsing Hua University

8:30 AM Introductory Comments

8:35 AM Invited

Effect of Joint Length Scale on Creep Deformation of Sn-rich Dissimilar Metallic Joints: Praveen Kumar¹; Anwesha Kanjilal¹; ¹Indian Institute of Science

9:00 AM

Properties of Sn-3wt%Ag-5wt%Cu Alloys with Cu6Sn5 Intermetallic Grain Refined by Mg: Chi Ying Tan1; Mohd Arif Anuar Mohd Salleh1; Xin Fu Tan²; Hideyuki Yasuda³; Norainiza Saud¹; Tetsuro Nishimura⁴; Kazuhiro Nogita²; ¹CEGeoGTech; ²NS CMEM; ³Kyoto University; ⁴Nihon Superior Co. Ltd

Ball Drift in SnAgCu/SnBi Hydrid Joints during Thermal Cycling: Jingwei Xian1; R.J. Coyle2; L. Wentlent3; J. Wilcox3; Christopher Gourlay¹; ¹Imperial College London; ²Nokia Bell Labs; ³Universal **Instruments Corporation**

9:40 AM

Effects of Different Surface Finish to the Microstructure and **Properties of Sn-Ag Solder Joints**: *Mohd Arif Anuar Mohd Salleh*¹; Siti Farahnabilah Muhd Amli¹; Mohd Izrul Izwan Ramli¹; Mohd Mustafa Al Bakri Abdullah¹; Mohd Sharizal Abdul Aziz¹; Hideyuki Yasuda¹; Jitrin Chaiprapa¹; Kazuhiro Nogita¹; ¹Universiti Malaysia Perlis

10:00 AM Break

10:20 AM

New Insights into the Nucleation and Growth of Ag3Sn Plates in Solder Joints: Christopher Gourlay¹; Yi Cui¹; Athanasios Zois¹; ¹Imperial College London

10:40 AM

Thermomigration of Liquid Indium and Nickel Thin Film During Bonding Process: Po-Hsun Yang¹; Fan-Yi OuYang¹; ¹National Tsing **Hua University**

11:00 AM

The Effect of Ni Microalloying on the Microstructure Evolution of In-35wt.% Sn Solder Alloy: May Shin Chang¹; Mohd Arif Anuar Mohd Salleh¹; Dewi Suriyani Che Halin¹; Hideyuki Yasuda²; Tetsuro Nishimura³; Kazuhiro Nogita⁴; ¹Centre of Excellence Geopolymer & Green Technology (CeGeoGTech); 2Department of Materials Science and Engineering; ³Nihon Superior Co. Ltd.; ⁴Nihon Superior Centre for the Manufacture of Electronic Materials (NS CMEM)

CORROSION

Environmental Degradation of Additively Manufactured Alloys — Aqueous and Atmospheric Corrosion I

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Kinga Unocic, Oak Ridge National Laboratory; Jenifer Locke, Ohio State University; Sebastien Dryepondt, Oak Ridge National Laboratory; Brendy Rincon Troconis, University of Texas at San Antonio; Andrew Hoffman, GE Research; Xiaoyuan Lou, Purdue University

Wednesday AM | March 22, 2023 Sapphire 400A | Hilton

Session Chairs: Jenifer Locke, OSU; Xiaoyuan Lou, Auburn University

8:30 AM Invited

Electrochemical Behavior of Laser Powder Bed Fusion FeCrAl Alloys: Rupesh Rajendran¹; Rajnikant Umretiya²; Vipul Gupta²; Richard Blair²; Andrew Hoffman²; ¹Georgia Institute of Technology; ²GE Global Research

9:00 AM Invited

Influence of Feedstock on Corrosion of Additively Manufactured 316L Stainless Steel: Venkata Bhuvaneswari Vukkuma¹: Ahmed Darwish¹; Steven Storck²; Rajeev Gupta¹; ¹North Carolina State University; ²Johns Hopkins University Applied Physics Laboratory

9:30 AM

Corrosion Mechanisms of Additively Manufactured 316L Stainless Steels in Chloride Solutions: Thomas Voisin1; Shohini Sen-Britain1; ShinYoung Kang¹; Yuliang Zhang¹; Zhen Qi¹; Nathan Keilbart¹; Penghao Xiao²; Seogkoo Cho¹; Yakun Zhu¹; Rongpei Shi¹; Y. Morris Wang³; Roger Qiu¹; Brandon Wood¹; ¹Lawrence Livermore National Laboratory; ²Dalhousie University; ³University of California Los **Angeles**

9:50 AM

Local Corrosion Initiation Sites of Additively Manufactured Selective Laser Melted 316L Stainless Steel: Alex Mirabal¹; Ilker Loza-Hernandez¹; Daniel Hooks¹; Jamie Stull¹; ¹Los Alamos National Laboratory

10:10 AM Break

10:30 AM

Localized Corrosion of Additively Manufactured Stainless Steel in Atmospheric Environments: Peter Renner¹; Erin Karasz¹; Kasandra Escarcega-Herrera¹; Michael Heiden¹; Michael Melia¹; National Laboratories

10:50 AM

Structure and Semiconducting Properties of the Passive Film Formed on Additively Manufactured 316L Stainless Steel: Gary Halada¹; Jason Trelewicz¹; Mingxi Ouyang¹; Nylette Lopez¹; Jurek Sadowski²; Ryan Hulchanski³; ¹Stony Brook University; ²Brookhaven National Laboratory; 3Clarkson University

11:10 AM

Corrosion Behavior of 7050 and 7075 Aluminum Alloys Processed through Reactive Additive Manufacturing: Vikrant Beura¹; Antriksh Sharma¹; Yashaswini Karanth¹; Kiran Solanki¹; ¹Arizona State University

CORROSION

Environmental Degradation of Multiple Principal Component Materials — Design, Modeling, Simulation, and Machine Learning

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Wenjun Cai, Virginia Polytechnic Institute and State University; XiaoXiang Yu, Novelis Global Research Center; Vilupanur Ravi, California State Polytechnic University Pomona; Christopher Weinberger, Colorado State University; Elizabeth Opila, University of Virginia; Bai Cui, University of Nebraska-Lincoln; Mark Weaver, University of Alabama; Bronislava Gorr, Karlsruhe Institute of Technology (KIT); Gerald Frankel, Ohio State University; ShinYoung Kang, Lawrence Livermore National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Wednesday AM | March 22, 2023 Sapphire 410A | Hilton

Session Chairs: Chris Weinberger, Colorado State University; Lin Li, University of Alabama

8:30 AM Invited

Atomistic Exploration of Light-weight Refractory High Entropy Alloys by Promoting Short-range Chemical Order Using a Machine Learning Potential: Yao Yi¹; Xiaoxiang Yu²; Qiang Zhu³; Lin Li¹; ¹University of Alabama; ²Novelis Global Research Center; ³University of Nevada, Las Vegas

Enabling Oxidation-resistant Refractory Complex, Concentrated Alloys via a Machine Learning for Accelerated Materials Discovery Framework: Michael Titus1; Sharmila Karumuri1; Saswat Mishra1; Vincent Mika1; Collin Scott1; Austin Hernandez1; Nimish Awalgaonkar1; Kenneth Sandhage¹; Ilias Bilionis¹; Alejandro Strachan¹; ¹Purdue University

9:10 AM Invited

High-Throughput Computation of Short-Range Order Types in MPEA Alloys: Christopher Wolverton¹; ¹Northwestern University

9:30 AM

Modeling Element-resolved Dissolution of Compositionally Complex Alloys in Aqueous Environments: Kang Wang¹; Bi-Cheng Zhou¹; ¹University of Virginia

9:50 AM

Modelling the Interactions of Zirconium Hydrides: Alireza Tondro¹; Brooke Bidyk1; Ivan Ho1; Hamidreza Abdolvand1; 1University of Western Ontario

CORROSION

Environmentally Assisted Cracking: Theory and Practice — Hydrogen Embrittlement II

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska-Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Wednesday AM | March 22, 2023 Sapphire 410B | Hilton

Session Chairs: C. Tasan, Massachusetts Institute of Technology; Tom Depover, Ghent University

8:30 AM Invited

Hydrogen Embrittlement in Alloys with Metastable Phases: C. Tasan¹; Menglei Jiang¹; Michela Geri¹; Hyun Oh¹; ¹Massachusetts Institute of Technology

9:00 AM

Hydrogen Effects on Mechanical and Toughness Properties of Pipeline Steels: Xin Pang¹; Su Xu¹; ¹CanmetMATERIALS, Natural Resources Canada

9:20 AM

Some Antagonist Processes of Hydrogen/Plasticity Interaction in fcc Metal Alloys: The Effect of Ni3Al Precipitate State on Nickel Base Alloys: Siva Prasad Murugan¹; Nadjib Iskounen¹; Marie Landeiro Dos Reis¹; Jamaa Bouhattate¹; Abdelali Oudriss¹; Feaugas Xavier²; ¹LaSIE; ²Lasie Cnrs Umr73

9:40 AM

Effect of Nickel and Chromium Contents on Hydrogen Embrittlement of High Strength Bolt Steel for Offshore Plants: Byungrok Moon¹; Sourav Saha¹; Jimin Nam¹; Changhoon Lee²; Junho Chung³; Namhyun Kang¹; ¹Pusan National University; ²Korea Institute of Materials Science; 3Hyundai-Steel

10:00 AM Break

10:20 AM Invited

Evaluation of the Responsible Hydrogen Embrittlement Mechanism in Martensitic Steels by Advanced Microstructural Characterization: Tom Depover¹; Kim Verbeken¹; Margot Pinson¹; ¹Ghent University

10:50 AM

A Unified Fracture Criterion in Consideration of Hydrogen Effect in Martensitic Steel Sheet: Geonjin Shin1; Hyejin Kim2; Chanyang Kim3; Kijeong Kim²; Seungchae Yoon²; Myoung-Gyu Lee¹; ¹Seoul National University; ²Hyundai-Steel; ³Korea Institute of Materials Science

MATERIALS DESIGN

Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling — Cyclic Plastic Localization, Crack Nucleation, and **Propagation II**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Additive Manufacturing Committee

Program Organizers: Jean-Charles Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Ashley Spear, University of Utah; Antonios Kontsos, Drexel University; Brian Wisner, Ohio University; Orion Kafka, National Institute of Standards and Technology

Wednesday AM | March 22, 2023 Sapphire H | Hilton

Session Chair: J.C. Stinville, University of Illinois at Urbana-Champaign

8:30 AM

Fatigue and Inclusions in NiTi Shape Memory Alloy: Highmagnification Observations of Damage and Crack Formation at Particle/Void Assemblies: Nathan Rendon1; William LePage1; ¹University of Tulsa

8:50 AM

Role of Non-Metallic Inclusions in the Fatigue Behavior of Superelastic Nitinol: Parisa Shabani Nezhad1; Jacob Rusch1; John Moore¹; Dinc Erdeniz²; ¹Marquette University; ²University of Cincinnati

9:10 AM

On Fatigue Crack Initiation with Fine Granular Area in Metal Matrix without Defect during Very High Cycle Fatigue: Guocai Chai1; ¹Alleima

9:30 AM

Effects of Frequency and Dwell on the Fatigue Crack Propagation in Single Crystal Ni-based Superalloy CMSX-4 at Intermediate Temperatures: Jospeh Doyle¹; Angelos Evangelou²; Nong Gao¹; Edward Saunders³; Jane Woolrich³; Mark Hardy³; Philippa Reed¹; ¹University of Southampton; ²University of Cyprus; ³Rolls Royce

Investigation of the Impact of Residual Stresses on Short Crack Propagation in Martensitic Spring Steel: Anna Wildeis¹; Matthias Thimm¹; Hans-Jürgen Christ¹; Robert Brandt¹; Claus-Peter Fritzen¹; ¹University of Siegen

10:10 AM Break

10:25 AM Invited

Deformation Mechanisms of CoCrNi and CoCrFeMnNi MPEAs under Low-cycle Fatigue Loading: Comparison and Correlation with Lifetime: Kaiju Lu¹; Ankur Chauhan¹; Aditya Srinivasan Tirunilai¹; Alexander Kauffmann¹; Martin Heilmaier¹; Mike Schneider²; Guillaume Laplanche²; Jens Freudenberger³; *Jarir Aktaa*¹; ¹Karlsruhe Institute of Technology; ²Ruhr-Universität Bochum; ³Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)

10:45 AM

Characterization of Low-Cycle Fatigue Deformation Behavior at RT/200 °C of FeMnAlC Lightweight Steel for Low-Pressure Turbine Blade: Uiseok Ko1; Chi-Won Kim1; Sung-Jun Park2; Hyun-Uk Hong1; ¹Changwon National University; ²Korea Institute of Materials Science

11:05 AM

Correlation Between Microstructure and Fatigue Properties of Complex-phase Steel: Nader Heshmati¹; Peter Hedström¹; Annika Borgenstam¹; Henrik Sieurin²; Joachim Larsson³; ¹KTH; ²Scania CV AB; 3SSAB

11:25 AM

The Influence of Ex-service Steel Turbine Blade Microstructural Variability on Fatigue Behaviour and Lifetime Extension Approaches: Ara Khodavirdi¹; Philippa Reed¹; Andrew Hamilton¹; ¹University of Southampton

11:45 AM

Defect Tolerance of Cu Alloyed and Precipitation Hardened Steels with Different C Contents: David Goerzen¹; Hannah Schwich²; Bastian Blinn¹; Wolfgang Bleck²; Tilmann Beck¹; ¹TU Kaiserslautern; ²RWTH **Aachen University**

12:05 PM

Mitigating Localized Plastic Strain Accumulation in Cyclic Loading of Polycrystalline Shape Memory Ceramics: A Phase-field Study: Amirreza Lotfolahpour¹; Mohsen Asle Zaeem¹; ¹Colorado School of Mines

MATERIALS PROCESSING

Friction Stir Welding and Processing XII — Spot **Technologies**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Anton Naumov, Peter The Great St. Petersburg Polytechnic University; Nilesh Kumar, University of Alabama, Tuscaloosa

Wednesday AM | March 22, 2023 29A | SDCC

Session Chairs: Axel Meyer, RIFTEC GmbH; Josef Cobb, NASA Marshall Space Flight Center

8:30 AM

Joining of High Strength Low Ductility AA7055 by Friction Selfpiercing Rivet: Yong Chae Lim¹; Hui Huang¹; Yiyu Wang¹; Yuan Li¹; Zhili Feng¹; ¹Oak Ridge National Laboratory

2D Axisymmetric Modeling of RFSSW Repair and Experimental Validation: Evan Berger1; Michael Miles1; Yuri Hovanski1; Paul Blackhurst¹; Andrew Curtis¹; Ruth Belnap¹; ¹Brigham Young University

Production Evaluation of Refill Friction Stir Spot Welding: Ruth Belnap¹; Paul Blackhurst¹; Andrew Curtis¹; Heath Misak²; Josef Cobb³; Yuri Hovanski¹; ¹Brigham Young University; ²Spirit AeroSystems, Inc.; 3NASA - MSFC

9:30 AM

Numerical Simulation of the FSSW Process for Aluminum Alloys **5082-0**, **6082-T6** and **7075-T6**: Mikhail Ozhegov¹; *Mark Belousov*¹; Pavel Uporov¹; Karolina Vladova¹; ¹St. Petersburg Polytechical University

9:50 AM Break

Embedded Anchoring of Multi-material Assemblies by Friction Riveting Process: Hrishikesh Das¹; Keerti Kappagantula¹; Abhinav Srivastava¹; Piyush Upadhyay¹; Jorge F Dos Santos¹; Md Reza-E-Rabby¹; ¹Pacific Northwest National Laboratory

10:30 AM Invited

Effect of Welding Parameters on Microstructure and Mechanical Properties of Friction Stir Lap Welds of an Ultrahigh Strength Steel: Yutaka Sato¹; Shunsuke Mimura¹; Shun Tokita¹; Yusuke Yasuda²; Akihiro Sato²; Satoshi Hirano²; ¹Tohoku University; ²Hitachi

MATERIALS PROCESSING

Frontiers in Solidification: An MPMD Symposium Honoring Jonathan A. Dantzig — Additive Manufacturing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Light Metals Division, TMS Structural Materials Division, TMS: Aluminum Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Andre Phillion, McMaster University; Michel Rappaz, Ecole Polytechnique Fédérale De Lausanne; Melis Serefoglu, Marmara University; Damien Tourret, IMDEA Materials Institute

Wednesday AM | March 22, 2023 28E | SDCC

Session Chairs: Charles-André Gandin, Mines ParisTech; Lindsay Greer, University of Cambridge

8:30 AM Invited

The Development of Grain Structure During Additive Manufacturing: A. Chadwick¹; A. Birnbaum¹; J.G. Santos Macias²; J. Steuben³; I. Athanasios³; J. Michopoulos³; G. Wagner¹; M.V. Upadhyay²; Peter Voorhees1; 1Northwestern University; 2Ecole Polytechnique, Institut Polytechnique de Paris; ³Naval Research Laboratory

9:00 AM Invited

Phase Field Study Rapid Solidification during Additive Manufacturing of SX Sample: Ingo Steinbach1; Murali Uddagiri1; ¹Ruhr-University Bochum

Development of a Multi-phase-field Framework for Powder Bed Fusion Additive Manufacturing: Tomohiro Takaki¹; Shinji Sakane¹; ¹Kyoto Institute of Technology

9:50 AM

Growth Competition between Columnar Dendritic Grains under Additive Manufacturing Conditions: Elaheh Dorari¹; Kaihua Ji¹; Adriana Castellanos²; Alec Saville²; Oliver Hesmondhalgh²; Joe McKeown³; Amy Clarke²; Alain Karma¹; ¹Northeastern University; ²Colorado School of Mines; ³Lawrence Livermore National Laboratory

10:10 AM Break

10:30 AM Invited

Nucleation Burst in Additively Manufactured Inconel 718: Julien Zollinger¹; Ivan Cazic¹; Thomas Schenk¹; Michael Engstler²; Benoît Appolaire¹; ¹Universite De Lorraine; ²Universität des Saarlandes

11:00 AM Invited

Modelling and Validating Solidification Kinetics during Additive Manufacturing: Peter Lee¹; Chu Lun Alex Leung¹; ¹University College London

11:30 AM Invited

Rationalization of the Modelling of Stress and Strain Evolution in Powder Bed Fusion Additive Manufacturing - A Perspective from a Background in the Simulation of Casting Processes: Steve Cockcroft¹; ¹University of British Columbia

NANOSTRUCTURED MATERIALS

Functional Nanomaterials 2023 — Session V

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Nanomaterials Committee, TMS: Composite Materials Committee

Program Organizers: Yong Lin Kong, University of Utah; Sarah Ying Zhong, University of South Florida; Mostafa Bedewy, University of Pittsburgh; Woochul Lee, University of Hawaii at Mnoa; Changhong Cao, McGill University; Kiyo Fujimoto, Idaho National Laboratory; Surojit Gupta, University of North Dakota; Michael Cai Wang, University of South Florida

Wednesday AM | March 22, 2023 Aqua 305 | Hilton

Session Chairs: Yong Lin Kong, University of Utah; Mostafa Bedewy, University of Pittsburgh; Kiyo Fujimoto, Idaho National Laboratory

8:30 AM Invited

Matrix Assisted Pulsed Laser Evaporation of Functional Biomaterials: Roger Narayan¹; ¹University of North Carolina

9:00 AM Invited

Printed Sensors for Monitoring Soil and Plant Conditions: Gregory Whiting¹; ¹University of Colorado Boulder

9:30 AM Keynote

Semiconductor Nanomaterials and 3D Systems: John Rogers¹; ¹Northwestern University

10:10 AM Break

10:30 AM Keynote

Functional Mixed-dimensional van der Waals Heterostructures: Mark Hersam¹; ¹Northwestern University

11:10 AM Keynote

Skin-interfaced Wearable Bioelectronics: Wei Gao1; 1California Institute of Technology

CHARACTERIZATION

Heterostructured and Gradient Materials (HGM V): **New Mechanistic Discoveries Enabling Superior Properties — Gradient and Nano-twinned Materials**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Shaping and Forming Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Nanyang Technological University; Ke Lu, Institute of Metal Research; Suveen Mathaudhu, Colorado School of Mines; Xiaolei Wu, State Institute of Mechanics, Chinese Academy of Sciences

Wednesday AM | March 22, 2023 Aqua 314 | Hilton

Session Chairs: Darcy Hughes, Sandia National Laboratories; Gianna Valentino, John Hopkins Applied Physics Lab

8:30 AM Invited

Gradient Bulk Nanostructures with Exceptional Strength via High Load Sliding: Darcy Hughes1; 1Sandia National Labs (ret.)

9:00 AM

Defect-interface Interactions and Nanomechanical Behavior of 3D interfaces in Ti/Nb Nanolaminates: Mauricio De Leo1; Justin Cheng¹; Shuozhi Xu²; Jon Baldwin³; Irene Beyerlein⁴; Nathan Mara¹; ¹University of Minnesota; ²University of Oklahoma; ³Los Alamos National Lab; 4University of California, Santa Barbara

9:20 AM

Influence of Strain Gradients in Heterostructured Nanomaterials: Daniel Goodelman¹; Andrea Hodge¹; ¹University of Southern California

9:40 AM Invited

Ultrahigh Strength and Strain Localizations in Nanotwinned Ni-Mo-W Alloys: Gianna Valentino¹; ¹Johns Hopkins Applied Physics Laboratory

ADVANCED MATERIALS

High Performance Steels — Processing - Mechanical **Property Relationships I**

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Jonah Klemm-Toole, Colorado School of Mines; Ana Luiza Araujo, CBMM North America Inc.; C. Tasan, Massachusetts Institute of Technology; Richard Fonda, Naval Research Laboratory; Amit Behera, QuesTek Innovations LLC; Benjamin Adam, Oregon State University; Krista Limmer, DEVCOM Army Research Laboratory; Kester Clarke, Colorado School of

Wednesday AM | March 22, 2023 Aqua F | Hilton

Session Chairs: Jonah Klemm-Toole, Colorado School of Mines; Amit Behera, Questek Innovations

8:30 AM

Grain Growth and Precipitation Dissolution Modelling in the HAZ during Welding of Nb-Ti Steels: Iñigo Iturrioz¹; Nerea Isasti¹; Jose Rodriguez-Ibabe¹; Pello Uranga¹; Nobuyuki Ishikawa²; Daichi Izumi²; Douglas Stalheim³; David Jarreta⁴; David Martin⁴; ¹CEIT and TECNUN (University of Navarra); ²JFE Steel Corporation; ³DGS Metallurgical Solutions; 4CBMM Asia

8:50 AM

Investigating the Roles of Microstructure on High-temperature Creep Responses of Steels: Mariyappan Arul Kumar¹; Ricardo Lebensohn¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

9:10 AM

Tensile Properties and Microstructures Development of Quenching and Partitioning (Q&P) Steels during Galvannealing Process: Lei Chen¹; Kyeong Sik Shin¹; Han Sol Maeng¹; Chun Ku Kang¹; ¹Hyundai Steel

9:30 AM

The Role of Prior Austenite Grain Boundaries in Liquid Metal Embrittlement of B-added TBF Steels: Elahe Akbari¹; Philipp Kürnsteiner¹; Heiko Groiss¹; Martin Arndt²; Martin Gruber²; Katharina Steineder²; Robert Sierlinger²; ¹Christian Doppler Laboratory for Nanoscale Phase Transformations, Center for Surface and Nanoanalytics, Johannes Kepler University; 2voestalpine Stahl **GmbH**

9:50 AM Break

10:10 AM

Microstructure Evolution and Zinc Infiltration in an Advanced Highstrength-Steel during Liquid-metal Embrittlement: Yuki Ikeda1; Hsu-Chih Ni2; Anirban Chakraborty3; Hassan Ghassemi-Armaki4; Jian-Min Zuo²; Reza Darvishi Kamachali¹; Robert Maaß⁵; ¹Federal Institute of Materials Research and Testing (BAM); ²University of Illinois Urbana-Champaign; ³ArcelorMittal Global Research and Development; 4General Motors R&D; 5Federal Institute of Materials Research and Testing (BAM), University of Illinois Urbana-Champaign

New Tensile Specimens Optimized to Characterize the Localized PRW Weld Areas of ODS Steels: Mohamed Mabrouki¹; Diogo Gonçalves¹; Serge Pascal¹; Denis Bertheau²; Gibert Henaff²; Angéline Poulon-Quintin³; ¹Service d'Etudes Mécaniques et Thermiques (SEMT), CEA, Université Paris-Saclay, Gif-Sur-Yvette, France; 2Institut Pprime UPR 3346 ENSMA CNRS Université de Poitiers, F-86361 Futuroscope Chasseneuil, France; ³Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, F-33600 Pessac, France

High Strength and Toughness Combination in Severe Plastically Deformed Martensitic and Austenitic Steels: Cafer Melik Ensar Acemi¹; Matthew Vaughan¹; Sezer Picak¹; Robert Barber¹; Ibrahim Karaman¹; ¹Texas A&M University

MATERIALS DESIGN

Hume-Rothery Symposium on First-Principles Materials Design — Interface First-principle Method with Experiments I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Bin Ouyang, Florida State University; Mark Asta, University of California, Berkeley; Geoffroy Hautier, Dartmouth College; Wei Xiong, University of Pittsburgh; Anton Van der Ven, University of California, Santa Barbara

Wednesday AM | March 22, 2023 Cobalt 501C | Hilton

Session Chairs: Hailong Chen, Georgia Institute of Technology; Raphaele Clement, University of California, Santa Barbara

8:30 AM Invited

Predicting Synthesis and Synthesizability Beyond the DFT Convex Hull: Wenhao Sun¹; ¹University of Michigan

9:00 AM Invited

New Battery Chemistry from Conventional Layered Cathode Materials for Advanced Lithium-ion Batteries: Ki Suk Kang¹; ¹Seoul National University

9:30 AM Invited

Dynamic Stability Design of Materials for Solid-state Batteries: Xin Li¹; ¹Harvard University

10:00 AM Break

10:20 AM Invited

Establishing Links between Synthesis, Defect Landscape, and Ion Conduction in Halide-type Solid Electrolytes: Raphaele Clement¹; ¹University of California, Santa Barbara

LIGHT METALS

Light Elements Technology — Light Elements: Hydrogen, Boron, Carbon

Sponsored by: TMS Light Metals Division

Program Organizers: Neale Neelameggham, IND LLC; Kiran Solanki, Arizona State University; Prashanth Saraswat, Department of Metallurgy; Huimin Lu, Beijing Ofikintai Technology Co Ltd.; Onuralp Yucel, Istanbul Technical University

Wednesday AM | March 22, 2023 30D | SDCC

Session Chairs: Onuralp Yucel, Istanbul Institute of Technology; Kiran Solanki, Arizona State University

8:30 AM Introductory Comments by Neale Neelameggham

8:35 AM Keynote

Thoughts on the Role of Light Elements as Alternative Reductants in Major Ferroalloy Production: Joalet Steenkamp¹; ¹University of the Witwatersrand

9:15 AM

Three Light Elements - Carbon - Hydrogen - Oxygen Make the Material World: Neale Neelameggham¹; Praveen Kalamegham¹; Ganesan Subramanian²; Sundaresan Asokan³; K.S. Raja⁴; Onuralp Yucel⁵; ¹IND LLC; ²Sai Systems; ³Independent Geo Consultant; ⁴Vyzag BioEnergy Fuel Ltd.; ⁵Istanbul Technical University

9:35 AM

Spark Plasma Sintered Boron Carbide Ceramic Armor: Besim Dara¹; Gamze Sapanci¹; ¹ROKETSAN Mssiles Inc.

9:55 AM Break

10:10 AM

Utilizing of Tincal Ore Wastes in Ceramic Industry: Levent Özmen¹; Yldz Yıldırım²; Dilek Baolu³; Onuralp Yücel⁴; ¹MEF University; ²Kaleseramik; ³Termal Seramik; ⁴Istanbul Technical University

Spark Plasma Sintering and Characterization of B4C- ZrB2 Composites: Leyla Yanmaz1; Filiz Cinar Sahin1; 1Istanbul Technical University

CORROSION

Local Ordering in Materials and Its Impacts on Mechanical Behaviors, Radiation Damage, and Corrosion - Session V

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Nuclear Materials Committee, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Fadi Abdeljawad, Clemson University; Irene Beyerlein, University of California, Santa Barbara; Enrique Lavernia, University of California, Irvine; Robert Ritchie, University of California, Berkeley

Wednesday AM | March 22, 2023 Sapphire 411A | Hilton

Session Chairs: Blas Uberuaga, Los Alamos National Laboratory; Xiaoqing Pan, University of California, Irvine; Yang Yang, The Pennsylvania State University; Penghui Cao, University of California, Irvine

8:30 AM Invited

Direct Observation of Local Ordering and Charge Distribution in High Entropy Oxides: Lei Su¹; Huaixun Huyan¹; Abhishek Sarkar²; Wenpei Gao¹; Xingxu Yan¹; Christopher Addiego¹; Robert Kruk²; Horst Hahn²; Xiaoqing Pan¹; ¹University of California Irvine; ²Karlsruhe Institute of Technology

9:00 AM Invited

Characterizing Local Order in Disordered Materials: Shuoyuan Huang¹; Carter Francis¹; Paul Voyles¹; ¹University of Wisconsin

9:30 AM Invited

Chemical and Structural Disorder for Tuning Properties of Materials: Horst Hahn¹; ¹Karlsruhe Institute of Technology

10:00 AM Break

10:15 AM Invited

Disorder and Transport in Irradiated Complex Oxides: Blas Uberuaga¹; ¹Los Alamos National Laboratory

10:45 AM Invited

Long- and Short-range Ordering versus Disordering in Compositionally Complex Fluorite-based Oxides: Jian Luo1; ¹University of California, San Diego

11:15 AM

Short Range Order in Disordered Spinel and the Impact on Cation Vacancy Transport: Peter Hatton¹; Blas Uberuaga¹; ¹Los Alamos National Lab

11:35 AM Invited

Molten Salt Corrosion of Ni-20Cr Model Alloy: Lingfeng He1; Kaustubh Bawane²; Xiaoyang Liu³; Fei Teng²; Weiyue Zhou⁴; Laura Hawkins²; Trishelle Copeland-Jonson²; Yachun Wang²; Michael Woods²; Ruchi Gakhar²; Daniel Murray²; Phillip Halstenberg⁵; Karen Chen-Wiegart³; Shannon Mahurin⁵; Sheng Dai⁵; Michael Short⁴; Lin Shao⁶; Simon Pimblott²; James Wishart⁷; ¹North Carolina State University; ²Idaho National Laboratory; ³Stony Brook University; ⁴Massachusetts Institute of Technology; ⁵Oak Ridge National Laboratory; ⁶Texas A&M University; ⁷Brookhaven National Laboratory

LIGHT METALS

Magnesium Technology 2023 — Primary Production and Recycling / Alloy Development

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Steven Barela, Terves, Inc; Aeriel Murphy-Leonard, Ohio State University; Petra Maier, University of Applied Sciences Stralsund; Neale Neelameggham, IND LLC; Suveen Mathaudhu, Colorado School of Mines; Victoria Miller, University of Florida

Wednesday AM | March 22, 2023 30C | SDCC

Session Chair: Aaron Palumbo, Big Blue Technologies

8:30 AM

Design of the Continuous Gravity-driven Multiple Effect Thermal System (G-METS) for Efficient Low-cost Magnesium Recycling: Daniel Mc Arthur Sehar¹; Adam Powell¹; Armaghan Telgerafchi¹; Chinenye Chinwego¹; Gabriel Espinosa¹; Keira Lynch¹; Benjamin Perrin¹; ¹Worcester Polytechnic Institute

8:50 AM Invited

Development of Compound-vertical-retort Technology for Magnesium Production and its Application: Fengqin Liu¹; Shaojun Zhang²; Rongbin Li¹; Peixu Yang²; Jinhui Liu²; *Michael Ren*³; ¹University of Science and Technology Beijing; ²Zhengzhou University; ³Sunlightmetal Consulting Inc.

9:10 AM

Development of Magnesium-Strontium / Calcium (Mg-Sr/Ca) Based Alloys with Improved Sinterability for Next Generation Biomedical Implants: Mert Celikin¹; Ava Azadi¹; Hyeonseok Kim¹; Ted Vaughan²; Eoin O'Cearbhaill¹; ¹University College Dublin; ²University of Galway

Development of Mg-based Superelastic Alloy through Aging Heat Treatment: Keisuke Yamagishi¹; Yukiko Ogawa²; Daisuke Ando¹; Yuji Sutou¹; ¹Tohoku University; ²National Institute for Materials Science

9:50 AM

Processing Map and Performance of a Low-cost Wrought Mg Alloy: ZAXEM11100: Thomas Avey¹; Josh Caris²; Jiashi Miao¹; Anil Sachdev³; Alan Luo¹; ¹Ohio State University; ²Terves Inc; ³General Motors

NUCLEAR MATERIALS

Materials and Chemistry for Molten Salt Systems Impurity Effects on Molten Salt Properties and Corrosion

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Raluca Scarlat, University of California, Berkeley, Jinsuo Zhang, Virginia Polytechnic Institute and State University; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Nathaniel Hoyt, Argonne National Laboratory

Wednesday AM | March 22, 2023 27A | SDCC

Session Chair: Michael Short, MIT

8:30 AM Invited

Elucidating the Role of UCl3 in the Corrosion Mechanism of Nibased Superalloys Exposed to Chloride Molten Salts: Trishelle Copeland-Johnson¹; Michael Woods¹; Ruchi Gakhar¹; Daniel Murray¹; Guoping Cao¹; Lingfeng He¹; ¹Idaho National Laboratory

9:00 AM

Ab Initio Molecular Dynamics Study of Thermophysical for Hightemperature NaCl-PuCl3 System: Kai Duemmler¹; Michael Woods²; Ruchi Gakhar²; Benjamin Beeler¹; ¹North Carolina State University; ²Idahol National Laboratory

9:20 AM

Characterization of UCl3, NaCl, and NaCl- 0.352 UCl3 Salts using Neutron Scattering: Sven Vogel¹; A. David R. Andersson¹; Marisa M. Monreal¹; J. Matthew Jackson¹; S. Scott Parker¹; Gaoxue Wang¹; Ping Yang¹; ¹Los Alamos National Laboratory

Coordination and Thermophysical Properties of Transition Metal Chlorocomplexes and Lanthanides in LiCl-KCl: Qi An1; 1lowa State University

10:00 AM Break

10:20 AM

The Behavior of Oxygen in Molten Fluoride Corrosion Systems: Weiyue Zhou1; Yang Yang2; Michael Short1; 1Massachusetts Institute of Technology; ²Pennsylvania State University

Effect of Impurities on Material Behavior in Molten FLiNaK: Krishna Moorthi Sankar¹; Preet Singh¹; ¹Georgia Institute of Technology

Electrochemical Thermodynamic and Kinetic Properties of Ni²⁺ in Molten FLiNaK Salt: Hojong Kim¹; Nathan Smith¹; Zi-Kui Liu¹; Shunli Shang¹; ¹Pennsylvania State University

11:20 AM

Acid/base Effects on Chromium Species in Molten Fluoride Salts: Haley Williams¹; Ruben Cho¹; Raluca Scarlat¹; ¹University of California Berkeley

MATERIALS DESIGN

Materials Genome, CALPHAD, and a Career over the Span of 20, 50, and 60 Years: An FMD/SMD Symposium in Honor of Zi-Kui Liu — Kinetics

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Yu Zhong, Worcester Polytechnic Institute; Richard Otis, Jet Propulsion Laboratory; Bi-Cheng Zhou, University of Virginia; Chelsey Hargather, New Mexico Institute of Mining and Technology; James Saal, Citrine Informatics; Carelyn Campbell, National Institute of Standards and Technology

Wednesday AM | March 22, 2023 Sapphire L | Hilton

Session Chair: Carelyn Campbell, National Institute of Standards and Technology

8:30 AM Invited

About 25 Years of Diffusion-multiple Experiments as Input to CALPHAD: Ji-Cheng Zhao1; 1University of Maryland

9:00 AM Invited

Selected Observations in Magnesium Alloys: From Diffusion Couples to Laser Powder Bed Fusion: Yongho Sohn¹; ¹University of Central Florida

9:30 AM Invited

Additive Manufacturing of Steels - Application of Computational Thermodynamics and Kinetics to Alloy Development: Greta Lindwall¹; Chia-Ying Chou¹; Hans-Henrik König¹; Niklas Holländer Pettersson¹; Chrysoula Ioannidou¹; Ethan Sullivan¹; ¹KTH Royal Institute of Technology

10:00 AM Break

10:20 AM Invited

High Temperature Creep Induced Phase Transformation in Austenitic Stainless Steels: Guocai Chai¹; Joakim Odqvist²; ¹Alleima;

10:50 AM Invited

Materials Modelling for Metals Processing: Jianguo Lin¹; Zhusheng Shi1; 1Imperial College London

MATERIALS PROCESSING

Materials Processing Fundamentals — Continuous Casting/Slag and Ladle Treatment

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee

Program Organizers: Samuel Wagstaff, Oculatus Consulting; Alexandra Anderson, Gopher Resource; Adrian Sabau, Oak Ridge **National Laboratory**

Wednesday AM | March 22, 2023 29B | SDCC

Session Chairs: Adrian Sabau, Oak Ridge National Laboratory; Alexandra Anderson, Gopher Resource

8:30 AM Introductory Comments

8:35 AM

Heat Transfer Characteristic between Ingot and Mold during an Ingot Casting Process: Yuta Shimamura¹; Takanori Yoshioka¹; ¹Sanyo Special Steel Co.,Ltd.

8:55 AM

How to Prevent Porosity Defects in Steel Casting Component: Izudin Dugic1; 1Linnaeus University

9:15 AM

A Self-adaptive Data-driven System for Online Monitoring of Castability During Continuous Casting of Steels.: Kuthe Sudhanshu¹; Björn Glaser¹; Roman Rössler²; Izaskun Alonso Oña³; ¹KTH Royal Institute of Technology; ²Voestalpine Stahl GmbH; ³Research and Development, Sidenor

9:35 AM

Toward Meso-scale Modelling of Slag Foaming Phenomena in Pyrometallurgy: Quinn Reynolds¹; Oliver Oxtoby²; ¹Mintek; ²ENGYS Ltd

9:55 AM Break

10:15 AM

Effect of High FeOx Containing Material Dissolution in Hisarna Slag: Bharath Sampath Kumar¹; Koen Meijer²; Zushu Li¹; ¹University of Warwick; 2Tata Steel EU

MATERIALS PROCESSING

Materials Research in Reduced Gravity — General / **Solidification (Analogues)**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee, TMS: Process Technology and Modeling Committee

Program Organizers: Wilhelmus Sillekens, European Space Agency; Michael Sansoucie, Nasa Marshall Space Flight Center; Robert Hyers, Worcester Polytechnic Institute; Douglas Matson, Tufts University; Gwendolyn Bracker, DLR Institute of Materials Physics in Space

Wednesday AM | March 22, 2023 30B | SDCC

Session Chairs: Jonathan Raush, University of Louisiana at Lafayette; Gwendolyn Bracker, DLR Institute of Materials Physics in Space

8:30 AM Introductory Comments

Overview of NASA's Reduced Gravity Materials Science Research: Michael Sansoucie¹; ¹NASA Marshall Space Flight Center

9:05 AM

What's New in PSI?: Karen Stephens¹; ¹NASA

9:25 AM

ESA's Materials Science in Space Program: Current State of Affairs and Outlook: Wilhelmus Sillekens¹; ¹European Space Agency

9:50 AM

Experiment Preparation and Operation of the Electromagnetic Levitator EML on the ISS: Stephan Schneider¹; Angelika Diefenbach²; Mitja Beckers¹; ¹DLR Institut für Materialphysik im Weltraum; ²DLR **MUSC**

10:10 AM Break

Morphological Stability of Eutectic Growth Patterns: In-situ Experiments in Microgravity with the Transparent Alloys Apparatus: Silvere Akamatsu¹; Sabine Bottin-Rousseau²; Mathis Plapp³; Ulrike Hecht⁴; Victor Witusiewicz⁴; ¹Cnrs; ²Sorbonne University; ³Ecole Polytechnique; ⁴Access e.V.

10:50 AM

Peritectic Coupled Growth Under Reduced Gravity: Andreas Ludwig¹; Johann Mogeritsch¹; ¹Montanuniversitaet Leoben

11:10 AM

Evolution of Dendritic Extended 3D Patterns during Directional Solidification: Microgravity Experiments in DECLIC-DSI Onboard ISS and Phase-field Modeling: Kaihua Ji¹; Fatima Mota²; Louise Strutzenberg³; Rohit Trivedi⁴; Nathalie Bergeon²; Alain Karma¹; ¹Northeastern University; ²IM2NP, Aix-Marseille Université and CNRS; 3Marshall Space Flight Center; 4Iowa State University

11:30 AM

Visualization of Particle-Interface Interactions: Philipp Ott¹; Thomas Jauß¹; Christian Reimann²; Holger Koch²; Jochen Friedrich²; Tina Sorgenfrei¹; ¹University of Freiburg; ²Fraunhofer IISB Erlangen

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components III — Early Career

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Assel Aitkaliyeva, University of Florida; Clarissa Yablinsky, Los Alamos National Laboratory; Osman Anderoglu, University of New Mexico; Eda Aydogan, Middle East Technical University; Kayla Yano, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Djamel Kaoumi, North Carolina State University

Wednesday AM | March 22, 2023 28D | SDCC

Session Chairs: Osman Anderoglu, University of New Mexico; Djamel Kauomi, North Carolina State University

8:30 AM Invited

Understanding the Mechanisms Involved in Chlorine-Induced Stress Corrosion Cracking of Stainless Steel 304 under a Simulated Marine Environment: Ryan Schoell¹; Li Xi¹; Yuchen Zhao¹; Xin Wu²; Yu Hong²; Zhenzhen Yu²; Peter Kenesei³; Jonathan Almer³; Zeev Shayer²; Khalid Hattar⁴; Djamel Kaoumi¹; ¹North Carolina State University; ²Colorado School of Mines; ³Argonne National Laboratory; ⁴Sandia National Laboratories

8:55 AM Invited

Probing Neutron Irradiation Simulated Damage with Ion Irradiation and In-situ Mechanical Testing: Eric Lang¹; Nathan Madden²; Dustin Ellis²; Bethany Matthews³; Patrick Price²; Nan Li⁴; Paul Kotula²; Rajan Tandon²; Arun Devaraj³; Khalid Hattar²; ¹University of New Mexico; ²Sandia National Laboratories; ³Pacific Northwest National Laboratory; ⁴Los Alamos National Laboratory

9:20 AM Invited

Deformation Mechanisms in Gen-IV Candidate Structural Steels Studied by In-situ Micromechanical Testing Techniques: Tanvi Ajantiwalay¹; Cheng-Han Li¹; Tingkun Liu¹; Christopher San Marchi²; Assel Aitkaliyeva³; Arun Devaraj¹; ¹Pacific Northwest National Laboratory; ²Sandia National Laboratories; ³University of Florida

9:45 AM Break

10:05 AM Invited

Deformation Twinning Versus Slip in Ni-based Alloys, Containing Pt2Mo-structured, Ni2Cr-typed Precipitates: Hi Vo1; K Dang1; Fei Teng²; Matthew Schneider¹; Stuart Maloy³; Julie Tucker⁴; Laurent Capolungo¹; Peter Hosemann¹; ¹Los Alamos National Laboratory; ²Idaho National Laboratory; ³Pacific Northwest National Laboratory; ⁴Oregon State University

10:30 AM Invited

Castable Nanostructured Alloy Steels and the Graded Transition to Tungsten for Fusion Reactors: Tim Graening¹; Isthiaque Robin²; Ying Yang¹; Weicheng Zhong¹; Wei Tang¹; T.M. Kelsy Green³; Kevin Field³; Yutai Kato; Yutai Katoh¹; ¹ORNL; ²The University of Tennessee; ³University of Michigan

10:55 AM Invited

Data-driven Surrogate Constitutive Modeling of Mechanical Creep Behavior under Extreme Conditions: Andre Ruybalid¹; Aaron Tallman²; Christopher Matthews¹; Laurent Capolungo¹; ¹LANL; ²Florida International University

11:20 AM Invited

Examining Microstructural Effects on Tensile Properties in Irradiated Inconel 718 using Miniaturized Tensile Specimens: Stephen Taller¹; Caleb Massey¹; ¹Oak Ridge National Laboratory

CHARACTERIZATION

Mechanical Response of Materials Investigated through Novel In-situ Experiments and Modeling — **Session III**

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization; Dongchan Jang, Korea Advanced Institute of Science and Technology; Shailendra Joshi, University of Houston; Minh-Son Pham, Imperial College London; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Josh Kacher, Georgia Institute of Technology

Wednesday AM | March 22, 2023 Aqua 310B | Hilton

Session Chairs: Minh-Son Pham, Imperial College London; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization

8:30 AM Invited

In-situ Micro-tensile Studies on the Effects of Ion Irradiation on the Mechanical Properties of Small-grained Alloys: Dhriti Bhattacharyya¹; Alan Xu¹; Tao Wei¹; Mihail Ionescu¹; ¹Australian Nuclear Science and Technology Organization

9:00 AM Invited

On the Kink-band Formation in True and Brittle Micas: Hemant Rathod¹; Andreas Kronenberg¹; Miladin Radovic¹; Ankit Srivastava¹; ¹Texas A&M University

9:30 AM

Micropillar Compression Testing of Proton Irradiated NiCr2 Alloy: Chai Peddeti¹; Andrew Scott¹; ¹UC Berkeley

9:50 AM

An In-situ SEM Study on Hydrogen Embrittled Alloy 718: Hamza Khalid¹; Bilal Mansoor²; ¹Texas A&M University; ²Texas A&M University at Qatar

10:10 AM Break

10:30 AM

Dynamic Cryo-mechanical Properties of Dewetted Nickel Microparticles: Barbara Bellon Lara¹; Gerhard Dehm¹; Rajaprakash Ramachandramoorthy¹; ¹Max-Planck-Institut für Eisenforschung

10:50 AM

The Effect of Heat Treatment on Full-field Damage Evolution in Laser Powder Bed Fusion-manufactured 316L Stainless Steel: Marissa Linne¹; Margaret Wu¹; Tatu Pinomaa²; Anssi Laukkanen²; Nathan Barton¹; Thomas Voisin¹; ¹Lawrence Livermore National Laboratory; 2VTT Technical Research Centre of Finland

11:10 AM

Characterization of Deformation Mechanisms Near Grain Boundaries in Mg Alloys by Means of In-situ EBSD and Highresolution Digital Image Correlation: Biaobiao Yang¹; Maral Sarebanzadeh²; Eugenia Nieto-Valeiras²; Alberto Orozco-Caballero³; Javier Llorca²; ¹IMDEA Materials Institute & Central South University; ²IMDEA Materials Institute & Technical University of Madrid; ³Technical University of Madrid

11:30 AM

In-situ Nano-indentation of a Pt Nanoparticle Combined with Bragg Coherent X-ray Diffraction Imaging.: Sarah Yehya¹; Thomas Cornelius²; Marie-Ingrid Richard³; Felisa Berenguer¹; Eugen Rabkin⁴; Olivier Thomas²; Stéphane Labat²; ¹Synchrotron SOLEIL; ²AMU -CNRS; 3CEA of Grenoble; 4Technion Institute of Technology

11:50 AM Invited

The Dynamic Signatures of Strain Bursts in Metals: Mostafa Omar¹; Jaafar El-Awady¹; ¹Johns Hopkins University

NUCLEAR MATERIALS

Microstructural, Mechanical and Chemical Behavior of Solid Nuclear Fuel and Fuel-cladding Interface Fuel-Cladding Interaction and Fission Products Retention

Sponsored by: TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee

Program Organizers: Yi Xie, Purdue University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida

Wednesday AM | March 22, 2023 26B | SDCC

Session Chair: Yi Xie, Purdue University

8:30 AM Introductory Comments

8:35 AM Invited

Thermochemical Investigation of Advanced Reactor Fuels and Fuel-clad Chemical Interaction: Elizabeth Sooby¹; ¹University of Texas at San Antonio

9:00 AM Invited

Fuel Performance Analysis of an Annular Type Metallic U-10Zr Fuel: Di Yun¹; Shilun Zheng¹; Zhengyu Qian¹; Linna Feng¹; ¹Xi'An Jiaotong University

9:25 AM

Lanthanides Migration and Chemical Interaction with U-Zr Fuel Cladding: Yi Xie1; 1Purdue University

Advanced Characterization of Fuel-cladding Chemical Interaction in HT9 Clad U-Mo-Ti-Zr Metallic Fuel Irradiated in Advanced Test Reactor: Yachun Wang¹; Jatuporn Burns¹; Mukesh Bachhav¹; Tiankai Yao¹; Luca Capriotti¹; ¹Idaho National Laboratory

10:05 AM Break

10:20 AM

High Resolution Microscopic Studies on HT-9 Cladding from U-10Zr Fuel Irradiated at Fast Flux Test Facility: Mukesh Bachhav¹; Tiankai Yao¹; Luca Capriotti¹; Jason Harp²; Maria Okuniewski³; Jonova Thomas⁴; Yachun Wang¹; ¹Idaho National Laboratory; ²ORNL; ³Purdue University; ⁴ANL

10:40 AM

Analysis of Secondary Phase Formation at U-10Mo Fuel/Cladding Interfaces During Manufacturing: Adam Koziol¹; Miao Song²; Kayla Yano²; Alan Schemer-Kohrn²; Ayoub Soulami²; Vineet Joshi²; Samuel Briggs¹; Elizabeth Kautz²; ¹Oregon State University; ²PNNL

Interfacial Microstructure Evolution in Al6061-Al6061 HIP Bonded Samples for Cladding Applications on U-10Mo Monolithic Fuel: Rajib Kalsar¹; Miao Song¹; Cody Miller²; Nicole Overman¹; Kenneth Johnson¹; Timothy Roosendaal¹; Curt Lavender¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory; ²Los Alamos National Laboratory

11:20 AM

Numerical Modeling of AA6061 Cladding Diffusion Bonding for the **U-10Mo Monolithic Fuel**: *Yucheng Fu*¹; Taylor Mason¹; Rajib Kalsar¹; Zhijie Xu¹; Kriston Brooks¹; Ayoub Soulami¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

11:40 AM

Irradiation Performance of Densely Packed UN TRISO Fuel in a 3D-Printed SiC Matrix: Christian Petrie1; Kory Linton1; Gokul Vasudevamurthy¹; Danny Schappel¹; Rachel Seibert¹; Nicolas Woolstenhulme²; David Carpenter³; Andrew Nelson¹; Kurt Terrani⁴; ¹Oak Ridge National Laboratory; ²Idaho National Laboratory; ³Massachusetts Institute of Technology; ⁴Ultra Safe Nuclear Corporation

12:00 PM

Atomistic Simulations of Silicon Carbide Layer in Tristructural Isotropic Fuel Particles: Cong Dai¹; Michael Welland¹; ¹Canadian **Nuclear Laboratories**

12:20 PM

Microstructural Characterization of the SiO2-SiC Interface of Oxidized TRISO Particles: Katherine Montoya¹; Rachel Seibert²; Tyler Gerczak²; Elizabeth Sooby²; ¹University of Texas at San Antonio; ²Oak Ridge National Laboratory

NANOSTRUCTURED MATERIALS

Nanostructured Materials in Extreme Environments Nanostructured Materials in Mechanical Extremes

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nuclear Materials Committee

Program Organizers: Haiming Wen, Missouri University of Science and Technology; Nan Li, Los Alamos National Laboratory; Youxing Chen, University of North Carolina Charlotte; Yue Fan, University of Michigan; Niaz Abdolrahim, University of Rochester; Khalid Hattar, University of Tennessee Knoxville; Ruslan Valiev, UFA State Aviation Technical University; Zhaoping Lu, University of Science and Technology Beijing

Wednesday AM | March 22, 2023 Aqua 303 | Hilton

Session Chair: Niaz Abdolrahim, University of Rochester

8:30 AM Invited

Understanding the Superior Strength and Localized Plasticity in Nanotwinned Ni-Mo-W Alloys: Mo Rigen He1; Arunima Banerjee1; Kevin Hemker¹; ¹Johns Hopkins University

8:55 AM Invited

Phase Stability and Nanomechanical Behavior of Laser Direct Metal Deposited Concentrated Fe-Cu Alloys: Amit Misra1; 1University of Michigan

9:20 AM Invited

Enhanced Thermomechanical Stability of Nanolamellar Composites Containing Thick 3-dimensional Interfaces: Nathan Mara¹; Justin Cheng¹; Zezhou Li²; Shuozhi Xu³; Youxing Chen⁴; Mauricio De Leo¹; Jonathan Poplawsky⁵; Nan Li6; Jon Baldwin6; Irene Beyerlein³; ¹University of Minnesota; ²Beijing Institute of Technology; ³University of California, Santa Barbara; ⁴University of North Carolina, Charlotte; 5Oak Ridge National Laboratory; 6Los Alamos National Laboratory

9:45 AM

Influence of Hydrostatic Pressure on Impurity Segregation in Nanocrystalline Metals: Zuoyong Zhang¹; Chuang Deng¹; ¹University of Manitoba

10:05 AM Break

10:25 AM Invited

Nanoscale Templating of Reinforcing Phases with Linear Complexions to Achieve Extreme Strength: Divya Singh¹; Edward Li¹; Hannah Howard²; Daniel Gianola²; *Timothy Rupert*¹; ¹University of California, Irvine; ²University of California, Santa Barbara

10:50 AM Invited

Anomalous Mechanical Behavior of Nanocrystalline Binary Alloys under Extreme Conditions: S srinivasan¹; B Hornbuckle²; S Turnage²; K Darling²; Kiran Solanki¹; ¹Arizona State University; ²ARL

11:15 AM

Micromechanics of Strain Localisation and Damage in a Spinodal Bronze: Felicity Worsnop¹; C. Cemal Tasan¹; ¹Massachusetts Institute of Technology

11:35 AM

Nanotwin Stability under Temperature-dependent Deformation States: Jarod Robinson¹; Akarsh Verma²; Eric Homer²; Gregory Thompson¹; ¹The University of Alabama; ²Brigham Young University

ENERGY & ENVIRONMENT

Natural Fibers and Its Composites: A Sustainable Solution — Natural Fibers / Natural Fibers Composites

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Biomaterials Committee, TMS: Materials Characterization Committee

Program Organizers: Henry Colorado, Universidad de Antioquia; Sergio Monteiro, Instituto Militar de Engenharia; Carlos Fontes Vieira, State University of the North Fluminense

Wednesday AM | March 22, 2023 33B | SDCC

Session Chairs: Sergio Neves Monteiro, Instituto Militar de Engenharia; Henry Colorado, Universidad de Antioquia; Carlos Vieira, Universidade Estadual do Norte Fluminense Darcy Ribeiro; Afonso Azevedo, Universidade Estadual do Norte Fluminense; Joseph Jakes, USDA FS Forest Products Laboratory

8:30 AM Invited

Recent Advances in Understanding Wood Cell Wall Material Properties: Joseph Jakes¹; ¹USDA FS Forest Products Laboratory

9:00 AM

Characterization of Broom Sorghum Colm Fibers as Potential Natural Fiber Reinforcement for Polymer Composites: Pedro Huang¹; David Coverdale Velasco¹; Noan Simonassi¹; Felipe Lopes¹; Henry Colorado¹; Sergio Monteiro¹; Carlos Maurício Vieira¹; ¹State University of the Northern Rio de Janeiro

9:20 AM

Characterization of "Melga" (Broom Sorghum) Panicle Fibers: Potential use as Natural Fiber Reinforcement for Polymer Composites: Bicalho Weslley¹; David Coverdale Velasco¹; Felipe Lopes¹; Noan Simonassi¹; Henry Colorado¹; Carlos Maurício Vieira¹; Sergio Monteiro¹; ¹State University of Northern Rio de Janeiro

9:40 AM

Natural Fibers Used from Colombia and their Use as Potential Reinforcement for Composite Materials: Henry Colorado¹; Sergio Neves²; Geovana Carla Delaqua³; Carlos Mauricio Vieira³; ¹Universidad de Antioquia; ²Instituto Militar de Engenharia; ³State University of the North Fluminense

10:00 AM Break

10:20 AM Invited

Arapaima Gigas Scales, an Inspiration of a Natural Material for Composite Applications: Henry Colorado¹; Sergio Neves²; Carlos Mauricio Vieira³; ¹Universidad de Antioquia; ²Instituto Militar de Engenharia; 3State University of the North Fluminense

10:40 AM Invited

Qualification of Polymeric Composites for Piping Repair by Tensile Testing: Aline de Bessa Schinkoeth Reis¹; Felipe Lopes¹; Noan Tonini Simonassi¹; Eduardo Atem de Carvalho¹; Carlos Fontes Vieira¹; ¹Universidade Estadual Do Norte Fluminense

11:00 AM

Development of Nouvel Bio-based Epoxy Resin Made with Cardanol, Cashew Nut Shell Liquid Subproduct: Felipe Lopes1; Noan Tonini Simonassi¹; Eduardo Atem de Carvalho¹; Carlos Fontes Vieira¹; ¹Universidade Estadual Do Norte Fluminense

Mitigation of Urban Noise through the Implementation of Soundabsorbing Facade Skirting Boards Based on Epoxy Resin and Rice Husk Nanoparticles: Jeiser Rendón Giraldo¹; Henry Colorado¹; ¹Universidad de Antioquia

CHARACTERIZATION

Neutron and X-ray Scattering in Materials Science — **Engineering Diffraction**

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Jennifer Niedziela, Oak Ridge National Lab; Hillary Smith, Swarthmore College

Wednesday AM | March 22, 2023 Aqua 311B | Hilton

Session Chair: Chihpin (Andrew) Chuang, Argonne National Lab

8:30 AM Invited

Pyrochlore as Potential Nuclear Waste Form - Structure-property Insights from Scattering Experiments: Sarah Finkeldei¹; Maik Lang²; Gordon Thorogood³; ¹University of California-Irvine; ²University of Tennessee, Knoxville; ³Australian Nuclear Science and Technology Organisation

9:00 AM

High Speed Operando X-ray Diffraction and Imaging during 3D Laser Printing: Steven Van Petegem¹; ¹Paul Scherrer Institut

Determination of Residual Stress and Strain Fields during Cold Expansion Processing Using Complementary Diffraction Techniques: Nicholas Bachus¹; Donald Brown²; Christopher Budrow³; Bjørn Clausen²; J.Y. Peter Ko⁴; Kelly Nygren⁴; Renan Ribeiro⁵; Michael Hill¹; ¹University Of California Davis; ²Los Alamos National Laboratory; ³Budrow Consulting LLC; ⁴Cornell High Energy Synchrotron Source; ⁵Hill Engineering LLC

Micromechanical Response of Nitrocarburized Steel Studied by In-situ X-ray Microdiffraction during Nanoindentation: Albin Stormvinter¹; Shun Yu¹; Melina da Silva¹; Gabriel Spartacus²; Peter Hedström²; Anton Davydok³; ¹RISE; ²KTH Royal Institute of Technology; ³Helmholtz Hereon

10:00 AM Break

On the Estimation of Elastic Constants in Low Symmetry Materials with In-situ Neutron Diffraction Measurements: Nathan Peterson¹; Daniel Savage²; Sean Agnew¹; Donald Brown²; Bjørn Clausen²; Aaron Stebner³; Elena Garlea⁴; ¹University of Virginia; ²Los Alamos National Laboratory; ³Georgia Institute of Technology; ⁴Y-12 National Security Complex

10:35 AM

Bulk Residual Stress and Strain Measurements Near Geometrically Large Holes for Improving Cold Expansion Process Models: Michael Hill1; Nicholas Bachus1; Donald Brown2; Chris Budrow3; Michael Burba⁴; Bjørn Clausen²; Adrian DeWald⁵; J.Y. Peter Ko⁶; Kelly Nygren⁶; Mark Obstalecki⁴; Robert Pilarczyk⁵; Renan Ribeiro⁵; Paul Shade⁴; Matthew Shultz⁷; ¹University of California Davis; ²Los Alamos National Laboratory; ³Budrow Consulting LLC; ⁴Air Force Research Laboratory; ⁵Hill Engineering, LLC; ⁶Cornell High Energy Synchrotron Source; ⁷Fatigue Technology, Inc

10:55 AM

The Application of Neutron Scattering to Hard Metals and Related Systems: Ahmet Bahadir Yildiz¹; Prasath Babu²; Susanne Norgren³; Peter Hedström²; ¹Scatterin AB; ²KTH Royal Institute of Technology; ³Lund University, Sandvik Coromant R&D

11:15 AM

The Forging and the Precipitation Behaviour in the New VDM© Alloy 780 Studied via In Situ High Energy X-ray Diffraction: Massimo Fritton¹; Frank Kümmel¹; Andreas Kirchmayer²; Andreas Stark³; Masood Hafez Haghighat⁴; Bodo Gehrmann⁴; Steffen Neumeier²; ¹Technische Universität München; ²Friedrich-Alexander-Universität Erlangen-Nürnberg; ³Helmholtz-Zentrum hereon GmbH; 4VDM Metals International GmbH

11:35 AM

In Situ X-ray Diffraction Study of the (Ba,Sr)TiO₂ Solid State Reaction: Leah Bellcase¹; Corrado Harper¹; Elizabeth Dickey²; Jennifer Forrester¹; Jacob Jones¹; ¹North Carolina State University; ²Carnegie Mellon University

ENERGY & ENVIRONMENT

New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of Patrick R. Taylor — Hydrometallurgy

Sponsored by: Society for Mining Metallurgy and Exploration, TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Materials Characterization Committee, TMS: Energy Committee, TMS: Recycling and Environmental **Technologies Committee**

Program Organizers: Ramana Reddy, University of Alabama; Corby Anderson, Colorado School of Mines; Erik Spiller, Colorado School of Mines; Edgar Vidal, NobelClad; Camille Fleuriault, Eramet Norway; Alexandra Anderson, Gopher Resource; Mingming Zhang; Christina Meskers, SINTEF

Wednesday AM | March 22, 2023 33C | SDCC

Session Chairs: Edgar Vidal, NobelClad; Judith Vidal, National Renewable Energy Laboratory

8:30 AM Invited

Enhancing Performance in Hydrometallurgical Extraction, Separation, and Recovery of Metals: Michael Free1; 1University of Utah

9:00 AM Invited

The Importance of Autoclave and Piping Materials Selection for HPAL and POX Metals Extraction Processes: Edgar Vidal1; ¹NobelClad

9:30 AM

Investigation of Cerium, Terbium, and Lantanium Dissolution Parameters in Fluorescent Wastes by Microwave Leaching: Aysegul Bilen¹; U. Hatipoglu¹; M. Saridede¹; ¹Yldz Teknik Üniversitesi

9:50 AM Break

10:10 AM Invited

Research and Industrial Application of Selenium and Tellurium Recovery Processes: Shijie Wang¹; ¹Coeur Mining, Inc.

Nickel Matte as Novel Reductant in Galvanic Leaching of Spent Lithium-ion Battery Black Mass: Erik Prasetyo1; Sulalit Bandyopadhyay¹; ¹Norwegian University of Science and Technology

11:00 AM

Recyclability of Proton Exchange Membrane Electrolysers for Green Hydrogen Production: Nawshad Haque1; Sarb Giddey1; Sejuti Saha1; Paul Sernia2; 1CSIRO; 2Endua

SPECIAL TOPICS

Nix Award and Lecture Symposium: Learning from Nature - From Insight to Sustainable Innovation Nix IV Award Lecture: From Bioinspiration to Machine Learning - A New Concept for Object **Manipulation**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Wendelin Wright, Bucknell University; Gang Feng, Villanova University

Wednesday AM | March 22, 2023 Sapphire D | Hilton

Session Chairs: Wendelin Wright, Bucknell University; Gang Feng, Villanova University

8:30 AM Invited

2023 William D Nix Award Lecture: From Bioinspiration to Machine Learning - A New Concept for Object Manipulation: Eduard Arzt1; ¹INM - Leibniz Institute for New Materials and Saarland University

9:30 AM Invited

Deep Learning from Nature and Machines for Engineered and Biological Materials: Subra Suresh¹; ¹Nanyang Technological University

10:10 AM Break

10:30 AM Invited

Bioinspired Designs for Micro-object Releasing: Xuan Zhang¹; ¹Leibniz Institute for New Materials

11:00 AM Invited

Artificial Muscles for the Lifelike Robots of the Future: Christoph Keplinger¹; ¹Max Planck Institute for Intelligent Systems

NUCLEAR MATERIALS

Phase Stability in Extreme Environments — **Corrosion and Oxidation in Extreme Environments**

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Andrew Hoffman, GE Research; Kinga Unocic, Oak Ridge National Laboratory; Janelle Wharry, Purdue University; Kaila Bertsch, Lawrence Livermore National Laboratory; Raul Rebak, GE Global Research

Wednesday AM | March 22, 2023 28C | SDCC

Session Chairs: Kinga Unocic, Oak Ridge National Laboratory; Xiao-Xiang Yu, Novelis

High Temperature Oxidation of CrAl Coated Accident Tolerant Fuel Cladding: Sung Eun Kim1; Dae Ho Kim1; Hyun-gil Kim1; 1Korea Atomic **Energy Research Institute**

8:50 AM

Steam Oxidation Behavior of Environmental Barrier Coatings: Mackenzie Ridley¹; Ken Kane¹; Bruce Pint¹; ¹Oak Ridge National Laboratory

9:10 AM

Cyclic Oxidation Behavior of Novel Ni-based Superalloys: Richard Oleksak¹; Martin Detrois¹; Paul Jablonski¹; ¹National Energy Technology Laboratory

9:30 AM Invited

The Morphological Stability and Non-equilibrium Growth of Passive Oxide Films: Rohit Ramanathan1; Peter Voorhees1; ¹Northwestern University

10:00 AM Break

10:20 AM

Corrosion Behavior of Co-Fe4Mn4Nb4Si2B14, Fe49Co49V2, and Fe82Cr18 Alloys in Venusian Environment: Yuankang Wang¹; Alex Leary²; Paul Ohodnicki¹; ¹University of Pittsburgh; ²NASA

Surface Roughness and Oxidation Kinetics in Ni-based Singlecrystal Superalloys: Aidan O'Donnell¹; Jean-Briac le Graverend¹; ¹Texas A&M University

Ab initio Simulations to Investigate Oxidation in Ni-based Singlecrystal Superalloys: Aidan O'Donnell¹; Tahir Cagin¹; Jean-Briac le Graverend¹; ¹Texas A&M University

Understanding the Effect of SO2/SO3 Gaseous Environments on the Mixed Deposit-induced Degradation of Advanced Alloys: Atharva Chikhalikar1; David Poerschke1; 1University of Minnesota, Twin Cities

11:40 AM

Investigation of Alloy Elements on the Enhanced Oxidation Behavior of Nanocrystalline Alloys: Saurabh Sharma¹; Kris Darling²; Kiran Solanki¹; ¹Arizona State University; ²Army Research Laboratory

PHYSICAL METALLURGY

Phase Transformations and Microstructural Evolution — Non-Ferrous Alloys I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Ashley Paz y Puente, University of Cincinnati; Mark Aindow, University of Connecticut; Sriswaroop Dasari, University of North Texas; Ramasis Goswami, Naval Research Laboratory; Megumi Kawasaki, Oregon State University; Eric Lass, University of Tennessee-Knoxville; Josh Mueller, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Le Zhou, Marquette University

Wednesday AM | March 22, 2023 25C | SDCC

Session Chair: Josh Mueller, Los Alamos National Laboratory

8:30 AM Invited

Application of the PRISMS-PF Framework to Recrystallization and Twin Evolution: David Montiel¹; Yanjun Lyu¹; Mohammadreza Yaghoobi¹; John Allison¹; Katsuyo Thornton¹; ¹University of Michigan

9:00 AM

Phase Transformations and Twin Microstructure in Titanium: Lei Cao¹; Amir Hassan Zahiri¹; Jamie Ombogo¹; Eduardo Vitral¹; Mehrab Lotfpour¹; ¹University of Nevada

9:20 AM

Understanding The Influence of Interfaces on Grain Nucleation in Highly Textured Mg-(Zn, Ca) Alloys During Static Recrystallization: Rogine Gomez¹; Aeriel Leonard¹; ¹The Ohio State University

Deformation Induced Solute Clusters and Precipitates in Light Metallic Alloys: Suhas Eswarappa Prameela¹; Taisuke Sasaki²; Peng Yi³; Michael Falk³; Timothy Weihs³; ¹Massachusetts Institute of Technology; ²NIMS, Japan; ³Johns Hopkins University

10:00 AM Break

10:20 AM Invited

High-pressure Phase Transformation in Zirconium: Role of Slip Dislocations and Twinning: Mariyappan Arul Kumar¹; T Yu²; Y Wang²; R McCabe¹; C Tome¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory; ²University of Chicago

10:50 AM

Eutectoid Ordering Morphologies in Fe-Pd and Shockley's (Controversial?) L1' Phase: Adrian Savovici1; William Soffa1; Jerrold Floro¹; ¹University of Virginia

Micro-addition of Fe in Highly Alloyed Cu-Ti Alloys to Improve Both Formability and Strength: Baptiste Rouxel¹; ¹Ecole Polytechnique Fédérale de Lausanne EPFL

11:30 AM Invited

Alpha-Omega Phase Transformations and Microstructural Evolution in Shocked HCP Metals: Benjamin Morrow¹; David Jones¹; Ellen Cerreta¹; ¹Los Alamos National Laboratory

ADDITIVE TECHNOLOGIES

Powder Materials Processing and Fundamental Understanding — Control Macro and Microstructures I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Eugene Olevsky, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Kennametal Inc.; Wenwu Xu, San Diego State University

Wednesday AM | March 22, 2023 25B | SDCC

Session Chairs: Elisa Torresani, San Diego State University, Alberto Molinari, University of Trento

8:30 AM

Additive Manufacturing and Spark Plasma Sintering: Fabrication of Powder Components with Cooling Channels: Elisa Torresani¹; Maricruz Carrillo¹; Eugene Olevsky¹; Chris Haines²; Darold Martin³; ¹San Diego State University; ²US Army DEVCOM - Army Research Laboratory; ³US Army DEVCOM - Armaments Center, Picatinny Arsenal

8:50 AM

Cyclic Phase Transition Assisted Spark Plasma Sintering of AlCoCrFeNi High Entropy Alloys: Runjian Jiang1; Elisa Torresani1; Eugene Olevsky¹; ¹San Diego State University

Freeze Casting of LaNbO₄ Shape Memory Ceramics: Cesar Martinez-Cruz¹; Olivia Graeve¹; ¹University of California San Diego

9:30 AM

Effects of Inoculants on Melt Pool Geometry and Formation of Grain Structure in Inconel 718 Processed by Laser Powder Bed Fusion: I-Ting Ho1; Dhruv Tiparti1; Kai-Chun Chang2; An-Chou Yeh2; Sammy Tin³; ¹Illinois Institute of Technology; ²National Tsing Hua University; 3The University of Arizona

9:50 AM Invited

Anisotropy in Sintering of Parts Produced by BinderJet 3D Printing: Alberto Molinari¹; ¹University of Trento

10:20 AM Break

10:40 AM Invited

Tuning Nano/microstructure and Properties by Densification of Metastable Powders: Gottlieb Uahengo¹; Darren Dewitt¹; Yasuhiro Kodera¹; Javier Garay¹; ¹University of California San Diego

11:10 AM Invited

Young Leaders International Scholar - JIM: Intermetallic Compounds as Catalysts and Usefulness of Metallurgy: Takayuki Kojima¹; ¹Shinshu University

11:40 AM

Effect of Powder Morphology on Densification and Microstructural Gradients of Titanium in Spark Plasma Sintering: Alexander Preston¹; Kaka Ma¹; ¹Colorado State University

12:00 PM

AddFAST: A Hybrid Technique for Tailoring Microstructures in Titanium-Titanium Composites: Cameron Barrie¹; Beatriz Fernandez-Silva¹; Rob Snell¹; Iain Todd¹; Martin Jackson¹; ¹The University of Sheffield

ELECTRONIC MATERIALS

Printed Electronics and Additive Manufacturing: Functional Materials, Processing Techniques, and **Emerging Applications — Session IV**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Rahul Panat, Carnegie Mellon University; Yong Lin Kong, University of Utah; Konstantinos Sierros, West Virginia University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ravindra Nuggehalli, New Jersey Institute of Technology

Wednesday AM | March 22, 2023 Sapphire 411B | Hilton

Session Chairs: Tolga Aytug, Oak Ridge National Laboratory; Ravindra Nuggehalli, New Jersey Institute of Technology; Pooran Joshi, Oak Ridge National Laboratory

8:30 AM Invited

Liquid Metal Inks for Printed Stretchable Electronics: Gallium Alloy Interactions with the Environment: Robin Dietrich¹; Zachary Farrell²; Christopher Tabor¹; ¹US Air Force; ²Cornerstone Research Group

8:55 AM Invited

All-carbon Nanomaterial Inks for Print-In-Place, Recyclable, and Water-based Electronics: Aaron Franklin¹; ¹Duke University

9:20 AM Invited

Ultraconductive Copper-Carbon Nanotube Composite for Advanced Conductors: Kai Li¹; Michael McGuire¹; Andrew Lupini¹; Fred List¹; Burak Ozpineci¹; James Haynes¹; Tolga Aytug¹; ¹Oak Ridge National Laboratory

9:45 AM

Conductive Polyhydroxybutyrate/Reduced Graphene Oxide Biocomposite Temperature Sensor: Dan Li¹; ¹Beijing University of Technology

10:05 AM Break

10:25 AM Invited

Microreactor-assisted Nanomaterial Printing for Additive Manufacturing of Functional Materials and Devices: V. Vinay K. Doddapaneni¹; Jeffery Dhas¹; Chuankai Song¹; Havva Aysal²; Abbasi Sakineh¹; Han Mei¹; Konstantinos Sierros²; Somayeh Pasebani¹; Brian Paul¹; Mark Rice¹; Greg Herman¹; Changqing Pan¹; Chih-Hung Chang¹; ¹Oregon State University; ²West Virginia University

10:50 AM Invited

All-printed and Broadband Piezoelectric Force Sensors for Structural Health Monitoring: Zhangxian Deng¹; ¹Boise State University

11:15 AM

Photonic Sintering of Multiprinter Compatible Gold Nanomaterial Inks for Epidermal Electronics: Tony Valayil Varghese1; David Estrada¹; Josh Eixenberger¹; ¹Boise State University

11:35 AM

Evaluating the Electrical Properties of Thermally Decomposed Binders via Terahertz Time-Domain Spectroscopy for Direct Ink Writing of Flexible Electronics: Harrison Loh1; Alan Bristow1; Konstantinos Sierros¹; ¹West Virginia University

ADDITIVE TECHNOLOGIES

Quantifying Microstructure Heterogeneity for **Qualification of Additively Manufactured Materials** Quality Control, Data Analytics, and Modeling

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Phase Transformations Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Sharniece Holland, Washington University in St. Louis; Eric Payton, University of Cincinnati; Edwin Schwalbach, Air Force Research Labroatory; Joy Gockel, Colorado School of Mines; Ashley Paz y Puente, University of Cincinnati; Paul Wilson, The Boeing Company; Amit Verma, LLNL; Sriram Vijayan, Ohio State University; Jake Benzing, National Institute of Standards and Technology

Wednesday AM | March 22, 2023 24B | SDCC

Session Chairs: Jake Benzing, National Institute of Standards and Technology; Sharniece Holland, Washington University in St. Louis

8:30 AM Invited

Opportunities & Challenges with Laser Powder Bed Fusion for Automotive Applications: Steel and Aluminum Alloys: Whitney Poling¹; Andrew Bobel¹; Md Ashabul Anam¹; Mark Smith¹; Tyson Brown¹; Anil Sachdev¹; ¹General Motors, Global Research & Development

8:55 AM

Microstructure and Mechanical Property Variations in Commercially Produced Laser Powder Bed Fusion 316L Stainless Steel: Jorge Ramirez¹; Simon Richardsen¹; Charles Smith¹; Grant Zheng¹; Garrison Hommer¹; Jonah Klemm-Toole¹; Steve Midson¹; Xiaoli Zhang¹; Amy Clarke¹; Craig Brice¹; Joy Gockel¹; ¹Colorado School of Mines

9:15 AM

Long-term Process Stability in Laser Powder Bed Fusion: Michael Heiden¹; Scott Jensen¹; Jay Carroll¹; Priya Pathare¹; David Saiz¹; Jonathan Pegues¹; Bradley Jared²; Brad Boyce¹; ¹Sandia National Laboratories; ²University of Tennessee

9:35 AM

Location Specific Characterization of Additively Manufactured Stainless Steel to Inform Build Data Analytics: Allyssa Bateman¹; Christopher Snyder²; Scott Schier²; Ana Stevanovic²; Amanda Fernandez²; Elizabeth Sooby²; Brian Jaques¹; ¹Boise State University; ²University of Texas at San Antonio

9:55 AM Break

10:20 AM

A Study of Microstructural and Mechanical Properties of 14YWT Oxide Dispersion Strengthened Steel Fabricated Using Laser Powder Bed Fusion Additive Manufacturing from Gas Atomized Reaction Synthesis Feedstock: Sourabh Saptarshi¹; Matthew DeJong¹; Chrisopher Rock¹; Iver Anderson²; Ralph Napolitano³; Djamel Kaoumi¹; Timothy Horn¹; ¹North Carolina State University; ²AMES Laboratory; ³Iowa State University

Control of Residual Stress and Distortion in Metal Additive Manufacturing via Inverse Mapping of Textures: Ruogi Gao¹; Hamid Garmestani¹; Steven Liang¹; ¹Georgia Institute of Technology

11:00 AM

Quantitative Analysis of Computed Tomography Characterization of Porosity in AM Ti64 Using Serial Sectioning Ground Truth: Bryce Jolley¹; Christine Henry¹; Michael Uchic¹; Daniel Sparkman¹; ¹Air Force Research Laboratory

X-ray Diffraction Peak Estimation Using In-Situ Melt-pool Sensors: Anant Raj¹; Benjamin Stegman¹; Charles Owen¹; Hany Abdel-Khalik¹; Xinghang Zhang¹; John Sutherland¹; ¹Purdue University

Synchrotron-based X-ray Microtomography Characterization of Solidification Cracks in Additively Manufactured IN738LC Alloy: Haoxiu Chen; Yu Zou1; 1University of Toronto

ADVANCED MATERIALS

Refractory Metals 2023 — Alloy Design - Ultimate Plus

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Brady Butler, US Army Research Laboratory; Todd Leonhardt, Rhenium Alloys Inc.; Matthew Osborne, Global Advanced Metals; Zachary Levin, Los Alamos National Laboratory

Wednesday AM | March 22, 2023 Aqua E | Hilton

Session Chair: Zak Fang, University of Utah

8:30 AM Invited

BIRDSHOT: An Accelerated Program for the Discovery and Optimization of Refractory High Entropy Alloys: Raymundo Arroyave¹; Brent Vela¹; Danial Khatamsaz¹; William Trehern¹; Ibrahim Karaman¹; Weiwei Zhang²; Douglas Allaire¹; Paul Mason²; Duane Johnson³; Prashant Singh³; Axel van de Walle⁴; Miladin Radovic¹; Ankit Srivastava¹; ¹Texas A&M University; ²ThermoCalc; ³Ames Lab; ⁴Brown University

9:00 AM

Concurrent Design of a Multimaterial Niobium Alloy System for Next-generation Turbine Applications: Pin Lu¹; James Male¹; Zhi Liang¹; Peter Jacobson¹; Jiadong Gong¹; Greg Olson¹; ¹QuesTek Innovations

9:20 AM

Data-augmented Property Modeling for Accelerated Closedloop Multi-Objective Design of Refractory High Entropy Alloys for ULTIMATE: Brent Vela1; Danial Khatamsaz1; William Trehern1; Cafer Acemi¹; Prashant Singh²; Douglas Alliare¹; Raymundo Arroyave¹; Ibrahim Karaman¹; Duane Johnson²; ¹Texas A&M University; ²Ames Laboratory

9:40 AM

High-throughput Design, Synthesis, and Characterization of Refractory Multi-principal Element Alloys (MPEAs) for ULTIMATE: Eli Norris¹; Cafer Melik Ensar Acemi¹; William Trehern¹; Brent Vela¹; Raymundo Arroyave¹; Ibrahim Karaman¹; ¹Texas A&M University

10:00 AM Break

10:15 AM

High-throughput Design, Synthesis, and Characterization of W-based Refractory Multi-principal Element Alloys (MPEAs): Cafer Melik Ensar Acemi¹; William Trehern¹; Eli Norris¹; Brent Vela¹; Peter Morcos¹; Raymundo Arroyave¹; Alaa Elwany¹; Ibrahim Karaman¹; ¹Texas A&M University

10:35 AM

Design and Correlative Mapping Characterizations of High-entropy Alloys for Nuclear Applications: Pedro Ferreirós¹; Kan Ma¹; Andrew London²; Alexandra Cackett³; Kiumars Aryana⁴; Patrick Hopkins⁴; Alexander Knowles¹; ¹University of Birmingham; ²CCFE, UK Atomic Energy Authority; 3National Nuclear Laboratory Limited; 4University of Virginia

10:55 AM

ULTIMATE: Alloy Designs for High Temperature Mo-Si-B Base Systems: John Perepezko¹; Dan Thoma¹; Longfei Liu¹; Phalgun Nelaturu¹; Ankur Agrawal¹; Zahabul Islam²; Fan Zhang³; Laurence Marks⁴; ¹University of Wisconsin-Madison; ²Bowling Green State University; 3Computherm LLC; 4Northwestern University

11:15 AM

Understanding Process-performance Trade-offs in Additively Manufactured Refractory Metals and Refractory HEAs to Drive Future RHEA Design: David Crudden¹; Shaumik Lenka¹; Yining He¹; Atsushi Sato¹; Pimin Zhang¹; Georgina Frater¹; Yousefiani Ali²; Austin Mann²; ¹Alloyed Inc; ²Boeing

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Materials and Science — Fuels

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: J. Rory Kennedy, Idaho National Laboratory; Taylor Jacobs, Los Alamos National Laboratory; Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Don Wood, Idaho National Laboratory

Wednesday AM | March 22, 2023 28A | SDCC

Session Chair: Assel Aitkaliyeva, University of Florida

8:30 AM Invited

Microstructural and Mechanical Characterization of High Burnup UO2 Fuel: Fabiola Cappia1; David Frazer1; Kaustubh Bawane1; Colby Jensen¹; Dan Wachs¹; ¹Idaho National Laboratory

9:00 AM Invited

Alpha-damage Studies of Mixed Oxides Fuels for Fast Reactors: Thierry Wiss¹; ¹European Commission - Jrc

Oh, My Darling Clementine: A Contemporary Investigation of the Los Alamos Plutonium Fast Reactor: Hannah Patenaude¹; Vedant Mehta²; Franz Freibert²; ¹University of Nevada, Las Vegas; ²Los Alamos National Laboratory

9:50 AM

U,O, and UO, Microspheres Synthesized Utilizing Sol-gel Chemistry and Microfluidics for Use as Next Generation Nuclear Fuels: James Kurley¹; Rodney Hunt¹; Jake McMurray¹; Andrew Nelson¹; ¹Oak Ridge **National Laboratory**

10:10 AM Break

10:30 AM Invited

Phase Decomposition in Uranium-Molybdenum Fuels Subjected to Low Neutron Fluences: Maria Okuniewski1; Gyuchul Park1; Mehmet Topsakal²; Simerjeet Gill²; Lynne Ecker²; Daniel Murray³; Eric Dooryhee²; ¹Purdue University; ²Brookhaven National Laboratory; ³Idaho National Laboratory

11:00 AM Invited

Understanding the Role of Fission Products on the Formation and Collapse of the Gas Bubble Superlattice in U-Mo Fuel: Charlyne Smith¹; Mukesh Bachhav¹; Dennis Keiser¹; ¹Idaho National Laboratory

11:30 AM

Pulsed Neutron Characterization of Irradiated Fuels at LANSCE: Sven Vogel¹; Thilo Balke¹; Charles A. Bouman²; Luca Capriotti³; Jason M. Harp⁴; Alexander M. Long¹; Anton S. Tremsin⁵; Brendt Wohlberg¹; Eric J. Larson¹; Aaron E. Craft³; Brian J. Gross³; D. Travis Carver¹; James R. Angell³; Vedant K. Mehta¹; ¹Los Alamos National Laboratory; ²Purdue University; ³Idaho National Laboratory; ⁴Oak Ridge National Laboratory; 5UC Berkeley

MATERIALS DESIGN

Simulations/Experiments Integration for Next **Generation Hypersonic Materials — Session I**

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Refractory Metals & Materials Committee

Program Organizers: Thomas Voisin, Lawrence Livermore National Laboratory; Jibril Shittu, Lawerence Livermore National Laboratory; Aurelien Perron, Lawrence Livermore National Laboratory; Joseph McKeown, Lawrence Livermore National Laboratory; Raymundo Arroyave, Texas A&M University

Wednesday AM | March 22, 2023 Sapphire I | Hilton

Session Chairs: Thomas Voisin, Lawrence Livermore National Laboratory; Aurelien Perron, Lawrence Livermore National Laboratory; Jibril Shittu, Lawrence Livermore National Laboratory

8:30 AM Introductory Comments

8:35 AM Invited

Simultaneous Bayesian Calibration of Strength, Kinetics, and Phase Boundaries: William Schill¹; Ryan Austin¹; Kathleen Schmidt¹; Jon Belof¹; Justin Brown²; Nathan Barton¹; ¹Lawrence Livermore National Laboratory; 2Sandia

9:15 AM

Computational Modeling of the Hf-Ta-O System for Oxidation Resistance in HfC-TaC Alloys: Rahim Zaman¹; Bi-Cheng Zhou¹; ¹University of Virginia

9:35 AM

Computational Discovery and Experimental Validation of Ultrahigh Strength BCC Refractory Metal-based MPEAs for Extreme Environments: Kate Elder¹; Joel Berry¹; Aurelien Perron¹; Brandon Bocklund¹; Hunter Henderson¹; Jibril Shittu¹; Connor Rietema¹; Zachary Sims¹; Scott McCall¹; Joseph McKeown¹; Livermore National Laboratory

9:55 AM

How Do You Integrate Both Simulations and Experiments into a Materials Discovery Optimization Campaign? A Case Study in Multi-fidelity Optimization: Ramsey Issa1; Sterling Baird1; Taylor Sparks¹; ¹University of Utah

10:15 AM Break

10:35 AM

The Alloy Optimization Software (TAOS): Application to HEAs: Aurelien Perron¹; Brandon Bocklund¹; Vincenzo Lordi¹; ¹Lawrence Livermore National Laboratory

10:55 AM

Computational Design of Ni-based SX Superalloys: A Critical Assessment of Machine-learned and Thermodynamic Models in View of Experimental Properties: Abel Rapetti¹; Cervellon Alice¹; Menou Edern²; Rame Jérémy³; Tancret Franck⁴; Cormier Jonathan¹; ¹Institut Pprime UPR CNRS 3346; ²Safran Tech; ³Safran Aircraft Engines; ⁴Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS UMR 6502

11:15 AM

High-throughput CALPHAD Exploration of Multi-principal Element Alloy (MPEA) Space for Targeted Properties and Structure: Adam Krajewski¹; Brandon Bocklund¹; Aurelien Perron¹; ¹Lawrence Livermore National Laboratory

NUCLEAR MATERIALS

Transmutation Effects in Fusion Reactor Materials: Critical Challenges & Path Forward — Structural, Plasma-facing & Functional Materials

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Arunodaya Bhattacharya, Oak Ridge National Laboratory; Steven Zinkle, University of Tennessee; Philip Edmondson, The University of Manchester; Aurelie Gentils, Université Paris-Saclay; David Sprouster, Stony Brook University; Takashi Nozawa, National Institutes for Quantum and Radiological Science and Technology (QST); Martin Freer, University of Birmingham

Wednesday AM | March 22, 2023 27B | SDCC

Session Chairs: Jaime Marian, University of California; Estelle Meslin, CEA-Saclay, University of Paris-Saclay

8:30 AM Invited

Discrete and Continuum Models for the Sources of Nonlinear Strain for Macrscopic Simulations of Reactor Components: Sergei Dudarev¹; Max Boleininger¹; Peter Derlet²; Pui-Wai Ma¹; Daniel Mason¹; Luca Reali¹; ¹UK Atomic Energy Authority; ²Paul Scherrer Institut

Stability of a Li2TiO3 Candidate Solid-breeder Material Following Li Transmutation: German Samolyuk¹; Philip Edmondson²; Yuri Osetskiy¹; ¹Oak Ridge National Laboratory; ²The University of Manchester

9:30 AM

Grain-boundary Effects on the Irradiated Damages in W-Re Alloys: Sanghyuk Yoo¹; Younggak Shin²; Seunghwan Oh¹; Hyoungrul Park¹; Younghyun Kim²; Anseung Yoo²; Ohkyoung Kwon³; Keonwook Kang¹; Byeongchan Lee²; ¹Yonsei University; ²Kyung Hee University; ³Korea Institute of Science and Technology Information

9:50 AM Break

10:10 AM

Embrittlement and Hardening of Beryllium Under Irradiation at Low Temperatures: Viacheslav Kuksenko¹; Ed Darnbrough²; Artem Lunev¹; ¹UK Atomic Energy Authority; ²University of Oxford

10:30 AM

Melting Behavior of He-implanted Tungsten Visualized by MeVultrafast Electron Diffraction: Ling Wang¹; Thies Albert²; Zhijiang Chen¹; Leora Dresselhaus-Marais³; Samuel Murphy⁴; Nicholas Hartley¹; Laurenz Kremeyer²; Matthias Kling¹; Emma McBride¹; Benjamin Ofori-Okai¹; Alexander Reid¹; Adam Summers¹; Klaus Sokolowski-Titen²; Xiaozhe Shen¹; Xueli Zheng³; Yongqiang Wang⁵; Siegfried Glenzer¹; Mianzhen Mo¹; ¹SLAC National Accelerator Laboratory; ²University of Duisburg-Essen; ³Stanford University; ⁴Lancaster University; ⁵Los Alamos National Laboratory

10:50 AM

Analysis of Irradiation Damage Accumulation in Bi-phase Tungsten Heavy Alloy Microstructures: James Haag¹; Weilin Jiang¹; Matthew Olszta¹; Wahyu Setyawan¹; ¹PNNL

ADVANCED MATERIALS

2D Materials: Preparation, Properties, Modeling & **Applications — Energy Related Applications**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Sufian Abedrabbo, Khalifa University; Hesam Askari, University of Rochester; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Joshua Young, New Jersey Institute Of Technology; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Karine Mougin, CNRS, IS2M; Heinz Palkowski, Clausthal University of Technology

Wednesday PM | March 22, 2023 Aqua AB | Hilton

Session Chairs: Hesam Askari, University of Rochester; Madan Dubey, Army Research Laboratory, Sensors and Electron Devices Directorate

2:00 PM Introductory Comments

2:05 PM Invited

Application of Phase Change Materials in the Thermal Management of a LiFePO4 Battery Pack in a Cold Temperatures Environment: Seyed Mojtaba Sadrameli¹; Yazdan Azizi²; ¹GUTech; ²TMU

2:30 PM Invited

Bulk Heterojunction Organic Photovoltaic Devices Produced Using Liquid Crystalline Semiconducting Polymer Gel Materials: John Magno¹; ¹Magno Fibers LLC

2:55 PM Invited

Spectroscopic Studies on Sulfides and Selenides of Mo and W for Photoabsorbers: Anupama Kaul¹; ¹University of North Texas

3:20 PM Break

3:35 PM Invited

Super-capacitor Based on Hybrid Architecture with 2D Materials: Daniel Choi¹; ¹Khalifa University of Science and Technology

Electromechanical Coupling of 2D Materials for Energy and Sensing Applications: Jun Liu1; 1University at Buffalo, The State University of New York

Phase-aligned Growth of Nickel Phosphosulfide Nanostructured Arrays: A Promising Electrocatalyst for Efficient Hydrogen Evolution Reaction: Navid Attarzadeh1; Debabrata Das1; Balwant K Singh¹; Susheng Tan²; CV Ramana¹; ¹University of Texas at El Paso; ²University of Pittsburgh

MATERIALS DESIGN

Accelerated Discovery and Insertion of Next Generation Structural Materials — Process Driven Techniques for Materials Discovery; Investigation of Thin Film Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Soumya Nag, Oak Ridge National Laboratory; Andrew Bobel, General Motors Corporation; Bharat Gwalani, North Carolina State University; Jonah Klemm-Toole, Colorado School of Mines; Antonio Ramirez, Ohio State University; Matthew Steiner, University of Cincinnati

Wednesday PM | March 22, 2023 Sapphire M | Hilton

Session Chairs: Andrew Bobel, GM; Jonah Klemm-Toole, Colorado School of Mines; Matt Steiner, University of Cincinnati

2:00 PM

Accelerating Multimodal Data Collection: A Workflow for Metallic Films: Kimberly Bassett¹; Brad Boyce¹; ¹Sandia National Laboratories

2:20 PM

Al and Machine Learning Tools for Development and Analysis of Image Driven 2D Materials: Hafiz Munsub Ali¹; Venkata A. S. Kandadai²; Bharat Jasthi²; Venkataramana Gadhamshetty²; Etienne Gnimpieba¹; ¹University of South Dakota; ²South Dakota School of Mines and Techonology

2:40 PM

Efficient Conductivity and Hardness Optimization in Cu-Ag-Ni Alloys using Bayesian Active Learning: Terrance Life1; Shankarachary Ragi¹; Bharat Jasthi¹; Ananth Kandadai¹; ¹South Dakota School of Mines and Technology

High-throughput Synthesis and Mechanical Characterization of Sputtered Metallic Alloys: Adie Alwen¹; Vignesh Manoharan¹; Andrea Hodge¹; ¹University of Southern California

A High-throughput Setup for Materials Exposure to Simultaneous Irradiation-corrosion Conditions: Franziska Schmidt¹; Hyosim Kim²; Yongqiang Wang²; Peter Hosemann¹; ¹University of California Berkeley; ²Los Alamos National Laboratory

3:40 PM Break

4:00 PM

A Design Space for Tunable Ceramic-polymer Composites: Yan Li¹; ¹Dartmouth College

4:20 PM

Combinatorial Mechanical Microscopy via Correlated Nanoindentation and EDX Mapping: Jeffrey Wheeler¹; ¹Femto Tools

4:40 PM

High-throughput **Electric-Field-assisted** Sintering Characterization Techniques for Materials Discovery: Michael Moorehead¹; Arin Preston¹; Zilong Hua¹; Jorgen Rufner¹; ¹Idaho National Laboratory

5:00 PM

How Should You Select an Algorithm for a Materials Discovery Campaign with Multiple Objectives, Complex and Highdimensional Structure-processing-property Relationships, and a Small Adaptive Design Budget?: Sterling Baird¹; Jeet Parikh; Trupti Mohanti¹; Taylor Sparks¹; ¹University of Utah

ADDITIVE TECHNOLOGIES

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials -**Multifunctional Materials**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Magnetic Materials Committee, TMS: Additive Manufacturing Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Emily Rinko, Iowa State University; Emma White, DECHEMA Forschungsinstitut; Kyle Johnson, Sandia National Laboratories; Andrew Kustas, Sandia National Laboratories; Iver Anderson, Iowa State University Ames Laboratory

Wednesday PM | March 22, 2023 23C | SDCC

Session Chair: Markus Chmielus, University of Pittsburgh

2:00 PM Invited

The Accelerated Development of Additively Manufactured Multifunctional Components: Raju Ramanujan¹; Varun Chaudhary¹; Srinivas Mantri²; Rajarshi Banerjee²; ¹Nanyang Technological University; ²University of N. Texas

2:25 PM

3D Ink-Extrusion Printing of La, Te, Thermoelectric Legs with Complex Geometries: Alexander Proschel¹; Yunjia Zhang¹; Araseli Cortez²; Jeffery Snyder¹; David Dunand¹; ¹Northwestern University; ²NASA Jet Propulsion Laboratory

3D Ink-extrusion Printing and Sintering of Thermoelectric Yb14MnSb11: Ming Chen1; Alexander Proschel1; Araseli Cortez2; Jeffrey Snyder¹; David Dunand¹; ¹Northwestern University; ²NASA Jet Propulsion Laboratory, California Institute of Technology

3:05 PM

Process-Structure-Property Relationships for Laser Powder Bed Fusion of Thermoelectric Materials for Low and High Temperature Applications: Saniya Leblanc¹; Yahya Oztan¹; Ryan Welch¹; Bengisu Sisik¹; Vijayabarathi Ponnambalam¹; ¹George Washington University

3:25 PM

The Control of Tailored Microstructure and Thermoelectric Properties in Additively Manufactured Materials: Connor Headley¹; Roberto Herrera del Valle¹; Ji Ma¹; Prasanna Balachandran¹; Vijayabarathi Ponnambalam²; Saniya LeBlanc²; Dylan Kirsch³; Joshua Martin³; ¹University of Virginia; ²George Washington University; 3 National Institute of Standards and Technology

3:45 PM Break

4:00 PM

Rapid 3D Printing of AlN Ceramic Green Bodies for Heat Dissipation Devices: Luyang Liu¹; Xiangfan Chen¹; ¹Arizona State University

Manufacturability and Reliability of Additively Manufactured Planar Transformer Windings Using Silver-based Pastes: He Yun1; F. McCluskey1; 1University of Maryland

High Resolution Three-Dimensional Printing of Piezoelectric Composites for Sensing Applications: Siying Liu¹; Wenbo Wang¹; Luyang Liu¹; Xiangfan Chen¹; ¹Arizona State University

5:00 PM

The Development of (CoCrFeMnCu)1-xCrx High Entropy Alloy by arc-DED Additive Manufacturing Process: Sertaç Altınok1; Koray Yurtışık²; Yunus Kalay²; ¹TAI; ²Middle East Technical University

5:20 PM

In-Situ Alloying of Nb-47Ti Superconductors Using Laser Powder Bed Fusion: Tugrul Ersoz¹; Moataz Attallah¹; ¹University of Birmingham

ADDITIVE TECHNOLOGIES

Additive Manufacturing Fatigue and Fracture: Effects of Surface Roughness, Residual Stress, and **Environment — Session V Joint Session with Fatigue** in Materials Symposium - Microstructure-based **Fatigue Studies on Additive-Manufactured Materials**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; John Lewandowski, Case Western Reserve University; Nima Shamsaei, Auburn University; Steve Daniewicz, University of Alabama; Mohsen Seifi, ASTM International/Case Western Reserve University

Wednesday PM | March 22, 2023 22 | SDCC

Session Chair: Jean-Charles Stinville, University of Illinois at Urbana-Champaign

2:00 PM Invited

Predicting the Fatigue Performance of AM Ti-6Al-4V Components: Derek Warner¹; Terrence Moran¹; Peipei Li¹; ¹Cornell University

Experiments to Enable Machine Learning of Fatigue Performance in DMLM Ti-6Al-4V with Respect to Microstructure: Samuel Present¹; Monica Soare²; Johan Reimann²; Laura Dial²; Kevin Hemker¹; ¹Johns Hopkins University; ²General Electric Research Laboratory

2:50 PM

In-situ Microscopy of Crack Initiation and Growth in Laser Powder Bed Additively-manufactured Ti-6Al-4V: Matthew Krug¹; JoAnn Ballor²; Lewis Forman¹; Michael Velez¹; Molly Walters¹; Sushant Jha³; Carl Boehlert²; ¹Air Force Research Laboratory; ²Michigan State University; 3University of Dayton Research Institute

3:10 PM

Improving the Low Cycle Fatigue Life of Additively Manufactured High-manganese Steels by Tailoring the Crystallographic Textures: Efthymios Polatidis¹; Miroslav Smid²; Jan Capek¹; Michal Jambor²; Daniel Koutny³; Christian Haase⁴; ¹Paul Scherrer Institute; ²Czech Academy of Sciences; ³Brno University of Technology; ⁴RWTH Aachen

3:30 PM Break

3:50 PM Invited

Efficient Computational Framework Image-based for Micromechanical Analysis of Additively Manufactured Ti-6Al-**4V Alloys**: Somnath Ghosh¹; Maxwell Pinz¹; Steven Storck²; ¹Johns Hopkins University; ²JHU Applied Physics Laboratory

Influence of Process Parameters on Fatigue Behavior and Defect Characteristics in LPBF Ti-6Al-4V: Austin Ngo¹; David Scannapieco¹; Francisco Medina²; Christian Gobert³; Anthony Rollett³; Jack Beuth³; John Lewandowski¹; ¹Case Western Reserve University; ²University of Texas at El Paso; 3 Carnegie Mellon University

Globularization of Alpha Phase in Additively Manufactured Ti-6Al-4V Alloys and Effects on High-Cycle and Very-High-Cycle Fatigue: Reza T. Mousavian¹; Anthony G. Spangenberger¹; Austin Mann²; Cory Cunningham²; Diana A. Lados¹; ¹Worcester Polytechnic Institute; ²Boeing Research & Technology

Enhancing the Fatigue Performance of AM Metals via Conformal Coatings that Activate Uniform Surface Remelting and Smoothening: Kenny Yetter1; Michael Sangid2; William LePage1; ¹University of Tulsa; ²Purdue University

ADDITIVE TECHNOLOGIES

Additive Manufacturing for Energy Applications V — **Applications and Case Studies**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Nuclear Materials Committee

Program Organizers: Isabella Van Rooyen, Pacific Northwest National Laboratory; Subhashish Meher, Idaho National Laboratory; Xiaoyuan Lou, Purdue University; Kumar Sridharan, University of Wisconsin-Madison; Michael Kirka, Oak Ridge National Laboratory; Yi Xie, Purdue University

Wednesday PM | March 22, 2023 23A | SDCC

Session Chairs: Isabella van Rooyen, Pacific Northwest National Laboratory; Yi Xie, Purdue University

2:00 PM Introductory Comments

2:05 PM Invited

Challenges and New Opportunities for Additive Manufacturing of Oxide Dispersion Strengthened Steels: Tim Horn¹; Djamel Kaoumi¹; Chris Rock¹; Iver Anderson²; ¹North Carolina State University; ²AMES Laboratory

2:40 PM

Development of Additive Manufacturing Technology for Microreactors: Hyun-Gil Kim1; Sung Chan Yoo1; Sung Eun Kim1; Sung Uk Lee¹; Hyo Chan Kim¹; ¹Kaeri

3:00 PM

Additively Manufactured Reactor for Steam Methane Reforming: Ward TeGrotenhuis¹; Danny Bottenus¹; Paul Humble¹; Patrick McNeff¹; Richard Zheng¹; ¹Battelle

3:20 PM

Additively Manufactured Strain Sensors for Nuclear Applications: Timothy Phero¹; Kaelee Novich¹; Kiyo Fujimoto²; Benjamin Johnson¹; Michael McMurtrey²; David Estrada¹; Brian Jaques¹; ¹Boise State University; 2Idaho National Laboratory

3:40 PM Break

3:55 PM

Distributed Strain Measurements in Additively Manufactured SS316 with Embedded Fiber-Optic Sensors: Holden Hyer¹; Christian Petrie¹; ¹Oak Ridge National Laboratory

4:15 PM

In-situ Embedment and High Temperature Testing of Commercial Thermocouples with Directed Energy Deposition: Luis Nuñez1; Piyush Sabharwall¹; Isabella van Rooyen²; ¹Idaho National Laboratory; ²Pacific Northwest National Laboratory

Laser Directed Energy Deposition Additive Manufacturing of Supercritical CO2 Heat Exchangers: Christian Sanjurjo-Rodriguez¹; Amir Shooshtari¹; Michael Marshall²; Wei Zhong¹; Ji-Cheng Zhao¹; ¹University of Maryland; ²Southwest Research Institute

4:55 PM

Structural Sensing Lattices: Beniamin White1: Anthony Garland1: Brad Boyce¹; ¹Sandia National Laboratories

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Large-scale Metallic Components — Nickel Alloys/Hybrid Additive Manufacturing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Sougata Roy, University of North Dakota; Sneha Prabha Narra, Carnegie Mellon University; Andrzej Nycz, Oak Ridge National Laboratory; Yousub Lee, Oak Ridge National Laboratory; Chantal Sudbrack, National Energy Technology Laboratory; Albert To, University of Pittsburgh; Yashwanth Bandari, AddiTec Technologies LLC

Wednesday PM | March 22, 2023 25A | SDCC

Session Chair: Chantal Sudbrack, National Energy Technology Laboratory

2:00 PM

Effect of Cooling Rates on the -lathe, Precipitates, and Reconstructed Prior- Grains in Nickel Aluminum Bronze: Dillon Watring¹; Colin Stewart¹; Richard Fonda¹; David Rowenhorst¹; ¹Naval Research Laboratory

2:20 PM

Effect of Varying Machining Conditions on Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated by Hybrid Manufacturing: Rangasayee Kannan¹; Thomas Feldhausen¹; Peeyush Nandwana¹; ¹Oak Ridge National Laboratory

2:40 PM

Hybrid Metal Manufacturing of Large Freeform Geometries: Bradley Jared1; Tony Schmitz1; Joshua Penney1; Aaron Cornelius1; Ross Zameroski¹; Eduardo Miramontes¹; Tiffany Quigley¹; Devon Goodspeed¹; William Hamel¹; ¹University of Tennessee, Knoxville

3:00 PM Invited

From Neutron Diffraction to Tool Repair: How Fundamental Scientific Research Translates to Industrial Impact for Hybrid Manufacturing Systems: Thomas Feldhausen¹; Kyle Saleeby¹; Peeyush Nandwana¹; Rangasayee Kannan¹; Alex Plotkowski¹; Brian Post¹; ¹Oak Ridge National Laboratory

3:30 PM Break

3:50 PM

Large Area Deposition of Haynes 230: Sergio Ausejo¹; Laura Acebo¹; Nerea Burgos¹; David Linder²; Savya Sachi²; Ida Berglund²; Mustafa Megahed³; ¹CEIT; ²QuesTek Europe AB; ³ESI Group

4:10 PM

Design, Modeling and Optimization of a Light Weight Impact Attenuator for Commercial Vehicles Using Wire Arc Additive/ Subtractive Manufacturing (WAASM) Processing: Mohamed Fawzy Mohamed¹; Hanadi Salem¹; Islam Hamdy¹; Ahmed Elsokaty¹; ¹The American University in Cairo

4:30 PM

The Effect of Cryogenic Cooling on the Microstructure and Mechanical Properties of Wire Arc Additively Manufactured Steels: Constantinos Goulas¹; Maximus Akuh²; Vignesh Venkata Subramanian³; Remco Rook³; José Galán Argumedo⁴; Theodoros Michelis⁴; Marco Ameye²; Wei Ya³; Ian Gibson¹; Marcel Hermans⁴; ¹University of Twente; ²AirProducts; ³RAMLAB BV; ⁴Delft University of Technology

4:50 PM Invited

Wire-Arc Additive Manufacturing of Haynes® 282 Superalloy: Wei Xiong¹; Luis Ladinos Pizano¹; Soumya Sridar¹; Chantal K. Sudbrack²; ¹University of Pittsburgh; ²National Energy Technology Laboratory

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Metals: Applications of Solidification Fundamentals — Solidification of **Advanced Materials I**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Solidification Committee

Program Organizers: Wenda Tan, The University of Michigan; Alex Plotkowski, Oak Ridge National Laboratory; Lang Yuan, University of South Carolina; Lianyi Chen, University of Wisconsin-Madison

Wednesday PM | March 22, 2023 21 | SDCC

Session Chair: Lianyi Chen, University of Wisconsin-Madison

2:00 PM Invited

Solidification Cracking in Additive Manufacturing of Metals: Seyed Mohammad Hojjatzadeh¹; Minglei Qu¹; Ali Nabaa¹; Qilin Guo¹; Luis I. Escano¹; Lianyi Chen¹; ¹University of Wisconsin-Madison

2:20 PM

A Novel Method for Determining Printability of Aluminum Alloys for LPBF Applications: John O'Connell¹; Bhaskar Majumdar¹; Timothy Nice¹; Nathaniel Badgett¹; Mohammad Choudhury¹; ¹New Mexico Institute of Mining and Technology

An Oxygen-stabilized Face-centred Cubic Phase in Additively Manufactured Ti-6Al-4V: Hao Wang¹; Qi Chao²; Xiangyuan Cui¹; Zibin Chen¹; Andrew Breen¹; Wei Xu²; Sophie Primig³; Simon Ringer¹; Xiaozhou Liao¹; ¹University of Sydney; ²Deakin University; ³UNSW Sydney

3:00 PM

Analysis of Functionally Grade Materials Printing via Direct Energy Deposition Using Thermodynamic and Physical Simulation: Jorge Valilla¹; Damien Tourret¹; Ilchat Sabirov¹; ¹IMDEA Materials

3:20 PM

Comparing Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Laser Powder Bed Fusion and High Pressure Die Casting Processes: Indrajeet Katti¹; Mark Easton¹; Dong Qiu¹; Joy Forsmark²; Matthew Barnett³; Matthias Weiss³; ¹RMIT University; ²Ford Motor Company; ³Deakin University

3:40 PM Break

3:55 PM

Effect of Chemical Composition, Crystallographic Orientation and Processing Parameters on Rapid Solidification in Ni-Al-Mo Single Crystals: Adriana Eres-Castellanos¹; Ruben Ochoa¹; Chandler Becker¹; Kamel Fezzaa²; Jonah Klemm-Toole¹; Tresa Pollock³; Amy Clarke¹; ¹Colorado School of Mines; ²Argonne National Laboratory; ³University of California Santa Barbara

Exploration of Rapidly Solidified and Near-Ti Alloys Processed by Two Piston Splat Quenching: Greyson Harvill¹; C. Williamson¹; Grace Schneider¹; Zach Hasenbusch¹; Laurentiu Nastac¹; Ben Brown²; Andrew Deal²; Luke Brewer¹; ¹University of Alabama Tuscaloosa; ²Kansas City National Security Campus

4:35 PM

Use of Magnetic Force to Control Melt Flow and Microstructure during Additive Manufacturing: Xianqiang Fan1; Tristan Fleming2; Samul Clark³; Chu Lun Alex Leung¹; Anna Getley¹; Sebastian Marussi¹; Hongze Wang⁴; Robert Atwood⁵; Andrew Kao⁶; Peter Lee¹; ¹University College London; ²Queen's University; ³Argonne National Laboratory; ⁴Shanghai Jiao Tong University; ⁵Diamond Light Source Ltd; 6University of Greenwich

Grain Boundary Character Distribution in Additively Manufactured Nickel-based Superalloy INC738: Ming Luo1; Xiaozhou Liao2; Simon Ringer²; Sophie Primig¹; Nima Haghdadi¹; ¹UNSW Sydney; ²The University of Sydney

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Refractory Metallic Materials — Additive Manufacturing of Ta-based, Mo-based, and W-based Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Antonio Ramirez, Ohio State University; Jeffrey Sowards, NASA Marshall Space Flight Center; Omar Mireles, NASA; Eric Lass, University of Tennessee-Knoxville; Faramarz Zarandi, Raytheon Technologies; Matthew Osborne, Global Advanced Metals; Joao Oliveira, FCT-UNL

Wednesday PM | March 22, 2023 24A | SDCC

Session Chairs: Jeffrey Sowards, NASA MFSC; Matt Osbourne, Global Advanced Metals

2:00 PM Invited

Influence of Dislocation Structures on Mechanical Response in Additively-manufactured Ta-2.5%W Across Length Scales: Kaila Bertsch¹; Marissa Linne¹; Stephen Burke¹; Riley Wraith¹; Joseph McKeown¹; Hye-Sook Park¹; ¹Lawrence Livermore National Laboratory

2:30 PM

Characterizing the High Temperature Mechanical Performance and Microstructure of Additively Manufactured Tantalum and Tungsten Alloys: Sharon Park1; Mo-Rigen He1; Gianna Valentino2; Kevin Hemker¹; ¹Johns Hopkins University; ²JHU Applied Physics Laboratory

2:50 PM

Elucidating the Porosity-Cracking Tradeoff in Laser-based Additive Manufacturing of Refractory Metals: Gianna Valentino1; Robert Mueller¹; Alex Lark¹; Li Ma¹; Ian McCue²; ¹Johns Hopkins Applied Physics Laboratory; 2Northwestern University

3:10 PM

Study of Printability and Melt Pool Geometry in W & W -alloys by Laser Powder Bed Fusion: Amaranth Karra¹; Maarten de Boer¹; Bryan Webler¹; ¹Carnegie Mellon University

3:30 PM Break

3:50 PM Invited

Enabling Future Concepts in Nuclear Energy through the Use of Additive Manufacturing on Titanium - Zirconium - Molybdenum Alloy: John Carpenter¹; Michael Brand¹; Rose Bloom¹; Robin Montoya Pacheco¹; ¹Los Alamos National Laboratory

Development of Molybdenum Alloys for Use with Powder Blown Laser Directed Energy Deposition Additive Manufacturing: Nathaniel Lies1; 1Georgia Institute of Technology

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response — Lattice Structures and Miscellaneous I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Meysam Haghshenas, University of Toledo; Andrew Birnbaum, US Naval Research Laboratory; Robert Lancaster, Swansea University, Xinghang Zhang, Purdue University, Aeriel Leonard

Wednesday PM | March 22, 2023 23B | SDCC

Session Chairs: Mohsen Mohammadi, University of New Brunswick; Jordan Weaver, NIST

2:00 PM Invited

Invited: Multiscale Phenomena to Inspire Lattice Structures Design: Kavan Hazeli¹; ¹University of Arizona

Single-point Laser Scanning Strategy for the SLM Fabrication of Ti-6AL-4V Micro-strut Lattices: Strut Size Dependent Mechanical Properties: Conor O'Keeffe1; D Kelly1; 1Trinity College Dublin

Investigating the Influence of Grain Boundary Strengthening Assumptions on the Lattice Strain Evolution in Additively Manufactured IN718: Jason Mayeur¹; ¹Oak Ridge National Laboratory

Effects of Topology on the Compressive Creep Rate of Inconel 625 FCCZ Lattices: Kaitlynn Conway¹; Hamid Torbati-Sarraf²; Thomas Berfield³; Garrett Pataky⁴; ¹Sandia National Laboratories; ²Purdue University; 3University of Louisville; 4Clemson University

Toughness Amplification in Bioinspired Nanoarchitectured Materials: Zainab Patel1; Lucas Meza1; 1University of Washington

3:40 PM Break

4:00 PM Invited

Topological Homogenization of Metamaterial Variability: *Benjamin* White¹; Anthony Garland¹; Brad Boyce¹; ¹Sandia National Laboratories

New Insights on Dislocation Barrier Effect of the Cellular Subgrain Feature in Directed Energy Deposited SS 316L: Janith Wanni¹; Ajith Achuthan¹; ¹Clarkson University

4:40 PM

Interlocking Metasurfaces: An Additive Enabled Joining Technology: Ophelia Bolmin¹; Benjamin Young¹; Philip Noell¹; Brad Boyce¹; ¹Sandia National Laboratories

5:00 PM

Interlocking Metasurfaces: Stronger than the Sum of their Parts: Benjamin Young¹; Ophelia Bolmin¹; Brad Boyce¹; Philip Noell¹; ¹Sandia National Laboratories

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Materials Design and Alloy Development V - Design Fundamentals — High **Temperature Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Behrang Poorganji, University of Toledo; Hunter Martin, HRL Laboratories LLC; James Saal, Citrine Informatics; Jiadong Gong, Questek Innovations LLC; Orlando Rios, University of Tennessee; Atieh Moridi, Cornell University

Wednesday PM | March 22, 2023 24C | SDCC

Session Chair: Jiadong Gong, QuesTek

2:00 PM

Bayesian Process Optimization for Porosity Control in Laser-Powder Bed Fusion of IN718 Alloy with Computational Fluid Dynamics Simulation: Peter Morcos¹; Dehao Liu²; Alaa Elwany¹; Ibrahim Karaman¹; Raymundo Arroyave¹; ¹Texas A&M University; ²Binghamton University

Investigation of Cracking in GRCop42-Inconel 625 Joints: Jakub Preis1; Somayeh Pasebani1; Brian Paul1; 1Oregon State University

2:40 PM

Development of a Gamma-prime-strengthened Superalloy for Laser Powder Bed Fusion: Tomonori Kitashima¹; Tomoki Hiraga¹; Dennis Jodi¹; Kyoko Kawagishi¹; Masahiko Demura¹; Shinya Hibino²; Takayoshi Nakano³; Makoto Watanabe¹; ¹National Institute for Materials Science; 2Kawasaki Heavy Industries, Ltd.; 3Osaka University

3:00 PM

Directed Energy Deposition (DED) of Ni-Al Functionally Integrated Materials (FIMs) via In-situ Alloying with Elemental Ni and Al Powder Feedstocks: Baolong Zheng1; Xin Wang1; Benjamin MacDonald1; Calvin Belcher¹; Penghui Cao¹; Lorenzo Valdevit¹; Enrique Lavernia¹; Julie Schoenung¹; ¹University of California, Irvine

3:20 PM Invited

Operando X-ray Diffraction Reveals Solidification Pathway of High Entropy Alloys with Different Degrees of Metastability: Akane Wakai¹; Amlan Das²; Atieh Moridi¹; ¹Cornell University; ²Cornell High **Energy Synchrotron Source**

3:50 PM Break

4:10 PM

Understanding the Influence of Boron in Additively Manufactured CoNi-based Superalloys Using Atom Probe Tomography: Qing-Qiang Ren¹; Jonathan Poplawsky¹; Evan Raeker²; Kira Pusch²; Tresa Pollock²; Stephane Forsik³; Ning Zhiu³; Austin Dicus³; Michael Kirka¹; ¹Oak Ridge National Laboratory; ²University of California Santa Barbara; ³Carpenter Technology Corporation

4:30 PM

Microstructure and Mechanical Properties of Arc Melted NiSi11Cx Alloys: Foysal Kabir Tareq1; Even Wilberg Hovig2; Ragnhild Aune3; Geir Grasmo¹; ¹University of Agder; ²SINTEF Industry; ³Norwegian University of Science and Technology

4:50 PM

Comparing Microstructure and Tensile Properties of Wrought and LP-DED Haynes 233: Effects of Heat Treatment and Test Temperature: Mikyle Paul¹; Reza Ghiaasiaan¹; Paul Gradl²; Shuai Shao¹; Nima Shamsaei¹; ¹Auburn University; ²NASA Marshall Space Flight Center

5:10 PM

Laser Powder Bed Fusion of Defect-Free NiTi Shape Memory Alloy Parts with Superior Mechanical Response: Abdelrahman Elsayed¹; Ibrahim Karaman¹; Raymundo Arroyave¹; Alaa Elwany¹; Kadri Can Atli¹; Chen Zhang¹; Lei Xue¹; ¹Texas A&M University

BIOMATERIALS

Advanced Biomaterials for Biomedical Implants — Advanced Biomaterials for Implants II

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Jing Du, Pennsylvania State University

Wednesday PM | March 22, 2023 Sapphire 400B | Hilton

Session Chairs: Thomas Vinoy, University of Alabama at Birmingham; Du Jing, Pennsylvania State University

2:00 PM Invited

Application of Magnetic Iron Oxide Nanostructures in Drug Delivery: A Compact Review: Inono C. Omoruyi11; Jeffery Omoruyi2; Oscar Aghedo³; Ukeme Archibong⁴; Ikhazuagbe Ifijen²; ¹Department of Chemistry, University of Benin, Benin City, Edo state, Nigeria; ²Rubber Research Institute of Nigeria; ³University of Benin; ⁴ University of Benin

Design, Characterization, and In Vitro Corrosion Properties of New near Ti- Nb -Ag Alloy for Bio Implant Applications: Mohamed Hussein¹; Arumugam Kumar¹; Mohamed Abdul Azeem¹; Ahmad Sorour¹; Saravanan Sankaran¹; ¹King Fahd University of Petroleum and Minerals

2:50 PM

Finite Element Analysis of Partially Biodegradable Ti-PGA Composite Implants Assembled with Bone Fractures: Hassan Mehboob¹; ¹Prince Sultan University

3:10 PM

Manufacturing of Mg Wires with Optimized Properties for Biomedical Applications: Wahaaj Ali¹; Leon Tillmann²; Guillermo Domínguez³; Muzi Li¹; Mónica Echeverry-Rendón¹; Tim Mayer²; Carlos González³; Javier Llorca³; Alexander Kopp²; ¹IMDEA Materials Institute; ²Meotec GmbH; ³IMDEA Materials Institute & Technical University of Madrid

3:30 PM Break

3:50 PM

Developing Strong and Ductile TWIP Zr-based Alloys for Cardiovascular Stent Application: Junhui Tang¹; Philippe Vermaut¹; Frédéric Prima¹; Fan Sun¹; ¹Chimie-ParisTech

CHARACTERIZATION

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session VI

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; C. Tasan, Massachusetts Institute of Technology; Olivia Jackson, Sandia National Laboratories

Wednesday PM | March 22, 2023 Aqua 311A | Hilton

Session Chairs: Mohsen Taheri Andani, Texas A&M University; Laurent Capolungo, Los Alamos National Laboratory

2:00 PM Invited

Twin Network Formation and Morphology in Metals with Hexagonal Close Packed Crystal Structure: Laurent Capolungo¹; Dang Khanh¹; Arul Kumar¹; Darshan Bamney¹; Hi Vo¹; Rodney McCabe¹; Carlos Tome¹; ¹Los Alamos National Laboratory

2:30 PM

High Orientation Precision 3D-EBSD with Multi-Modal Data Registration: Gregory Sparks¹; Paul Shade²; Michael Uchic²; Stephen Niezgoda¹; Simon Mason¹; Michael Mills¹; Mark Obstalecki²; ¹Ohio State University; ²Air Force Research Laboratory

2:50 PM

Evolution of Stresses during Twinning and Detwinning in Magnesium: Karim Louca¹; Jonathan Wright²; Marta Majkut²; Hamidreza Abdolvand¹; ¹University of Western Ontario; ²European Synchrotron Radiation Facility (ESRF)

Micro Hall-Petch Slope in Mg Alloys: The Influence of Grain Boundary Parameters: Mohsen Taheri Andani¹; Aaditya Lakshmanan¹; Jeremy Yoo¹; Veera Sundararaghavan¹; John Allison¹; Amit Misra¹; ¹University of Michigan

3:30 PM Break

3:50 PM

An In-Situ Study of Mechanical Twinning Effects on Strain Localization and Damage in an (+) Titanium Alloy: Jiyun Kang1; C. Cem Tasan¹; ¹Massachusetts Institute of Technology

4:10 PM

Capturing the 3D Evolution of Twin Networks in Titanium as a Function of Applied Strain: Hi Vo1; Rodney McCabe1; Patrick Pinney¹; Matthew Schneider¹; M. Arul Kumar¹; Carlos Tome¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

Slip Transfer at Grain Boundaries and Intergranular Fracture in Ti: Eugenia Nieto¹; Eshan Ganju²; Nik Chawla²; Javier Llorca¹; ¹IMDEA Materials Institute & Technical University of Madrid; ²Purdue University

4:50 PM

Dislocation Pile-ups and Grain Boundary Interactions Studied Using In Situ Cross-Correlation EBSD in High Purity Nickel: Yang Su¹; Thanh Phan²; Liming Xiong²; Josh Kacher¹; ¹Georgia Institute of Technology; 2 lowa State University

5:10 PM

Deformation Behavior of Chondrite Meteorite Using In Situ Correlative Microscopy: Tai-Jan Huang¹; Eshan Ganju¹; Hamid Torbatisarraf¹; Sridhar Niverty¹; Nikhilesh Chawla¹; ¹Purdue University

ENERGY & ENVIRONMENT

Advanced Materials for Energy Conversion and Storage 2023 — Energy Storage with Battery II

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Surojit Gupta, University of North Dakota; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania

Wednesday PM | March 22, 2023 32B | SDCC

Session Chairs: Rachel Carter, U.S. Naval Research Lab.; Kaustubh Naik, Purdue University

2:00 PM Keynote

Towards Fracture-free Bulk Silicon Anodes for Lithium-ion Batteries: Matthew Lefler¹; Junhoon Yeom¹; Christopher Rudolf¹; Corey Love1; 1Us Naval Research Laboratory

2:30 PM

Atomistic Simulations of Reaction Kinetics at Electrochemical Interface: Yuanyue Liu1; 1University of Texas at Austin

Cathode Materials Recycling, Regeneration, and Reuse: Meng Shi¹; Bor-Rong Chen¹; Pete Barnes¹; John Klaehn¹; Luis Diaz Aldana¹; Eric Dufek1; Tedd Lister1; 1Idaho National Laboratory

High Recycled Content Aluminum Alloy Current Collector for Lithium-Ion Batteries: Daehoon Kang¹; Martti Kampgen²; Sazol Das¹; Diptarka Majumdar¹; Matthew McDowell³; Rajesh Gopalaswamy¹; ¹Novelis Global Research and Technology Center; ²Novelis Deutschland GmbH; 3Georgia Tech

3:30 PM Break

Large-Scale Phase-field Modeling of Lithium Dendrite Growth: Jin Zhang¹; Alexander Chadwick¹; David Chopp¹; Peter Voorhees¹; ¹Northwestern University

Mechanistic Analysis of Interface Stability in Solid-State Batteries: Kaustubh Naik¹; *Bairav Vishnugopi*¹; Partha Mukherjee¹; ¹Purdue University

CHARACTERIZATION

Advanced Real Time Imaging — Energy, **Biomaterials, Emerging Techniques**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: Biomaterials Committee

Program Organizers: Jinichiro Nakano, US Department of Energy - National Engergy Technology Laboratory; David Alman, National Energy Technology Laboratory; Il Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology; Noritaka Saito, Kyushu University; Anna Nakano, US Department of Energy National Energy Technology Laboratory; Zuotai Zhang, Sourthern University of Science and Technology; Candan Tamerler, University of Kansas; Bryan Webler, Carnegie Mellon University; Wangzhong Mu, Kth Royal Institute of Technology; David Veysset, Stanford University; Pranjal Nautiyal, University of Pennsylvania

Wednesday PM | March 22, 2023 Aqua 310A | Hilton

Session Chair: Jinichiro Nakano, US Department of Energy -National Engergy Technology Laboratory

2:00 PM Invited

Recent Advances in Ultrafast Real-time Imaging of Sonoprocessing Advanced Materials: Jiawei Mi1; 1University of Hull

2:20 PM Invited

Real-time Plasmon-Enhanced Colorimetric Imaging: Brian Abbey¹; ¹La Trobe University

Behavior of Plastic Ashes in Gasification Environments: Jinichiro Nakano¹; Kristin Tippey¹; Anna Nakano¹; Hugh Thomas¹; Ömer Doğan¹; ¹US Department of Energy - National Engergy Technology Laboratory

BIOMATERIALS

Advances in Biomaterials for 3D Printing of Scaffolds and Tissues — Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Biomaterials Committee

Program Organizers: Changxue Xu, Texas Tech University; Jun Yin, Zhejiang University; Zhengyi Zhang, Huazhong University of Science and Technology; Yifei Jin, University Of Nevada Reno; Heqi Xu, Texas Tech University

Wednesday PM | March 22, 2023 Sapphire 410A | Hilton

Session Chair: Heqi Xu, Zhejiang University

2:00 PM

Investigation of Cell Sedimentation and Cell Aggregation during **3D Bioprinting**: Md Shahriar¹; Heqi Xu¹; Jiachen Liu¹; Changxue Xu¹; Dulce Martinez Salazar¹; ¹Texas Tech University

2:20 PM

Processing and Properties of 3D Printed Bioabsorbable Polymer-Metal Composites (PLDL/Mg and PLDL/Zn) for Orthopaedic Applications: Cillian Thompson¹; Guillermo Domínguez¹; Jimena de la Vega¹; Cristina Pascual-González²; Monica Echeverry-Rendón¹; Carlos González³; Javier Llorca³; ¹IMDEA Materials Institute; ²Rey Juan Carlos University; 3IMDEA Materials Institute & Technical University of Madrid

2:40 PM

Investigation of Cellular Attachment and Morphology on a 3D-printed Curved Micropillar Substrate: Eduardo Pena¹; Md Shahriar¹; Changxue Xu¹; ¹Texas Tech University

3:00 PM

The Influence of Printing Orientation on the Mechanical Properties of 3D Printed Parts by Stereolithography (SLA) Process: Michael Melly¹; Alyssa Napora¹; Olivia Lowe¹; Chao Gao²; Fariborz Tavangarian¹; ¹Pennsylvania State University Harrisburg; ²Norwegian University of Science and Technology

Improving Predictability of Additively Manufactured Ti-6Al-4V Lattices for Customised Orthopaedic Devices: Xue Cao1; 1University of Birmingham

ADVANCED MATERIALS

Advances in Multi-Principal Element Alloys II — Structures and Modeling

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; E-Wen Huang, National Yang Ming Chiao Tung University; Jennifer Carter, Case Western Reserve University; Srivatsan Tirumalai; Xie Xie, FCA US LLC; James Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Wednesday PM | March 22, 2023 Aqua D | Hilton

Session Chairs: Chelsey Hargather, New Mexico Institute of Mining and Technology; Ying Yang, Oak Ridge National Laboratory

2:00 PM Invited

Interface-related Deformation Phenomena in High Entropy Alloy / Metallic Glass Nanolaminates: Jurgen Eckert¹; Qi Xu¹; Daniel Sopu¹; Xudong Yuan¹; Daniel Kiener²; ¹Erich Schmid Institute of Materials Science; ²Montanuniversitaet Leoben, Dept. Materials Science

2:20 PM Invited

Effects of Precipitate Size and Spacing on Deformation-induced fcc to bcc Phase Transformation: Eva Zarkadoula1; Ying Yang1; Albina Borisevich¹; Easo George¹; ¹Oak Ridge National Laboratory

2:40 PM Invited

The Complexity of High Entropy Alloys: Huseyin Sehitoglu¹; ASK Mohammed¹; O. Celebi¹; ¹University of Illinois

3:00 PM Invited

Diffusion-activation Energy in CoCrNi, CoCrFeNiMn, and CoCrFeNiCuHigh-entropyAlloysfromFirst-principlesCalculations, with Comparison to Creep-activation Energy: Christopher Lafferty¹; Peter Liaw²; Chelsey Hargather¹; ¹New Mexico Institute of Mining and Technology; ²University of Tennessee

3:20 PM Break

3:40 PM Invited

A Physical Model for Accurate Prediction of Lattice Parameter beyond Vegard's Law: An Application in bcc Solid Solution Alloys: Christopher Tandoc1; Yong-Jie Hu1; 1Drexel University

4:00 PM Invited

Sequential Deformation-induced Phase Transformations in a Fe-Cr-Co-Ni Medium-entropy Alloy Explains Its Mechanical Behavior: Ying Yang¹; Weicheng Zhong¹; Easo George¹; ¹Oak Ridge National Laboratory

4:20 PM Invited

Study of Short-Range Orders in Al-Co-Cr-Fe-Ni High-Entropy Alloys and Their Effects on Thermodynamic Properties - Atomistic Simulations and Data Analytics: Seungha Shin1; Md Abdullah Al Hasan¹; Peter Liaw¹; Dustin Gilbert¹; ¹University of Tennessee

4:40 PM Invited

Understanding the Short-range Ordering and Dislocation Behavior in BCC Refractory High Entropy Alloys: Shuai Chen1; Zachary Aitken¹; Subrahmanyam Pattamatta²; Zhaoxuan Wu²; Zhi-Gen Yu1; David Srolovitz3; Peter Liaw4; Yong-Wei Zhang1; 1Institute of High Performance Computing; ²City University of Hong Kong; ³Hong Kong University; 4University of Tennessee

5:00 PM Invited

First-principles Study of the Phase Stability and Secondary Phase Formation in the AlxCoCrFeNi High-entropy Alloys: Chin-Lung Kuo¹; ¹National Taiwan University

5:20 PM

Numerical and Experimental Exploration of CCAs from the CrFeNiMoTi System for the Development of Cobalt-free Hardfacing Coatings: Clément Vary¹; Pascal Aubry¹; Ivan Guillot²; ¹CEA; ²CNRS

MATERIALS PROCESSING

Advances in Powder and Ceramic Materials Science Advances in Ceramic Materials and Processes IV

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Materials Characterization Committee, TMS: Powder Materials Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Faqin Dong, Southwest University of Science and Technology; Jinhong Li, China University of Geosciences; Ruigang Wang, The University of Alabama; Alexander Dupuy, University of California, Irvine

Wednesday PM | March 22, 2023 30A | SDCC

Session Chair: Eugene Olevsky, San Diego State University

2:00 PM Introductory Comments

2:05 PM Invited

Refractories Ceramic Cements Based on Double Oxides: Nickolai Iliukha¹; ¹Kyiv University

2:25 PM

Printed Carbon Nanotubes and Graphene Heaters for Drying **Ceramics**: Ziyad Sherif¹; John Patsavellas¹; Konstantinos Salonitis¹; ¹Cranfield University

Enhancing Reinforcing Efficiency of Sic Particles in Aluminium Matrix Composites with Intercalated Oxygen Atoms: Miran Joo¹; Donghyun Bae1; 1Yonsei University

3:05 PM

Mixed-Alkali Effect on Metaphosphate Glass Forming Liquids: Taemin Yeo1; Jung-Wook Cho1; 1POSTECH

3:25 PM Break

3:40 PM

Weathering Resistance of Post-consumer Glass and Sawdust Reinforced Polyester Composites: Kator Jomboh¹; Mohammed Yakubu²; Wilson Eze³; Adele Garkida²; Emmanuel Alemaka²; ¹University of Maiduguri, Borno State; ²Ahmadu Bello University, Zaria; 3Nigerian Institute of Leather and Science Technology, Zaria

MATERIALS PROCESSING

Advances in Surface Engineering V — Thick Coatings

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Bharat Jasthi, South Dakota School of Mines & Technology; Arif Mubarok, PPG Industries; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University

Wednesday PM | March 22, 2023 29D | SDCC

Session Chairs: Tushar Borkar, Cleveland State University; Ganesh Walunj, Buffalo State College

2:00 PM Introductory Comments

2:05 PM Invited

Oxidation of Ferrous Alloys and Coatings Under Isothermal, Impulse Heating, and Diesel Engine Operation: John Saputo1; Felipe Caliari¹; Sanjay Sampath¹; ¹Stony Brook University

2:25 PM Invited

Open-air Plasma Surface Processing of Al Alloy 7075 Surface to Form Oxide-based Corrosion Barrier Layer: Yong Chae Lim¹; Jiheon Jun¹; Yi Feng Su¹; Harry Meyer, III¹; Jong Kahk Keum¹; Bradley Lokitz¹; Andrew Sy²; Ryan Robinson²; Daphne Pappas²; Zhili Feng¹; ¹Oak Ridge National Laboratory; ²Plasmatreat USA, Inc.

2:45 PM

Characterizing Residual Stress Profiles of Nitrogen and Helium Carrier Gas 6061 Aluminum and 6061 Aluminum Metal Matrix Composite Cold Spray Depositions Using X-Ray Diffraction.: Nathan Staley¹; Grant Crawford¹; Michael Carter²; ¹South Dakota School of Mines and Technology; ²South Dakota School of Mines & Technology

3:05 PM Invited

Effective Utilization of Metallurgical Characterization Methods for Oxidation Resistance Spray Coatings: Hariharan Sundaram¹; Veerakumar Kandaraj¹; ¹GE Kuwait Technology Center WLL

3:25 PM Break

Effect of Direct and Pulsed Current on Electrodeposited Zn-Fe Alloy Coatings: Rajdeep Mondal¹; Manindra Manna¹; Atanu Banerjee¹; Amar Bhagat¹; ¹Tata Steel

Microstructural Evolution and Performance of Si-based Coatings Formed on Refractory Multi-principal Element Alloys: Brady Bresnahan1; David Poerschke1; 1University of Minnesota

4:20 PM

Peridynamic Simulation of Particles Impact and Bonding in Cold Spray with Tunable Adhesion: Baihua Ren1; Jun Song1; 1McGill University

MATERIALS DESIGN

Advances in Titanium Technology — Session VI

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Zachary Kloenne, Ohio State University; Fan Sun, CNRS - PSL Research University; Stoichko Antonov, National Energy Technology Laboratory; Rongpei Shi, Harbin Institute of Technology (Shenzhen)

Wednesday PM | March 22, 2023 Cobalt 500 | Hilton

Session Chair: Qing Tan, Max-Planck-Institut für Eisenforschung

2:00 PM Invited

On the Relationships between Twinning and Stress-induced Martensite in Superelastic Beta Titanium Alloys: Emmanuel Bertrand¹; Philippe Castany²; Yang Yang³; Isabelle Braems¹; Thierry Gloriant²; ¹Nantes Université; ²INSA Rennes; ³Guangdong University of Technology

2:30 PM Invited

Implications for Hydride Formation in Commercially Pure Titanium and their Deformation Mechanism: Qing Tan1; Stoichko Antonov2; Zhiran Yan³; David Dye⁴; Baptiste Gault¹; ¹Max Planck Institut für Eisenforschung, GmbH; ²National Energy Technology Laboratory; ³University of Science and Technology Beijing; ⁴Imperial College

3:00 PM

Ti Alloy Wire Fabrication from Waste and Out-of-Specification Particulates: Robert Wilson¹; Geoffrey de Looze¹; Kun Yang¹; Shigin Yan¹; David Ritchie¹; Ling Chen¹; Andrew Yob¹; Dayalan Gunasegaram¹; ¹Csiro

3:20 PM Break

3:40 PM

Phase Transformation Behavior during Ultrasonic Welding of Pure Ti Sheets with Fe Interlayer: Syronn Francisco1; Kuan-Chieh Hu1; Jheyu Lin¹; ¹National Taipei University of Technology

4:00 PM

Mechanical, Thermal Conductive and Anti-wear Properties Improvement in Titanium Matrix Composites Reinforced with Graphene Nanosheets: Qi Yan1; Biao Chen1; Wenfeng Lu2; Hao Wang²; Jinshan Li¹; ¹Northwestern Polytechnical University; ²National University of Singapore

Improvement of Mechanical Properties of Pure Ti by Combined Process of Multi-directional Forging and Conventional Thermomechanical Processing: Hiromi Miura¹; Yutaro Iwabuchi¹; Masakazu Kobayashi¹; Tomotsugu Shimokawa²; Chihiro Watanabe²; ¹Toyohashi University of Technology; ²Kanazawa University

MATERIALS DESIGN

AI/Data Informatics: Computational Model **Development, Validation, and Uncertainty** Quantification — Session VI

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Francesca Tavazza, National Institute of Standards and Technology; Dennis Dimiduk, BlueQuartz Software LLC; Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Shreyas Honrao, NASA Ames Research Center; Ashley Spear, University of Utah; Houlong Zhuang, Arizona State University

Wednesday PM | March 22, 2023 Cobalt 520 | Hilton

Session Chair: Anh Tran, Sandia National Laboratories

2:00 PM Invited

Graph Attention Networks for Microstructural Understanding: Ryan Cohn¹; Elizabeth Holm¹; ¹Carnegie Mellon University

Accelerating Microstructurally Small Crack Growth Predictions in Three-dimensional Microstructures Using Deep Learning: Vignesh Babu Rao¹; Brian Phung¹; Bjorn Johnsson¹; Ashley Spear¹; ¹University of Utah

2:40 PM

Adaptive Latent Space Embedding for Real-Time 3D Diffraction Data Analysis: Alexander Scheinker¹; Reeju Pokharel¹; ¹Los Alamos **National Laboratory**

3:00 PM

Prediction of Slip Localization and Transmission in Polycrystalline HCP Metals via Incorporation of Micromechanical Modeling and Machine Learning: Behnam Ahmadikia1; Adolph Beyerlein2; Irene Beyerlein¹; ¹University of California Santa Barbara; ²Clemson University

3:20 PM

Denoising of Electron Back Scatter Patterns for Improved EBSD Characterization Using Deep Learning: Mani Krishna Karri¹; Radhakrishnan Madhavan¹; Mangesh Pantawane¹; Ramniwas Singh¹; Narendra Dahotre¹; ¹University of North Texas

3:40 PM Break

Examining the Effects of Grain Boundary Structure Variability, Solute Atoms, and Interatomic Potential on the non-Arrhenius Migration of Incoherent Twin Grain Boundaries in Nickel: Akarsh Verma¹; Eric Homer¹; Oliver Johnson¹; Shigenobu Ogata²; Gregory ¹Brigham Young University; ²Osaka University; Thompson³; ³University of Alabama

4:20 PM

Modelling Nucleation in Crystal Phase Transition from Machine Learning Metadynamics: Qiang Zhu1; Pedro Santos-Florez1; Howard Yanxon¹; Yansun Yao²; ¹University of Nevada, Las Vegas; ²University of Saskatchewan

4:40 PM

Data Assimilation for Microstructure Evolution in Kinetic Monte Carlo: Anh Tran1; Theron Rodgers1; Yan Wang2; 1Sandia National Laboratories; 2Georgia Institute of Technology

5:00 PM

How to Lead R&D Digital Transformation in a Chemical Corporation: Yoshishige Okuno¹; Shimpei Takemoto¹; ¹Showa Denko K.K.

MATERIALS DESIGN

Algorithm Development in Materials Science and **Engineering — Solution Algorithms for Solidification Microstructure**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Adrian Sabau, Oak Ridge National Laboratory; Ebrahim Asadi, University of Memphis; Enrique Martinez Saez, Clemson University; Garritt Tucker, Colorado School of Mines; Hojun Lim, Sandia National Laboratories; Vimal Ramanuj, Oak Ridge National Laboratory

Wednesday PM | March 22, 2023 Cobalt 502B | Hilton

Session Chairs: Adrian Sabau, Oak Ridge National Laboratory; Ebrahim Asadi, University of Memphis

2:00 PM Invited

A Recursive Grain Remapping Scheme for Irregular Morphologies in Phase-Field Models: Alexander Chadwick1; Peter Voorhees1; ¹Northwestern University

An OpenMP GPU-Offload Implementation of a cellular automata solidification model for laser fusion additive manufacturing: Adrian Sabau¹; Lang Yuan²; Jean-Luc Fattebert¹; ¹Oak Ridge National Laboratory; 2University of South Carolina

3:00 PM

Characterization of the evolution of the Grain Boundary Network using Spectral Graph Theory: Jose Nino¹; Oliver Johnson¹; ¹Brigham Young University

3:20 PM Break

3:40 PM

Characterizing Microstructure Evolution in Latent Space for Machine Learning Applications: Saaketh Desai¹; Ankit Shrivastava¹; Marta D'Elia¹; Habib Najm¹; Remi Dingreville¹; ¹Sandia National Laboratories

4:00 PM

Data Assimilation for Estimation of Microstructural Evolution during Solid-state Sintering: Integration of Phase-field Simulation and In-situ Experimental Observation: Akimitsu Ishii¹; Akinori Yamanaka²; Akiyasu Yamamoto²; ¹National Institute for Materials Science; ²Tokyo University of Agriculture and Technology

4:20 PM

Diffuse Interface Technique to Simulate Fluid Flow and Characterize Complex Porous Media: Robert Termuhlen¹; Genzhi Hu¹; Jason Nicholas¹; Hui-Chia Yu¹; ¹Michigan State University

4:40 PM

Numerical Modeling of Porosity Formation and Dendrite Growth with Lattice Boltzmann Method(LBM) - Cellular Automata(CA): Wonjoo Lee1; Howon Lee2; Seong-hoon Kang2; Jonghun Yoon1; ¹Hanyang University; ²Korea Institute of Materials Science

LIGHT METALS

Aluminum Alloys, Characterization and Processing Additive Manufacturing

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Julie Levesque, Quebec Metallurgy Center; Stephan Broek, Kensington Technology Inc.

Wednesday PM | March 22, 2023 32A | SDCC

Session Chair: Mohsen Mohammadi, University of New Brunswick

2:00 PM

Compatibility Study of Polymeric Binders for Aluminum Binder Jet Parts: Solgang Im1; Rasim Batmaz2; Arunkumar Natarajan1; Etienne ¹GE Additive; ²University of Waterloo; ³Polytechnique Montreal

2:25 PM

Material Evaluation Framework of Additive Manufactured Aluminum Alloys for Space Optical Instruments: Zachary Post¹; Walter Zimbeck¹; Steven Storck¹; Floris van Kempen²; Gerard Otter²; John Boldt¹; Ludger van der Laan²; Steven Szczesniak¹; Ryan Carter¹; Robert Mueller¹; Salahudin Nimer¹; Doug Trigg¹; Michael Berkson¹; Frank Morgan¹; William Swartz¹; ¹JHU APL; ²TNO

2:50 PM

Comparison of Additively Manufactured and Cast Aluminum A205 Alloy: Heidar Karimialavijeh¹; Morteza Ghasri Khouzani²; Apratim Chakraborty²; Jean-Philippe Harvey¹; Etienne Martin¹; ¹Polytechnique Montreal; ²University of Waterloo

3:15 PM

The Role of Ti and B Additions in Grain Refinement of Al-Mn Alloy during Laser Additive Manufacturing: Qingyu Pan¹; Monica Kapoor²; Sean Mileski²; John Carsley²; Xiaoyuan Lou¹; ¹Purdue University; ²Novelis Global Research and Technology Center

LIGHT METALS

Aluminum Reduction Technology — Alumina **Dissolution & Bath Chemistry**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Pierre Marcellin, Rio Tinto; Stephan Broek, Kensington Technology Inc.

Wednesday PM | March 22, 2023 30E | SDCC

Session Chair: Daniel Marinha, Rio Tinto

2:00 PM Introductory Comments

2:10 PM

CFD Modelling of Solidification and Melting of Bath during Raft Formation: Sindre Engzelius Gylver¹; Kristian Etienne Einarsrud¹; ¹Norwegian University of Science and Technology

Experimental Investigation of the Alumina Cloud During Alumina Injections in Low And High Temperature Conditions: Thomas Roger¹; Laszlo Kiss¹; Lukas Dion¹; Jean Francois Bilodeau²; Sébastien Guérard²; Guillaume Bonneau¹; ¹Universite Du Quebec A Chicoutimi; ²Rio Tinto

3:00 PM

Fundamental Mass Transfer Correlations Based on Experimental and Literature Data: Jonathan Alarie1; Lukas Dion1; László Kiss1; Sébastien Guérard²; Jean-François Bilodeau²; ¹University of Quebec-Chicoutimi; ²Arvida Research and Development Centre, Rio

3:25 PM Break

3:40 PM

Potential of Production Al-Si Green Alloys in AP18 Aluminium Reduction Cell: Haris Salihagic Hrenko¹; Anton Verdenik¹; Branko Juršek¹; Dragan Mikša¹; Maja Vončina²; Jožef Medved²; ¹Talum d.d.; ²University of Ljubljana

BIOMATERIALS

Biological Materials Science — Biological Materials Science VI

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Jing Du, Pennsylvania State University; David Restrepo, University of Texas at San Antonio; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Ling Li, Virginia Polytechnic Institute

Wednesday PM | March 22, 2023 Sapphire 402 | Hilton

Session Chairs: Debora Lyn Porter, University of Utah; Jeffrey Bates, University of Utah

2:00 PM

Understanding the Fibrous Nodal Design at the Sieve Plate of Glass Sponge E. aspergillum: A Structural-mechanical Exploration: Hongshun Chen¹; Ling Li¹; ¹Virginia Tech

2:20 PM

Multi-scale Biomechanical Analysis of Fungal Sporocarps and Their Constitutive Components: Debora Lyn Porter¹; Bryn Dentinger¹; Steven Naleway¹; ¹University of Utah

2:40 PM

A Review of Nanovanadium Compounds for Cancer Cell Therapy: Ikhazuagbe Ifijen¹; Nyaknno U. Udokpoh¹; Muniratu Maliki²; Esther Ikhuoria³; Efosa Obazee¹; ¹Rubber Research Institute of Nigeria; ²Edo State University, Uzairue; 3University of Benin

3:00 PM

Reinforced Freeze-cast Ceramics Using Uniform Magnetic Fields: Josh Fernquist¹; Ashkan Pourkand¹; Jake Abbott¹; Henry Fu¹; Steven Naleway¹; ¹University of Utah

3:20 PM Break

3:40 PM

Unraveling the Construction of Hexagonal Cells in the Apis mellifera Honeycomb Using Time-Resolved X-ray Microscopy (XRM): Rahul Franklin1; Brock Harpur1; Nikhilesh Chawla1; 1Purdue University

4:00 PM

Biodegradation of Petroleum-based Plastic Using Bacillus sp.: Rahulkumar Sunil Singh¹; Eddie Gilcrease¹; Ramesh Goel¹; Michael L Free1; Prashant K Sarswat1; 1University of Utah

A Concise Review of the Antibacterial Action of Gold Nanoparticles Against Various Bacteria: Ikhazuagbe Ifijen¹; Muniratu Maliki²; Nyaknno U. Udokpoh¹; Ifeanyi J. Odiachi³; *Best Atoe*⁴; ¹Rubber Research Institute of Nigeria; ²Edo State University, Uzairue; ³Delta State Polytechnic Ogwashi-Uku, Nigeria; 4Worldwide Healthcare, Nigeria

ADVANCED MATERIALS

Bulk Metallic Glasses XX — Physical and Mechanical **Properties I**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Robert Maass, Federal Institute of Materials Research and Testing (BAM); Peter Derlet, Paul Scherrer Institut; Katharine Flores, Washington University in St. Louis; Yonghao Sun, The Chinese Academy of Sciences; Lindsay Greer, University of Cambridge; Peter Liaw, University of Tennessee

Wednesday PM | March 22, 2023 Aqua C | Hilton

Session Chair: Robert Maass, Federal Institute of Materials Research and Testing (BAM)

2:00 PM

Structural Development of (Fe $_{36}$ Co $_{36}$ B $_{19.2}$ Si $_{4.8}$ Nb $_4$) $_{99.5}$ Cu $_{0.5}$ BMG: MihaiStoica¹; Noemi Cerboni²; Alexander Firlus¹; Stephan Gerstl¹; Robin Schäublin¹; Jörg Löffler¹; ¹ETH Zurich; ²Paul Scherrer Institute

2:20 PM

Property Studies on Atomically Smooth Metallic Glasses: Amit Datye¹; Zheng Chen¹; Chao Zhou¹; Xinzhe Wang¹; Shuhan Zhang¹; Jittisa Ketkaew¹; Sungwoo Sohn¹; Omur E. Dagdeviren²; Jan Schroers¹; *Udo Schwarz*¹; ¹Yale University; ²University of Quebec

2:40 PM

Atomic-scale Nature of the Invar Effect in Fe-based Bulk Metallic Glasses: Alexander Firlus1; Mihai Stoica1; Stefan Michalik2; Gavin Vaughan³; Robin Schäublin¹; Jörg Löffler¹; ¹ETH Zurich; ²Diamond Light Source; ³European Synchrotron Radiation Facility (ESRF)

3:00 PM Invited

Construction of Three-dimensional Deformation Sequence Map in Bulk Metallic Glasses: Wook Ha Ryu¹; Won-Seok Ko²; Haruka Isano³; Rui Yamada³; Heh Sang Ahn¹; Geun Hee Yoo¹; Kook Noh Yoon¹; Junji Saida³; Eun Soo Park¹; ¹Seoul National University; ²Inha University; 3Tohoku University

3:20 PM Break

3:40 PM Invited

Effect of Impurities on the Mechanical Properties of Commercialgrade Bulk Metallic Glass: Douglas Hofmann¹; Punnathat Bordeenikasem¹; Thomas Freeman¹; Melanie Buziak¹; ¹NASA Jet **Propulsion Laboratory**

4:00 PM

Nano-mechanical Probing of Elasticity Length Scales in Metallic Glasses: Birte Riechers¹; Robert Maaß²; ¹Federal Institute of Materials Research And Testing (BAM); ²Federal Institute of Materials Research and Testing (BAM), University of Illinois at Urbana-Champaign

4:20 PM

On the Correlation between Multiscale Structural Heterogeneities and Mechanical Properties in Metallic Glasses: Dong Han1; Yunjiang Wang²; Yanfei Gao¹; ¹University of Tennessee; ²Institute of Mechanics, Chinese Academy of Sciences; University of Chinese Academy of Sciences

4:40 PM

Achieving High Strength and Toughness by Modulating Metallic Glass Composition at the Nanoscale: Ali Behboud1; Amir Motallebzadeh²: Sezer Ozerinc¹: ¹Middle East Technical University: ²Koc University Surface Science and Technology Center (KUYTAM)

LIGHT METALS

Cast Shop Technology — Casting and Casthouse **Operations**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Halldor Gudmundsson, Century - Nordural; Stephan Broek, Kensington Technology Inc.

Wednesday PM | March 22, 2023 31C | SDCC

Session Chair: Halldor Gudmundsson, Nordural ehf

2:00 PM

Designing a Safe Casthouse: Alex Lowery¹; ¹Wise Chem LLC

2:25 PM

Operations Assisting and Predictive Maintenance Tools in Casthouses - Examples from AMAG Casting: Alexander Poscher¹; Martin Mönius¹; Eduard Faschang¹; Bernd Prillhofer¹; ¹AMAG casting

2:50 PM

Counter Gravity Casting of Al Alloys: Microstructure and Properties: Konstantinos Georgarakis¹; Mark Jolly¹; ¹Cranfield University

3:15 PM

Defect Minimisation in Vacuum Assisted Plaster Mould Investment Casting through Simulation of High Value Aluminium Alloy Components: Emanuele Pagone¹; Christopher Jones¹; John Forde²; Ben Shaw²; Mark Jolly¹; Konstantinos Salonitis¹; ¹Cranfield University; ²Sylatech

NUCLEAR MATERIALS

Ceramic Materials for Nuclear Energy Research and Applications — Characterization of Fuels and **Materials**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Energy Committee

Program Organizers: Walter Luscher, Pacific Northwest National Laboratory; Xian-Ming Bai, Virginia Polytechnic Institute and State University; Lingfeng He, North Carolina State University; Sudipta Biswas, Idaho National Laboratory; Simon Middleburgh, Bangor University

Wednesday PM | March 22, 2023 28B | SDCC

Session Chair: Lingfeng He, North Carolina State University

2:00 PM Invited

Scanning Transmission Electron Microscopy of Nanoprecipitates in Spent UO2 Nuclear Fuel: Edgar Buck1; Dallas Reilly1; 1Pacific Northwest National Laboratory

2:30 PM Invited

Soft X-ray Synchrotron Radiation Spectromicroscopy of Spent Nuclear Fuel Focused Ion Beam Sections: David Shuh1; 1Lawrence Berkeley National Laboratory

Advanced Characterization and Modeling of Nanoprecipitates in Spent Nuclear Fuel: Lingfeng He1; Mukesh Bachhav2; Chao Jiang2; ¹North Carolina State University; ²Idaho National Laboratory

3:20 PM

Microstructural Characterization of Neutron Irradiated Concrete Minerals: Jose Arregui-Mena¹; Ippei Maruyama²; Matheus Tunes³; Elena Tajuelo Rodriguez¹; Christa Torrence⁴; Thomas Rosseel¹; Yann Le Pape¹; Philip Edmondson¹; ¹Oak Ridge National Laboratory; ²Nagoya University; ³Los Alamos National Laboratory; ⁴Texas A&M University

3:40 PM Break

4:00 PM Invited

Comprehensive Characterization of Damage in Ion Irradiated Ceramics for Validation of Atomistic Models: Marat Khafizov¹; Joshua Ferrigno¹; Erika Nosal¹; Saqeeb Adnan¹; Kaustubh Bawane²; Amey Khanolkar²; Miaomiao Jin³; Linu Malakkal²; Chao Jiang²; Lingfeng He⁴; David Hurley²; ¹Ohio State University; ²Idaho National Laboratory; ³Pennsylvania State University; ⁴North Carolina State University

4:30 PM

Impact of Resonance Scattering on the Thermal Conductivity of ThO₂: Saqeeb Adnan¹; Zilong Hua²; Amey Khanolkar²; Cody Dennett³; David Hurley²; Marat Khafizov¹; ¹The Ohio State University; ²Idaho National Laboratory; ³Massachusetts Institute of Technology

4:50 PM

Irradiation- and Dopant-induced Structural Changes in Ceramic Nuclear Fuels Probed via Elastic and Optical Properties: Amey Khanolkar¹; Linu Malakkal¹; Zilong Hua¹; Cody Dennett²; J. Matthew Mann³; Marat Khafizov⁴; David Hurley¹; ¹Idaho National Laboratory; ²Massachusetts Institute of Technology; ³Air Force Research Laboratory; ⁴The Ohio State University

5:10 PM

Defect Chemistry and Radiation Stability of (Gd & Zr) Co-doped UO2: *Ritesh Mohun*¹; Daniel Bailey²; Martin Stennett²; Claire Corkhill²; Simon Middleburgh¹; ¹Bangor University; ²University of Sheffield

CHARACTERIZATION

Characterization of Minerals, Metals and Materials — Metallurgical Processing Analysis and Characterization

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Mingming Zhang; Zhiwei Peng, Central South University; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, Eurofins EAG Materials Science LLC; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, DEVCOM ARL Army Research Office; Shadia Ikhmayies

Wednesday PM | March 22, 2023 Agua 313 | Hilton

Session Chair: Zhiwei Peng, Central South University

2:00 PM

Physico-chemical Characteristics of Deselenized Copper Anode Slime: Jhumki Hait¹; Navneet Randhawa¹; ¹CSIR-National Metallurgical Laboratory

2:20 PM

Porosity Evolution during Hydrogen-based Direct Reduction of Hematite Probed by 4D Synchrotron X-ray Nano-tomography: Yan Ma¹; Yen-Fan Wang¹; Katrin Bugelnig²; Julie Villanova³; Guillermo Requena²; Dierk Raabe¹; ¹Max-Planck-Institut für Eisenforschung; ²German Aerospace Center (DLR); ³ESRF-The European Synchrotron

2:40 PM

Characterization of Chromite and its Role in the Refractory Products: Dean Gregurek¹; Philip Schantl¹; Alfred Spanring¹; ¹RHI Magnesita

3:00 PM

Preventing Hydrogen Embrittlement by Electrochemically-assisted Hydrogen Desorption: *Kyung-Shik Kim*¹; Ju Li¹; Bilge Yildiz¹; Cem Tasan¹; ¹Massachusetts Institute of Technology

3:20 PM

Synthesis and Characterization of Bilayer Cu-Al and Cu-Zn Foams: Karina Hemmendinger¹; Andrea Hodge¹; ¹University of Southern California

3:40 PM Break

3:55 PM

Low-temperature NH3-SCR Performance with Activated-carbonsupported Nano Manganese Ferrites: Wang Jia¹; Xuejuan Zhao¹; Zijian Su¹; Yuanbo Zhang¹; ¹Central South University

4:15 PM

Understanding Wall Stresses in Powder Die Compaction by Novel Experiments and Coordinated Modeling: Daniel Bufford¹; Dan Bolintineanu¹; Joel Clemmer¹; William Erikson¹; Stewart Silling¹; ¹Sandia National Laboratories

4:35 PM

Melting and Solidification Behaviors of the Copper Slags with Different Cao Content at Various Oxygen Partial Pressures: *Yannan Wang*¹; Shuigen Huang¹; Bart Blanpain¹; Muxing Guo¹; ¹KU Leuven

4:55 PM

Impact Behavior of Eucalyptus Wood and Chamotte Residues Reinforcing a Castor Oil Derived Polyurethane Resin Composites: Juvenil Oliveira¹; Felipe Lopes¹; Noan Simonassi¹; Carlos Maurício Vieira¹; Sergio Monteiro¹; ¹State University of Northern Rio de Janeiro

MATERIALS DESIGN

Computational Discovery and Design of Materials — Session VI

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Houlong Zhuang, Arizona State University; Duyu Chen, University of California, Santa Barbara; Ismaila Dabo, Pennsylvania State University; Yang Jiao, Arizona State University; Sara Kadkhodaei, University of Illinois Chicago; Mahesh Neupane, Army Research Laboratory; Xiaofeng Qian, Texas A&M University; Arunima Singh, Arizona State University; Natasha Vermaak, Lehigh University

Wednesday PM | March 22, 2023 Cobalt 502A | Hilton

Session Chair: Xiaofeng Qian, Texas A&M University

2:00 PM Invited

Band Gap Renormalization in 2D Materials from First-principles: Sahar Sharifzadeh¹; ¹Boston University

2:30 PM

What is a Minimal Working Example for a Self-driving Laboratory: Sterling Baird¹; Taylor Sparks¹; ¹University of Utah

2:50 PM

Exploiting First-principles Based Interpretation of X-ray Absorption Spectra of Ni, Cr, Fe Elements in Molten-salt System: Mehmet Topsakal¹; Kaifeng Zheng¹; Nirmalendu Patra¹; Michael Woods²; Ruchi Gakhar²; Phillip Halstenberg³; Shannon Mahurin³; Anatoly Frenkel⁴; Simerjeet Gill¹; ¹BNL; ²Idaho National Laboratory; ³Oak Ridge National Laboratory; ⁴Stony Brook University

3:10 PM

Graph Mining in Materials Science for the Prediction of Material Properties: Mehrdad Jalali¹; Christof Wöll¹; ¹Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT

PHYSICAL METALLURGY

Computational Thermodynamics and Kinetics — Al and ML

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Solidification Committee

Program Organizers: Hesam Askari, University of Rochester; Damien Tourret, IMDEA Materials Institute; Eva Zarkadoula, Oak Ridge National Laboratory; Enrique Martinez Saez, Clemson University; Frederic Soisson, Cea Saclay; Fadi Abdeljawad, Clemson University; Ziyong Hou, Chongqing University

Wednesday PM | March 22, 2023 26A | SDCC

Session Chairs: Mahmood Mamivand, Boise State University; Edwin Garcia, Purdue University

2:00 PM

Physics-Informed Machine Learning of the Thermodynamics and Kinetics of Point Defects in Alloys: Anjana Talapatra¹; Anup Pandey¹; Danny Perez¹; Blas Uberuaga¹; Ghanshyam Pilania¹; ¹Los Alamos **National Laboratory**

2:20 PM

Prediction of High-temperature Elasticity of Tungsten Using Machine Learning and Data-driven Approach: Anruo Zhong¹, Clovis Lapointe¹; Alexandra Goryaeva¹; Jacopo Baima¹; Manuel Athènes¹; Mihai-Cosmin Marinica¹; ¹Universite Paris-Saclay, CEA

Diffusivity in a Multicomponent Alloy Using Machine Learning and Variational Approaches: Dallas Trinkle1; Soham Chattopadhyay1; ¹University of Illinois at Urbana-Champaign

3:00 PM Invited

Chemistry and Processing History Prediction from Microstructure Morphologies: Mahmood Mamivand¹; Amir Abbas Kazemzadeh Farizhandi¹; ¹Boise State University

3:30 PM Break

3:50 PM

Rapid Machine Learning Estimation of Grain Boundary Segregation Vibrational Entropy Spectra in Dilute Polycrystals: Nutth Tuchinda¹; Christopher Schuh¹; ¹Massachusetts Institute of Technology

4:10 PM Invited

Machine Learning of Phase Diagrams: Applications to Energy Materials: Jarrod Lund¹; Haoyue Wang¹; Richard Braatz²; Edwin Garcia¹; ¹Purdue University; ²MIT

4:30 PM Invited

Exploring New Frontiers of Thermal Transport: A Combined Firstprinciples and Machine Learning Approach: Rinkle Juneja1; 10ak Ridge National Laboratory

MECHANICS & STRUCTURAL RELIABILITY

Deformation-induced Manipulation of Defect Structures and Hierarchical Microstructures -Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State Universtiy; Kester Clarke, Colorado School of Mines; Eric Lass, University of Tennessee-Knoxville; Vahid Tari, ATI - Allegheny Technologies Incorporated

Wednesday PM | March 22, 2023 Sapphire P | Hilton

Session Chairs: Kester Clarke, Colorado School of Mines; Michael Lastovich, North Carolina State University; Eric Lass, University of Tennessee-Knoxville

2:00 PM Invited

Dynamically Reversible Shear Transformations in a CrMnFeCoNi High-entropy Alloy: Jian Wang¹; Kaisheng Ming²; Shijian Zheng²; ¹University of Nebraska-Lincoln; ²Hebei University of Technology

2:20 PM Invited

Grain Refinement and Microstructural Evolution in AM High Entropy Alloys through SPD and Thermomechanical Processing: Benjamin Adam¹; Megumi Kawasaki¹; Tianyi Chen¹; ¹Oregon State University

2:40 PM Invited

Exploring Joining Mechanism for Immiscible System: Friction Stir Welding of Pure Mg and Pure Fe: Hrishikesh Das1; Bharat Gwalani1; Xiaolong Ma¹; Piyush Upadhyay¹; ¹Pacific Northwest National Laboratory

3:00 PM

Effect of Pre-straining on High Strain Rate Compression Behavior of a Complex Concentrated Allov Exhibiting Transformation Induced Plasticity: Ravi Sankar Haridas¹; Priyanka Agrawal¹; Jeffrey T Lloyd²; Rajiv Mishra¹; ¹University of North Texas; ²CCDC Army Research Laboratory

3:20 PM

Deformation of Fe-Rich, Co-Free Multi-Principal Element Alloys at Multiple Strain Rates and Temperature Conditions: James Frishkoff¹; Kester Clarke¹; Amy Clarke¹; ¹Colorado School of Mines

3:40 PM Break

4:00 PM

Deformation Mechanisms in Cu-Nb Nanolayered Composite under Pico-indentation and Tribological Testing: Mayur Pole1; Zexi Lu¹; Tanvi Ajantiwalay¹; Matthew Olszta¹; Shalini Tripathi¹; Angi Yu1; Hardeep Mehta1; Tianhao Wang1; Xiaolong Ma1; Arun Devaraj1; Bharat Gwalani¹; ¹Pacific Northwest National Laboratory

Deformation Induced Hierarchical Twinning in Titanium Alloys: Dian Li¹; Yufeng Zheng¹; ¹University of Nevada, Reno

4:40 PM

A Novel Warm Rolling Induced Microstructure Modification for **Evading Strength-Ductility Trade-off in Medium Manganese Steel:** Avanish Chandan¹; Gyanaranjan Mishra²; Kaushal Kishore²; Jay Chakraborty¹; ¹CSIR- National Metallurgical Laboratory; ²Tata Steel

MATERIALS PROCESSING

Deformation-induced Microstructural Evolution during Solid Phase Processing: Experimental and Computational Studies — Deformation Induced Microstructural Evolution IV

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Arun Devaraj, Pacific Northwest National Laboratory; Pascal Bellon, University of Illinois at Urbana-Champaign; Suhas Eswarappa Prameela, Massachusetts Institute of Technology; Mostafa Hassani, Cornell University

Wednesday PM | March 22, 2023 29C | SDCC

Session Chair: Suhas Prameela, MIT

2:00 PM Introductory Comments

2:05 PM Invited

Deformation Induced G.P. Zone Formation in Magnesium Alloys: Taisuke Sasaki¹; Jhe-Yu Lin¹; Peng Yi²; Zehao Li¹; Eswarappa Prameela Suhas²; Abigail Park²; Elaine Lipkin²; Alice Lee²; Michael Falk²; Timothy Weihs²; Kazuhiro Hono²; ¹National Institute for Materials Science; ²Johns Hopkins University

2:35 PM

A High-Speed Rotational Diamond Anvil Cell for In Situ Analysis of Microstructural Evolution of Metallic Alloys during Solid Phase Processing: Arun Devaraj¹; Tingkun Liu¹; Changyong Park²; Stanislav Sinogeikin³; Matthew Olszta¹; Bharat Gwalani¹; Lei Li¹; Nanjun Chen¹; Qin Pang¹; Wenkai Fu¹; Suveen Mathaudhu¹; Yulan Li¹; Ayoub Soulami¹; Shenyang Hu¹; Peter Sushko¹; Cynthia Powell¹; ¹Pacific Northwest National Laboratory; ²argonne national laboratory; ³DAC tools

2:55 PM

Enhancing Mechanical Properties of Molybdenum with Equal Channel Angular Extrusion Processing: Ekaterina Maynor¹; David Foley²; Brady Butler¹; James Paramore¹; Kelvin Xie¹; ¹Texas A&M University; ²Shear Form, Inc.

3:15 PM

In-situ Observation of Nucleation and Grain Growth in Recrystallization of Cold-rolled 1100 Aluminum Sheets: Kishu Akiba¹; Masato Ito¹; Yoshiki Mori²; Nobuhiro Kitahara¹; Kenichi Yaguchi¹; Kota Matsumoto³; Eisuke Miyoshi³; Akinori Yamanaka³; Materials Corporation; ²Mitsubishi Materials Corporation(Current Affiliation: MA Aluminum Corporation); 3Tokyo University of Agriculture and Technology

3:35 PM Break

3:50 PM Invited

In-situ Observation of the Effects of Thermo-mechanical Processing on Microstructure Evolution in Ferrous and Nonferrous Materials: An Abridged Summary of Results Obtained Using the FlexiStir Instrument: Jorge F. dos Santos¹; Peter Staron²; Luciano Bergmann²; Bejamin Klusemann²; Arun Devaraj¹; Julian Escobar¹; Cynthia Powell¹; ¹Pacific Northwest National Laboratory; ²Helmholtz-Zentrum Hereon

4:20 PM

Phase Transformations in Hexagonal Closed Packed Materials during Ultrasonic Additive Manufacturing: Michael Pagan¹; Ningxiner Zhao²; Leon Headings²; Marcelo Dapino²; Andres Rossy³; Reece Emergy¹; Philip Rack¹; Caleb Massey³; Steve Zinkle¹; Suresh Babu¹; ¹University of Tennessee; ²The Ohio State University; ³Oak Ridge National Laboratory

4:40 PM

Microstructural Evolution during the Laser Forming of Sheet Metal: Nathan Fripp¹; Justin Norkett¹; Benjamin Anthony¹; Victoria Miller¹; ¹University of Florida

5:00 PM

Microstructure Modification in Sintered Copper-tantalum Composites: Charles Borenstein¹; Brady Butler²; James Paramore²; Karl Hartwig³; Michael Demkowicz¹; ¹Texas A&M University; ²DEVCOM-ARL, Army Research Lab South at Texas A&M University; 3Shear Form, Inc.

5:20 PM

Twinning Behaviour Affected by Lowering Basal Stacking Fault Energy in Ti-10 at.%Al Alloy: Wengian Wu¹; Binggiang Wei¹; Mingyu Gong¹; Jian Wang¹; ¹University of Nebraska-Lincoln

The Role of Mechanical Loading in bcc-hcp Phase Transition: Tension-compression Asymmetry and Twin Formation: Lei Cao1; Amir Hassan Zahiri¹; Eduardo Vitral¹; Jamie Ombogo¹; Mehrab Lotfpour¹; ¹University of Nevada

NANOSTRUCTURED MATERIALS

Deformation Mechanisms, Microstructure Evolution, and Mechanical Properties of Nanoscale Materials - Mechanical Behaviors of Nanoporous and **Nanoarchitectured Materials**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Niaz Abdolrahim, University of Rochester; Matthew Daly, University of Illinois-Chicago; Hesam Askari, University of Rochester; Eugen Rabkin, Technion; Jeffrey Wheeler, Femto Tools Ag; Wendy Gu, Stanford University

Wednesday PM | March 22, 2023 Aqua 300AB | Hilton

Session Chairs: wendy Gu, Stanford University; Dan Mordehai, Technion

2:00 PM Invited

Second Phase Strengthening in Nanofoams and Nanolayers: David Bahr¹; Alexandra Loaiza¹; ¹Purdue University

Development and Characterization of Gradient Nanostructured Metals via Compositional Means: Alejandro Barrios¹; James Nathaniel II¹; Joseph Monti¹; Khalid Hattar¹; Douglas Medlin¹; Remi Dingreville¹; Brad Boyce¹; ¹Sandia National Laboratories

2:50 PM

Microstructure and Mechanical Deformation of Nanoscale Hydrogel Infusion-based Additively Manufactured Ni: Wenxin Zhang¹; Julia Greer¹; ¹California Institute of Technology

Silica-coated DNA Lattices as Mechanical Metamaterials: John Kulikowski¹; Shuang Wang²; Melody Wang¹; Yonggang Ke²; Wendy Gu¹; ¹Stanford University; ²Emory University

3:30 PM Break

3:50 PM Invited

Modelling the Mechanical Properties of Nanoporous Metallic Structures: Santhosh Mathesan¹; Zhi Chen¹; Ben Engelman¹; Dan Mordehai1; 1Israel Institute of Technology

A Machine Learning Approach to Model the Mechanical Response of Nanofoams: Sepideh Kavousi¹; Mohsen Asle Zaeem¹; ¹Colorado School of Mines

4:40 PM

Micromechanics of Hybrid Ceramic-organic Nanoarchitected Materials: Diletta Giuntini¹; ¹Eindhoven University of Technology

5:00 PM

Size and Shape Effects on the Strength of Platinum Nanoparticles: Jonathan Zimmerman¹; Anuj Bisht¹; Yuri Mishin²; Eugen Rabkin¹; ¹Technion - Israel Institute of Technology; ²George Mason University

5:20 PM

Observing and Quantifying Deformation Mechanisms in Metal Nanoparticles: Ruikang Ding1; Soodabeh Azadehranjbar1; Ingrid M. Padilla-Espinosa²; Andrew Baker¹; Muztoba Rabbani²; Ashlie Martini²; Tevis D. B. Jacobs¹; ¹University of Pittsburgh; ²University of California, Merced

ENERGY & ENVIRONMENT

Electrical Steels — Electrical Steels

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee, TMS: Magnetic Materials Committee

Program Organizers: Youliang He, CanmetMATERIALS, Natural Resources Canada; Kester Clarke, Colorado School of Mines; Jun Cui, Iowa State University

Wednesday PM | March 22, 2023 33B | SDCC

Session Chairs: Youliang He, CanmetMATERIALS; Kester Clarke, Colorado School of Mines; Jun Cui, Iowa State University

2:00 PM Invited

Report on Some Recent Progress on the Understanding of the Goss Texture in Fe-3 % Si Grain Oriented Electrical Steels: Dierk Raabe¹; ¹Max-Planck Institute

2:30 PM

Effect of Rare Earth Yttrium on Inclusion and Texture of Oriented Silicon Steel: Zhihong Guo¹; Xiangyang Li¹; Yaxu Zheng¹; Liguang Zhu¹; Yuanxiang Zhang²; Huilan Sun¹; Ruifang Cao³; ¹Hebei University of Science and Technology; ²Northeastern University; ³Beijing Shougang Co., LTD

2:50 PM

Microstructure and Texture Evolution of High Grade Non-oriented Electrical Steel for New Energy Vehicles during Hot Rolling: Xueying Lv1; Wanlin Wang1; Peisheng Lv1; Huihui Wang1; Yunli Zhang1; Lulu Song¹; ¹Central South University

3:10 PM

A New Approach to Optimise the Microstructure of Non-oriented Electrical Steel Sheets: Saeed Tamimi¹; Youliang He²; Winfried Kockelmann³; Leo Kestens⁴; ¹AFRC- University of Strathclyde; ²CanmetMATERIALS; ³Science and Technology Facilities Council (STFC), Rutherford Appleton Laboratory, ISIS Facility; 4Ghent University

3:30 PM Break

3:45 PM Invited

The Processing and Application of Fe-6.5%Si Ribbons and Flakes: Gaoyuan Ouyang¹; Iver Anderson¹; Matthew Kramer¹; Jun Cui²; ¹Ames Laboratory; ²lowa State University

Constitutive Modelling of High-temperature Flow Behavior of a Non-oriented Electrical Steel with 3.2 wt% Si: Gyanaranjan Mishra¹; Kanwal Chadha¹; Youliang He²; Clodualdo Aranas¹; ¹University of New Brunswick; ²CanmetMaterials

4:35 PM

Effect of Cold Rolling Reduction Rate and Rare Earth Yttrium on Microstructure and Texture of Oriented Silicon Steel: Zhihong Guo¹; Pengjun Liu¹; Yaxu Zheng¹; Liguang Zhu¹; Yuanxiang Zhang¹; Huilan Sun¹; Ruifang Cao¹; ¹Hebei University of Science and Technology

4:55 PM

The Role of Temper Rolling and Annealing on the Magnetic Property Improvement of a Low Si Non-oriented Electrical Steel: Youliang He1; Tihe Zhou2; Haden Lee2; Chad Cathcart2; Peter Badgley²; ¹CanmetMATERIALS, Natural Resources Canada; ²Stelco

LIGHT METALS

Electrode Technology for Aluminum Production — **Anode and Cathode Process Improvements**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Roy Cahill, Rio Tinto; Stephan Broek, Kensington Technology Inc.

Wednesday PM | March 22, 2023 31A | SDCC

Session Chair: Roy Cahill, Rio Tinto Aluminium

2:00 PM

Investigation of the Stacking Effects on the Electrical Resistivity of Industrial Baked Anodes: Thierno Saidou Barry¹; Donald Picard²; Guillaume Gauvin¹; Julien Lauzon-Gauthier³; Houshang Alamdari¹; ¹REGAL Aluminium Research Center; ²Eddyfi; ³Aloca

New Generation Anode Baking Furnace: Use of Prefabrication for Additional Conversions at Bell-Bay Plant: Sandra Besson¹; David Deneef¹; Anthony Reeve²; Youcef Nadjem²; Meaghan Noonan³; Roy Cahill³; ¹Rio Tinto Aluminium Technology Solutions; ²Bell Bay Aluminium; 3Rio Tinto Transformation and Technical Support -**Pacific Operations**

2:50 PM

AHEX Full Scale Experiences at TRIMET Aluminium SE: Anders Sorhuus¹; Vrauke Zeibig²; Eivind Holmefjord¹; Oemer Mercan²; Elmar Sturm³; ¹REEL Norway AS; ²TRIMET Aluminium SE; ³ESC-Consulting

3:15 PM

Inline Modal Detection System of Anodes and Cathodes Measuring Cracks and Physical Properties: Dag Herman Andersen¹; ¹Hydro Aluminium

3:40 PM Concluding Comments

ELECTRONIC MATERIALS

Electronic Packaging and Interconnection — **Advanced Microelectronic Packaging Materials**

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Kazuhiro Nogita, University of Queensland; Mohd Arif Mohd Salleh, Universiti Malaysia Perlis; Dan Li, Beijing University of Technology; David Yan, San Jose State University; Fan-Yi Ouyang, National Tsing Hua University; Patrick Shamberger, Texas A&M University; Tae-Kyu Lee, Cisco Systems; Christopher Gourlay, Imperial College London; Albert T. Wu, National Central University

Wednesday PM | March 22, 2023 Sapphire E | Hilton

Session Chairs: David Yan, San Jose State University; Tae-Kyu Lee, Cisco Systems

2:00 PM Introductory Comments

2:05 PM Invited

Effects of Diameter on Copper Pillar with Solder Cap Interconnections during Reflow Soldering Process: Lee Jing Rou1; Mohd Sharizal Abdul Aziz1; Mohd Arif Anuar Mohd Salleh2; Khor Chu Yee³; Mohammad Hafifi Hafiz Ishak⁴; ¹School of Mechanical Engineering, Universiti Sains Malaysia; ²Center of Excellence Geopolymer & Green Technology (CeGeoGTech), Universiti Malaysia Perlis; ³Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis; 4School of Aerospace Engineering, Universiti Sains Malaysia

2:30 PM

Current-enhanced Presureless Sintering of Cu Nanoparticles at Room Temperature: Tzu-Hao Shen¹; Albert T. Wu¹; ¹National Central University

2:50 PM

In-situ Observation of the Ga and Cu/Cu6Ni Reaction by Synchrotron Microradiography: Qichao Hao1; Xin Fu Tan1; Shiqian Liu²; Stuart McDonald¹; Hideyuki Yasuda³; Kazuhiro Nogita¹; ¹The University of Queensland; ²The University of Queensland; Shenzhen Technology University; 3Kyoto University

3:10 PM

No-Flow Electroless Connections for Die-to-Wafer Attach: Jeng-Hau Huang¹; Po-Shao Shih²; Vengudusamy Renganathan¹; Simon Gräfner¹; Chang-Hsien Shen¹; Yu-Chun Lin¹; Po-Yu Kung¹; C. Robert Kao¹; ¹National taiwan university; ²National Taiwan University

3:30 PM Break

3:50 PM

Influences of Deposition Speed on Void Formation in Electroless Copper Plating Film for Micro-vias: Ming Chun Hsieh¹; Zheng Zhang¹; Masahiko Nishijima¹; Chuantong Chen¹; Katsuaki Suganuma¹; Hidekazu Honma²; Yu Shimizu²; Koji Kita²; Joonhaeng Kang²; Takashi Matsunami²; Kuniaki Otsuka²; ¹SANKEN, Osaka University; ²Okuno Chemical Industries Co., Ltd

Phase-field Simulation of Deposition Profile and Microstructure of Thin Film on Nonplanar Substrate: Hwanwook Lee1; Ahmad Nadeem¹; Kiran Raj¹; Yongwoo Kwon¹; ¹Hongik University

4:30 PM

Network Structure and Viscoelasticity of Flexible Electronic Interconnects based on Linear Low-density Polyethylene (LLDPE) and Liquid Silicone Rubber (LSR) Conductive Polymer Composites: Khairul Anwar Abdul Halim¹; Mohd Arif Anuar Mohd Salleh¹; Mohd. Firdaus Omar¹; Azlin Fazlina Osman¹; Muhammad Salihin Zakaria¹; ¹Faculty of Chemical Engineering Technology, Universiti Malaysia **Perlis**

4:50 PM

On the Thermal Aging of the Nanoporous Structure of Sintered Ag on a Cu Substrate: Xavier Milhet1; Jerome Colin1; Azdine Nait-Ali1; Kokouvi N'Tsouaglo¹; Loic Signor¹; ¹Pprime Institute Cnrs Ensma

5:10 PM Concluding Comments

CORROSION

Environmental Degradation of Additively Manufactured Alloys — Aqueous and Atmospheric Corrosion II

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Kinga Unocic, Oak Ridge National Laboratory; Jenifer Locke, Ohio State University; Sebastien Dryepondt, Oak Ridge National Laboratory; Brendy Rincon Troconis, University of Texas at San Antonio; Andrew Hoffman, GE Research; Xiaoyuan Lou, Purdue University

Wednesday PM | March 22, 2023 Sapphire 400A | Hilton

Session Chairs: Xiaoyuan Lou, Purdue University; Jennifer Locke,

2:00 PM Invited

Small-Scale Mechanical and Corrosion Properties of Additively Manufactured Stainless Steel: Xiaolei Guo1; Yachun Wang2; Eric Schindelholz¹; Gerald Frankel¹; ¹The Ohio State University; ²Idaho **National Laboratory**

2:30 PM Invited

Comparing the Corrosion Response of Wrought and Cold Sprayed Aluminum Alloys: Luke Brewer1; Munsu Kim1; Ozymandias Agar1; Gregory Kubacki¹; ¹University of Alabama

3:00 PM

Corrosion Behavior of Additively Manufactured Al-Cr-Mn-Co-Zr Alloys: Sarshad Rommel¹; Mingxuan Li¹; Thomas Watson²; Callie Benson³; Rainer Hebert¹; Mark Aindow¹; ¹University of Connecticut; ²Pratt & Whitney; ³Collins Aerospace

3:20 PM Break

High-pressure Cold Spray (HPCS) Coatings for Repair and Retrofit of Existing Large-scale Structures: Rose Gerani¹; Baillie Haddad¹; Aaron Nardi¹; ¹VRC Metal Systems

4:00 PM Invited

Corrosion Behavior of Additively Manufactured Al-Ce-X and Al-10SiMg Alloys in 3.5 wt.% NaCl Solution: Jiheon Jun¹; Alex Plotkowski¹; Amit Shyam¹; Sumit Bahl¹; Ryan Dehoff¹; Yi-Feng Su¹; J. Allen Haynes¹; ¹Oak Ridge National Laboratory

Corrosion and Wear-resistant Coatings for Nuclear and Automotive Applications by Using High-pressure Cold Spray Technology: Markus Brotsack¹; ¹Impact Innovations GmbH

CORROSION

Environmentally Assisted Cracking: Theory and Practice — Stress Corrosion Cracking II

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska-Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Wednesday PM | March 22, 2023 Sapphire 410B | Hilton

Session Chairs: Janelle Wharry, Purdue University; James Burns, University of Virginia

2:00 PM Invited

CISCC Repair & Mitigation Strategies in Nuclear Waste Storage Canisters: Janelle Wharry¹; Antonio Ramirez²; Frank Pfefferkorn³; Kumar Sridharan³; Indrajit Charit⁴; Vijay Vasudevan⁵; Luke Brewer⁶; Paul Allison⁶; Jonathan Tatman⁷; ¹Purdue University; ²The Ohio State University; ³University of Wisconsin; ⁴University of Idaho; ⁵University of North Texas; 6University of Alabama; 7Electric Power Research Institute

2:30 PM

Phase Field Modelling of Stress Corrosion Cracking in Superalloys at High Temperature: Mustafa Elsherkisi¹; Fabian Duarte Martinez¹; Simon Gray¹; Gustavo Castelluccio¹; ¹Cranfield University

2:50 PM

Susceptibility of Manganese Bronze to SCC in Water: Olaf Manz¹; Milo Kral¹; ¹University of Canterbury

3:10 PM

Stress Corrosion Mitigation in Al-Mg via Zn-Rich Primers in Atmospheric Environment: Matthew McMahon¹; Eric Dau¹; Allison Akman¹; ¹Naval Surface Warfare Center, Carderock Division

3:30 PM Break

3:50 PM Invited

On the Applied Potential Dependence of Environment-assisted Cracking Behavior of 7xxx-series Al Alloys in Marine Environments: Towards Informing Metal-rich Primer-based Mitigation Strategies: James Burns¹; Zach Harris¹; Alen Korjenic¹; John Scully¹; ¹University of Virginia

4:20 PM

Understanding the Effect of Applied Potential on Stress Corrosion Cracking of AA6111 Through In-Situ Measurements of Crack Tip pH: Katrina Catledge¹; Jenifer Locke¹; ¹Ohio State University

4:40 PM

Understanding Sensitization Rate Effects on Stress Corrosion Cracking for 5xxx Marine Grade Aluminum Alloys: William Golumbfskie¹; Emily Holcombe¹; Eric Dau¹; Matthew McMahon¹; ¹Naval Surface Warfare Center-Carderock Division

Effect of Microstructure on Stress Corrosion Cracking Behavior of Additively Manufactured 7050-based Aluminum Alloy: Rupesh Rajendran¹; Crosby Owens²; Jeffrey Eisenhaure²; David Spain²; Alex Kinsey²; Preet Singh¹; ¹Georgia Institute of Technology; ²Northrop **Grumman Corporation**

MATERIALS DESIGN

Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling Multiscale Modeling Approaches to Improve Fatigue **Predictions I**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Additive Manufacturing Committee

Program Organizers: Jean-Charles Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Ashley Spear, University of Utah; Antonios Kontsos, Drexel University; Brian Wisner, Ohio University; Orion Kafka, National Institute of Standards and Technology

Wednesday PM | March 22, 2023 Sapphire H | Hilton

Session Chair: Antonios Kontsos, Drexel University

2:00 PM

PRISMS-Fatigue Framework: Effects of Sample Size, Grain Neighborhood, and Surface Roughness on Extreme Value Fatigue Response: Mohammadreza Yaghoobi¹; Krzysztof S. Stopka²; John E. Allison¹; David McDowell³; ¹University of Michigan; ²Purdue University; 3Georgia Institute of Technology

Modeling Fatigue Resistance in Additively Manufactured Alloys with Porosity Defects: Krzysztof Stopka¹; Michael Sangid¹; ¹Purdue University

2:40 PM

Integrated Computational Modeling to Link Process with Fatigue Behavior for Metal Additive Manufacturing: Mehdi Amiri; Katerine Saleme; Maria Emelianenko; Bernhard Peters; 1

3:00 PM

Molecular Dynamics Simulations of the Thermal Evolution of Voids in Cu Bulk and Grain Boundaries: Vasileios Fotopoulos¹; Alexander Shluger¹; Ricardo Grau-Crespo²; Corey O'Hern³; ¹University College London (UCL); ²University of Reading; ³Yale University

3:20 PM Break

3:35 PM

Grain Scale Deformation Study of a Nickel-based Superalloy under Thermo-mechanical Fatigue Utilizing Crystal Plasticity Simulations and High-energy X-ray Diffraction Microscopy: Brandon Mackey¹; Ritwik Bandyopadhyay¹; Sven Gustafson¹; Michael Sangid1; 1Purdue University

3:55 PM

Crystal-Plasticity Modeling of Monotonic and Cyclic Softening in Inconel 718 Superalloy: Jean-Briac le Graverend¹; ¹Texas A&M University

Investigation of Irreversible Slip and Intragranular Lattice Rotations in Polycrystalline Inconel 718 during Cyclic Loading: Justine Schulte¹; Jonathan Hestroffer¹; Dalton Shadle²; Kelly Nygren³; Matthew Miller²; Tresa Pollock¹; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²Cornell University; ³Cornell High Energy Synchrotron Source

4:35 PM

A Novel Multiaxial Strain-Life Approach for Nickel-base Superalloys: Firat Irmak¹; Ali Gordon¹; ¹University of Central Florida

Phase-field Modeling of Fatigue Microstructures in Ni-based Single Crystal Superalloys: Jose Dominic¹; Jean-Briac le Graverend¹; ¹Texas A&M University

5:15 PM

Framework to Model Single crystal and Directionally Solidified Nickel Base Superalloys under a Wide Range of Monotonic, Cyclic, Thermomechanical Fatigue and Creep Fatigue Conditions: Navindra Wijeyeratne¹; Ali Gordon¹; ¹University of Central Florida

MATERIALS PROCESSING

Friction Stir Welding and Processing XII — Tooling & Process Monitoring

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Anton Naumov, Peter The Great St. Petersburg Polytechnic University; Nilesh Kumar, University of Alabama, Tuscaloosa

Wednesday PM | March 22, 2023 29A | SDCC

Session Chairs: Kevin Colligan, Concurrent Technologies Corporation; Darrell Herling, Pacific Northwest National Laboratory

2:00 PM Invited

Linking Tool Features to Process Forces: Samuel Merritt¹; Yuri Hovanski¹; Kenneth Ross²; ¹Brigham Young University; ²Pacific Northwest National Laboratory

Next Generation Tooling for Friction Stir Technologies: Supreeth Gaddam1; Amit Behera2; Qiaofu Zhang2; Noriaki Arai2; James Male2; Rajiv Mishra¹; ¹University of North Texas; ²QuesTek Innovations LLC

2:40 PM

Hybrid FSW Tools for Electromobile Applications: Michael Grätzel¹; Markus Weigl²; Michael Hasieber¹; Jean Pierre Bergmann¹; ¹Technische Universität Ilmenau; ²Grenzebach Maschinenbau GmbH

3:00 PM

Measurement of Heat Transfer Coefficient between a Friction Stir Welding Tool and Workpiece during Plunge Using a 3 Sensor: Matthew Goodson¹; Troy Munro¹; Michael Miles¹; ¹Brigham Young University

3:20 PM Break

3:40 PM Invited

Friction Stir Welding Operating Window for Aluminum Alloy Obtained by Temperature Measurement: Moura Abboud1; Laurent Dubourg²; Adrien Leygue³; Guillaume Racineux³; Olivier Kerbrat⁴; ¹Ecole Normale Supérieure de Rennes / Stirweld; ²Stirweld; ³Institut de Recherche en Génie Civil et Mécanique (GeM); 4Ecole Normale Supérieure de Rennes

4:00 PM

The Performance of a Force-based General Defect Detection Method Outside of Calibration: Johnathon Hunt1; Yuri Hovanski1; ¹Brigham Young University

4:20 PM Invited

Material Flow Visualization and Comparison in Different Aluminum Alloys during Friction Stir Welding using High-Speed X-ray Imaging: Hemant Agiwal¹; Daniel Franke¹; Mohammad Ansari¹; Patrick Faue¹; Samuel Clark²; Kamel Fezzaa²; Michael Zinn¹; Shiva Rudraraju¹; Frank Pfefferkorn¹; ¹University of Wisconsin-Madison; ²Argonne National Laboratory

4:40 PM

The Role of Fracture Properties on Lap Joint Strength of Friction Stir Welded AA 7055-T6 Sheets: Kranthi Balusu1; Hrishikesh Das1; Xiao Li¹; Timothy Roosendaal¹; Robert Seffens¹; Ayoub Soulami¹; Piyush Upadhyay¹; ¹Pacific Northwest National Laboratory

5:00 PM

Simulation and Realization of Friction Stir Welding of Aluminum Joints Using Additively Manufactured Ceramic Bobbin Tools: Toni Sprigode¹; Andreas Gester¹; Guntram Wagner¹; Murat Demirtas²; Nadja Kratz²; Anna Foit³; Gerald Ochse³; Angelika Brückner-Foit³; Adrian Rienäcker³; Marcus Emmel⁴; ¹Chemnitz University of Technology; ²Forschungsinstitut für Glas - Keramik GmbH; ³University of Kassel; ⁴Product Area Ceramics (GROW/PAC), grow platform GmbH

MATERIALS PROCESSING

Frontiers in Solidification: An MPMD Symposium Honoring Jonathan A. Dantzig — Casting Processes

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Light Metals Division, TMS Structural Materials Division, TMS: Aluminum Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Andre Phillion, McMaster University; Michel Rappaz, Ecole Polytechnique Fédérale De Lausanne; Melis Serefoglu, Marmara University; Damien Tourret, IMDEA Materials

Wednesday PM | March 22, 2023 28E | SDCC

Session Chairs: Andre Phillion, McMaster University; Michel Rappaz, EPFL; Melis Serefoglu, Marmara University; Damien Tourret, IMDEA Materials

2:00 PM Invited

Scaling Analysis In Solidification Process Modeling: Matthew Krane¹; ¹Purdue University

2:30 PM Invited

Computational Models of Microstructure and Thermal Distortion during Initial Solidification of Steel: Brian Thomas¹; Ghavam Azizi¹; Mohsen Asle Zaeem¹; ¹Colorado School of Mines

3:00 PM

Mutual Translations between Fundamental Knowledge and Industrial Practice in the Field of Al Alloys Solidification and Casting: Philippe Jarry1; 1Constellium C-TEC

3:20 PM Break

3:40 PM

Design of Light Wind Turbine Parts by Simulation Based Machine Learning: Youness Bami¹; Can Huang¹; Emir Subasic¹; Felix Weber²; Jannik Zimmermann²; Vitali Züch²; Jurgen Jakumeit¹; ¹Access E.V.; ²RWTH Aachen

Near-congruent Cu-Mn Bronze Produced with Ferro-manganese: Kevin Trumble¹; ¹Purdue University

4:20 PM

Microstructure and Crystallographic Texture in Twin-roll Casting of AA1050: Simulation and Industrial Validation: Jonathan Dantzig1; Onur Meydanoglu²; Arash Kazazi³; Hatice Mollaoglu Altuner²; Cemil Isiksacan²; *Melis Serefoglu*⁴; ¹University of Illinois; ²Assan Aluminum; ³Koc University; ⁴Marmara University

4:40 PM Invited

Frontiers in Solidification - 2023: Jonathan Dantzig¹; ¹University of Illinois at Urbana-Champaign

SPECIAL TOPICS

Frontiers of Materials Award Symposium: Functional Composition Control of Surface Mechanics in Soft, Water-swollen Gels — Functional Composition Control of Surface Mechanics in Soft, Water-Swollen Gels

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizer: Alison Dunn, University of Illinois Urbana-Champaign

Wednesday PM | March 22, 2023 Sapphire D | Hilton

Session Chair: Alison Dunn, University of Illinois Urbana-Champaign

2:00 PM Keynote

Soft Surface Layers on Swollen Gels Mediate Their Contact and Sliding Mechanics: Alison Dunn¹; ¹University of Illinois Urbana-Champaign

2:40 PM Invited

Contact Mechanics of Soft Hydrated Materials: Yang Lai¹; Dongjing He¹; Yuhang Hu¹; ¹Georgia Institute of Technology

3:20 PM Invited

Hydrogel Structure and Surface Physics: Angela Pitenis¹; ¹University of California, Santa Barbara

3:40 PM Break

4:00 PM Invited

Controlling Lubricity of Interfaces with Charged Hydrogels: Rosa Espinosa-Marzal¹; ¹University of Illinois Urbana-Champaign

4:40 PM Invited

Friction of Thin Hydrogel Films: Disentangling the Contributions of Poroelastic Flow and Interface Molecular Interactions: Antoine Chateauminois¹; ¹ESPCI, CNRS UMR 7615, Sorbonne Université

SPECIAL TOPICS

Frontiers of Materials Award Symposium: Intermetallic Alloys at the Edge of Complexity: Structural and Kinetic Aspects — Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Solidification Committee

Program Organizer: Ashwin Shahani, University of Michigan

Wednesday PM | March 22, 2023 28C | SDCC

Session Chair: Ashwin Shahani, University of Michigan

2:00 PM Keynote

Capturing the Growth of Quasicrystals Near- and Far-from-**Equilibrium**: Ashwin Shahani¹; ¹University of Michigan

2:40 PM Invited

Simulating Complex Crystal Structures and Their Assembly in Hard and Soft Condensed Materials: Julia Dshemuchadse¹; ¹Cornell University

3:20 PM Break

3:40 PM Invited

Influence of Icosahedral Short-range Order in the Liquid on Solidification Morphologies: Michel Rappaz¹; ¹École Polytechnique Fédérale de Lausanne

4:20 PM Invited

Intermetallic Compounds from Metallic-glass Precursors: A. Lindsay Greer¹; ¹University of Cambridge

ADVANCED MATERIALS

High Performance Steels — Processing - Mechanical **Property Relationships II**

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Jonah Klemm-Toole. Colorado School of Mines; Ana Luiza Araujo, CBMM North America Inc.; C. Tasan, Massachusetts Institute of Technology; Richard Fonda, Naval Research Laboratory; Amit Behera, QuesTek Innovations LLC; Benjamin Adam, Oregon State University; Krista Limmer, DEVCOM Army Research Laboratory; Kester Clarke, Colorado School of Mines

Wednesday PM | March 22, 2023 Aqua F | Hilton

Session Chairs: Jonah Klemm-Toole, Colorado School of Mines; Cem Tasan, Massachusetts Institute of Technology

The Relationship between Hydrogen Embrittlement Behavior and Pre-strain Level of Medium-Mn Steel: Hyun Wook Lee1; Tak Min Park¹; Hye-Jin Kim²; Jeongho Han¹; ¹Hanyang University; ²Hyundai-Steel Co.

2:20 PM

Effect of Nitrogen on the Hardening Mechanisms in the Highly Deformed Steel Rex734: Manuel Köbrich¹; Steffen Neumeier¹; Mathias Göken¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

2:40 PM

Neighborhood Effects on Mechanically Induced Martensitic Transformation in QP Steels: Jiyun Kang¹; C. Cem Tasan¹; Narayan S. Pottore²; Hong Zhu²; ¹Massachusetts Institute of Technology; ²ArcelorMittal

3:00 PM

Residual Stresses Near Inclusion Caused by Martensite Transformation: Tom Andersson¹; Matti Lindroos¹; Anssi Laukkanen¹; Tomi Suhonen¹; Joona Vaara²; Tero Frondelius²; ¹VTT; ²Wärtsilä

3.20 DM

Exceptional Fatigue Performance of Si and V Alloyed Nitriding Steels: Jonah Klemm-Toole¹; Michael Burnett¹; Kip Findley¹; ¹Colorado School of Mines

3:40 PM Break

3:55 PM

Yielding Behavior of Triplex Medium Mn Steel Alternated with Cooling Strategies: Altering Martensite/Ferrite Interfacial Feature: Xiao Shen¹; Bin Hu²; Qinyi Guo²; Haiwen Luo²; Wenwen Song¹; ¹RWTH Aachen University; ²University of Science and Technology Beijing

4-15 DM

Deformation and Damage Evolution of AHSS in Uniaxial Tension and Plane Strain Bending: Nizia Mendes Fonseca¹; David Wilkinson¹; Jidong Kang²; ¹McMaster University; ²CanmetMATERIALS

4-35 DM

Modeling the Tensile Behavior of Martensitic Low-alloy Steels Accounting of Microstructural Heterogeneities: Juan Macchi¹; Guillaume Geandier¹; Julien Teixeira¹; Sabine Denis¹; Frédéric Bonnet²; Sébastien Allain¹; ¹Institut Jean Lamour Ijl (Cnrs Umr7198); ²ArcelorMittal Research SA

4:55 PM

Phase Boundary Segregation Induced Strengthening in Ultrafinegrained Duplex Medium-Mn Steels: Yan Ma¹; Binhan Sun²; Alexander Schökel³; Wenwen Song⁴; Dirk Ponge²; Dierk Raabe²; Wolfgang Bleck⁴; ¹Max-Planck-Institut für Eisenforschung; RWTH Aachen University; ²Max-Planck-Institut für Eisenforschung; ³Deutsches Elektronen-Synchrotron DESY; ⁴RWTH Aachen University

MATERIALS DESIGN

Hume-Rothery Symposium on First-Principles Materials Design — Interface First-principle Method with Experiments II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Bin Ouyang, Florida State University; Mark Asta, University of California, Berkeley; Geoffroy Hautier, Dartmouth College; Wei Xiong, University of Pittsburgh; Anton Van der Ven, University of California, Santa Barbara

Wednesday PM | March 22, 2023 Cobalt 501C | Hilton

Session Chairs: Raphaële Clément, University of California, Santa Barbara; Hailong Chen, Georgia Institute of Technology

2:00 PM Invited

Origin of the Invar Effect: *Brent Fultz*¹; Stefan Lohaus¹; Pedro Guzman¹; ¹California Institute of Technology

2:30 PM Invited

Structure Determination – From Materials Design to Characterization: Maria Chan¹; ¹Argonne National Laboratory

3:00 PM Invited

Design of Novel Electrode and Solid Electrolyte Materials Guided by Crystal Structure Characterization and Understanding: *Hailong Chen*¹; ¹Georgia Institute of Technology

3:30 PM Break

3:50 PM Invited

Understanding Key Properties of Disordered Rock-salt Liion Cathode Materials Based on Ab Initio Calculations and Experiments: Jinhyuk Lee¹; ¹McGill University

LIGHT METALS

Light Elements Technology — Light Elements: Lithium & Alkalis and Silicon

Sponsored by: TMS Light Metals Division

Program Organizers: Neale Neelameggham, IND LLC; Kiran Solanki, Arizona State University; Prashanth Saraswat, Department of Metallurgy; Huimin Lu, Beijing Ofikintai Technology Co Ltd.; Onuralp Yucel, Istanbul Technical University

Wednesday PM | March 22, 2023 30D | SDCC

Session Chairs: Alafara Baba, University of Ilorin; Prashant Saraswat, university of utah

2:00 PM Introductory Comments

2:05 PM

A New Method for Producing Hydrogen, Lithium Metal and High-purity Silicon from Spodumene Ore: Huimin Lu¹; Neale Neelameggham²; Bin Li³; ¹Beijing Ofikintai Technology Co Ltd.; ²IND LLC; ³University of Nevada, Reno

2:30 PM

Electrochemical Technology for Li-isotope Separation: *Prashant Sarswat*¹; Michael Free¹; ¹University of Utah

2:50 PM

Recovery of Lithium from Waste LIBs Using Sulfuric Acid Roasting and Water Washing: Manis Kumar Jha¹; Pankaj Kumar Choubey¹; Rekha Panda¹; Om Shankar Dinkar¹; Nityanand Singh¹; ¹CSIR-National Metallurgical Laboratory

3:10 PM

High-grade Li2SO4 from a Local Montebrasite Ore as Industrial Raw Material for Managing Bipolar Disorder: Alafara Baba¹; Daud Olaoluwa²; Ayo Balogun³; Oluwagbemiga Adebola¹; ¹University of Ilorin & The Federal Polytechnic, Ede; ³University of Ilorin & Kogi State College of Education (Technical), Kabba

3:30 PM Break

3:45 PM

Sodium Metal from Sodium Sulfate - Using Aluminum and Molten Iron Reaction Medium: Jed Checketts¹; ¹Powerball Technologies

CORROSION

Local Ordering in Materials and Its Impacts on Mechanical Behaviors, Radiation Damage, and Corrosion - Session VI

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Nuclear Materials Committee, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Fadi Abdeljawad, Clemson University; Irene Beyerlein, University of California, Santa Barbara; Enrique Lavernia, University of California, Irvine; Robert Ritchie, University of California, Berkeley

Wednesday PM | March 22, 2023 Sapphire 411A | Hilton

Session Chairs: Fadi Abdeljawad, Clemson University; Daniel Gianola, University of California, Santa Barbara

2:00 PM Invited

Tunable Short-range Order Within Amorphous Complexions and Its Connection to Damage Nucleation: Pulkit Garg¹; Esther Hessong¹; Tianjiao Lei¹; Timothy Rupert¹; ¹University of California, Irvine

2:30 PM

Chemical and Structural Ordering in Amorphous Complexions Determines the Plasticity of Nanocrystalline Cu Alloys: Esther Hessong¹; Tianjiao Lei¹; Mingjie Xu¹; Timothy Rupert¹; ¹University of California, Irvine

2:50 PM Invited

Non-monotonic Role of Chemical Heterogeneity on Interfacial Crack Growth in Fe-Ni-Cr Alloys: Yue Fan¹; ¹University of Michigan

3:20 PM

Grain Boundary Segregation in Polycrystals: Isotherms, Computation, and Data Science: Malik Wagih1; Christopher Schuh1; ¹Massachusetts Institute of Technology

3:40 PM Break

3:55 PM Invited

Engineering the Extent of Grain Boundary Ordering via Premelting in Nanocrystalline Al Alloys: Jungho Shin1; Tianjiao Lei2; Hannah Howard¹; Glenn Balbus³; Timothy Rupert²; Daniel Gianola¹; ¹University of California-Santa Barbara; ²University of California Irvine; 3Air Force Research Laboratory

4:25 PM

The Effects of Local Order in Molten Metals on Glass Formation: Douhan Santürk¹; Can Okuyucu¹; Yunus Kalay¹; ¹Middle East **Technical University**

4:45 PM

Preferential Precipitation on Annealing Twin Boundaries and Its Effect on Strain Localization: Semanti Mukhopadhyay¹; Chaitali Patil¹; Hariharan Sriram¹; You Rao²; Longsheng Feng³; Maryam Ghazisaeidi¹; Stephen Niezgoda¹; Yunzhi Wang¹; Michael Mills¹; ¹The Ohio State University; ²EPFL; ³Lawrence Livermore National Laboratory

5:15 PM Invited

Coupled Grain Boundary and Twin Boundary Deformation in Metallic Materials: Jiangwei Wang¹; Qi Zhu²; Haofei Zhou¹; Xianghai An3; ¹Zhejiang University; ²Nanyang Technological University; ³The University of Sydney

NUCLEAR MATERIALS

Materials and Chemistry for Molten Salt Systems — Synthesis and Structure

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Raluca Scarlat, University of California, Berkeley, Jinsuo Zhang, Virginia Polytechnic Institute and State University; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Nathaniel Hoyt, Argonne National Laboratory

Wednesday PM | March 22, 2023 27A | SDCC

Session Chair: Jinsuo Zhang, Virginia Polytechnic Institute and State University

2:00 PM Introductory Comments

2:05 PM Invited

Synthesis of Actinide Fluorides and Chlorides for Molten Salt Reactor Fuels: Pavel Soucek1; O. Beneš2; M. Fucina3; E. Capelli4; P.R. Hania⁵; E. D'Agata¹; A. Rodrigues¹; H.J. Uitslag-Doolaard⁵; R. Konings¹; ¹European Commission, Joint Research Centre (JRC); ²1European Commission, Joint Research Centre (JRC); 3Univ. Lille, CNRS, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000; ⁴Orano, 92320 Châtillon; ⁵Nuclear Research and Consultancy Group

Reaction Kinetics of the Chlorination of UO2 with ZrCl4: Jarom Chamberlain¹; Asmat Taunque¹; Michael Simpson¹; ¹University of Utah

2:55 PM

Feasibility Study on Aluminum Under Laser Ablation for Corrosion Resistance in Molten Salt: Peggy Cawley¹; Supathorn Phongikaroon¹; ¹Virginia Commonwealth University

3:15 PM

Solvated Electron Dynamics in Molten Salts via Ultrafast Transient Absorption Spectroscopy: Alexander Bataller¹; Davis Bryars¹; ¹North Carolina State University

3:35 PM Break

Electrochemical Characterization of Molten Salt Fuel Systems with Boron-Doped Diamond: Hannah Patenaude¹; Nastasija Damjanovic¹; Charles Lhermitte²; Jason Rakos¹; Shirmir Branch³; Marisa Monreal²; Cory Rusinek¹; ¹University of Nevada, Las Vegas; ²Los Alamos National Laboratory; ³Pacific Northwest National Laboratory

4:15 PM

In-situ XAS and Electrochemistry Measurements on Molten FLiNaK: Sean Fayfar1; Guiqui Zheng1; David Sprouster2; Eli Stavitski3; Denis Leshchev³; Boris Khaykovich¹; ¹Massachusetts Institute of Technology; ²Stony Brook University; ³Brookhaven National Lab

4:35 PM

FLiBe Thermodynamic and Physical Properties Validation: Nathanael Gardner¹; Raluca Scarlat¹; Sven Vogel¹; Haley Williams¹; Boris Khaykovich¹; Sean Fayfar¹; ¹UC Berkeley

MATERIALS DESIGN

Materials Genome, CALPHAD, and a Career over the Span of 20, 50, and 60 Years: An FMD/SMD Symposium in Honor of Zi-Kui Liu — Machine Learning

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Yu Zhong, Worcester Polytechnic Institute; Richard Otis, Jet Propulsion Laboratory; Bi-Cheng Zhou, University of Virginia; Chelsey Hargather, New Mexico Institute of Mining and Technology; James Saal, Citrine Informatics; Carelyn Campbell, National Institute of Standards and Technology

Wednesday PM | March 22, 2023 Sapphire L | Hilton

Session Chair: Chelsey Hargather, New Mexico Tech

2:00 PM Invited

The Modern-day Blacksmith: Gareth Conduit1; ¹Cavendish Laboratory

2:30 PM Invited

Data-Driven Discovery and Design of Thermoelectric Materials: Christopher Wolverton¹; ¹Northwestern University

3:00 PM Invited

Computational Design of Novel High-Entropy Alloys: Multi-Strengthening Mechanisms vs Neural Network Model: Jaemin Wang¹; Hyeon-Seok Do¹; Byeong-Joo Lee¹; ¹Postech

3:30 PM Break

3:50 PM Invited

Coupling Physics in Data-driven High-temperature Alloys Design via High-throughput CALPHAD: Dongwon Shin1; Jian Peng1; Yukinori Yamamoto¹; Michael Brady¹; J. Allen Haynes¹; Sunyong Kwon¹; ¹Oak Ridge National Laboratory

4:20 PM Invited

Data-driven Modelling of Metallurgical Processes - A Case Study on BOF Process: Hongbiao Dong¹; ¹University of Leicester

4:50 PM Invited

Efficient Exploration of Compositionally Complex Alloys: Raymundo Arroyave¹; Brent Vela¹; Danial Khatamsaz¹; Douglas Allaire¹; ¹Texas A&M University

MATERIALS PROCESSING

Materials Research in Reduced Gravity — **Solidification**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee, TMS: Process Technology and Modeling Committee

Program Organizers: Wilhelmus Sillekens, European Space Agency; Michael Sansoucie, Nasa Marshall Space Flight Center; Robert Hyers, Worcester Polytechnic Institute; Douglas Matson, Tufts University; Gwendolyn Bracker, DLR Institute of Materials Physics in Space

Wednesday PM | March 22, 2023 30B | SDCC

Session Chairs: Robert Hyers, Worcester Polytechnic Institute; Maike Becker, German Aerospace Center (Dlr)

2:00 PM

Solidification of Al-Cu Alloys in Microgravity and Terrestrial **Environments**: Thomas Williams¹; Christoph Beckermann¹; ¹University of Iowa

2:20 PM

In-situ Investigation of the Impact of Gravity on CET during Directional Solidification of Al-Cu Alloys: Guillaume Reinhart¹; Fabiola Ngomesse¹; Lara Abou-Khalil¹; Gerhard Zimmermann²; David Browne³; Wilhelmus Sillekens⁴; Henri Nguyen-Thi¹; ¹Aix-Marseille University; ²ACCESS e.V.; ³University College Dublin; ⁴European Space Agency

2:40 PM

Nucleation and Growth Dynamics of Equiaxed Dendrites in Thin Metallic Samples in Microgravity and on Ground: Maike Becker1; Mareike Wegener¹; Jörg Drescher¹; Florian Kargl¹; Aerospace Center (DLR)

3:00 PM

of In-Situ Microgravity Equiaxed Solidification Analysis **Experiment using Machine Learning and Advanced Ground-Based** Characterization Techniques: Jonathan Mullen¹; Shashidhara Marathe²; Saranarayanan Ramachandran³; Wajira Mirihanage³; David Browne¹; ¹University College Dublin; ²Diamond Light Source; ³University of Manchester

3:20 PM

CAPTN Simulation of Dendritic Grain Structures: Yijian Wu¹; Oriane Senninger¹; Charles-Andre Gandin¹; ¹PSL University

3:40 PM Break

Structure and Properties of the Solder Joints Produced in Terrestrial and Microgravity Environment: Manish Kumar¹; Sid Pathak1; 1lowa State University

Gravity Influence on the Distortion-Densification Trajectory for Liquid Phase Sintering: Randall German¹; Elisa Torresani¹; Eugene Olevsky¹; ¹San Diego State University

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components III - Zr Alloys and Beyond

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Assel Aitkaliyeva, University of Florida; Clarissa Yablinsky, Los Alamos National Laboratory; Osman Anderoglu, University of New Mexico; Eda Aydogan, Middle East Technical University; Kayla Yano, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Djamel Kaoumi, North Carolina State University

Wednesday PM | March 22, 2023 28D | SDCC

Session Chairs: Caleb Massey, Oak Ridge National Laboratory; Djamel Kauomi, North Carolina State University

2:00 PM Invited

The Role of Stress-State on the Failure Mechanism, Strain to Failure and Fatigue Resistance of Zircaloy-4: Brian Cockeram¹; Kwai Chan²; Bruce Kammenzind¹; ¹Nnl Fluor Marine Propulsion; ²Southwest Research Institute

2:30 PM

Impact of Thermal Treatment and Irradiation on Mechanical Behavior of Cold Spray Cr Coatings on Zr-alloy Cladding: Tyler Dabney1; Hwasung Yeom1; Nan Li2; Ben Eftink2; Kumar Sridharan1; ¹University of Wisconsin-Madison; ²Los Alamos National Laboratory

Hydride Reorientation Behavior in ZIRLO Using Ring Compression Tests: Soyoung Kang¹; Arthur Motta¹; Maxim Gussev²; Michael Billone³; ¹Pennsylvania State University; ²Oak Ridge National Laboratory; ³Argonne National Laboratory

Anisotropic Compressive Strength of Single Crystal Zirconium Pillars and the Effects of Irradiation Hardening and Temperature Through Micro-Pillar Mechanical Testing: Matthew deJong¹; Philip Alarcón-Furman¹; Ryan Schoell²; Djamel Kaoumi¹; ¹North Carolina State University; ²Sandia National Laboratories

3:30 PM Break

3:50 PM

Mechanical Behavior of Bare and Cr Coated Zirconium Claddings During Burst Testing via In-situ Strain Measurements: Samuel Bell¹; Mackenzie Ridley²; Kenneth Kane³; Ben Garrison²; Tim Graening²; Nathan Capps²; ¹University of Tennessee Knoxville; ²Oak Ridge National Laboratory; ³John Hopkins University - Applied Physics Laboratory

4:10 PM

Cladding Coating Integrity Quantified by Ring Pull and Local Strain Analysis: Peter Beck¹; Mathew Hayne¹; Emily Proehl¹; Samuel Briggs²; Julie Tucker²; Tarik Saleh¹; Benjamin Eftink¹; ¹Los Alamos National Laboratory; ²Oregon State University

Structure-property Evolution of PM-HIP Fabricated Ni-Alloys 625 and 690 Neutron Irradiated to 1 and 3dpa: Caleb Clement¹, Yu Lu²; Sheng Cheng²; Megha Dubey²; Sowmya Panuganti¹; Yangyang Zhao¹; Katelyn Wheeler³; Donna Guillen³; David Gandy⁴; Janelle Wharry¹; ¹Purdue University; ²Boise State University/ Center for Advanced Energy Studies; 3Idaho National Laboratory; 4Electric Power Research Institute

CHARACTERIZATION

Mechanical Response of Materials Investigated through Novel In-situ Experiments and Modeling — Session IV

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization; Dongchan Jang, Korea Advanced Institute of Science and Technology; Shailendra Joshi, University of Houston; Minh-Son Pham, Imperial College London; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Josh Kacher, Georgia Institute of Technology

Wednesday PM | March 22, 2023 Aqua 310B | Hilton

Session Chair: Jagannathan Rajagopalan, Arizona State University

2:00 PM Invited

Precision Strain Measurement During Additive Manufacturing: Mitra Taheri¹; ¹Johns Hopkins University

2:30 PM Invited

In-situ TEM Observations of Dislocation and Twinning Activities of Mg via Nanoindentation: Kelvin Xie1; Lai Yi-Cheng1; Digvijay Yadav1; ¹Texas A&M University

Movement of Charged Dislocations in an Inorganic Compound under an Electric Field: Yu Zou¹; ¹University of Toronto

3:20 PM Invited

Understanding the Unique Thermal and Mechanical Properties of Nanotwinned Ni-Mo-W Alloys: Mo-Rigen He1; Gianna Valentino2; Arunima Banerjee¹; Jessica Krogstad³; Kevin Hemker¹; Hopkins University; ²Johns Hopkins University Applied Physics Laboratory; 3University of Illinois Urbana-Champaign

3:50 PM Break

4:10 PM

Wear of UNCD Studied by In-situ TEM Tribometry: Rodrigo Bernal¹; ¹University of Texas at Dallas

Nanoindentation Pop-in Analysis of Oxidized Ni-based Superalloys: Malo Jullien1; Damien Texier1; Marc Legros2; 1Institut Clément Ader; ²CEMES

High Pressure and In-Situ TEM Deformation of Nanoscale Metallic Interfaces and Precipitates: Wendy Gu¹; Abhinav Parakh¹; Mehrdad Kiani²; ¹Stanford University; ²Yale University

Toughening Mechanism in Cu-Graphene Nanolayered Composite: Seung Min Han1; 1Korea Advanced Institute of Science and Technology

NANOSTRUCTURED MATERIALS

Nanostructured Materials in Extreme Environments Nanostructured Materials in Mechanical, **Corrosive or Irradiation Environments**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nuclear Materials Committee

Program Organizers: Haiming Wen, Missouri University of Science and Technology; Nan Li, Los Alamos National Laboratory; Youxing Chen, University of North Carolina Charlotte; Yue Fan, University of Michigan; Niaz Abdolrahim, University of Rochester; Khalid Hattar, University of Tennessee Knoxville; Ruslan Valiev, UFA State Aviation Technical University; Zhaoping Lu, University of Science and Technology Beijing

Wednesday PM | March 22, 2023 Aqua 303 | Hilton

Session Chair: Khalid Hattar, Sandia National Laboratories

2:00 PM Invited

Thermal Stability and Mechanical Properties of Nanostructured High-entropy Alloys and Quasicrystals: Yu Zou1; 1University of Toronto

2:25 PM Invited

No Ball Milling Needed: Alternative ODS Steel Manufacturing with Gas Atomization Reaction Synthesis (GARS) and Frictionbased Processing: Dalong Zhang¹; Jens Darsell¹; Glenn Grant¹; Iver Anderson²; Xiaolong Ma¹; Jia Liu¹; Danny Edwards¹; Wahyu Setyawan¹; Takuya Yamamoto³; Robert Odette³; ¹Pacific Northwest National Laboratory; ²Ames Laboratory; ³University of California-Santa Barbara

2:50 PM Invited

Dislocation Cells in Additively Manufactured Metallic Alloys Characterized by Electron Backscatter Diffraction Pattern Sharpness: Fulin Wang¹; Jean-Charles Stinville²; Marie Charpagne²; McLean Echlin³; Sean Agnew⁴; Tresa Pollock³; Marc De Graef⁵; Daniel Gianola³; ¹Shanghai Jiao Tong University; ²University of Illinois at Urbana-Champaign; ³University of California-Santa Barbara; ⁴University of Virginia; ⁵Carnegie Mellon University

3:15 PM

Microstructural Evolution of Oxide Dispersion Strengthened (ODS) Steel Tubes During Cold Pilgering Process.: Freddy Salliot¹; Denis Sornin¹; Roland Loge²; Thierry Baudin³; Yann De Carlan¹; ¹Université Paris Saclay, CEA; ²École Polytechnique Fédérale de Lausanne (EPFL); 3Université Paris-Saclay, CNRS

3:35 PM Break

3:55 PM Invited

The Role of Surface Treatment on Material Performance in High Temperature Molten Salt: Raluca Scarlat¹; ¹University of California, Berkeley

4:20 PM

Cobalt-60 Gamma-Ray Irradiation Effects in Aerosol Jet Printed Two Dimensional Materials: Twinkle Pandhi¹; Gregory P. Horne²; Fahima Ouchen³; Timothy A. Prusnick³; Eniya Karunamurthy⁴; Laura Davidson³; Emily M. Heckman¹; Roberto S. Aga³; ¹AFRL; ²Idaho National Laboratory; 3KBRwyle; 4Wright State

STEM-based Mapping of Point Defects Produced via He-ion Irradiation: Sean Mills¹; Alex Lin²; Alexander Pattison²; Peter Ercius²; Andrew Minor¹; ¹University of California, Berkeley; ²National Center for Electron Microscopy, LBNL

5:00 PM

Microstructure Characterization of Ion-irradiated Nano-grained Ni-Mo-Cr Alloy using Diffraction Line Profile Analysis: Thalles Lucas¹; Zhiyang Wang²; Tao Wei²; Yi Huang³; Ping Huai⁴; Ondrej Muransky²; Levente Balogh¹; ¹Queen's University; ²Australian Nuclear Science and Technology Organisation; 3University of Southampton; 4Shanghai Institute of Applied Physics (SINAP)

CHARACTERIZATION

Neutron and X-ray Scattering in Materials Science — Micro to Meso Scale Structure

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Jennifer Niedziela, Oak Ridge National Lab; Hillary Smith, Swarthmore College

Wednesday PM | March 22, 2023 Aqua 311B | Hilton

Session Chair: Raphael Hermann, Oak Ridge National Laboratory

Effect of Deformation on Microstructure Evolution In Dilute MgYZn Alloys Examined by Combined Use of SWAXS and EXAFS: Hiroshi Okuda¹; Yoshiaki Maegawa¹; Yoshihito Kawamura²; Shin-ichi Inoue²; ¹Kyoto University; ²Kumamoto University

2:20 PM

In-situ High-resolution X-ray Nanotomography of the Thermal Sintering and Densification of a Chlorine Bearing Vanadinite Apatite Nuclear Waste Form: Joshua Kane¹; Jorgen Rufner¹; Tiankai Yao¹; William Chuirazzi¹; Rahul Kancharla¹; Xianghui Xiao²; Dong Zhao3; Jie Lian3; ¹Idaho National Laboratory; ²Brookhaven National Laboratory; 3Rensselaer Polytechnic Institute

2:40 PM

Irradiated Graphite Across Microscopic to Mesoscopic Lengthscales: Boris Khaykovich1; David Sprouster2; Anne Campbell3; Durgesh Rai⁴; Jan Ilavsky⁵; Lance Snead²; ¹Massachusetts Institute of Technology; ²Stony Brook University; ³Oak Ridge National Laboratory; 4Xenocs Inc; 5Argonne National Laboratory

3:00 PM

Micro X-ray Computed Tomography of TRISO Fuel: William *Chuirazzi*¹; Joshua Kane¹; John Stempien¹; Rahul Kancharla¹; Fei Xu¹; Nikolaus Cordes²; ¹Idaho National Laboratory; ²Los Alamos National Laboratory

3:20 PM Break

3:35 PM

Precipitation Microstructure of Al-Mg and Related Alloys Examined by Two-dimensional Anomalous SAXS at the K Absorption Edges of Mg and Al: Hiroshi Okuda1; Keita Aoyama2; Shan Lin2; Kazuhiko Mase³; Yusuke Tamenori⁴; ¹Kyoto University; ²Kyoto University graduate student; ³High Energy Accelerator Organization; ⁴Japan Sychrotron Radiation Research Institute

3:55 PM

Abnormal Grain Growth and Nano-oxide Precipitation of Oxide Dispersion Strengthened Steels Throughout Their Consolidation Evaluated by In-situ Wide and Small Angle X-ray Scattering: Gabriel Spartacus¹; Joël Malaplate²; Frédéric de Geuser³; Denis Sornin²; Raphaëlle Guillou²; Alexis Deschamps³; ¹KTH; ²CEA Saclay; ³Univ. Grenoble Alpes

4:15 PM

Investigating the Polymer Network Structure of Epoxy Thermosets Using X-ray Scattering: Derek Dwyer¹; Zach Brubaker¹; Sara Isbill¹; Jenn Neu¹; Wim Bras¹; Jong Keum¹; Jennifer Niedziela¹; ¹Oak Ridge National Laboratory

4:35 PM

In-situ Neutron Diffraction Creep Behavior of Designer Superalloys Tailored for Additive Manufacturing: Patxi Fernandez-Zelaia1; Christopher Ledford¹; Kira Pusch²; Evan Raeker²; Ning Zhou³; Stephane Forsik³; Austin Dicus³; Tresa Pollock²; Michael Kirka¹; ¹Oak Ridge National Laboratory; ²University of California, Santa Barbara; ³Carpenter Technology

ENERGY & ENVIRONMENT

New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of Patrick R. Taylor — **Electrometallurgy**

Sponsored by: Society for Mining Metallurgy and Exploration, TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Materials Characterization Committee, TMS: Energy Committee, TMS: Recycling and Environmental **Technologies Committee**

Program Organizers: Ramana Reddy, University of Alabama; Corby Anderson, Colorado School of Mines; Erik Spiller, Colorado School of Mines; Edgar Vidal, NobelClad; Camille Fleuriault, Eramet Norway; Alexandra Ānderson, Gopher Resource; Mingming Zhang; Christina Meskers, SINTEF

Wednesday PM | March 22, 2023 33C | SDCC

Session Chairs: Rajyashree Lenka, The University of Alabama; Uday Pal, Boston University

2:00 PM Invited

Energy Storage and Recovery Employing Iron-Iron Oxide System as an Electrofuel: Uday Pal¹; Hadassah Flagg¹; Haoxuan Yan¹; Achim Seidel²; Georg Poehle³; Christian Redlich³; ¹Boston University; ²Airbus Defence and Space; ³Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM

2:30 PM Invited

Electrochemical Mining of Municipal Solid Waste Incinerator Ashes: Michael Wang¹; Duhan Zhang¹; Yet-Ming Chiang¹; ¹MIT

3:00 PM Invited

Rare Earth and Critical Base Metals Electrodeposition using Urea -Choline Chloride Ionic Liquids: Rajyashree Lenka¹; Ramana Reddy¹; ¹The University of Alabama

3:30 PM Break

3:50 PM Invited

Simultaneous Deposition of Nickel and Electrolytic Manganese **Dioxide**: Kali Sanjay¹; Barsha Marandi¹; Abdul Sheik¹; Bhagat Tudu¹; Sweta Mahapatra¹; ¹CSIR-Institute of Minerals and Materials Technology

4:20 PM

Solid Oxide Membrane-based Electrolytic Process for the Conversion of Lunar Regolith to Oxygen and Metal (ROXY): Achim Seidel¹; Matthias Funke¹; Georg Poehle²; Christian Redlich³; *Uday Pal*⁴; ¹Airbus Defence and Space; ²Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM; ³Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM; ⁴Boston University

4:40 PM

Electrowinning Impurities Out of Flowing Molten Chloride Salt for Heat Transfer Fluid Applications: Liam Witteman1; Kerry Rippy2; Patrick Taylor¹; Judith Vidal²; ¹Colorado School of Mines; ²National Renewable Energy Laboratory

5:00 PM

Electrochemical Splitting of Salt Bearing Effluents: Abdul Sheik1; Sujana Gude¹; Barsha Marandi¹; Kali Sanjay¹; Chinmaya Sarangi¹; S Sharmila¹; ¹CSIR-Institute of Minerals and Materials Technology

PHYSICAL METALLURGY

Phase Transformations and Microstructural **Evolution — Non-Ferrous Alloys II**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Ashley Paz y Puente, University of Cincinnati; Mark Aindow, University of Connecticut; Sriswaroop Dasari, University of North Texas; Ramasis Goswami, Naval Research Laboratory; Megumi Kawasaki, Oregon State University; Eric Lass, University of Tennessee-Knoxville; Josh Mueller, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Le Zhou, Marquette University

Wednesday PM | March 22, 2023 25C | SDCC

Session Chair: Swiswaroop Dasari, University of North Texas

2:00 PM Invited

Nucleation of Coupled Body-centered-cubic and Closed-packed Structures in Liquid Ni-Cr Alloys: A Molecular Dynamics Study: Deep Choudhuri¹; ¹New Mexico Institute of Mining and Technology

2:30 PM

Analysis of Self-healing Behavior in Co-based Superalloys by Spontaneous Segregation of Y during In-situ Tensile Test at Elevated Temperature: Hyun Gi Min1; Kook Noh Yoon1; Jung Soo Lee²; Eun Soo Park¹; ¹Seoul National University; ²Industrial Science and Technology Research Institute, Inha University

2:50 PM Invited

Nanoscale Shuffle Transformation in a Multifunctional Ti-Nb-Zr-Ta Alloy: Dian Li¹; Deepak Pillai¹; Yufeng Zheng¹; ¹University of Nevada-Reno

3:20 PM Break

Combinatorial Design of Nano-scale Precipitate Strengthened High Entropy Alloy Exhibiting Transformation Induced Plasticity: Pradeep Konda Gokuldoss¹; ¹Indian Institute of Technology Madras

Thermodynamic Study of Hf Addition to Refractory Low-activation W-Ta-Cr-V High Entropy Alloy from First-principles: Enrique Martinez Saez¹; Andrew Alvarado¹; Hi Vo Tin²; Jan Wrobel³; Damian Sobieraj³; Duc Nguyen-Manh⁴; Saryu Jindal Fensin²; Osman El-Atwani²; ¹Clemson University; ²Los Alamos National Laboratory; 3Warsaw University of Technology; 4CCFE

4:20 PM Invited

Light-induced Microstructure **Evolution** Inorganic in Semiconductors: Dislocation vs. Deformation Twinning: Qi An1; ¹lowa State University

4:50 PM

Effect of -stabilizer Elements on the - Interfacial Structure and Energies Using First-principles Calculations: Maheshwari Meesa¹; Michael Baskes¹; Rajarshi Banerjee¹; Srinivasan Srivilliputhur¹; ¹University of North Texas

ADDITIVE TECHNOLOGIES

Powder Materials Processing and Fundamental Understanding — Characterization and Analysis I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Eugene Olevsky, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Kennametal Inc.; Wenwu Xu, San Diego State University

Wednesday PM | March 22, 2023 25B | SDCC

Session Chairs: Kathy Lu, Virginia Tech; Chu Lun Alex Leung, University College London

2:00 PM Invited

Reveal Laser-matter Interaction during Laser Powder Bed Fusion Using a Physical Twin, X-ray and Optical Imaging: Chu Lun Alex Leung¹; Samy Hocine¹; Andrew Farndell²; Rubén Lambert-Garcia¹; Elena Ruckh¹; Maureen Fitzpatrick¹; Anna Getley¹; Sebastian Marussi¹; Marta Majkut³; Alexander Rack³; Nick Jones²; Peter Lee¹; ¹University College London; ²Renishaw plc.; ³European Synchrotron Radiation Facility

2:30 PM

Studying SiOC Atomic Structures via Synchrotron X-ray and **Reactive Force Field Potential Studies**: *Kathy Lu*¹; Harrison Chaney¹; ¹Virginia Polytechnic Institute and State University

 $\textbf{Eu-doped} \quad \textbf{Ca}_{\textbf{4-x-v}} (\textbf{Sr}, \textbf{Ba})_{\textbf{x}} \textbf{Eu}_{\textbf{v}} \textbf{LaO(BO}_{\textbf{3}})_{\textbf{3}} \quad \textbf{Compounds} \quad \textbf{for} \quad \textbf{Efficient}$ White-light Illumination: Senam Tamakloe¹; Mahdi Amachraa¹; Jakoah Brgoch²; Shyue Ping Ong¹; Olivia Graeve¹; ¹University of California San Diego; ²University of Houston

Composition Control and Analysis of Sub-stoichiometric Titanium Hydride Powders: Daniel Bufford¹; Hua Wang¹; ¹Sandia National Laboratories

3:30 PM Break

3:50 PM

Advanced Materials for Neutron Detection Applications: Design and Synthesis of Alkaline-earth Doped Hexaborides: Alan Hirales1; Victor Vasquez²; Olivia Graeve¹; ¹University of California San Diego; ²University of Nevada, Reno

Characterising the Vapour Plume and Preferential Vaporisation of Alloy Elements during Laser Powder Bed Fusion Additive Manufacturing: Anna Getley1; Samy Hocine1; Elena Ruckh1; Rubén Lambert-Garcia¹; Sebastian Marussi¹; Peter Lee¹; Mike Towrie²; Chu Lun Alex Leung¹; ¹University College London; ²Central Laser Facility, STEC

4:30 PM

Powder Quality and Cold Spray Processability Changes with **Environmental Exposure**: *Jack Grubbs*¹; Bryer Sousa¹; Danielle Cote¹; ¹Worcester Polytechnic Institute

4:50 PM

Discrete Element Method Based Simulations of Metal Powder Pouring and Raking Processes in Additive Manufacturing: Michael Fazzino¹; Ummay Habiba¹; Rainer Hebert¹; Serge Nakhmanson¹; ¹University of Connecticut

5:10 PM

Friction and Wear Performance of Spark Plasma Sintered Nanocrystalline Al-Mg Materials: Amanendra Kushwaha¹; Manoranjan Misra¹; Pradeep Menezes¹; ¹University of Nevada, Reno

ELECTRONIC MATERIALS

Printed Electronics and Additive Manufacturing: Functional Materials, Processing Techniques, and **Emerging Applications — Session V**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Rahul Panat, Carnegie Mellon University; Yong Lin Kong, University of Utah; Konstantinos Sierros, West Virginia University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ravindra Nuggehalli, New Jersey Institute of Technology

Wednesday PM | March 22, 2023 Sapphire 411B | Hilton

Session Chairs: Huanyu Cheng, The Pennsylvania State University; Ben La Riviere, Oak Ridge National Laboratory

2:00 PM Invited

Standalone Stretchable Device Platform for Human Health Monitoring: Huanyu Cheng¹; ¹Pennsylvania State University

2:25 PM

3D Printable Silicone Elastomeric Pneumatic Actuators with Embedded Sensors: Derrick Banerjee1; John Burke1; Craig Joiner1; Akshay Kakar¹; Han Mei²; Chih-Hung Chang²; James Neilan³; Jennifer Jones⁴; Curtis Hill⁴; Edward Sabolsky¹; Konstantinos Sierros¹; ¹West Virginia University; ²Oregon State University; ³NASA Langley Research Center; ⁴NASA Marshall Space Flight Center, Jacobs Space Exploration Group (ESSCA)

2:45 PM

Detection of Corrosion Using an Additively Printed Microsensor for Bluetooth Use: Holly Martin¹; Stephen Appiah¹; Brendan Kuzior¹; Vamsi Borra¹; Frank Li¹; Pedro Cortes¹; ¹Youngstown State University

3:05 PM

Thermal, Hydrothermal, and Ultraviolet Aging of ePTFE/FR PU/ Nomex® IIIA Moisture Barrier Used in Firefighters' Protective Clothing: Laura Munevar-Ortiz1; John Nychka1; Patricia Dolez1; ¹University of Alberta

ADDITIVE TECHNOLOGIES

Quantifying Microstructure Heterogeneity for Qualification of Additively Manufactured Materials - Comparing Wrought & AM with a Focus on Ni **Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Phase Transformations Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Sharniece Holland, Washington University in St. Louis; Eric Payton, University of Cincinnati; Edwin Schwalbach, Air Force Research Labroatory; Joy Gockel, Colorado School of Mines; Ashley Paz y Puente, University of Cincinnati; Paul Wilson, The Boeing Company; Amit Verma, LLNL; Sriram Vijayan, Ohio State University; Jake Benzing, National Institute of Standards and Technology

Wednesday PM | March 22, 2023 24B | SDCC

Session Chairs: Joy Gockel, Colorado School of Mines; Sriram Vijayan, The Ohio State University

2:00 PM Invited

NASA's Approach on the Evaluations of "Material Engineering Equivalence" Methodology in Achieving and Sustaining Efficient Qualification and Certification of AM Materials and Parts: Alison Park¹; Richard Russell¹; Samuel Cordner¹; Mallory James¹; Doug Wells¹; Brian West¹; Andrew Glendening¹; ¹NASA

2:25 PM

Optimizing Creep Performance of Haynes 282 Printed via Laser Powder Bed Fusion through Microstructure Control: Nicholas Lamprinakos¹; Junwon Seo¹; Gregory Wong¹; Anthony Rollett¹; ¹Carnegie Mellon University

2:45 PM

Strategizing with Hot Isostatic Pressing Treatments to Increase Productivity during Post-processing of Laser-melted Inconel 718 Parts: Jake Benzing¹; Orion Kafka¹; Nik Hrabe¹; Don Godfrey²; Philipp Schumacher²; Chad Beamer³; Frank DelRio⁴; ¹National Institute of Standards and Technology; ²SLM Solutions; ³Quintus Technologies; ⁴Sandia National Laboratories

3:05 PM

Build Geometry and Parameter Influence on Alloy 718 Microstructure, Properties and Spatial Variation in Additive Manufacturing: Anna Dunn¹; Dan Young¹; Joy Gockel²; ¹Wright State University; 2Colorado School of Mines

3:25 PM Break

Intentionally Seeding Pores in Laser Powder Bed Fusion IN718: Microstructure, Defects, and Fatigue: Krzysztof Stopka¹; Andrew Desrosiers²; Tyler Nicodemus²; Nicholas Krutz²; Amber Andreaco²; Michael Sangid¹; ¹Purdue University; ²GE Additive

Microstructural and Mechanical Validation of Thin-walled Additively Manufactured Inconel 625: Connor Varney1; Paul Rottmann¹; ¹University of Kentucky

Microstructure Evolution According to Heat Treatment Design of Alloy 625 Produced by Selective Laser Melting: Tae-Hun Kim1; Jung Min Han²; Hyun-Uk Hong¹; ¹Changwon National University; ²Doosan Enerbility

4:45 PM

Quantification of Microstructural Heterogeneities in Additively Manufactured and Heat-Treated Haynes 282: Avantika Gupta¹; Sriram Vijayan¹; Joerg Jinschek²; Carolin Fink¹; ¹Ohio State University; ²Technical University of Denmark

5:05 PM

Strong Impact of Minor Elements on the Microstructural Evolution of an Additively Manufactured Inconel 625 Alloy: Mo-Rigen He1; Arunima Banerjee¹; Christopher Marvel²; Samuel Price³; Ian McCue³; William Musinski⁴; Kevin Hemker¹; ¹Johns Hopkins University; ²Lehigh University; ³Johns Hopkins University Applied Physics Laboratory; 4U.S. Air Force Research Laboratory

ADVANCED MATERIALS

Refractory Metals 2023 — Compositionally Complex **Alloys - Ultimate Plus**

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Brady Butler, US Army Research Laboratory; Todd Leonhardt, Rhenium Alloys Inc.; Matthew Osborne, Global Advanced Metals; Zachary Levin, Los Alamos National Laboratory

Wednesday PM | March 22, 2023 Aqua E | Hilton

Session Chair: Zach Levin, Los Alamos National Laboratory

2:00 PM Invited

Recent Developments in Refractory Complex Concentrated Alloys (RCCAs): Todd Butler¹; Tinuade Daboiku¹; Oleg Senkov¹; Satish Rao¹; Samuel Kuhr¹; Daniel Miracle¹; Christopher Woodward¹; Eric Payton¹; ¹Air Force Research Laboratory

A Structural Signature for Ductility in Chemically Complex Alloys: Prashant Singh¹; Raymundo Arroyave²; Duane D. Johnson¹; ¹Ames Laboratory; ²Texas A&M University

Building Fundamentals for Data-Driven Discovery of Refractory High Entropy Alloys with Targeted Mechanical Properties via Firstprinciples and Machine Learning: Shun-Li Shang¹; Adam Krajewski¹; Arindam Debnath¹; Shuang Lin¹; Wesley Reinhart¹; Zi-Kui Liu¹; ¹Pennsylvania State University

CALPHAD Assessment of Mo-V-W-Nb-Ta High Entropy Alloys with CVM Based, Temperature Dependent Short Range Order Corrections. ULTIMATE: Sayan Samanta¹; Axel van de Walle¹; Siya Zhu¹; Helena Liu¹; Hantong Chen¹; Chiraag Nataraj¹; ¹Brown University

3:30 PM

A New Tungsten Alloy for Fusion Reactors: Neal Parkes1; Alexander Knowles¹; Chris Hardie¹; ¹University of Birmingham

3:50 PM Break

4:05 PM Invited

Rhenium Effect on the Microstructure and Mechanical Properties of NbTiZr and TaTiZr Equiatomic Alloys: Oleg Senkov1; Stephane Gorsse²; Robert Wheeler¹; Eric Payton¹; Daniel Miracle¹; ¹Air Force Research Laboratory, Materials and Manufacturing Directorate; ²CNRS, Univ. Bordeaux

4:35 PM

Impact of Ti and Al on Ordered B2 Formation in Potential High Temperature RCCAs: Jaimie Tiley¹; Soumya Nag¹; Sriswaroop Dasari²; Li Cheng¹; Christopher Fancher¹; Raymond Unocic¹; Jason Gardener¹; Fan Zhang³; Rajarshi Banerjee²; ¹Oak Ridge National Laboratory; ²University of North Texas; ³Computherm LLC

4:55 PM

Phase Identification in Mo-Si-B-Ti Alloys: *Qingshan Dong*¹; Longfei Liu²; John Perepezko²; Laurence Marks¹; ¹Northwestern University; ²University of Wisconsin-Madison

5:15 PM

Selection, Processing and Characterization of Cr-containing Multiphase Refractory Complex Concentrated Alloys: Nelson Delfino De Campos Neto¹; Benjamin Ellyson¹; Todd Butler²; Kester Clarke¹; Amy Clarke¹; ¹Colorado School of Mines; ²Air Force Research Laboratory

5:35 PM

Effects of Cr Content, Second Phase Formation and Sintering Temperature on Characteristics of WMoVTiCr Refractory Highentropy Alloys: Chun-Liang Chen¹; ¹Dong-Hwa University

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Materials and Science — Radiochemistry/ Thermophysical Properties

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: J. Rory Kennedy, Idaho National Laboratory; Taylor Jacobs, Los Alamos National Laboratory; Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Don Wood, Idaho National Laboratory

Wednesday PM | March 22, 2023 28A | SDCC

Session Chairs: Don Wood, INL; Rory Kennedy, INL

2:00 PM Invited

The Heavy Side of Radiochemistry: Revisiting Actinide Chemistry with Tailored Macromolecules: Gauthier Deblonde¹; Christopher Colla¹; Ian Colliard²; Joseph Cotruvo³; Annie Kersting¹; Jon Lee¹; Harris Mason¹; Joseph Mattocks³; Keith Morrison¹; May Nyman²; April Sawvel¹; Paul Wooddy¹; MAvrik Zavarin¹; ¹Lawrence Livermore National Laboratory; ²Oregon State University; ³Penn State University

2:30 PM Invited

Actinide Radiation Chemistry and Used Nuclear Fuel Reprocessing: Gregory Horne¹; ¹Center for Radiation Chemistry Research, Idaho National Laboratory

3:00 PM

Genetic Algorithm Approach to Interpreting Pu Radiation Damage in EXAFS Data: Daniel Olive¹; Corwin Booth²; Ari Foley¹; Meghan Gibbs¹; Kasey Hanson¹; Sarah Hickam¹; Taylor Jacobs¹; Jeremy Mitchell¹; Alison Pugmire¹; ¹Los Alamos National Laboratory; ²Lawrence Berkeley National Laboratory

3:20 PM Break

3:40 PM Invited

Superconductivity and Magnetism in Complex Actinide-based Materials: Eteri Svanidze¹; ¹MPI CPfS

4:10 PM Invited

Design and Implementation of the Experimental Setup of The Three-Omega Method for Thermal Conductivity Measurements of Molten Actinide Salts: Maria del Rocio Rodriguez Laguna¹; ¹Idaho National Laboratory

4:40 PM

Dynamical System Scaling for Thermomechanical Properties of Uranium and Plutonium in Pulsed Reactor Experiments: *Ari Foley*¹; Edward Lum¹; Daniel Olive¹; ¹Los Alamos National Laboratory

S-OO DM

A Young's Modulus Comparison Study in Alpha and Delta Plutonium: Clarissa Yablinsky¹; Taylor Jacobs¹; Meghan Gibbs¹; Carlos Archuleta¹; Christopher Cordova¹; Tomas Martinez¹; Todd Martinez¹; Tarik Saleh¹; ¹Los Alamos National Laboratory

MATERIALS DESIGN

Simulations/Experiments Integration for Next Generation Hypersonic Materials — Session II

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Refractory Metals & Materials Committee

Program Organizers: Thomas Voisin, Lawrence Livermore National Laboratory; Jibril Shittu, Lawerence Livermore National Laboratory; Aurelien Perron, Lawrence Livermore National Laboratory; Joseph McKeown, Lawrence Livermore National Laboratory; Raymundo Arroyave, Texas A&M University

Wednesday PM | March 22, 2023 Sapphire I | Hilton

Session Chairs: Thomas Voisin, Lawrence Livermore National Laboratory; Jibril Shittu, Lawrence Livermore National Laboratory

2:00 PM Invited

Composite Metal/Ceramic Coatings with Exceptional Thermal Shock Resistance: Zachary Cordero¹; Isha Gupta¹; ¹Massachusetts Institute of Technology

2:40 PM

Phase Transforming Metal-ceramic Multilayers for Ultrahigh Temperatures: John Carter Stotts¹; Michael Large²; Gregory Thompson²; Christopher Weinberger¹; ¹Colorado State University; ²University of Alabama

3:00 PM Invited

On the Deformation Processes of BCC Refractory Complex Concentrated Alloys: Jean-Philippe Couzinie¹; Clémence Tafani¹; Frederic Mompiou²; Milan Hezcko³; Veronika Mazanova³; Oleg Senkov⁴; Rajarshi Banerjee⁵; Maryam Ghazisaeidi³; Michael Mills³; ¹Université Paris Est ICMPE; ²CEMES; ³Ohio State University; ⁴Air Force Research Laboratory; ⁵University of North Texas

3:40 PM Break

4.00 PM

Material Design by Additive Manufacturing of Multi-component Metal Alloys: Wen Chen¹; ¹University of Massachusetts-Amherst

4:20 PM

Degradation Resistance of Refractory Multi-principal Element Alloys for Extreme Environments: Jibril Shittu¹; Connor Rietema¹; Michael Juhasz¹; Zachary Sims¹; Hunter Henderson¹; Alexander Baker¹; Kate Elder¹; Joel Berry¹; Aurélien Perron¹; Brandon Bocklund¹; Thomas Voisin¹; Scott Mccall¹; Joseph Mckeown¹; ¹Lawerence Livermore National Laboratory

4:40 PM

Accelerating a Digital Twin of Direct Energy Deposition Additive Manufacturing: Saad Khairallah¹; ¹Lawrence Livermore National Laboratory

NUCLEAR MATERIALS

Transmutation Effects in Fusion Reactor Materials: Critical Challenges & Path Forward — Helium, **Tritium and Hydrogen Effects III**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Arunodaya Bhattacharya, Oak Ridge National Laboratory; Steven Zinkle, University of Tennessee; Philip Edmondson, The University of Manchester; Aurelie Gentils, Université Paris-Saclay; David Sprouster, Stony Brook University; Takashi Nozawa, National Institutes for Quantum and Radiological Science and Technology (QST); Martin Freer, University of Birmingham

Wednesday PM | March 22, 2023 27B | SDCC

Session Chairs: Yan-Ru Lin, Oak Ridge National Lab; Mark Gilbert, **UK Atomic Energy Authority**

2:00 PM Invited

Transmutation Effects in Fine Grained Tungsten: Gas Behavior and the Role of Grain Boundaries: Jason Trelewicz¹; ¹Stony Brook University

2:40 PM

Interaction of Hydrogen/Helium with Grain Boundaries and Dislocations in Tungsten: Nithin Mathew1; Enrique Martinez2; Blas Uberuaga¹; Danny Perez¹; ¹Los Alamos National Laboratory; ²Clemson University

3:00 PM

Helium Production in Irradiated Low-temperature Solder Candidates for Novel Fusion Magnet Cables: Christopher Reis1; ¹University of California, Berkeley

3:20 PM

Accurate Fe-He Machine Learning Potential for Studying Helium Effects in Ferritic Steels: Krishna Pitike¹; Wahyu Setyawan¹; ¹Pacific Northwest National Laboratory

3:40 PM Break

4:00 PM

Behavior of Helium Cavities in Ion-irradiated Ductile-Phase-Toughened Tungsten: Weilin Jiang¹; Libor Kovarik¹; Karen Kruska¹; Dalong Zhang¹; Dongsheng Li¹; Tamas Varga¹; Wahyu Setyawan¹; ¹Pacific Northwest National Laboratory

Machine-learned Interatomic Potential Development for H Trapping in ZrC Strengthened W: Ember Sikorski¹; Mary Alice Cusentino¹; Megan McCarthy¹; Julien Tranchida²; Mitchell Wood¹; Aidan Thompson¹; ¹Sandia National Laboratories; ²CEA Cadarache

4:40 PM

Effects of Carbide Dispersoids on Helium Bubble Formation in Dispersion-strengthened Tungsten: Xing Wang¹; Ashrakat Saefan¹; Eric Lang²; Jean Paul Allain¹; ¹Pennsylvania State University; ²University of Illinois at Urbana-Champaign

5:00 PM

In-situ Helium Bubble Formation and Thermal Evolution in Lithium Metatitanate: Amy Gandy¹; Sam Waters²; Graeme Greaves³; Yiqiang ¹University of Sheffield; ²UK Atomic Energy Authority; 3University of Huddersfield

ADVANCED MATERIALS

2D Materials: Preparation, Properties, Modeling & Applications — Processing, Characterization, **Modeling & Applications**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Sufian Abedrabbo, Khalifa University; Hesam Askari, University of Rochester; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Joshua Young, New Jersey Institute Of Technology; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Karine Mougin, CNRS, IS2M; Heinz Palkowski, Clausthal University of Technology

Thursday AM | March 23, 2023 Aqua AB | Hilton

Session Chairs: Gerald Ferblantier, University of Strasbourg -IUT LP / ICube Laboratory - CNRS; Sufian Abedrabbo, Khalifa University

8:30 AM Introductory Comments

8:35 AM Invited

Multiscale 3D Printing of Nanomaterials-based Electronics: Yong Lin Kong1; 1University of Utah

9:00 AM Invited

Well-defined 3D Printing of Titanium Carbide (Ti3C2Tx) MXene Nanosheets into Complex and Hierarchical Microarchitectures with High Aspect Ratio: Rahul Panat1; Bin Yuan1; Azahar Ali1; Chunshan Hu¹; ¹Carnegie Mellon University

9:25 AM Invited

Nitrogen-doped Graphene Catalysts for Advanced Electrochemical Energy Conversion and Storage Systems: Eon Soo Lee1; Niladri Talukder¹; ¹New Jersey Institute of Technology

9:50 AM Break

10:05 AM Invited

Process-structure-property Relationships in Crystalline Polymer Processing: Michael Jaffe¹; ¹New Jersey Innovation Institute

ADDITIVE TECHNOLOGIES

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials -Innovative AM Techniques and Feedstock Materials

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Magnetic Materials Committee, TMS: Additive Manufacturing Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Emily Rinko, Iowa State University; Emma White, DECHEMA Forschungsinstitut; Kyle Johnson, Sandia National Laboratories; Andrew Kustas, Sandia National Laboratories; Iver Anderson, Iowa State University Ames Laboratory

Thursday AM | March 23, 2023 23C | SDCC

Session Chair: Kyle Johnson, Sandia National Laboratories

8:30 AM

Design of Complex Active Microstrustrures by Melt Electrowriting Printing with Functional Fillers: Paula Gonzalez¹; Ander Reizabal¹; Simon Luposchainsky¹; Senentxu Lanceros-Mendez²; Paul Dalton¹; ¹Knight Campus; ²BCMaterials

8:50 AM

Accelerating Additive Manufacturing Process Design for Energy Conversion Materials using In-situ Sensing and Machine Learning: Joy Gockel1; Tanvi Banerjee2; Saniya LeBlanc3; Joe Walker4; Vijayabarathi Ponnambalam³; Amanuel Alambo²; Clayton Perbix¹; Ankita Agarwal²; John Middendorf⁴; ¹Colorado School of Mines; ²Wright State University; ³George Washington University; ⁴Open Additive

9:10 AM

Characterisation of Gas Atomized Micro-alloyed Nickel Silicide Powders for Additive Manufacturing: Ibrahim Mohammad¹; Geir Grasmo¹; Ragnhild Aune²; ¹University of Agder; ²Norwegian University of Science and Technology

Engineered Platelets for Metals Additive Manufacturing: Vasiliki Poenitzsch¹; Carl Popelar¹; John Macha¹; ¹Southwest Research Institute

9:50 AM

Embedding Hidden Information in Additively Manufactured Metals via Magnetic Property Grading for Traceability: Deniz Ebeperi1; Daniel Salas Mula¹; Ibrahim Karaman¹; Richard Malak¹; Raymundo Arroyave1; 1Texas A&M University

10:10 AM Break

10:25 AM

High-Throughput Functional Materials Development with Miniaturized AM Coupons and Novel Characterization Techniques: Stefan Colton¹; Aaron Stebner¹; Brad Boyce²; ¹Georgia Institute Of Technology; ²Sandia National Laboratories

Investigation Towards Adaptation of Wire-Powder Laser Directed **Energy Deposition Process to Optimized Simulation**: Stephanie Lawson¹; Sriram Manoharan¹; Somayeh Pasebani¹; Brian Paul¹; Ali Tabei¹; ¹Oregon State University

11:05 AM

Manufacturing of Oxide Dispersed Nickel Base Alloy by Laser Powder Bed Fusion from Powders Elaborated by Different **Processes**: Cécile Blanc¹; Olivier Hercher¹; Jérôme Varlet¹; Fernando Lomello¹; Hicham Maskrot¹; Pascal Aubry¹; ¹CEA Paris-Saclay

11:25 AM

Spatially Resolving Structure-Behavior Relations in Laser Directed Energy Deposition Based Additive Manufactured Adaptive Materials: Arnab Chatterjee¹; Reginald Hamilton¹; ¹Penn State

Ultrasonic Powder Atomisation for R&D - Inventors Perspective: Lukasz Zrodowski¹; ¹Amazemet

ADDITIVE TECHNOLOGIES

Additive Manufacturing Fatigue and Fracture: Effects of Surface Roughness, Residual Stress, and Environment — Session VI

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; John Lewandowski, Case Western Reserve University; Nima Shamsaei, Auburn University; Steve Daniewicz, University of Alabama; Mohsen Seifi, ASTM International/Case Western Reserve University

Thursday AM | March 23, 2023 22 | SDCC

Session Chair: Nicholas Derimow. National Institute of Standards and Technology

8:30 AM Invited

Elevated Temperature Testing of LPBF Ti6Al4V: James Dobbs1; Cory Cunningham¹; ¹Boeing Company

Unnotched Fatigue of Inconel 718 Produced by Laser Beam-Powder Bed Fusion at 25 and 600°C: Jayaraj Radhakrishnan¹; Punit Kumar²; Shihao Li¹; Yakai Zhao¹; Upadrasta Ramamurty¹; ¹Nanyang Technological University; ²Lawrence Berkeley National Laboratory

9:20 AM

Fatigue Crack Growth of Laser Powder Bed Fusion Produced Alloy 718 at Room and Elevated Temperatures: Jamie Kruzic1; Halsey Ostergaard¹; ¹University of New South Wales (UNSW Sydney)

9:40 AM

On the Fatigue Performance of Additively Manufactured Metamaterials: A Combined Experimental and Simulation Study: Daniel Barba¹; Antonio Vazquez Prudencio¹; Conrado Garrido¹; Sergio Perosanz¹; Massimiliano Casata¹; Toby Wilkinson¹; ¹Universidad Politécnica de Madrid

10:00 AM Break

10:20 AM Invited

Microstructure-Driven Differences in Fatigue Crack Growth Behavior of Laser Powder Bed Fused Low Alloy Steel Parts for Automotive Applications: Whitney Poling1; Jake Benzing2; Tyson Brown¹; Nik Hrabe²; ¹General Motors, Global Research & Development; ²National Institute of Standards and Technology

10:50 AM

Effects of Heat Treatment on Microstructure of Nickel Silicide Beads Additively Manufactured Using Direct Energy Deposition Technique: Ibrahim Mohammad¹; Geir Grasmo¹; Ragnhild Aune²; ¹University of Agder; ²Norwegian University of Science and Technology

11:10 AM

Micromechanical and Microstructural Characterization of Filigree Additively Manufactured NiTi Structures: Thomas Straub¹; Mario Schleyer¹; Bernhard Mueller²; Sarah Fischer³; ¹Fraunhofer Institute for Mechanics of Materials (IWM); ²Fraunhofer Institute for Machine Tools and Forming Technology (IWU); ³Fraunhofer Institute for Nondestructive Testing (IZFP)

11:30 AM

Tensile Properties and Fracture-related Findings of Two NIST AM Benchmark 2022 Challenges: Continuum and Sub-continuum Scales: Orion Kafka¹; Nikolas Hrabe¹; Jake Benzing¹; Newell Moser¹; Nicholas Derimow¹; Li-Anne Liew¹; Jordan Weaver¹; Timothy Quinn¹; Ross Rentz¹; ¹National Institute of Standards and Technology

ADDITIVE TECHNOLOGIES

Additive Manufacturing for Energy Applications V — **Processes and Optimization I**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Nuclear Materials Committee

Program Organizers: Isabella Van Rooyen, Pacific Northwest National Laboratory; Subhashish Meher, Idaho National Laboratory; Xiaoyuan Lou, Purdue University; Kumar Sridharan, University of Wisconsin-Madison; Michael Kirka, Oak Ridge National Laboratory; Yi Xie, Purdue University

Thursday AM | March 23, 2023 23A | SDCC

Session Chair: Xiaoyuan Lou, Purdue University

8:30 AM Introductory Comments

8:35 AM Invited

Compositionally Graded Alloys Fabricated by Laser Powder Bed Fusion: Siyuan Wei¹; Pei Wang²; Baicheng Zhang³; Ramamurty ¹Nanyang Technological University; ²Institute for Upadrasta¹; Materials Research; 3USTB

9:10 AM

DED Additively Manufactured HEAs Optimized via Parametric Study of Functionally Graded Materials: Calvin Downey1; Luis Nuñez¹; Jakub Toman¹; Mohammad Abdo¹; Isabella van Rooyen²; ¹Idaho National Laboratory; ²Pacific Northwest National Laboratory

Production of ZrB2 Doped Inconel 718 Composite via Laser Powder Bed Fusion Method: Emre Tekoglu¹; Alexander O'Brien¹; Jian Liu²; Wen Chen²; John Hart¹; Ju Li¹; ¹Massachusetts Institute of Technology; ²University of Massachusetts Amherst

9:50 AM

Optimization of Laser-wire Direct Energy Deposition (LW-DED) of Superalloy Haynes 282: Rui Feng1; Kristin Tippey1; Chantal Sudbrack1; 1National Energy Technology Laboratory

10:10 AM Break

10:25 AM

CALPHAD-based Design of Graded Transition Joints: Peeyush Nandwana¹; Rangasayee Kannan¹; Thomas Feldhausen¹; Kyle Saleeby¹; Yousub Lee¹; Andres Rossy¹; Christopher Fancher¹; Brian Jordan¹; ¹Oak Ridge National Laboratory

10:45 AM

Combining Additive Manufacturing Processes to Produce Functionally Graded Metallic Materials for Energy Applications: Chris Bettencourt¹; Hailei Wang¹; Nadia Kouraytem¹; ¹Engineering **Utah State**

11:05 AM

Additive Manufacturing of Inconel 718 + SiC with Enhanced Tensile Strength and Uniform Ductility: Alexander O'Brien¹; Emre Tekoglu¹; Anastasios Hart¹; Wen Chen²; Ju Li¹; ¹Massachusetts Institute of Technology; ²University of Massachusetts Amherst

11:25 AM

Nanoparticle-based Additive Manufacturing of Soft Magnetic Composites: Mingqi Shuai1; Luis Delfin1; Maryam Kazembeyki1; Melody Wang¹; Wendy Gu¹; ¹Stanford University Mechanical Engineering Labs (Gu Group)

11:45 AM

Sintering Process Optimization for FeCrAl Alloys in Metal Extrusion Additive Manufacturing: Amrita Lall1; Saumyadeep Jana1; Zachary Kennedy¹; Michelle Fenn¹; ¹Pacific Northwest National Laboratory

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Large-scale Metallic Components — Novel Applications I/Computation and Numerical Approaches

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Sougata Roy, University of North Dakota; Sneha Prabha Narra, Carnegie Mellon University; Andrzej Nycz, Oak Ridge National Laboratory; Yousub Lee, Oak Ridge National Laboratory; Chantal Sudbrack, National Energy Technology Laboratory; Albert To, University of Pittsburgh; Yashwanth Bandari, AddiTec Technologies LLC

Thursday AM | March 23, 2023 25A | SDCC

Session Chair: Yousub Lee, Oak Ridge National Laboratory

8:30 AM

Rapid Qualification of Wire Feed Direct Energy Deposition Process Builds Using ICME Approach: Amit Verma¹; Andrew Huck²; Rajib Halder²; Anthony Rollet²; ¹Carnegie Mellon University; LLNL; ²Carnegie Mellon University

Process-Property Determination of Hot-Wire Laser DED Stainless Steel 316L Using Two Print Directions: Holly Martin¹; Brandon Koenig¹; Bharat Yelamanchi¹; Andrew Prokop¹; Brian Vuksanovich¹; John Carballo¹; Jackie Ruller¹; Pedro Cortes¹; ¹Youngstown State University

Dehydrogenation Model for Hydrogen-based Heat Treatments of Large Additively Manufactured Components: James Paramore1; Michael Hurst¹; Matthew Dunstan¹; Daniel Lewis²; Brady Butler¹; ¹DEVCOM Army Research Laboratory; ²Texas A&M University

9:30 AM

Mitigating Large Distortion in Wire Arc Additive Manufacturing via Topology Optimization and Modified Inherent Strain Modeling: Wen Dong¹; Xavier Jimenez¹; Albert To¹; ¹University of Pittsburgh

9:50 AM Break

10:10 AM

Analysis of Bead Geometry and Solidification Behavior during Laser-Wire Directed Energy Deposition: Mohsen Eshraghi¹; Matthew Engquist¹; Amir Shakibi¹; ¹California State University-Los Angeles

Steel-copper Functionally Graded Material Produced by Twin-wire and Arc Additive Manufacturing (T-WAAM): Joao Oliveira1; 1FCT-UNL

10:50 AM

Structure-property-processing Relationship of 3D Printed Metals via Hot Wire Direct Energy Deposition: Bharat Yelamanchi¹; Andrew Prokop¹; Brian Vuksanovich¹; John Carballo¹; Jackie Ruller¹; Brandon Koenig¹; Holly Martin¹; Pedro Cortes¹; ¹Youngstown State University

11:10 AM

Wire Arc Additive Manufacturing (WAAM) of Nano-Treated High Strength Aluminum Alloys: *Yitian Chi*²; Shuaihang Pan¹; Maximillian Liese¹; Narayanan Murali¹; Jingke Liu¹; Xiaochun Li¹; ¹University of California Los Angeles

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Metals: Applications of Solidification Fundamentals — Solidification of Advanced Materials II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Solidification Committee

Program Organizers: Wenda Tan, The University of Michigan; Alex Plotkowski, Oak Ridge National Laboratory; Lang Yuan, University of South Carolina; Lianyi Chen, University of Wisconsin-Madison

Thursday AM | March 23, 2023 21 | SDCC

Session Chairs: Lang Yuan, University of South Carolina; Lianyi Chen, University of Wisconsin-Madison

8:30 AM

Improving Ductility of 316L Stainless Steel by Inducing Melt Pool Instability in Directed Energy Deposition: Lin Gao¹; Wenhao Lin¹; Zhongshu Ren¹; Ma Ji¹; Tao Sun¹; ¹University of Virginia

8:50 AM

Interface Characteristics of a 2205 Duplex Stainless Steel Processed by Laser Powder Bed Fusion Additive Manufacturing: Nima Haghdadi[‡]; Hansheng Chen²; Zibin Chen³; Sudarsanam Babu⁴; Xiaozhou Liao²; Simon Ringer²; Sophie Primig¹; ¹UNSW Sydney; ²University of Sydney; ³The Hong Kong Polytechnic University; ⁴University of Tennessee, Knoxville

9:10 AM

Microstructural Control of a Multi-Phase PH Steel Printed with Laser Powder Bed Fusion.: Brandon Fields¹; Diran Apelian¹; Lorenzo Valdevit¹; ¹University of California Irvine

9:30 AM

Origin of Epitaxy Loss in Laser Powder Bed Fusion: *Prosenjit Biswas*¹; Ji Ma¹; ¹University of Virginia

9:50 AM

Phase Transformation Pathways and Solute Behaviour at Boundaries in Ti-6Al-4V Manufactured via Electron Beam Powder Bed Fusion: William Davids¹; Andrew Breen¹; Simon Ringer¹; ¹The University of Sydney

10:10 AM Break

10:25 AM

Process-Structure-Property Relationship in Selective Laser Melting of 18Ni-300 Maraging Steel: *Tianyi Lyu*¹; Sagar Patel²; Yu Zou¹; ¹University of Toronto; ²University of Waterloo

10:45 AM

Phase Selection of Intermetallic Compounds for an Al-10Ce-8Mn (wt.%) Alloy: Kevin Sisco¹; Suresh Babu¹; Alex Plotkowski²; ¹University of Tennessee Knoxville; ²Oak Ridge National Laboratory

11:05 AM

Solidification-Microstructure Relationship Study of Single-track Laser Scanned Mg-RE Alloys: Wan Ye¹; Aijun Huang¹; Yuman Zhu¹; Robert Wilson²; Kun Yang²; ¹Monash University; ²The Commonwealth Scientific and Industrial Research Organisation

11:25 AM

Alleviate Hot Cracking for Nickel-based Superalloys in Additive Manufacturing: Zhongji Sun¹; Yan Ma²; Dirk Ponge²; Stefan Zaefferer²; Eric Jägle³; Baptiste Gault⁴; Anthony Rollett⁵; Dierk Raabe²; ¹Max-Planck-Institut für Eisenforschung GmbH, Institute of Materials Research and Engineering, A*STAR, Singapore; ²Max-Planck-Institut für Eisenforschung GmbH; ³Universität der Bundeswehr München; ⁴Max-Planck-Institut für Eisenforschung GmbH, Imperial College London; ⁵Carnegie Mellon University

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Refractory Metallic Materials — Additive Manufacturing of Nb-based Alloys and Re

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Antonio Ramirez, Ohio State University; Jeffrey Sowards, NASA Marshall Space Flight Center; Omar Mireles, NASA; Eric Lass, University of Tennessee-Knoxville; Faramarz Zarandi, Raytheon Technologies; Matthew Osborne, Global Advanced Metals; Joao Oliveira, FCT-UNL

Thursday AM | March 23, 2023 24A | SDCC

Session Chairs: Faramarz Zarandi, Raytheon Technologies; Eric A. Lass, University of Tennessee-Knoxville

8:30 AM Invited

Design of Silicide Strengthened Nb Alloys for Additive Manufacturing: *Alice Perrin*¹; Ying Yang¹; Ryan DeHoff¹; Michael Kirka¹; ¹Oak Ridge National Laboratory

9:00 AM

Additive Manufacturing of Refractory Coatings for Ultra-high Temperature Applications: A Study on the Effect of Substate Dilution: Ashlee Gabourel¹; Poulomi Mukherjee¹; Nicholas Ury²; Samad Firdosy²; Douglas Hofman²; Atieh Moridi²; ¹Cornell University; ²NASA Jet Propulsion Lab, California Institute of Technology

9:20 AM

Direct Energy Deposition of Nb-containing Refractory Alloys: Solidification Behavior, Microstructural Evolution, and Mechanical Properties: Saket Thapliyal¹; Julio Rojas¹; Patxi Fernandez-Zelaia¹; Christopher Ledford¹; Andres Rossy¹; Michael Kirka¹; Paul Brackman¹; Michael Gao²; David Alman²; ¹Oak Ridge National Laboratory; ²National Energy Technology Laboratory

9:40 AM

Laser Powder Bed Fusion Process Development for Re: *Joseph Sims*¹; Stephen Cooke¹; Ryan Anderson¹; Melissa Forton¹; Madelyne Rushing¹; ¹Quadrus Advanced Manufacturing

10:00 AM Break

10:20 AM

Laser Powder Bed Fusion of Niobium and Exploration of Gradient Composites by Local Addition of Nanoparticles: Emre Tekoglu¹; Alexander O'Brien¹; Zachery Kutschke¹; Bethany Lettiere¹; John Hart¹; Ju Li¹; ¹Massachusetts Institute of Technology

10:40 AM

Melt Pool Geometry and Defect Susceptibility in Laser Powder Bed Fusion of Single Phase Refractory Alloys: Kaitlyn Mullin¹; Carolina Frey¹; James Lamb¹; Chris Torbet¹; McLean Echlin¹; Tresa Pollock¹; ¹University of California Santa Barbara

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response — Properties and Failure

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Meysam Haghshenas, University of Toledo; Andrew Birnbaum, US Naval Research Laboratory; Robert Lancaster, Swansea University; Xinghang Zhang, Purdue University; Aeriel Leonard

Thursday AM | March 23, 2023 23B | SDCC

Session Chairs: Kavan Hazeli, The University of Arizona; Mohsen Taheri Andani, University of Michigan

8:30 AM

On the Melt Pool Dynamic of Metal Matrix Composites via Hybrid Additive Manufacturing: Laser Powder Bed Fusion and Ink-Jetting: Milad Ghayoor¹; Omid Sadeghi¹; Bryce Cox¹; Joshua Gess¹; Somayeh Pasebani¹; ¹Oregon State University

8:50 AM

Dynamic Strength Performance of Additively Repaired Smalldamage Sites in Stainless Steel: Jesse Callanan¹; David Jones¹; Saryu Fensin¹; Daniel Martinez¹; ¹Los Alamos National Laboratory

9:10 AM

Investigation of The Effects of Size, Geometry, and Temperature in Additively Manufactured Titanium Alloy: Daniel June1; Andrew Wessman¹; Kavan Hazeli¹; ¹The University of Arizona

9:30 AM

Microstructure and Property Variations in Directed Energy Deposited 316L on Super-Austenitic AL6XN: Anna Rawlings¹; Andrew Birnbaum¹; John Steuben¹; John Michopoulos¹; ¹U.S. Naval Research Laboratory

9:50 AM Break

10:10 AM

High Temperature Laser Powder-bed Fusion Austenitic Steels with Outstanding Creep Strength: Sebastien Dryepondt¹; Kinga Unocic¹; Rangasayee Kannan¹; Peeyush Nandwana¹; Patxi Fernandez-Zelaia¹; Michael Lance¹; Lisa Debeer-Schmitt¹; Ken Littrell¹; ¹Oak Ridge National Laboratory

High Throughput Bending Creep Testing of a New High Strength Additively Manufactured A205 Alloy: Anup Kulkarni¹; Praveen Ravanappa¹; Dheepa Srinivasan¹; Callie Benson²; Vikram Jayaram³; Praveen Kumar³; ¹Pratt and Whitney Research and Development Center; ²Collins Aerospace; ³Indian Institute of Science Bangalore

10:50 AM

Uniaxial Equivalence of Bending Creep in Additively Manufactured AlSi10Mg Alloy: Shobhit Singh1; Faizan Hijazi2; Vikram Jayaram3; Dheepa Srinivasan4; Praveen Kumar3; Indian Institute of Science, Bangalore; The University of Manchester; ²Indian Institute of Science Bangalore; ³Indian Institute of Science, Bangalore; ⁴Pratt and Whitney Research and Development Center

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Materials Design and Alloy **Development V - Design Fundamentals — Titanium Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Behrang Poorganji, University of Toledo; Hunter Martin, HRL Laboratories LLC; James Saal, Citrine Informatics; Jiadong Gong, Questek Innovations LLC; Orlando Rios, University of Tennessee; Atieh Moridi, Cornell University

Thursday AM | March 23, 2023 24C | SDCC

Session Chair: Behrang Poorganji, Morf3D

8:30 AM

Design and Development of New Metastable Titanium Alloys for Use in Laser Powder Bed Fusion: Zou Zhiyi¹; Marco Simonelli¹; Adam Clare¹; Nesma Aboulkhair¹; Richard Hague¹; ¹University of Nottingham

8:50 AM

Additively Manufactured -Ti5553 with Laser Powder Bed Fusion: Microstructures and Mechanical Properties of Bulk and Lattice Parts: Margaret Wu¹; Marissa Linne¹; Thomas Voisin¹; Nathan Barton¹; Jianchao Ye1; Kavan Hazeli2; Y. Morris Wang3; 1LLNL; 2University of Alabama Huntsville; 3UCLA

Fine-tuning Hierarchy: Targeted In-situ Annealing of Additively Manufactured Titanium Lattices: Connor Rietema¹; John Roehling¹; William Smith¹; Gabe Guss¹; Kaila Bertsch¹; ¹Lawrence Livermore National Laboratory

9:30 AM

Directed-energy Deposition of Ti-6Al-4V Alloy Using Fresh and Recycled Feedstock Powders under Reactive Atmosphere: Kun Yang¹; Geoff de Looze¹; Vu Nguyen²; Robert Wilson¹; ¹Advanced ²Materials Materials and Processing, CSIRO Manufacturing; Characterization and Modelling, CSIRO Manufacturing

9:50 AM

In-situ Design of Compositionally Modulated Ti-alloys for Novel Microstructures and Unprecedented Properties by Additive Manufacturing: Tianlong Zhang¹; Chain-Tsuan Liu¹; Yunzhi Wang²; ¹City University of Hong Kong; ²Ohio State University

10:10 AM Break

10:25 AM

Selective Phase Transformation Behavior in the Heterogeneous Microstructured Ti-Zr-Nb-Sn Alloy Manufactured by Directed Energy Deposition: Jung Gi Kim1; Yukyeong Lee1; Shuanglei Li1; Eun Seong Kim²; Dong Jun Lee³; Jae Bok Seol¹; Hyokyung Sung¹; Hyoung Seop Kim²; Taekyung Lee⁴; Jung Seok Oh¹; Tae-Hyun Nam¹; ¹Gyeongsang National University; ²Pohang University of Science and Technology; ³Korea Institute of Materials Science; ⁴Pusan National University

10:45 AM

Effect of Stress Relief Temperature on Microstructure and Mechanical Behavior of Additively Manufactured Ti-5Al-5Mo-5V-1Cr-1Fe: Mohammad Salman Yasin1; Shuai Shao1; Nima Shamsaei1; ¹Auburn University

11:05 AM

Microstructural Engineering of Metastable Ti-Al-V-Fe Alloy via In Situ Alloying during Laser Powder Bed Fusion: Ming Chen¹; Steven Van Petegem¹; Zhiyi Zou²; Marco Simonelli²; Yau Yau Tse³; Helena Moens-Van Swygenhoven¹; ¹Paul Scherrer Institute; ²University of Nottingham; ³Loughborough University

11:25 AM

Suppressing Large Columnar Grain Structures in Ti Alloys Processed with Laser Wire Directed Energy Deposition: Alexander Hansen¹; Emma Vetland²; John Potter²; Chad Henry²; Jonah Klemm-Toole¹; Zhenzhen Yu¹; ¹Colorado School of Mines; ²GKN Aerospace

CHARACTERIZATION

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session VII

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; C. Tasan, Massachusetts Institute of Technology; Olivia Jackson, Sandia National Laboratories

Thursday AM | March 23, 2023 Aqua 311A | Hilton

Session Chairs: Robert Wagoner, Ohio State University; Rui Feng, National Energy Technology Laboratory

8:30 AM Invited

Superior High-temperature Strength in a Supersaturated Refractory High-entropy Alloy: Rui Feng¹; Bojun Feng²; Michael Gao³; Chuan Zhang⁴; Joerg Neuefeind¹; Jonathan Poplawsky¹; Yang Ren⁵; Ke An¹; Michael Widom²; Peter Liaw⁶; ¹Oak Ridge National Laboratory; ²Carnegie Mellon University; ³National Energy Technology Laboratory; ⁴CompuTherm LLC; ⁵Argonne National Laboratory; ⁶The University of Tennessee, Knoxville

9:00 AM

Plasticity of Fused Silica Studied by High-temperature Micropillar Compression and Ptychographic X-ray Computed Tomography: Remo Widmer¹; Alexander Groetsch²; Guillaume Kermouche³; Ana Diaz⁴; Manish Jain²; Rajaprakash Ramachandramoorthy⁵; Laszlo Pethö²; Jakob Schwiedrzik²; Johann Michler²; *Nicholas Randall*¹; ¹Alemnis AG; ²Empa; ³Mines Saint-Etienne; ⁴Paul Scherrer Institute; ⁵MPIE

9:20 AM

Amorphization of Covalently-Bonded Solids by Laser Shock Compression: A Generalized Deformation Mechanism under Extreme Conditions: Boya Li¹; Alex Li¹; Shiteng Zhao²; Marc Meyers¹; University Of California San Diego; ²Beihang University

9:40 AM Invited

How Do Metals Remember Their History?: Robert Wagoner¹; Stephen Niezgoda¹; David Fullwood²; Guowei Zhou³; Ehsan Taghipour¹; ¹Ohio State University; ²Brigham Young University; ³Shanghai Jiao Tong University

10:10 AM Break

10:30 AM

Grain Boundary Deformation and Damage: Veronica Anghel¹; Ramon Martinez¹; James Valdez¹; ¹Los Alamos National Laboratory

10:50 AM

Special In-situ Diffraction Evaluations in Response to Hightemperature Plastic Deformation: Klaus-Dieter Liss¹; ¹Guangdong Technion - Israel Institute of Technology (GTIIT)

11:10 AM

Analyzing Mesoscale Stress Localization and Slip System Activation under Axial-Torsional Loading: Jerard Gordon¹; ¹University of Michigan

ADVANCED MATERIALS

Advanced Functional and Structural Thin Films and Coatings & Honorary Palkowski Session — Advanced Functional and Structural Thin Films and Coatings

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, IS2M; Ravindra Nuggehalli, New Jersey Institute of Technology; Heinz Palkowski, Clausthal University of Technology

Thursday AM | March 23, 2023 Aqua F | Hilton

Session Chairs: Ravindra Nuggehalli, New Jersey Institute of Technology; Karine Mougin, CNRS, IS2M; Gerald Ferblantier, University of Strasbourg, ICube Laboratory, CNRS

8:30 AM Introductory Comments

8:35 AM

Recent Advances in Solid-State Neutron Detectors: Walter Rose¹; Nuggehalli Ravindra¹; New Jersey Institute of Technology

8:55 AM Invited

Oxidation-induced Cracking in Dissimilar Metal Weld Joins for Steam Boiler Applications: Marissa Brennan¹; Voramon Dheeradhada¹; Shenyan Huang¹; Patrick Brennan¹; Enes Sales¹; Marija Drobjnak¹; ¹GE Research

9:25 AM

Study of Crystallization of Amorphous Metals through Molecular Dynamics Simulations: *Prashant Dwivedi*¹; Alberto Fraile²; Tomáš Polcar¹; ¹Czech Technical University in Prague; ²Bangor University

9:45 AM

Effect of (2-D) Machining-based Severe Plastic Deformation on Microstructure and Mechanical Properties of Titanium Alloys: Pushpinder Kumar¹; Ravinder Joshi¹; Rohit Singla¹; ¹Thapar Institute of Engineering and Technology Patiala India

10:05 AM Break

10:25 AM

Efficient Silicon Room-Temperature Bandgap Emission Related To Correlated Electron-Hole Recombination: Sufian Abedrabbo¹; Elmostafa Benchafia¹; Ali Abdullah¹; Anthony Fiory²; Nuggehalli Ravindra³; ¹Khalifa University; ²Integron Solutions LLC.; ³New Jersey Institute of Technology

10:45 AM

Trigger Shape Recovery in a Polyurethane with Methanol, Ethanol and 1-propanol: Molecular Mobility, Solubility and Switching Temperatures: *Yucen Shen*¹; Hakan Dumlu¹; Klaus Neuking¹; Gunther Eggeler¹; ¹Ruhr University Bochum

11:05 AM

Nanosized Cadmium Selenide Thin Coatings for Possible Utilization in Optoelectronics: Ikhazuagbe Ifijen1; Bala Anegbe2; ¹Rubber Research Institute of Nigeria; ²Federal University, Oye-Ekiti, Nigeria

11:25 AM Concluding Comments

ENERGY & ENVIRONMENT

Advanced Materials for Energy Conversion and Storage 2023 — Energy Storage with Battery III

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Surojit Gupta, University of North Dakota; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania

Thursday AM | March 23, 2023 32B | SDCC

Session Chairs: Marm Dixit, Oak Ridge National Laboratory; Leon Shaw, Illinois Institute of Technology

8:30 AM Invited

Opportunities and Challenges for In Situ Synchrotron Characterization of All Solid State Batteries: Marm Dixit1; 10ak Ridge National Laboratory

8:55 AM

On the Specific Capacity and Cycle Stability of Si Anodes: Effects of Charge/Discharge Protocol: Bingyu Lui¹; Mei Luo¹; Ziyong Wang¹; Christopher Passolano¹; Leon Shaw¹; ¹Illinois Institute of Technology

9:15 AM Invited

Operando Degradation Analytics Using 3s Toolbox: Sobana Perumaram Rangarajan¹; ¹General Motors

9:40 AM Invited

Physics-based Understanding of Heterogeneous Nucleation during Lithium Electrodeposition: Aashutosh Mistry¹; Venkat Srinivasan¹; ¹Argonne National Laboratory

10:05 AM Break

10:25 AM

Rate, Size, and Temperature Effects in Alkali Metal Anodes: Matt Pharr1; 1Texas A&M University

10:45 AM Invited

Ultra-Thick Electrodes for High Energy and Power Density Lithiumion Batteries: Jonghyun Park¹; Tazdik Plateau¹; Hiep Pham¹; ¹Missouri University of Science and Technology

11:10 AM Invited

Understanding Improved Alkali Metal Plating of Sodium Compared to Lithium via 2DIR characterization and MD Simulation of Weaker Solvation Behavior for High Energy Battery Systems: Rachel Carter¹; Cynthia Pyles1; Michael Swift1; Matthew Lefler1; Susmita Sarkar2; Adam Dunkelberger¹; Partha Mukherjee²; ¹US Naval Research Laboratory; ²Purdue Universtiy

11:35 AM Keynote

Designing Electrode Architectures Across Length Scales: Sarbajit Banerjee1; 1Texas A&M University

CHARACTERIZATION

Advanced Real Time Imaging — Iron & Steelmaking

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: **Biomaterials Committee**

Program Organizers: Jinichiro Nakano, US Department of Energy - National Engergy Technology Laboratory; David Alman, National Energy Technology Laboratory; Il Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology; Noritaka Saito, Kyushu University; Anna Nakano, US Department of Energy National Energy Technology Laboratory; Zuotai Zhang, Sourthern University of Science and Technology; Candan Tamerler, University of Kansas; Bryan Webler, Carnegie Mellon University; Wangzhong Mu, Kth Royal Institute of Technology; David Veysset, Stanford University; Pranjal Nautiyal, University of Pennsylvania

Thursday AM | March 23, 2023 Aqua 310A | Hilton

Session Chair: Noritaka Saito, Kyushu University

8:30 AM Invited

In-situ Visualization of Retrograde Melting Phenomenon During Solidification of Boron-bearing Steels: Hongbin Yin¹, ¹ArcelorMittal Global R&D

8:50 AM

Combination of Confocal Laser Scanning Microscopy and Machine Learning Model for the Prediction of Oxide Dissolution in the Steelmaking Slag: Chunguang Shen¹; Changji Xuan²; Wangzhong Mu¹; ¹KTH Royal Institute of Technology; ²Sandvik Manufacturing Solutions AB

Does Confocal Laser Scanning Microscopy Have the Suitable Capability to Use in Physical Metallurgy?: Wangzhong Mu¹; ¹KTH Royal Institute of Technology

9:30 AM Invited

Microstructure Evolution of TRIP-assisted Lean Duplex Stainless Steel UNS S32101 during In-situ Tensile: Jingyuan Li¹; Xinghai Zhang¹; Wangzhong Mu²; ¹University of Science and Technology Beijing; 2KTH Royal Institute of Technology

9:50 AM Break

10:10 AM

Visualization of Molten Slag Suspension by Electrical Impedance Tomography: Hayato Segawa¹; Miku Arisato²; Kento Nakanishi²; Prima Sejati¹; Yosephus Prayitno¹; Kunihiko Nakashima²; Noritaka Saito²; Masahiro Takei¹; ¹Chiba University; ²Kyushu University

High-Temperature Wetting of Calcium Alloys and Molten Salts: Athan Sanders¹; Bitong Wang¹; Douglas Kelley¹; ¹University of Rochester

ADVANCED MATERIALS

Advances in Multi-Principal Element Alloys II — Structures and Mechanical Properties II

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; E-Wen Huang, National Yang Ming Chiao Tung University; Jennifer Carter, Case Western Reserve University; Srivatsan Tirumalai; Xie Xie, FCA US LLC; James Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Thursday AM | March 23, 2023 Aqua D | Hilton

Session Chairs: Thomas Bieler, Michigan State University; E-Wen Huang, National Yang Ming Chiao Tung University

8:30 AM Invited

Investigation of Cobalt Free Multi-Principal Element Alloy Candidates for Reducing Material System Criticality: Zachary Sims¹; Aurelien Perron¹; Alfred Amon¹; Hunter Henderson¹; Brandon Bocklund¹; Lawrence Livermore National Laboratory

8:50 AM Invited

Correlations between Nanoindentation Hardness and Composition Gradients in TaNbTiV Refractory High Entropy Alloy: *Thomas Bieler*¹; Zackery Thune¹; Chanho Lee²; Peter Liaw²; Eugenia Nieto³; Ignacio Escobar³; Miguel Monclus³; Jon Molina-Aldareguia³; ¹Michigan State University; ²University of Tennessee; ³IMDEA Materiales

9:10 AM

Tuning Shape Memory Phase Transformation of High-Entropy Alloys by Chemical Compositions: Yuh Sun¹; Jo-Chi Tseng²; Mao-Yuan Luo¹; Che-Wei Tsai³; Ching-Yu Chiang⁴; Nien-En Jiang¹; E-Wen Huang¹; ¹National Yang Ming Chiao Tung University; ²Japan Synchrotron Radiation Research Institute; ³National Tsing Hua University; ⁴National Synchrotron Radiation Research Center

9:30 AM Invited

Mechanical Properties and their Evolution in High Entropy Alloys in the High Strain Rate Regime: Marc Meyers¹; Zezhou Li¹; Aomin Huang¹; Sheron Tavares¹; Shiteng Zhao²; ¹University of California-San Diego; ²UC Berkeley

9:50 AM

Phase Stability in the Ternary CoCrNi Alloy: Sakshi Bajpai²; Calvin Belcher¹; Benjamin MacDonald¹; Julia Ivanisenko²; Horst Hahn²; Diran Apelian¹; Enrique Lavernia¹; ¹University of California, Irvine; ²Karlsruhe Institute of Technology, Germany

10:10 AM Break

10:30 AM

High-Throughput Study of Ion Irradiation and Oxidation Responses in Multi-Principal Element Alloys: Nathan Curtis¹; Benoit Queylat¹; Michael Moorehead²; Daniel Murray²; Phalgun Nelaturu¹; Kim Kriewaldt¹; Bao-Phong Nguyen¹; Ryan Jacobs¹; Mukesh Bachhav²; Dan Thoma¹; Dane Morgan¹; Adrien Couet¹; ¹University of Wisconsin - Madison; ²Idaho National Laboratory

10:50 AM Invited

Uniform Plastic Deformation and Underlying Defect Activities of High-Entropy Alloys and Intermetallic Compounds: Shou-Yi Chang¹; Chi-Huan Tung¹; Ya-Jing Lee¹; ¹National Tsing Hua University

11:10 AM

Low-cycle-fatigue Effects on Lattice Distortion of CoCrFeMnNi High-entropy-alloy: *Mao-Yuan Luo*¹; Jo-Chi Tseng²; Tu-Ngoc Lam¹; E-Wen Huang¹; ¹National Yang Ming Chiao Tung University; ²Japan Synchrotron Radiation Research Institute

11:30 AM

Design of High Modulus-low Density AlTiVCr-based Alloys to Enhance Ductility: Paul Stavroulakis¹; Colin Freeman¹; Dhinisa Patel¹; Claire Utton¹; Russell Goodall¹; ¹The University of Sheffield

11:50 AM Invited

Crystal Plastic Modeling of NbTaTiV Refractory High-entropy Alloy at Room Temperature: Chuhao Liu¹; Chanho Lee²; Xiaochuan Sun¹; Xiaodan Zhang¹; Shengyi Zhong¹; KeAn³; Peter Liaw⁴; Huamiao Wang¹; ¹Shanghai Jiao Tong University; ²Los Alamos National Laboratory; ³Oak Ridge National Laboratory; ⁴University of Tennessee

MATERIALS PROCESSING

Advances in Powder and Ceramic Materials Science — High Entropy Ceramics III

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Materials Characterization Committee, TMS: Powder Materials Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Faqin Dong, Southwest University of Science and Technology; Jinhong Li, China University of Geosciences; Ruigang Wang, The University of Alabama; Alexander Dupuy, University of California, Irvine

Thursday AM | March 23, 2023 30A | SDCC

Session Chair: Alexander Dupuy, University of California Irvine

8:30 AM Introductory Comments

8:35 AM Invited

Interplay Between Structure, Charge, and Spin in Entropy-Stabilized Oxides for Widely Tunable Responses: John Heron¹; ¹University of Michigan

8:55 AM

Rare-earth Doped Polycrystalline Alumina for High-energy Laser Applications: Ross Turner¹; Xingzhong Wu¹; Yasuhiro Kodera¹; Javier Garay¹; ¹UC San Diego

9:15 AM

The Role of Aliovalent Dopants in Multiphase Entropy Stabilized Oxides: Jacob Norman¹; Alexander Dupuy¹; Julie Schoenung¹; ¹UCI

9:35 AN

Toughening Mechanisms of Nano-oxide Dispersion Strengthening (NDS) on CoCuNiFeMn High Entropy Alloys with Nano-twin Fabricated via Powder Metallurgy: Hansung Lee¹; Ashutosh Sharma¹; Byungmin Ahn¹; ¹Ajou University

9:55 AM Break

10:15 AM

Tunable Self-assembled Metal and Metal-oxide Nanostructures Embedded in Complex Concentrated Oxide Thin Films: William Bowman¹; Xin Wang¹; Huiming Guo¹; ¹University of California, Irvine

10:35 AM

Tunable Grain Boundary Conductivity in Sodium Doped High Entropy Oxides: Justin Cortez¹; Alexander Dupuy¹; Hasti Vahidi¹; Yiheng Xiao¹; William Bowman¹; Julie Schoenung¹; ¹University of California Irvine

10:55 AM

Compositionally Complex Perovskite for Solar Thermochemical Water Splitting: Dawei Zhang¹; Héctor Santiago²; Boyuan Xu³; Cijie Liu²; Trindell Jamie⁴; Wei Li²; Jiyun Park³; Josh Sugar⁵; Anthony McDaniel⁴; Stephen Lany⁶; wenyuan Li²; Hanchen Tian²; Yue Qi³; Xingbo Liu²; Jian Luo¹; ¹University of California San Diego; ²West Virginia University; ³Brown University; ⁴Sandia National Laboratories; ⁵Sandia National laboratory; ⁶National Renewable **Energy Laboratories**

MATERIALS PROCESSING

Advances in Surface Engineering V — Surface **Modification and Characterization**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Bharat Jasthi, South Dakota School of Mines & Technology; Arif Mubarok, PPG Industries; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University

Thursday AM | March 23, 2023 29D | SDCC

Session Chair: Ganesh Walunj, Buffalo State College

8:30 AM Invited

Dry Electrolyte Polishing of As-printed Additively Manufactured Stainless Steel: Michael Melia¹; Erin Karasz¹; Kasandra Escarcega-Herrera¹; Jason Taylor¹; David Saiz¹; Michael Heiden¹; Jonathan Pegues¹; ¹Sandia National Laboratories

8:50 AM

Fatigue Behavior of Laser Polished Laser Powder Bed Fused IN718: Identify a Suitable Heat Treatments and Laser Polishing Combination: Seungjong Lee¹; Martin Bureš²; Shuai Shao¹; Douglas Wells³; Miroslav Zetek²; Nima Shamsaei¹; ¹Auburn University; ²University of West Bohemia; ³NASA Marshall Space Flight Center

9:10 AM

A Study of Microstructural Evolution in Peened AISI 304L Stainless Steel: Sesily Stewart1; Indrajit Charit2; Merbin John3; Alessandro Ralls⁴; Manoranjan Misra⁴; Pradeep Menezes⁴; ¹University of Idaho; ²University of Idaho; ³University of Nevada Reno; ⁴University of Nevada Reno

9:30 AM

Effect of Intercritical Annealing Temperature and Sb Microaddition on the Selective Oxidation of a Fe-6wt.%Mn Alloy: Bita Pourbahari¹; Joseph R. McDermid¹; ¹McMaster University

9:50 AM

Hot Stamping of Aluminum 6061 Alloys with Volatile Media Injected through Additive Manufactured Die: Lihong Cai¹; Meiling Geng¹; Ju-Hoon Lee²; Byung-Sun Park²; Sung-Tae Hong¹; ¹University of Ulsan; ²Dae Sung Company

10:10 AM Break

Investigation of Surface Properties of Cemented Steel E16NCD13 after Vibratory Peening: Anindya Das1; Hong-Yan Miao1; Benoît Changeux²; Etienne Martin¹; ¹Polytechnique Montreal; ²SAFRAN Tech - Materials & Processes Department

10:45 AM

Laser Induced Micro/Nano Structured Stainless Steel Surfaces for Biological and Food Storage Applications: Gopinath Perumal¹; Mark Swayne¹; Dermot Brabzon¹; ¹Dublin City University

11:05 AM

Mechanical Behavior of AISI 8620 Steel's Surface Modified through TIG Arcing: Sachin Balbande¹; Nilesh Kumar Paraye¹; Sourav Das¹; IIT Roorkee

11:25 AM

Nitriding-Assisted Surface Enhancement of Multi-Principal Element Alloys Containing Refractory Metals: Yu-Hsuan Lin1; David Poerschke¹; ¹University of Minnesota

On Characterization of Microstructure and Surface Attributes in Drilling Processes at High Spatial Resolution: Abhishek Somani¹; James Mann²; Srinivasan Chandrasekar¹; Kevin Trumble¹; ¹Purdue Univesity; 2M4 Sciences

12:05 PM

Understanding the Tribo-Corrosion Mechanisms of Laser Processed Steel Deposited by High Deposition Rate Cold Spray Additive Manufacturing Process: Alessandro Ralls¹; Jacob Frizell¹; Pradeep Menezes¹; ¹University of Nevada, Reno

MATERIALS DESIGN

Advances in Titanium Technology — Session VII

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Zachary Kloenne, Ohio State University; Fan Sun, CNRS - PSL Research University; Stoichko Antonov, National Energy Technology Laboratory; Rongpei Shi, Harbin Institute of Technology (Shenzhen)

Thursday AM | March 23, 2023 Cobalt 500 | Hilton

Session Chair: Zhi Liang, QuesTek Innovations LLC

8:30 AM Invited

A Holistic Approach to Low-cost Ti: Zhigang Fang1; 1University of Utah

9:00 AM Invited

Combined Modeling-Experimental Approach for Investigating Hydrogenation of Titanium: Tae Wook Heo1; 1Lawrence Livermore National Laboratory

9:30 AM Invited

Kinetically Induced Fine Secondary -Ti phase Formation in a Novel As-cast Titanium Alloy: Zhi Liang¹; Jiashi Miao²; Xuejun Huang²; Fan Zhang³; James Williams²; Alan Luo²; ¹QuesTek Innovations LLC; ²The Ohio State University; ³National Institute of Standards and Technology

10:00 AM Break

10:20 AM

Development of a Digital Twin for Characterisation of Titanium Alloy Microstructural Features Employing In-Process Machining Data: Thomas Childerhouse¹; Oliver Levano Blanch¹; Pete Crawforth¹; Martin Jackson¹; ¹The University of Sheffield

10:40 AM

Nanoindentation Properties Evolution of Titanium with Different Oxygen Contents: Damien Texier1; Quentin Sirvin1; Charles Romain1; Henry Proudhon²; Vladislav Yastrebov²; Samuel Forest²; Marc Legros³; ¹CNRS - Institut Clément Ader; ²Centre des Matériaux, Mines ParisTech; 3CEMES - UPR CNRS 8011

11:00 AM

The Effect of Dilute Si/Nb Alloying on High-temperature Oxidation of Titanium: Thomas Valenza1; Emmanuelle Marquis1; 1University of Michigan

11:20 AM

Effect of Macrozone Placement on Cracking in Bimodal Ti-6Al-4V: *Yan Gao*¹; Nigel Martin²; Jamie Moschini²; David Dye¹; ¹Imperial College; ²Rolls-Royce plc

MATERIALS DESIGN

Al/Data Informatics: Computational Model Development, Validation, and Uncertainty Quantification — Session VII

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Francesca Tavazza, National Institute of Standards and Technology; Dennis Dimiduk, BlueQuartz Software LLC; Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Shreyas Honrao, NASA Ames Research Center; Ashley Spear, University of Utah; Houlong Zhuang, Arizona State University

Thursday AM | March 23, 2023 Cobalt 520 | Hilton

Session Chairs: Shreyas Honrao, NASA Ames Research Center; Sean Donegan, Air Force Research Laboratory

8:30 AM

Laser Powder Bed Fusion Process Design Via Machine Learning Augmented Process Modeling: Michael Groeber¹; Sandeep Srinivasan¹; Brennan Swick¹; ¹The Ohio State University

8:50 AM

A Physics-based Machine Learning Study of the Hot Cracking Phenomenon in the Processes of Additive Manufacturing: *Guannan Tang*¹; Anthony Rollett¹; ¹Carnegie Mellon University

9:10 AM

Gaussian Process Ensemble Active Learning for Autonomous Parameterization of Direct Ink Write 3D Printing: Erick Braham¹; Marshall Johnson²; Surya Kalidindi²; James Hardin³; ¹Air Force Research Lab and NRC; ²Georgia Institute of Technology; ³Air Force Research Lab

9:30 AM

Autonomous Path Planning in Additive Processes Using Semisupervised Machine Learning: Sean Donegan¹; James Collins²; Edwin Schwalbach¹; ¹Air Force Research Laboratory; ²The Ohio State University

9:50 AM

Data-enhanced Hybrid Machine Learning Model for Solid-state Friction Surfacing Process: Benjamin Klusemann¹; Frederic Bock¹; Zina Kallien¹; Norbert Huber¹; ¹Helmholtz-Zentrum Hereon

10:10 AM Break

10:30 AM

Developing a Physics-informed Machine Learning Model to Predict Melt-pool Shape in Additive Manufacturing: Mohammad Parsazadeh¹; Sharma Shashank¹; Sameehan Joshi¹; Venkata mani Krishna Karri¹; Narendra Dahotre¹; ¹University of North Texas

10:50 AM

Interrelated Process-Geometry-Microstructure Relationships for Wire-feed Laser Additive Manufacturing: Sen Liu¹; Craig Brice²; Xiaoli Zhang²; ¹Stanford University; ²Colorado School of Mines

11:10 AM

Anomaly Detection in Composite Manufacturing Using Zero-bias Deep Neural Network: Deepak Kumar¹; Sirish Namilae¹; Yongxin Liu¹; Houbing Song¹; ¹Embry Riddle Aeronautical University

11:30 AM

Simulation of Mechanical Properties of TPMS-based Osteoporotic Bone by the Neural Network-Enhanced Finite Element Method: Yan-Zhen Chen¹; Chu-Hao Wang¹; Tsung-Yeh Hsieh¹; Tsung-Hui Huang¹; Cheng-Che Tung¹; Po-Yu Chen¹; ¹National Tsing Hua University

MATERIALS DESIGN

Algorithm Development in Materials Science and Engineering — AI/ML Algorithms and Applications

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Adrian Sabau, Oak Ridge National Laboratory; Ebrahim Asadi, University of Memphis; Enrique Martinez Saez, Clemson University; Garritt Tucker, Colorado School of Mines; Hojun Lim, Sandia National Laboratories; Vimal Ramanuj, Oak Ridge National Laboratory

Thursday AM | March 23, 2023 Cobalt 502B | Hilton

Session Chairs: Enrique Saez, Clemson University; Vimal Ramanuj, Oak Ridge National Laboratory

8:30 AM

Applications of Min-cut Algorithms for Image Segmentation and Microstructure Reconstruction: Austin Gerlt¹; Alexander Brust²; Eric Payton³; Stephen Niezgoda¹; ¹The Ohio State University; ²DNV; ³Air Force Research Lab

8:50 AM

Machine Learning Models of Effective Properties with Reduced Requirements on Microstructure: Marat Latypov¹; ¹University of Arizona

9:10 AM

Microstructure-Sensitive Calculations of Metal Nanocomposite Electrical Conductivity: William Frazier¹; Bharat Gwalani¹; Julian Escobar Atehortua¹; Joshua Silverstein¹; Keerti Kappagantula¹; ¹Pacific Northwest National Laboratory

9:30 AM

Persistent Homology for Topological Quantification of Microstructure: Simon Mason¹; Dennis Dimiduk²; Steve Niezgoda¹; ¹Ohio State University; ²BlueQuartz Software LLC

9:50 AM Break

10:10 AM

Thermographic Process Classification in Electron Beam Additive Manufacturing via Stacked Long Short-Term Memory Networks: Benjamin Stump¹; Alex Plotkowski¹; Vincent Paquit¹; ¹Oak Ridge National Laboratory

10:30 AM

Prediction of Cutting Surface Parameters in Punching Processes aided by Machine Learning: Adrian Schenek¹; Marcel Görz¹; Mathias Liewald¹; ¹Institute for Metal Forming Technology

LIGHT METALS

Aluminum Alloys, Characterization and Processing - Alloy Development

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Julie Levesque, Quebec Metallurgy Center; Stephan Broek, Kensington Technology Inc.

Thursday AM | March 23, 2023 32A | SDCC

Session Chair: Alan Luo, Ohio State University

8:30 AM

AMAG CrossAlloy - A Unique Aluminum Alloy Concept for **Lightweighting the Future**: Florian Schmid¹; Lukas Stemper¹; Ramona Tosone¹; ¹AMAG rolling GmbH

8:55 AM

A New Recycled Al-Si-Mg Alloy for Sustainable Structural Die Casting Applications: Michael Moodispaw¹; Emre Cinkilic²; Jianyue Zhang¹; Jiashi Miao¹; Alan Luo¹; ¹The Ohio State University; ²Hakkari University

9:20 AM

Effect of Alloying Elements on Corrosion Resistance of Quenchfree Al-Ca Alloys for HPDC: Dmitry Fokin¹; Sergey Matveev¹; Roman Vakhromov¹; Dmitry Ryabov¹; Aleksandr Alabin²; ¹Light Materials and Technologies Institute UC RUSAL; ²JSC RUSAL Management

Influence of Increased Cu and Fe Concentrations on the Mechanical Properties of the EN AB-42100 (AlSi7MgO.3) Aluminum Alloy: Tobias Beyer¹; David Ebereonwu²; Alexander Koch²; Peer Decker¹; Anna-Lena Kauws¹; Marcel Rosefort¹; Frank Walther²; ¹TRIMET Aluminium SE; 2TU Dortmund

10:10 AM Break

10:25 AM

How Cerium and Lanthanum as Coproducts Promote Stable Rare Earth Production and New Alloys: Zachary Sims¹; Michael Kesler²; Hunter Henderson¹; Emilio Castillo³; Tomer Fishman⁴; David Weiss⁵; Prentice Singleton⁶; Roderick Eggert⁷; Scott McCall¹; Orlando Rios⁸; ¹CMI, Lawrence Livermore National Laboratory; ²CMI, Oak Ridge National Laboratory; 3University of Chile Santiago; 4University of Leiden; ⁵Eck Industries; ⁶Borg Warner Turbo Systems; ⁷CMI, Colorado School of Mines; 8CMI, University of Tennessee Knoxville

Microstructure and Mechanical Properties of an Al-Mn-Si Alloy Microalloyed with Post Transition Metals: Amir Farkoosh¹; David Dunand¹; David Seidman¹; ¹Northwestern University

11:15 AM

Innovative Approaches in Development of Aluminium Alloys for Packaging Industry: Stanislav Kores¹; Simon Strmsek¹; Maja Voncina²; Jozef Medved²; ¹Talum D.D.; ²2 University of Ljubljana, Faculty of Natural Sciences and Engineering

LIGHT METALS

Aluminum Reduction Technology — Environment & Modelling

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Pierre Marcellin, Rio Tinto; Stephan Broek, Kensington Technology Inc.

Thursday AM | March 23, 2023 30E | SDCC

Session Chair: Hervé Roustan, Rio Tinto

8:30 AM Introductory Comments

Fundamentals of Pot Ventilation in Aluminum Smelters: Diego Oitaben¹; Samaneh Poursaman¹; Stephen Lindsay¹; ¹Hatch

Evaluation of Methodologies for Assessment of SO3 Concentration in Industrial Off-gas: Thor Anders Aarhaug¹; Ole Kjos¹; Morten Isaksen²; Jan Olav Polden²; ¹Sintef; ²Hydro Aluminium

Mathematical Modelling of the Desulfurization of Electrolysis Cell Gases in a Low Temperature Reactor: Arash Fassadi Chimeh1; Duygu Kocaefe¹; Yasar Kocaefe¹; Yoann Robert²; Jonathan Bernier²; ¹University of Quebec at Chicoutimi; ²Rio Tinto

9:55 AM Break

10:10 AM

Recent Improvements to a Mathematical Model Replicating the Wave and Stream at the Bath-metal Interface: Thomas Richer1; Lukas Dion¹; Laszlo Kiss¹; Sébastien Guérard²; Jean-françois Bilodeau²; Guillaume Bonneau¹; Martin Truchon¹; ¹GRIPS; ²Rio Tinto

10:35 AM

Numerical Investigation of the Thermal, Electrical and Mechanical Behaviour of Aluminum Reduction Cell during Preheating Phase: Simon-Olivier Tremblay¹; Daniel Marceau¹; Rohini-Nandan Tripathy²; Antoine Godefroy³; Duygu Kocaefe²; Sébastien Charest³; Jules Côté³; ¹University of Quebec-Chicoutimi; ²University Research Centre on Aluminium (CURAL) - Aluminium Research Centre (REGAL) -University of Québec at Chicoutimi; ³Aluminerie Alouette Inc.

11:00 AM

Simplified 3D MHD Model for Quick Evaluation of Aluminium Electrolysis Cell Design: levgen Necheporenko¹; Alexander Arkhipov¹; Abdalla Zarouni¹; ¹Emirates Global Aluminium

ADVANCED MATERIALS

Bulk Metallic Glasses XX — Physical and Mechanical Properties II

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Robert Maass, Federal Institute of Materials Research and Testing (BAM); Peter Derlet, Paul Scherrer Institut; Katharine Flores, Washington University in St. Louis; Yonghao Sun, The Chinese Academy of Sciences; Lindsay Greer, University of Cambridge; Peter Liaw, University of Tennessee

Thursday AM | March 23, 2023 Aqua C | Hilton

Session Chair: Eun Soo Park, Seoul National University

8:30 AM

The Strain Rate Sensitivity of Heterogeneous Thin Film Metallic Glasses: Interplay between Nanoscale Heterogeneity and Dynamic Plasticity: Yucong Gu¹; Xiao Han¹; Feng Yan¹; Lin Li¹; ¹University of Alabama

8:50 AM

Temperature Dependence of Pressure Sensitivity in a Metallic Glass Composite: *Priyanka Saini*¹; Long Zhang²; Yakai Zhao³; Haifeng Zhang²; Upadrasta Ramamurty³; Lakshmi Ramasubramanian¹; ¹Indian Institute of Technology; ²Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research; ³Nanyang Technological University

9:10 AM

Pressure-induced Local Structural Crossover in a High-entropy Metallic Glass: Xin Zhang¹; Qiaoshi Zeng¹; ¹Center for High Pressure Science & Technology Advanced Research (HPSTAR)

9:30 AM

Origin of Super Plastic Behavior of Bulk Metallic Glass with Complex Icosahedral Order: Geun Hee Yoo¹; Wook Ha Ryu¹; Myeong Jun Lee¹; Eun Soo Park¹; ¹Seoul National University

9:50 AM

Investigation of Non-isothermal Crystallization and Mechanical Properties of Zr-based Metallic Glass with Enhanced Icosahedral Ordering: Myeong Jun Lee¹; Geun Hee Yoo¹; Min Kyung Kwak¹; Wook Ha Ryu¹; Eun Soo Park¹; ¹Seoul National University

10:10 AM Break

10:30 AM

Mechanical Properties and Scaling Laws of Bicontinuous Nanoporous Metallic Glasses: Chang Liu¹; Suyue Yuan¹; Jinwoo Im¹; Felipe de Barros¹; Sami Masri¹; Paulo Branicio¹; ¹University of Southern California

10:50 AM

Spectroscopic Evaluation of Tribologically-induced Structural Transformations and Chemical Changes in Zr-based Bulk Metallic Glass: Hsu-Ming Lien¹; Michael Chandross²; Joshua Arrington³; Filippo Mangolini¹; ¹University of Texas at Austin; ²Sandia National Laboratories; ³Clemson University

11:10 AM

Genetic Algorithm-assisted Discovery and Characterization of New Metallic Glass Coatings For Extreme Conditions: Jerry Howard¹; Leslie Mushongera¹; Dev Chidambaram¹; Krista Carlson¹; ¹University of Nevada, Reno

11:30 AM

Metallic Glass Coating for Improving Dicing Performance of Hard/Brittle Materials: *Jinn Chu*¹; ¹National Taiwan University of Science and Technology

NUCLEAR MATERIALS

Ceramic Materials for Nuclear Energy Research and Applications — Microstructural Modeling of Oxide Fuels

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Energy Committee

Program Organizers: Walter Luscher, Pacific Northwest National Laboratory; Xian-Ming Bai, Virginia Polytechnic Institute and State University; Lingfeng He, North Carolina State University; Sudipta Biswas, Idaho National Laboratory; Simon Middleburgh, Bangor University

Thursday AM | March 23, 2023 28B | SDCC

Session Chair: Sudipta Biswas, Idaho National Laboratory

8:30 AM Invited

Diffusion Properties in Uranium-plutonium Mixed Oxides: Atomic Scale Investigation of the Effect of Composition and Chemical Disorder: Marjorie Bertolus¹; Maria Chiara Notarangelo¹; Didier Bathellier¹; Michel Freyss¹; Emeric Bourasseau¹; Luca Messina¹; ¹CEA

9:00 AM Invited

Atomic Scale Simulation of Amorphous Intergranular Films in Nuclear Fuel Materials: Michael Rushton¹; Simon Middleburgh¹; William Lee¹; ¹Bangor University

9:30 AM

Simulation of Irradiation-induced Bubble Over-pressurization and Application in Fuel Performance: Michael Cooper¹; Christopher Matthews¹; Larry Aagesen²; Chris Stanek¹; David Andersson¹; ¹Los Alamos National Laboratory; ²Idaho National Laboratory

9:50 AM

Multiscale Modeling for High-burnup Structure Formation in UO2: Sudipta Biswas¹; Larry Aagesen¹; Sophie Blondel²; Wen Jiang¹; ¹Idaho National Laboratory; ²University of Tennessee

10:10 AM Break

10:30 AM

Multiphysics Modeling of High Burnup UO2 at Mesoscale: Abdurrahman Ozturk¹; Merve Gencturk¹; David Andersson²; Wen Jiang³; Michael W.D. Cooper²; Larry Aagesen³; Mohammed Abdoelatef¹; Jason Harp⁴; Karim Ahmed¹; ¹Texas A&M University; ²Los Alamos National Laboratory; ³Idaho National Laboratory; ⁴Oak Ridge National Laboratory

10:50 AM

Quantifying the Impact of Fast Interface Diffusion and Free Surface Evolution on Fission Gas Release in UO₂ Using a Phase-field Model: Md Ali Muntaha¹; Michael Tonks¹; Larry Aagesen²; Anders David Ragnar Andersson³; Michael William Donald Cooper³; ¹University of Florida; ²Idaho National Laboratory; ³Los Alamos National Laboratory

11:10 AM

Predicting Mechanical Behavior of Uranium Oxide Fuel Pellets Using Full-field Defect Diffusion Modeling in a Crystal Plasticity Framework: *Aritra Chakraborty*¹; Conor Oscar Galvin¹; Michael W.D. Cooper¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

11:30 AM

Atomistic-scale Simulations used to Simulate Creep in Oxide Fuel: Conor Galvin¹; Aritra Chakraborty¹; Laurent Capolungo¹; David Andersson¹; Michael Cooper¹; Los Alamos National Laboratory

11:50 AM

Revealing The Microstructure and Irradiation Effects on UO2 Fracture via Coupled Phase-field and MD Simulations Approach: Merve Gencturk¹; Abdurrahman Ozturk¹; David Andersson²; Mohammed Abdoelatef¹; Larry Aagesen³; Wen Jiang³; Michael William Donald Cooper²; Karim Ahmed¹; ¹Texas A&M University; ²Los Alamos National Laboratory; ³Idaho National Laboratory

CHARACTERIZATION

Characterization of Minerals, Metals and Materials — **Mineralogical Analysis and Process Improvement**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Mingming Zhang; Zhiwei Peng, Central South University; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, Eurofins EAG Materials Science LLC; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, DEVCOM ARL Army Research Office; Shadia Ikhmayies

Thursday AM | March 23, 2023 Aqua 313 | Hilton

Session Chair: Yunus Kalay, Middle East Technical University

8:30 AM

Evaluating the Morphology of Crystalline Glass Developed from Corn Cob Ash: Bidemi Elesho¹; Andrew Adejo²; Adele Garkida³; ¹The Federal Polytechnic, Ado-Ekiti; ²Federal University of Lafia; ³Ahmadu Bello University, Zaria

Characterization of Zircon and Rare Earth Bearing Minerals in Black Sands of a Gold Dredging Operation in Colombia: Gustavo Neira-Arenas¹; Animesh Jha²; Lucia Ochoa-Correa¹; ¹Universidad Nacional de Colombia; ²University of Leeds

9:10 AM

Forensic Signatures of Uranium Enrichment in UV Cured Epoxy: Daniel Reinfurt¹; Michael Short¹; Rachel Connick¹; Avery Nguyen¹; Charles Hirst¹; ¹Massachusetts Institute of Technology

9:30 AM

Research and Practice on the Effect of Different Calciumcontaining Fluxes on the Production of Fluxed Pellets: Xiangjuan Dong¹; ¹Central Iron and Steel Research Institute

9:50 AM Break

10:05 AM

Characterization of Rayfield-jos Columbite Deposit for Efficient Beneficiation and Recovery of Niobium and Tantalum: Nnaemeka Nzeh1; Patricia Popoola1; Samson Adeosun2; Abraham Adeleke3; ¹Tshwane University of Technology, Pretoria; ²University of Lagos, Akoka; 3Obafemi Awolowo University, Ile-Ife

10:25 AM

Investigating the Morphology, Hardness, and Porosity of Spherical and Dendritic Copper Powder Filters Produced via Isostatic Pressing: Hasan Ayub1; Lehar Asip Khan1; Eanna McCarthy1; Inam ul Ahad¹; Sithara Sreenilayam¹; Karsten Fleischer¹; Dermot Brabazon¹; ¹Dublin City University

10:45 AM

Conversion of Ferronickel Slag to Thermal Insulation Materials by Microwave Sintering: Effect of Fly Ash Cenosphere Addition: Xiaolei Fang¹; Zhiwei Peng¹; Lei Yang¹; Guangyan Zhu¹; Mingjun Rao¹; ¹Central South University

11:05 AM

Flexural Strength of Castor Oil Derived Polyurethane Composites Reinforced with Both Chamotte and Wood Chips Residues: Juvenil Oliveira¹, Felipe Lopes¹, Noan Simonassi¹, Carlos Maurício Vieira¹, Sergio Monteiro¹; ¹State University of Northern Rio de Janeiro

ENERGY & ENVIRONMENT

Composite Materials for Sustainable and Eco-Friendly Material Development and Application Composite Materials Developed from Naturally **Derived Sources**

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Brian Wisner, Ohio University; Ioannis Mastorakos, Clarkson University; Muralidharan Paramsothy, NanoWorld Innovations; Simona Hunyadi Murph, Savannah River National Laboratory

Thursday AM | March 23, 2023 31C | SDCC

Session Chair: Brian Wisner, Ohio University

8:30 AM

Friction Extrusion of Lead-free Brass-graphite Composites Made from Powder Feedstock: Md Reza-E-Rabby1; Aditya Nittala1; Mayur Pole¹; Todd Kidder¹; Steffen Sigloch¹; Keerti Kappagantula¹; ¹Pacific Northwest National Laboratory

8:50 AM

Sustainable and Environmentally Friendly High Filler Content Coal Plastic Composites as Construction Materials: A Study of Mechanical Performance, Thermal Stability, and Flammability: Yahya Al-Majali¹; Jason Trembly¹; ¹Ohio University

9:10 AM

Fiber-reinforced Polymeric Composites for Low-carbon Construction Applications: Zhiye Li¹; ¹Stanford University

9:30 AM

Natural Carbon Waste as a Filler in Plastic Composite Filaments for Sustainable Fused Deposition Modeling Applications: Logan Veley¹; Yahya Al-Majali¹; Jason Trembly¹; ¹Ohio University

9:50 AM Break

10:10 AM

Challenges and Solutions for Nanoparticle Reinforced Lightweight Metal Composites: an Overview: Qianqian Li¹; Zhuocheng Xu¹; Syazana Hisham¹; Samaneh Nasiri²; Michael Zaiser²; Milo Shaffer¹; ¹Imperial College London; ²University of Erlangen

10:30 AM

Synthesis of Aluminum/graphene Composites with Enhanced Electrical Properties through Shear Assisted Processing and Extrusion: Aditya Nittala¹; Md. Reza E Rabby¹; Joshua Silverstein¹; Bharat Gwalani¹; Keerti Kappagantula¹; ¹Pacific Northwest National Laboratory

10:50 AM

Formable Steel Scrap Laminates: Onur Guvenc1; C. Cem Taan1; ¹Massachusetts Institute of Technology

11:10 AM

New Eco-friendly Inorganic Polymeric Materials for the Passive Fire Protection of Structures: Ponsian Robert¹; Ioanna Giannopoulou¹; Pericles Savva²; Konstantinos-Miltiadis Sakkas²; Michael Petrou³; Demetris Nicolaides4; 1Frederick Research Center; 2RECS Civil Engineers and Partners L.L.C.; 3University of Cyprus; 4Frederick University

PHYSICAL METALLURGY

Computational Thermodynamics and Kinetics — Alloys, Design and Properties

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Solidification Committee

Program Organizers: Hesam Askari, University of Rochester; Damien Tourret, IMDEA Materials Institute; Eva Zarkadoula, Oak Ridge National Laboratory; Enrique Martinez Saez, Clemson University; Frederic Soisson, Cea Saclay; Fadi Abdeljawad, Clemson University; Ziyong Hou, Chongqing University

Thursday AM | March 23, 2023 26A | SDCC

Session Chairs: Joerg Neugebauer, Max-Planck-Institut; Qing Chen, Thermo-Calc Software AB

8:30 AM Invited

Constructing Defect Phase Diagrams from Ab Initio Calculations and CALPHAD Concepts: Jing Yang¹; Mira Todorova¹; Tilmann Hickel¹; Joerg Neugebauer¹; ¹MPI fuer Eisenforschung

9:00 AM

First Principles Calculation of Phase Diagrams Including Configurational and Vibrational Entropic Contributions: Wei Shao¹; Sha Liu²; Javier Llorca³; ¹Technical University of Madrid & IMDEA Materials Institute; ²Yanshan University; ³IMDEA Materials Institute & Technical University of Madrid

9:20 AM

DFT Study of the NiTi-X Systems for Shape Memory Alloys (SMAs) Design: *Guillermo Vazquez Tovar*¹; Sina Hossein Zadeh¹; Sayan Samanta¹; Axel Van de Walle¹; Raymundo Arróyave¹; ¹Texas A&M University

9:40 AM

Hydrogen Accommodation, Hydride Decomposition, and Hydride Phase Stability in the TiZrNbHfTa High Entropy Alloy: Christopher Moore¹; Jack Wilson¹; Jack Astbury²; Caitlin Taylor³; Michael Rushton¹; Simon Middleburgh¹; ¹Bangor University; ²Tokamak Energy; ³Los Alamos National Laboratory

10:00 AM Break

10:20 AM Invited

Modeling of Spontaneous PE to OE Transition in Carbide Precipitation: *Qing Chen*¹; Kaisheng Wu²; Johan Jeppsson¹; Johan Ågren³; ¹Thermo-Calc Software AB; ²Thermo-Calc Software Inc; ³KTH

10:50 AM

A Novel Approach to Realizing Linear-Superleastic Behavior in NiTi SMA Using Precipitate Dissolution: *Hariharan Sriram*¹; Longsheng Feng²; Yunzhi Wang¹; ¹Ohio State University; ²Lawrence Livermore National Laboratory

11:10 AM

First-principles Tools for the Design of High Temperature Materials: Anirudh Raju Natarajan 1 : 1 EPFL

11:30 AM

Progress in Design of High-performance Alloys Guided by Phase-field Simulations: Yuhong Zhao¹; ¹North University of China

MATERIALS PROCESSING

Deformation-induced Microstructural Evolution during Solid Phase Processing: Experimental and Computational Studies — Deformation Induced Microstructural Evolution V

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Arun Devaraj, Pacific Northwest National Laboratory; Pascal Bellon, University of Illinois at Urbana-Champaign; Suhas Eswarappa Prameela, Massachusetts Institute of Technology; Mostafa Hassani, Cornell University

Thursday AM | March 23, 2023 29C | SDCC

Session Chair: Tingkun Liu, Pacific Northwest National Laboratory

8:30 AM Invited

Physical Metallurgy of Mechanochemical Ignition Processes in High Pressure Oxygen Environments: Zachary Cordero¹; ¹Massachusetts Institute of Technology

9:00 AM

Characterization of Phase and Mechanical Developments of Martensitic α' Phase in Ti-6Al-4V Under Laser Processing via In-Situ Synchrotron X-ray Diffraction: Seunghee Oh¹; Joseph Aroh¹; Andrew Chuang²; Nicholas Lamprinakos¹; Robert Suter¹; Anthony Rollett¹; ¹Carnegie Mellon University; ²Argonne National Laboratory

9:20 AM

Local Modification of Microstructure and Mechanical Properties in 7000 Series Al Alloys Achieved by Friction Stir Processing: *Tanvi Ajantiwalay*¹; Julian Escobar¹; Jia Liu¹; Matthew Olszta¹; Nasim Wahaz¹; Hrishikesh Das¹; Mert Efe¹; Piyush Upadhyay¹; Arun Devaraj¹; ¹Pacific Northwest National Laboratory

9:40 AM

On The Plastic Deformation Path and Concurrent Microstructure Evolution During Additive Friction Stir Deposition-Based Solid-State Metal Additive Manufacturing: Hang Yu¹; ¹Virginia Polytechnic Institute and State University

10:00 AM Break

10:15 AM

Strengthening of Pre-treated Aluminum During Ultrasonic Additive Manufacturing: Michael Pagan¹; Ningxiner Zhao²; Leon Headings²; Marcelo Dapino²; Sriram Vijayan²; Joerg Jinschek³; Steve Zinkle¹; Suresh Babu¹; ¹University of Tennessee; ²The Ohio State University; ³Technical University of Denmark

10:35 AM

The Relative Rates of Dynamic and Static Grain Growth in an Interstitial-Free Steel: *Thomas Bennett*¹; Eric Taleff¹; ¹University of Texas at Austin

10:55 AM

ARB Processing of Bulk Fe-Al and Ti-Al Nano-metallic Laminates: *Thomas Nizolek*¹; Rodney McCabe¹; Yifan Zhang¹; Daniel Savage¹; Cody Miller¹; Carl Osborn¹; Sean Raybon¹; John Carpenter¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

11:15 AM

Nano-structure, Mechanical Properties and Thermal Transport Properties of Nano-crystalline Eurofer97: Felix Hofmann¹; Kay Song¹; Gregory Strangward-Pryce¹; ¹University of Oxford

NANOSTRUCTURED MATERIALS

Deformation Mechanisms, Microstructure Evolution, and Mechanical Properties of Nanoscale Materials Deformation Mechanisms II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Niaz Abdolrahim, University of Rochester; Matthew Daly, University of Illinois-Chicago; Hesam Askari, University of Rochester; Eugen Rabkin, Technion; Jeffrey Wheeler, Femto Tools Ag; Wendy Gu, Stanford University

Thursday AM | March 23, 2023 Aqua 300AB | Hilton

Session Chairs: Laurent Beland, Queen's University; Penghui Cao, University of California, Irvine

8:30 AM

Multi Principal Element Borides from Amorphous Colloidal Nanoparticles: Melody Wang¹; Mehrdad Kiani²; Brandon Lum¹; Wendy Gu¹; ¹Stanford University; ²Yale University

8:50 AM

Mechanical Behaviour of Ni and Ni3Al Free-standing and Matrixembedded Metallic Nanoparticles at Different Temperatures: Alla Ndiaye Dieng¹; Celine Gerard¹; Jonathan Cormier¹; ¹Institut Pprime - CNRS - ISAE-ENSMA

An Experimental and Modeling Investigation of Creep Resistance of a Stable Nanocrystalline Alloy: C Kale¹; R Koju²; B Hornbuckle³; K Darling³; Y Mishan²; Kiran Solanki¹; ¹Arizona State University; ²Geroge Mason University; 3ARL

9:30 AM Invited

Exploring Defect Behavior and Size Effects in Micron-scale Germanium from Cryogenic to Elevated Temperatures: Ming Chen¹; Alla Sologubenko²; Jeffrey Wheeler¹; ¹ETH Zürich, Laboratory for Nanometallurgy, Department of Materials Science; ²ETH Zürich, Scientific Center for Optical and Electron Microscopy

10:00 AM Break

10:20 AM

Hydrogen Effects on Mechanical Deformation, Dislocation Density, and Phase Separation in 4130 Steel: Zachary Buck1; Matthew Connolly¹; May Martin¹; Damian Lauria¹; Jason Killgore¹; Peter Bradley¹; Yan Chen²; Ke An²; Andrew Slifka¹; ¹National Institute of Standards and Technology; ²Oak Ridge National Laboratory

10:40 AM Invited

Numerical Recipes: Preparing Nanostructured Materials for Computational Studies, from Metals to Colloids: Laurent Karim Béland¹; Hao Sun¹; Peyman Saidi¹; Yaoting Zhang¹; Mark Daymond¹; Isaac Tamblyn²; ¹Queen's University; ²National Research Council, Canada

11:10 AM

One-dimensional Migration of Prismatic Loop in Refractory High Entropy Alloy and Effects of Local Chemical Order: Hangman Chen¹; Penghui Cao1; 1University of California, Irvine

11:30 AM

Role of Stacking Fault Energy in the Interaction of Extended Dislocations with Nanovoids: Ashley Roach¹; Shuozhi Xu²; Darby Luscher³; Daniel Gianola¹; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²University of Oklahoma; ³Los Alamos National Lab

11:50 AM

Nanoindentation of Alumina and Multiphase Inclusions in 42CrMo4 Steel: Ruben Wagner¹; Robert Lehnert¹; Enrico Storti¹; Lisa Ditscherlein¹; Christina Schröder¹; Steffen Dudczig¹; Urs Peuker¹; Olena Volkova¹; Christos Aneziris¹; Horst Biermann¹; Anja Weidner¹; ¹TU Bergakademie Freiberg

CORROSION

Environmentally Assisted Cracking: Theory and Practice — Corrosion and Degradation in Harsh **Environments**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska-Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Thursday AM | March 23, 2023 Aqua 314 | Hilton

Session Chairs: Ramprashad Prabhakaran, Pacific Northwest National Laboratory; Mohsen Dadfarnia, Seattle University

8:30 AM Invited

A Comprehensive Study to Evaluate Sensitization of Asfabricated Coated TPBAR Cladding: Ramprashad Prabhakaran¹; Venkateshkumar Prabhakaran¹; Dan Edwards¹; David Senor¹; Andy Casella¹; ¹Pacific Northwest National Laboratory

Utilizing Predictions from Precipitation Modeling to Produce 5XXX Series Aluminum Alloy Plate with Lowered Sensitization Responses: Matthew Steiner¹; Likun Sun¹; ¹University of Cincinnati

Preventing the Sensitization in Aluminum Magnesium Alloys: Ramasis Goswami¹; ¹Naval Research Laboratory

Localized Corrosion Behavior of Aged High Zinc 7068 Aluminium Alloy: Ankur Kumar¹; G P Chaudhari¹; S K Nath¹; ¹IIT Roorkee

10:00 AM Break

10:20 AM Invited

Mechanistic Model for Hydrogen Accelerated Fatigue Crack Growth in a Low Carbon Steel: Mohsen Dadfarnia¹; Zahra Hosseini²; Masanobu Kubota³; Akihide Nagao³; Brian Somerday²; Petros Sofronis²; Robert Ritchie⁴; ¹Kyushu University; Seattle University; ²Kyushu University; University of Illinois at Urbana-Champaign; 3I2CNER, Kyushu University; 4University of California, Berkeley

10:50 AM

Influence of Pre-Deformation on High Temperature Oxidation of a Model Fe-Cr-Ni Alloy in Pressurized Water Reactor Environments: Dallin Barton¹; Tingkun Liu¹; Cheng-Han Li¹; Matthew Olszta¹; Ziging Zhai¹; Ferdinan Colin¹; Mychailo Toloczko¹; ¹Pacific Northwest National Laboratory

11:10 AM

Effect of Mo and W on Corrosion of Ni-superalloys: Cynthia Rodenkirchen¹; ¹Imperial College London

MATERIALS DESIGN

Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling Multiscale Modeling Approaches to Improve Fatigue Predictions II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Additive Manufacturing Committee

Program Organizers: Jean-Charles Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Ashley Spear, University of Utah; Antonios Kontsos, Drexel University; Brian Wisner, Ohio University; Orion Kafka, National Institute of Standards and Technology

Thursday AM | March 23, 2023 Aqua 311B | Hilton

Session Chair: Antonios Kontsos, Drexel University

Computation of Stress Intensity Factors by A Phase-Field Fracture Approach: William Huber¹; Mohsen Asle Zaeem¹; ¹Colorado School of Mines

8:50 AM

Fracture Mechanics Based Approach for Fatigue Assessment of Ultra-High Strength Steels: Thomas Straub1; Igor Varfolomeev1; Andreas Kleemann²; Michael Luke¹; ¹Fraunhofer Institute for Mechanics of Materials (IWM); 2Institute of Materials Research and Testing at the Bauhaus-University Weimar

9:10 AM

Predicting Microstructurally Sensitive Fatigue-crack Path in WE43 Magnesium Using High-fidelity Numerical Modeling and Threedimensional Experimental Characterization: Brian Phung¹; Duncan Greeley²; Mohammadreza Yaghoobi²; John Allison²; Ashley Spear¹; ¹University of Utah; ²University of Michigan

MATERIALS PROCESSING

Friction Stir Welding and Processing XII — Dissimilar & Non-Ferrous

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Anton Naumov, Peter The Great St. Petersburg Polytechnic University; Nilesh Kumar, University of Alabama, Tuscaloosa

Thursday AM | March 23, 2023 29A | SDCC

Session Chairs: Piyush Upadhyay, Pacific Northwest National Laboratory; Xiao Li, Pacific Northwest National Laboratory

8:30 AM Invited

High Speed Butt Joining of 1" Thick 2139-T8: Hrishikesh Das1; Piyush Upadhyay¹; Reza Rabby¹; Uchechi Okeke²; Martin McDonnell²; ¹Pacific Northwest National Laboratory; ²DEVCOM GVSC

8:50 AM Invited

Friction Stir Welding to Seal 5 cm Thick Copper Canisters Containing Sweden's Nuclear Waste: Lars Cederqvist¹; ¹Swedish Nuclear Fuel and Waste Management Company (SKB)

9:10 AM Invited

Joining Cast Mg AZ91 and Wrought Al 6082 through Friction Stir Welding: Krzysztof Mroczka¹; Stanisaw Dymek²; Adam Pietras³; Aleksandra Wglowska³; Carter Hamilton⁴; Mateusz Kopyściański²; ¹Cracow University of Technology; ²AGH University of Science and Technology; 3The ukasiewicz Research Network Institute of Welding; 4Miami University

9:30 AM Invited

Dissimilar Copper and Aluminium Joining Using a Solid-state Friction-stir Welding Process: Nishkarsh Srivastava¹; Arpan Rout¹; Amit Arora1; 1Indian Institute of Technology Gandhinagar

9:50 AM Break

10:10 AM

Copper-aluminum Hybrid Induction Motor Rotors Using Friction Stir Welding: Hrishikesh Das¹; Piyush Upadhyay¹; Glenn Grant¹; John Agapiou²; Blair Carlson²; ¹Pacific Northwest National Laboratory; ²General Motors

10:30 AM

Mechanism of Joint Formation in Dissimilar Friction Stir Welding of Aluminum to Steel: Amlan Kar1; Todd Curtis1; Bharat Jasthi1; Grant Crawford¹; ¹Arbegast Materials Processing and Joining Laboratory

SPECIAL TOPICS

Frontiers of Materials Award Symposium: Intermetallic Alloys at the Edge of Complexity: Structural and Kinetic Aspects — Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee, TMS: Solidification Committee

Program Organizer: Ashwin Shahani, University of Michigan

Thursday AM | March 23, 2023 28C | SDCC

Session Chair: Ashwin Shahani, University of Michigan

8:30 AM Invited

In-Situ Growth of PtSn4, a Complex Layered Intermetallic: Lin Zhou1; Feng Zhang2; Jiaqi Yu1; Xiaotian Fang3; Wenyu Huang1; Matthew Kramer¹; ¹Ames National Laboratory; Iowa State University; ²Ames National Laboratory; ³Iowa State University

9:10 AM Invited

Direct Evaluation of Quasicrystal Bulk and Surface Energies in Density Functional Theory: Wenhao Sun¹; ¹University of Michigan

9:50 AM Break

10:10 AM Invited

Complex Intermetallic Compounds: Original Surface Structures for Unusual Surface Properties: Emilie Gaudry¹; ¹Université de

MATERIALS PROCESSING

Materials Processing Fundamentals — New **Processes and Insights**

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee

Program Organizers: Samuel Wagstaff, Oculatus Consulting; Alexandra Anderson, Gopher Resource; Adrian Sabau, Oak Ridge **National Laboratory**

Thursday AM | March 23, 2023 29B | SDCC

Session Chair: Samuel Wagstaff, Oculatus Consulting

8:30 AM Introductory Comments

Scaling Up of Contactless Ultrasonic Cavitation: Catherine Tonry¹; Christopher Beckwith¹; Valdis Bojarevics¹; Georgi Djambazov¹; Koulis Pericleous¹; ¹University of Greenwich

8:55 AM

Reductant Formation Enthalpy in DC Ferrochrome Smelting: Merely Academic or Fundamental to Operation: Harmen Oterdoom¹; Markus Reuter²; Johan Zietsman¹; ¹University of Pretoria; ²SMS Group

9:15 AM

Measuring and Processing of Electrical Parameters in a Submerged Arc Furnace: Hákon Haraldsson¹; Halldór Traustason¹; Yonatan Tesfahunegn¹; Merete Tangstad²; Gúðrún Sævarsdóttir¹; ¹Reykjavík University; ²Orwegian University of Science and Technology

9:35 AM

Virtual Reality for Die Casting Industry Workforce Preparation: John Moreland¹; Cristina Cabascango¹; Kyle Toth¹; Chenn Zhou¹; ¹Purdue University Northwest

9:55 AM Break

10:15 AM

Machining Fluid Filtration and Particle Count Measurement: Chaitanya Ruhatiya¹; Brajendra Mishra¹; ¹Worcester Polytechnic Institute

10:35 AM

Comprehensive Recovery of Elemental Sulfur and Sulfide Minerals from Pressure Acid Leaching Residue of Zinc Sulfide Concentrate with an Integrated Flocculation Flotation-hot Filtration Process: Guiging Liu¹; Bangsheng Zhang²; Zhonglin Dong³; Fan Zhang²; Fang Wang²; Jintian Wu³; Tao Jiang³; Bin Xu³; ¹Northeastern University; ²Jiangsu BGRIMM Metal Recycling Science & Technology Co. Ltd; ³Central South University

MATERIALS PROCESSING

Materials Research in Reduced Gravity — Solidification (Levitation) / Thermophysical **Properties (Levitation)**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee, TMS: Process Technology and Modeling Committee

Program Organizers: Wilhelmus Sillekens, European Space Agency; Michael Sansoucie, Nasa Marshall Space Flight Center; Robert Hyers, Worcester Polytechnic Institute; Douglas Matson, Tufts University; Gwendolyn Bracker, DLR Institute of Materials Physics in Space

Thursday AM | March 23, 2023 30B | SDCC

Session Chairs: Michael Sansoucie, Nasa Marshall Space Flight Center; Kaihua Ji, Northeastern University

8:30 AM

Containerless Solidification of Al-22.5wt%Cu in Reduced Gravity Using the ISS-EML: Jonas Valloton1; Sven Vogel2; Hani Henein1; ¹University of Alberta; ²Los Alamos National Laboratory

Anomalous Kinetics of Rapidly Solidified Al-rich Al-Ni Alloys: Peter Galenko¹; ¹Friedrich Schiller University Jena

9:10 AM

Transient Convective Transport during Undercooled Droplet Solidification: Andrew Kao1; Valdis Bojarevics1; Catherine Tonry1; Koulis Pericleous¹; ¹University of Greenwich

Influence of Undercooling and Convective Stirring on Phase Transformations in Electromagnetically Levitated Fe-Co: Brian Stanford¹; Olga Shuleshova²; Douglas Matson¹; ¹Tufts University; ²Ifw Dresden

9:50 AM Break

10:10 AM

Relating Cooling Rates in Superheated Liquid and during Solidification: Peace Muusha¹; Douglas Matson¹; Matthias Kolbe²; ¹Tufts University; ²DLR-Koln

10:30 AM

Effects of Oxygen on the Surface Tension of Liquid Inconel 718: Michael Sansoucie¹; Elizabeth Hodges²; Robert Hyers²; Marshall Space Flight Center; ²University of Massachusetts

Experimental and Numerical Investigation of Dynamic Behavior of an Oscillating High-density Drop Processed using Electrostatic Levitation Furnace Aboard the International Space Station: Ali Rabeh¹; Makrand Khanwale²; Masahito Watanabe³; Robert Hyers⁴; Michael San Soucie⁵; Jonghyun Lee¹; Baskar Ganapathysubramanian¹; ¹lowa State University; ²Stanford University; ³Gakushuin University; ⁴University of Massachusetts Amherst; ⁵NASA Marshall Space Flight Center

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components III - In-situ Testing and Novel **Techniques**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Assel Aitkaliyeva, University of Florida; Clarissa Yablinsky, Los Alamos National Laboratory; Osman Anderoglu, University of New Mexico; Eda Aydogan, Middle East Technical University; Kayla Yano, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Djamel Kaoumi, North Carolina State University

Thursday AM | March 23, 2023 28D | SDCC

Session Chairs: Assel Aitkaliyeva, University of Florida; Kayla Yano,

8:30 AM Invited

Mechanical Martensites in Nuclear Steels: Janelle Wharry¹; Patrick Warren¹; Haozheng Qu¹; Chao Yang¹; Yangyang Zhao¹; Keyou Mao²; ¹Purdue University; ²Florida State University

9:00 AM

Evaluation of Size Effects in Small Scale Mechanical Testing Combining Multi-length Scale Models and Experiments: David Frazer¹; Stephanie Pitts¹; Brennan Harris¹; Fei Teng¹; Trishelle Copeland-Johnson¹; Kaustubh Bawane¹; Sebastian Lam²; Dewen Yushu¹; Peter Hosemann²; Fabiola Cappia¹; ¹Idaho National Laboratory; ²UC Bereley

9:20 AM

Micromechanical Aspects of Deformation and Failure of Advanced Iron-Chromium-Aluminum Alloys: Ercan Cakmak¹; Maxim Gussev¹; Nedim Cinbiz²; Kevin Field³; Ke An¹; ¹Oak Ridge National Laboratory; ²Idaho National Laboratory; ³University of Michigan

The Influence of Nanoindentation Orientation on Deformation Mechanisms in Irradiated Fe - P and Fe - N: Patrick Warren¹; Keyou Mao²; Janelle Wharry¹; ¹Purdue University; ²Florida State University

10:00 AM Break

10:20 AM Invited

Non-destructive Stress Evaluation in Nuclear Materials by Positron Annihilation Spectroscopy: Farida Selim1; Djamel Kaoumi2; 1Bowling Green State University; 2North Carolina State University

Error in RUS Measurements Due to Geometric Uncertainties: Mathew Hayne¹; Luke Beardslee¹; Anna Buckthorpe¹; Paul Geimer¹; Timothy Ulrich II1; Tarik Saleh1; 1Los Alamos National Laboratory

Optimizing Nuclear Cladding Mechanical Property Output for Hot-cell Testing: Benton Garrison¹: Caleb Massev¹: Maxim Gussev¹: Nathan Capps¹; Jason Harp¹; ¹Oak Ridge National Lab

CHARACTERIZATION

Mechanical Response of Materials Investigated through Novel In-situ Experiments and Modeling — Session V

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization; Dongchan Jang, Korea Advanced Institute of Science and Technology; Shailendra Joshi, University of Houston; Minh-Son Pham, Imperial College London; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Josh Kacher, Georgia Institute of Technology

Thursday AM | March 23, 2023 Aqua 310B | Hilton

Session Chairs: Robert Wheeler, Microtesting Solutions LLC; Daniel Hong, Ohio State University

8:30 AM Invited

In situ Synchrotron Observation of Deformation Mechanisms, from Hot Tears during Superalloy Solidification to Volcanic Eruptions: Peter Lee¹; Mohammed Azeem²; Nolween Le Gall¹; Robert Atwood³; ¹University College London; ²University of Leicester; ³Diamond Light Source

9:00 AM

Understanding AM 316L Steel Microstructure Evolution due to Post-process Laser Scanning: A Thermo-mechanical Modeling and In-situ Laser-SEM Study: Nikhil Mohanan¹; Juan Guillermo Santos Macias¹; Jérémy Bleyer²; Thomas Helfer³; Manas Upadhyay¹; ¹Laboratoire de Mécanique des Solides, École Polytechnique; ²Laboratoire Navier, ENPC, Université Gustave Eiffel; ³CEA, DEN/ DEC/SESC

9:20 AM

Monitoring Crystal-scale Evolution in Real-time using In-situ High **Energy Diffraction Microscopy and Principal Component Analysis:** Dalton Shadle¹; Kelly Nygren²; Matthew Miller¹; ¹Cornell University; ²Cornell High Energy Synchrotron Source

9:40 AM

Numerical Modeling and Advanced Characterization Techniques to Study the Influence of Process-inherited Local Deformation on In-service Behavior of an Inconel 718: Julien Genee¹; Sylvain Vallot¹; Damien Texier¹; Denis Delagnes¹; ¹Clement Ader Institute

10:00 AM Break

10:30 AM

Gradient Shape Memory Alloys: An Exploration of Pseudo and Thermo-elastic Response: Daniel Hong¹; Xuesong Gao¹; Peter Anderson¹; ¹Ohio State University

10:50 AM

In-situ Microstructure Evolution during High Temperature Deformation of Fe-C-Mn-Si Steel: Abhishek Arya1; Muhammad Nabeel¹; Andre Phillion¹; ¹McMaster University

11:10 AM

Numerical Examination of the Oliver-Pharr Method for Nanoindentation of Shape Memory Alloys: Xuesong Gao1; Daniel Hong¹; Harshad Paranjape²; Wei Zhang¹; Peter Anderson¹; ¹Ohio State University; ²Confluent Medical Technologies, Inc

11:30 AM

Micro-tensile Experiments on Low-carbon Martensitic Stainless Steel Alloy S41500: Pierre-Antony Deschenes¹; Robert Wheeler²; Daniel Paquet³; Jacques Lanteigne³; A.M. Serventi¹; Laurent Tôn-Thât¹; Henri Champliaud⁴; ¹Hydro-Quebec; ²Microtesting Solutions LLC; ³Hydro-Quebec ; ⁴Ecole de technologie supérieure

NANOSTRUCTURED MATERIALS

Nanostructured Materials in Extreme Environments - Modeling and Simulation

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nuclear Materials Committee

Program Organizers: Haiming Wen, Missouri University of Science and Technology; Nan Li, Los Alamos National Laboratory; Youxing Chen, University of North Carolina Charlotte; Yue Fan, University of Michigan; Niaz Abdolrahim, University of Rochester; Khalid Hattar, University of Tennessee Knoxville; Ruslan Valiev, UFA State Aviation Technical University; Zhaoping Lu, University of Science and Technology Beijing

Thursday AM | March 23, 2023 Aqua 303 | Hilton

Session Chair: Yue Fan, University of Michigan

8:30 AM Invited

Exploring the Shear Localization in Metallic Nanolayered Composites via Atomistic Simulations: Caizhi Zhou¹; Shujing Dong¹; ¹University of South Carolina

8:55 AM Invited

The Role of Chemical Short-range Order on Defects Migration and Evolution in Multi-principal Element Alloys: Bin Xing¹; Xinyi Wang¹; Penghui Cao1; 1University of California, Irvine

9:20 AM

Shock Compression of Nanocrystalline Boron Carbide from Deep Learning Molecular Dynamics Simulations: Qi An1; Jun Li1; 1lowa State University

9:40 AM

Multi-scale Framework to Simulate the Long-term Diffusion Radiation-induced Defects in Nano-crystalline Materials: Mohamed Hendy¹; Okan Orhan¹; Mauricio Ponga¹; ¹The University of British Columbia

10:00 AM Break

10:20 AM

Coarsening Kinetics in Surface-doped Nanoporous Metals: Luis Granadillo¹; Ian McCue¹; ¹Northwestern University

The Role of Grain Boundaries in the Morphological Instabilities of Nanoscale Geometries: Omar Hussein1; Keith Coffman2; Khalid Hattar³; Eric Lang³; Shen Dillon⁴; Fadi Abdeljawad¹; University; ²University of Illinois Urbana-Champaign; ³Sandia National Laboratories; 4University of California, Irvine

11:00 AM

A Grain Boundary Solute Drag in Regular Solution Alloys: Malek Alkayyali1; Fadi Abdeljawad1; 1Clemson University

ENERGY & ENVIRONMENT

New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of Patrick R. Taylor — **Mineral Processing**

Sponsored by: Society for Mining Metallurgy and Exploration, TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Materials Characterization Committee, TMS: Energy Committee, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Ramana Reddy, University of Alabama; Corby Anderson, Colorado School of Mines; Erik Spiller, Colorado School of Mines; Edgar Vidal, NobelClad; Camille Fleuriault, Eramet Norway; Alexandra Anderson, Gopher Resource; Mingming Zhang; Christina Meskers, SINTEF

Thursday AM | March 23, 2023 33C | SDCC

Session Chairs: Edgar Vidal, NobelClad; Tao Wang, Rio Tinto

8:30 AM Invited

Titanomagnetites: Ores of the Future?: Thomas Battle¹; ¹Extractive Metallurgy Consultant

9:00 AM

NbC-containing High Carbon Steel Grinding Media Development: Casey Brown¹; John Heerema²; Charles Enloe³; Erik Spiller⁴; John Speer¹; Emmanuel De Moor¹; ¹Colorado School of Mines, Advanced Steel Processing and Products Research Center; ²Gerdau Long Steel; 3CBMM; 4Colorado School of Mines

9:20 AM

Evaluating Waste Reprocessing: Framework Development: Joseph Trouba¹; Nina Zaronikola¹; Roderick Eggert¹; Elizabeth Holley¹; ¹Colorado School of Mines

9:40 AM

Investigation of Heavy Metal Levels in Tin Mine Wastes and the Implication to Mine Closure Plan: A Case Study of Rutongo Mine, Rwanda: Jean Ishimwe¹; Abubakary Salama¹; Kenneth Sichone²; Kenneth Sichone³; ¹University of Dar es Salaam; ²Harvest University; 3University of Rwanda

10:00 AM Break

10:20 AM

Processing of Luanshya Copper Smelting Slag: Yaki Namiluko1; Yotamu Hara¹; Rainford Hara¹; Nachikonde Fumpa¹; Agabu Shane¹; Makwenda Ngomba¹; Ireen Musukwa¹; Ronald Hara¹; ¹Copperbelt University

10:40 AM

Separation of Li and Co from LiCoO2 Cathode Material through Aluminothermic Reduction Using Different Aluminum Sources: Chemical Grade, Swarf, and Dross: Deddy Nababan¹; Reiza Mukhlis¹; Yvonne Durandet¹; Leon Prentice²; M. Akbar Rhamdhani¹; ¹Swinburne University of Technology; 2CSIRO Manufacturing

11:00 AM

Towards Framework Development for Benchmarking Energy Efficiency in Foundation Industries: A Case Study of Granulation Process: Shoaib Sarfraz1; Ziyad Sherif1; Mark Jolly1; Konstantinos Salonitis¹; ¹Cranfield University

NUCLEAR MATERIALS

Phase Stability in Extreme Environments — Stress **Induced Transformations and Mechanical Properties** in Extreme Environments

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Andrew Hoffman, GE Research; Kinga Unocic, Oak Ridge National Laboratory; Janelle Wharry, Purdue University; Kaila Bertsch, Lawrence Livermore National Laboratory; Raul Rebak, GE Global Research

Thursday AM | March 23, 2023 27A | SDCC

Session Chairs: Caleb Clement, Purdue University; Kelvin Xie, Texas A&M University

8:30 AM Invited

Taming the Pseudoelastic Response of Nitinol Using Ion Implantation: Peter Anderson¹; Alejandro Hinojos¹; Daniel Hong¹; Hariharan Sriram¹; Chao Yang²; Janelle Wharry²; Xuesong Gao¹; Khalid Hattar³; Nan Li⁴; Jeremy Schaffer⁵; Yunzhi Wang¹; Michael Mills¹; ¹The Ohio State University; ²Purdue University; ³Sandia National Labs; ⁴Los Alamos National Labs; ⁵Fort Wayne Metals

9:00 AM Invited

Grain-subdivision-dominated Microstructure Evolution in Shear Bands at High Rates: Kelvin Xie1; 1Texas A&M University

9:30 AM

Heat Treatment Design of Inconel 740H Superalloy for Microstructure Stability and Creep Properties Enhancement: Dong-Min Kim¹; Cheol-Hyeok Yang¹; Hyun-Uk Hong¹; Hi-Won Jeong²; ¹Changwon National University; ²Korea Institute of Materials Science

Investigation of Effect of Stress on Laves Phase Precipitation and Growth in Creep-ruptured Grade 92 Steel: Emily Proehl1; Steven Zinkle¹; Lizhen Tan²; Ying Yang²; David Sprouster³; Weicheng Zhong²; ¹University of Tennessee-Knoxville; ²Oak Ridge National Laboratory; ³Stony Brook University

10:10 AM Break

10:25 AM Invited

Decoupling Irradiation Effects on Unusual Deformation Mechanisms in Alloy 625: Caleb Clement¹; Janelle Wharry¹; ¹Purdue University

10:55 AM Invited

The Impact of Short-order Order on Deformation Phase Transformation and Microstructure Evolution in Multi-principal Element Alloys: Hangman Chen¹; Mingjie Xu¹; Xin Wang¹; Enrique Lavernia¹; Xiaoqing Pan¹; Penghui Cao¹; ¹University of California, Irvine

11:25 AM

Effect of Annealing Temperature on the Structure and Mechanical Properties of a Single-phase WFeNiMo Multi-principal Element Alloy Film: Zahidur Rahman¹; Michael Detisch¹; John Balk¹; ¹University of Kentucky

11 45 AM

Oxidation Effects in High-temperature Shape Memory Alloys: Tom Ralph¹; Jean-Briac le Graverend¹; ¹Texas A&M University

PHYSICAL METALLURGY

Phase Transformations and Microstructural Evolution — Additive Manufacturing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Ashley Paz y Puente, University of Cincinnati; Mark Aindow, University of Connecticut; Sriswaroop Dasari, University of North Texas; Ramasis Goswami, Naval Research Laboratory; Megumi Kawasaki, Oregon State University; Eric Lass, University of Tennessee-Knoxville; Josh Mueller, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Le Zhou, Marquette University

Thursday AM | March 23, 2023 25C | SDCC

Session Chair: Ashley Paz y Puente, University of Cincinnati

8:30 AM

Compositional Redistribution, Phase Transformation, Microstructural Development in SS316L/IN718 Bimetallic Structure Fabricated by Laser Powder Bed Fusion: Asif Mahmud¹; Nicolas Ayers¹; Thinh Huynh¹; Kevin Graydon¹; Yongho Sohn¹; ¹University of Central Florida

8:50 AM

Tracking Precipitate Evolution in an AM 316L Steel during Solidstate Thermal Cycling: A 3D Synchrotron X-ray Nanotomography Study: Steve Gaudez¹; Meriem Ben Haj Slama¹; Lluis Yedra²; Eva Héripré³; Mario Scheel⁴; Hakim Gharbi¹; Simon Hallais¹; Manas Upadhyay¹; ¹Ecole Polytechnique, LMS, CNRS; ²Universitat de Barcelona; ³CentraleSupélec, CNRS, Université Paris-Saclay; ⁴Anatomix beamline, Soleil synchrotron

Recrystallization Kinetics of 316L Stainless Steel Processed by Laser Powder Bed Fusion (LPBF): Edouard de Sonis¹; Sylvain Dépinoy²; Pierre-François Giroux³; Hicham Maskrot⁴; Louis Lemarquis³; Olivier Hercher⁴; Flore Villaret⁵; Anne-Françoise Gourgues-Lorenzon²; ¹Université Paris-Saclay, CEA, Service de Recherches Métallurgiques Appliquées; ²Mines Paris, PSL University, MAT - Centre des Matériaux, CNRS UMR 7633, BP 87; 3Université Paris-Saclay, CEA, Service de Recherches Métallurgiques Appliquées, F-91191; ⁴Université Paris-Saclay, CEA, Service d'Études Analytiques et de Réactivités des Surfaces, F-91191; 5EDF R&D, Département Matériaux et Mécanique des Composants (MMC), Les Renardières, F-77250

Rationalization of the Solidification Behavior in Additively Manufactured PH Steels Using In-situ Radiography, Ex-situ Orientation Image Microscopy and Thermodynamic Modelling: Rakesh Kamath¹; Logan White¹; Serena Beauchamp¹; Kamel Fezzaa²; Eric Lass¹; Hahn Choo¹; ¹University of Tennessee Knoxville; ²Argonne **National Laboratory**

9:50 AM

Measurements of Retained Austenite in Additively Manufactured Nitrogen Atomized 17-4PH Stainless Steel: James Zuback¹; Fan Zhang¹; Daniel Gopman¹; Mark Stoudt¹; Maureen Williams¹; Carelyn Campbell¹; ¹National Institute of Standards and Technology

10:10 AM Break

10:30 AM

Phase Transformations during Laser-based Powder Bed Fusion Studied by Operando X-ray Diffraction: Steven Van Petegem¹; ¹Paul Scherrer Institut

10:50 AM

Quantifying the Beta-to-Alpha Solid-State Phase Transformation in Additive Manufactured Ti-6Al-4V Using High-Energy X-ray Diffraction Measurements and Phase Field Modeling: Bonnie Whitney¹; Anthony Spangenberger¹; Dan Savage²; Donald Brown²; Travis Carver²; Diana Lados¹; ¹Worcester Polytechnic Institute; ²Los Alamos National Laboratory

11:10 AM

Structural Evolution during Nanostructuring and Heating of an Additive-Manufactured CoCrFeNi Alloys Examined by X-ray and In-situ Neutron Diffraction Analyses: Megumi Kawasaki¹; Jae-Kyung Han¹, Xiaojing Liu², Klaus-Dieter Liss², ¹Oregon State University; ²Guangdong Technion - Israel Institute of Technology

ADDITIVE TECHNOLOGIES

Powder Materials Processing and Fundamental Understanding — Control Macro and Microstructures II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Eugene Olevsky, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Kennametal Inc.; Wenwu Xu, San Diego State University

Thursday AM | March 23, 2023 25B | SDCC

Session Chairs: Claude Estournès, CIRIMAT/CNRS; Iver Anderson, Iowa State University Ames Laboratory; Charles Maniere, CRISMAT laboratory

8:30 AM

Investigation of Gas Atomization Reaction Synthesis (GARS) Processing Parameters for Controlled Synthesis of Oxide Dispersion Strengthened (ODS) Ferritic Stainless Steels for Advanced Nuclear Reactor Applications: Jordan Tiarks¹; Landon Hickman¹; Emma Cockburn¹; Ralph Napolitano²; Trevor Riedemann¹; Nicolas Argibay¹; Iver Anderson¹; ¹Ames National Laboratory; ²Iowa State University

8:50 AM

Additive Manufacturing of Powder Components Based on Subtractive Sintering Approach: Maricruz Carrillo¹; Eugene Olevsky¹; Charles Maniere¹; Geuntak Lee¹; ¹San Diego State University

9:10 AM

Immobilization of Laccases on ZnO and CuO Nanoparticles and the Effect of Copper Ions on Their Stability and Catalytic Activity: F. Suarez¹; Eesa Khan¹; Rafael Vazquez-Duhalt²; Olivia Graeve¹; ¹University of California San Diego; ²Universidad Nacional Autónoma de México

9:30 AM

Evolution of Microstructure and Defects in Laser Powder Bed Fused Alloys after Hot Isostatic Pressing: Penn Rawn¹; Le Zhou¹; ¹Marquette University

9:50 AM Invited

Toward the Flash Sintering of Complex Shapes, the Key Steps of Microwave Energy and 3D Printing: Charles Maniere¹; Geuntak Lee²; Elisa Torresani²; Guillaume Riquet³; Sylvain Marinel³; Eugene A. Olevsky²; ¹CRISMAT laboratory; ²San Diego State University; ³CRISMAT Laboratory

10:20 AM Break

10:40 AM Invited

Spark Plasma Sintering of Stabilized Zirconia: Strategies to Design Ceramics with Tailored Properties: Claude Estournes1; Andréas Flaureau²; Amaud Fregeac³; Mélanie Rousselle³; Thomas Herisson de Beauvoir¹; Geoffoy Chevallier¹; Alicia Weible¹; Florence Ansart¹; Guillaume Fradet⁴; Serge Selezneff⁴; Catherine Elissalde⁵; Fabrice Mauvy⁵; ¹CIRIMAT, Université de Toulouse; ²CIRIMAT; ³CIRIMAT, Université de Toulouse, SAFRAN Aircraft Engines; 4SAFRAN Aircraft Engines; 5ICMCB, CNRS Université Bordeaux

11:10 AM

Understanding Solidification and Alloying Effects in Oxide Dispersoid Strengthened Alloy Powders Produced by Gas Atomization Reaction Synthesis: Emma Cockburn¹; Iver Anderson²; Nicolas Argibay²; Jordan Tiarks²; Trevor Reidemann²; Ralph Napolitano¹; ¹Iowa State University; ²Ames National Laboratory

11:30 AM

Morphology Control of Doped Hafnium Carbide Powders: Shari Estrada¹; Rafael Chavez¹; Olivia Graeve¹; ¹University of California San Diego

ADDITIVE TECHNOLOGIES

Quantifying Microstructure Heterogeneity for Qualification of Additively Manufactured Materials - Roles for Modeling and Data Science

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Phase Transformations Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Sharniece Holland, Washington University in St. Louis; Eric Payton, University of Cincinnati; Edwin Schwalbach, Air Force Research Labroatory; Joy Gockel, Colorado School of Mines; Ashley Paz y Puente, University of Cincinnati; Paul Wilson, The Boeing Company; Amit Verma, LLNL; Sriram Vijayan, Ohio State University; Jake Benzing, National Institute of Standards and Technology

Thursday AM | March 23, 2023 24B | SDCC

Session Chairs: Edwin Schwalbach, Air Force Research Laboratory; Amit Verma, Carnegie Mellon University

8:30 AM Invited

Towards Validation of Thermo-mechanical Finite Element Modeling of the Additive Manufacturing Solidification Process: William Musinski¹; Paul Shade¹; Edwin Schwalbach¹; ¹US Air Force Research Laboratory

Effects of Laser Process Parameters on Denudation Zone Width in Laser Powder Bed Fusion Additive Manufacturing: Mehdi Amiri; Eric Payton¹; ¹Air Force Research Laboratory

9:15 AM

3D Computer Vision and Deep Learning for Porosity Analysis in Additive Manufacturing: Daniel Diaz1; Xingyang Li1; Yuheng Nie1; Elizabeth Holm¹; Anthony Rollett¹; ¹Carnegie Mellon University

9:35 AM

Quantitative Analysis of Low Concentration Elements at the Nanoscale in Additively Manufactured Alloys: Pritesh Parikh1; Darshan Jaware¹; Jiangtao Zhu¹; Karol Putyera²; Rajiv Soman²; ¹Eurofins Nanolab Technologies; ²Eurofins EAG Laboratories

9:55 AM Break

10:20 AM

Predicting Crystallographic Texture in Laser Powder Bed Fusion via a Machine Learning Approach: Gregory Wong¹; Elizabeth Holm¹; Anthony Rollett¹; Gregory Rohrer¹; ¹Carnegie Mellon University

10:40 AM

Effects of Processing Conditions and Build Geometry on Microstructure Development in Laser Powder Bed Fusion and Wire Arc Additively Manufactured 316L: Charles Smith1; Olivia Denonno1; Matthew Schreiber¹; Anthony Petrella¹; Amy Clarke¹; Jonah Klemm-Toole¹; ¹Colorado School of Mines

11:00 AM

Additive Manufacturing Beyond the Gaussian Beam: Insights from Microstructure-based Modeling Studies: Daniel Moore¹; Theron Rodgers²; Sergio Turteltaub³; Daniel Moser²; Heather Murdoch⁴; Fadi Abdeljawadf¹; ¹Clemson University; ²Sandia National Laboratories; ³Delft University of Technology; ⁴Army Research Laboratory

The Impact of Volumetric Energy Density on Mechanical Properties of Additively Manufactured 718 Ni Alloy: Benjamin Stegman¹; Anyu Shang¹; Luke Hoppenrath¹; Anant Raj¹; Hany Abdel-Khalik¹; John Sutherland¹; David Schick²; Victor Morgan²; Kirti Jackson²; Xinghang Zhang¹; ¹Purdue University; ²Proto Precision Additive LLC

ADVANCED MATERIALS

Refractory Metals 2023 — Mechanical Behavior -**Ultimate Plus**

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Brady Butler, US Army Research Laboratory; Todd Leonhardt, Rhenium Alloys Inc.; Matthew Osborne, Global Advanced Metals; Zachary Levin, Los Alamos National Laboratory

Thursday AM | March 23, 2023 Aqua E | Hilton

Session Chair: Todd Leonhardt, Rhenium Alloys Inc

8:30 AM

Mechanistic Models of the Inelastic Deformation of Refractory **BCC Metals**: Christopher Weinberger¹; Anik Faisal¹; Hunter Brumblay¹; ¹Colorado State University

8:50 AM

Dislocation Emission from Crack Tips in Cr Studied by In-situ TEM: Daniel Kiener¹; Michael Burtscher¹; Inas Issa¹; Klemens Schmuck¹; Christoph Gammer²: Stefan Sandfeld³: ¹University of Leoben: ²Erich Schmid Institute; ³Forschungszentrum Juelich

Insights on the Fatigue Crack Growth Behaviour of Rolled Tungsten for Its Application in Nuclear Fusion: Michael Pegritz1; Stefan Wurster¹; Reinhard Pippan¹; Anton Hohenwarter²; ¹Erich Schid Institute of Materials Science of the Austrian Academy of Sciences; ²Montanuniversität Leoben

9:30 AM

The Influence of Thermally Activated Dislocation Motion on the Brittle-ductile Transition of BCC Refractory Metals: Hunter Brumblay¹; Tariqul Islam²; Gregory Thompson²; Christopher Weinberger¹; ¹Colorado State University; ²University of Alabama

Mechanical Properties of WMoFeNi Alloys during High Strainrate Testing: Kerry Baker¹; Riya Barua¹; Zahidur Rahman¹; T Balk¹; ¹University of Kentucky

10:10 AM Break

10:25 AM

Stress Relaxation Behavior of Molybdenum Sheet: Alex Xie1; Gary Rozak²; Oliver Horst¹; ¹QSIL; ²H.C. Starck Solutions

Alloys of Chromium-Silicon Alloys with Iron and Nickel for Structural High Temperature Applications: Michael Kerbstadt¹; Emma White¹; Mathias Galetz¹; ¹DECHEMA-Forschungsinstitut

Strengthening in Mo-La Alloys at Temperatures from 1500 C to 1700 C: Monica Martinez1; Gary Rozak2; Eric Taleff1; 1University of Texas at Austin; 2H.C. Starck Solutions

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Materials and Science — Thermodynamic/ Radiobiology

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: J. Rory Kennedy, Idaho National Laboratory; Taylor Jacobs, Los Alamos National Laboratory; Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Don Wood, Idaho National Laboratory

Thursday AM | March 23, 2023 28A | SDCC

Session Chairs: Shuxiang Zhou, INL; Rory Kennedy, INL

8:30 AM Invited

Elucidating the Corrosion Mechanism of Commercial Ni-based Superalloys in UCl3 Containing-chloride Molten Salt Systems: Trishelle Copeland-Johnson¹; Xavier Quintana²; Michael Woods¹; Ruchi Gakhar¹; Daniel Murray¹; Guoping Cao¹; Lingfeng He¹; ¹Idaho National Laboratory; 2Oregon State University

9:00 AM Invited

Practical Approach to Modeling the Complex Thermochemistry of Actinide-Containing Molten Salts: Theodore Besmann¹; Jacob Yingling¹; Juliano Schorne-Pinto¹; Johnathan¹; Mina Aziziha¹; Clara Dixon¹; Jorge Paz Soldan Palma¹; Ronald Booth¹; Amir Mehdi Mofrad¹; joshua Wermers¹; ¹University of South Carolina

Revisiting the U-Zr Phase Diagram: A Critical Review: Walter Williams¹; Jarrod Lund²; Maria Okuniewski²; Edwin Garcia²; ¹INL; ²Purdue University

Thermodynamics of Plutonium, Its Alloys and Defects: Franz Freibert1; 1Los Alamos National Laboratory

10:10 AM Break

10:30 AM Invited

Elucidating the Radiobiology of Alpha Particles in Cancer Therapy: Sandra Davern¹; Miguel Toro-Gonzalez¹; Amber Bible¹; ¹Oak Ridge **National Laboratory**

11:00 AM Invited

Advancing Actinium-225 Coordination Chemistry and Chelator Development for Targeted Alpha Therapy: Megan Simms¹; Caroline Lara¹; Alex Ivanov¹; Nikki Thiele¹; ¹Oak Ridge National Laboratory

11:30 AM

Structural Changes in Molten Salt Fuel and/or Waste Stream Compounds Cs2UCl6 and Cs2UO2Cl4 from Room Temperature to Melting: Benjamin Walusiak¹; Alice Smith²; Sven Vogel²; Stepehn Parker²; Shane Mann²; Alberto Gomez²; Adam Phelan²; Christopher ¹George Washington University; ²Los Alamos National Laboratory

NUCLEAR MATERIALS

Transmutation Effects in Fusion Reactor Materials: Critical Challenges & Path Forward — Radiation Damage Characterization, Modeling & Alloy Design I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Arunodaya Bhattacharya, Oak Ridge National Laboratory; Steven Zinkle, University of Tennessee; Philip Edmondson, The University of Manchester; Aurelie Gentils, Université Paris-Saclay; David Sprouster, Stony Brook University; Takashi Nozawa, National Institutes for Quantum and Radiological Science and Technology (QST); Martin Freer, University of Birmingham

Thursday AM | March 23, 2023 27B | SDCC

Session Chairs: Lance Snead, Stony Brook University; Aurelie Gentils, University of Paris-Saclay, CNRS

8:30 AM Invited

Characterizing Transmutation Products in Materials via STEM and Machine Learning: Chad Parish¹; ¹Oak Ridge National Laboratory

Suppression of Rhenium and Osmium Production in Tungstenbased Materials for Fusion Energy: Mark Anderton1; Matthew Lloyd²; Thomas Davis¹; ¹Oxford Sigma Ltd; ²Singapore University of Technology and Design

9:30 AM

Investigation of High Temperature He Embrittlement Effects in High Performance Nickel-based Alloys: Zehui Qi¹; Steven Zinkle¹; ¹University of Tennessee, Knoxville

9:50 AM

Machine Learning Generation of Trajectories for Accurate Modeling Plasma Material Interactions: Osetsky Yury¹; German Samolyuk¹; Eva Zarkadoula¹; Markus Eisenbach¹; Cornwall Lau¹; Juergen Rapp¹; ¹Oak Ridge National Laboratory

10:10 AM Break

10:30 AM Invited

Magic Numbers on the Shape of Voids Formed by Electron Irradiation in Aluminium: Estelle Meslin1; Camille Jacquelin1; C.-C. Fu¹; Maylise Nastar¹; ¹CEA

11:10 AM

No Ball Milling Needed: Revamping Fabrication Route of ODS Steel Plate with Cold Spray and Friction Stir Processing: Dalong Zhang¹; Jens Darsell¹; Kenneth Ross¹; Glenn Grant¹; Iver Anderson²; Jia Liu¹; Xiaolong Ma¹; Danny Edwards¹; Wahyu Setyawan¹; ¹Pacific Northwest National Laboratory; ²Ames Laboratory

ADDITIVE TECHNOLOGIES

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials -Steels II

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Magnetic Materials Committee, TMS: Additive Manufacturing Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Emily Rinko, Iowa State University; Emma White, DECHEMA Forschungsinstitut; Kyle Johnson, Sandia National Laboratories; Andrew Kustas, Sandia National Laboratories; Iver Anderson, Iowa State University Ames Laboratory

Thursday PM | March 23, 2023 23C | SDCC

Session Chairs: Emily Rinko, Iowa State University; Emma White, DECHEMA Forschungsinstitut

2:00 PM

Directed Energy Deposition of AF9628: Process Optimization and Overhang Compensation: Clara Mock1; Josh Taggart-Scarff2; Brandon McWilliams1; ¹DEVCOM Army Research Laboratory; ²SURVICE Engineering

2:20 PM

Process-microstructure-mechanical Property Correlations of a 3D Printed Austenitic Steel - From Powder Bed Fusion to Directed Energy Deposition: Shubham Chandra¹; Xipeng Tan²; Upadrasta Ramamurty1; ¹Nanyang Technological University; ²National University of Singapore

2:40 PM

Thermal-Stress Modeling during DED Hybrid Technology Using 316L Stainless Steel: Mukesh Kalel¹; Pedro Cortes¹; Kyosung Choo¹; Jose Angel Diosdado De la Pena¹; Eric Haake¹; ¹Youngstown State University

3:00 PM

Microstructure and Mechanical Properties of 17-4PH Stainless Steels Manufactured by Material Extrusion Additive Manufacturing: Yong-Hoon Cho1; So-Yeon Park1; Ju Yong Kim2; Kee-Ahn Lee1; 1Inha University; 2Reprotech

Additive Manufacturing of Multi-material Metal Structures Using Powders Produced by Machining: Puli Saikiran¹; Harish Dhami¹; Priti Panda¹; Koushik Viswanathan¹; ¹Indian Institute of Science

3:40 PM Break

3:55 PM

Alloy Development through In-situ Mixing of Stainless Steel 316L and Inconel 718 Using Directed Energy Deposition: Noah Sargent1; Samad Firdosy²; Kinga Unocic³; Jonathan Poplawsky³; Richard Otis²; Wei Xiong¹; ¹University of Pittsburgh; ²Jet Propulsion Laboratory, California Institute of Technology; ³Center for Nanophase Materials Sciences, Oak Ridge National Laboratory

4:15 PM

In-situ Synthesis of Invar Alloys by Dual-wire Deposition Using WAAM: Arjun Sood¹; Jim Schimmel¹; Constantinos Goulas²; Vera Popovich¹; Marcel Hermans¹; ¹Delft University of Technology; ²University of Twente

4:35 PM

Laser Beam Directed Energy Deposition of High-Si Content Fe-Si **Soft Magnetic Alloys**: Andrew Kustas¹; Don Susan¹; Todd Monson¹; Sarah Birchall¹; Shaun Whetten¹; Mark Wilson¹; Kyle Johnson¹; Jonathan Pegues¹; Erin Barrick¹; ¹Sandia National Laboratories

Additive Manufacturing of Titanium/Diamond Metal Matrix Composites: Cherry Chen¹; Robert Wilson¹; Geoff de Looze¹; Kun Yang1; 1CSIRO

ADDITIVE TECHNOLOGIES

Additive Manufacturing Fatigue and Fracture: Effects of Surface Roughness, Residual Stress, and Environment — Session VII

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; John Lewandowski, Case Western Reserve University; Nima Shamsaei, Auburn University; Steve Daniewicz, University of Alabama; Mohsen Seifi, ASTM International/Case Western Reserve University

Thursday PM | March 23, 2023 22 | SDCC

Session Chair: Dillon Watring, Naval Research Laboratory

2:00 PM Invited

Process-structure-property **Additively** Relationships of Manufactured Materials: Challenges and Opportunities: Pooriya Nezhadfar1; 1GE Aviation

2:30 PM

High Cycle Fatigue Properties of Laser Metal Deposited Waspaloy: Romain Bordas¹; Jonathan Cormier¹; Patrick Villechaise¹; Azdine Nait-Ali¹; André Malié²; Alice Cervellon²; Roland Fortunier³; ¹Ensma - Institut Pprime - Upr Cnrs 3346; ²Safran Aircraft Engines; ³LTDS, école centrale Lyon / ENISE, on secondment to ENSMA

Comparison of Fatigue Properties, Fractography, Microstructures of Laser Powder Bed Fusion Al 6XRAM2, 7XRAM2, and 7A77 Aluminum Alloys: Teri Juarez¹; Molly Hwang¹; Bryan McEnerney¹; ¹NASA JPL

3:10 PM

CuCrZr Processed by Laser-Based Powder Bed Fusion Processability and Influence of Heat Treatment on Electrical Conductivity, Microstructure and Mechanical properties: Thomas Wegener¹; Julian Koopmann²; Julia Richter¹; Philipp Krooß¹; Thomas Niendorf¹; ¹University of Kassel; ²Group Research, Volkswagen AG

3:30 PM Break

3:50 PM

Development of Post-process Heat Treatments Strategy for an Additively Ti-B2 Reinforced AlCu Alloy: Francesco Careri1; Raja Khan²; Moataz Attallah¹; ¹University of Birmingham; ²TWI Ltd

4:10 PM

Capturing Cracking during Blown Powder Additive Manufacturing Using Correlative Synchrotron X-ray and IR Imaging: David Rees1; Tristan Fleming²; Xianqiang Fan¹; Yuze Huang³; Imogen Cowley¹; Sebastian Marussi¹; Robert Atwood⁴; Martyn Jones⁵; Ben Saunders⁵; Cu Lun Alex Leung¹; Peter Lee¹; ¹University College London; ²Queen's University; ³Coventry University; ⁴Diamond Light Source Ltd; 5Rolls-Royce plc

4:30 PM

Residual Stress Induced Fracture of As-Fabricated Laser Powder Bed Fusion Parts: Albert To1; Hai Tran1; 1University of Pittsburgh

4:50 PM

Surface Roughness Measurements of Laser Deposited AlCoCrFeNiTi and AlCoCrFeNiCu High Entropy Alloys for Aerospace Applications: Modupeola Dada¹; Patricia Popoola¹; ¹Tshwane University of Technology

ADDITIVE TECHNOLOGIES

Additive Manufacturing for Energy Applications V — **Processes and Optimization II**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Nuclear Materials Committee

Program Organizers: Isabella Van Rooyen, Pacific Northwest National Laboratory; Subhashish Meher, Idaho National Laboratory; Xiaoyuan Lou, Purdue University; Kumar Sridharan, University of Wisconsin-Madison; Michael Kirka, Oak Ridge National Laboratory; Yi Xie, Purdue University

Thursday PM | March 23, 2023 23A | SDCC

Session Chair: Yi Xie, Purdue University

2:00 PM Introductory Comments

2:05 PM Invited

Enabling Part-Scale Scanwise Process Simulation of Laser Powder Bed Fusion by Combining Matrix-free Finite Element Modeling, Adaptive Remeshing, and GPU Computing: Albert To1; Alaa Olleak1; Florian Dugast¹; ¹University of Pittsburgh

Inspection Results from a Real Time Non-Destructive Evaluation of **3D Manufactured Metal Parts**: Araz Yacoubian¹; ¹LER Technologies

3:00 PM

Assessment of Laser Powder Bed Melting for Obtaining Ferritic/ Martensitic ODS: Lucas Autones¹; Yann De Carlan¹; Pascal Aubry¹; Joel Ribis¹; Hadrien Leguy¹; Alexandre Legris¹; Jean Henry¹; ¹CEA

3:20 PM

Additive Manufacturing of an Oxide Dispersion Strengthened Nickel-based Alloy for Molten Salt Reactor Application Using Hastelloy N Powder: Fedi Fehri¹; Matthew deJong¹; Sourabh Saptarshi¹; Timothy Horn¹; Djamel Kaoumi¹; ¹North Carolina State University

3:40 PM Break

3:55 PM

Wire-Arc Additive Manufacturing of Soft-magnetic Alloy: Soumyajit Koley¹; Kuladeep Rajamudili¹; Supriyo Ganguly¹; ¹Cranfield University

Effect of Precipitate Wettability on Nanoscale Oxide Precipitation of Additively Manufactured FeCrAl via In Situ Oxidation: Ty Austin¹; Steven Zinkle¹; Niyanth Sridharan²; ¹University of Tennessee, Knoxville; ²Lincoln Electric

4:35 PM

An Additively Manufactured Integrated Heat Pipe and Heat Exchanger with Thermoelectric Devices: Donna Guillen1; Miu Lau2; Kari Perry¹; Dennis Tucker¹; Arin Preston¹; Laura Ziegler¹; ¹Idaho National Laboratory; ²Boise State University

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Large-scale Metallic Components — Novel Applications II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Sougata Roy, University of North Dakota; Sneha Prabha Narra, Carnegie Mellon University; Andrzej Nycz, Oak Ridge National Laboratory; Yousub Lee, Oak Ridge National Laboratory; Chantal Sudbrack, National Energy Technology Laboratory; Albert To, University of Pittsburgh; Yashwanth Bandari, AddiTec Technologies LLC

Thursday PM | March 23, 2023 25A | SDCC

Session Chair: Kyle Johnson, Sandia National Laboratories

2:00 PM

Distortion Compensation for Metal Additive Manufacturing: Theresa Honein¹; Collette Gillaspie¹; Mehmet Sirtalan¹; Kyle Johnson¹; Carl Herriott¹; Michael Stender¹; Ellen Wagman¹; Richard Deering²; ¹Sandia National Laboratories; ²Kansas City National Security Campus

2:20 PM

Effect of Aging and Quenching Media on the Mechanical Behavior of AlSi10Mg: Bryan Mcenerney¹; R. Dillon¹; Molly Hwang¹; John Paul Borgonia¹; Richard Otis¹; ¹NASA Jet Propulsion Laboratory

2:40 PM

In Situ Monitoring of Residual Stress during Heat Treatment of High Strength Additively Manufactured Steel via Laser Ultrasound Measurements: Franklyn Kellogg¹; Stephen Cluff¹; Josh Taggart-Scarff¹; Brandon McWilliams¹; ¹US Army DEVCOM ARL

Comparing the Fatigue Behavior of Laser Powder Bed Fused Ti-6Al-4V: Single-laser vs. Dual-laser: Seungjong Lee1; Jiwon Jung1; Shuai Shao¹; Donald Godfrey²; Nima Shamsaei¹; ¹Auburn University; ²SLM Solutions NA, Inc.

3:20 PM Break

3:35 PM

A Microstructure Development Model for Wire Arc Additively Manufactured Haynes 282: Sophie Hill¹; Jonah Klemm-Toole¹; Anthony Petrella¹; ¹Colorado School of Mines

3:55 PM

Assessing the Properties of Stainless Steels Fabricated via Wirearc Additive Manufacturing: Ching-Hao (Cliff) Yu1; Shiqi Zheng1; Yu-Keng Lin¹; Alberico Talignani¹; Xiaochun Li¹; Jenn-Ming Yang¹; Yinmin (Morris) Wang¹; ¹University of California, Los Angeles

4:15 PM

High-Throughput, Force-Based Measurements of Residual Stress and Comparison to Numerical Predictions: Kyle Johnson¹; Dale Cillessen¹; ¹Sandia National Laboratories

4:35 PM

Multiscale Characterisation and Evaluation of the Effect of Recycling on Powder and Build Parts Performance: Rotimi Oluleke1; John Duffy²; Scott Speakman²; ¹Carpenter Additive; ²Malvern Panalytical Ltd

Numerical Investigation of Gas-driven Powder Motion in Laser Powder Bed Fusion: Fangzhou Li¹; Wenda Tan¹; ¹The University of Michigan

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Metals: Applications of Solidification Fundamentals — Solidification of Advanced Materials III

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Solidification Committee

Program Organizers: Wenda Tan, The University of Michigan; Alex Plotkowski, Oak Ridge National Laboratory; Lang Yuan, University of South Carolina; Lianyi Chen, University of Wisconsin-Madison

Thursday PM | March 23, 2023 21 | SDCC

Session Chair: Alex Plotkowski, Oak Ridge National Laboratory

2:00 PM

The Effect of Thermoelectric Magnetohydrodynamics on Microstructure Evolution in Additive Manufacturing: Andrew Kao¹; Xianqiang Fan²; Catherine Tonry¹; Peter Soar¹; Peter Lee²; Koulis Pericleous¹; ¹University of Greenwich; ²UCL

2:20 PM

Phase Transformation Dynamics Guided Alloy Development for Additive Manufacturing: Qilin Guo1; Minglei Qu1; Chihpin Andrew Chuang²; Lianghua Xiong³; Ali Nabaa¹; Zachary Young¹; Yang Ren²; Peter Kenesei²; Fan Zhang⁴; Lianyi Chen¹; ¹University of Wisconsin Madison; ²Argonne National Laboratory; ³Missouri University of Science and Technology; 4National Institute of Standards and Technology

2:40 PM

Solidification Cracking Behaviour of AA 6061 Aluminium Alloy with Heated Substrate in Laser Powder Bed Fusion Additive Manufacturing: Sivaji Karna¹; Rimah Al-Aridi¹; Tianyu Zhang¹; Timothy Krentz²; Dale Hitchcock²; Andrew Gross¹; Lang Yuan¹; ¹University of South Carolina; ²Savannah River National Laboratory

3:00 PM

Solidification Mechanisms during Selective Laser Melting of Binary Ni-Cu, Ni-Al and Ni-Zr Alloys: Clara Galera-Rueda1; María Teresa Pérez-Prado²; Javier Llorca¹; ¹IMDEA Materials Institute & Technical University of Madrid; 2IMDEA Materials Institute

3:20 PM

Solidification Microstructure in Invar-Cu Intrinsic Nanocomposites by Selective Laser Melting: Haobo Wang¹; Prosenjit Biswas¹; Ji Ma¹; Jerrold Floro¹; ¹University of Virginia

3:40 PM Break

The Effect of Solidification Pathway on Grain Boundary Fractality: Akane Wakai¹; Amlan Das²; Atieh Moridi¹; ¹Cornell University; ²Cornell High Energy Synchrotron Source

4:15 PM

Layer-wise Optimization of Powder-bed Fusion Parameters Using Machine Learning Models in Metal Additive Manufacturing: Najmeh Samadiani¹; Dayalan Gunasegaram¹; ¹Commonwealth Scientific and Industrial Research Organisation (CSIRO)

4:35 PM

Microstructure and Hardness Evolutions of Stainless Steel 316L and Nimonic 90 Bimetallic Components along the Build Direction: Samia Razzaq1; Bosheng Dong2; Zengxi Pan2; Huijun Li2; Simon Ringer¹; Xiaozhou Liao¹; ¹University of Sydney; ²University of Wollongong

4:55 PM

Using Defects as 'Fossil Records' in Metallic Parts Produced with Electron Beam Powder Bed AM: Katie O'Donnell1; Amamchukwu Ilogebe¹; Maria Quintana¹; Peter Collins¹; ¹Iowa State University

Temporal Transients of Plastic Strain Partitioning between Alpha and Beta Phases in Ti6Al4V during Thermo-mechanical Gyrations: Sabina Kumar¹; Kate Shanks²; Dieter Ishiem³; Sudarsanam Babu¹; ¹University of Tennessee Knoxville; ²FAST Beamline, CHESS; ³NUCAPT, Northwestern University

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Refractory Metallic Materials — Additive Manufacturing of High Entropy Refractory Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Antonio Ramirez, Ohio State University; Jeffrey Sowards, NASA Marshall Space Flight Center; Omar Mireles, NASA; Eric Lass, University of Tennessee-Knoxville; Faramarz Zarandi, Raytheon Technologies; Matthew Osborne, Global Advanced Metals; Joao Oliveira, FCT-UNL

Thursday PM | March 23, 2023 24A | SDCC

Session Chairs: Joao Pedro Oliveira, Universidade NOVA de Lisboa; Antonio Ramirez, The Ohio State University

2:00 PM Invited

Novel Refractory Metals Optimized for Additive Manufacture to Improve Printability and Properties: Carly Romnes¹; Fernando Reyes Tirado²; Brian Taylor²; Ryan Wilkerson²; Jeff Sowards²; Omar Mireles²; James Stubbins¹; ¹University of Illinois at Urbana-Champaign; ²NASA Marshall Space Flight Center

2:30 PM

A 3D Printable Refractory High Entropy Alloy with Excellent Mechanical Properties: Advika Chesetti¹; Sucharita Banerjee¹; Mohan Sai Kiran Kumar Yadav Nartu¹; Sriswaroop Dasari¹; Abhishek Sharma¹; Rajarshi Banerjee¹; ¹University of North Texas

Development and Additive Manufacturing of RHEA for Extreme Environment Applications: Ali Ozalp¹; Eda Aydoan Güngör¹; ¹Middle East Technical University

Probing Processing Defects in Novel Refractory High Entropy Alloys via In-situ Dynamic X-ray Radiography: Jerard Gordon1; ¹University of Michigan

3:30 PM Break

3:50 PM

Towards High-Throughput Assessment of Printability in Refractory Alloys Systems for Laser-Powder Bed Fusion: Peter Morcos¹; Brent Vela¹; Cafer Acemi¹; Alaa Elwany¹; Ibrahim Karaman¹; Raymundo Arroyave1; 1Texas A&M University

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response - Miscellaneous II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Meysam Haghshenas, University of Toledo; Andrew Birnbaum, US Naval Research Laboratory; Robert Lancaster, Swansea University; Xinghang Zhang, Purdue University; Aeriel Leonard

Thursday PM | March 23, 2023 23B | SDCC

Session Chair: Robert Lancaster, Swansea University

2:00 PM

Optimization of Post-built Annealing of Ni Alloy718 Processed by Powder Bed Fusion: Jan Capek1; Efthymios Polatidis1; Magnus Niekter²; Joe Kelleher³; Nicola Casati¹; Markus Strobl¹; ¹Paul Scherrer Institute; ²University West; ³ISIS Neutron and Muon Source

Scale Effects in Application of Profilometry-based Indentation Plastometry (PIP) to Additively Manufactured Components: Jimmy Campbell¹; John Reidy²; Animesh Bose²; Hannah Zhang³; Tony Fry³; Becky Musgrove¹; Wenchen Gu¹; Bill Clyne¹; ¹Plastometrex Ltd; ²Desktop Metals; ³National Physical Laboratory

Revealing Intragranular Orientation and Strain Evolution during Additive Manufacturing of a Stainless Steel: A Synchrotron X-ray Diffraction Study: Steve Gaudez¹; Kouider Abdesselam¹; Hakim Gharbi¹; Zoltan Hegedues²; Ulrich Lienert²; Wolfgang Pantleon³; Manas Upadhyay¹; ¹Ecole Polytechnique, LMS, CNRS; ²PETRA III, DESY; 3Technical University of Denmark

3:00 PM

Combined Effects of Pre-straining and Hydrogenation on the Nanomechanical Behavior of Selectively Laser Melted High-/ medium-entropy Alloys: Zhe Gao1; Dong-Hyun Lee2; Yakai Zhao3; A-Hyun Jeon¹; Upadrasta Ramamurty³; Jae-il Jang¹; ¹Hanyang University; ²Chungnam National University; ³Nanyang Technological University

3:20 PM Break

3:40 PM

A Micropillar Compression Investigation into the Plastic Flow Properties of Additively Manufactured Alloys: Ramamurty Upadrasta¹; Shi-hao Li¹; ¹Nanyang Technological University

An Efficient Method for the Prediction of Mechanical Properties from the Microstructures of Additively Manufactured Parts: Nathan March1; Dayalan Gunasegaram1; 1CSIRO

Investigation of the Mechanical Properties in Additively Manufactured Haynes 230 Alloy with Hierarchical Microstructure: Bo Yang1; Zhongxia Shang1; Jie Ding1; Jack Lopez1; Tianyi Sun1; William Jarosinski²; Yifan Zhang³; Nicholas Richter¹; Haiyan Wang¹; Xinghang Zhang¹; ¹Purdue University; ²Praxair Surface Technologies; ³Los Alamos National Laboratory

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Materials Design and Alloy Development V - Design Fundamentals - Advanced **Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Behrang Poorganji, University of Toledo; Hunter Martin, HRL Laboratories LLC; James Saal, Citrine Informatics; Jiadong Gong, Questek Innovations LLC; Orlando Rios, University of Tennessee; Atieh Moridi, Cornell University

Thursday PM | March 23, 2023 24C | SDCC

Session Chair: Behrang Poorganji, Morf3D

2:00 PM Invited

Microstructure and Mechanical Properties of In-situ Nano Oxide Reinforced CrMnFeCoNi High Entropy Alloy Matrix Composite Manufactured by Laser Powder Bed Fusion: Kee-Ahn Lee1; Young-Kyun Kim²; ¹Inha University; ²Korea Institute of Materials Science

Expansion of Additive Manufacturing Capabilities into In-situ Alloying of Dispersion Strengthened, High Temperature Cu Alloys: David Scannapieco¹; David Ellis²; John Lewandowski¹; ¹Case Western Reserve University; ²NASA Glenn Research Center

2:50 PM

Development of a High Throughput Method to Assess the Suitability of New Metals for Additive Manufacturing: Daniel Porter¹; Moataz Attallah¹; ¹University of Birmingham

3:10 PM

Evaluation of SLM Parameters for Producing Elementally Homogeneous Printed Products Using Novel Dry Metal Alloy (DMA) Powder Feedstock: Stephen Hanson¹; Sudhakar Vadiraja¹; Nathan Huft¹; Peter Lucon¹; Daniel Jacintho¹; ¹Montana Technological University

3:30 PM Break

3:45 PM

Oxide Coarsening Effects during Melt-based Manufacturing -- Physics-based Modeling: Roger Hou1; Timothy Stubbs²; Aijun Huang²; Zachary Cordero¹; ¹Massachusetts Institute of Technology; ²Monash University

4:05 PM

Coarsening Effects during Melt-based Additive Oxide Manufacturing: Experiment and Characterization: Timothy Stubbs¹; Roger Hou²; Zachary Cordero²; Yuman Zhu¹; Aijun Huang¹; ¹Monash University; ²Massachusetts Institute of Technology

A Calibration-Free Physics-based Framework to Predict Printability Maps in Additive Manufacturing Process: Sofia Sheikh¹; Pejman Honarmandi¹; Brent Vela¹; Peter Morcos¹; Raymundo Arroyave¹; Ibrahim Karaman¹; Alaa Elwany¹; ¹Texas A&M University

4:45 PM

Development of a Methodology for AM-compatible Rapid Alloy Development: Philipp Stich1; Markus Apel2; Mustafa Megahed3; Patrick Köhnen⁴; Christian Haase⁵; ¹EOS GmbH; ²Access e.V.; ³ESI Group; 4DAP, RWTH Aachen; 5IEHK, RWTH Aachen

CHARACTERIZATION

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Session

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials **Characterization Committee**

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; C. Tasan, Massachusetts Institute of Technology; Olivia Jackson, Sandia National Laboratories

Thursday PM | March 23, 2023 Aqua 311A | Hilton

Session Chairs: Mohamed Hamza, Arizona State University; Daryl Chrzan, University of California

2:00 PM Invited

The Relationship between Dislocation Core Structures and Oxygen **Sensitivity in** α-**Ti**: Daryl Chrzan¹; Eric Rothchild¹; Max Poschmann¹; Siying Li¹; Ian Winter¹; Yan Chong¹; Ruopeng Zhang¹; Shiteng Zhao¹; Mohammad Hooshmand¹; David Olmsted¹; John W. Morris¹; Mark Asta¹; Andrew Minor¹; ¹University of California, Berkeley

The Characteristics of Strain Burst Acoustic Emissions during In Situ Microcompression Experiments: Mostafa Omar1; Jaafar El-Awady¹; ¹Johns Hopkins University

Characterizing Structure and Deformation in Molecular Dynamics Simulations of Shock Compressed Silicon and Diamond Carbon: Alex Li¹; Rob Rudd²; Boya Li¹; Marc Meyers¹; ¹University of California San Diego; ²Lawrence Livermore National Labs

Effect of Self-Annealing Phenomena on the Microstructural and Texture Evolution in Cryogenically Rolled Cu-Fe-P alloy: Aman Gupta¹; Lalit Kaushik¹; Tae-Hyeon Yoo¹; Shi-Hoon Choi¹; ¹Sunchon National University

3:30 PM Break

3:50 PM

Numerical Investigation of the Strain Development at the Substrate / Laser Metal Deposition - Powder Refurbishment Interface: Romain Bordas1; Mathieu Calvat1; Jonathan Cormier1; Azdine Nait-Ali¹; Patrick Villechaise¹; Roland Fortunier²; ¹Ensma -Institut Pprime - Upr Cnrs 3346; ²LTDS, école centrale Lyon / ENISE, on secondment to ENSMA

4:10 PM

Characterization and Mechanical Testing of Ordinary Chondrites: Mohamed Hamza¹; Charles Galluscio²; M.F. Rabbi¹; Laurence Garvie¹; Desireé Cotto-Figueroa³; Erik Asphaug⁴; Aditi Chattopadhyay¹; ¹Arizona State University; ²University of Florida; ³University of Puerto Rico at Humacao; 4University of Arizona

ENERGY & ENVIRONMENT

Advanced Materials for Energy Conversion and Storage 2023 — Energy Conversion and Storage Mix II

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University, Surojit Gupta, University of North Dakota; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania

Thursday PM | March 23, 2023 32B | SDCC

Session Chairs: Surojit Gupta, University of North Dakota; Partha Mukherjee, Purdue University

2:00 PM Invited

Development of Novel Green Manufacturing Technologies for Fabricating Functional Materials: Surojit Gupta1; 1University of North

2:25 PM Invited

Grain Boundary Metal-Insulator Transitions in Polycrystalline LiCoO2: Lucas Robinson¹; Jarrod Lund¹; KSN Vikrant²; Edwin Garcia¹; ¹Purdue University; ²IIT Delhi

2:50 PM

Optically Sensitive Mott-insulator for Supercapacitor: Abha Misra¹; ¹Indian Institute of Science

Structural Integrity at Elevated Temperature Assessment of Solid Particles for Concentrated Solar Power Systems Using ICME Approach: Napat Vajragupta¹; Tatu Pinomaa¹; Matti Lindroos¹; Abhishek Biswas¹; Tom Andersson¹; Anssi Laukkanen¹; ¹VTT Technical Research Centre of Finland Ltd

3:30 PM Break

3:50 PM Invited

How Safe Are Solid-State Batteries? An Exploration of Heat Release: Alex Bates¹; Jill Langendorf¹; Joshua Lamb¹; Yuliya Preger¹; Loraine Torres-Castro¹; Megan Diaz¹; ¹Sandia National Laboratories

Probing the Role of SEI Heterogeneity on Sodium Plating and **Stripping**: Susmita Sarkar¹; Partha Mukherjee¹; ¹Purdue University

Micro Plasma-based Surface Modification of Biocompatible Polymers and Composites towards the Modification of Surface Properties for Biomedical Applications: Mai Yang1; Edgar Perez-Lopez1; Edbertho Leal-Quiros2; Saquib Ahmed3; Sankha Banerjee1; ¹California State University, Fresno; ²University of California, Merced; ³State University of New York at Buffalo State

4:55 PM Invited

Hybrid Halide Solid Electrolytes and Bottom-up Cell Assembly Enable High Voltage Solid-state Lithium Batteries: Beniamin Zahiri¹; ¹University of Illinois Urbana-Champaign

ADVANCED MATERIALS

Advances in Multi-Principal Element Alloys II — Thermal and Other Properties

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; E-Wen Huang, National Yang Ming Chiao Tung University; Jennifer Carter, Case Western Reserve University; Srivatsan Tirumalai; Xie Xie, FCA US LLC; James Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Thursday PM | March 23, 2023 Aqua D | Hilton

Session Chairs: Zhenzhen Yu, Colorado School of Mines; Elizabeth Opila, University of Virginia

2:00 PM Invited

Phase Transformation Pathways in Compositionally-Complex BCC-B2 Alloys: Eric Lass¹; ¹University of Tennessee-Knoxville

2:20 PM Invited

Multi-Principal Element Alloy Fillers to Mitigate Weldability and Joining Issues: Zhenzhen Yu1; Benjamin Schneiderman1; Abdelrahman Abdelmotagaly¹; ¹Colorado School of Mines

2:40 PM Invited

Impact of Ti on Phase Evolution and Oxidation Mechanisms within TiAlTa Alloys: Jaimie Tiley1; Yanbo Wang2; Soumya Nag1; Ercan Cakmak¹; Raymond Unocic¹; Pania Newell²; ¹Oak Ridge National Laboratory; ²University of Utah

3:00 PM Invited

Processing of Refractory Multi-Principal Element Alloys for **Ultrahigh Temperature Performance**: Amy Clarke¹; Benjamin Ellyson¹; Adira Balzac¹; Nathan Peterson¹; William Waliser¹; Nelson Delfino de Campos Neto¹; Megan Le Corre¹; Abigail Miklas¹; Jonah Klemm-Toole¹; Francisco Coury²; Kester Clarke¹; Michael Kaufman¹; ¹Colorado School of Mines; ²Federal University of São Carlos

Oxidation of Group IV-V Refractory Multi-principal Element Alloys: Charlotte Brandenburg¹; David Beaudry²; Michael Waters³; Loïc Perrière⁴; Jean-Philippe Couzinie⁴; James Rondinelli³; Mitra Taheri²; Elizabeth Opila1; 1University of Virginia; 2Johns Hopkins University; ³Northwestern University; ⁴Univ Paris Est Creteil, CNRS, ICMPE

3:40 PM Break

4:00 PM Invited

Attainments and Challenges of High Temperature Oxidation Resistance of Refractory High Entropy Alloys: Literature Review and Own Results: Bronislava Gorr¹; Steven Schellert²; Hans Juergen Christ²; Stephan Laube¹; Alexander Kauffmann¹; Martin Heilmaier¹; ¹Karlsruhe Institut für Technologie (KIT); ²Universität Siegen

4:20 PM Invited

In-situ Investigation of the Initial Oxidation Steps in Refractory High-entropy Alloys by O2 Gas Exposure: Heath Kersell¹; Xuesong Fan²; Alexander Herman¹; Zongyang Lyu²; Baldur Steingrimsson³; Peter Liaw²; Gregory Herman¹; ¹Oregon State University; ²The University of Tennessee; 3 Imagars LLC

4:40 PM Invited

Synergistic Discontinuous Reactions Leading to Nano-lamellar Hierarchical Microstructures in High Entropy Alloys: Sriswaroop Dasari¹; Abhishek Sharma¹; Rajarshi Banerjee¹; ¹University of North Texas

5:00 PM Invited

Phase Formation in Compositionally Complex Alloy Thin Films: The Role of "Small" and "Large" Elements: Andrea Hodge¹, Daniel Goodelman¹; ¹University of Southern California

MATERIALS PROCESSING

Advances in Surface Engineering V — Corrosion **Behavior and Thin Films**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Bharat Jasthi, South Dakota School of Mines & Technology; Arif Mubarok, PPG Industries; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University

Thursday PM | March 23, 2023 29D | SDCC

Session Chair: Bharat Jasthi, South Dakota School of Mines & Technology

2:00 PM

AlCrFe Complex Metallic Alloys as Novel and Versatile Coatings: Malgorzata Lewandowska1; Ewa Ura-Binczyk1; Michal Tarnowski1; ¹Warsaw University of Technology

2:20 PM

Synthesis of Corrosion Resistant Hexagonal Boron Nitride Coatings on Iron Substrates by Pulsed Laser Deposition: Venkata A.S. Kandadai¹; Venkata Ramana Gadhamshetty¹; Bharat K. Jasthi¹; ¹South Dakota School of Mines & Technology

2:40 PM

Effects of Aging and Surface Mechanical Attrition Treatment on Corrosion Behavior of Aluminum 7075 Alloys: Antriksh Sharma¹; Vikrant Beura¹; Kiran Solanki¹; ¹Arizona State University

3:00 PM

Single Step Sputtered Chromium Nitride Nano-clusters Coating for Enhanced Mechanical, Wetting and Corrosion Protection Properties: Ankit Kumar¹; Rahul Mulik¹; ¹IIT Roorkee

3:20 PM Break

3:35 PM

Electrochemical Properties of Electrodeposited Porous AuCu Dendrite for the Oxygen Reduction Reaction in Alkaline Solutions: Kyu Hwan Lee¹; Min-Yeong Kim¹; Sung Mook Choi¹; ¹Korea Institute of Materials Science

Bio-inspired Materials as Protective Coatings for Corrosion Prevention: Pawan Sigdel¹; Venkata A.S. Kandadai¹; Jawaharraj Kalimuthu¹; Bharat Jasthi¹; Venkataramana Gadhamshetty¹; ¹South Dakota School of Mines and Technology

MATERIALS DESIGN

Advances in Titanium Technology — Session VIII

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Zachary Kloenne, Ohio State University; Fan Sun, CNRS - PSL Research University; Stoichko Antonov, National Energy Technology Laboratory; Rongpei Shi, Harbin Institute of Technology (Shenzhen)

Thursday PM | March 23, 2023 Cobalt 500 | Hilton

Session Chair: Zachary Kloenne, Ohio State University

2:00 PM

Exploration of Young's Modulus and Acoustic Velocity Variation in Ti-5Al-5V-5Mo-3Cr Metastable Phase Transitions: Ruth Sunderman¹; Maria Quintana¹; Andrew Temple¹; Ben Brown²; Thomas Ales¹; Peter ¹lowa State University; ²Kansas City National Security Collins1; Campus

2:20 PM

Effects of Short-time Solution Treatment and Subsequent Shorttime Annealing on the Microstructure and Deformation Behavior of Ti-6Al-4V Sheet Metal: Nina Pfeffer1; Stefanie Jäger1; Lukas Kytzia1; Heinz Werner Höppel¹; Mathias Göken¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

2:40 PM

A Microstructure-informed Crystal Plasticity Based Constitutive Model for DED Ti6Al4V Alloy: Chamara Herath¹; Kavindu Wijesinghe¹; Ajit Achuthan1; 1Clarkson University

3:00 PM

Effect of Volumetric Defects on the Fatigue Behavior of Laser Powder Bed Fused Ti-6Al-4V: Muztahid Muhammad¹; Shuai Shao¹; Nima Shamsaei¹; ¹Auburn University

MATERIALS DESIGN

AI/Data Informatics: Computational Model **Development, Validation, and Uncertainty** Quantification — Session VIII

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Francesca Tavazza, National Institute of Standards and Technology; Dennis Dimiduk, BlueQuartz Software LLC; Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Shreyas Honrao, NASA Ames Research Center; Ashley Spear, University of Utah; Houlong Zhuang, Arizona State University

Thursday PM | March 23, 2023 Cobalt 520 | Hilton

Session Chairs: Lu Cai, Idaho National Lab; Kamal Choudhary, National Institute of Standards and Technology

2:00 PM

Machine Learning Assisted Candidate Search For Niobium Alloy: Trupti Mohanty¹; K. S. Ravi Chandran¹; Taylor D. Sparks¹; ¹University of Utah

2:20 PM

Prediction of Glass Transition Temperature by Machine Learning Method with Soft Constraint: Jin Myoung Jeon¹; Tae-Min Yeo¹; Jung Wook Cho1; 1Postech

2:40 PM

Annular Metallic Nuclear Fuel Informatics at 50-nm Resolution: Fei Xu¹; Lu Cai¹; Daniele Salvato¹; Fidelma Dilemma¹; Michael Benson¹; Daniel Murray²; Cynthia Adkins¹; Joshua Kane¹; Luca Capriotti²; Tiankai Yao¹; ¹Idaho National Lab; ²Idaho National Laboratory

3:00 PM

Large-scale Search of High-strength Aluminum Alloys at High Temperature Using Bayesian Learning for Neural Networks: Ayami Hattori¹; Shimpei Takemoto¹; Takeshi Kaneshita¹; Kenji Nagata²; Yoshishige Okuno¹; Junya Inoue³; Manabu Enoki³; ¹Showa Denko K.K.; 2National Institute for Materials Science; 3The University of Tokyo

MATERIALS DESIGN

Algorithm Development in Materials Science and **Engineering — Atomistic Simulations, Interatomic** Potential, and Computer Science Models

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Adrian Sabau, Oak Ridge National Laboratory; Ebrahim Asadi, University of Memphis; Enrique Martinez Saez, Clemson University; Garritt Tucker, Colorado School of Mines; Hojun Lim, Sandia National Laboratories; Vimal Ramanuj, Oak Ridge National Laboratory

Thursday PM | March 23, 2023 Cobalt 502B | Hilton

Session Chairs: Garritt Tucker, Colorado School of Mines; Vimal Ramanuj, Oak Ridge National Laboratory

2:00 PM

EAM-X: Simple Parameterization of Embedded Atom Method Potentials for FCC Metals and Alloys: Murray Daw1; Michael Chandross²; ¹Clemson University; ²Sandia National Laboratory

2:20 PM

EAM-X: Universal trends in FCC Grain Boundary Energies: Yasir Mahmood¹; Murray Daw¹; Michael Chandross²; Fadi Abdeljawad¹; ¹Clemson University; ²Sandia National Laboratories

2:40 PM Invited

Enabling Long Timescale Molecular Dynamics Simulation with ab initio Precision: Jan Janssen¹; Danny Perez¹; ¹Los Alamos National Laboratory

3:00 PM

Investigating Magnetic Phase Transitions with Ising Models Accounting for Long-range Spin Interactions: Ender Eger¹; Arulmurugan Senthilnathan¹; Mahmudul Hasan¹; Pinar Acar¹; ¹Virginia Tech

3:20 PM Break

Modular and Scalable Solutions for Training Machine Learned Interatomic Potentials: Mitchell Wood¹; Andrew Rohskpof¹; Charles Sievers²; Danny Perez³; Aidan Thompson¹; ¹Sandia National Laboratories; ²Boeing; ³Los Alamos National Lab

4:00 PM Invited

PyEBSDIndex: Fast Indexing of EBSD data: David Rowenhorst¹; Patrick Callahan¹; Håkon Wiik Ånes²; ¹The US Naval Research Laboraory; ²Norwegian University of Science and Technology

Training Machine-learned Interatomic Potentials for Chemical Complexity - Application to Refractory CCAs: Megan McCarthy¹; Jacob Startt¹; Remi Dingreville¹; Mitchell Wood¹; ¹Sandia National Laboratories

LIGHT METALS

Aluminum Alloys, Characterization and Processing Formability and Simulation

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Julie Levesque, Quebec Metallurgy Center; Stephan Broek, Kensington Technology Inc.

Thursday PM | March 23, 2023 32A | SDĆC

Session Chair: Julie Levesque, Quebec Metallurgy Center

2:00 PM

The Role of Microstructure on Strength and Fracture Anisotropy Effects in Al-Mg-Si Extrusion Alloys: Setareh Kordmir¹; Nick Parson²; Warren Poole¹; ¹University of British Columbia; ²Rio Tinto Aluminium

2:25 PM

Comparison of Experimental Test and Finite Element Simulations of Car Crash Boxes which Manufactured with Different Aluminum Alloys: Melih Caylak¹; Gorkem Ozcelik¹; ¹ASAS Aluminum

2:50 PM

Exploring Semi-solid Deformation of Al-Cu Alloys by a Quantitative Comparison between Drained Die Compression Experiments and 3D Discrete Element Method Simulations: Te-Cheng Su¹; Meng-Chun Chen¹; Huai-Ren Hu¹; Ying-Hsuan Ko¹; Ling-En Yao¹; ¹Department of Materials Science and Engineering, National Taiwan University

3:15 PM

The Role of Through-thickness Variation of Texture and Grain Size on Bending Ductility of Al-Mg-Si Profiles: Philip Goik1; Andreas Schiffl²; Heinz Werner Höppel¹; Mathias Göken¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg; ²Hammerer Aluminium Industries Extrusion GmbH

3:40 PM Break

Anisotropy of Tearing Behavior in AA7075-T6 Sheet at 200 °C: Daniel Nikolai¹; Eric Taleff¹; ¹University of Texas Austin

4:20 PM

Evaluating the Earing Amount of Materials Under Various Chemical Composition and Heat Treatment Process with Finite Element Simulations of Cup Drawing Tests: Melih Caylak¹; Gorkem Ozcelik¹; Abdullah Kinaci¹; Koray Dündar¹; ¹ASAS Aluminum

LIGHT METALS

Aluminum Reduction Technology — Pot Design & Start-Up

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Pierre Marcellin, Rio Tinto; Stephan Broek, Kensington Technology Inc.

Thursday PM | March 23, 2023 30E | SDCC

Session Chair: Abdalla Zarouni, Emirates Global Aluminium

2:00 PM Introductory Comments

2:10 PM

Achieving Low Pot Failure Rate at Aditya Aluminium: Atanu Maity1; Venkannababu Thalagani²; Bhanu Shankar¹; Deepak Dash¹; Anish Das¹; Kamta Gupta¹; Shanmukh Rajgire²; Amit Gupta²; Madhusmita Sahoo1; 1Hindalco Industries Ltd.; 2Aditya Birla Science and Technology, Mumbai

2:35 PM

Dissimilar Results in Restarting Two Different Potlines: Maria Daviou¹; Maria Alejandra Mollecker Rausch¹; Ricardo Alonso¹; Maria Fernanda Jaitman¹; ¹Aluar Aluminio Argentino Saic

3:00 PM

Restart of Albras' Potline 2 - Improving Performance and Changing Paradigms: Bruno Vasconcelos¹; Ana Renata Monteiro¹; Ana Carolina Guedes¹; Michel Pena¹; João Vilckas¹; Johnson Machado¹; Flávio Silva¹; Márcio Souza¹; ¹Albras

Application of Cell Retrofit in GP320 Aluminum Reduction Cell Line: Zhuojun Xie1; Jian Lu1; Weibo Li2; Song He1; Xingyu Yang1; ¹Guiyang Aluminum & Magnesium Design & Research Institute Co. Ltd.; ²Guangyuan Zhongfu High Precision Aluminum Co., Ltd.

3:50 PM Break

4:05 PM

The Expanded Industrial Pilot of SAMI's NCCT+ Technology: Xi Cao¹; Yafeng Liu¹; Hongwu Hu¹; Xuan Wang¹; Jinlong Hou¹; Wei Liu¹; Kangjian Sun¹; Michael Ren²; ¹Shenyang Aluminum and Magnesium Engineering and Research Institute Co. Ltd.; ²Sunlightmetal Consulting Inc.

4:30 PM

The SY500 Potline Technology Development: Kangjian Sun1; Yafeng Liu¹; Hongwu Hu¹; Xuan Wang¹; Jinlong Hou¹; Wei Liu¹; Xi Cao¹; Michael Ren²; ¹Shenyang Aluminum and Magnesium Engineering and Research Institute Co. Ltd.; ²Sunlightmetal Consulting Inc.

Preheat, Start-up and Early Operation of DX+ Ultra Pots at 500 kA: Nadia Ahli¹; Mustafa Mustafa¹; Abdalla Alzarooni¹; Konstantin Nikandrov¹; ¹Emirates Global Aluminium

ADVANCED MATERIALS

Bulk Metallic Glasses XX — Fracture and **Deformation**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Robert Maass, Federal Institute of Materials Research and Testing (BAM); Peter Derlet, Paul Scherrer Institut; Katharine Flores, Washington University in St. Louis; Yonghao Sun, The Chinese Academy of Sciences; Lindsay Greer, University of Cambridge; Peter Liaw, University of Tennessee

Thursday PM | March 23, 2023 Aqua C | Hilton

Session Chair: Daniel Sopu, Erich Schmid Institute of Materials Science of The Austrian Academy of Sciences

2:00 PM Invited

Are Metallic Glasses Brittle or Ductile?: Jan Schroers¹; University

2:20 PM Invited

Fracture Toughness of Bulk Metallic Glass Composites: Ramamurty Upadrasta¹; Devashish Rajpoot²; Parag Tandaiya²; R Lakshmi Narayan²; Long Zhang³; ¹Nanyang Technological University; ²IIT-Bombay; 3Institute of Metal Research

2:40 PM

Medium-range Order Controls Hardness and Fracture Toughness in Bulk Metallic Glasses: Jamie Kruzic1; Keita Nomoto2; Bosong Li¹; Christoph Gammer³; Anna Ceguerra²; Huma Bilal²; Anton Hohenwarter⁴; Jürgen Eckert⁴; Bernd Gludovatz¹; Simon Ringer²; ¹University of New South Wales (UNSW Sydney); ²University of Sydney; ³Austrian Academy of Sciences; ⁴University of Leoben

Effect of Annealing and Cryogenic Treatment on the Sizedependent Deformation Behavior of the Metallic Glass: Akib Jabed¹; Golden Kumar¹; ¹UT-Dallas

3:20 PM Invited

An Atomic-level Perspective of Shear Banding in Metallic Glasses: Daniel Sopu¹; Jürgen Eckert¹; ¹Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences

3:40 PM Break

4:00 PM Invited

Observation of Deformation Features in Metallic Glasses: Sangjun Kang¹; Xiaoke Mu¹; Di Wang¹; Arnaud Caron²; Christian Minnert³; Karsten Durst³; Christian Kuebel¹; ¹Karlsruhe Institute of Technology; ²Korea University of Technology and Education; ³TU Darmstadt

Steady-state Serrated Flow Induced by Rejuvenation Gradient in Zr-based Bulk Metallic Glass: Wook Ha Ryu1; Won-Seok Ko2; Rui Yamada³; Geun Hee Yoo¹; Junji Saida³; Eun Soo Park¹; ¹RIAM, Seoul National University; ²Inha University; ³Tohoku University

4:40 PM

Structure-Dynamics Relationships in Cryogenically Deformed Bulk Metallic Glass: Jurgen Eckert¹; Florian Spieckermann²; Baran Sarac¹; Daniel Sopu¹; ¹Erich Schmid Institute of Materials Science; ²Montanuniversitaet Leoben

NUCLEAR MATERIALS

Ceramic Materials for Nuclear Energy Research and Applications — Alternate and Doped Fuels -**Modeling and Experiments**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Energy Committee

Program Organizers: Walter Luscher, Pacific Northwest National Laboratory; Xian-Ming Bai, Virginia Polytechnic Institute and State University; Lingfeng He, North Carolina State University; Sudipta Biswas, Idaho National Laboratory; Simon Middleburgh, Bangor University

Thursday PM | March 23, 2023 28B | SDCC

Session Chairs: David Bai, Virginia Tech; Miaomiao Jin, The Pennsylvania State University

2:00 PM Invited

Atomistic Investigation of Radiation-induced Defects in ThO2: Miaomiao Jin¹; Hamdy Arkoub¹; Lingfeng He²; Chao Jiang²; Marat Khafizov³; David Hurley²; ¹Pennsylvania State University; ²Idaho National Laboratory; 3Ohio State University

2:30 PM Invited

Hidden Defect Evolution Mechanism in ThO2 Revealed by Atomistic Modeling: Chao Jiang¹; Lingfeng He¹; Cody Dennett¹; Marat Khafizov²; James Mann³; David Hurley¹; ¹Idaho National Laboratory; ²The Ohio State University; ³United States Air Force

3:00 PM

Cluster Dynamics Modeling of Defects and Fission Gas in Gd Doped UO, under Irradiation: Vancho Kocevski¹; Michael Cooper¹; David Andersson¹; ¹Los Alamos National Laboratory

3:20 PM Break

3:40 PM Invited

Susceptibility of Nuclear Fuel Ceramics to Oxidation and Hydridization during Off Normal Events: Elizabeth Sooby¹; Adrian Gonzales¹; Geronimo Robles¹; Joshua White²; ¹University of Texas at San Antonio; ²Los Alamos National Laboratory

Development of UC/UO, Composite Fuels for Light Water Reactors: Scarlett Widgeon Paisner1; Joshua White1; lan Porter2; Russell Fawcett²; ¹Los Alamos National Laboratory; ²Global Nuclear **Fuels**

4:30 PM

Atomistic and Mesoscale Modeling of Fission Gas and Fission Products Diffusivity in TRISO Fuel Kernels: Xiang-Yang Liu1; Christopher Matthews¹; Wen Jiang²; Michael Cooper¹; Jason Hales²; David Andersson¹; ¹Los Alamos National Laboratory; ²Idaho National Laboratory

4:50 PM

Modelling the Melting Temperature of CrUO₄ to Assess its Behaviour during the Sintering of Cr-doped UO₂: Sarah Vallely¹; Conor Galvin²; Michael Cooper²; Simon Middleburgh¹; ¹Bangor University; ²Los Alamos National Laboratory

ENERGY & ENVIRONMENT

Composite Materials for Sustainable and Eco-Friendly Material Development and Application Recycled Materials for Improved Composite **Properties**

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Brian Wisner, Ohio University; Ioannis Mastorakos, Clarkson University; Muralidharan Paramsothy, NanoWorld Innovations; Simona Hunyadi Murph, Savannah River National Laboratory

Thursday PM | March 23, 2023 31C | SDCC

Session Chairs: Yahya Al-Majali, Ohio University; Simona Hunyadi Murph, Savannah River National Laboratory

2:00 PM

Recyclable Aluminum Metal Matrix Composites (MMC) for Electric Vehicle (EV) Powertrain Applications: Mert Efe1; Jung-Pyung Choi1; Xiao Li¹; Hrishikesh Das¹; Xiaolong Ma¹; Glenn Grant¹; Darrell Herling¹; ¹Pacific Northwest National Laboratory

2:20 PM

Design of Metal-ceramic In-situ Interpenetrating Phase Composite (IPC) Architecture for High Toughness Parts: Sreekumar Madam¹; ¹Malaviya National Institute of Technology Jaipur

2:40 PM

Optimization of Post-consumer Glass and Sawdust Reinforced Polyester Hybrid Composite by Mixture Design Analysis: Kator Jomboh¹; Adele Garkida²; Emmanuel Alemaka²; Mohammed Yakubu²; Vershima Alkali²; Wilson Eze³; ¹University of Maiduguri, Borno State; ²Ahmadu Bello University, Zaria; ³Nigerian Institute of Leather and Science Technology, Zaria

Nanocomposite Materials for Accelerating Decarbonization: Simona Hunyadi Murph¹; ¹Savannah River National Laboratory

3:20 PM Break

3:35 PM

Facile Ball-milling Synthesis of Cellulosic Metal Oxide Composite for Removal Tetracycline Antibiotic from Aqueous Solution: Nergiz Zeynep Kanmaz Kelesoglu¹; Pelin Demircivi¹; Mehmet Bugdayci¹; ¹Yalova University

Detection and Mitigation of Radionuclides in the Environment: Toward a Clean Ecosystem: Simona Hunyadi Murph¹; ¹Savannah River National Laboratory

PHYSICAL METALLURGY

Computational Thermodynamics and Kinetics — **Electrons and Phonons**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Solidification Committee

Program Organizers: Hesam Askari, University of Rochester; Damien Tourret, IMDEA Materials Institute; Eva Zarkadoula, Oak Ridge National Laboratory; Enrique Martinez Saez, Clemson University; Frederic Soisson, Cea Saclay; Fadi Abdeljawad, Clemson University; Ziyong Hou, Chongqing University

Thursday PM | March 23, 2023 26A | SDCC

Session Chairs: Zhenglu Li, Lawrence Berkeley National Lab/ UC Berkeley/University of Southern California; Hesam Askari, University of Rochester

2:00 PM Invited

Correlation-enhanced Electron-phonon Coupling in Oxide Superconductors from Ab Initio GW Perturbation Theory: Zhenglu Li¹; ¹Lawrence Berkeley National Lab/UC Berkeley/University of Southern California

2:30 PM

A Finite-element Phase-field Model of Topological Defect Formation in Epitaxially Grown Ferroelectric Thin Films: Soumya Bandyopadhyay¹; Ranjith Ramadurai²; Saswata Bhattacharyya²; ¹School of Advanced Materials Engineering, Kookmin University; ²Indian Institute of Technology Hyderabad

An Electrochemical Repertoire for Triggering Phase Transitions in Insulators: The Case of Monoclinic/Tetragonal Transition in ZrO2: Mostafa Youssef¹; ¹The American University in Cairo

3:10 PM

Controlling the Stability and Reliability Issues of the Electrical Responses of Resistive RAM and Neuromorphic Computing Devices: A Phase Field Study: Arijit Roy1; Min-Gyu Cho1; Hwi-Jae Cho¹; Pil-Ryung Cha¹; ¹Kookmin University

3:30 PM Break

3:50 PM

A High-Throughput Framework for Lattice Dynamics: Zhuoying Zhu1; Junsoo Park1; Anubhav Jain1; 1LBNL

Strain Engineering of Ferroelectric Domains in Epitaxially Grown Barium Zirconate Titanate - Barium Calcium Titanate (BZTxBCT) Films near Morphotropic Phase Boundary Composition: Phase-field Simulations and Experimental Realization: Vaishnavi S M¹; Soumya Bandyopadhyay²; Sabarigresan Murugan¹; Saswata Bhattacharya¹; Ranjith Ramadurai¹; ¹Indian Institute of Technology, Hyderabad; ²School of Advanced Materials Engineering, Kookmin University

4:30 PM

Examining the Alpha-epsilon Transition in Iron Using Molecularspin Dynamics: Svetoslav Nikolov¹; Andrew Rohskopf¹; Julien Tranchida²; Kushal Ramakrishna³; Attila Cangi³; Mitchell Wood¹; ¹Sandia National Laboratories; ²CEA; ³CASUS

4:50 PM

High Pressure Phonon Thermodynamics of B2-ordered Equiatomic Iron-vanadium (FeV): Homero Reyes¹; Ravhi Kumar²; Bimal K C¹; Russell Hemley²; Jorge Munoz¹; ¹University of Texas at El Paso; ²University of Illinois Chicago

5:10 PM

Thermodynamic and Kinetic Temperature-electric Field Diagrams for Ferroelectric HfO2 Based on Atomistic Simulation: Sahar Abdelazim¹; Mostafa Youssef¹; ¹The American University in Cairo

NANOSTRUCTURED MATERIALS

Deformation Mechanisms, Microstructure Evolution, and Mechanical Properties of Nanoscale Materials Interface and Grain Boundary Effects

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Niaz Abdolrahim, University of Rochester; Matthew Daly, University of Illinois-Chicago; Hesam Askari, University of Rochester; Eugen Rabkin, Technion; Jeffrey Wheeler, Femto Tools Ag; Wendy Gu, Stanford University

Thursday PM | March 23, 2023 Agua 300AB | Hilton

Session Chairs: Fadi Abdeljawad, Clemson; Douglas Spearot, University of Florida

2:00 PM Invited

Theoretical and Machine Learning Studies of Grain Boundary Solute Drag in Nanocrystalline Alloys: Fadi Abdeljawad¹; Malek Alkayyali¹; ¹Clemson University

2:30 PM

Heterostructured Interfaces in Lamellar Metallic Composites (LMCs) and Their Contribution to Materials Properties on Different Length Scales: Moritz Kuglstatter¹; Heinz Werner Höppel¹; Mathias Göken¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

Local Structural Ordering Affects the Toughening Ability of Amorphous Grain Boundary Complexions: Pulkit Garg1; Timothy Rupert¹; ¹University of California, Irvine

3:10 PM Invited

Mesoscale Model for Stress Field Evolution at Grain Boundaries Motivated by Atomistic Simulations of Dislocation-Grain Boundary Interactions: Darshan Bamney¹; Royce Reyes²; Laurent Capolungo¹; Douglas Spearot²; ¹Los Alamos National Laboratory; ²University of Florida

3:40 PM Break

Modeling Interfaces in Strain Gradient Plasticity: Miroslav Zecevic1; Aritra Chakraborty¹; Ricardo Lebensohn¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

4:20 PM

Dislocation Transmission across 3D Interfaces in Cu/Nb Nanolaminates: Shuozhi Xu1; Justin Cheng2; Mauricio Leo2; Nathan Mara²; Irene Beyerlein³; ¹University of Oklahoma; ²University of Minnesota, Twin Cities; 3University of California, Santa Barbara

Effect of Interfacial Structure on Mechanical Behavior of Nanolayered Ti/TiN Composites: Ashlie Hamilton1; Justin Cheng1; Mauricio De Leo¹; Kevin Baldwin²; Nathan Mara¹; ¹University of Minnesota - Twin Cities; ²Los Alamos National Laboratory

MATERIALS PROCESSING

Friction Stir Welding and Processing XII — Derivative **Technologies**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Anton Naumov, Peter The Great St. Petersburg Polytechnic University; Nilesh Kumar, University of Alabama, Tuscaloosa

Thursday PM | March 23, 2023 29A | SDCC

Session Chairs: Carter Hamilton, Miami University; Keerti Kappagantula, Pacific Northwest National Laboratory

2:00 PM Invited

Assessing the Performance of Liquid Cooled Plates for Inverter Stacks Produced by CoreFlow: Joao Gandra¹; Sam Holdsworth¹; Jonathan Peter Martin²; ¹TWI Ltd.; ²TWI

2:20 PM Invited

Submerged Bobbin Tool (SBT) Tunneling Technology: Dwight Burford¹; Maurizio Manzo¹; Hector Siller¹; Supreeth Gaddam¹; Anurag Gumaste¹; James Koonce¹; Aleandro Saez¹; Rajiv Mishra¹; ¹University of North Texas

2:40 PM

Friction Extrusion of Thermoplastics: Manufacturing and Recycling: Xiao Li¹; Tianhao Wang¹; Russ Burnett¹; Aye Meyer¹; Yelin Ni¹; Wenbin Kuang¹; Kevin Simmons¹; ¹Pacific Northwest National Laboratory

In-Situ Friction Stir Forging: An Innovative and Alternative Approach towards Gear Fabrication: Hrishikesh Das¹; Vineet Joshi¹; Lei Li¹; Nicole Overman¹; Jens Darsell¹; Piyush Upadhyay¹; Ayoub Soulami¹; Darrell Herling¹; Mark Rhodes¹; ¹Pacific Northwest National Laboratory

3:20 PM

Investigation of Shear Deformation Introduction n Friction Extrusion from Al-Cu Alloy: Lars Rath¹; Uceu Suhuddin¹; Benjamin Klusemann¹; ¹Helmholtz-Zentrum Hereon

3:40 PM Break

4:00 PM

Robust Temperature Control for Shear Assisted Processing and Extrusion (ShAPE): Woongjo Choi1; Xiao Li1; Kenneth Ross1; 1Pacific Northwest National Laboratory

4:20 PM

The Effect of Additional Impulses on Microstructure and Mechanical Performance of Impulse Friction Stir Welded AA7075-T6 Joints: Keqi Wang¹; Svetlana Shalnova²; Anton Naumov¹; Olga Klimova²; Fedor Isupov¹; Ahmad Alali Alkhalaf¹; ¹Peter The Great St. Petersburg Polytechnic University; 2St. Petersburg State Marine Technical University

MATERIALS PROCESSING

Materials Processing Fundamentals — Additive **Manufacturing and Materials First Principles**

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee

Program Organizers: Samuel Wagstaff, Oculatus Consulting; Alexandra Anderson, Gopher Resource; Adrian Sabau, Oak Ridge National Laboratory

Thursday PM | March 23, 2023 29B | SDCC

Session Chair: Samuel Wagstaff, Oculatus Consulting

2:00 PM Introductory Comments

Automatic Process Mapping for Ti64 Single Tracks in Laser Powder Bed Fusion: Toby Wilkinson¹; Massimiliano Casata¹; Daniel Barba¹; ¹Universidad Politécnica de Madrid

2:25 PM

A High-fidelity Numerical Model Informed Machine Learning Framework for Melt Pool Prediction in Laser Additive Manufacturing: Shashank Sharma¹; Mohammad Parsazadeh¹; Zhaochen Gu¹; Narendra Dahotre¹; Song Fu¹; ¹Center for Agile and Adaptive Additive Manufacturing, UNT

A Mesoscale Thermo-mechanical Numerical Model for Residual Stress Prediction in Laser Powder Bed Fusion Process: Shashank Sharma¹; Mangesh Pantawane¹; Sameehan Joshi¹; Narendra Dahotre¹; ¹Center for Agile and Adaptive Additive Manufacturing,

3:05 PM

Investigation of the Keyhole and Molten Pool Stability in Laser Welding Process Depending on Intensity Distribution of Dual Beam: Juyeong Lee¹; Jin-young Kim¹; Junmyoung Jang¹; Taehwan Ko1; Jaeheon Lee1; Geonmin Kim1; Seung Hwan Lee1; 1Hanyang University

3:25 PM Break

3:45 PM

Activation Energy of Simulated Surface Diffusion in Nanoporous Gold.: Conner Winkeljohn; Sadi Shahriar1; Erkin Seker1; Jeremy Mason¹; ¹University of California Davis

4:05 PM

Machine Learning and Monte Carlo Simulations of the Gibbs Free **Energy of the Fe-C System in a Magnetic Field**: *Ming Li*¹; Luke Wirth²; Stephen Xie³; Ajinkya Hire¹; Michele Campbell⁴; Dallas Trinkle²; Richard Hennig¹; ¹University of Florida; ²University of Illinois Urbana-Champaign; 3KBR at NASA Ames Research Center; 4University of California-Merced

Carbon Diffusion in Bcc Fe Under Magnetic Fields From First Principles: Luke Wirth1; Ming Li2; Richard Hennig2; Dallas Trinkle1; ¹University of Illinois Urbana-Champaign; ²University of Florida

Simulation of Fe Diffusion in Thermal Decomposition of γ -Fe,N using Molecular Dynamics: Jianxin Zhu1; Jian-Ping Wang1; ¹University of Minnesota

MATERIALS PROCESSING

Materials Research in Reduced Gravity — Thermophysical Properties (Levitation)

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Solidification Committee, TMS: Process Technology and Modeling Committee

Program Organizers: Wilhelmus Sillekens, European Space Agency; Michael Sansoucie, Nasa Marshall Space Flight Center; Robert Hvers, Worcester Polytechnic Institute: Douglas Matson. Tufts University; Gwendolyn Bracker, DLR Institute of Materials Physics in Space

Thursday PM | March 23, 2023 30B | SDCC

Session Chairs: Wilhelmus Sillekens, European Space Agency; Birte Riechers, Federal Institute of Materials Research And Testing (BAM)

2:00 PM

Melt Flow Sensitivity to Sample Properties and Changes in the Electromagnetic Field During Oscillating Drop Experiments in EML: Gwendolyn Bracker¹; R. W. Hyers¹; ¹University of Massachusetts

2:20 PM

Contactless Material Properties Measurement using AC or DC Magnetic Fields: Valdis Bojarevics¹, ¹University of Greenwich

AC Calorimetry of Liquid Metals in Electromagnetic Levitation: Comparison of Procedures in Microgravity and Terrestrial Conditions: Romain Pons¹; Annie Gagnoud¹; Didier Chaussende¹; Olga Budenkova¹; ¹UGA/CNRS/SIMAP

3:00 PM

Convection during Modulation Calorimetry Experiments in Electromagnetic Levitation: Gwendolyn Bracker¹; R. W. Hyers¹; ¹University of Massachusetts

3:20 PM

Containerless Thermophysical Property Measurement of Bulk Metallic Glasses in the Liquid State under Microgravity: Markus Mohr¹; Yue Dong¹; Hans Fecht¹; ¹Ulm University

3:40 PM Break

4:00 PM

Thermophysical Properties of Ge- and Si-based Semiconductors: Birte Riechers¹; Yuansu Luo²; Bernd Damaschke³; Konrad Samwer³; Robert Maaß⁴; ¹Federal Institute of Materials Research And Testing (BAM); ²Georg-August-Universität Göttingen ; ³Georg-August-Universität Göttingen: 4Federal Institute of Materials Research and Testing (BAM), University of Illinois at Urbana-Champaign

4:20 PM Concluding Comments

CHARACTERIZATION

Mechanical Response of Materials Investigated through Novel In-situ Experiments and Modeling — Session VI

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization; Dongchan Jang, Korea Advanced Institute of Science and Technology; Shailendra Joshi, University of Houston; Minh-Son Pham, Imperial College London; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Josh Kacher, Georgia Institute of Technology

Thursday PM | March 23, 2023 Aqua 310B | Hilton

Session Chairs: Ryan Hurley, Johns Hopkins University; Alain Reiser, Massachusetts Institute of Technology

2:00 PM Invited

Advances in Micromechanics and Digital Twin Modeling of Concrete and Geologic Materials Aided by In-situ Tomography and 3D X-ray Diffraction: Ryan Hurley¹; Mohmad Thakur¹; Ghassan Shahin¹; ¹Johns Hopkins University

Advanced Impactors for Laser-induced Particle Impact Testing: Alain Reiser1; Christopher Schuh1; 1Massachusetts Institute of Technology

2:50 PM

Atomistic Perspective of Grain Boundary Plasticity in Metals: Qi Zhu¹; Haofei Zhou²; Huajian Gao¹; Jiangwei Wang²; ¹Nanyang Technological University; ²Zhejiang University

3:10 PM

Compressive Behavior of Pure Polycrystalline Cobalt and Other HCP Metals Investigated Using Acoustic Emission: Adam Greš1; Michal Knapek¹; Patrik Dobroň¹; Peter Minárik¹; František Chmelík¹; ¹Charles University

3:30 PM Break

3:50 PM

In situ Extreme Micromechanics - Recent Innovations and Prospects: Remo Widmer¹; Nicholas Randall¹; Renato Pero¹; Jean-Marc Brequet¹; ¹Alemnis AG

4:10 PM

Optically Pumped Magnetometer Measuring Fatigue-induced Damage in Steel: Thomas Straub¹; Ali Riza Durmaz¹; Simon Philipp¹; Andreas Blug²; Alexander Bertz²; ¹Fraunhofer Institute for Mechanics of Materials (IWM); ²Fraunhofer Institute for Physical Measurement Techniques (IPM)

4:30 PM

Stress-strain Responses from Spherical Nanoindentation and Micro-pillar Compression Experiments in Fe-3% Si: A Comparative Study: Soumya Varma¹; Sid Pathak¹; Jordan Weaver²; Surya Kalidindi³; Johann Michler⁴; ¹Iowa State University; ²NIST; ³Georgia Institute of Technology; 4EMPA

NANOSTRUCTURED MATERIALS

Nanostructured Materials in Extreme Environments Nanostructured Materials in Space and Other **Extreme Environments**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nuclear Materials Committee

Program Organizers: Haiming Wen, Missouri University of Science and Technology; Nan Li, Los Alamos National Laboratory; Youxing Chen, University of North Carolina Charlotte; Yue Fan, University of Michigan; Niaz Abdolrahim, University of Rochester; Khalid Hattar, University of Tennessee Knoxville; Ruslan Valiev, UFA State Aviation Technical University; Zhaoping Lu, University of Science and Technology Beijing

Thursday PM | March 23, 2023 Aqua 303 | Hilton

Session Chair: Haiming Wen, Missouri University of Science and Technology

2:00 PM

Characterization of Newly Developed Nanolubricants for Space Applications: Ayten Bakhtiyarova¹; Mostafa Hassanalian¹; Sayavur Bakhtiyarov¹; ¹New Mexico Institute of Mining and Technology

Cu NW Degradation Under High Vacuum Environment: Diego Santa Rosa Coradini¹; Stefan Pogatscher¹; Cameron Quick¹; Matheus Tunes²; Peter J. Uggowitzer¹; Thomas Kremmer¹; ¹Montauniversty Leoben; ²Los Alamos National Laboratory

2:40 PM

Oxidation Resistance of Silicon-Boron Coatings on TZM Molybdenum Alloy: Miriem Santander Borrego¹; Chris Wood¹; ¹Defence Science and Technology Group

3:00 PM

Study on Advanced Cementing Practices using Inert Graphene Nanoplatelets and Hydraulic Fracturing Fluids for Wellbore Integrity and Sustainability: Havila Jupudi¹; Gabriel Awejori¹; Cody Massion¹; Mileva Radonjic¹; ¹Oklahoma State University

ENERGY & ENVIRONMENT

New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of Patrick R. Taylor — Recycling

Sponsored by: Society for Mining Metallurgy and Exploration, TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Materials Characterization Committee, TMS: Energy Committee, TMS: Recycling and Environmental **Technologies Committee**

Program Organizers: Ramana Reddy, University of Alabama; Corby Anderson, Colorado School of Mines; Erik Spiller, Colorado School of Mines; Edgar Vidal, NobelClad; Camille Fleuriault, Eramet Norway; Alexandra Anderson, Gopher Resource; Mingming Zhang; Christina Meskers, SINTEF

Thursday PM | March 23, 2023 33C | SDCC

Session Chairs: Erik Spiller, Colorado School of Mines; Mark Strauss, Idaho National Laboratory; Corby Anderson, Colorado School of Mines; Fangyu Liu, Hatch Ltd.

2:00 PM Invited

Requirements for an Extreme Make-over of the Metals Industry: Maurits Van Camp1; 1The University of Queensland

Utilization of Value Creation Potential in Municipal Solid Waste Incineration (MSWI) Fly Ash: Edzhe Soylu¹; Gabriella Tranell¹; ¹Norwegian University of Science and Technology

2:50 PM

Nano-/Superfine Metallic Particles from Waste Printed Wiring Boards: A Cradle-to-gate Sustainability Assessment: Haoyang He¹; Eric Schwartz¹; Oladele Ogunseitan¹; Julie Schoenung¹; ¹University of California - Irvine

3:10 PM

Sensor-based Sorting. A New Workhorse in the Recycling and Mining Community: Harold Cline¹; Jordan Rutledge¹; ¹Tomra Sorting,

3:30 PM Break

3:50 PM

Separation of Copper in Steel Scarp for Recycling: Hyunsoo Jin1; Brajendra Mishra¹; ¹Worcester Polytechnic Institute

4:10 PM

Recycling of Spent Lithium-ion Batteries at Swerim: Xianfeng Hu¹; Elsayed Mousa¹; Ludvug Ånnhagen¹; Guozhu Ye¹; ¹Swerim

Comparison of Hydrogen Reduction of Different Lead-bearing Materials for Lead Recovery: Asywendi Rukini¹; M. Akbar Rhamdhani¹; Geoffrey Brooks¹; Amy Van den Bulck²; ¹Swinburne University of Tecnology; ²Umicore

PHYSICAL METALLURGY

Phase Transformations and Microstructural Evolution — Structure and Properties

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Ashley Paz y Puente, University of Cincinnati; Mark Aindow, University of Connecticut; Sriswaroop Dasari, University of North Texas; Ramasis Goswami, Naval Research Laboratory; Megumi Kawasaki, Oregon State University; Eric Lass, University of Tennessee-Knoxville; Josh Mueller, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Le Zhou, Marquette University

Thursday PM | March 23, 2023 25C | SDCC

Session Chair: Le Zhou, Marquette University

2:00 PM

Precipitate Size Distribution Evolution in an Additively Manufactured High Temperature Al-Cr-Zr Alloy: Darby LaPlant1; J. Hunter Martin¹; Tresa Pollock²; ¹Hrl Laboratories, LLC; ²University of California, Santa Barbara

2:20 PM

Microstructures in Icosahedral-Phase-Strengthened Aluminum Alloy Powders for Additive Manufacturing: Mingxuan Li¹; Sarshad Rommel¹; Thomas Watson²; Callie Benson³; Rainer Hebert¹; Mark Aindow¹; ¹University of Connecticut; ²Pratt & Whitney; ³Collins Aerospace

2:40 PM

Thermal Stability of Quasicrystals in a Candidate Al Alloy for Additive Manufacturing: Baris Yavas1; Mingxuan X. Li1; S. Pamir Alpay¹; Mark Aindow¹; ¹University of Connecticut

3:00 PM

Physics-based Simulations of Microstructural Evolution Using Graph Theory: Iman Javaheri¹; Veera Sundararaghavan²; ¹NASA Langley Research Center; ²University of Michigan

3:20 PM

A Self Consistent Phase Field Crystal Plasticity (CPPFM) Approach in the Realm of Small and Large Deformation Framework: Tariq Ali¹; Soumya Bandyopadhyay¹; Hyung-Uk Jang¹; Pil-Ryung Cha¹; ¹Kookmin University

3:40 PM Break

Fatigue Properties of Microstructural Gradients in Ti-6Al-4V Generated with Thermohydrogen Treatment: Christopher David Schmidt¹; Hans-Jürgen Christ¹; Axel von Hehl¹; ¹University of Siegen

Micro-beam Diffraction of Nano-structured Severe Plastically Deformed Metals Following Their Structural Evolution upon Heating: Klaus-Dieter Liss1; Xiaojing Liu1; Jae-Kyung Han2; Malte Blankenburg³; Megumi Kawasaki²; ¹Guangdong Technion - Israel Institute of Technology (GTIIT); ²Oregon State University; ³Deutsches Elektronen-Synchrotron (DESY)

4:40 PM

Evolution of Phases and Interfaces in Self-healing Composites Made of Al5083 Matrix and Encapsulated ZnAl Particles: Baolong Zheng¹; Xin Wang¹; David Svetlizky²; Lorenzo Valdevit¹; Noam Eliaz²; Enrique Lavernia¹; Julie Schoenung¹; ¹University of California, Irvine; ²Tel-Aviv University

5:00 PM

Phase-field Modeling of Interaction Between Phase Transformation and Cracking in Shape Memory Ceramics: Amirreza Lotfolahpour1; Mohsen Asle Zaeem¹; ¹Colorado School of Mines

ADDITIVE TECHNOLOGIES

Powder Materials Processing and Fundamental Understanding — Characterization and Analysis II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Eugene Olevsky, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Kennametal Inc.; Wenwu Xu, San Diego State University

Thursday PM | March 23, 2023 25B | SDCC

Session Chairs: Nicholas Derimow, National Institute of Standards and Technology; Wenwu Xu, San Diego State University

2:00 PM Invited

X-ray Synchrotron Imaging of Laser Melted Ti-6Al-4V Powders with Varying Oxygen Content, Powder Size Distributions, and Gaseous Environments: Nicholas Derimow¹; Orion Kafka¹; Samuel Clark²; Jake Benzing¹; Ed Garboczi¹; Nik Hrabe¹; ¹National Institute of Standards and Technology; ²Argonne National Laboratory

The Improvement of Surface Roughness on Vertical Surfaces for 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing: Tianyu Zhang¹; Lang Yuan¹; ¹University of Southern California

2:50 PM

Unveiling New Insights into Computer Vision and Machine Learning for Reusability Assessment of Ti-6Al-4V Powder in Additive Manufacturing: Saeid Alipour Masoumabad¹; Sanaz Vajedian¹; Arezoo Emdadi¹; ¹Missouri University of Science & Technology

3:10 PM

Metal Powder Characterization Through the Experimental Method and Machine Learning Approach in Selective Laser Melting: Jiahui Zhang¹; Manvinder Lalh¹; Yu Zou¹; ¹University of Toronto

3:30 PM Break

3:50 PM

Mapping Directed Energy Deposition of Nickel Superalloys Through In-situ Synchrotron Radiography: Imogen Cowley¹; Yunhui Chen²; Sebastian Marussi¹; Kai Zhang¹; Chu Lun Alex Leung¹; Marta Majkut³; Maureen Fitzpatrick¹; Martyn Jones⁴; Peter Lee¹; ¹University College London; ²University of Manchester; ³European Synchrotron Radiation Facility; 4Rolls-Royce plc.

4:10 PM

Methodology for Material Selection of Optimal Additive Manufactured Alloys and Parameter Sets for Space Optical Instruments: Zachary Post¹; Walter Zimbeck¹; Steven Storck¹; Floris van Kempen²; Gerard Otter²; John Boldt¹; Ludger van der Laan²; Steven Szczesniak¹; Ryan Carter¹; Robert Mueller¹; Salahudin Nimer¹; Doug Trigg¹; Michael Berkson¹; Frank Morgan¹; William Swartz¹; ¹JHU APL; 2TNO

4:30 PM

Thermogravimetric Analysis of Additive Ti-6Al-4V Powders in Gaseous Environments: Nicholas Derimow1; Elisabeth Mansfield1; Nik Hrabe¹; ¹National Institute of Standards and Technology

4:50 PM

The Microstructure and Hardness of Zn-3(wt.%)Mg Powders Processed via High Pressure Torsion: Tanzilur Rahman¹; Burak Dikici²; Hakan Yılmazer³; Kaveh Edalati⁴; Hendra Hermawan⁵; Carl Boehlert¹; ¹Michigan State University; ²Ataturk University; ³Yildiz Technical University; 4Kyushu University; 5Laval University

5:10 PM

Novel Method of BiFeO, Purification by Acid Washing Determined from ICP-MS Analyses: Jenna Metera¹; Anna Wilke¹; Olivia Graeve¹; ¹University of California San Diego

ADDITIVE TECHNOLOGIES

Quantifying Microstructure Heterogeneity for Qualification of Additively Manufactured Materials Characterization of Heterogeneity

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Phase Transformations Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Sharniece Holland, Washington University in St. Louis; Eric Payton, University of Cincinnati; Edwin Schwalbach, Air Force Research Labroatory; Joy Gockel, Colorado School of Mines; Ashley Paz y Puente, University of Cincinnati; Paul Wilson, The Boeing Company; Amit Verma, LLNL; Sriram Vijayan, Ohio State University; Jake Benzing, National Institute of Standards and Technology

Thursday PM | March 23, 2023 24B | SDCC

Session Chairs: Ashley E. Paz y Puente, University of Cincinnati; Paul Wilson, Boeing

2:00 PM Invited

In Situ Monitoring of Recrystallization during Laser Powder Bed Fusion of 316L Stainless Steel by Means of Synchrotron X-ray **Diffraction**: Claire Navarre¹; Milad Hamidi¹; Reza Esmaeilzadeh¹; Charlotte de Formanoir¹; Lucas Schlenger¹; Steven van Petegem²; Nicola Casati³; Roland Logé¹; ¹École polytechnique fédérale de Lausanne (EPFL), Switzerland / Laboratory of Thermomechanical Metallurgy (LMTM); ²Structure and Mechanics of Advanced Materials Group (SMAM), Paul Scherrer Institut (PSI), Switzerland; 3Swiss Light Source (SLS), Paul Scherrer Institut (PSI), Switzerland

2:25 PM

Large-scale Image Analysis of Melt Pools in Complex Additively Manufactured Artifacts: Guangyu Hu¹; Hunter Taylor²; Ryan Wicker²; Marat Latypov¹; ¹University of Arizona; ²University of Texas at El Paso

2:45 PM

Heterogeneous Microstructure and Location-specific Mechanical Performance of Ti-6Al-4V Parts Made by Laser Directed Energy **Deposition**: Janelle Hobbs¹; Xiaochuan Tang¹; Kaka Ma¹; ¹Colorado State University

Correlative Modeling of Laser Powder Bed Fusion Surface Characteristics to Internal Defects: Sean Dobson¹; Ashely Paz y Puente¹; ¹University of Cincinnati

3:25 PM Break

Characterization of Titanium Additions in Selectively Laser Melted High-strength Aluminum Alloy by Correlative X-ray and Electron Microscopy: Daniel Sinclair¹; Nikhilesh Chawla¹; Amey Luktuke¹; ¹Purdue University

4:00 PM

Use of Profilometry-based Indentation Plastometry (PIP) to Study Inhomogeneities in Additively Manufactured Components: Max Burley¹; Jimmy Campbell¹; Gael Guetard²; Charlie Pearson²; Becky Reiff-Musgrove¹; Wenchen Gu¹; Bill Clyne¹; ¹Plastometrex Ltd; ²Alloyed

ADVANCED MATERIALS

Refractory Metals 2023 — Processes and Coatings -**Ultimate Plus**

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Brady Butler, US Army Research Laboratory; Todd Leonhardt, Rhenium Alloys Inc.; Matthew Osborne, Global Advanced Metals; Zachary Levin, Los Alamos National Laboratory

Thursday PM | March 23, 2023 Aqua E | Hilton

Session Chair: Matt Osborne, Global Advanced Metals

2:00 PM Invited

ULTIMATE: Additive Manufacturing of Ultrahigh Temperature Mo-Si-B Alloys: Zahabul Islam¹; Longfei Liu²; John Perepezko²; Phalgun Nelaturu²; Ankur Agrawal²; Dan Thoma²; ¹Bowling Green State University; ²University of Wisconsin-Madison

2:30 PM

Ultimate: Affordable, Durable Precipitation Strengthened Refractory High Entropy Alloys for Use at 1300 Celsius and Above: Michael Gao¹; Michael Kirka²; Michael Widom³; Chantal Sudbrack¹; Vishnu Raghuraman³; Saro San¹; Saket Thapliyal²; Chris Ledford²; Julio Rojas²; Brian Jordon²; Paul Jablonksi¹; *David Alman*¹; ¹National Energy Technology Laboratory; ²Oak Ridge National Laboratory; ³Carnegie Mellon University

ULTIMATE: Arc Melting and Additive Manufacturing of Refractory Complex Concentrated Alloys and Composites: Fei Wang¹; Xin Chen¹; Bai Cui¹; Michael Gao²; Shanshan Hu³; Xingbo Liu³; Dongsheng Li⁴; ¹University of Nebraska Lincoln; ²National Energy Technology Laboratory; ³West Virginia University; ⁴Advanced Manufacturing LLC

3:10 PM

Development of Ruthenium-Based Alloy Wire for Highly Efficient OLED Vacuum Deposition: Rikito Murakami¹; Kei Kamada¹; Kenichi Umetsu²; Shiika Itoi³; Hiroaki Yamaguchi³; Takashi Yoshioka⁴; Katsunari Oikawa¹; Junji Kido²; Akira Yoshikawa¹; ¹Tohoku University; ²Yamagata University; ³C&A Corporation; ⁴Sunric Co., Ltd.

3:30 PM Break

3:45 PM

New Environmental-thermal Barrier Coatings for Ultrahigh Temperature Alloys: Hua Xie1; Victor Champagne2; Wei Zhong1; Bryson Clifford¹; Yunhui Gong³; David Clarke²; Liangbing Hu¹; Ji-Cheng Zhao¹; ¹University of Maryland; ²Harvard University; ³HighT-Tech LLC

4:05 PM

Novel Refractory Bond Coat Alloy Capable of Alumina Formation Up to 1400°C (ULTIMATE Project): Collin Holgate¹; Carolina Frey¹; Melina Endsley¹; Akane Suzuki²; Carlos Levi¹; Tresa Pollock¹; ¹University of California Santa Barbara; ²GE Research

High Entropy Rare-earth Oxide (HERO) Coatings for Refractory Alloys: Kristyn Ardrey¹; Mackenzie Ridley²; Prasanna Balachandran¹; Bi-Cheng Zhou¹; Patrick Hopkins¹; Elizabeth Opila¹; ¹University of Virginia; ²Oak Ridge National Lab

4:45 PM

Microstructural and Compositional Evolution in the Tantalum Vanadium System: Towards Refractory Alloys for Extreme Environments: Connor Rietema¹; Jibril Shittu¹; Alex Baker¹; Aurélien Perron¹; Brandon Bocklund¹; Hunter Henderson¹; Scott McCall¹; Joseph McKeown¹; ¹Lawrence Livermore National Laboratory

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Materials and Science — Metallurgy

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: J. Rory Kennedy, Idaho National Laboratory; Taylor Jacobs, Los Alamos National Laboratory; Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Don Wood, Idaho National Laboratory

Thursday PM | March 23, 2023 28A | SDCC

Session Chairs: Ladia Havela, Charles University; Krzysztof Gofryk, Idaho National Laboratory; Rory Kennedy, INL

2:00 PM Invited

Magnetic Dichroism in Ga-stabilized d-Pu: Jason Jeffries¹; Alexander Baker¹; G Fabbris²; Daniel Haskel²; ¹Lawrence Livermore National Laboratory; ²Argonne National Laboratory

2:30 PM Invited

Understanding Self-irradiation Damage Mechanisms in -Pu from First-principles: Sarah Hernandez¹; ¹Los Alamos National Laboratory

Recovery in Stabilized Delta Pu and Its Effects on Thermal Expansion: Najeb Abdul-Jabbar¹; Shane Mann¹; Jeremy Mitchell¹; ¹Los Alamos National Laboratory

A Time-of-Flight Neutron Diffraction Study of -phase 239PuGa Alloys at Cryogenic Temperatures: Alice Smith1; Franz Freibert1; Sven Vogel¹; Bjorn Clausen¹; Jianzhong Zhang¹; Donald Brown¹; Joan Siewenie¹; Travis Carver¹; Scott Richmond¹; Michael Ramos¹; ¹Los Alamos National Laboratory

3:40 PM Break

4:00 PM Invited

Hydrogen Embrittlement in Uranium: From Hydrides to Plastic Effects: Mary O'Brien¹; Jason Cooley¹; Samantha Lawrence¹; ¹Los Alamos National Laboratory

4:30 PM Invited

Experimental Investigation of the U-Mo Solidus and Liquidus: Kara Luitjohan¹; Seth Imhoff¹; ¹Los Alamos National Laboratory

Thermal Stability of Alpha-phase Plutonium: Jeremy Mitchell¹; Najeb Abdul-Jabbar¹; ¹Los Alamos National Laboratory

5:20 PM Concluding Comments

NUCLEAR MATERIALS

Transmutation Effects in Fusion Reactor Materials: Critical Challenges & Path Forward — Radiation **Damage Characterization, Modeling & Alloy Design**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

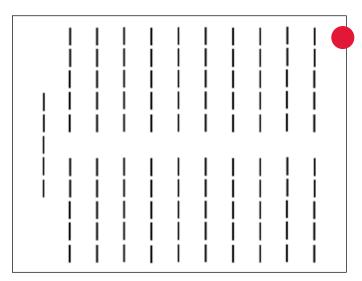
Program Organizers: Arunodaya Bhattacharya, Oak Ridge National Laboratory; Steven Zinkle, University of Tennessee; Philip Edmondson, The University of Manchester; Aurelie Gentils, Université Paris-Saclay; David Sprouster, Stony Brook University; Takashi Nozawa, National Institutes for Quantum and Radiological Science and Technology (QST); Martin Freer, University of Birmingham

Thursday PM | March 23, 2023 27B | SDCC

Session Chairs: Thomas Davis, Oxford Sigma; Ling Wang, Stanford Linear Accelerator Centre

2:00 PM Invited

Effect of Elemental Segregation in High-entropy Alloys on Materials Transport Properties: Kai Nordlund¹; ¹University of Helsinki


Impact of Pre-existing Damage on He Irradiated Sintered 3C-SiC: Nabil Daghbouj¹; Bingsheng Li¹; Miroslav Karlik¹; Mauro Callisti¹; Tomas Polcar¹; Huseyin Sener¹; ¹Czech Technical University in Prague

Molecular Dynamics Simulations of Mixed Materials Effects in Tungsten: Mary Alice Cusentino1; Megan McCarthy1; Ember Sikorski1; Mitchell Wood¹; Aidan Thompson¹; ¹Sandia National Laboratories

Ultrafast Measurement of Microscopic Energy Flow in Heimplanted W: Mianzhen Mo1; Artur Tamm2; Zhijiang Chen1; Erki Metsanurk³; Ling Wang¹; Yongqiang Wang⁴; Mungo Frost¹; Nicholas Hartley¹; Fuhao Ji¹; Samuel Murphy⁵; Silvia Pandolfi¹; Peihao Sun¹; Xiaozhe Shen¹; Correa Alfredo⁶; Siegfried Glenzer¹; ¹SLAC National Accelerator Laboratory; ²University of Tartu; ³Uppsala University; ⁴Los Alamos National Laboratory; ⁵Lancaster University; ⁶Lawrence Livermore National Laboratory

GUIDE TO THE TMS2023 POSTER SESSION

View a changing display of posters in the TMS2023 Exhibit Hall (Hall G) during exhibit hours. Then join us for two separate presentation sessions, grouped by topic areas, on Monday and Tuesday evening. Presenters will be on hand during these sessions to discuss their work.

- Open Poster Area begins here.
- : On Monday, Posters starting with topic A will begin here. On Tuesday, Posters starting with topic J will begin here.

How to Navigate the Poster Sessions

Two poster sessions will be held during TMS2023:

- Session I: Monday, 5:30 p.m. to 6:30 p.m.
- · Session II: Tuesday, 5:30 p.m. to 6:30 p.m.

Confirmed posters are grouped by topic according to the listing on this page.

- · Each topic area is assigned a letter code
- Each poster within that topic is assigned a number
- You can search in the mobile app and mobilefriendly PDF for specific posters and poster numbers.

Posters that were not confirmed will be in the Open Poster Area and are not numbered.

Poster Session I

Monday, March 20 • 5:30 p.m. to 6:30 p.m.

FEATURING POSTERS ON:

Additive Technologies (A)
Corrosion (B)
Electronic Materials (C)
Energy & Environment (D)
Light Metals (E)
Mechanics & Structural Reliability (F)
Nanostructured Materials (G)
Physical Metallurgy (H)

Poster Session II

Tuesday, March 21 • 5:30 p.m. to 6:30 p.m.

FEATURING POSTERS ON:

Advanced Materials (J)
Biomaterials (K)
Characterization (L)
Materials Design (M)
Materials Processing (N)
Nuclear Materials (O)

Tips for Poster Presenters:

During their poster session, presenters should:

- Stand by their poster during their designated session time
- Be prepared to discuss their work with attendees viewing the posters

SPECIAL TOPICS

2023 Technical Division Student Poster Contest - EPD 2023 Technical Division Graduate Student **Poster Contest**

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

SPG-1: Determination of Mechanical, Thermal and Barocaloric Properties of Elastomers by Rheological Techniques for Hydrostatic Pressure based Solid State Refrigeration: Naveen Weerasekera¹; Agnimitra Biswas²; ¹University of Louisville; ²National Institute of Technology-Silchar

SPG-2: Extraction of Niobium and Tantalum Oxides from Columbite Concentrate: Himanshu Tanvar¹; Brajendra Mishra¹; ¹Worcester Polytechnic Institute

SPG-3: Flexural Properties of Low Density Polyethylene Hybrid Nanocomposite Reinforced with Linen and Aramid Fabric: Andressa Souza¹; Sergio Monteiro¹; Lucio Fabio Nascimento¹; ¹IME

SPG-4: Phytomining of Rare Earth Elements: David Zirker1; Amin Mirkouei¹; ¹University of Idaho

SPG-5: Selective Recovery of Copper from Metal Concentrate of Waste Printed Circuit Boards by Ammoniacal Solvo-leaching: Kurniawan Kurniawan¹; Jae-chun Lee²; Mooki Bae²; Hyunju Lee²; Sookyung Kim²; ¹Korea University of Science and Technology; ²Korea Institute of Geoscience and Mineral Resources (KIGAM)

SPECIAL TOPICS

2023 Technical Division Student Poster Contest FMD 2023 Technical Division Graduate Student **Poster Contest**

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

SPG-6: Electronic Transport Properties of Mn2Sb: Salil Paranjape¹; ¹University of Illinois Urbana Champaign

SPG-7: First-Principles Study of Vacancy Formation Energy in High-Entropy Alloys: Christopher Lafferty¹; Chelsey Hargather¹; ¹New Mexico Institute of Mining and Technology

SPG-8: Investigation of Functional Coatings for Improving Performance of Carbon Nanotube-based Supercapacitors: Julia Allen1; 1Georgia Institute of Technology

SPG-9: Material-based Characterization of Carbon Nanotube Field Emission Cathodes: Arega Margousian¹; ¹Georgia Institute of Technology

SPG-11: Optimized Design of Interlocking Metasurfaces: Nathan Brown¹; Ben Young²; Ophelia Bolmin²; Brad Boyce²; Philip Noell²; ¹Sandia National Laboratories; Clemson University; ²Sandia National Laboratories

SPG-12: Synthesis and Characterization of Fullerene-Antibody Conjugate Energetic Nanoparticles (FACE-NP) for Bladder Cancer Treatment: Carolina Colon¹; ¹Georgia Institute of Technology

SPECIAL TOPICS

2023 Technical Division Student Poster Contest FMD 2023 Technical Division Undergraduate **Student Poster Contest**

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

SPU-1: Cultural Heritage Science: Authentication of Native American Artwork via Materials Characterization and Forensic Analysis: Cody Marshall¹; Ava Knutson¹; Jon Kellar¹; Grant Crawford¹; ¹South Dakota School of Mines and Technology

SPU-2: Investigation of High Entropy Precursor Powder Synthesis for Transparent Ceramic Synthesis: Marlena Alexander¹; Kaden Anderson¹; Chuck Melcher²; Mariya Zhuravleva²; ¹University of Tennessee Knoxville; 2Scintillation Materials Research Center

SPECIAL TOPICS

2023 Technical Division Student Poster Contest LMD 2023 Technical Division Graduate Student **Poster Contest**

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

SPG-14: Mechanical Properties of Laser Fabricated and Arc Melted AlCuFeNiSi High Entropy Alloy for Energy Storage Applications: Comparative Study: Modupeola Dada1; Patricia Popoola1; Evlly Mtileni¹; ¹Tshwane University of Technology

SPG-15: Transition Mechanism for the Metastable Phases in Al-Zn-Mg Alloys: A Novel Molecular Dynamics Approach: Yu-ning Chiu1; Chung-yi Yu2; Shih-kang Lin1; 1National Cheng Kung University; ²China Steel Corp, Aluminum Prod R&D Sect, New Mat R&D Dept

SPECIAL TOPICS

2023 Technical Division Student Poster Contest LMD 2023 Technical Division Undergraduate **Student Poster Contest**

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

SPU-3: Correlating Local and Global Tensile Deformation Behavior of AlSi10Mg Specimens Fabricated Via Laser Powder Bed Fusion: Caleb Fronk¹; Ritam Pal¹; Amrita Basak¹; ¹Penn State University

SPU-4: Developing a Metallography Procedure to Investigate Compositional Effects on the Microstructure of Lightweight Metal Matrix Composites: Caleb Schenck1; Andrew O'Connor1; Michele Manuel¹; ¹University of Florida

SPECIAL TOPICS

2023 Technical Division Student Poster Contest — MPMD 2023 Technical Division Graduate Student Poster Contest

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

SPG-16: A Computer Vision Method of Grain Segmentation for Additive-manufactured Haynes 282 Alloys Under Various Heat Treatments: Yu-Tsen Y^{j} ; Nicholas Lamprinakos 1 ; Junwon Seo 1 ; Anthony Rollett 1 ; 1 Carnegie Mellon University

SPG-17: Characterization of Failure Mechanisms for Multimaterial Interfaces Manufactured with Additive Friction Stir Deposition: *Cole Franz*¹; ¹University of Tennessee

SPG-18: Characterization of Microstructural Heterogeneities in Electron Beam Additively Manufactured Haynes 282: Alivia Mourot¹: ¹Ohio State University

SPG-19: Comparison of Experimental and Analytical Melt Pool Geometries for High Thermal Conductivity Refractory Metals Using ANSYS: Aditya Rohan Narra¹; Venkata Satya Surya Amaranth Karra¹; Bryan Webler¹; ¹Carnegie Mellon University

SPG-20: Correlating Laser Process Conditions to Balling Severity with Time-Resolved Synchrotron X-ray Visualization: *John Smith*¹; Runbo Jiang¹; Anthony Rollett¹; ¹Carnegie Mellon University

SPG-21: Development of a Generalized Fatigue Assessment Approach for Steel Castings: *Matthew Batson*¹; Brian Jordon¹; Paul Allison¹; Yu Hong¹; ¹Baylor University

SPG-22: Effect of Chemical Pretreatment on Properties of Natural Fiber Reinforced Composites for 3D Printing: Athira Nair Surendran¹; Sreesha Malayil¹; Kunal Kate¹; Jagannadh Satyavolu¹; ¹University of Louisville

SPG-23: Effect of Laser Surface Remelting on the Microstructure, Mechanical, Tribological and Corrosion Properties of the Ti40Nb25Zr25Ta10 (with 0.5 at. % O) Medium Entropy Alloy (MEA): Labani Mustafi¹; Ma Qian¹; Alan Jones¹; Van Thuong Nguyen²; Qiushi Deng¹; Tingting Song¹; Xiaobo Chen²; Daniel Fabijanic³; ¹RMIT University; ²University of Queensland; ³Deakin University

SPG-24: Effect of Process Parameters on Texture and Anisotropy of Ti-6Al-4V Wall Components Made by Wire-feed DED Process: Rajib Halder¹; Jake Benzing²; Anthony Rollett¹; Zhening Yang³; ¹Carnegie Mellon University; ²National Institute of Standards and Technology; ³Penn State University

SPG-25: Effects of the Reduction Temperature and Amount of Diluent on the Properties of High-purity Tantalum Powder Prepared via the Hunter Process: Yongkwan Lee¹; Sunggue Heo¹; Jae-Jin Sim²; MiHye Lee²; Soong Ju Oh¹; Jae-Hong Shin²; Kyoung-Tae Park²; ¹Korea University; ²Korea Institute of Industrial Technology

SPG-26: Effects of Varying Heat Accumulation in Laser Powder Bed Fusion on Microstructure Outcomes in Ti-6Al-4V: Evan Adcock¹; ¹Carnegie Mellon University

SPG-27: Evaluating the Effect of Tool Offset on Repaired AA7050 by Additive Friction Stir Deposition: Victor Rojas¹; Ismael Hidalgo¹; J. Brian Jordon¹; Paul Allison¹; ¹Baylor University

SPG-28: Evaluation of As-deposited Tensile Behavior and Microstructure of Additive Friction Stir Deposition 304L Stainless Steel: Jessica Lopez¹; ¹University of Alabama

SPG-29: In Operando Synchrotron X-ray Tomography Study of Fine Eutectic Polyphase Solidification Patterns: Paul Chao¹; George Lindemann¹; Shanmukha Aramanda¹; Ashwin Shahani¹; ¹University

of Michigan

SPG-30: Induction-Coupled Thermomagnetic Processing of Fe-C Alloys: Megan Hurley¹; Ramon Padin-Monroig¹; Benjamin Begley¹; Zach Tener²; Steven Flynn¹; Mike Kesler³; Michele Manuel¹; Mark Meisel¹; Victoria Miller¹; ¹University of Florida; ²Oak Ridge National Laboratory; ³Oak Ridge National Laboratory

SPG-31 Laser-Powder Bed Fusion of Ti-6Al-2Sn-4Zr-2Mo-0.08Si (Ti-6242): As-built Properties, Kinetics of to Phase Transformation, and Design of Heat Treatment: Harish Kaushik¹; Mahdi Habibnejad Korayem²; Amir Hadadzadeh¹; ¹University of Memphis; ²AP&C Advance Powder and Coating, a GE Additive Company

SPG-32: Melt-pool Dynamics during Multiple-laser-beamed Powder Bed Fusion of Stainless Steel: Marco Rupp¹; Shuichiro Hayashi¹; Claire Dashe¹; Wenxuan Zhang¹; Craig Arnold¹; ¹Princeton University

SPG-33: Modeling for Time Dependent Grain Boundary Evolution: Lucero Lopez¹; Elizabeth Holm¹; ¹Carnegie Mellon University

SPG-34: Multi-scale In Situ Studies of Deformation Mechanism of L-PBF 316L Stainless Steels: Wanxuan Teng¹; Biao Cai¹; Moataz Attallah¹; ¹University of Birmingham

SPG-35: Multi-scale Modelling for Material Design in Additive Manufacturing: Weiling Wang¹; Wei Wen¹; Hossein Eskandari Sabzi¹; Pedro Rivera-Diaz-del-Castillo¹; ¹Lancaster University

SPG-36: On the Influence of Gaussian and Ring-shaped Beam Profiles on Quality and Energy Consumption in L-PBF of Inconel 718: Ersilia Cozzolino¹; Austin Tiley¹; Edward D. Herderick¹; ¹Center for Design and Manufacturing of Excellence, The Ohio State University

SPG-37: Oxide Morphology and Growth Kinetics for Additively Manufactured 316L Austenitic Stainless Steel High Temperature Steam Exposures: Scott Schier¹; Katherine Montoya¹; Allyssa Bateman²; Ethan Schneider¹; Elizabeth Sooby¹; Brian Jaques²; ¹UTSA; ²Boise State University

SPG-38: Printability and Defects in W & W -alloys by Directed Energy Deposition: Amaranth Karra¹; Bryan Webler¹; ¹Carnegie Mellon University

SPG-39: Recycled Battlefield Titanium Scrap for Cold Spray Applications: Kiran Juda¹; ¹Worcester Polytechnic Institute

SPG-40: Removal of Rare Metal Impurities by Electron-beam Melting Refining Process: YongKwan Lee¹; Hyunchul Kim¹; Sung Gue Heo¹; Seok-Jun Seo¹; SoongJu Oh¹; Kyoung-Tae Park¹; ¹Korea Institute of Industrial Technology

SPG-41: Strain Evolution and Damage Development during Tight-radius Bending of Advanced High Strength Steels: *Nizia Mendes Fonseca*¹; David Wilkinson¹; ¹McMaster University

SPECIAL TOPICS

2023 Technical Division Student Poster Contest
— MPMD 2023 Technical Division Undergraduate
Student Poster Contest

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

SPU-5: A High-speed Radiography Study for Validating the Effect of Dwell Time on Melt-pool Dynamics during Laser Powder Bed Fusion: Raymond Wysmierski¹; Rakesh Kamath¹; Gerry Knapp²; John Coleman²; Stuart Slattery²; Sam Reeve²; Hahn Choo¹; ¹University of Tennessee Knoxville; ²Oak Ridge National Laboratory

SPU-6: Assessing Laser Powder Bed Additive Manufacturing Part Quality via In-Situ Monitoring & Machine Learning: Ana Love¹; ¹Sandia National Labs; University of New Mexico

SPU-7: Burn Rate Analysis of an Energetic Initiator Ink for 3D Printing: Kayleigh Cameron¹; Dr. Chelsey Hargather¹; ¹New Mexico Institute of Mining and Technology

SPU-8: Development of a Pyrotechnic Initiator Ink for Additive Manufacturing Methodology: Benito Silva¹; Chelsey Hargather¹; ¹New Mexico Institute of Mining and Technology

SPU-9: Effects of LPBF Parameters on Fatigue Life of AlSi10Mg Alloys: Timothy Nice1; Bhaskar Majumdar1; Nathaniel Badgett1; John O'Connell¹; ¹New Mexico Institute of Mining & Technology

SPU-10: Mechanochemistry for Creation of Functional Surface Treatments: Jennifer Johnson¹; Jon Kellar¹; William Cross¹; ¹South Dakota School of Mines and Technology

SPU-11: Study of the Pyrometallurgical Recycling Process to the Recovery of Zinc and Manganese Oxide from Spent Alkaline and Zn-C Batteries: Seoung-Uk Bae¹; Kyoung-Tae Park²; Jae Hong Shin²; Junghoon Lee3; 1Incheon National University; 2Korea Institute of Industrial Technology; 3Other

SPU-12: Viscosity Characterization of an Energetic Initiator Ink for 3D Printing: Hannah Morgan-Smith Myers1; Chelsey Hargather1; ¹New Mexico Institute of Mining and Technology

SPECIAL TOPICS

2023 Technical Division Student Poster Contest SMD 2023 Technical Division Graduate Student **Poster Contest**

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

SPG-44: Advanced Characterization of the Local Atomic Orders and Their Effects on the Mechanical Properties in Metallic Glasses: Can Okuyucu¹; Doguhan Sariturk¹; Fatma Saadet Guven¹; Emel Erdal¹; Yunus Eren Kalay¹; ¹Middle East Technical University

SPG-45: Atomistic Modeling of Energy Barriers to Dislocation Processes in Metals: Yipin Si¹; Ting Zhu¹; ¹Georgia Institute of Technology

SPG-46: Automating Selective Area Electron Diffraction Pattern Phase Identification Using Image Analysis and Machine Learning: Mitchell Mika¹; Assel Aitkaliyeva¹; ¹University of Florida

SPG-47: Bulk Material Libraries through Laser-Remelting: Combinatorial Analysis of the CrCoNi System: Tobias Gaag1; Maximilian Heidowitzsch¹; Carolin Körner¹; Christopher Zenk¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

SPG-48: Corrosion Control of Structural Materials for 4th Gen Nuclear Reactors: Krishna Moorthi Sankar¹; Preet Singh¹; ¹Georgia Institute of Technology

SPG-49: Deformation Mechanism Characterization for Bi-modally Distributed ' Precipitates in Allvac 718 plus Superalloy: Geeta Kumari¹; Carl Boehlert¹; S Sankaran²; M Sundararaman²; ¹Michigan State University; ²Indian Institute of Technology, Madras

SPG-50: Effect of Ag on the Microstructures in Al-Cu-Ni-Mn High Entropy Alloy: Gina Zavala Alvarado¹; S.K. Varma¹; Mckenna Hitter¹; ¹The University of Texas at El Paso

SPG-51: Experimental Observation of Heteroepitaxial Recrystallization (HeRX) outside of Low Lattice Misfit Ni-based Superalloys: Yonguk Lee1; Eitan Hershokovitz1; Honggyu Kim1; Eric Payton²; Victoria Miller¹; ¹University of Florida; ²University of Cincinnati

SPG-52: Investigation of Corrosion Mechanisms and Fatigue Property of Friction-stir Welded Joints between 6022 Al and **ZEK100 Mg Alloy**: *Qingli Ding*¹; ¹Worcester Polytechnic Institute

SPG-53: Methods for Estimating the Microscopic and Macroscopic Behaviors of Materials: Mathew Aibinu¹; Kemi Adewale²; Joba Morakinyo3; 1Durban University of Technology; 2University of KwaZulu-Natal; 3Ladoke Akintola University of Technology

SPG-54: Microstructural Characterization and Oxidation of Non-BCC High Entropy Alloys: Mckenna Hitter¹; S.K. Varma¹; ¹University of Texas at El Paso

SPG-55: Modeling of Non-equilibrium Phenomena in Laser Additive Manufacturing Using Molecular Dynamics: Gurmeet Singh¹; Veera Sundararaghavan¹; ¹University of Michigan

SPG-56: Nanoscale Differences in Tooth Enamel with Aging by Atom Probe Tomography: Jack Grimm1; Cameron Renteria1; Arun Devaraj²; Dwayne Arola¹; ¹University of Washington; ²Pacific Northwest National Laboratory

SPG-57: Sintering and Densification Mechanism of HfB2 Based **Ultra High Temperature Ceramics for Hypersonic Space Vehicles:** Shruti Dubey¹; Kantesh Balani¹; ¹Indian Institute of Technology

SPG-58: Thermal Stability of Novel Multicomponent Al-based High-performance Alloys and Its Direct Implication on Their Mechanical Properties: Gourav Mundhra¹; Hao-En Peng²; Jien-Wei Yeh2; B. S. Murty3; 1IIT Madras and NTHU Taiwan; 2NTHU Taiwan; 3IIT Madras and IIT Hyderabad

SPG-59: Understanding Nanostructures in the Binary Ti-Fe Alloy Using Advanced Electron Microscopy: Deepak V Pillai¹; Dian Li¹; Cameron Tucker¹; Ahsan Habib¹; Yufeng Zheng¹; ¹University of Nevada, Reno

SPG-60: Understanding the Microstructural Evolution in the Modeled Ti-18Mo-5Al Alloy Using Scanning Electron Microscopy: Ahsan Habib Munna¹; Dian Li¹; Yufeng Zheng¹; ¹University of Nevada Reno

SPECIAL TOPICS

2023 Technical Division Student Poster Contest SMD 2023 Technical Division Undergraduate **Student Poster Contest**

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

SPU-13: An In-situ Radiography Study on Meltpool Dynamics and Fluid Flow as a Function of Laser Power in Ti-6Al-4V Raster Melts: Garrett Fields¹; Rakesh Kamath¹; Gerry Knapp²; John Coleman²; Stuart Slattery²; Sam Reeve²; Hahn Choo²; ¹The University of Tennessee-Knoxville; 2Oak Ridge National Laboratory

SPU-14: Understanding the Microstructure-Property Relationship in the Additive Manufactured Titanium Alloy for Aerospace Applications: Sydney Fields¹; Dian Li¹; Yufeng Zheng¹; ¹University of Nevada, Reno

SPU-15: Using Microstructural Modifications to Influence Intense Strain Localization in Inconel 718Plus: Olivia Egbers¹; Jenna Benko¹; Nathan Heniken¹; Michael Mills¹; Semanti Mukhopadhyay¹; ¹Ohio State University

ADDITIVE TECHNOLOGIES

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Magnetic Materials Committee, TMS: Additive Manufacturing Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Emily Rinko, Iowa State University; Emma White, DECHEMA Forschungsinstitut; Kyle Johnson, Sandia National Laboratories; Andrew Kustas, Sandia National Laboratories; Iver Anderson, Iowa State University Ames Laboratory

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Session Chair: Daniel Salazar, BCMaterials

A-1: 3D Ink-Extrusion Printing of NbFeSb Thermoelectric Legs with Complex Shape: Alexander Proschel¹; Duncan Zavanelli¹; Jeffery Snyder¹; David Dunand¹; ¹Northwestern University

A-2: Additive Manufacturing of Iron and Iron-Alloy Lattices for Magnetic Nanoparticle Capture: Sammy Shaker¹; Juyeon Won²; Daniel Shoemaker²; Steven Hetts³; Vitaliy Rayz⁴; Julia Greer¹; ¹California Institute of Technology; ²University of Illinois Urbana-Champaign; ³University of California-San Francisco; ⁴Purdue University

A-3: Comparison of Laser Wire and Powder Blown Directed Energy Deposition for C103: Daniel Palacios¹; Aaron Stebner¹; ¹Georgia Institute of Technology

A-4: FeSiBCCr Amorphous Fine Powders with High Saturation Magnetization Based on Particle Size Classification and Its Magnetic Powder Cores with Low Core Loss: Yan-nan Dong¹; Zheng-qu Zhu¹; Jia-qi Liu¹; Huan Zhao²; Jing Pang²; Pu Wang¹; Jia-quan Zhang¹; ¹University of Science & Technology Bejing; ²Qingdao Yunlu Advanced Materials Technology Co., Ltd.

Laser Powder Bed Fusion of the LaCe(Fe,Mn,Si)13 Magnetocaloric Material: Kun Sun¹; Abdelmoez Hussein¹; Moataz Attallah¹; ¹University of Birmingham

A-5: New Aluminium-based Composite Powders Dedicated for Additive Manufacturing: Krzysztof Pecak¹; Marcin Lis¹; Adriana Wrona¹; Adrian Kukofka²; Jacek Mazur¹; Anna Janoszka¹; Magorzata Osadnik¹; ¹Lukasiewicz Research Network - Institute of Non-Ferrous Metals; ²Progresja New Materials Sp. z o.o.

A-81: Rapid 3D Printing of Nd:YAG Ceramic for Lasing Media: Luyang Liu¹; Xiangfan Chen¹; ¹Arizona State University

A-83: Role of Additive Manufacturing (AM) in Developing Iron-Silicon Electric Steels for Soft Magnetic Applications: SaiSree Varahabhatla¹; Kiran Nartu¹; Sameehan Joshi¹; Srinivas Mantri¹; Narendra Dahotre¹; Raj Banerjee¹; ¹University of North Texas

A-6: Study on the Optimization of Fe Content of FeSiBC Amorphous Powders: Zheng-qu Zhu¹; Yan-nan Dong¹; Jia-qi Liu¹; Jing Pang²; Pu Wang¹; Jia-quan Zhang¹; ¹University of Science & Technology Bejing; ²Qinqdao Yunlu Advanced Materials Technology Co., Ltd.

ADDITIVE TECHNOLOGIES

Additive Manufacturing Fatigue and Fracture: Effects of Surface Roughness, Residual Stress, and Environment — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; John Lewandowski, Case Western Reserve University; Nima Shamsaei, Auburn University; Steve Daniewicz, University of Alabama; Mohsen Seifi, ASTM International/Case Western Reserve University

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Session Chair: Nik Hrabe, National Institute of Standards and Technology

Evolution of Fatigue Behavior of Low Carbon Multiphase Steel Developed through Quench and Partitioning Method: *Sk Md Arif*¹; ¹National Institute of Technology Durgapur

A-7: Investigating the Effect of Heat Treatment on the Process-Structure-Property Relationship of AlSi10Mg Produced through Selective Laser Melting: Youssef Salib¹; Hatem Zurob¹; David Wilkinson¹; ¹McMaster University

Microstructural Evolution and Mechanical Behaviour of L-PBF Processed 17-4 PH Stainless Steel: *Bijit Kalita*¹; Jayaganthan R.¹; ¹Indian Institute of Technology Madras

A-8: Parameterizing Surface Defects and Internal Porosity to Predict Fracture Location in As-built AM Tensile Specimens Using a Modified Void Descriptor Function: Elliott Marsden¹; Dillon Watring²; John Erickson³; Laura Ziegler¹; Andrew Chuang⁴; Ashley Spear¹; ¹University of Utah; ²United States Naval Research Laboratory; ³Sandia National Laboratories; ⁴Argonne National Laboratory

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Large-scale Metallic Components — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Sougata Roy, University of North Dakota; Sneha Prabha Narra, Carnegie Mellon University; Andrzej Nycz, Oak Ridge National Laboratory; Yousub Lee, Oak Ridge National Laboratory; Chantal Sudbrack, National Energy Technology Laboratory; Albert To, University of Pittsburgh; Yashwanth Bandari, AddiTec Technologies LLC

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Controlling Heterogeneity of Inconel 625 and 316L Interface by Functionally Gradient Method Using L-PBF Process: Seong Gyu Chung¹; Jung Wook Cho¹; ¹Postech, Graduate Institute of Technology

A-9: Inclusion Modification in AISI 316L by Addition of AIN via Laser Powder Bed Fusion: Seung Hoon Lee¹; Jung-Wook Cho¹; ¹Graduate Institute of Ferrous and Energy Materials Technology

A-10: Influence of Exposure Strategy on Part Quality in Multi-Laser-Powder-Bed-Fusion (M-LPBF): Tino Pfalz¹; Astrid Rota¹; ¹EOS GmbH

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Metals: Applications of **Solidification Fundamentals — Poster Session**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Solidification Committee

Program Organizers: Wenda Tan, The University of Michigan; Alex Plotkowski, Oak Ridge National Laboratory; Lang Yuan, University of South Carolina; Lianyi Chen, University of Wisconsin-Madison

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Session Chair: Wenda Tan, University of Michigan

- A-11: A New Cellular Automaton Model for Simulating the Formation of Aluminum Microstructure in Laser Powder Bed Fusion Process: Michael Moodispaw¹; Buwei Chen¹; Qiqui Wang²; Andy Wang²; Alan Luo¹; ¹The Ohio State University; ²General Motors
- A-12: A Study on the Effect of VED, Particle Size Distribution, Moisture content, and Powder Reuse on the Densification and Mechanical Properties of L-PBFed Nickel Alloy 718 Using Design of Experiment and ANOVA: Peter Morcos¹; David Shoukr¹; Tayler Sundermann¹; Thomas Dobrowolski²; Nicholas Barta²; Jayesh Jain²; Raymundo Arroyave¹; Ibrahim Karaman¹; Alaa Elwany¹; ¹Texas A&M University; ²Baker Hughes
- A-13: Achieving Single Crystals of Pure Ni via Laser Powder Bed Fusionwith a Flat-top Laser Profile: Dennis Jodi¹; Tomonori Kitashima¹; Yuichiro Koizumi²; Takayoshi Nakano²; Makoto Watanabe¹; ¹National Institute for Materials Science; 2Osaka University
- Additive Manufacturing Process Map of Ti6Al4V Using In Situ and Operando Synchrotron Radiography: Elena Ruckh1; Samy Hocine1; Sebastian Marussi¹; Andy Farndell²; Ruben Lambert-Garcia¹; $Maureen\ Fitzpatrick^3; Anna\ Getley^1; Caterina\ lantaffi^1;\ Saurabh\ Shah^1;$ Marta Majkut³; Alexander Rack³; Nick Jones²; Peter Lee¹; Chu Lun Alex Leung¹; ¹University College London; ²Renishaw plc; ³European Synchrotron Radiation Facility
- A-14: Directed Energy Deposition of Al-0.5Sc-0.5Si Alloy: Effect of Thermal Cycles in Microstructure and Mechanical Properties: Amit Singh¹; Yasham Mundada²; Priyanshu Bajaj³; Sushil Mishra¹; Amit Arora²; ¹Indian Institute of Technology Bombay; ²Indian Institute of Technology Gandhinagar; ³Max-Planck-Institut für Eisenforschung **GmbH**
- Effects of Nanoscale Compositional Inhomogeneity on the Mechanical Properties of a Cu-9Al Alloy Produced by Wire Arc Additive Manufacturing: Hao Wang1; Bosheng Dong2; Huijun Li2; Simon Ringer¹; Xiaozhou Liao¹; ¹University of Sydney; ²University of Wollongong
- A-15: Effects of Thermal Cycling on Microstructural Evolution in Ni-Mo-Al Single Crystals: Ruben Ochoa¹; Adriana Eres-Castellanos¹; Gus Becker¹; Kamel Fezzaa²; Jonah Klemm-Toole¹; Kester Clarke¹; Tresa Pollock³; Amy Clarke¹; ¹Colorado School of Mines; ²Argonne National Laboratory; 3University of California Santa Barbara
- A-16: Feasibility Study of Solidification Microstructure Control in Laser Powder Bed Fusion Based on Thermal Analysis and Microstructure Simulation: Masahiro Kusano¹; Makoto Watanabe¹; ¹National Institute for Materials Science
- A-17: Hot Cracking during Powder Direct Energy Deposition: Experimental and Numerical Study: Pilar Rodriguez1; Monica Gonzalez¹; Mustafa Megahed²; ¹AIMEN; ²ESI Group

- A-18: Impact of Laser Power and Scanning Velocity on Microstructure and Mechanical Properties of Inconel 738LC Alloys Fabricated by the Constant Volumetric Energy Input of Laser Powder Bed Fusion (LPBF): Yixuan Chen¹; Weihao Wang¹; Yao Ou¹; Yingna Wu¹; Zirong Zhai¹; Rui Yang²; ¹ShanghaiTech University; ²The Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS)
- A-19: In-situ Homogenization of Inconel 718 during Induction Heating Assisted-laser Direct Energy Deposition: Junmyoung Jang¹; Juyeong Lee¹; Taehwan Ko¹; Jaeheon Lee¹; Geonmin Kim¹; Seung Hwan Lee¹; ¹Hanyang University
- A-20: IN939 Fabricated by the Laser Powder Bed Fusion: The Effect of Process Parameters on the Density, Surface Roughness and Microstructural Properties: Merve Dogu¹; Muhannad Ahmed Obeidi¹; Hengfeng Gu²; Dermot Brabazon¹; ¹Dublin City University; ²ANSYS
- A-21: Laser Powder Bed Fusion of 17-4 PH Stainless Steel: Multiscale Microstructure and Property Relationships: Maxwell Moyle¹; Nima Haghdadi¹; Xioazhou Liao²; Simon Ringer²; Sophie Primig1; 1The University of New South Wales; 2The University of Sydney
- A-22: LPBF Fabrication of Thin Cross Sections; Challenges and Printability: Shahrooz Nafisi; John Daniel Arputharaj1; Reza Ghomashchi¹; ¹University of Adelaide
- A-23: Machine Learning Based Parameters Optimization for Selective Laser Melting: Jiahui Zhang¹; Yu Zou¹; ¹University of
- A-24: Microsegregation Model Dedicated to Rapid Solidification - Application to Multicomponent Alloys of Industrial Interest.: Paul Martin¹; François Pichot²; Nicolas Leriche²; Gildas Guillemot¹; Charles-André Gandin¹; ¹CEMEF; ²Safran Additive Manufacturing Campus
- A-25: Microstructures of 316L Steel Processed by Laser Powder Bed Fusion: Carlos Capdevila-Montes¹; Adriana Eres-Castellanos²; Ana Santana¹; Rosalia Rementeria³; Francisca Caballero¹; ¹CENIM CSIC; 2Colorado School of Mines; 3ArcelorMittal Global R&D SLab
- A-26: Modification of H950 Condition for 17-4 PH Stainless Steel Processed by DED: Ipfi Mathoho¹; ¹CSIR Pretoria
- A-27: Phase Field Simulation of Microstructure Evolution during Epitaxial Solidification in Additive Manufacturing Processes: Abdur Al Azad¹; Philip Cardiff¹; David Browne¹; ¹University College Dublin
- A-28: Printability of Nickel Alloy 718 Using a Systematic Process Optimization Framework with Different Layer Thicknesses: David Shoukr¹; Peter Morcos¹; Tayler Sundermann¹; Thomas Dobrowolski²; Chad Yates²; Jayesh Jain²; Raymundo Arroyave¹; Ibrahim Karaman¹; Alaa Elwany¹; ¹Texas A&M University; ²Baker Hughes
- Probing Surface Structures in Metal Powders Produced by Abrasion and Rapid Solidification: Harish Dhami¹; Puli Saikiran¹; Koushik Viswanathan¹; ¹Indian Institute of Science
- A-29: Process Modification and Alloy Design of Ni-base Superalloys: Mohammad Tashfiul A Chowdhury¹; John M. O'Connell¹; Nathaniel Badgett¹; Anthony E. Lavelle¹; Bhaskar S. Majumdar¹; ¹New Mexico Institute of Mining and Technology
- A-30: Quantification of the Microstructure of Additively Manufactured Parts Utilizing Local Orientation Image Analysis: Sahar Beigzadeh¹; Jeffrey Shield¹; ¹University of Nebraska-Lincoln
- A-31: Rapid Solidification in Ternary Alloys: A Phase-Field Study: Yitao Wang¹; Fadi Abdeljawad¹; ¹Clemson University
- A-32: Strength Enhancement of Al Alloy via Microstructure Design Strategy Using Laser Powder Bed Fusion: Ankita Roy1; Saket Thapliyal¹; Ravi Haridas¹; Priyanka Agrawal¹; Abhijeet Dhal¹; Rajiv Mishra¹; Eric Faierson¹; ¹University of North Texas

A-33: Thermal and Mechanical Behavior of Powder Blown Directed Energy Deposited Nickel-Titanium Shape Memory Alloys: Dyuti Sarker¹; Aaron Stebner¹; Samad Firdosy²; Ali Komilian¹; Zachary Haataja¹; ¹Georgia Institute of Technology; ²Jet Propulsion Laboratory

A-34: Thermal Cycles Induced Phase Evolution in IN718 during Additive Manufacturing: a Gleeble Study: Nana Adomako¹; Nima Haghdadi¹; Xiaozhou Liao²; Simon Ringer²; Sophie Primig¹; ¹UNSW Sydney; ²The University of Sydney

A-35: Ultrafine Austenite in Laser Powder Bed Fusion Processed Duplex Stainless Steels Through Microstructural Engineering: *Xinyi He¹*: Xiaozhou Liao²: Simon Ringer²: Sophie Primig¹: Nima Haghdadi¹: ¹UNSW Sydney, NSW 2052; ²Australian Centre for Microscopy & Microanalysis, The University of Sydney, Sydney, NSW 2006

A-82: Understanding the Effect of Solute Elements on the Evolution of Equiaxed and Columnar Grains in AM Processed Beta Titanium Alloys: Mohan Sai Kiran Nartu¹; Srinivas Mantri¹; Brian Welk²; Narendra Dahotre¹; Hamish Fraser²; Rajarshi Banerjee¹; ¹University of North Texas; ²The Ohio State University

A-36: Understanding the Impact of Residual Stresses on Microstructure Evolution in Additive Manufacturing: Michael Haines¹; Nima Haghdadi¹; Sophie Primig¹; ¹University of New South Wales

A-37: Using Analytical Solidification Models to Solve Solidification Cracking in Laser Powder Bed Fusion Processed Ni-based Alloys: Dan McConville¹; Ruben Ochoa¹; Benjamin Rafferty²; Kevin Eckes²; Jeremy Iten²; Amy Clarke¹; Jonah Klemm-Toole¹; ¹Colorado School of Mines; ²Elementum 3D

A-80: Using Laser Powder Bed Fusion to Exploit Transformation Induced Plasticity in Beta-Titanium: Chris Jasien¹; Alec Saville¹; Jonah Klemm-Toole¹; Kamel Fezzaa²; Kester Clarke¹; Amy Clarke¹; ¹Colorado School of Mines; ²Advanced Photon Source, Argonne National Laboratory

ADDITIVE TECHNOLOGIES

Additive Manufacturing of Refractory Metallic Materials — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Antonio Ramirez, Ohio State University; Jeffrey Sowards, NASA Marshall Space Flight Center; Omar Mireles, NASA; Eric Lass, University of Tennessee-Knoxville; Faramarz Zarandi, Raytheon Technologies; Matthew Osborne, Global Advanced Metals; Joao Oliveira, FCT-UNL

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Session Chairs: Joao Pedro Oliveira, Universidade NOVA de Lisboa; Eric A. Lass , University of Tennessee-Knoxville

A-38: Development and Assessment of a Novel TiVNbMo-based Refractory High Entropy Alloy Manufactured by Laser Powder Bed Fusion for High Temperature Applications: Lucy Farquhar¹; Lova Chechik¹; Alexander Goodall¹; Abdallah Reza²; Felix Hofmann²; Iain Todd¹; Russell Goodall¹; ¹University of Sheffield; ²University of Oxford

A-39: Development of Molybdenum Parts for High Temperature Applications with Laser Directed Energy Deposition Additive Manufacturing: Andrew Hutchinson¹, ¹Georgia Institute of Technology

Directed Energy Deposition of Niobium and Related Alloys: Sucharita Banerjee¹; Advika Chesetti²; Mohan Sai Kiran Nartu²; Venkata Mani Krishna Karri²; Sameehan Joshi²; Eric Taleff¹; Narendra Dahotre²; Rajarshi Banerjee²; ¹University of Texas at Austin; ²University of North Texas

Interfacial Microstructures between Mo and Stainless Steel Fabricated by Directed Energy Deposition for High Temperature Service Applications: *Sumin Lee*¹; Seunghyun Lee¹; Jaeyoon Bae¹; Sanghoon Noh¹; ¹Pukyong National University

A-40: Investigation into Wire Arc Additive Manufacturing Titanium-Zirconium-Molybdenum (TZM) Alloy: Saiful Islam¹; DuckBong Kim¹; ¹Tennessee Tech University

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Beyond on the Beam IV — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: James Paramore, US Army Research Laboratory; Daniel Lewis, Texas A&M University; Kyle Tsaknopoulos, Worcester Polytechnic Institute; Paul Prichard, Kennametal Inc.

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

A-41: Redeposition and Grain Refinement of AA6061 Produced Using Additive Friction Stir Deposition: Michael Amling¹; Mark Weaver¹; Brian Jordon²; Paul Allison²; ¹University of Alabama; ²Baylor University

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Meysam Haghshenas, University of Toledo; Andrew Birnbaum, US Naval Research Laboratory; Robert Lancaster, Swansea University; Xinghang Zhang, Purdue University; Aeriel Leonard

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Session Chair: Meysam Haghshenas, University of Toledo

A-43: Additively Manufactured Structured Fabrics for Deployable Antenna Structures: Punnathat Bordeenithikasem¹; Tracy Lu²; Connor McMahan²; Chiara Daraio²; ¹NASA Jet Propulsion Laboratory; ²California Institute of Technology

A-42: A Comparative Study of Microstructure and Multiscale Mechanical Properties of Additively Manufactured Near-, * and Titanium Alloys: Zhiying Liu¹; Yu Zou¹; Jiahui Zhang¹; ¹University of Toronto

A-44: Correlation between Strengthening Mechanism and Dislocation Characteristics of Selective Laser Melted H13 Hot Work Tool Steel: Sung-Ho Kim¹; Yeonggeun Cho¹; Sung-Joon Kim¹; ¹Graduate Institute of Ferrous & Energy Materials Technology(GIFT), POSTECH

Development of a MATLAB Script to Analyze c_b, a New Constitutive Mechanical Property Parameter: Ryan Holdsworth¹; Benjamin MacDonald²; Enrique Lavernia²; Diran Apelian²; Alan Jankowski¹; Joshua Yee¹; ¹Sandia National Laboratories; ²University of California, Irvine

Effect of Short Cycle Heat Treatment on the Microstructure and Mechanical Properties of Additively Manufactured Mar-M 509: Siba Sundar Sahoo¹; Balila Nagamani Jaya¹; Dheepa Srinivasan²; ¹Indian Institute of Technology Bombay; ²Pratt & Whitney Research and Development Center

A-45: Green Geopolymer Materials for 3D printing of Built **Environment- Numerical Modelling and Experimental Validation:** Shoukat Alim Khan¹; Huseyin Ilcan²; Oguzhan Sahin³; Mustafa Sahmaran²; Muammer Koc¹; ¹Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar; ²Department of Civil Engineering, Hacettepe University, Beytepe, Ankara, Turkey; ³Ankara University, Engineering Faculty, Civil Engineering Department

A-46: Investigation and Optimization of Compressive Mechanical **Properties of Additive Manufactured TPMS-type Interpenetrating** Phase Composites: Wei-Hsuan Liao1; Cheng-Che Tung1; Po-Yu Chen¹; ¹National Tsing Hua University

A-47: Liquation Cracking Study of Additively Manufactured Alloy 718 Using Thermal-mechanical Simulator: Sangguk Jeong¹; Gangaraju Manogna Karthik¹; Soung Yeoul Ahn¹; Eun Seong Kim¹; Hyoung Seop Kim¹; ¹POSTECH

A-48: Mechanical Behavior of Additively Manufactured GRCop-84 Copper Alloy Lattice Structures: Daniel June¹; Behzad Babamiri²; Kavan Hazeli¹; ¹The University of Arizona; ²The University of Alabama in Huntsville

A-49: Microstructural and Mechanical Property Response to Build Parameters and Material Property Suite Development of Laser Powder Bed Fusion NASA HR-1: Madelyne Rushing¹; Ryan Anderson¹; Stephen Cooke¹; Joseph Sims¹; Melissa Forton¹; ¹Quadrus Corporation - Advanced Manufacturing

Microstructure **Deformation** and Microstructurally Manipulated Multi-phase Laser Powder Bed Fusion 3D-printed Novel Low Nickel Steels: Jan Capek1; Ashiah Ganvir²; Tuomas Kantonen²; Sneha Goel²; Antti Salminen²; Efthymios Polatidis¹; ¹Paul Scherrer Institute; ²University of Turku

A-51: Nano-scale Heterogeneity-driven Metastability Engineering in Ferrous Medium-entropy Alloy Induced by Additive Manufacturing: Jeong Min Park¹; Peyman Asghari-Rad²; Alireza Zargaran²; Jae Wung Bae³; Jongun Moon²; Hyeonseok Kwon²; Jungho Choe¹; Sangsun Yang¹; Ji-Hun Yu¹; Hyoung Seop Kim²; ¹Korean Institute of Materials Science; ²Pohang University of Science and Technology; ³Pukyong National University

A-52: Operando Synchrotron Powder XRD Reveal 316L Stainless Steel Microstructure Evolution during Additive Manufacturing: Kouider Abdesselam¹; Steve Gaudez¹; Hakim Gharbi¹; Steven Van Petegem²; Manas Upadhyay¹; ¹Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique, Institut Polytechnique de Paris: ²Paul Scherrer Institute

Tailored Microstructure and Creep Behavior of Laser Powder Bed Fusion Inconel 939: Nandha Kumar Eswaramoorthy¹; Sarath Chandra Reddy Karumudi²; Dheepa Srinivasan¹; Vishwanath Chintapentha²; Vikram Jayaram³; Praveen Kumar³; ¹Pratt & Whitney R & D Center, Indian Institute of Science, Bangalore; 2Indian Institute of Technology Hyderabad; ³Indian Institute of Science Bangalore

A-53: The Investigation of Copper Alloy Fabricated by Selective Laser Melting: Kangwei Chen¹; Simon Ringer¹; Keita Nomoto¹; ¹The University of Sydney

ADDITIVE TECHNOLOGIES

Additive Manufacturing: Materials Design and Alloy **Development V - Design Fundamentals — Poster** Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Behrang Poorganji, University of Toledo; Hunter Martin, HRL Laboratories LLC; James Saal, Citrine Informatics; Jiadong Gong, Questek Innovations LLC; Orlando Rios, University of Tennessee; Atieh Moridi, Cornell University

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Development of Low-Mn added Fe Based Lightweight Steel via **Direct Energy Deposition**: Kwang Kyu Ko¹; HyoJu Bae¹; EunHye Park¹; Hyokyung Sung¹; Junggi Kim¹; JaeBok Seol¹; ¹Gyeongsang National University

A-54: Enhanced Mechanical Properties of Functional Grade Materials Fabricated from 316L Stainless Steel and Fe-based Medium Entropy Alloy Using Direct Energy Deposition Process: Eun Seong Kim¹; Gangaraju Manogna Karthik²; Soung Yeoul Ahn¹; Sang Guk Jeong¹; Yoon-Uk Heo¹; Hyoung Seop Kim¹; ¹POSTECH; ²BITS Pilani

A-55: Optimization of Directed Energy Deposition Processed Inconel 625 Alloy via Response Surface Methodology: Minseok Gwak¹; Gideok Park²; Jae Bok Seol¹; Hyokyung Sung¹; Jung Gi Kim¹; ¹Gyeongsang National University; ²Doosan Heavy Industries & Construction

Peculiarities of Structure Formation in Aluminum Alloys Alloyed with Transition Metals during Laser Powder Bed Fusion: Ivan Grushin¹; Dmitriy Ryabov¹; Igor Yadroytsev¹; ¹Light Materials and Technologies Institute UC RUSAL

A-56: Synchrotron X-ray Imaging of the Effect of TiB2 Additions on Laser Powder Bed Fusion (LPBF) of Al-2139: David Rees1; Chu Lun Alex Leung¹; Joe Elambasseril²; Sebastian Marussi¹; Saurabh Shah¹; Shashidhara Marathe³; Milan Brandt²; Mark Easton²; Peter Lee¹; ¹University College London; ²RMIT University; ³Diamond Light Source Ltd

ENERGY & ENVIRONMENT

Advanced Materials for Energy Conversion and Storage 2023 — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Energy Conversion and Storage Committee

Program Organizers: Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Surojit Gupta, University of North Dakota; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Session Chairs: Partha Mukherjee, Purdue University; Eric Detsi, University of Pennsylvania

Aluminum-Anodes for Metal-Air-Batteries: Janne Max Heydrich-Bodensieck¹; Sören Müller²; ¹Extrusion Research and Development Center; ²Extrusion Research and Development Center, Technical University of Berlin

Atomic Level Understanding of the Na Hosting Environments in Hard Carbon Anodes for Sodium Ion Batteries: Wesley Surter1; Edward Koh²; Xiulei Ji³; Michelle Dolgos⁴; Peter Greaney⁵; ¹University of Liverpool; ²Harvard University; ³Oregon State University; ⁴University of Calgary; ⁵University of California, Riverside

D-1: Computational Study for Structural Evolution and Ion Migration in Li-Mn-rich Layered Electrode: Zhuoying Zhu1; Xin He2; Robert Kostecki1; Anubhav Jain1; 1Lawrence Berkeley National Laboratory; 2Sichuan University

Development of High Energy-density and High-power Density Lithium-ion Capacitors Based on MnO2/GO Nanocomposite **Electrode for Energy Storage System**: *Mariam Binari*¹, Daniel Choi¹; Faisal Almarzooqi²; Abhishek Lokhande¹; ¹Khalifa University; ²Khalifa University

D-2: Electrochemical Hydrogenation of Furfural to 2-Methylfuran under Mild pH Environment over Silver/Nanoporous Copper Catalyst: Yu-Shuo Lee1; Wen-Yueh Yu1; I-Chung Cheng1; 1National Taiwan University

D-3: Enhanced Reversibility in Calcium Chloride Hexahydrate with Nucleation Agents for Thermal Energy Storage Applications: Denali Ibbotson¹; Sophia Ahmed¹; Patrick Shamberger¹; ¹Materials Science and Engineering, Texas A&M University

Fabrication and Electrochemical Characterization of Si-C Hybrid Nanocomposites for High-performance Li Ion Batteries: Aamna Hameed¹; Daniel Choi¹; ¹Khalifa University of Science and Technology

Fabrication of the Seamless Stainless Tube for Hydrogen Refueling Stations: Yoon Oh1; Sungmo Hong2; 1Research Institute of Science and Technology; 2Sechang Steel

D-4: In-situ and Ex-situ Surface Engineering, Processing, and Characterization of PLA-based Biocompatible Composites Using Micro-plasma-based Techniques: Manan Sehgal¹; Prakhyat Gautam¹; Edgar Lopez²; Saquib Ahmed³; Sankha Banerjee¹; ¹California State University, Fresno; ²University of California, Merced ; 3State University of New York at Buffalo State

D-5: Investigation Mechanical Process of New Alloy Electrode Using All Solid State Battery: Sangwoo Kim¹; DongEung Kim¹; ¹Korea Institute of Industrial Tech

D-6: Lithium-Ion Battery Silicon Anodes: Reducing Mechanical Degradation through Morphological Design: Sierra Gross¹; Meng-Ting Hsieh¹; Ali Mohraz¹; Daniel Mumm¹; Lorenzo Valdevit¹; ¹University of California, Irvine

D-7: Mechanical Testing of Novel Chromium Superalloys Strengthened by Intermetallic Precipitates: Tom Blackburn¹; Kan Ma¹; Rebeca Hernandez²; Marta Serrano²; Alexander Knowles¹; ¹University of Birmingham; ²CIEMAT

Modelling and Optimization of Nanofiber-based Triboelectric Nanogenerators: Chenxi Yuan¹; Neda Mohaghegh²; Ensieh Hosseini¹; ¹Department of Engineering, Durham University; ²Terasaki Institute for Biomedical Innovation

D-8: Non-destructive Evaluation of Defects in Composite Pressure Vessels for Hydrogen Storage: Sushrut Karmarkar¹; Vikas Tomar¹; ¹Purdue University - School of Aeronautics and Astronautics

D-9: Novel Thermal Barrier Coatings Stable up to 1700°C: Melina Endsley¹; Thomas Drtina¹; Erin Lewis¹; Collin Holgate¹; Akane Suzuki²; Joshua Margolies³; Carlos Levi¹; Tresa Pollock¹; ¹University of California Santa Barbara; ²GE Research; ³GE Gas Power

D-10: Rapid Thermal Buffering via Sorption based Energy Storage Materials: Sourav Chakravarty¹; Wenting Mo¹; Patrick Shamberger¹; ¹Texas A&M University

D-11: Reversible Aqueous Formate-based Na-CO, Battery Enabled through Earth-abundant Nanoporous Metals: Jintao Fu¹; Eric Detsi¹; ¹University of Pennsylvania

D-12: Spectroscopic Investigation of Long Cycling Al-ion Batteries Enabled by Ionic Liquid Electrolytes with Organic Additives: Zhen Wei¹; Maya Smith¹; Yiwen Wang¹; Mieko Smith¹; Ruigang Wang¹; ¹University of Alabama

D-13: Surface Engineered TiO2 Nanostructures as Effective Cathode Host Materials in Li-S Batteries: John Barlow¹; Ruigang Wang1; 1University of Alabama

D-14: Surface Oxidation of MNiSn (M=Ti, Zr, Hf) Half-Heusler Alloys: Oshrat Appel¹; Shai Cohen¹; Ofer Beeri¹; Yaniv Gelbstein²; Shimon Zalkind¹; ¹NRCN; ²BGU

ENERGY & ENVIRONMENT

Advances in Magnetic Materials — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Jose Maria Porro, Bcmaterials; Huseyin Ucar, California Polytechnic University, Pomona; Patrick Shamberger, Texas A&M University; Min Zou, Lab Magnetics, A Quadrant Company; Gaoyuan Ouyang, Ames Laboratory; Alex Leary, NASA Glenn Research Center

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Session Chair: Patrick Shamberger, Texas A&M University

D-15: Effects of Machining and Electroplating on Magnetic Properties of Small Sintered NdFeB Magnets: Min Zou1; Jinghui Di²; Abby Shen³; Michelle Qian⁴; Hui Meng⁵; Qifeng Wei⁵; Christina ¹Lab Magnetics, A Quadrant Company; ²Hangzhou Magmax Technology Co., Ltd.; 3Quadrant Solutions Inc.; 4Quadrant International Inc.; 5 Hangzhou Foresee Group Holding Co., Ltd.

D-16: Investigating Irradiated Superconducting Magnet Insulation Materials for Particle Accelerators and Other High-dose Environments: Christopher Reis¹, ¹University of California, Berkeley

D-17: Microstructural Processing and Phase Stabilization Analysis of Off-stoichiometric

Fe-Mn-Ga Shape Memory Alloy: Nana Adoo1; Nickolaus Bruno1; ¹South Dakota School of Mines and Technology

D-18: Order-disorder Transition and Antiferromagnetism in Cu-Mn-Al BCC Alloys: Tatsuya Ito1; Xiao Xu1; Toshihiro Omori1; Kaoru Namba2; Takashi Saito²; Ryosuke Kainuma¹; ¹Tohoku University; ²J-PARC

D-19: Polyurethane Based Composites for Magnetic Actuator Applications: Antonio Veloso-Fernández1; Asier Aguilera-Grande1; Borja González¹; José Manuel Laza¹; Daniel Salazar Jaramillo²; Ana Catarina Lopes¹; José Luis Vilas-Vilela¹; ¹University of Basque Country; ²BCMaterials- Basque Center for Materials, Applications and Nanostructures

D-20: The Effect of Stress-annealing on the Mechanical and Magnetic Properties in Fe-based Metal-amorphous Nanocomposites: Nickolaus Bruno¹; Andrew Scherrer¹; Elijah Meakins¹; Ronald Noebe²; Alex Leary²; Vladimir Keylin²; Grant Feichter²; Maria Willard²; ¹South Dakota School of Mines and Technology; ²NASA Glenn Research Center

ELECTRONIC MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XI — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Chiao Tung University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, Cnrs Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute For Materials Science; Wan-Ting Chiu, Tokyo Institute of Technology; Chenguang Fu, Zhejiang University

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

- C-1: Compositional Modification Improves the Thermoelectric Performance of AgSbTe₂: Chen Bo-Chia¹, Hsin-Jay Wu¹, ¹National Yang-Ming Chiao Tung University
- C-2: Eliciting Promising p-type Bi₂Te₃ with Sizeable Thermoelectric Performances: Hung-Wei Chen¹; Hsin-Jay Wu¹; ¹National Yang Ming Chiao Tung University
- C-3: Interfacial Reactions in Cu/Se, Cu2Se/Te and Cu2Te/Se Couples: Yohanes Hutabalian¹; Sinn-wen Chen¹; ¹National Tsing Hua University
- C-4: Liquid-like Copper Ionic and Multiscale Crystal Imperfections Eliciting Record-High Thermoelectric zT in n-type Bi₂Te₂: Wan-Ting Yen¹; Hsin-jay Wu¹; Kuang-Kuo Wang²; ¹National Yang Ming Chiao Tung University; ²National Sun Yat-sen University
- C-5: Low Crystallinity Cu-Te-S Compounds Elicit Ultralow Lattice Thermal Conductivity in GeTe Thermoelectric Materials: Yi-Fen Tsai¹; Hsin-Jay Wu¹; ¹National Yang Ming Chiao Tung University
- C-6: Minor Cu Addition in -Zn₄Sb₃ Leads to High Thermoelectric Performance via Phase Diagram Engineering: I-Lun Jen¹; You-Kai Su²; Hsin-Jay Wu¹; ¹National Yang Ming Chiao Tung University; ²National Sun Yat-Sen University

LIGHT METALS

Aluminum Alloys, Characterization and Processing Poster Session

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Julie Levesque, Quebec Metallurgy Center; Stephan Broek, Kensington Technology Inc.

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

- E-1: Aluminum Alloy Design and Mechanical Properties for Nextgeneration Mobility Structural Materials: Minsang Kim1; Hyun Joo Choi²; Young Do Kim³; Se Hoon Kim¹; ¹KATECH; ²Kookmin University; ³Hanyang University
- E-2: Comparison Finite Element Simulations with Tensile Tests of Different Aluminum Alloys: Melih Caylak¹; Gorkem Ozcelik¹; Ilyas Sari¹; ¹ASAS Aluminum
- E-3: Correlation between the Precipitation Phase and Mechanical Properties of Al-Mg-Si(-Cu) Based Aluminum Alloy Sheets According to the Change in Mg Content: GyeongSeok Joo1; YongWook Song²; MinSang Kim³; Hyunjoo Choi²; SeHoon Kim³; JaeHyuk Shin³; SoonMok Choi⁴; ¹Korea Automotive Technology Institute- Korea University of Technology & Education; ²Kookmin University; ³Korea Automotive Technology Institute; ⁴Korea University of Technology & Education
- E-4: Depth Dependent Microstructure and Mechanical Properties of Hot Rolled AA 7075 - T651: Damilola Alewi¹; Paul Rottmann¹; ¹University Of Kentucky
- Effect of Eu and Er on Mechanical Properties of 201 and 206 Alloys: Hayati Sahin1; Derya Dispinar1; 1Foseco
- E-5: Effect of Thermal Treatment (T5) on Microstructure and Tensile Properties of Vacuum High Pressure Die Cast Al-Si-Mg Alloy: Hongfa Hu1; Ali Dhaif1; Kazi Ahmed1; 1University of Windsor
- E-6: Effects of Mn Addition on Electrical Conductivities, Tensile Properties and Microstructure of Wrought Al Alloys: An Overview: Wutian Shen¹; Ali Dhaif¹; Anita Hu¹; Sufeng Liu¹; Hongfa Hu¹; ¹University of Windsor
- E-7: Effects of Zn and Cu Contents and Heat Treatment Conditions on the Precipitation Behavior of 7xxx Series Al Alloy: Suwon Park1; Dae Cheol Yang²; Min Sang Kim³; Heon Kang¹; Seok Su Sohn²; Se Hoon Kim³; Hyunjoo Choi¹; ¹Kookmin University; ²Korea University; ³Korea Automotive Technology Institute
- E-35: Evaluating Fractional Crystallization Methods for Closed-Loop Recycling of End-of-Life Automotive Aluminum Sheet: Alissa Tsai¹; Daniel Cooper¹; ¹University of Michigan
- Experimental Investigation and Thermodynamic Consideration of Oxide Inclusions Formation in Al-Mg Alloys: Young-Ok Yoon¹; Nam-Seok Kim¹; Seung-Yoon Yang¹; Seong-Ho Ha¹; Bong-Hwan Kim1; Hyun-Kyu Lim1; Shae K. Kim1; 1Korea Institute of Industrial Technology
- High Temperature Deformation Analysis of A1-12Ce Alloy: Ashutosh Sonule¹; Srinu Gangolu²; ¹National Institute of Technology, Calicut; ²IIT Kanpur
- E-9: Investigation the Effects of Natural Aging Parameters on Mechanical Properties of 6082 Alloys: Zeynep Tutku Ozen¹; Abdullah Kagan Kinaci¹; Gorkem Ozcelik¹; Ilyas Artunc Sari¹; Anil Umut Ozdemir¹; Alptug Tanses¹; Emre Cankaya¹; Mustafa Serkan Ozcan1; 1Asas Aluminyum As

E-33: Laser Powder-Bed Fusion AA 7075 Aluminium Alloy Synthesis and Characterization: *Irena Paulin*¹; Crtomir Donik¹; Nejc Velikajne¹; Matjaž Godec¹; ¹Institute of Metals and Technology

Local Formability Improvement of Commercial Aluminum Sheets Using Friction Stir Processing: Wahaz Nasim¹; Hrishikesh Das¹; Mert Efe¹; Piyush Upadhyay¹; ¹Pacific Northwest National Laboratory

Mapping the Laser Additive Manufacturing Process of Aluminium Alloys Through In-situ Synchrotron Radiography: Rubén Lambert-Garcia¹; Samy Hocine¹; Sebastian Marussi¹; Andy Farndell²; Elena Ruckh¹; Maureen Fitzpatrick³; Anna Getley¹; Martha Majkut³; Alexander Rack³; Nick Jones²; Peter Lee¹; Chu Lun Alex Leung¹; ¹UCL Mechanical Engineering; ²Renishaw plc; ³European Synchrotron Radiation Facility

E-10: Mechanical Properties of Aluminum Matrix Composites Containing Sub-micron High-entropy Alloy (HEA) Particles: *Jung Chahee*¹; Son Hansol¹; Jung Jaewon²; Choi Hyunjoo¹; ¹Kookmin University; ²Korea Institute of Materials Science

E-11: Meshfree Simulation and Analysis of Contact Conditions and Microstructure Evolution in Shear Assisted Processing and Extrusion (ShAPE) of Aluminum Alloy 7075: Lei Li¹; Tianhao Wang¹; Scott Whalen¹; Suveen Mathaudhu²; Glenn Grant¹; Ayoub Soulami¹; Pacific Northwest National Laboratory; ²Colorado School of Mines

Microhardness Analysis of Directionally Solidified Al-Si Alloys: Edgar Ibañez¹; Paula Alonso²; *Alicia Ares*³; ¹Universidad Nacional de Misiones (UNaM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN). Instituto de Materiales de Misiones (IMAM). Programa de Materiales y Fisicoquímica (ProMyF).; ²Comisión Nacional de Energía Atómica (CNEA). División Aleaciones Especiales. Departamento Transformaciones y Propiedades. Gerencia de Materiales. Gerencia de Área Energía Nuclear. Instituto Sabato.

Microstructural Evolution, Mechanical Properties and Faster Aging Kinetics in Friction Extruded AA6O61 and AA7O75 Alloys: Rajib Kalsar¹; Benjamin Schuessler¹; Julian Atehortua¹; Xiaolong Ma¹; Tianhao Wang¹; Lei Li¹; Jens Darsell¹; Nicole Overman¹; Ayoub Soulami¹; Darrell Herling¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

Resistance Heating Analysis of a 7xxx Aluminum Sheet for Hot Forming System: Jaehyuck Shin¹; Gyeongseok Joo¹; Beomsuck Han¹; Sanggyu Bae¹; Kyeonggeun Jung¹; ¹Korea Automotive Technology Institute

ENERGY & ENVIRONMENT

Composite Materials for Sustainable and Eco-Friendly Material Development and Application — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Brian Wisner, Ohio University; Ioannis Mastorakos, Clarkson University; Muralidharan Paramsothy, NanoWorld Innovations; Simona Hunyadi Murph, Savannah River National Laboratory

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Session Chair: Brian Wisner, Ohio University

D-21: Solvent-free Ball-milling Synthesis of BaO Modified Zeolite for Tetracycline Adsorption: Pelin Demircivi Baran¹; Nergiz Kanmaz¹; Mehmet Buqdayci¹; ¹Yalova University

D-42: Weather Aged Fique Fabric Reinforced Epoxy Composite: Impact Property Analysis: *Michelle Oliveira*¹; Fernanda da Luz¹; Sergio Monteiro¹; Noan Simonassi²; Artur Pereira¹; Andressa Teixeira¹; ¹Military Institute of Engineering; ²UENF

PHYSICAL METALLURGY

Computational Thermodynamics and Kinetics — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Solidification Committee

Program Organizers: Hesam Askari, University of Rochester; Damien Tourret, IMDEA Materials Institute; Eva Zarkadoula, Oak Ridge National Laboratory; Enrique Martinez Saez, Clemson University; Frederic Soisson, Cea Saclay; Fadi Abdeljawad, Clemson University; Ziyong Hou, Chongqing University

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

A Machine Learned Spin-Lattice Potential for Bulk Iron: Benjamin Seddon¹; James Elliott¹; Christoph Ortner²; ¹University of Cambridge; ²University of British Columbia

H-1: Accurate Evaluation of the Mechanical Properties of Ideal Single Crystals: A Comparative *Ab Initio* Study: *Jaylan ElHalawani**; Mostafa Youssef¹; ¹American University in Cairo

H-2: Application of Multi-Cell Monte Carlo Method to BCC Refractory Alloys: *Junxin Wang*¹; Maryam Ghazisaeidi¹; ¹Ohio State University

H-27: Atomistic Simulations of Liquid/Metal Interfaces with Applications to Active Brazing: *Ian Winter*¹; Michael Chandross¹; ¹Sandia National Laboratories

CFD Informed Strategy for the 3D Printing of Crack-free Highstrength Al-alloys: Giuseppe Del Guercio¹; David McCartney¹; Sebastien Faron¹; Adam Clare¹; Marco Simonelli¹; ¹University of Nottingham

Deducing Surface-scale Chemical Conditions from Equilibrium Nanoparticle Shapes: Mujan Seif¹; T. John Balk¹; Matthew Beck¹; ¹University of Kentucky

H-3: Driving Force Induced Transition in Thermal Behavior of Grain Boundary Migration in Ni: Xinyuan Song¹; Chuang Deng¹; ¹University of Manitoba

H-4: Thermodynamic and Elastic Properties of Body-centeredcubic Refractory, High-entropy Alloys: NbTaTiV, TaNbHfZrTi, VNbMoTaW: Danielsen Moreno¹; Chelsey Hargather¹; ¹New Mexico Institute of Mining and Technology

H-5: Time-cone Based Models of Nucleation and Growth in Polycrystalline Systems: Siu Sin Jerry $Quek^1$; Jing Xiang Ng^2 ; David Wu 1 ; 1 Institute of High Performance Computing; 2 Nanyang Technological University

NANOSTRUCTURED MATERIALS

Deformation Mechanisms, Microstructure Evolution, and Mechanical Properties of Nanoscale Materials Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Niaz Abdolrahim, University of Rochester; Matthew Daly, University of Illinois-Chicago; Hesam Askari, University of Rochester; Eugen Rabkin, Technion; Jeffrey Wheeler, Femto Tools Ag; Wendy Gu, Stanford University

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

- A Discrete Dislocation Dynamics Investigation of the Mechanical Behavior of Irradiated FeCrAl Alloys: Yash Pachaury¹; Anter El-Azab¹; ¹Purdue University
- G-1: Change of Ni Composition According to pH Value of Fe-Ni Invar Manufactured by Electroforming: Jihan Gwak1; Jun Ha Lee1; Seung-Joon Lee²; Se-Eun Shin¹; Yong-Bum Park¹; ¹Sunchon National University; 2Tech University of Korea
- G-2: Deformation Mechanisms of Metal Matrix Nanocomposites: A Molecular Dynamics Study: Wenwu Xu¹; Md. Shahrier Hasan¹; ¹San Diego State University
- G-3: Energetics and Mechanisms of Slip-Grain Boundary Interaction in Magnesium and Its Alloys: Vaidehi Menon¹; Yong-Jie Hu²; Liang Qi¹; ¹University of Michigan; ²Drexel University
- Epoxy Based GFRP Nanocomposites Containing Silanized Nanoclay and Compatibilized Polyethylene Fibers for High Impact Strength Applications: Daksh Shelly¹; Tarun Nanda¹; Rajeev Mehta¹; ¹Thapar University
- G-4: In Situ Nanomechanical Testing Under Cryogenic Conditions: Eric Hintsala¹; Kevin Schmalbach¹; Sanjit Bhowmick¹; Douglas Stauffer1; 1Bruker Nano Surfaces and Metrology
- G-5: In Situ SEM Tension Study of Al-Si Nanofibrous Composite: Wenqian Wu¹; Bingqiang Wei¹; Amit Misra²; Jian Wang¹; ¹University of Nebraska-Lincoln; ²University of Michigan
- G-6: Influence of Substrate Topography and Mechanical Compliance on the Morphology of Nanoporous Gold Thin Films: Sadi Md Shahriar¹; Noah Goshi¹; Conner Winkeljohn¹; Jeremy Mason¹; Erkin Seker¹; ¹University of California - Davis
- G-7: Mechanical Characterization of Stacked Single-Crystal of Polyethylene and Monolayer MoSe2: Gang Feng1; Dong Zhou1; Henna Khosla¹; Scott Retterer²; Bo Li¹; ¹Villanova University; ²Oak Ridge National Laboratory
- G-8: Mechanical Properties of Nickel-Platinum Nanoparticles Fabricated by Solid-State Dewetting: Mor Levi¹; Anuj Bisht¹; Eugen Rabkin¹; ¹Technion – Israel Institute of Technology
- G-9: Micro-mechanical Characterization on Amorphous Carbon and its Nanoporous Structures: Zhongyuan Li¹; Ayush Bhardwai²; James Watkins²; Seok-Woo Lee¹; ¹University of Connecticut; ²University of Massachusetts Amherst
- G-10: Molecular Dynamics of Nanosuspension Droplet Impact on Solid Surfaces: Baiou Shi¹; Siddharth Ravi¹; ¹Pennsylvania State University Erie
- Multiscale Chemistry for Hydrogen-based Direct Reduction of Iron in Steelmaking: Xueli (Sherry) Zheng1; Lauren Moghimi1; Subhechchha Paul¹; Yi Cui¹; Leora Dresselhaus-Marais¹; ¹Stanford University

- G-11: Nanoindentation Studies on the Surface Properties of Irradiated Concentrated Solid-solution Alloys: Youxing Chen¹; Liuqing Yang²; Jimmie Miller²; William Weber³; Hongbin Bei⁴; Yanwen Zhang⁵; ¹University of North Carolina at Charlotte; ²University of North Carolina at Charlotte; 3University of Tennessee; 4Zhejiang University; 5Oak Ridge National Laboratory
- G-12: Nanomechanical Testing of Limited Slip System Materials: Deformation and Fracture: Hugh Grennan¹; David Bahr¹; ¹Purdue University
- G-13: Nanoscale Liquid Infiltration an Ultra-fast Deformation Mechanism for Energy Mitigation: Mingzhe Li¹; Weiyi Lu¹; ¹Michigan State University
- G-14: Optimization of Nanocrystalline, Ultra-fine Grained and Bimodal Nickel According to Mechanical Properties: Michael Marx¹; Dominic Rathmann¹; Christian Motz¹; ¹Saarland University
- G-15: Orientation Dependent Micro-mechanical Deformation Behavior of Refractory High Entropy Alloy as a Function of Strain Rate and Temperature: Shristy Jha1; Sundeep Mukherjee1; Saideep Muskeri¹; Maryam Sadeghilaridjani¹; Abhishek Sharma¹; Sriswaroop Dasari¹; Rajarshi Banerjee¹; Yu-Chia Yang¹; ¹University of North Texas
- G-16: Phase Transition and Nanomechanical Properties of Refractory High-entropy Alloy Thin Films: Effects of Co-sputtering Mo and W to a TiZrHfNbTa System: Changjun Cheng¹; Michel Haché¹; Xiaofu Zhang²; Yu Zou¹; ¹University of Toronto; ²Chinese Academy of Sciences
- G-17: Photo-stable Thermoset Shape-memory Polymers: Role of Unique Graphene Nanoscrolls for Superior Service Life: Dilip Depan¹; Owolabi Akanni¹; William Chirdon¹; Ahmed Khattab¹; ¹University of Louisiana at Lafayette
- Stochastic Mechanical Modeling of Cavitary Defects in Porous **Aluminum Structures**: *Mujan Seif*¹; Alexandre Martin¹; Matthew Beck¹; ¹University of Kentucky
- G-18: Structures and Nanomechanical Behavior of Cu-Mo-W Nanocomposite Thin Films: Forrest Wissuchek1; Bibhu Sahu1; Amit Misra1; 1University of Michigan
- G-19: Surface Film-induced Reversible Electrochemical Actuation in Nanoporous Metals Investigated using In Situ Small- and Wideangle X-ray Scattering.: Alexander Ng1; Eric Detsi1; 1University of Pennsylvania
- G-20: The Effects of Local Structures on the Dislocation Transmission Across Symmetric Tilt Grain Boundaries in Cu via Atomistic Simulations: Khanh Dang1; Sumit Suresh1; Avanish Mishra1; Nithin Mathew¹; Edward Kober¹; Saryu Fensin¹; ¹Los Alamos National Laboratory
- G-21: The Impact of Interface Orientation on the Vibration Behavior of Joined Aluminum Substrates: Milad Khajehvand¹; Henri Seppänen²; Panthea Sepehrband¹; ¹Santa Clara University; ²Kulicke & Soffa Industries, Inc.

ELECTRONIC MATERIALS

Electronic Packaging and Interconnection — Poster

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: Kazuhiro Nogita, University of Queensland; Mohd Arif Mohd Salleh, Universiti Malaysia Perlis; Dan Li, Beijing University of Technology; David Yan, San Jose State University; Fan-Yi Ouyang, National Tsing Hua University; Patrick Shamberger, Texas A&M University; Tae-Kyu Lee, Cisco Systems; Christopher Gourlay, Imperial College London; Albert T. Wu, National Central University

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Session Chairs: Kazuhiro Nogita, The University of Queensland; Chris Gourlay, Imperial College London

C-7: Dynamic Material Characterization through In-Situ Electrical Resistivity Measurements of High Temperature Transient Liquid Phase Sinter Alloys: Gilad Nave1; Patrick McCluskey1; 1University of Maryland

C-8: Low-temperature CMOS Compatible SLID & Eutectic Bonding for Wafer Level Packaging: Gürel Dimez¹; Özgün Yurdakul¹; Mertcan Sevinç¹; Ouzhan Temel¹; Tayfun Akın¹; Yunus Kalay¹; ¹Middle East **Technical University**

ENERGY & ENVIRONMENT

Energy Technologies and CO2 Management — Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee

Program Organizers: Shafiq Alam, University of Saskatchewan; Donna Guillen, Idaho National Laboratory; Fiseha Tesfaye, Metso Outotec Finland Oy; Lei Zhang, University of Alaska Fairbanks; Lina Hockaday, Curtin University, WASM; Neale Neelameggham, IND LLC; Hong (Marco) Peng, University of Queensland; Nawshad Haque, Commonwealth Scientific and Industrial Research Organization; Liu Yan, Northestern University

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

D-22: Hydrogen Storage Properties of Graphitic Carbon Nitride Nanotubes Synthesized by Mix-grind Technique: Barton Arkhurst¹; Ruiran Guo¹; Ghazaleh Bahman Rokh¹; Sammy Chan¹; ¹University of **New South Wales**

CORROSION

Environmental Degradation of Multiple Principal Component Materials — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Wenjun Cai, Virginia Polytechnic Institute and State University; XiaoXiang Yu, Novelis Global Research Center; Vilupanur Ravi, California State Polytechnic University Pomona; Christopher Weinberger, Colorado State University; Elizabeth Opila, University of Virginia; Bai Cui, University of Nebraska-Lincoln; Mark Weaver, University of Alabama; Bronislava Gorr, Karlsruhe Institute of Technology (KIT); Gerald Frankel, Ohio State University; ShinYoung Kang, Lawrence Livermore National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

B-1: Concentration Effect of Tellurium on the Corrosion and Mechanical Properties of 304 Stainless Steel in Molten FLiNaK Salt: Minsung Hong¹; Yujun Xie¹; Ho Lun Chan²; Elena Romanovskia²; John R. Scully²; Peter Hosemann¹; ¹UC Berkeley; ²University of Virginia

NANOSTRUCTURED MATERIALS

Functional Nanomaterials 2023 — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Nanomaterials Committee, TMS: Composite Materials Committee

Program Organizers: Yong Lin Kong, University of Utah; Sarah Ying Zhong, University of South Florida; Mostafa Bedewy, University of Pittsburgh; Woochul Lee, University of Hawaii at Mnoa; Changhong Cao, McGill University; Kiyo Fujimoto, Idaho National Laboratory; Surojit Gupta, University of North Dakota; Michael Cai Wang, University of South Florida

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Facile Synthesis of Novel Quaternary Zn-Cu-In-S/ZnS QDsmTHPP Porphyrin Conjugate and Its Photodynamic Therapy of Cancer and Antibacterial Activities: Samuel Oluwafemi¹; ¹University of Johannesburg

Second NIR-absorbing Gelatin Stabilized Gold Nanorods with High Media and Photothermal Stability for Photothermal Cancer Therapy: Thabang Lebepe¹; Samuel Oluwafemi¹; ¹University of Johannesburg

Study on Aluminum Oxide Thin Film as Etch Stop Layer: Sangwoo Lee¹; Taekjib Choi¹; Jaeyoung Yang²; Joohyun Park²; University; ²TES Co.,Ltd

Synthesis, Characterization and Comparative Study of Polyethylene Oxide / Carbon Nanotubes and Polymethyl Methacrylate Carbon Nanotubes Composites: Sabiha Sultana¹; Noor Saeed¹; Mohib Khan¹; ¹Islamia College Peshawar

MECHANICS & STRUCTURAL RELIABILITY

High Temperature Creep Properties of Advanced Structural Materials — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Gianmarco Sahragard-Monfared, University of California, Davis; Mingwei Zhang, Lawrence Berkeley National Lab; Jeffery Gibeling, University of California, Davis

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

- F-1: A Study on Microstructure and Mechanical Properties of Fe-Cr-Ni-Al-V Alloys: Kanghyun Park¹; Ho-seop Song¹; Jeongeun Kim¹; Ka Ram Lim²; Chanho Lee³; Gian Song¹; ¹Kongju National University; ²Advanced Metals Division, Korea Institute of Materials Science; ³Materials Science and Technology Division, Los Alamos National Laboratory
- F-2: Effects of Controlling Ti and Al on Microstructure and Mechanical Properties of Fe-Cr-Co-Al-Ti Ferritic Alloys: Jeongeun Kim¹; Kanghyun Park¹; Byungchan Cho¹; Karam Lim²; Chanho lee³; Jiwoon Lee¹; Gian Song¹; ¹Kongju National University; ²Advanced Metals Division, Korea Institute of Materials Science (KIMS); ³Materials Science and Technology Division, Los Alamos National Laboratory
- F-3: Strengthening Against Creep at Elevated Temperature of HEA Alloys of the CoNiFeMnCr Type Using MC-carbides: Patrice Berthod¹; ¹University of Lorraine

SPECIAL TOPICS

Late News Poster Session — Additive Technologies

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

- 3-D Printed Storage Container for Nuclear Materials: Tyler Brunstein¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology
- A-61: Additive Manufacturing of Aluminum Alloys via Liquid Metal Jetting: Kellen Traxel1; Nicholas Watkins1; Eric Elton1; Viktor Sukhotskiy¹; Alex Wilson-Heid¹; Andrew Pascall¹; Jason Jeffries¹; ¹Lawrence Livermore National Laboratory
- A-62: Additive Manufacturing of Functionally Graded Soft Magnetic Alloys: Jesse Adamczyk¹; Erin Barrick¹; Samad Firdosy²; Nichole Valdez¹; Andrew Kustas¹; ¹Sandia National Laboratories; ²NASA Jet Propulsion Laboratory
- Additive Manufacturing of Nitinol Parts via Optimised Laserpowder Bed Fusion: Muhannad Ahmed Obeidi¹; Dermot Brabazon¹; ¹Dublin City University
- A-63: Additive Manufacturing of TiNiSn Half-Heusler Thermoelectric Compound: Seoung-Ho Lim1; Pyuck-Pa Choi1; ¹Korea Advanced Institute of Science and Chanwon Jung²; Technology; 2Max-Planck-Institut für Eisenforschung
- A-64: As-Deposited Microstructure and Strain Rate Dependence of Aluminum Alloy 7020 Produced via Additive Friction Stir Deposition: Malcolm Williams¹; Brian Jordon¹; Paul Allison¹; ¹Baylor University

- A-65: Challenges in the Production of Duplex and Martensitic Stainless Steels: Martina Koukolikova1; Pavel Podaný1; Sylwia Rzepa1; Michal Brázda¹; Aleksandra Kocijan²; ¹COMTES FHT a.s.; ²Institute of Metals and Technology (IMT)
- Drop-on-demand Metal Jetting: Direct 3D Printing of Silver: Negar Gilani¹; ¹University of Nottingham
- A-66: Fatigue Life Predictions of Additive Friction Stir Deposition Repairs using a Smooth Particle Hydrodynamic Model: Nick Palya1; 1Baylor
- A-67: Heat Treatment Effects on Microstructure and Mechanical Properties of Wire Arc Additively Manufactured (WAAM) and Electron Beam Additively Manufactured (EBAM) Ti-6Al-4V: Hannah Sims¹; Jonathan Pegues²; Natalia Saiz²; Shaun Whetten²; Andrew Kustas²; ¹Sandia National Laboratoriess; ²Sandia National Laboratories
- Improved Cryogenic Tensile Properties of Additive Manufacturingprocessed STS316L Steel by the Reuse of Powder: Chohyeon Lee¹; Taekwan Koo¹; Muhammad Ishtiag¹; Hyoungseop Kim²; Jaebok Seol¹; ¹Gyeongsang National University; ²Pohang University of Science and Engineering
- A-68: Investigation of the Simple Layer Made by Additive Manufacturing on Forging Tools: Miroslav Urbánek¹; ¹COMTES FHT
- A-69: Leveraging Spatial Gradation in Lattice Structure Development for Enhanced Energy Absorption from High Rate Loads: David Failla¹; Haley Petersen¹; Matthew Priddy¹; Zackery McClelland²; ¹Mississippi State University; ²U.S. Army Engineer Research and Development Center
- A-70: Metal AM with Green Lasers is Propelling the Next Generation of Space Exploration: Eliana Fu¹; Marco Goebel¹; Ulli Kraske¹; ¹Trumpf
- Microstructural Characterization of Electron Beam Additively Manufactured (EBAM) and Wire Arc Additively Manufactured (WAAM) Ti-6Al-4V: Luis Jauregui¹; Joseph Boro¹; John Williard¹; Robert Craig¹; Timothy Ruggles¹; Hannah Sims¹; Jonathan Pegues¹; ¹Sandia National Laboratories
- A-71: Microstructure Prediction in Powder Bed Metal Additive Manufacturing Using Coupled Nucleation and Monte Carlo Method: Aashique Rezwan¹; Theron Rodgers¹; Daniel Moser¹; ¹Sandia National Laboratories
- A-72: Neutron Diffraction Measurement of Residual Stresses in AFSD AA6061 Deposits: Ning Zhu1; Luke Brewer2; Brian Jordon1; Paul Allison¹; ¹Baylor University; ²The University of Alabama
- A-73: Physics-based Analytical Modeling of Defects Formation in Metal Additive Manufacturing: Wenjia Wang¹; Oladayo Ariyo¹; Wei Huang²; Aixi Zhou¹; Steven Liang²; ¹North Carolina Agricultural and Technical State University; 2Georgia Institute of Technology
- A-74: Powder Particle Impact and Pore Release Behavior in Laser, Powder-blown Directed Energy Deposition: Samantha Webster¹; Shuheng Liao²; Sanjana Subramaniam²; Jihoon Jeong²; Anchen Tong²; Rujing Zha²; Jian Cao²; ¹NIST; ²Northwestern University
- A-75: Powder Spreading Mechanism in Laser Powder Bed Fusion Additive Manufacturing: Experiments and Computational Approach Using Discrete Element Method: Ummay Habiba1; Michael Fazzino¹; Serge Nakhmanson¹; Rainer Hebert¹; ¹University of Connecticut
- A-76: Recyclability Study of APO-BMI: Alexander Hatmaker¹; ¹Los **Alamos National Laboratory**
- A-77: Tooling Influence on Deposition Width in Additive Friction Stir Deposition of AA 6061: Isaac Liu¹; Paul Allison¹; Brian Jordon¹; ¹Baylor University

A-78: Understanding Material Flow Behavior of Additive Friction Stir Deposition Using Smoothed Particle Hydrodynamics: Jacob Hoarston¹; Kirk Fraser²; Brian Jordon¹; Paul Allison¹; ¹Baylor University; ²National Reserach Council Canada

A-79: The Effect of Beam Shaping Strategies on Additively Manufactured Microstructures: Giovanni Orlandi¹; Robert Moore¹; Theron Rodgers²; Fadi Abdeljawad¹; ¹Clemson University; ²Sandia National Labs

SPECIAL TOPICS

Late News Poster Session — Corrosion

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

B-2: Comparative Corrosion Evaluation of Additively Manufactured and Commercial Aluminum Alloys for Automotive Applications: Evangelia Kiosidou¹; Jiheon Jun¹; Alex Plotkowski¹; Amit Shyam¹; Sumit Bahl¹; Ryan Dehoff¹; James A. Haynes¹; ¹Oak Ridge National Laboratory

B-3: The Effects of Atmospheric Corrosion on Additively Manufactured Stainless Steel: Kasandra Escarcega Herrera¹; ¹Sandia National Laboratories

SPECIAL TOPICS

Late News Poster Session — Electronic Materials

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

C-13: Crystallization Mechanism of Amorphous NbCo1.1Sn Induced by Ball Milling: Hail Park¹; Chanwon Jung²; Seung-Hoon Yi³; Pyuck-Pa Choi¹; ¹Korea Advanced Institute of Science and Technology (KAIST); ²Max-Planck-Institut für Eisenforschung GmbH; ³Kyungpook National University

SPECIAL TOPICS

Late News Poster Session — Energy & Environment

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Coadditive Engineering for High Open Circuit Voltage Nearly 1V in Tin-Based Perovskite Solar Cells: Ashraful Islam¹; Emrul Kayesh¹; ¹National Institute for Materials Science (NIMS)

D-37: Development of Xe Gas Recycling System: *Chang-Hoon Kwak*¹; Ro Youngju¹; Hong Eun Sun¹; Shin Hye Sun²; Kim Jun Woo²; ¹Samsung Electronics; ²Research Institute of Industrial Science and Technology

D-38: Photoelectron Extraction via Inserted Carbon Nanotube in Photosynthetic Cells and Analysis by Scanning Electrochemical Microscopy (SECM): *Hyojin Gwon*¹; Hyun S. Ahn¹; ¹Yonsei University

D-39: Platinized Carbon Nanoelectrodes for Electrochemical Measurement of Reactive Oxygen and Nitrogen Species in Neural Stem Cells: *Donghoon Liim*¹; Hyun S. Ahn¹; ¹Yonsei University

D-40: Spin-orbit Torque Switching Enabled by Uniaxial Magnetocrystalline Anisotropy: Shreyes Nallan¹; Jian-Gang (Jimmy) Zhu¹; ¹Carnegie Mellon University

SPECIAL TOPICS

Late News Poster Session — Light Metals

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

E-34: A Comparative Study on the Homogenization Process of the Aluminum Billets in the Batch and Continuous Homogenizing Furnace Using with CFD Simulations and Microstructure Analysis: Murat Dogan¹; Deniz Guler¹; Deniz Urk¹; Gokcen Gokce¹; Akin Obali¹; ¹Sistem Teknik Industrial Furnaces LTD

E-32: Combining In-situ Diffraction, In-situ Acoustic Emission and High-resolution Digital Image Correlation to Study Tension-compression Asymmetry in the WZ21 Alloy: Gerardo Garces¹; Pablo Pérez¹; Edurne Laurin¹; Judit Medina¹; Andreas Stark²; Norbert Schell²; Alberto Orozco³; Kristian Mathis⁴; Paloma Adeva¹; ¹Cenim-CSIC; ²Helmholtz-Zentrum Hereon; ³Universidad Politécnica de Madrid; ⁴Charles University

Current State of Technology of Next-Generation Ceramic Foam Filter: Jochen Schnelle¹; Elisabeth Wischhoff¹; Ragnhild Aune²; ¹Drache; ²NTNU

Effect of Fine Precipitates on the Mechanical Properties of Lightweight Mg-Li Alloy with Rare Earth Addition: Yong-Ho Kim¹; Byeong-Kwon Lee¹; Eun-chan Ko¹; Hyeon-Taek Son¹; ¹Korea Institute of Industrial Technology

Effect of Mg Addition on the Mechanical Properties and Microstructure of Al-Li-Ce Alloys: ByeongKwon Lee¹; Eun-Chan Ko¹; Yong-Ho Kim¹; Hyeon-Taek Son¹; Sung-Kil Hong²; ¹Korea Institute of Industrial Technology; ²Chonnam National University

Effects of Mg Contents on Microstructure and Mechanical Properties of the Rolled Al-xMg-0.12Mn-0.12Cr Based Alloy with Thin Plate: *Hyeon-Taek Son*¹; Yong-Ho Kim¹; Byong-Kwon Lee¹; En-Chan Ko¹; ¹Korea Institute of Industrial Technology

Evaluation of Yield in the Production of Machined vs High Pressure Die Cast A360: Deniz Cil¹; Ceren Ciytak¹; Kerem Dizdar²; Hayati Sahin³; Derya Dispinar³; ¹GP HPDC; ²Istanbul Technical University; ³Foseco

Machine Learning for Joint Quality Performance-A Comparison Study of the Relationship between Process Parameters and Weld Microstructure of Al/Steel Resistance Spot Welds: Alejandro Ojeda¹; Moses Obiri¹; ¹Pacific Northwest National Laboratories

SPECIAL TOPICS

Late News Poster Session — Mechanics & Structural Reliability

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

F-4: An End-to-end Crystal Plasticity Framework for Single and Multiscale Analysis as it Relates to ICME: Deepankar Pal¹; Grama Bhashyam¹; Anupam Neogi¹; ¹Ansys

Microstructural Effect on the Resistance to Fatigue Crack Growth of High-entropy Alloys: Wonhui Jo¹; Chohyeon Lee¹; Jae Bok Seol¹; Hyokyung Sung²; ¹Gyeongsang National University; ²Kookmin University

SPECIAL TOPICS

Late News Poster Session — Nanostructured Materials

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Ultra-fast 4D-STEM Detector for Rapid Nanoscale Strain/Phase Mapping: Kalani Moore¹; ¹Direct Electron

LIGHT METALS

Magnesium Technology 2023 — Poster Session

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Steven Barela, Terves, Inc; Aeriel Murphy-Leonard, Ohio State University; Petra Maier, University of Applied Sciences Stralsund; Neale Neelameggham, IND LLC; Suveen Mathaudhu, Colorado School of Mines; Victoria Miller, University of Florida

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

A Comparative Corrosion Study of Magnesium Alloys Processed via Shear Assisted Processing and Extrusion: Vikrant Beura¹; Antriksh Sharma¹; Vineet Joshi²; Kiran Solanki¹; ¹Arizona State University; ²Pacific Northwest National Laboratory

E-12: A Thermodynamic Approach for Precipitation Hardening of Magnesium Alloy with High Formability: Jong-Kwan Lee¹; Hyo-Sun Jang²; Nack Joon Kim¹; Byeong-Joo Lee¹; ¹POSTECH; ²Korea Institue of Materials Science

E-13: Advanced In-situ Investigation of Deformation Behavior in a **Textured Magnesium Alloy AZ31**: Jan Dittrich¹; Michal Knapek¹; Daria Drozdenko¹; Peter Minárik¹; ¹Charles University

Advances in Magnesium Primary Production by Reactive Cathode Molten Salt Electrolysis with G-METS Distillation: Zujian Tang¹; Keira Lynch¹; Benjamin Perrin¹; Armaghan Telgerafchi¹; Gabriel Espinosa¹; Daniel Sehar¹; Madison Rutherford¹; Adam Powell¹; ¹Worcester Polytechnic Institute

E-14: Critical Resolved Shear Stresses for Slip and Twinning in Mg-Y-Ca Alloys and Their Effect on Ductility: Mingdi Yu1; Jingya Wang1; Xiaoqin Zeng¹; Javier Llorca²; ¹Shanghai Jiao Tong University; ²IMDEA Materials Institute & Technical University of Madrid

Designing Highly Corrosion-resistant Mg Alloys via Second-phase Control: Sung Soo Park1; 1UNIST

E-15: Effect of Differential Speed Rolling (DSR) on the Dynamic Recrystallization of Mg5Zn Under Different Temperatures: Christopher Hale¹; ¹North Carolina Agricultural and Technical State University

E-16: Effect of Grain Size on Bio-corrosion Properties of AZ31 Magnesium Alloy: Wenli Zhao¹; Qizhen Li¹; ¹Washington State University

Effect of Second Phases Evolved Through Heat Treatment on Mechanical and Bio-corrosion Behaviour of a Mg-Zn-Ca-Mn Alloy: Darothi Bairagi¹; Sumantra Mandal¹; Manas Paliwal¹; ¹IIT Kharagpur

E-17: European Sustainable Magnesium from Chromite Production and Dolomite Excavation Residues: Duane Runciman1; Matt Dey1; Henk van der Laan²; Carsten Dittrich³; Edward Peters³; Thore Perlitz³; Blaz Likozar⁴; Alen Rupnik⁴; Konstantinos Sakkas⁴; Beate Orberger⁵; ¹Mures SRL; ²V.I.C. Van der Laan International Consultancy BV; ³MEAB Chemietechnik GmbH; ⁴National Institute of Chemistry of Slovenia; 5CATURA Geoprojects

E-18: Flammability Resistant Magnesium Alloys Processed by Equal Channel Angular Pressing: Stanislav Šašek1; Jitka Stráská1; Peter Minárik¹; Robert Král¹; Jozef Veselý¹; Jií Kubásek²; ¹Charles University; 2University of Chemistry and Technology

E-19: Formation of CO2 Absorption Induced Corrosion Resistant Magnesium Carbonate Layer Formation on Various Magnesium Alloys: Gyoung Gug Jang1; Jiheon Jun1; Yi-Feng Su1; 10ak Ridge National Lab

E-20: In Vitro and In Vivo Degradation Behavior of Novel Corrosionresistant Mg Alloys: Du-Won Min1; Jung Gu Lee2; Sung Soo Park1; ¹UNIST; ²University of Ulsan

E-21: Investigating the Corrosion Response of Cast and Extruded ZK60 Magnesium Alloy Processed via Shear Assisted Processing and Extrusion: Vikrant Beura¹; Antriksh Sharma¹; Vineet Joshi²; Kiran Solanki¹; ¹Arizona State University; ²Pacific Northwest National Laboratory

E-22: Investigation of Transformation-mediated Nanotwin Nucleation Mechanisms in Magnesium Using Deep Neural Network Interatomic Potentials: Mehrab Lotfpour¹; Iyyappa Rajan¹; Amir Hassan Zahiri¹; Jamie Ombogo¹; Lei Cao¹; ¹University of Nevada

E-23: Kink Bands Strengthening of LPSO Mg-Zn-Y alloys After Processing by High-pressure Sliding (HPS): Yongpeng Tang¹; Shinichi Inoue²; Yoshihito Kawamura²; Zenji Horita²; ¹Kyushu Institute of Technology; 2Kumamoto University

E-24: Nucleation of {1012} Twins in Magnesium Through Reversible Martensitic Phase Transformation: Jamie Ombogo¹; Amir Hassan Zahiri¹; Lei Cao¹; ¹University of Nevada

E-25: Simulations of Microgalvanic Effects in Corrosion of Mg **Alloys**: Vishwas Goel¹; Yanjun Lyu¹; David Montiel¹; Katsuyo Thornton¹; ¹University of Michigan

E-26: Strain Rate Dependent Deformation Behavior and Microstructure Evolution of Magnesium Alloys: Xinyu Xu1; Yizhuang Li¹; Chengpeng Huang¹; MingXin Huang¹; ¹The University of Hong Kona

E-27: Strain-localized Deformation Banding during Tensile Deformation of Pre-compressed AZ31 Mg Alloy: Jongbin Go1; Myeong-heom Park¹; Si Gao¹; Nobuhiro Tsuji¹; ¹Kyoto University

E-28: Towards Improved Understanding of Press and Sinter Processing of Mg and Mg Alloy Powders: Steven Johnson¹; William Caron¹; ¹Central Connecticut State University

E-29: Understanding the Influence of Alloying on Texture Development in Mg-(Zn-Ca) Alloys During Recrystallization: Rogine Gomez¹; Aeriel Leonard¹; ¹The Ohio State University

NANOSTRUCTURED MATERIALS

Nanostructured Materials in Extreme Environments — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nuclear Materials Committee

Program Organizers: Haiming Wen, Missouri University of Science and Technology; Nan Li, Los Alamos National Laboratory; Youxing Chen, University of North Carolina Charlotte; Yue Fan, University of Michigan; Niaz Abdolrahim, University of Rochester; Khalid Hattar, University of Tennessee Knoxville; Ruslan Valiev, UFA State Aviation Technical University; Zhaoping Lu, University of Science and Technology Beijing

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

G-22: Development of Nanostructured Ferritic Superalloys for Nuclear Environments: Sophia von Tiedemann¹; Kan Ma¹; Pedro Ferreirós¹; Alexander Knowles¹; ¹University of Birmingham

G-23: Scalable Fabrication and Mechanical Response of Composites with Nano-architected Features: Kevin Nakahara¹; Matias Kagias¹; Seola Lee¹; Julia Greer¹; ¹California Institute of Technology

ENERGY & ENVIRONMENT

Natural Fibers and Its Composites: A Sustainable Solution — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Biomaterials Committee, TMS: Materials Characterization Committee

Program Organizers: Henry Colorado, Universidad de Antioquia; Sergio Monteiro, Instituto Militar de Engenharia; Carlos Fontes Vieira, State University of the North Fluminense

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Cement Composites Made with Powdered Coffee and Rice Husks: *Melissa Zapata*¹; Afonso Azevedo²; Henry Colorado¹; ¹Universidad de Antioquia UdeA; ²Universidade Estadual do Norte Fluminense

Characterization of Ubim Fiber by Fourier Transform Infrared Spectroscopy (FTIR): Belayne Marchi¹; Sergio Monteiro¹; ¹Instituto Militar de Engenharia

D-23: Corozo Palm Fibers: Mechanical Behavior and Potential Use for Composites: Henry Colorado¹; Jimmy Unfried-Silgado²; Luis Espitia-San Juan²; ¹Universidad de Antioquia; ²Universidad de Córdoba

D-43: Effects of Aging by Immersion in Water and Functionalized Epoxy Matrix with Graphene Nanoplates in Fique Fabric-reinforced Composites: *Michelle Oliveira*¹; Sergio Monteiro¹; Fernanda da Luz¹; Fabio Braga²; Artur Pereira¹; ¹Military Institute of Engineering; ²UFF

D-24: Feasibility Study of Incorporation of Dyeing Sludge in Red Ceramics: Hugo Rangel¹; Geovana Carla Delaqua¹; José Alexandre Linhares Junior¹; Afonso de Azevedo¹; Sérgio Monteiro²; Michelle Babisk¹; *Carlos Mauricio Fontes Vieira*¹; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro; ²Instituto Militar de Engenharia

Influence of the Incorporation of Particulates from the Pineapple Crown on the Impact Strength of Epoxy Systems: David Coverdale Velasco¹; José Alexandre Linhares¹; Noan Simonassi¹; Carlos Maurício Vieira¹; Afonso Azevedo¹; Markssuel Marvila¹; Sergio Monteiro¹; ¹State University of the Northern Rio de Janeiro

Mitigation of Urban Noise through the Implementation of Pumice with an Air Chamber on Building Facades: Jeiser Rendón Giraldo¹; Henry Colorado¹; ¹Universidad de Antioquia

D-25: Tensile and Bend Properties of High Density Polyethylene Matrix Composites Reinforced with Graphene Nanoplatelets and Jute Fabric: Ulisses Costa¹; Wendell Bezerra¹; Sergio Monteiro¹; Andressa de Souza¹; Lucio Nascimento¹; ¹Military Institute of Engineering

ENERGY & ENVIRONMENT

New Directions in Mineral Processing, Extractive Metallurgy, Recycling and Waste Minimization: An EPD Symposium in Honor of Patrick R. Taylor — Poster Session

Sponsored by: Society for Mining Metallurgy and Exploration, TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Materials Characterization Committee, TMS: Energy Committee, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Ramana Reddy, University of Alabama; Corby Anderson, Colorado School of Mines; Erik Spiller, Colorado School of Mines; Edgar Vidal, NobelClad; Camille Fleuriault, Eramet Norway; Alexandra Anderson, Gopher Resource; Mingming Zhang; Christina Meskers, SINTEF

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Alternative Fluxes for Lead Bullion Refining: Samuel Asante¹; Patrick Taylor¹; ¹Colorado School of Mines

D-26: Critical Review of Chemical Metallurgy of Tungsten: Raj Singh Gaur¹; ¹SH Nano Energy Powders

D-28: Estimated End-of-life Lithium-ion Battery Resources for Potential Recycling in Bangladesh: Md Rakibul Qadir¹; Miao Chen¹; Nawshad Haque¹; Warren Bruckard¹; ¹CSIRO

D-29: Gravity Driven Multiple-effect Thermal System (G-MET) Distillation for Continuous Efficient Lead Refining: Armaghan Ehsani Telgerafchi¹; Daniel McArthur¹; Chinenye Chinwego¹; Adam Powell¹; ¹Worcester Polytechnic Institute

D-30: In-situ Microscopy Observations of Oxide Phases Formation during High-temperature Oxidation of End-of-life Ni/Cu/Ni-coated-NdFeB Permanent Magnets: Deddy Nababan¹; Reiza Mukhlis¹; Yvonne Durandet¹; Mark Pownceby²; Leon Prentice³; M. Akbar Rhamdhani¹; ¹Swinburne University of Technology; ²CSIRO Mineral Resources; ³CSIRO Manufacturing

D-31: Introducing Membrane Percrystallisation Technology for Hydrometallurgical Applications: Siti Nurehan Abd Jalil¹; Julius Motuzas¹; James Vaughan¹; ¹The University of Queensland

D-32: Investigating the Influence of Temperature and Atmosphere on the Formation and Decomposition of PAHs from Carbonaceous Materials Used in Industrial Processes: Method Development: Katarina Jakovljevic¹; Thor Aarhaug²; Gabriella Tranell¹; ¹Norwegian University of Science and Technology; ²SINTEF

Leaching of Arsenopyrite Contained in Tailings Using the TU-OX System: Erick Muñoz Hernandez¹; Julio Cesar Juarez Tapia¹; Martin Reyes Pérez¹; Aislinn Michelle Teja Ruiz¹; Gabriel Cisneros Flores¹; Miguel Perez Labra¹; Francisco Raúl Barrientos Hernández¹; ¹Universidad Autonoma del Estado de Hidalgo

D-33: Rare Earth Reduction - A Technological Overview of Stateof-the-art Technology and Novel Developments: Robert Rush¹; Patrick Taylor¹; ¹Colorado School of Mines

D-34: Recovery of Bismuth in Blast Furnace Dust by Carbothermal Volatilization Reduction: Feng Huaixuan¹; Yan Li¹; Jingsong Wang¹; Xuefeng She¹; Qingguo Xue¹; Guang Wang¹; ¹University of Science and Technology Beijing

D-35: Recovery of Valuable Metals from Li-ion Battery Waste through Carbon and Hydrogen Reduction: Thermodynamic Assessment and Experimental Verification: Bintang Nuraeni¹; Katri Avarmaa¹; Leon Prentice²; W. John Rankin¹; M. Akbar Rhamdhani¹; ¹Fluid and Process Dynamics (FPD) Group, Swinburne University of Technology; ²CSIRO Manufacturing

Recycling End-of-Life Acrylonitrile Butadiene (ABS) as Reductant for Metallic Iron Production from the Opon Mansi Iron Ore: James Dankwah¹; David Asubonteng¹; Georgina Thompson¹; ¹University of Mines and Technology

Removal of Iron from an Electrolytic Solution Rich in Copper by Selective Hydrometallurgical Routes: Ana Belen Cueva Sola¹; Jungshin Kang²; Jin-Young Lee²; Rajesh Kumar Jyothi²; ¹University of Science and Technology; ²Korea Institute of Geoscience and Mineral Resources

D-41: Solar Thermal Application in Zn/ZnO Recovery from Spent Alkaline Batteries: Reiza Mukhlis¹; Deddy Nababan¹; Andrew Mackenzie²; Muhammad Akbar Rhamdhani¹; ¹Swinburne University of Technology; ²Envirostream Australia Pty. Ltd.

D-36: SPYRO: Share Skills and Good Practices in PYROmetallurgy: Gaurav Tripathi¹; ¹Eramet Ideas

ELECTRONIC MATERIALS

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXII — **Poster Session**

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hiroshi Nishikawa, Osaka University; Shihkang Lin, National Cheng Kung University; Chao-hong Wang, National Chung Chung University; Chih-Ming Chen, National Chung Hsing University; Jae-Ho Lee, Hongik University; Zhi-Quan Liu, Shenzhen Institutes of Advanced Technology; Ming-Tzer Lin, National Chung Hsing University; Yee-wen Yen, National Taiwan University of Science and Technology; A.S.Md Abdul Haseeb, Bangladesh University of Engineering and Technology (BUET); Ligang Zhang, Central South University; Sehoon Yoo, KITECH; Vesa Vuorinen, Aalto University; Yu-chen Liu, National Cheng Kung University; Ting-Li Yang, National Yang Ming Chiao Tung University

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Session Chair: Hiroshi Nishikawa, Osaka University

C-9: 3D Electromagnetic Analysis and VNA Measurement of Highspeed Signal Transmission in HLC-PCBs: Via Stub Effect: Pei-Chia Hsu1; Ying-Chih Chiang1; Shun-Cheng Chang1; Sheng-Wei Wu1; Cheng-Hao Ching¹; Cheng-En Ho¹; ¹Yuan Ze University

C-10: Bi-Sb-Se-Te Phase Equilibria Isothermal Tetrahedron at 400: Sinn-wen Chen¹; Cheng-chun Ching¹; Yohanes Hutabalian¹; Chiachun Chen¹; ¹National Tsing Hua University

C-11: Effect of De-twinning on Tensile Strength of Nano-twinned Cu Films: Chiahung Lee¹; ¹National Central University

C-12: Laser-assisted Die Attach Process for SiC Power Semiconductor: Dongjin Kim¹; Jiyoon Youm¹; So-Jeong Lee¹; Sehoon Yoo¹; Min-Su Kim¹; ¹Korea Institute of Industrial Technology

PHYSICAL METALLURGY

Phase Transformations and Microstructural Evolution — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Ashley Paz y Puente, University of Cincinnati; Mark Aindow, University of Connecticut; Sriswaroop Dasari, University of North Texas; Ramasis Goswami, Naval Research Laboratory; Megumi Kawasaki, Oregon State University; Eric Lass, University of Tennessee-Knoxville; Josh Mueller, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Le Zhou, Marquette University

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

A Tool to Aid Microstructure-sensitive Design Using Highthroughput Phase-field Calculations and Generative Machine Learning Models: Allison Kaye Arabelo¹; Vahid Attari¹; Raymundo Arróyave¹; ¹Texas A&M University

H-6: Analysis of the Cooling Rate and Heat Transfer Coefficients Associated with Boron Steel Probes Subjected to Quenching Media Using Polyalquileneglycol (PAG): Brandon Buenrostro¹; Constantin Alberto Bocanegra²; José Angel Banderas³; Luis Enrique Valdovinos¹; Esperanza Morales⁴; ¹Tecnológico Nacional de México; ²CATEDRAS-CONACyT; ³TECNM I.T.Morelia; ⁴TECNM I.T.Querétaro

H-7: Atomic Structure and Evolution of {111} Precipitate Plates in Al-Cu-Mg-Ag Alloys: Shenlan Yang1; Nick Wilson2; Jian-Feng Nie1; ¹Monash University; ²CSIRO Mineral Resources

H-8: Comprehensive Investigation of the Solidification Behavior of Alloys through Comparative Analysis of Undercooling and Fluidity: Min Kyung Kwak¹; Wook Ha Ryu¹; Geun Hee Yoo¹; Eun Soo Park¹; Myeong Jun Lee¹; ¹Seoul National University

H-9: Constitutive Modeling of Metastable Ferrous Medium Entropy Alloy: Jihye Kwon¹; Jungwan Lee¹; Hyoung Seop Kim¹; ¹POSTECH

Development of Porous Ti with Self-constructed Hexagonal Faceted Ligaments Fabricated via Water-etchable LMD Process: Kook Noh Yoon¹; Je In Lee²; Hidemi Kato³; Eun Soo Park¹; ¹Seoul National University; ²Pusan National University; ³Institute for Materials Research, Tohoku University

Effect of Starting Microstructure on Austenite Nucleation and Growth during Intercritical Annealing of Third Generation Medium-Mn Advanced High Strength Steels (3G AHSS): Azin Mehrabi¹; Joseph McDermid¹; Hatem Zurob¹; ¹McMaster University

H-10: Effect of Cooling Rate on the Microstructure and Mechanical Properties of Al-Ce Based Alloys: Obidimma Ikeh1; Dinc Erdeniz1; ¹University of Cincinnati

H-11: Effect of Zr Addition on Metastable Phase Separation of Cu-Fe Alloy and Microstructure Control: Hojoon Moon¹; Jungwook Cho¹; ¹Pohang University of Science and Technology

H-12: Evaluation of Inductively Heated Laboratory Continuous Casting Plant for Alloy Design: Andreas Weidinger¹; Sebastian Samberger¹; Stefan Pogatscher¹; Lukas Stemper²; ¹Nonferrous Metallurgy Montanuniversität Leoben; ²AMAG rolling GmbH

Evolution of Phase Transformation Texture during Annealing in the Electroformed Invar: In Gyeong Kim¹; Jun Ha Lee¹; Yong Bum Park¹; ¹Sunchoen National University

Experimental Analysis of Rhombohedral NiTi Tube Actuators Using in Contact Conductive/Convective Heating Stage: Lehar Asip Khan¹; Hasan Ayub¹; Corné Muilwijk¹; Eanna McCarthy¹; Inam Ul Ahad¹; Dermot Brabazon¹; ¹l-Form Advanced Manufacturing Research Centre, Dublin City University

H-13: Fracture Analysis for Intermediate Slabs of Wear-resistant Steel Based on Evolution of Surface Decarburization Behavior: Hao Geng¹; Yun-he Chang²; Zhuang Zhang¹; Jian-feng Jin²; Pu Wang¹; Jiaquan Zhang¹; ¹University of Science & Technology Bejing; ²Nanjing Iron and Steel Co., Ltd.

H-14: Heterogeneous Martensitic Nucleation of Single Microparticles Irradiated by Helium Ions: Juan Lago¹; Adelaide Bradicich¹; Yongchang Li¹; Woohyun Cho¹; Daniel Salas¹; Ibrahim Karaman¹; Lin Shao¹; Patrick Shamberger¹; ¹Texas A&M University

H-15: Improvement of High-temperature Oxidation Resistance of Co-based Superalloys by the Addition of Yttrium: Hyun Gi Min¹; Kook Noh Yoon¹; Jung Soo Lee²; Eun Soo Park¹; ¹Seoul National University; ²Industrial Science and Technology Research Institute, Inha University

H-16: Investigating Ti-6Al-4V Microstructure Evolution during Additive Manufacturing Via Operando Synchrotron Powder XRD: Kouider Abdesselam¹; Steve Gaudez¹; Hugo Pinsard¹; Ulrich Lienert²; Zoltan Hegedues²; Wolfgang Pantleon³; Manas V. Upadhyay¹; ¹Laboratoire de Mécanique des Solides (LMS), Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique, Institut Polytechnique de Paris; ²Deutsches Elektronen Synchrotron (DESY); ³Technical University of Denmark

H-17: Micromechanisms of the Phase Transformation in NiTi Shape Memory Alloys: Conrado Garrido¹; Yuanbo Tang²; Roger Reed²; Daniel Barba¹; ¹E.T.S Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid; ²University of Oxford

Microstructural Evolution of Quaternary CrFeNiCu Based High Entropy Alloys by the Addition of Specific Al and Ti Minor Elements: Dilshodbek Yusupov¹; Aoun Abbas Muhammad¹; Hae Jin Park¹; Gyeol Chan Kang¹; Jinoh Seo¹; Jiwoo Shin¹; Sunghwan Hong¹; Ki Buem Kim¹; ¹Sejong University

H-18: Microstructure and Deflection Behavior of Diffusion Bonded Fe-Ni-Mo/Invar Bimetallic Strips: Gin Kyu Lee¹; JunHee Han²; Jae-Yeol Jeon²; Dae-Guen Kim³; Jae-Young Song⁴; *Jin Kyu Lee¹*, ¹Kongju National University; ²Korea Institute of Industrial Technology; ³Institute for Advanced Engineering; ⁴Shin Saeng Metal Ind. Co.

Microstructure Rearrangements in Magnesium Alloys Upon Thermo-mechanical Processing Followed by Advanced In-situ Synchrotron Radiation: Xiaojing Liu¹; Emil Zolotoyabko¹; Klaus-Dieter Liss²; ¹Technion – Israel Institute of Technology; ²Guangdong Technion – Israel Institute of Technology

Modelling of Martensitic Interfaces in Beta-Ti Alloys: *Tomáš Škraban*¹; Hanuš Seiner²; Josef Stráský¹; ¹Charles University; ²Institute of Thermomechanics, Czech Academy of Sciences

Phase Transformation Kinetics in Group IVB and VB Transition Metal Carbide Multilayer Composites: John Stotts¹; Christopher Weinberger¹; ¹Colorado State University

Phase Transformations in Binary Ti-Mo Alloys: Veronika Kociscakova¹; Jana Šmilauerová¹; Josef Stráský¹; Petr Harcuba¹; Dalibor Preisler¹; Anna Veverková¹; Miloš Janeček¹; ¹Charles University

H-19: Primary Intermetallic Phases Formed Upon Casting in AlMgZn(Cu) Crossover Alloys with High Content of Fe and Si: Sebastian Samberger¹; Lukas Stemper²; Ramona Tosone²; Peter Uggowitzer³; Stefan Pogatscher¹; ¹Christian Doppler Laboratory for Advanced Aluminum Alloys, Montanuniversitaet Leoben; ²AMAG rolling GmbH; ³Montanuniversitaet Leoben

H-20: Residual Stress Mitigation via Cryogenic Temperature Induced Martensitic Phase Transformation in Stainless Steels: *John Chrystal*¹; Richard Moat¹; ¹The Open University

H-21: Study of the Evolution of the Crystallographic Texture of the Microstructure during Grain Growth: Jose Nino¹; Oliver Johnson¹; ¹Brigham Young University

H-22: The Effect of Grain Size and Annealing Twin Boundary Density on FeMnSi-based Shape Memory Alloys: Ji Young Kim¹; Wook Ha Ryu¹; Geun Hee Yoo¹; Eun Soo Park¹; ¹Seoul National University

The Formation and Stability of Nanosphere Composites: $Rahul\ Basu^1$; 1 UGC JNTU

The Impact of Graphene Nanoplatelets (GNPs) on the Hydration Mechanism of Alite (C3S) in Class-H Wellbore Cement with Focus on Microstructural Properties: Havila Jupudi¹; Cody Massion¹; Mileva Radonjic¹; ¹Oklahoma State University

H-23: The Role of Co on Suzuki Segregation in Ni- and Co-based Superalloys: *Victoria Tucker*¹; Sae Matsunaga¹; Dongsheng Wen¹; Michael Titus¹; ¹Purdue University

H-24: Transition Metal Alloying of Mo(Si,Al)2 – Phase Formation and Element Partitioning: *Aina Edgren*¹; Magnus Hörnqvist Colliander¹; Erik Ström²; ¹Chalmers University of Technology; ²Kanthal AB

H-25: Use of the Hollomon-Jaffe Tempering Parameter to Optimize the Microhardness in a Medium-carbon Low-alloy Cr-Mo Steel: Perla Díaz-Villaseñor¹; Edgar López-Martínez²; Octavio Vázquez-Gómez¹; Pedro Garnica-González¹; Héctor Vergara-Hernández¹; ¹Tecnológico Nacional de México / I.T. Morelia; ²Universidad del Istmo

H-26: Validation of Casting Simulations for Prediction of Microstructural Evolution: Jonah Duch¹; Mathew Hayne²; Meghan Gibbs²; ¹Los Alamos National Labratory; ²Los Alamos National Laboratory

ADDITIVE TECHNOLOGIES

Powder Materials Processing and Fundamental Understanding — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Eugene Olevsky, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Kennametal Inc.; Wenwu Xu, San Diego State University

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

Combustion Synthesis of B4C-TiB2 Composite Nanoparticle by Self-propagating High Temperature Synthesis (SHS) in B2O3 – TiO2 – Mg - C System: Ozan Coban¹; Mehmet Bugdayci²; Serkan Baslayici³; Ercan Acma¹; ¹Istanbul Technical University; ²Yalova University; ³stanbul Medipol University

A-57: Efficient Production of Y2O3-Decorated Ti4822 Powder as an Oxide Dispersion Strengthened Material for Powder-Bed-Based Additive Manufacturing: Saeid Alipour Masoumabad¹; Arezoo Emdadi¹; ¹Missouri University of Science & Technology

A-58: Instance Segmentation for the Characterization of Metal Powders Using Synthetic Datasets: *Kyle Farmer*¹; Ryan Cohn²; Elizabeth Holm²; ¹KCNSC/Carnegie Mellon University; ²Carnegie Mellon University

A-59: The Characterization of CoCrFeMnCu High Entropy Alloy Powders Produced by Gas Atomization for Powder-based Additive Manufacturing Processes: Sertaç Altınok¹; Yunus Kalay²; ¹TAI; ²Middle East Technical University

A-60: Understanding Surface Roughness on Vertical Surfaces via Computational Simulations in Laser Powder Bed Fusion Additive Manufacturing: Zilong Zhang¹; Tianyu Zhang¹; Lang Yuan¹; ¹University of South Carolina

ELECTRONIC MATERIALS

Printed Electronics and Additive Manufacturing: Functional Materials, Processing Techniques, and **Emerging Applications — Poster Session**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Rahul Panat, Carnegie Mellon University; Yong Lin Kong, University of Utah; Konstantinos Sierros, West Virginia University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ravindra Nuggehalli, New Jersey Institute of Technology

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

3-D Printed Temperature Sensors: Samiha Hossain¹; Airefetalo Sadoh¹; Cameron von Tulganburg¹; Richard Daly¹; Balraj Mani¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

Multi-material Micromixing for On-demand Manufacture of Modular Soft Robotic Actuators: Craig Joiner¹; Derrick Banerjee¹; John Burke¹; Edward Sabolsky¹; Konstantinos Sierros¹; ¹West Virginia University

Permanent Magnet Integrated Shock Absorber and Electric Generator: Richard Daly¹; B.S. Mani¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

LIGHT METALS

Scandium Extraction and Use in Aluminum Alloys — **Poster Session**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Timothy Langan, Sunrise Energy Metals; Samuel Wagstaff, Oculatus Consulting; Phil Chataigneau, PDU Consulting; Efthymios Balomenos, Mytilineos S.A., Metallurgy Bu; Thomas Dorin, Deakin University; Muhammad Akbar Rhamdhani, Swinburne University of Technology; Dimitrios Filippou, Rio Tinto Iron & Titanium; Henk van der Laan, V.I.C. Van der Laan International Consultancy BV; Frank Palm, Airbus Defence and Space GmbH

Monday PM | March 20, 2023 Exhibit Hall G | SDCC

E-30: Scandium Extraction from TiO2 Pigment Production Residues by Ion Exchange: Evaluation of Two Commercial Ion Exchange Resins: Eleni Mikeli¹; Danai Marinos¹; Dimitrios Panias¹; Efthymios Balomenos¹; Carsten Dittrich²; Robin Scharfenberg²; Bengi Yagmurlu²; Beate Orberger³; Georges Croise⁴; ¹National Technical University of Athens; ²MEAB Chemie Technik GmbH; 3Catura Geoprojects; 4ORANO Mining-Cime

Sustainable Selective Separation of Scandium from Acidic Industrial Wastes: Thanos Karamalidis¹; James Howard¹; ¹Anactisis

E-31: Effect of Sc on Surface Recrystallization of AA7050 Extrusions: Keaton Schmidt¹; Tom Wood¹; Timothy Langan²; Paul Sanders¹; ¹Michigan Technological University; ²Sunrise Energy Metals

BIOMATERIALS

Advanced Biomaterials for Biomedical Implants — **Poster Session**

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Jing Du, Pennsylvania State University

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

K-1: Case Hardening of a Biomedical Cobalt- and Nickel-Free Stainless Steel: Stephane Forsik¹; Logan Smith¹; Gaurav Lalwani¹; Mario Epler¹; ¹Carpenter Technology Corporation

K-3: The Effects of Thermal Treatment on the Properties and Performance of Hot Extruded Zn-based Bioresorbable Alloy for Vascular Stenting Applications: Henry Summers¹; Morteza Ardakani¹; Jaroslaw Drelich¹; ¹Michigan Technological University

CHARACTERIZATION

Advanced Characterization Techniques for **Quantifying and Modeling Deformation — Poster** Session

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Mariyappan Arul Kumar, Los Alamos National Laboratory; Irene Beyerlein, University of California, Santa Barbara; Wolfgang Pantleon, Technical University of Denmark; C. Tasan, Massachusetts Institute of Technology, Olivia Jackson, Sandia National Laboratories

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

- L-1: Elastic Mismatch and Mixed-mode Buckling-induced Delamination: Influence on Mode I Adhesion Measurements: Stanislav Zak¹; Megan Cordill¹; ¹Erich Schmid Institute of Materials Science, Austrian Academy of Sciences
- L-2: Grain-scale Multiaxial Deformation in Multicomponent Alloys: Yaozhong Zhang¹; ¹University of Michigan
- L-3: Overview of a Versatile Loading System for Anisotropic Material Property Characterization: Malachi Nelson¹; David Kamerman¹; Peter Hosemann²; ¹Idaho National Laboratory; ²University of California, Berkeley
- L-4: Pythonic ODFs and SODFs for EBSD and Far Field HEDM: Austin Gerlt¹; Eric Payton²; Donald Boyce³; Joel Bernier⁴; Paul Shade²; Mark Obstalecki²; Stephen Niezgoda¹; ¹Ohio State University; ²Air Force Research Lab; ³Cornell University; ⁴Lawrence Livermore National Laboratory

L-5: Shear Behavior of AL2O24-T351: Experiments and Modeling: Sara Ricci¹; Saryu Fensin²; Benjamin Derby²; J. Valdez²; George Gray²; Gianluca lannitti¹; Andrew Ruggiero¹; Nicola Bonora¹; G. Testa¹; ¹University of Cassino and Southern Lazio; ²Los Alamos National Laboratory

L-6: Tensile Properties and Damage Tolerance of FiberForm: Robert Quammen¹; Connor Varney¹; Paul Rottmann¹; ¹University of Kentucky

L-7: Validating Texture and Lattice Strain Models via In-situ Neutron Diffraction and Shear Tests: Efthymios Polatidis¹; Manas Upadhyay²; Jan Capek¹; ¹Paul Scherrer Institute; ²Ecole Polytechnique

L-8: (S)TEM Characterization of Stability of Retained Austenite in Medium Mn Steel under Severe Deformation: *Italo Oyarzabal*¹; ¹Institut Jean Lamour

ADVANCED MATERIALS

Advanced Functional and Structural Thin Films and Coatings & Honorary Palkowski Session — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Adele Carrado, University of Strasbourg - IUT LP / IPCMS - CNRS; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, IS2M; Ravindra Nuggehalli, New Jersey Institute of Technology; Heinz Palkowski, Clausthal University of Technology

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chairs: Adele Carrado, University of Strasbourg, IPCMS, CNRS; Ramana Chintalappale, University of Texas at El Paso; Gerald Ferblantier, University of Strasbourg, ICube Laboratory, CNRS; Karine Mougin, CNRS, IS2M; Ravindra Nuggehalli, New Jersey Institute of Technology; Heinz Palkowski, Clausthal University of Technology, Institute of Metallurgy

A Review of P(St-MMA-AA) Synthesis via Emulsion Polymerization, 3D P(St-MMA-AA) Photonic Crystal Fabrication and Photonic Application: Ikhazuagbe Ifijen¹; Esther Ikhuoria²; Stanley Omorogbe¹; Aireguamen Aigbodion¹; Salisu Ibrahim³; ¹Rubber Research Institute of Nigeria; ²University of Benin; ³ Rubber Research Institute of Nigeria

Enhancing Cutting Performance for Difficult-to-cut Workpiece by Oxide Hard Coating: Joonbong Lee¹; Ki Buem Kim¹; Taekjib Choi¹; ¹Sejong University

J-1: Growth, Structure, Phase Stabilization and Optical Properties of Wide Band Gap Germanium Oxide Thin Films: Paul Nalam¹; Debabrata Das¹; Ramana Chintalapalle¹; ¹The Center for Advanced Materials Reserach, UTEP

J-2: Influence of Light Intensity and Temperature on Solar Cell Performance: Allyson Tarifa¹; Aditya Barman²; Nuggehalli Ravindra¹; New Jersey Institute of Technology; ²Middlesex County Academy for Science, Mathematics, and Engineering Technologies

Self-Assembly of Particles Adsorbed on the Drop Surface: *Kinnari Shah*¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

Utilization of Plant Oil Based-Fatliquor in the Processing of Leather: Ikhazuagbe Ifijen¹; Isiaka Bakare¹; Efosa Obazee¹; Oghomwen Izelyamu¹; *Nyaknno U. Udokpoh¹*; A. Ohifuemen¹; F Mohammed¹; E. Fagbemi,¹; P Ayeke¹; ¹Rubber Research Institute of Nigeria

CHARACTERIZATION

Advanced Real Time Imaging — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: Biomaterials Committee

Program Organizers: Jinichiro Nakano, US Department of Energy - National Engergy Technology Laboratory; David Alman, National Energy Technology Laboratory; Il Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology; Noritaka Saito, Kyushu University; Anna Nakano, US Department of Energy National Energy Technology Laboratory; Zuotai Zhang, Sourthern University of Science and Technology; Candan Tamerler, University of Kansas; Bryan Webler, Carnegie Mellon University; Wangzhong Mu, Kth Royal Institute of Technology; David Veysset, Stanford University; Pranjal Nautiyal, University of Pennsylvania

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

L-9: In-situ Magnetic Computed Tomography for Additive Manufacturing: Bhairav Ramanathan¹; ¹Georgia Institute of Technology

Reinforcement of Band Delta-Ferrite Stability by Secondary Particles in AISI 416 Stainless Steel Investigated by In-situ Characterization: Qianren Tian¹; Jianxun Fu²; Wangzhong Mu³; ¹Shanghai University; KTH Royal Institute of Technology; ²Shanghai University; ³KTH Royal Institute of Technology

BIOMATERIALS

Advances in Biomaterials for 3D Printing of Scaffolds and Tissues — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Biomaterials Committee

Program Organizers: Changxue Xu, Texas Tech University; Jun Yin, Zhejiang University; Zhengyi Zhang, Huazhong University of Science and Technology; Yifei Jin, University Of Nevada Reno; Heqi Xu, Texas Tech University

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chair: Jiachen Liu, Texas Tech University

K-4: 3D Printing in Thermosensitive Nanoclay-Pluronic F127 Nanocomposite: *Yifei Jin*¹; ¹University of Nevada Reno

ADVANCED MATERIALS

Advances in Multi-Principal Element Alloys II — **Poster Session I**

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; E-Wen Huang, National Yang Ming Chiao Tung University; Jennifer Carter, Case Western Reserve University; Srivatsan Tirumalai; Xie Xie, FCA US LLC; James Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

- J-4: A Dynamic Recrystallization-induced Heterostructuring Strategy via Hot Rolling in a Ferrous Multi-principal Element Alloy: Jungwan Lee¹; Hyojin Park¹; Sujung Son¹; Jae Wung Bae²; Jinyou Kim³; Sung Kyu Kim3; Hyoung Seop Kim1; 1POSTECH; 2Pukyong National University; 3POSCO
- J-5: A Facile Strengthening Method by Co-doping Boron and Nitrogen in CoCrFeMnNi High-entropy Alloy
- : Sujung Son1; Jungwan Lee1; Peyman Asghari-Rad2; Gang Hee Gu1; Farahnaz Haftlang¹; Hyoung Seop Kim¹; ¹Pohang University of Science and Technology; ²The Pennsylvania State University
- A High-Throughput Investigation of Composition-Microstructure Relationships in NbVZrMx Alloys: Katharine Padilla¹; Zhaohan Zhang¹; Rohan Mishra¹; Katharine Flores¹; ¹Washington University in St. Louis
- J-6: A Micromechanical Investigation of the Orientation Dependent Plasticity of a MoNbTi Alloy: Glenn Balbus¹; Satish Rao¹; Oleq Senkov¹; Eric Payton¹; ¹Air Force Research Laboratory, Materials and Manufacturing Directorate
- J-7: A Neural Network Model for High Entropy Alloy Design: Jaemin Wang¹; Hyeonseok Kwon¹; Hyoung Seop Kim¹; Byeong-Joo Lee¹; ¹Pohang University of Science and Technology
- A Statistical Study on Incipient Plasticity of Medium-/High-entropy Alloys: A-Hyun Jeon¹; Yakai Zhao²; Zhe Gao¹; Upadrasta Ramamurty²; Jae-il Jang¹; ¹Hanyang University; ²Nanyang Technological University
- J-8: Abrupt Fluorite-pyrochlore and Pyrochlore-weberite Phase Transformations in Single-phase 20-component Ultrahighentropy Oxides: Keqi Song1; Dawei Zhang1; Jian Luo1; 1University of California, San Diego
- J-9: Activated Sintering of Ni-doped NbMoTaW Guided by a Computed Grain Boundary Diagram: Sashank Shivakumar¹; Keqi Song¹; Mingde Qin¹; Chunyang Wang²; Tianjiao Lei²; Huolin Xin²; Tim Rupert²; Jian Luo¹; ¹University of California San Diego; ²University of California Irvine
- J-10: An Investigation on Structure-property Correlation in TiVZrNb Light-weight High-entropy Alloy: Juree Jung¹; Jinwoo Seok¹; Jongtae Kim¹; Songyi Kim¹; Jiwoon Lee²; Gian Song²; Jaeyeol Jeon¹; Junhee Han¹; ¹KITECH; ²Kongju National University
- J-11: An Investigation on Transformation-induced-plasticity Mechanisms of Metastable Refractory Medium-entropy Alloys by Controlling Chemical Composition: Yunjong Jung¹; Kangjin Lee¹; Jiwoon Lee¹; Junhee Han²; Ke An³; Chanho Lee⁴; Peter Liaw⁵; Gian Song¹; ¹Kongju National University; ²Korea Institute of Industrial Technology; ³Oak Ridge National Laboratory; ⁴Los Alamos National Laboratory; 5The University of Tennessee

- Atomistic Investigation of Elementary Dislocation Properties Influencing Mechanical Behaviour of Cr15Fe46Mn17Ni22 Alloy and Cr20Fe70Ni10 Alloy: Ayobami Daramola¹; Anna Fraczkiewicz¹; Ghiath Monnet²; Christophe Domain²; Gilles Adjanor²; ¹Ecole des MINES SMS centre; ²DF Lab, Département Matériaux et Mécanique des Composants
- J-12: Atomistic Modeling of Physical Vapor Deposition and Meltquenching of CoCrFeNiTix High Entropy Alloys: Aoyan Liang¹; Andrea Hodge¹; Diana Farkas²; Paulo Branicio¹; ¹University of Southern California; ²Virginia Tech
- Bridge Martensite Phase Transformation through Microbands for Superior Dynamic Mechanical Properties in a Metastable Highentropy Alloy: Aomin Huang¹; ¹University of California San Diego
- J-14: Combinatorial Study of Rhenium Additions on the Non-Equiatomic VNbMoTaW System: Taohid Bin Nur Tuhser¹; Thomas Balk1; 1University of Kentucky
- J-15: Combinatorial Thin Film and Bulk Alloy Approach to Identify Non-equiatomic Compositions in MnFeCoNiCu System with Superior Phase Stability and Mechanical Properties: Tibra Das Gupta1; Thomas Balk1; 1University of Kentucky
- J-16: Comparison of Select High Entropy Alloys as Binders for Cemented Carbide: Jannette Chorney¹; Jerome Downey¹; K.V. Sudhakar¹; ¹Montana Technological University
- J-17: Comparison of Tensile and Compression Properties of Refractory High Entropy Alloys Developed by Natural Mixing Guided Design: Jae Kwon Kim1; Sang Jun Kim1; Eun Soo Park1; Taeyeop Kim²; Dongwoo Lee²; Hyun Gi Min¹; ¹Seoul National University; ²Sungkyunkwan University
- J-18: Crystal Plasticity Modeling and Machine Learning for High-Strength, High-Temperature Alloys: Stephanie Taylor¹; Jaime Marian¹; Amartya Banerjee¹; ¹University of California Los Angeles
- J-102: Crystallographic and Compositional Evolution during Isothermal Annealing of Refractory High Entropy Alloys: Insights into High Temperature Phase Stability: Sriswaroop Dasari¹; Abhishek Sharma¹; Rajarshi Banerjee¹; Vishal Soni¹; ¹University of North Texas
- J-19: Data-driven Search and Selection of Ti-containing Multiprincipal Element Alloys for Aeroengine Parts: Tanjore Jayaraman¹; Ramachandra Canumalla²; ¹University of Michigan-Dearborn; ²Weldaloy Specialty Forgings
- J-20: Design of Ductile Low-Activation Bcc Multi-principal Element Alloys: Heng Jiang¹; Ming Wang¹; MingXin Huang¹; ¹The University of Hong Kong
- J-21: Design of MoWTaTiZr Refractory Multi-principal Element Alloys for High-temperature Applications: Gaoyuan Ouyang¹; Prashant Singh¹; Jun Cui²; Matthew Kramer¹; Oleg Senkov³; Daniel Miracle³; Duane Johnson¹; ¹Ames Laboratory; ²Iowa State University; ³Air Force Research Laboratory
- J-22: Design of Novel AlCoCrNbNi Eutectic High Entropy Alloy with Adequate Strength, Ductility, and Oxidation Resistance: Lavanya Raman¹; Shweta Sharma¹; Gagan Goyal¹; Saurabh Singh¹; Yu Zhang¹; Na Liu¹; Amin Nozariasbmarz¹; Bed Poudel¹; Ravi Sankar Kottada²; Wenjie Li¹; Shashank Priya¹; ¹Pennsylvania State University; ²Indian Institute of Technology Madras
- J-103: Development and Application of WC-based Cemented Carbide Bonded with Co Based Multi-component Alloy Binder: Jinwoo Seok¹; Jun-Woo Song¹; Juree Jung¹; Jong Tae Kim¹; SongYi Kim¹; Hyoseop Kim¹; Moon-Jo Kim¹; Seul-Ki Han¹; Junhee Han¹;
- J-23: Accelerated Development of Refractory Multi-principal Element Alloys via Machine Learning: Carolina Frey1; Anthony Botros¹; Chris Borg²; James Saal²; Bryce Meredig²; Noah Phillips³; Tresa Pollock¹; ¹University of California Santa Barbara; ²Citrine Informatics; 3ATI

- J-24: Development of Refractory High Entropy Alloys via
- **Natural Mixing Guided Design**: Jae Kwon Kim¹; Sang Jun Kim¹; Taeyeop Kim²; Dongwoo Lee²; Eun Soo Park¹; *Hyun Gi Min*¹; ¹Seoul National University; ²Sungkyunkwan University
- J-25: DFT Investigation of FeNiCoCrMnAl and FeNiCoCrPdAl High Entropy Alloys: Fully Disordered versus Partially Disordered: Nguyen-Dung Tran¹; Ying Chen¹; ¹Tohoku University
- **Diffusion (Atomic Mobility) Databases for High-entropy Alloys**: *Wei Zhong¹*; Ji-Cheng Zhao¹; ¹University of Maryland
- Directional Solidification of the Medium-entropy Alloys from Al-Cr-Fe-Ni System: Oleg Stryzhyboroda¹; Ulrike Hecht¹; Victor Witusiewicz¹; ¹Access e.V.
- **J-26: Ductility at Room Temperature of BCC-RHEAs:** *Jin Wang*¹; Nicolas Peter¹; Ruth Schwaiger¹; ¹Forschungszentrum Juelich Gmbh
- J-27: Dynamic Precipitate Transformation in Ultrastrong and Ductile Maraging Medium-entropy Alloy: Hyun Chung¹; Won Seok Choi²; Hosun Jun²; Pyuck-Pa Choi²; Heung Nam Han³; Won-Seok Ko⁴; Seok Su Sohn¹; ¹Korea University; ²Korea Advanced Institute of Science and Technology; ³Seoul National University; ⁴Inha University
- J-28: Effect of Composition and Dose Rate on the Irradiation Behavior of Ni-based MPEAs: Anshul Kamboj¹: Emmanuelle Marquis¹: ¹University of Michigan, Ann Arbor
- J-29: Effect of the BCC Phase on Microstructures and Mechanical Properties of the FeCrNi Equiatomic Alloy: Jin-Seob Kim¹; Jin-Kyung Kim¹; ¹Hanyang University
- J-30: Effects of Oxygen Interstitials on Phase Stability and Phase Evolution in the HfNbTaTiZr RMPE Alloy: Leah Mills¹; Ravit Silverstein¹; Noah Philips²; Daniel Gianola¹; Tresa Pollock¹; ¹University of California-Santa Barbara; ²ATI Specialty Alloys and Components
- J-31: Effects of Potential Energy Statistics on Deformation Behavior in Concentrated Solid Solutions: Amir Shirsalimian¹; Ritesh Jagatramka²; Junaid Ahmed²; Matthew Daly²; ¹University of Illinois Chicago; ²University of Illinois-Chicago
- J-32: Enabling High-strength Refractory Complex, Concentrated Alloys via Multi-fidelity Experiments and Simulations: Michael Titus¹; Austin Hernandez¹; Sharmila Karumuri¹; Saswat Mishra¹; Zachary McClure¹; Kenneth Sandhage¹; Ilias Bilionis¹; Alejandro Strachan¹; ¹Purdue University
- J-33: Enhanced Mechanical Properties of Ti-rich Medium Entropy Alloys via Phase Diagram Engineering: Wen-Chi Yang¹; Ping-Yuan Deng¹; Hsin-Jay Wu¹; ¹National Yang Ming Chiao Tung University
- Evolution of Hierarchical Nanotwins in the Annealed Mn-free FeCoNiCr High-entropy Alloy Subjected to Ex-situ Tensile Deformation at a Cryogenic Temperature: Tsai-Fu Chung¹; Ching-Wen Yeh¹; Chih-Yuan Chen²; Chien-Nan Hsiao³; Cheng-Si Tsao⁴; Jer-Ren Yang⁵; ¹National Yang Ming Chiao Tung University; ²National Taipei University of Technology; ³Taiwan Instrument Research Institute; ⁴Institute of Nuclear Energy Research; ⁵National Taiwan University
- Fabrication of AlCoCrFeNi High Entropy Alloys via Binder Jetting and Direct Energy Deposition: Characterization, Microstructural Modification, and Analysis: Olujide Oyerinde¹; Justin Almeida¹; Ioannis Mastorakos¹; Philip Yuya¹; Ajit Achuthan¹; ¹Clarkson University
- J-34: Grain Boundary Segregation and Solute Drag in Multicomponent Alloys: *Milad Taghizadeh*¹; Malek Alkayyali¹; Fadi Abdeljawad¹; ¹Clemson University
- J-35: Grain Boundary Segregation Effects in Multi-Principal Element Alloys: Sarah Paguaga¹; Sarah Hunt¹; Joshua Arrington¹; Fadi Abdeljawad¹; ¹Clemson University

- J-36: GTA Weldability of Metastable Ferrous Medium-entropy Alloys with Various Welding Materials: Yoona Lee¹; Sanghyeon Park¹; Yoonsuk Choi¹; Nokeun Park²; Youngsang Na³; Namhyun Kang¹; ¹Pusan National University; ²Yeungnam University; ³Korea Institute of Materials Science
- J-37: High-density Nanoscale L12 Phase Strengthened FeNiCr-based Medium Entropy Alloys: *Guanghui Yang*¹; Jinkyung Kim¹; ¹Hanyang University
- J-38: High-throughput Calculation of the Alloying Effects on the Thermodynamic Properties of Al2Cu10Fe20MnxNiyCrz High Entropy Alloys: Md Abdullah Al Hasan¹; Xuesong Fan¹; Seungha Shin¹; Peter Liaw¹; ¹University of Tennessee
- J-39: High-throughput CALPHAD-type Calculation in Design of Coherent Precipitate-strengthening Al-Co-Cr-Mo-Ti Refractory High Entropy Superalloys: *Shao-Yu Yen*¹; Hideyuki Murakami²; Shihkang Lin¹; ¹National Cheng-Kung University; ²National Institute for Materials Science
- J-40: High-throughput Creation of Refractory High-Entropy Alloys: Rayna Mehta¹; Jesse Grant¹; Tim Weihs¹; ¹Johns Hopkins University
- J-41: High Temperature B2 Precipitation of Ru-Containing Refractory Alloys: Haojun You¹; Carolina Frey¹; Sebastian Kube¹; Kaitlyn Mullin¹; Andrew Detor²; Scott Oppenheimer²; Tresa Pollock¹; ¹UCSB Pollock Group; ²GE Research
- J-42: In-Situ Investigation of Damage in the AlCoCrFeNi2.1 High Entropy Alloy: Cal Siemens¹; David Wilkinson¹; ¹McMaster University
- J-43: In-situ Quasi-static Deformation Studies of CoCrNi Multiprincipal Element Alloys: Nathan Peterson¹; John Copley²; Benjamin Ellyson¹; Connor Rietema³; Francisco Coury; Francisco Coury⁴; Gustavo Bertoli⁴; Kester Clarke¹; Amy Clarke¹; ¹Colorado School of Mines; ²Princeton University; ³Lawrence Livermore National Laboratory; ⁴Federal University of São Carlos
- J-44: In-situ Tensile Testing Using Synchrotron Radiation in a CrCoNi Multi-Principal Element Alloy: Gustavo Bertoli¹; Benjamin Ellyson²; Amy Clarke²; Claudio Kiminami¹; Francisco Coury¹; ¹Federal University of São Carlos; ²Colorado School of Mines
- J-45: In Situ Neutron Diffraction Analyses of Dislocation Slip and Twinning Deformation in an Additively Manufactured CrCoNi Medium Entropy Alloy: Wanchuck Woo¹; Hobyung Chae¹; Soo Yeol Lee²; Stefanus Harjo³; Ke An⁴; ¹Korea Atomic Energy Research Institute; ²Chungnam National University; ³Japan Atomic Energy Agency; ⁴Oak Ridge National Laboratory
- Investigation on Formation of Duplex Microstructure and Mechanical Properties in CrMnFeCoNiAlxTiy High-entropy Alloy: Jongtae Kim¹; Juree Jung¹; Jinwoo Seok¹; Junwoo Song¹; Jeongeun Kim²; Gian Song²; Junhee Han¹; ¹KITECH; ²Kongju National University
- J-46: Irradiation-induced Segregation in Complex Concentrated Alloys: Daniele Fatto Offidani¹; Anshul Kamboj¹; Emmanuelle Marquis¹; ¹University of Michigan Ann Arbor

ADVANCED MATERIALS

Advances in Multi-Principal Element Alloys II — **Poster Session II**

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; E-Wen Huang, National Yang Ming Chiao Tung University; Jennifer Carter, Case Western Reserve University; Srivatsan Tirumalai; Xie Xie, FCA US LLC; James Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

J-47: Machine Learning On-the-fly KMC Study of Vacancy Diffusion of Concentrated Ni-Fe Model Alloys: Wenjiang Huang¹; Xianming Bai¹; ¹Virginia Polytechnic Institute

Mechanical Properties and Deformation Mechanisms in TiMoNbZr Medium Entropy Alloys: A Molecular Dynamics Study: Avinash Chavan1; Mangal Roy1; 1IIT Kharagpur

- J-48: Mechanical Properties and Dislocation Activities of B2 High-**Entropy Intermetallic Compounds**: Ya-Jing Lee¹; Ting-Ying Shih¹; Cheng-Yuan Tsai¹; Shou-Yi Chang¹; ¹National Tsing Hua University
- J-49: Mechanical Properties and Plastic Instabilities of FeAlCrbased Complex Concentrated Alloys: Tomáš Tayari¹; Michal Knapek¹; Peter Minárik¹; Josef Stráský¹; Josef Pešička¹; ¹Charles University
- J-50: Mechanical Properties of Medium Entropy Alloys: Sheron Tavares¹; Bingfeng Wang²; Saryu Fensin³; Marc Meyers¹; ¹University of California San Diego; ²Central South University; ³Los Alamos National Laboratory
- J-51: Metastability Engineering of Partially Recrystallized C-doped Non-equiatomic CoCrFeNiMo Medium-entropy Alloy: Hyeonseok Kwon¹; Alireza Zargaran¹; Peyman Asghari-Rad²; Eun Seong Kim¹; Gang Hee Gu¹; Jungwan Lee¹; Jongun Moon¹; Jae Wung Bae³; Hyoung Seop Kim1; 1POSTECH; 2Pennsylvania State University; ³Pukyong National University

Microalloying Technology: A Promising Strategy for Designing Nanostructured High-entropy Alloy Films: Wenyi Huo1; Łukasz Kurpaska¹; Hyoung Seop Kim²; Stefanos Papanikolaou¹; ¹National Centre for Nuclear Research; ²Pohang University of Science and Technology

- J-52: Microstructural and Mechanical Analysis of Cobalt-Free High Entropy Alloys: Morgan Ashbaugh¹; Jerome Downey¹; Jannette Chorney¹; ¹Montana Technological University
- J-53: Microstructure and Hardness of (CoCrCuTi) 100-x Fex with Duplex Hexagonal-Cubic Multi Principal Element Alloys: Brittney Terry¹; Reza Abbaschian¹; ¹University of California, Riverside

Microstructure and Mechanical Properties of In-situ TiC Reinforced Nb-Ta-V-Ti High Entropy Alloys: Jeong Pyo Lee¹; Jeong Eun Kim¹; Gian Song¹; Jin Kyu Lee¹; ¹Kongju National University

Microstructure and Mechanical Property of Gas Tungsten Arc and Friction Stir Welds of L12 Precipitate FCC High-entropy Alloy: Po-Ying Hsieh¹; Chih-Hsien Liao¹; Hung-Chih Liu¹; Po-Ting Lin¹; Pai-Keng Shen¹; Shao-Wei Hunag¹; Yutaka S. Sato²; Che-Wei Tsai¹; ¹National Tsing Hua University; ²Tohoku University

- J-54: Microstructure, Mechanical Properties, and Long-term Stability of FeMnNiAlCr High Entropy Alloys for Concentrated Solar Power Systems: Edwin Jiang¹; Xiaoxue Gao¹; Andrew Pike¹; Ian Baker¹; Jifeng Liu¹; Geoffroy Hautier¹; ¹Dartmouth College
- J-55: Minor Addition of Boron on Macro- and Micro-Mechanical Properties of Refractory High-Entropy Alloys: Ping-Hsu Ko1; Ya-Jing Lee¹; Shou-Yi Chang¹; ¹National Tsing Hua University
- J-56: Nanoindentation Creep of Electrodeposited Nanocrystalline NiFeCo Medium Entropy Alloy: Lizhong Lang1; Michel Haché1; Yu Zou¹; ¹University of Toronto
- J-57: Neutron Diffraction and Total Scattering Investigation of an Unusual Long-range Order-Disorder Transition Competing with Short-range Ordering in 10-component Oxides: Dawei Zhang¹; Yan Chen²; Heidy Vega¹; Tianshi Feng¹; Dunji Yu²; Michelle Everett²; Joerg Neuefeind²; An Ke²; Renkun Chen¹; Jian Luo¹; ¹University of California San Diego; ²Oak Ridge National Laboratory
- J-58: Non-Equatomic Composition Effect on the Thermodynamic Properties of MoNbTaW: Sarah O'Brien1; Matthew Beck1; 1University of Kentucky
- J-59: On the Molten State Processing of Refractory Complex Concentrated Alloys: Calvin Belcher¹; Sakshi Bajpai¹; Benjamin MacDonald¹; Enrique Lavernia¹; Diran Apelian¹; California Irvine
- J-60: On the Pursuit of Stress-induced Transformation Effect in the High-entropy Ti-Zr-Nb-Mo-Al System: Mariano Casas Luna¹; Dalibor Preisler¹; Jií Kozlík¹; Miloš Janeček¹; Josef Stráský¹; ¹Charles University
- J-61: Order-Disorder Effects in Mixed BCC/FCC FeNiMoW MPEA: Sarah O'Brien1; Matthew Beck1; 1University of Kentucky
- J-62: Phase-field Crystal Modeling of Deformation Mechanics in BCC Refractory Metal-based MPEAs: Kate Elder¹; Joel Berry¹; Amit Samanta¹; Aurelien Perron¹; Scott McCall¹; Joseph McKeown¹; ¹Lawrence Livermore National Laboratory
- J-63: Phase Stability in Ti-Zr-Nb Refractory Medium Entropy Alloys from Atomistic Simulations: Sally Issa¹; Céline Varvenne¹; Guy Tréglia¹; Hakim Amara²; ¹Aix Marseille Université, CNRS, CINAM; ²LEM ONERA

Phase Stability of Hf-Mo-Nb-Ta-Ti Refractory Multi-Principal Element Alloys: Anthony Botros¹; Carolina Frey¹; Noah Phillips²; Tresa Pollock1; 1UCSB; 2ATI

- J-64: Plastic Behavior of Phase-separated FCC Complex Concentrated Alloys: Shawn Chen¹; *Ibrahim Altarabshe*¹; ¹Louisiana **Tech University**
- J-65: Plastic Deformation of BCC Medium-entropy Alloys in the Ti-Zr-Nb Systems: Shohei Onda¹; Shu Han¹; Zhenghao Chen¹; Kyosuke Kishida1; Haruyuki Inui1; 1Kyoto University
- J-66: Plastic Deformation of Single Crystals of Ternary Equiatomic Alloys with the FCC Structure: Seiko Tei¹; Shougo Kuroiwa¹; Le Li¹; Zhenghao Chen¹; Kyosuke Kishida¹; Haruyuki Inui¹; ¹Kyoto University
- J-67: Preferential Composition during Nucleation and Growth in Multi-Principal Elements Alloys: Saswat Mishra¹; Alejandro Strachan1; 1Purdue University
- J-68: Processing-Structure Relationship in Additive Friction Stir Deposited AlxCoCrFeNi Complex Concentrated Alloys: Michael Amling¹; Malcolm Williams²; Paul Allison²; Mark Weaver¹; ¹University of Alabama; ²Baylor University
- J-69: Recrystallization Behavior of NbTiZr-Containing Refractory Multi-Principal Element Alloys: Adira Balzac¹; Benjamin Ellyson¹; Kester Clarke¹; Amy Clarke¹; ¹Colorado School of Mines
- J-71: Relaxation and Diffusion Processes at High Temperature in Fe-Mn-Cr-Ni-Co High Entropy Alloy Studied by Mechanical **Spectroscopy**: Jose San Juan¹; Lucía Del-Río¹; Guillaume Laplanche²; María Nó¹; ¹Universidad del Pais Vasco; ²Ruhr Universität Bochum

J-72: Shape Memory Effect in CrMnFeCoNi Multi-principal Element Alloys: Je In Lee¹; Jinsurang Lim¹; Wook Ha Ryu²; Hyun Seok Oh³; Eun Soo Park²; Koichi Tsuchiya⁴; ¹Pusan National University; ²Seoul National University; ³Massachusetts Institute of Technology; ⁴National Institute for Materials Science

J-73: Solid Particle Erosion Resistance of Eutectic High-entropy Alloys Using an Improved Air-jet Sandblaster Method: Wandong Wang¹; Yu Zou¹; ¹University of Toronto

J-74: Study of the Grain Growth Kinetics and Hall-Petch Relationship in Fe-rich Multi-principal Element Alloys: David Silva¹; Gustavo Bertoli¹; Michael Kaufman²; Amy Clarke²; Francisco Coury¹; Claudemiro Bolfarini¹; ¹Federal University of São Carlos; ²Colorado School of Mines

Synchrotron X-ray Diffraction and Tomography Simultaneous Studies of Multiple Phase Transformation Dynamics in Al-based Multiple Component Alloys: *Kang Xiang*¹; Shi Huang¹; Hongyuan Song¹; Jiawei Mi¹; ¹University of Hull

J-75: Synthesis and Characterization of Novel Multi-element Magnesium-based Medium Entropy Alloys: *Srivatsan Tirumalai*¹; Khin Tun¹; Manoj Gupta¹; ¹The University of Akron

J-76: The AlMoO.5NbTaO.5TiZr Refractory High Entropy Superalloy: Experimental Findings and Comparison with Calculations Using the CALPHAD Method: Patricia Suarez Ocano¹; Leonardo Agudo Jácome¹; Suzana G. Fries²; Inmaculada Lopez-Galilea²; Reza Darvishi Kamachali¹; ¹Bundesanstalt für Materialforschung und -prüfung (BAM); ²Ruhr-Universität Bochum (Bochum, Nordrhein-Westfalen)

The Precipitated Strengthening of Eta Phase on the Non-equimolar CoCrNiTi Medium-entropy Alloys: Pai-Keng Shen¹; Hung-Chih Liu¹; Shao-Lun Lu²; Hung-Wei Yen²; Jien-Wei Yeh²; Che-Wei Tsai¹; ¹National Tsing Hua University; ²National Taiwan University

Thermal Super-jogs Control High-temperature Strength in Nb-Mo-Ta-W Alloys: Sicong He¹; Xinran Zhou¹; Jaime Marian¹; ¹University of California, Los Angeles

J-77: Transmission Electron Microscopy of Temperature Dependent Deformation Mechanisms in Multi-principal Element Alloys: Madelyn Payne¹; Mingwei Zhang²; Punit Kumar²; Mark Asta²; Robert Ritchie²; Andrew Minor²; ¹University of California, Berkeley; ²Lawrence Berkeley National Laboratory

Ultra-low Thermal Conductive Metallic Material: High Entropy Alloy Foam: Kook Noh Yoon¹; Khurram Yaqoob²; Je In Lee³; Jin Yeon Kim¹; Eun Soo Park¹; ¹Seoul National University; ²National University of Sciences and Technology; ³Pusan National University

MATERIALS PROCESSING

Advances in Powder and Ceramic Materials Science — Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Materials Characterization Committee, TMS: Powder Materials Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, Virginia Polytechnic Institute and State University; Faqin Dong, Southwest University of Science and Technology; Jinhong Li, China University of Geosciences; Ruigang Wang, The University of Alabama; Alexander Dupuy, University of California, Irvine

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chair: Kathy Lu, Virginia Polytechnic Institute and State University

N-1: Effect of Milling Time and Powder Particle Size on Microstructure and Mechanical Properties of Al- oxide-CNT Composites: Suhyun Bae¹; Seoyoon Gong¹; Donghyun Bae²; Se-Eun Shin¹; ¹Sunchon National University; ²Yonsei University

N-2: Influence of Microstructure and Sodium Doping on Charge Transport in High Entropy Oxides: Yiheng Xiao¹; Justin Cortez¹; Alexander Dupuy¹; Julie Schoenung¹; ¹University of California Irvine

Influence of Secondary Phase Segregation on Electrical Behavior in Entropy Stabilized Oxides: Alina Vizcaya¹; Arturo Meza¹; Alexander Dupuy¹; Julie Schoenung¹; ¹University of California Irvine

N-3: Mechanical Behavior of Milli-Scale AM Metallic Lattice Structures as Reinforcement for Ceramic Matrix Composites: Catherine Barrie¹; Dajie Zhang²; Steven Storck²; Gianna Valentino²; Don King²; Kevin Hemker¹; ¹Johns Hopkins University; ²Johns Hopkins Applied Physics Lab

N-4: Role of Phase Heterogeneity on Mechanical Behavior in Entropy Stabilized Oxides: *Luz Gomez*¹; Salma El-Azab¹; Alexander Dupuy¹; Julie Schoenung¹; ¹University of California, Irvine

N-5: TEM Investigation of the Strengthening Effects from Grain Boundary Segregation and Precipitation in W- and W-Mocontaining High-entropy Borides: *Huolin Xin*¹; Chunyang Wang¹; ¹University of California - Irvine

N-6: Use of Ceramic Waste in Different Percentages as a Replacement of the Fine Aggregate In Mortars: Mariana Cherene¹; Gustavo Xavier¹; Afonso Azevedo¹; Sergio Monteiro²; ¹UENF - State University of the Northern Rio de Janeiro; ²IME - Military Institute of Engineering

MATERIALS PROCESSING

Advances in Surface Engineering V — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Bharat Jasthi, South Dakota School of Mines & Technology; Arif Mubarok, PPG Industries; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

N-7: Effect of Ultrasonic Impact Peening on Austenitic Stainless Steel Welds for Nuclear Canister Applications: Merbin John¹; Alessandro Ralls¹; Manoranjan Misra¹; Pradeep Menezes¹; ¹University of Nevada

N-32: Evaluation of LME Susceptibility of Al-Zn-Si Coated TRIP **Steel**: Daehoon Jeong¹; Seok-Hyun Hong¹; Suk-Kyu Lee²; Sung-Joon Kim¹; ¹GIFT, POSTECH; ²POSCO Technical Research Laboratories

N-8: Microstructural Changes of Electron Beam Treated AISI 316L with the Combination of Computation of Thermal and Mechanical Fields: Crtomir Donik1; Irena Paulin1; Federica Rimoldi2; Matjaž Godec¹; Massimiliano Bestetti²; ¹Institute Of Metals And Technology; ²Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria "Giulio Natta"

N-9: Novel Fretting-Corrosion Mechanisms of Friction Stir Processed Steel Manufactured by High Deposition Rate Additive Manufacturing Process: Alessandro Ralls¹; Pradeep Menezes¹; ¹University of Nevada, Reno

Production of Gold Nano Films by Pulse Electrodeposition: Ugur Barut¹; Metehan Erdogan¹; ¹Ankara Yildirim Beyazit University

N-10: Use of Novel Degradable Surface Coatings for Enhanced Biofilm Growth: Cody Allen¹; Whytneigh Duffie¹; Timothy Brenza¹; Travis Walker¹; Venkataramana Gadhamshetty¹; ¹South Dakota School of Mines and Technology

MATERIALS DESIGN

Advances in Titanium Technology — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of Nevada-Reno; Zachary Kloenne, Ohio State University; Fan Sun, CNRS - PSL Research University; Stoichko Antonov, National Energy Technology Laboratory; Rongpei Shi, Harbin Institute of Technology (Shenzhen)

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

M-1: Development of a TWIP/TRIP Titanium Alloy: Mathew Cohen¹; Brian Welk¹; Gopal Viswanathan¹; Hamish Fraser¹; ¹The Ohio State University

M-2: Effect of Micro-texture Regions on the Creep Behavior of Rolled Ti-64 with Small-scale Cantilever Bending: Faizan Hijazi¹; Barna Roy¹; Dheepa Srinivasan²; *Praveen Kumar*¹; Vikram Jayaram¹; ¹Indian Institute of Science Bangalore; ²Pratt and Whitney

M-27: Investigation of Complex Microstructure in Selective Laser Melted Near Alpha Titanium Alloy Using Scanning Electron Microscopy: Cameron Tucker¹; Deepak Pillai¹; Ahsan Habib Munna¹; Yufeng Zheng²; ¹University of Nevada Reno; ²University of Nevada-Reno

M-3: Numerical Analysis of Oxide Growth and Oxygen Dissolution during High-temperature Oxidation of Ti-Al Alloys: Tomonori Kitashima¹; Makoto Watanabe¹; ¹National Institute for Materials Science

Systematic Review of the Synthesis of Titanium Oxide Nanoparticles via Plant Mediated Green Approach: Ifeanyi Odiachi¹; Oghomwen Ize-Iyamu²; Osaro Ize-Iyamu³; Chikaodili Ikechukwu⁴; Ikhazuagbe Ifijen²; ¹Delta State Polytechnic Ogwashi-Uku; ²Rubber Research Institute of Nigeria; ³ Ambrose Alli University; ⁴University of Benin

MATERIALS DESIGN

AI/Data Informatics: Computational Model **Development, Validation, and Uncertainty** Quantification — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Francesca Tavazza, National Institute of Standards and Technology; Dennis Dimiduk, BlueQuartz Software LLC; Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Shreyas Honrao, NASA Ames Research Center; Ashley Spear, University of Utah; Houlong Zhuang, Arizona State University

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

M-4: A Deep-learning Enabled Reliability Enhancement System for the Fused Deposition Modelling Process: Xiao Shang¹; Xingchen Liu¹; Jiahui Zhang¹; Qiyan Mao²; Yu Zou¹; ¹University of Toronto; ²Crescent School

Active Learning of Powder Milling Machine for Optimized Silicon Particle Size Control: Jong Ho Kim1; 1Research Institute of Industrial Science and Technology

Adaptive Learning from Scarce and Multi-Fidelity Data: Amin Yousefpour¹; Mehdi Shishehbor¹; Zahra Zanjani Foumani¹; Ramin Bostanabad¹; ¹University of California Irvine

M-5: Advanced Analytics on 3D X-ray Tomography of Irradiated Silicon Carbide Claddings: Fei Xu1; Joshua Kane1; Peng Xu1; Jason Schulthess¹; Sean Gonderman¹; ¹Idaho National Laboratory

M-6: Design of Casting-friendly TiAl Alloy by Artificial Neuron Network: Yu-Jen Tseng1; Hong-Yuan Sun2; Yi-Hsuan Sun1; Cheng-Hsueh Chiang²; Hung-Wei Yen¹; ¹National Taiwan University; ²Metal Institute Research & Development Centre

Effective Bulk Properties and Structure-property Relationships in Additively Manufactured Metal with Micron- and Nanometer-scale Structural Complexity: Mir Al-Masud¹; Ryan Griffith¹; Naji Mashrafi¹; Mujan Seif¹; Matthew Beck¹; ¹University of Kentucky

Glass Forming Ability of Silica Glasses with Machine Learning Based Prediction Technique: Jong Ho Kim1; 1Research Institute of Industrial Science and Technology

M-7: How Can I Use Machine Learning to Predict all the Process Parameters that will lead to a Specific Material Property in my Advanced Manufacturing Process?: Lizzy Coda¹; Loc Truong¹; Colby Wight¹; WoongJo Choi¹; Tegan Emerson¹; Keerti Kappagantula¹; Henry Kvinge¹; ¹Pacific Northwest National Lab

How Do You Optimize Your Parameters? Realistically Complex Hyperparameter Optimization of 23 Parameters of a Black Box Function over a Realistically Low Budget of 100 Iterations: Sterling Baird¹; Marianne Liu²; Taylor Sparks¹; ¹University of Utah; ²West High

M-9: Loss Curvature-informed Multi-property Prediction for Materials and Chemicals via Graph Neural Networks: Alex New¹; Michael Pekala¹; Nam Le¹; Janna Domenico¹; Christine Piatko¹; Christopher Stiles¹; ¹Johns Hopkins Applied Physics Laboratory

M-10: Modeling the Phase Transition of 2-D Magnetic Materials under the Effects of External Parameters Uncertainty: Md Mahmudul Hasan¹; Zekeriya Ender Eger¹; Arulmurugan Senthilnathan¹; Pinar Acar1; 1Virginia Tech

M-11: Optimized Print Parameter Prediction by Machine Learning: Kevin Graydon¹; Yongho Sohn¹; ¹University of Central Florida

M-12: Scaling Microstructure-dependent Mechanical Properties to Bulk Material Properties Using 3D Convolutional Neural Networks: Laura Ziegler¹; Carter Cocke¹; Ashley Spear¹; ¹University of Utah

M-13: Synthetic Data-assisted Unsupervised Domain Adaptation for Hierarchical Microstructure Reconstruction: Ali Durmaz1; Muhammad Karim¹; Oleg Shchyglo²; Akhil Thomas¹; Chris Eberl³; ¹Fraunhofer IWM; ²Ruhr-Universität Bochum; ³University of Freiburg

MATERIALS DESIGN

Algorithm Development in Materials Science and **Engineering — Poster Session**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Solidification Committee, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Adrian Sabau, Oak Ridge National Laboratory; Ebrahim Asadi, University of Memphis; Enrique Martinez Saez, Clemson University; Garritt Tucker, Colorado School of Mines; Hojun Lim, Sandia National Laboratories; Vimal Ramanuj, Oak Ridge National Laboratory

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

M-14: Differential Property Prediction: A Machine Learning Approach to Experimental Design in Advanced Manufacturing: Loc Truong¹; WoongJo Choi¹; Colby Wight¹; Elizabeth Coda¹; Tegan Emerson¹; Keerti Kappagantula¹; Henry Kvinge¹; ¹PNNL

MATERIALS DESIGN

Alloy Development for Energy Technologies: ICME Gap Analysis — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Ram Devanathan, Pacific Northwest National Laboratory; Raymundo Arroyave, Texas A & M University; Carelyn Campbell, National Institute of Standards and Technology; James Saal, Citrine Informatics

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chair: Ram Devanathan, Pacific Northwest National Lab

M-15: Molecular Dynamics Study of Gradient Energy Coefficient and Grain-boundary Migration in Aluminum Foam: Chaimae Jouhari¹; Yucheng Liu¹; Doyl Dickel²; ¹South Dakota State University; ²Mississippi State University

BIOMATERIALS

Biological Materials Science — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Jing Du, Pennsylvania State University; David Restrepo, University of Texas at San Antonio; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Ling Li, Virginia Polytechnic Institute

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chairs: Jing Du, Pennsylvania State University; Ning Zhang, University of Alabama; Li Ling, Virginia Polytechnic Institute

K-5: A Systematic, Phylogeny-based Study of the Structural, Crystallographic, and Mechanical Properties of Avian Eggshells: Zhifei Deng¹; Zian Jia¹; Emily Peterman²; Mary Stoddard³; Ling Li¹; ¹Virginia Polytechnic Institute and State University; ²Bowdoin College; 3Princeton University

K-6: Bioinspired Magnetic Freeze Casting with Particles of Differing Shapes: Maddie Schmitz¹; Steven Naleway¹; ¹University of Utah

K-7: Complex Variable Method to Analyze Bio-inspired Phononic Metamaterials: Juan C. Velasquez-Gonzalez1; Juan David Navarro1; William Beck1; David Restrepo1; 1The University of Texas at San Antonio

K-8: Effect of Substrate Density on Structure and Physiology of Fungal Hyphal Systems: Elise Hotz¹; Steven Naleway¹; ¹University of Utah

K-9: On the Mechanical Properties of Dual-scale Microlattice of Starfish Ossicles: A Computational Study: Hongshun Chen¹; Zian Jia1; Zhifei Deng1; Ling Li1; 1Virginia Tech

K-10: Revealing Toughening Mechanisms in Coconut Endocarp: Ning Zhang¹; Sharmi Mazumder²; ¹Baylor University; ²University of Alabama

ADVANCED MATERIALS

Bulk Metallic Glasses XX — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Robert Maass, Federal Institute of Materials Research and Testing (BAM); Peter Derlet, Paul Scherrer Institut; Katharine Flores, Washington University in St. Louis; Yonghao Sun, The Chinese Academy of Sciences; Lindsay Greer, University of Cambridge; Peter Liaw, University of Tennessee

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

J-78: A Study of Ideal Glass State via High Entropy Metallic Glasses: Ji Young Kim¹; Geun Hee Yoo¹; Jung Soo Lee²; Hye-Jung Chang³; Jinwoo Hwang⁴; Eun Soo Park¹; ¹Seoul National University; ²Seoul National University / Inha University; 3Korea Institute of Science and Technology; 4The Ohio State University

A Theoretical Framework for Predicting the Ultimate Strength of Metals: Nicolas Argibay¹; Michael Chandross²; ¹DOE Ames Laboratory; ²Sandia National Laboratories

J-79: Comprehensive Investigation of Glass Formation Behavior of Ni-based Binary Alloys Considering Thermodynamics and Kinetics: Min Kyung Kwak¹; Heh Sang Ahn¹; Wook Ha Ryu¹; Eun Soo Park¹; Myeong Jun Lee¹; ¹Seoul National University

J-80: Evidence of Pre-crystallization Structures in a Zr-based Metallic Glass: Amlan Das¹; Ruitao Zhao²; Eric Dufresne³; Yonghao Sun²; Robert Maass⁴; ¹Cornell High Energy Synchrotron Source; ²Institute of Physics, Chinese Academy of Sciences; ³Advanced Photon Source, Argonne National Laboratory; ⁴Federal Institute of Materials Research and Testing (BAM), University of Illinois at Urbana-Champaign

J-81: Investigation of Isothermal Crystallization Behavior of Zr-Cu-Ni-Al Metallic Glass with Enhanced Icosahedral Ordering via Flash **DSC**: Myeong Jun Lee¹; Geun Hee Yoo¹; Eon Su Kim¹; Wook Ha Ryu¹; Eun Soo Park¹; ¹Seoul National University

J-83: Microstructure and Wear Properties of Novel Fe Metamorphic Alloy Manufactured by Thermal Spray Process: Yu-Jin Hwang¹; Yong-Hoon Cho1; Gi-Su Ham2; Choongyun Paul Kim2; Kee-Ahn Lee1; ¹Inha university; ²KOLON Industries

J-84: Tailoring Structure and Properties of Bulk Metallic Glass through a Laser-process and Thermomechanical Process: Geun Hee Yoo¹; Tae Gyu Park¹; Jin Yeon Kim¹; Eun Soo Park¹; ¹Seoul National University

Thermodynamic Analysis and Modeling of Novel Ternary Ni-Pd-S Bulk Metallic Glass-forming System: Maryam Rahimi Chegeni¹; Wenhao Ma²; Sascha Sebastian Riegler¹; Magnus Rohde²; Amirhossein Ghavimi¹; Hans Jürgen Seifert²; Isabella Gallino¹; Ralf Busch¹; ¹Saarland University; ²Karlsruhe Institute of Technology

J-85: Using Machine Learning to Find Correlations of Structure Motifs with Metallic Glass States and Mechanical Properties: Suyue Yuan¹; Paulo Branicio¹; ¹University of Southern California

NUCLEAR MATERIALS

Ceramic Materials for Nuclear Energy Research and Applications — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Energy Committee

Program Organizers: Walter Luscher, Pacific Northwest National Laboratory; Xian-Ming Bai, Virginia Polytechnic Institute and State University; Lingfeng He, North Carolina State University; Sudipta Biswas, Idaho National Laboratory; Simon Middleburgh, Bangor University

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Radiation Damage in Lithium Oxide, a Surrogate for Beryllium Carbide: David Magee1; Diego Muzquiz2; Stephen Raiman3; David Holcomb⁴; ¹Lancaster University; ²University of Michigan; ³Texas A&M University; 4Oak Ridge National Laboratory

O-1: Uranium Silicide Processing for Advanced Reactors: Zach Huber1; Elise Conte1; 1Pacific Northwest National Laboratory

CHARACTERIZATION

Characterization of Minerals, Metals and Materials — **Poster Session**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Mingming Zhang; Zhiwei Peng, Central South University; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, Eurofins EAG Materials Science LLC; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, DEVCOM ARL Army Research Office; Shadia Ikhmayies

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chairs: Rajiv Soman, Eurofins EAG Materials Science LLC; Andrew Brown, Army Research Laboratory

L-10: Activating Components in Activated Alkali Paste of Metakaolin and Ceramic Waste: André Marques Junior¹; Lucas Cruz¹; Luis Tambara Júnior¹; Markssuel Marvila¹; Carlos Mauricio Vieira¹; Sergio Monteiro²; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense; ²IME

L-11: An Innovative Instrument Determines Chemistry at the Scale of 3D Printing: Jonathan Putman¹; Ellen Williams¹; Peyton Willis¹; ¹Exum Instruments

Analysis of Bioextracts from Fruits the Brazilian Amazon: Luana Demosthenes¹; Sergio Neves Monteiro¹; ¹Military Engineering Institute

L-12: Analysis of the Performance of Cementitious Mortars Reinforced with Pineapple Crown Leaf Fiber and Coconut Fiber: Iully Pereira¹; José Alexandre Linhares Junior¹; Isabela Batista¹; Karine Tavares¹; Mariana Pereira¹; Sergio Monteiro¹; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense

- L-13: Analysis of the Properties in the Fresh State of Alkali Activated Paste of Metakaolin and Flue Gas Desulfurization Waste: Davi Vaz Junior¹; Leandro Oliveira¹; Luis Tambara Júnior¹; Markssuel Marvila²; Carlos Mauricio Vieira¹; Sergio Monteiro³; *Afonso Azevedo*¹; ¹Universidade Estadual do Norte Fluminense; ²UFV; ³IME
- L-14: Analysis of the Properties in the Hardened State of an Alkali Activated Paste of Metakaolin and Flue Gas Desulfurization (FGD) Residue: Leandro Oliveira¹; Markssuel Marvila²; Davi Andre Junior¹; Luís Tambara Júnior¹; Carlos Muricio Vieira¹; Sergio Monteiro³; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense; ²UFV; ³IME
- L-15: Characterization and Mechanical Behavior of Pineapple Fiber Reinforced Geopolymer Composites: Jose Alexandre Linhares¹; Carlos Maurício Vieira¹; Iully Pereira¹; Afonso Azevedo¹; Sergio Monteiro²; Luís Tambara¹; Markssuel Marvila³; ¹Universidade Estadual do Norte Fluminense; ²Instituto Militar de Engenharia; ³Universidade Federal de Viçosa CRP
- L-16: Characterization and Thermal Behaviour of Different Type of Glassy Wastes: Carlos Fontes Vieira¹; Victor Bicalho Gava¹; Geovana Girondi Delaqua¹; Rubén Sánchez¹; Djalma Souza¹; Juraci Aparecido Sampaio¹; Agda Eunice de Souza²; Douglas Henrique Sales²; Silvio Rainho Teixeira¹; ¹State University of the North Fluminense; ²Universidade Estadual Paulista
- L-17: Characterization of Açaí Fibers (Euterpe Oleracea Mart.) for Application in Cement Composites: Tulane Silva¹; Paulo Matos²; Luis Tambara Júnior¹; Markssuel Marvila³; Sergio Monteiro¹; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense; ²UFSM; ³UFV
- L-18: Characterization of Aged and Recycled Metal Powder Feedstocks by LALI-TOF-MS: Madeline Martelles¹; Jonathan Putman²; Peyton Willis²; ¹University of Tulsa; ²Exum Instruments
- L-19: Characterization of Artificial Stone with Quartizitic Sand and with the Incorporation of Steel Residue: Tatiane Silva¹; Maria Luiza Gomes¹; Elaine Carvalho¹; Gabriela Barreto¹; Sérgio Monteiro²; *Carlos Maurício Vieira*¹; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro; ²Instituto Militar de Engenharia
- Characterization of Flotation and Leaching in Cyanide and Thiourea Medium of a Gold, Silver and Copper Ore: Martín Reyes Pérez¹; Iván Alejandro Reyes Domínguez²; Mizraim Uriel Flores Guerrero³; Elia Guadalupe Palacios Beas⁴; Julio Cesar Juárez Tapia¹; Miguel Pérez Labra¹; Francisco Raúl Barrientos Hernández¹; Aislinn Michelle Teja Ruiz¹; Ian Medina Estrada¹; ¹Autonomous University of the State of Hidalgo; ²Autonomous University of San Luis Potosí; ³Technological University of Tulancingo; ⁴National Polytechnic Institute
- L-20: Characterization of Glass Polishing Sludge Waste to Produce Clayey Rustic Floor Tiles: Carlos Fontes Vieira¹; Henry Colorado Lopera²; Afonso Rangel Garcez de Azevedo¹; Geovana Girondi Delaqua¹; Sergio Neves Monteiro¹; ¹State University of the North Fluminense; ²University of antioquia
- Characterization of the Dissolution of Gold and Silver Contained in a High-grade Mineral Concentrate using Thiourea: Martín Reyes Pérez¹; Arleth Martínez Escamilla¹; David Ponce Vergara¹; Iván Alejandro Reyes Domínguez¹; Mizraim Uriel Flores Guerrero²; Elia Guadalupe Palacios Beas³; Julio Cesar Juárez Tapia¹; Miguel Pérez Labra¹; Francisco Raúl Barrientos Hernández¹; ¹Autonomous University of the State of Hidalgo; ²Technological University of Tulancingo; ³National Polytechnic Institute
- Chemical Characterization of Filin-kokuwa Gold Deposit in Northeast Nigeria: *Markus Bwala*¹; Furqan Abdulfattah¹; Oladunni Alabi²; Suleiman Hassan¹; ¹Nigerian Institute of Mining and Geosciences (NIMG), Jos.; ²Federal University of Technology, Akure
- Comparative Study of the Mechanical Behavior of Pressed and Burned Ceramic Block Prisms with and without Grouting: Niander Cerqueira¹; Afonso Azevedo²; Victor Souza³; Jonas Alexandre²; Gustavo Xavier²; ¹Centro Universitário Redentor; ²UENF; ³Marinha do Brazil

- Construction Waste in Replacement of Aggregate in Concrete Production: Niander Cerqueira¹; Victor Souza¹; Afonso Azevedo²; ¹Centro Universitário Redentor; ²UENF
- L-22: Creep Behavior at 600 °C of 5Cr-0.5Mo Steel: Maribel Saucedo-Muñoz¹; Shin-Ichi Komazaki²; Victor Lopez-Hirata¹; ¹Instituto Politecnico Nacional-ESIQIE; ²Kagoshima University
- L-23: DMA Analysis of a Novel Epoxy Matrix Reinforced with Cyperus malaccensis: Lucas Neuba¹; Thuane Teixeira¹; Matheus Ribeiro¹; Raí¹; Andressa¹; Artur Camposo¹; Sergio Neves¹; ¹Instituto Militar de Engenharia
- L-24: Durability of Alkali Activated Tiles Produced with Residual Gray from the Ceramic Industry: Ariana Cruz¹; Luis Tambara Júnior¹; Markssuel Marvila²; Carlos Mauricio Vieira¹; André Marques Junior¹; Sergio Monteiro³; *Afonso Azevedo*¹; ¹Universidade Estadual do Norte Fluminense; ²UFV; ³IME
- L-25: Eco-friendly Mortar with Partial Replacement of the Fine Aggregate by Polyethylene Terephthalate (PET): Isabela Batista¹; Karine Tavares¹; Mariana Pereira¹; Iully Pereira¹; Jonas Alexandre¹; Sergio Monteiro²; *Afonso Azevedo*¹; ¹Universidade Estadual do Norte Fluminense; ²IME
- Effect of Fly Ash as Additive or Substitute for Portland Cement on the Initial Absorption of Concrete Blocks (Vibro-compacted): Hugo Garcia Ortiz¹; Edgar Martinez Rojo¹; Julio Juárez Tapia¹; Martín Reyes Pérez¹; Aislinn Teja Ruiz¹; ¹Universidad Autonoma del Estado de Hidalgo
- L-26: Evaluation of Coating Mortars with the Addition of Natural and Treated Açaí Seed (Euterpe Oleracea Mart): Gabriel Monteiro¹; Markssuel Marvila¹; Roman Fediuk²; Sergio Monteiro³; *Afonso Azevedo*¹; ¹Universidade Estadual do Norte Fluminense; ²Far Eastern Federal University; ³IME
- Evaluation of Different Treatment Methods of Natural Açaí Fibers (Euterpe Oleracea Mart.) for Cement Composites: Diego Rocha¹; Markssuel Marvila²; Daiane Cecchin³; *Maria Carollina Silva*¹; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense; ²UFV; ³UFF
- L-27: Evaluation of Fique Fabric Compatibility with Non-newtonian Liquid: Sergio Monteiro¹; Michelle Oliveira¹; André Figueiredo¹; Murilo Narciso¹; Arthur Trentin¹; Marco Campanha¹; Francisco Nazário¹; Levy Ribeiro¹; Ivo Lin¹; Andressa Teixeira¹; ¹Military Institute of Engineering
- L-28: Evaluation of the Degradation Effects of Durability Cycles in Geopolymer Mixtures with Glass Waste Incorporation: Lucas Cruz¹; Ariana Cruz¹; Markssuel Marvila²; Luis Tambara Júnior¹; Sergio Monteiro³; Carlos Mauricio Vieira¹; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense; ²UFV; ³IME
- L-29: Evaluation of the Durability of Adobe Bricks Made with Cattle Manure: Marina Brito¹; Samuel Dutra Jr.¹; Afonso Azevedo²; Markssuel Marvila¹; ¹Universidade Federal de Viçosa CRP; ²Universidade Estadual do Norte Fluminense
- L-30: Evaluation of the Impact of the Incorporation of Pineapple Crown Particles on the Compressive Properties of Composites: Jose Alexandre Linhares¹; David Velasco¹; Afonso Azevedo¹; Felipe Lopes¹; Sergio Monteiro¹; Carlos Maurício Vieira¹; Markssuel Marvila²; ¹Universidade Estadual do Norte Fluminense; ²Universidade Federal de Viçosa CRP
- Fabrication and Structural Analysis of BaTiO₃ Based Solid Solutions Codoped with La³+ and Bi ³+: María Inés Valenzuela Carrillo¹; Miguel Pérez Labra¹; Ricardo Martínez López¹; José Antonio Romero Serrano²; Francisco Raúl Barrientos Hernández¹; Martin Reyes Pérez¹; Julio Cesar Juárez Tapia¹; Aurelio Hernández Ramírez²; Gustavo Urbano Reyes¹; ¹Autonomous University of Hidalgo State; ²National Polytechnic Institute of Mexico
- L-31: Fundamental Study on Wettability of Pure Metal for Water -Theoretical Approach -: Jun-Ichi Saito¹; Yohei Kobayashi²; Hideo Sibutani³; ¹Japan Atomic Energy Agency; ²National Institute of Technology, Maizuru College; ³Kurume Institute of Technology

L-32: Fundamental Study on Wettability of Pure Metal for Water -**Experimental Approach -:** Jun-Ichi Saito¹; Yohei Kobayashi²; ¹Japan Atomic Energy Agency; ²National Institute of Technology, Maizuru College

Impact Resistance of Aluminum Foam Against High-energy Ammunition: Fabio Garcia Filho¹; Sergio Monteiro¹; ¹Military Institute of Engineering

L-33: Influence of the Time of Staining Agents on Ornamental Rocks: Bianca Maciel¹; Evanizis Frizzera¹; Thuany Lima²; Niander Cerqueira²; Marcelo Barreto³; Sergio Monteiro²; Carlos Mauricio Vieira²; Afonso Azevedo²; ¹IFES; ²Universidade Estadual do Norte Fluminense: 3IFF

Interlocking Concrete Block Paving with Added Green Sand Waste: Niander Cerqueira¹; Afonso Azevedo²; Victor Souza³; ¹Centro Universitário Redentor; ²UENF; ³Marinha do Brazil

L-34: Izod Impact Characterization of Engineered Artificial Stone Reinforced by Arapaima Gigas Fish Scales: Elaine Costa¹; Rafael Miranda¹; Noan Simonassi¹; Maria Luiza Gomes¹; Henry Colorado¹; Sérgio Neves Monteiro¹; Carlos Maurício Vieira¹; ¹Universidade Estadual do Norte Fluminense

L-35: Magnetic and Structural Properties of Cu1-xCoxFe2O4 Nanoparticles Prepared by a Modified Solgel Method: Imaddin Al-Omari¹; Smitha Bhaskaran²; Veena Gopalan E.²; ¹Sultan Qaboos University; ²Vimala College

L-36: Mechanical and Rheological Characterization of Cement Pastes with Marble Dust Waste: Karine Tavares¹; Isabela Batista¹; Mariana Pereira¹; Iully Pereira¹; Gustavo Xavier¹; Sergio Monteiro²; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense; ²IME

L-37: Mechanical Behavior of Geopolymer Matrix Composites with the Addition of Steel Fibers: Jose Alexandre Linhares¹; Samuel Azevedo¹; Afonso Azevedo¹; Carlos Maurício Vieira¹; Sergio Monteiro²; Luís Tambara¹; Markssuel Marvila³; ¹Universidade Estadual do Norte Fluminense; ²Instituto Militar de Engenharia; ³Universidade Federal de Viçosa - CRP

L-38: Mechanical Properties of Silica Fume-based Mortars Alkaline Activated by NaOH: Pedro Henrique Caldas¹; Afonso Azevedo²; Markssuel Marvila¹; ¹Universidade Federal de Viçosa - CRP; ²Universidade Estadual do Norte Fluminense

Microstructural Evolution of the CoCrFeNiMoO.2 High Entropy Alloy under Different Annealing Conditions: Fabio Garcia Filho1; Sergio Monteiro¹; ¹Military Institute of Engineering

L-39: Microstructure Analysis of Trip Fe-1.39Si-2.57Mn-0.17C Steel: Victor Lopez-Hirata¹; Maribel Saucedo-Muñoz¹; Brena Sandoval-Reyes¹; Jose Villegas-Cardenas¹; Felipe Hernandez-Santiago¹; Hector Javier Dorantes-Rosales¹; ¹Instituto Politecnico Nacional-**ESIQIE**

L-40: Performance Evaluation of Pineapple Crown Fibers (Ananas Comosus) in Cementitious Composites: Samuel Malafaia¹; Tulane Rodrigues¹; Luis Tambara Junior¹; José Alexandre Linhares Junior¹; Iully¹; Sergio Monteiro²; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense: 2IME

Performance of Amazonian Titica Vine Fibers in Pull-out tests: Juliana Cunha¹; Lucio Nascimento¹; Sergio Monteiro¹; ¹Military Institute of Engineering

L-41: Physicochemical and Environmental Features of Rice Husk Ash from Brazil to Use in Cement Materials: Anderson Muller1; Lisandro Simão¹; Eduarda Fraga Olivo¹; Afonso Azevedo²; Markssuel Marvila³; Carlos Mauricio Vieira²; Fabiano Raupp-Pereira¹; ¹UNESC; ²Universidade Estadual do Norte Fluminense; ³UFV

Production of Natural Fiber Composites by Additive Manufacturing: Jullie Anne Sampaio¹; ¹Instituto Militar de Engenharia

L-42: Production of Sustainable Artificial Stone from Granite Waste and Steel Waste and Polyurethane from Castor Oil: Maria Luiza Gomes¹; José Lucas Lirio¹; Carlos Maurício Vieira¹; Sérgio Monteiro²; Elaine Carvalho¹; Gabriela Barreto¹; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro; ²Instituto Militar de Engenharia

Quality Assessment of Concrete Blocks for Structural Masonry Produced in the North and Northwest Region of The State of Rio De Janeiro: Niander Cerqueira¹; Victor Souza²; Afonso Azevedo³; Jonas Alexandre³; Gustavo Xavier³; ¹Centro Universitário Redentor; ²Marinha do Brasil; ³UENF

L-43: Shine Behavior of Ornamental Rock Plates with the Reduction of Water Consumption in Polishing: Larissa Santos¹; Evanizis Frizzera¹; Thuany Lima²; Carlos Mauricio Vieira²; Sergio Monteiro³; Niander Cerqueira²; Marcelo Barreto⁴; Afonso Azevedo²; ¹IFES; ²Universidade Estadual do Norte Fluminense; ³IME; ⁴IFF

Structural Characterization of Europium-doped BaTiO3 Obtained by Solid-state Reaction Synthesis: J. P. Hernández-Lara¹; A. Hernández-Ramírez¹; J. A. Romero-Serrano¹; M. Pérez-Labra²; F. R. Barrientos-Hernández²; R. Martinez-Lopez²; M. I. Valenzuela-Carrillo²; ¹ESIQIE-IPN; ²Autonomous University of the State of Hidalgo

L-44: Study of Cement-based Mortars Reinforced with Guaruman Fibers in the Fresh State: Thuany Lima¹; Leandro Oliveira¹; Verônica Candido²; Alisson Rios²; Markssuel Marvila³; Sergio Monteiro⁴; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense; ²UFPA: ³UFV: ⁴IME

L-45: Study of Mortar with Incorporation of Different Proportions of Coconut Fiber with and without Previous Treatment: Mariana Pereira¹; Isabela Batista¹; Iully Pereira¹; Karine Tavares¹; Sergio Monteiro¹; Luis Tambara Júnior¹; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense

L-46: Study of the Properties of Geopolymeric Mortars with the Addition of Natural Pineapple Fibers in the Fresh State: Jose Alexandre Linhares¹; Iully Pereira¹; Afonso Azevedo¹; Sergio Monteiro²; Luís Tambara¹; Carlos Maurício Vieira¹; Markssuel Marvila³; ¹Universidade Estadual do Norte Fluminense; ²Instituto Militar de Engenharia; 3Universidade Federal de Viçosa - CRP

Synthesis and Characterization of SnO2 Nanoparticles Obtained by Sol-gel Method: Mizraim Flores¹; Atxayacalt Flores¹; Frida Yañez¹; Irais Cardenas¹; Ivan Reyes¹; Laura García¹; Pedro Ramírez¹; Rubén Olcay²; ¹Universidad Tecnológica de Tulancingo; ²Universidad Arturo Prat

Synthesis and Structural Characterization of Eu2TiO5 Using Atomic Substitution with Eu+3 in BaTiO3: Ricardo Martinez Lopez1; Miguel Pérez Labra¹; Francisco Raúl Barrientos Hernández¹; José A. Romero Serrano²; Aurelio Hernández Ramírez²; María Inés Valenzuela Carrillo¹; Martín Reyes Pérez¹; Julio Cesar Juárez Tapia¹; Victor Esteban Reyes Cruz¹; ¹Universidad Autonoma del Estado de Hidalgo; ²Metallurgy and Materials Department, ESIQIE-IPN. UPALM, Zacatenco

The Comparison of Mechanical Properties on Ni-Base Superalloy Casting Alloys For A-USC Power Generation Application: Jaihyun Park¹; ¹Research Institute of Industrial Science and Technology

Thermal Characterization of Epoxy Matrix Composites Reinforced with Babassu Fibers (Attalea speciosa): Yago Chaves1; Sergio Monteiro¹; Lucio Nascimento¹; Raí Junio¹; Lucas Neuba¹; Foluke De Assis²; Thais Gajo¹; Wendell Bezerra¹; Matheus Ribeiro¹; ¹Military Engineering Institute (IME); ²Instituto de Pesquisa da Marinha do Brasil

MATERIALS DESIGN

Computational Discovery and Design of Materials — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Houlong Zhuang, Arizona State University; Duyu Chen, University of California, Santa Barbara; Ismaila Dabo, Pennsylvania State University; Yang Jiao, Arizona State University; Sara Kadkhodaei, University of Illinois Chicago; Mahesh Neupane, Army Research Laboratory; Xiaofeng Qian, Texas A&M University; Arunima Singh, Arizona State University; Natasha Vermaak, Lehigh University

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chair: Houlong Zhuang, Arizona State University

M-16: Building an ImageNet for Materials Grain Boundaries: *Huolin Xin*¹; Jose Venegas²; Chengyun Zhao¹; ¹University of California - Irvine; ²Syracuse University

M-17: Generative Adversarial Networks and Diffusion Models in Material Discovery: Michael Alverson¹; Sterling Baird¹; Taylor Sparks¹; Department of Material Science and Engineering

M-28: Molecular Dynamics Investigation of Electrochemical Systems: *Lingxiao Mu¹*; Ismaila Dabo¹; Susan Sinnott¹; ¹The Pennsylvania State University

MATERIALS PROCESSING

Deformation-induced Microstructural Evolution during Solid Phase Processing: Experimental and Computational Studies — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Arun Devaraj, Pacific Northwest National Laboratory; Pascal Bellon, University of Illinois at Urbana-Champaign; Suhas Eswarappa Prameela, Massachusetts Institute of Technology; Mostafa Hassani, Cornell University

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Hybrid Rate Theory Model: Alternative Approach for Analysis of Radiation-induced Growth: *Mahdi Mohsini*¹; Peyman Saidi¹; Mark Daymond¹; ¹Queen's University

Microstructure Evolution for Modulate Color of Alloy: Study about Cu-Al-Zn-Sn Alloy: Gyeol Chan Kang¹; Hae Jin Park¹; Seogyeon Namgung¹; Ahjin Shim¹; Hyo Soo Lee²; Jin Kyu Lee³; Taek Jib Choi¹; Ki Buem Kim¹; ¹Sejong University; ²Korea Institute of Industrial Technology; ³Kongju National University

MATERIALS DESIGN

Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Additive Manufacturing Committee

Program Organizers: Jean-Charles Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Ashley Spear, University of Utah; Antonios Kontsos, Drexel University; Brian Wisner, Ohio University; Orion Kafka, National Institute of Standards and Technology

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

M-18: Comparison of Defect Structures and Fatigue Behavior of Ti-6Al-4V Specimens from Two Different L-PBF Machines: Mohammad Salman Yasin¹; Jia Liu¹; Shuai Shao¹; Nima Shamsaei¹; ¹Auburn University

M-19: Creep and Dwell Fatigue Studies of Ti-7Al with High-Energy Diffraction Microscopy and Acoustic Emission Measurements: Yuefeng Jin¹; Amlan Das²; Wenxi Li¹; Katherine Shanks²; Ashley Bucsek¹; ¹University of Michigan; ²Cornell High Energy Synchrotron Source

M-20: Fatigue Behavior of 304SS using Synchrotron X-ray Tomography and Diffraction: Ryan Schoell¹; Li Xi¹; Harvey West¹; Peter Hosemann²; Jun-Sang Park³; Peter Kenesei⁴; Jonathan Almer⁴; Zeev Shayer⁵; Djamel Kaoumi¹; ¹North Carolina State University; ²University of California Berkeley; ³Argonne National Laboratory; ⁴Argonne National Laboratory; ⁵Colorado School of Mines

M-21: Fatigue Crack Initiation and Growth Behaviour Within Various Notch Geometries in the Low-cycle Fatigue Regime of FV566 Inservice Steam Turbine Blade Material: Benjamin Cunningham¹; Philippa Reed¹; Ara Khodavirdi¹; ¹University of Southampton

M-22: Fatigue Evaluation of Additively Manufactured 316L Stainless Steel: *Khandokar Abu Talha*¹; ¹University of Southmapton

MATERIALS PROCESSING

Frontiers in Solidification: An MPMD Symposium Honoring Jonathan A. Dantzig — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Functional Materials Division, TMS Light Metals Division, TMS Structural Materials Division, TMS: Aluminum Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Process Technology and Modeling Committee, TMS: Solidification Committee

Program Organizers: Andre Phillion, McMaster University; Michel Rappaz, Ecole Polytechnique Fédérale De Lausanne; Melis Serefoglu, Marmara University; Damien Tourret, IMDEA Materials

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chairs: Andre Phillion, McMaster University; Michel Rappaz, EPFL; Melis Serefoglu, Marmara University; Damien Tourret, IMDEA Materials

N-11: Development of a Data Assimilation System that Integrates Phase-field Simulation and In-situ X-ray Imaging in Dendrite Growth: Ayano Yamamura1; Shinji Sakane1; Munekazu Ohno2; Hideyuki Yasuda³; Tomohiro Takaki¹; ¹Kyoto Institute of Technology; ²Hokkaido University; ³Kyoto University

N-12: Effect of Process Transients on Fall-in Material Behavior in Vacuum Arc Remelting: Caleb Schrad¹; Matthew Krane¹; ¹Purdue University

N-13: Fundamental Study on Nanoparticles Enhance Fluidity of Aluminum Alloys: Guan-Cheng Chen1; Xiaochun Li1; 1University of California Los Angeles

Graphite Microstructures within Solidified Hypereutectic Iron and Nickel Alloys: Steven Herrera¹; ¹University of California, Riverside

N-14: Modelling Three-dimensional Microstructure Solidification Incorporating Interdependent Structural Mechanisms: Peter Soar¹; Andrew Kao1; Georgi Djambazov1; Koulis Pericleous1; 1University of Greenwich

N-15: Peering into Peritectic Microstructures in Three Dimensions: Shanmukha Kiran Aramanda¹; Geordie Lindemann¹; Ashwin Shahani¹; ¹University of Michigan

N-16: Physics-embedded Graph Network for Accelerating Phase-field Simulation of Microstructure Evolution in Additive Manufacturing: Zhengtao Gan¹; ¹Northwestern University

Regular Fluctuation Cooling as an Alternative Crystal Growth Route to Control the Microstructure during Peritectic Solidification: Babak Alinejad¹; Amir Mostafaei¹; Haruhiko Udono²; ¹Illinois Institute of Technology; 2lbaraki University

CHARACTERIZATION

Heterostructured and Gradient Materials (HGM V): **New Mechanistic Discoveries Enabling Superior Properties — Poster Session**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Shaping and Forming Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Nanyang Technological University; Ke Lu, Institute of Metal Research; Suveen Mathaudhu, Colorado School of Mines; Xiaolei Wu, State Institute of Mechanics, Chinese Academy of Sciences

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

L-47-Invited Poster: Chemically-induced Gradient Nanostructures: Brad Boyce1; Alejandro Barrios1; James Nathaniel1; Joseph Monti1; Khalid Hattar¹; Douglas Medlin¹; Remi Dingreville¹; ¹Sandia National Laboratories

L-48: Mechanical Properties and Microstructural Evolution of Highpressure Torsion-processed Al7068 Alloy: Juhee Oh1; Sujung Son2; Hyoung Seop Kim²; Jae Bok Seol¹; Hyokyung Sung¹; Jung Gi Kim¹; ¹Gyeongsang National University; ²Pohang University of Science and Technology(POSTECH)

L-49: Microstructures and Nanomechanical Behavior of Laser Processed Sr-modified Al-Si Eutectic: Arkajit Ghosh¹; Bibhu Sahu¹; Jian Wang²; Amit Misra¹; ¹University of Michigan; ²University of Nebraska-Lincoln

L-50: Towards a Novel Approach for Integrating Tungsten and Reduced Activation Ferritic Martensitic Steel for Fusion Reactors: Ishtiaque Robin¹; *Tim Graening*²; Ying Yang²; Yutai Katoh²; Steven Zinkle¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

ADVANCED MATERIALS

High Performance Steels — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Jonah Klemm-Toole, Colorado School of Mines; Ana Luiza Araujo, CBMM North America Inc.; C. Tasan, Massachusetts Institute of Technology; Richard Fonda, Naval Research Laboratory; Amit Behera, QuesTek Innovations LLC; Benjamin Adam, Oregon State University; Krista Limmer, DEVCOM Army Research Laboratory; Kester Clarke, Colorado School of Mines

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Bridging the Precipitation Behaviour and Mechanical Properties of Cu-Ti Modified Quenched and Tempered Steel: Kapil Sharma¹; Anagh Dutta²; Sudipta Patra³; Anish Karmakar¹; ¹Indian Institute of Technology Roorkee; ²National Institute of Technology, Tiruchirappalli; 3Indian Institute of Technology (BHU)

Contradicting Role of Martensitic Transformation on Ductility and Toughness in a Medium Mn Steel: C. Hu1; C.P. Huang1; Y.X. Liu1; K. Y. Zhu²; A. Perlade²; MingXin Huang¹; ¹The University of Hong Kong; Shenzhen Institute of Research and Innovation; ²ArcelorMittal Research, Voie Romaine-BP30320

J-86: Dissimilar Metal Friction Weld Development for Enhanced Capability for Power Generation Components: Voramon Dheeradhada¹; Sharon Huang¹; Steve Buresh¹; Marissa Brennan¹; Patrick Brennan¹; Genghis Khan¹; Akbar Bagri¹; Alireza Namazifard¹; Martin Morra¹; Tim Stotler²; ¹GE Research; ²EWI

J-87: Effect of Si on the Liquid Metal Embrittlement Susceptibility of Advanced High Strength Steels: Fateme Abdiyan¹; Joseph McDermid¹; Hatem Zurob¹; ¹McMaster University

J-88: Effects of Cr on Corrosion Behaviors of Hadfield Steel in a Neutral Aqueous Environment: Sung Jin Kim1; Duck Bin Yun1; Jin Sung Park¹; ¹Sunchon National University

J-89: Enhancing Tensile Property and Hydrogen Embrittlement Resistance of a Medium Mn Steel by Warm Rolling: Yuxuan Liu¹; ¹The University of Hong Kong

J-90: High-speed Deformation Behavior of a Heterogeneous-nano Structured Austenitic Stainless Steel: Chihiro Watanabe¹; Ayumu Terada¹; Norimitsu Koga¹; Tomotsugu Shimokawa¹; Masakazu Kobayashi²; Hiromi Miura²; ¹Kanazawa University; ²Toyohashi University of Technology

J-91: Low-temperature Impact Properties of X70 Line Pipe Steel Depending on Location and Orientation: Seoyoon Gong¹; Jeongho Han²; Se-Eun Shin¹; Jihan Gwak¹; ¹Sunchon National University; ²Hanyang University

J-92: Microstructural Characterization of EUROFER97/3-type Steels Before Neutron Irradiation: Michael Thomas Duerrschnabel¹; Ute Jäntsch¹; Michael Rieth¹; ¹Karlsruhe Institute of Technology

Microstructural Evolution and Mechanical Properties of Zinc Coated Press Hardened Steels with Increased Carbon Content: Sara Kheiri¹; Joseph McDermid¹; Mike Bruhis¹; ¹McMaster University

Microstructure and Mechanical Properties of Rolled Homogenized Armor Steel during Linear Friction Welding Under Different Loads: Kanwal Chadha¹; Clodualdo Aranas Jr¹; John Spray¹; ¹University of **New Brunswick**

SPECIAL TOPICS

Late News Poster Session — Advanced Materials

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

J-99: Can the Effective Bond Energy Formalism (EBEF) Improve the CALPHAD Database for Co-based Superalloys?: Julio Cesar Pereira Dos Santos¹; Chuan Liu²; Sean Griesemer²; Peisheng Wang³; Ursula Kattner⁴; Carelyn Campbell⁴; ¹NIST / Northwestern University; ²Northwestern University; ³Central South University; ⁴NIST

Enhanced High-temperature Elongation of Ni-based Superalloys by Reducing Co and Increasing Mo: Saurabh Tiwari¹; Jae Hoon An¹; Muhammad Ishtiaq¹; Hyoju Bae¹; Jae Bok Seol¹; ¹Gyeongsang **National University**

J-100: In-situ Formation of Transition Metal-Aluminates as an Interfacial Modifier in YSZ based Cermets: Amanda Marotta¹; David Driscoll¹; Stephen Sofie¹; ¹Montana State University

J-101: Mechanical Behaviour of Forged Al5Co15Cr30Fe25Ni25 High Entropy Alloy: Pablo Perez¹; Gerardo Garcés¹; María Fernanda Vega²; Judit Medina¹; Paloma Adeva¹; ¹CENIM-CSIC; ²INCAR-CSIC

Mechanical Strengthening of a Soft-magnetic High-entropy Alloy via Widmanstätten Microstructure: Liuliu Han1; 1Max Planck Institute for Iron Research

SPECIAL TOPICS

Late News Poster Session — Biomaterials

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Bioinspired Microstructured **Adhesives** for **Biomedical** Applications: Gabriela Moreira Lana¹; Katharina Sorg¹; Gentiana Wenzel²; Xuan Zhang¹; Eduard Arzt¹; ¹INM - Leibniz Institute for New Materials; ²Saarland University Medical Center - Homburg

SPECIAL TOPICS

Late News Poster Session — Characterization

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

L-60: An Evaluation of Advanced EBSD Methods for Phase Detection in Martensitic Steels: Patrick Callahan1; David Rowenhorst1; Richard Fonda¹; ¹US Naval Research Laboratory

L-61: Analysis of Alkali Element Distributions Using Atom Probe Tomography: Daniel Schreiber1; Kayla Yano1; 1Pacific Northwest **National Laboratory**

L-62: Characterization of Precipitate Size Distribution in Frictionstir Processed Al-7085 Using Small-angle X-ray Scattering and Correlative Microscopy Techniques: Rakesh Kamath1; Jonova Thomas¹; Hrishikesh Das²; Tanvi Ajantiwalay²; Julian Escobar²; Jia Liu²; Jan Ilavsky¹; Piyush Upadhyay²; Mert Efe²; Arun Devaraj²; Dileep Singh¹; ¹Argonne National Laboratory; ²Pacific Northwest National Laboratory

L-66: Characterizing Mechanical Properties Using Physics-Informed Neural Networks and Multi-Fidelity Deep Learning: Ming Dao1; 1Massachusetts Institute of Technology

L-63: Crack Propagation Behavior of Fex(CoCrMnNi)100-x Multicomponent Alloys: Hyunwoo Seo1; Hoodahm Lee1; Yubeen Hong1; Junggeun Park1; Hyokyung Sung1; 1Kookmin University

Differential Scanning Calorimetry as a Fingerprinting Technique to Detect Historical Uranium Enrichment in PCTFE: Nouf Almousa¹; Rachel Connick²; Kevin Woller²; R. Scott Kemp²; Michael Short²; ¹Princess Nourah University; ²MIT

L-64: In Situ Observation Study of MgO-C Dissolution Behavior in CaO-SiO2-Al2O3 Slag at High Temperature: Yongsug Chung1; Seungwook Lee¹; ¹Tech University of Korea

L-65: Microstructural Characterization of Malachite Green Particles in Treated Wood: Mohamad Zbib1; Temitope Aminu2; David Bahr¹; ¹Purdue University; ²Intel Corporation

Nano-scale Structural Evolution and Mechanical Characteristics of Equiatomic AlCoCrNi High-entropy Alloy: Elyorjon Jumaev¹; Orifjon Mikhliev²; Khasanjon Shanazarov²; Amir Abidov¹; ¹Almalyk Mining and Metallurgical Combine JSC; ²FDI «UZLITI ENGINEERING» LLC

SPECIAL TOPICS

Late News Poster Session — Materials Design

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

M-25: High Throughput Testing Apparatus to Enable **Electrodeposition of Rhenium**: Nathan Brown¹; Michael McBride¹; Courtney Clark¹; Enkeleda Dervishi¹; ¹Los Alamos National Lab

M-26: Hall-Petch Effect in Crystal Plasticity: Comparing the Predictive Capability of Two Modeling Approaches: Junyan He1; Anupam Neogi¹; Deepankar Pal¹; Ali Najafi¹; Grama Bhashyam¹; ¹Ansys Inc.

SPECIAL TOPICS

Late News Poster Session — Materials Processing

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

A Closed-loop Recycling Process for Recovery of Critical Metals from Spent Lithium-ion Batteries through Organic Acid Leaching: Jaeyeon Kim1; Jaeheon Lee1; Jiajia Wu2; Jaiwon Byeon3; Yoojin Kim3; ¹Colorado School of Mines; ²University of Arizona; ³Seoul National University of Science and Technology

A Comparison of Microstructure and Mechanical Properties of TIG and MIG Welded Dissimilar AA7075 / AA6061 Aluminium Alloys Subjected to Friction Stir Processing: Rajeev Rana¹, Dagarapu Karunakar¹; Anish Karmakar¹; ¹Indian Institute of Technology Roorkee

N-19: An S-STEM Program to Expand Career Opportunities in Engineering Materials: Dwayne Arola1; Eleftheria Roumeli1; Lilo Pozzo¹; Junlan Wanq¹; ¹University of Washington

N-20: Analysis of the Phase Stability in the Directionally Solidified Ni-based Superalloy MAR-M247: Rafal Cygan¹; Dorota Wyrobek¹; Łukasz Rakoczy²; ¹Consolidated Precision Products Poland; ²AGH University of Science and Technology

N-21: Dephosphorization of Iron Ore Containing Phosphorus: Hirokazu Konishi¹; Shuna Kushibe¹; Yuichiro Koizumi¹; Osamu Ishiyama²; Kenichi Higuchi²; ¹Osaka University; ²Nippon Steel Corporation

N-22: Development and Characterization of a Two-phase Cerium Yttrium Alloy: Effect of Heat Treatment and Composition on Microstructure in Ce-Y Alloys: Casey Shoemaker¹; ¹Los Alamos National Laboratory

Effect of Multi-axial Forging on Mechanical Properties and Microstructure of AA7075/TaC Composites: John Khalkho¹; Dagarapu Karunakar¹; ¹Indian Institute of Technology Roorkee

N-23: Effects of Advanced Peening Techniques on Corrosion Behavior of Stainless Steel: Dmytro Lesyk¹; Hossam Hassan²; Hitoshi Soyama³; Bohdan Mordyuk⁴; Krishnan Raja²; Bartosz Powalka⁵; Indrajit Charit²; ¹National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"; ²University of Idaho; ³Tohoku University; 4G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine; 5West Pomeranian University of Technology

Evaluation of Microstructure and Mechanical Properties of Al-Mg-Si Alloy Deposited via Submerged Additive Friction Stir Deposition: Ryan Kinser¹; Malcom Williams¹; James Jordon¹; Paul Allison¹; ¹Baylor University

N-25: Machine Learning for Joint Quality Performance-A Comparative Study of the Relationship between Process Parameters and Joint Performance of Al/Steel Resistance Spot Welds: Moses Yeboah Obiri¹; Alejandro Ojeda¹; Deb Fagan¹; ¹Pacific Northwest National Laboratories

N-26: Machine Learning to Model the Relationship between Heat Affected Zone and Weld Join Quality Performance of Aluminum-Steel Resistance Spot Welds: Narmadha Mohankumar¹; Moses Obiri¹; Deb Fagan¹; Alejandro Ojeda¹; Luke Durell¹; Shoieb Chowdhury¹; Hassan Ghassemi-Armaki²; Keerti Kappagantula¹; ¹Pacific Northwest National Laboratory; ²General Motors

N-27: Mechanical Properties of AA5083/Coal Composites Fabricated via Friction Stir Processing Technique: Velaphi Msomi¹; Sipokazi Mabuwa¹; Oritonda Muribwathoho¹; ¹Cape Peninsula University of Technology

N-28: Microstructure Evaluation of the Turbine High Pressure HPT Aircraft Engine Rotor Blades with Internal Channels Reproduced by Monolithic Cores: Dorota Wyrobek¹; Rafa Cygan¹; ¹Consolidated **Precision Products Poland**

N-29: Processing of LIB for Metal Recovery: Amalie Olsen¹; ¹Norwegian University of Science and Technology

N-30: Synthesis and Characterization of Next-generation Multiphase Silicon Nitride-based Ceramics: Katherine Brizzolara¹; Curtis Martin²; Kevin Hemker¹; ¹Johns Hopkins University; ²Naval Surface Warfare Center, Carderock Division

The Beneficiation Process Development for the Ashram REE and Fluorine Project: Maziar Sauber1; Tony Di Feo1; Darren Smith2; ${}^{1}\!Canmet MINING; {}^{2}\!Commerce \ Resources \ Corp.$

N-31: The Effect of Sampling Direction and Mechanical Characterization of the Friction Stir Processed TIG Welded Joints: Sipokazi Mabuwa¹; Velaphi Msomi¹; ¹Cape Peninsula University of Technology

SPECIAL TOPICS

Late News Poster Session — Nuclear Materials

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

O-17: Ceramic Crucibles for Nuclear Materials Pyroprocessing: Thomas Dalger¹; Ludovic Deliere¹; Sophie Le Gallet²; ¹CEA; ²ICB, Université de Bourgogne

O-18: Change of Regulatory's Cladding Model and Its Effects on Steady State Fuel Performance: Yong sik Yang1; Hyun-Gil Kim1; Ju Yeop Park²; ¹Korea Atomic Energy Research Institute; ²Korea Institute of Nuclear Safety

Comparison of Solid-state Structures, Magnetic Susceptibilities and Electronic Properties of UTc, and URu, Josephine Libero¹; Frederic Poineau¹; Daniel Koury¹; ¹UNLV

O-20: High Temperature in-SEM Nanoindentation of TRISO SiC Coatings: Alexander Leide¹; Eric Hintsala²; Dong Liu³; ¹United Kingdom Atomic Energy Authority; ²Bruker Corporation; ³University of Bristol

O-21: Influence of Machining Parameters on Stress Corrosion Cracking Susceptibility of O8CH18N1OT Austenitic Steel in Primary Water Environment: Marek Kudlac1; Peter Brziak2; Vladimir Magula2; Katarina Bartova¹; Maria Domankova¹; Alena Kosinova¹; ¹Slovak University of Technology; 2Welding Research Institute

O-22: Microstructural and Micromechanical Analysis of Steels After Neutron Irradiation: Brandon Bohanon¹; Assel Aitkaliyeva¹; ¹University of Florida

O-23: Oxidation Studies of UN/UB₂: Megan Pritchard¹; Joel Turner¹; Timothy Abram¹; ¹The University of Manchester

O-24: Radiation Enhanced Diffusion Along Fast Pathways in Model Oxides: *Kayla Yano*¹; Tiffany Kaspar¹; Aaron Kohnert²; Hyosim Kim²; Yongqiang Wang²; Blas Uberuaga²; Daniel Schreiber¹; ¹Pacific Northwest National Laboratory; ²Los Alamos National Laboratory

O-25: Semi-empirical Modeling of Irradiation Induced Dimensional Change of Nuclear Graphites: Steven Johns¹; William Windes¹; Anne Campbell²; ¹Idaho National Lab; ²Oakridge National Lab

O-26: Study of of Thermal Oxidation to Helium Implantation in 316L Stainless Steel: *Minsung Hong*¹; Angelica Lopez²; Mehdi Balooch¹; Yujun Xie¹; Ho Lun Chan³; Elena Romanovskia³; John R. Scully³; Djamel Kauomi²; Peter Hosemann¹; ¹UC Berkeley; ²North Carolina State University; ³University of Virginia

O-27: Synchrotron XRD Hydride Phase Mapping In Zicracloy-2 Cladding: Aaron Colldeweih¹; *Malgorzata Makowska*¹; Johannes Bertsch¹; ¹PSI

O-28: The Response of Silicon Carbide Composites to He Ion Implantation and Ramifications for Use as a Fusion Reactor Structural Material: Max Rigby-Bell¹; Alex Leide¹; Slava Kuksenko¹; Chris Smith¹; Gyula Zilahi¹; Louise Gale²; Tony Razzell²; James Wade-Zhu¹; David Bowden¹; ¹UKAEA; ²Rolls-Royce plc

O-29: $U(Al_xSi_1.x)_3$ Surface Composition and Its Interactions with Water Vapor at the Temperature Range of 300-800 K: Shai Cohen¹; Maayan Matmor¹; Genadi Rafailov¹; Moshe Vaknin¹; Oshrat Appel¹; Noah Shamir²; Shimon Zalkind¹; ¹Nuclear Research Centre-Negev; ²Ben-Gurion University of the Negev

NUCLEAR MATERIALS

Materials and Chemistry for Molten Salt Systems — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Raluca Scarlat, University of California, Berkeley; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Nathaniel Hoyt, Argonne National Laboratory

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chair: Stephen Raiman, University of Michigan

O-2: Corrosion of 316H Stainless Steel and Graphite in Static Molten FLiNaK Salt: Sarah McQuaid¹; Stephen Raiman²; ¹Texas A&M University; ²University of Michigan

O-3: Detection of Transition Metals in Solid and Molten Salts Using UV-Vis Spectra: *Diego Macias*¹; Stephen Raiman¹; Dino Sulejmanovic²; ¹The University of Michigan; ²Oak Ridge National Laboratory

O-4: High-Throughput Ex-situ Quantification of Corrosion Products from Molten Salt Corrosion Experiments of High Entropy Alloys by Laser Induced Breakdown Spectroscopy (LIBS): Bonita Goh¹; Isabelle Baggenstoss¹; Adrien Couet¹; ¹University of Wisconsin Madison

Optimization of Phase Equilibria and Thermodynamics for Actinide Chloride Systems Relevant for Molten Salt Reactors: *Juliano Schorne Pinto*¹; Jacob Yingling¹; Johnathon Ard¹; Theodore Besmann¹; ¹University of South Carolina

O-6: Purification of Lithium, Sodium, and Potassium-based Chloride Salts via Hydrochlorination with Real-time Monitoring: Mario Alberto Gonzalez¹; Jarom Chamberlain¹; Jacob Yankee¹; Suhee Choi¹; Matthew Newton¹; Ethan Hamilton¹; Michael Simpson¹; ¹University of Utah

Reducing Graphite Interactions with Structural Corrosion Products: Cody Falconer¹; Hongliang Zhang¹; Kumar Sridharan¹; Adrien Couet¹; ¹University of Wisconsin Madison

O-7:The Reduction of Solid Uranium Dioxide in Calcium Salt: Nagihan Karakaya¹; Jinsuo Zhang¹; ¹Virginia Tech

MATERIALS DESIGN

Materials Genome, CALPHAD, and a Career over the Span of 20, 50, and 60 Years: An FMD/SMD Symposium in Honor of Zi-Kui Liu — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Alloy Phases Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Yu Zhong, Worcester Polytechnic Institute; Richard Otis, Jet Propulsion Laboratory; Bi-Cheng Zhou, University of Virginia; Chelsey Hargather, New Mexico Institute of Mining and Technology; James Saal, Citrine Informatics; Carelyn Campbell, National Institute of Standards and Technology

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

M-23: Electronic Origin of Phase Stability in Mg-Zn-Y Alloys with a Long-Period Stacking Order: A First-Principles Study: *Takao Tsumuraya*¹; Hiroyoshi Momida²; Tamio Oguchi²; ¹Kumamoto University; ²Osaka University

M-24: Revealing the Materials Genome for Advanced High-entropy Materials: Jiaqi Lu¹; William Yi Wang¹; Fengpei Zhang¹; Pingxiang Zhang¹; Jinshan Li¹; ¹Northwestern Polytechnical University

MATERIALS PROCESSING

Materials Processing Fundamentals — Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee

Program Organizers: Samuel Wagstaff, Oculatus Consulting; Alexandra Anderson, Gopher Resource; Adrian Sabau, Oak Ridge National Laboratory

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Agglomeration Behavior of Fine Particles Using the Acoustic Wave: *Hyo-Soo Lee*¹; Hai-Joong Lee¹; Tae-Hoon Park¹; ¹Kitech

N-17: Analysis of the Thermal Distribution in a Conventional Slab Reheating Furnace Through Mathematical Simulation.: Mario Calderon Rojas¹; Constantin Alberto Hernandez-Bocanegra²; José Ángel Ramos-Banderas¹; Gildardo Solorio-Diaz³; Nancy Lopez-Granados¹; ¹Instituto Tecnologico de Morelia; ²Catedras CONACYT; ³Universidad Michoacana de San Nicolás de Hidalgo

Mathematical Simulation Study on the Effect of Nozzle Side Hole Structure Parameters on the Behavior of Molten Steel in Stainless Steel Mold: Sikun Peng¹; Ming-mei Zhu¹; Kun-chi Jiang¹; Cheng-hong Li¹; ¹Chongqing University

N-18: Numerical Simulation of Thermal Stratification and Fluid Dynamic Behavior of Liquid Steel in an Electric Arc Furnace: Mario Herrera-Ortega¹; José Ángel Ramos-Banderas¹; Constantin Alberto Hernández-Bocanegra²; Alberto Beltrán-Morales³; Nancy Margarita López-Granados¹; Vera Contreras-Vega⁴; ¹TecNM Campus Morelia; ²Cátedras-CONACYT; ³Instituto de Investigaciones en Materiales, UNAM Campus Morelia; ⁴Universidad Michoacana de San Nicolás de Hidalgo

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components III — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Assel Aitkaliyeva, University of Florida; Clarissa Yablinsky, Los Alamos National Laboratory; Osman Anderoglu, University of New Mexico; Eda Aydogan, Middle East Technical University; Kayla Yano, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Djamel Kaoumi, North Carolina State University

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chair: Osman Anderoglu, University of New Mexico

O-30: Computer Vision-assisted Oxide Thickness Determination of 304 Stainless Steel in PWR Environments: Txai Sibley¹; Rachel English¹; Bryan Webler¹; Elizabeth Holm¹; ¹Carnegie Mellon Unviversity

O-8: Effects of Helium Implantation on Mechanical Properties Near the Tungsten-carbide Interfaces of Dispersion Strengthened **Tungsten Alloy**: Ashrakat Saefan¹; Xing Wang¹; Eric Lang²; Jean Paul Allain¹; ¹Pennsylvania State University; ²University of Illinois at Urbana-Champaign

Fabrication and Characterization of Oxide Dispersion Strengthened Nickel Alloys for Advanced Molten Salt Reactor Components: Jaeyoon Bae¹; Sumin Lee¹; Juwook Lee¹; Sanghoon Noh¹; ¹Pukyong **National University**

O-9: Hyper-localized Strengthening of Inconel 617 for Very High Temperature Reactor Applications: Noah Holtham¹; Keivan Davami¹; ¹University of Alabama

O-10: Mechanical Testing and Characterization of an Integrated Welding and Thermal Processing Method on Eurofer97: Daniel Codd¹; Joseph McCrink²; Tim Lach³; Xiang (Frank) Chen³; ¹University of San Diego/KVA Stainless; ²KVA Stainless; ³Oak Ridge National Laboratory

O-11: Migration of Intergranular He Gas Bubbles under a Thermal Gradient in Fe by Phase-field Modeling: Yixi Shen1; Peng Wen1; An Ta¹; Simon Phillpot¹; Douglas Spearot¹; ¹University of Florida

Multi-scale Modeling of Defect Recombination in Collision Cascade with Molecular Dynamics and Binary Collision Monte Carlo: Md Riaz Kayser¹; Benjamin Beeler²; Andrea Jokisaari¹; ¹Idaho National Laboratory; 2North Carolina State University

O-12: Welding Repair: Behavior Study of the Heat-Affected Zone Regarding the Risk of HAC: Alexandre Paget1; Abdelali Oudriss2; Vincent Robin³; Jefri Draup³; Sofiane Hendili³; Stéphane Cohendoz²; Josselin Delmas³; Xavier Feaugas²; Michael C. Smith⁴; ¹EDF & The University of Manchester; ²La Rochelle University; ³EDF; ⁴The University of Manchester

CHARACTERIZATION

Mechanical Response of Materials Investigated through Novel In-situ Experiments and Modeling — **Poster Session**

Sponsored by: TMS Structural Materials Division, TMS Functional Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization; Dongchan Jang, Korea Advanced Institute of Science and Technology; Shailendra Joshi, University of Houston; Minh-Son Pham, Imperial College London; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Josh Kacher, Georgia Institute of Technology

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

L-51: Development and Applications of a Fiber-based Instrument for In-situ Thermal Property Measurements: Zilong Hua1; Robert Schley¹; Colby Jensen¹; Austin Fleming¹; Jorgen Rufner¹; Michael Short²; David Carpenter³; David Hurley¹; ¹Idaho National Laboratory; ²MIT; ³MIT nuclear reactor laboratory

Forward Model Based Strain Analysis in Highly Deformed Metallic Systems Using EBSD Patterns: Chenxi Yu¹; Marc De Graef¹; ¹Carnegie Mellon University

KRaStk - A Multi-scale Toolkit to Compute Fibrous Material Properties: Adnan Taqi¹; Mujan Seif¹; Matthew Beck¹; ¹University of Kentucky

Ligament Aspect Ratio Effects on Elastic Properties of Porous Network Materials: Naji Mashrafi1; Ryan Griffith1; Mujan Seif1; Matthew Beck1; 1Department of Materials Engineering

L-52: Micromechanics, Kleindiek Manipulators for Increased Flexibility: Olof Baecke¹; Ren Qiu¹; Magnus Colliander¹; ¹Chalmers University of Technology

L-53: Modeling of the Bending Behavior to Study Nested-Cylinder Structure in Spicules: Olivia Lowe1; Michael Melly1; Alyssa Napora1; Christian Peco¹; Fariborz Tavangarian¹; ¹Pennsylvania State University

L-54: Tensile Deformation of Polycrystalline Pure Cobalt Studied by In-situ High Energy X-ray Diffraction: Takumi Suzumura¹; Si Gao¹; Shuhei Yoshida¹; Nobuhiro Tsuji¹; ¹Kyoto University

Variation in the Bulk Elasticity of Nanoporous Materials from Solid Structure Mechanical Properties: Ryan Griffith1; Naji Mashrafi1; Matthew Beck1: 1University of Kentucky

NUCLEAR MATERIALS

Microstructural, Mechanical and Chemical Behavior of Solid Nuclear Fuel and Fuel-cladding Interface — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Nuclear Materials Committee

Program Organizers: Yi Xie, Purdue University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chair: Yi Xie, Purdue University

O-13: An Efficient and Oxidation-preventive Method for UN Surrogate Pellets Fabrication: Logan Joyce¹; *Yi Xie*¹; ¹Purdue University

O-14: Calculation of Grain Boundary Diffusion Coefficients in Gamma U-Mo Using Atomistic Simulations: *ATM Jahid Hasan*¹; Benjamin Beeler¹; ¹North Carolina State University

O-15: Experimental Methods for Comprehensive PIE of Test Fuel Rods: Chai Peddeti[‡]; [†]UC Berkeley

CHARACTERIZATION

Neutron and X-ray Scattering in Materials Science — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Jennifer Niedziela, Oak Ridge National Lab; Hillary Smith, Swarthmore College

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Longitudinal Conical Magnetic Structure in Scandium Doped M-type Barium Hexaferrite: Surbhi Gupta¹; ¹Indian Institute of Technology, Bombay

L-55: Neutron Compton Scattering of Hydrogen in Zirconium: Brent Heuser¹; Timothy Prisk²; Alexander Kolesnikov³; Garrett Granroth³; Jun-Li Lin¹; ¹University of Illinois; ²NIST; ³ORNL

L-56: Plastic Scintillators Using Nanocrystal Emitters: Gerard Ducharme¹; Amanda Graff¹; ¹Los Alamos National Lab

Quantification of Nanoscale Precipitation in Al Using SAXS and Electron Microscopy-based Automatic Particle Counting Software Techniques: Alyssa Stubbers¹; Ning Zhu²; Luke Brewer²; Anthony Naccarelli³; Timothy Eden³; John Balk¹; ¹University of Kentucky; ²University of Alabama; ³Pennsylvania State University

L-57: Recent Developments at the Forming and Shaping Technology (FAST) Beamline: Katherine Shanks¹; Amlan Das¹; ¹Cornell University

L-58: Residual Stress Mapping in a Dissimilar Metal Weldment Using Neutron Diffraction: *Brent Heuser*¹; Weicheng Zhong²; Jun-Li Lin¹; Yan Chen²; Zhen Li¹; Ke An²; Benjamin Sutton³; ¹University of Illinois; ²ORNL; ³EPRI

L-59: Thermodynamics of Elinvar Behavior: An Experimental Study with Nuclear X-ray Scattering: Pedro Guzman¹; Stefan Lohaus¹; Camille Bernal-Choban¹; Brent Fultz¹; ¹California Institute of Technology

Unveiling Structural Disorders and Their Correlation with Ionic Conductivity in a Potential Na-Ion Battery Material: Na2Mn3O7: Bikash Saha¹; Anup Bera²; Seikh Yusuf²; ¹Bhabha Atomic Research Centre; ²Bhabha Atomic Research Centre

MATERIALS PROCESSING

Rare Metal Extraction & Processing — Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Takanari Ouchi, University of Tokyo; Kerstin Forsberg, KTH Royal Institute of Technology; Gisele Azimi, University of Toronto; Shafiq Alam, University of Saskatchewan; Neale Neelameggham, IND LLC; Hojong Kim, Pennsylvania State University; Alafara Baba, University of Ilorin; Hong (Marco) Peng, University of Queensland; Athanasios Karamalidis, Pennsylvania State University; Shijie Wang, Coeur Mining, Inc

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chair: Takanari Ouchi, The University of Tokyo

The Behaviour of Minor Metals in BOF Slag Under Different Additives: Gerald Haslinger¹; ¹Montanuniversity of Leoben

ADVANCED MATERIALS

Refractory Metals 2023 — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Brady Butler, US Army Research Laboratory; Todd Leonhardt, Rhenium Alloys Inc.; Matthew Osborne, Global Advanced Metals; Zachary Levin, Los Alamos National Laboratory

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

J105: Accelerated Design of Radiation Tolerant Alloys for Nuclear Fusion: Matthew Lloyd¹; Glenn Lim¹; Mark Anderton²; Thomas Davis²; Michael Short³; Robert Simpson¹; ¹Singapore University of Technology and Design; ²Oxford Sigma Ltd.; ³Massachusetts Institute of Technology

J-93: An Additive Manufacturing System for High-resolution Composition Grading Combining Inkjet Deposition with Laser Powder Bed Fusion: Zach Kutschke¹; Ryan Penny¹; Alexander O'Brien¹; Emre Tekoglu¹; Ju Li¹; John Hart¹; ¹MIT

J-94: Challenges in the Development of a Creep-Resistant Nb-Alloy Capable of 1300°C Service: Govindarajan Muralidharan¹; Ying Yang¹; Glenn Romanoski¹; Roger Miller¹; Thomas Muth¹; George Ulrich¹; ¹Oak Ridge National Laboratory

J-95: Fundamentals of Recrystallization in Binary Nb Alloys: William Waliser¹; ¹Colorado School of Mines

J104: Investigating Heat-treatment and Strain Path Effects on the Recrystallization of High-purity Niobium: Zackery Thune1; Conor McKinney¹; Nathan Fleming¹; Thomas Bieler¹; ¹Michigan State University

J-97: The Oxidation Behavior of the Eutectic Alloy Mo-20Si-52.8Ti in Dry and Wet Atmospheres: Matthias Weber¹; Steven Schellert¹; Hans-Jürgen Christ¹; Aditya Tirunilai²; Alexander Kauffmann²; Martin Heilmaier²; Bronislava Gorr³; ¹Universität Siegen; ²Karlsruhe Institut für Technologie (KIT IAM-WK); ³Karlsruhe Institut für Technologie (KIT IAM-AWP)

J-98: Ultrahigh Temperature Testing Methodology for Refractory Alloys: Michael Patullo¹; Arunima Banerjee¹; Kevin Hemker¹; ¹Johns **Hopkins University**

MATERIALS DESIGN

Simulations/Experiments Integration for Next Generation Hypersonic Materials — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Refractory Metals & Materials Committee

Program Organizers: Thomas Voisin, Lawrence Livermore National Laboratory; Jibril Shittu, Lawerence Livermore National Laboratory; Aurelien Perron, Lawrence Livermore National Laboratory; Joseph McKeown, Lawrence Livermore National Laboratory; Raymundo Arroyave, Texas A&M University

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Modeling Thermomechanical Buckling in Combined Extreme Environments: Adedotun Banjo¹; Ali Gordon¹; ¹University of Central Florida

NUCLEAR MATERIALS

Transmutation Effects in Fusion Reactor Materials: Critical Challenges & Path Forward — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Arunodaya Bhattacharya, Oak Ridge National Laboratory; Steven Zinkle, University of Tennessee; Philip Edmondson, The University of Manchester; Aurelie Gentils, Université Paris-Saclay, David Sprouster, Stony Brook University, Takashi Nozawa, National Institutes for Quantum and Radiological Science and Technology (QST); Martin Freer, University of Birmingham

Tuesday PM | March 21, 2023 Exhibit Hall G | SDCC

Session Chair: Yan-Ru Lin, Oak Ridge National Laboratory

O-16: Microstructural Investigation of Irradiated REBCO Coated Conductors for Future HTS Fusion Magnets and Other High-dose Environments: Christopher Reis¹; ¹University of California, Berkeley

A

A	Acemi, C	Ahmad, A
A	Acevedo, C	Ahmadikia, B
Aagesen, L	Acevedo, O	Ahmadiparidari, A 32
Aarhaug, T49, 113, 207, 252	Acevedo-Sandoval, O 107	Ahmadi, Z
Aaron, D	Achar Puttur Lakshminarayana, S 50	Ahmad, M
Asheim, H	Acharya, R 69	Ahmed, A
Abbaschian, R	Acho Quispe, C	Ahmed Ali, A
Abbey, B	Achuthan, A136, 172, 225, 258	Ahmed, J
Abbott, J	Ackermann, M	Ahmed, K 47, 60, 208, 209, 245
Abbott, T	Acma, E	Ahmed Obeidi, M
Abboud, M	Acosta, R	Ahn, B
Abdallah, M 98	Adam, B 8, 24, 36, 54, 71, 88, 106,	Ahn, H
Abdelazim, S	123, 141, 155, 181, 187, 267	Ahn, M
Abdeljawad, F18, 25, 48, 56, 82, 90, 94,	Adamczyk, J 249	Ahn, S 243
117, 122, 124, 149, 157, 181, 189,	Adams, C	Ahn, T
210, 215, 226, 229, 241, 246, 250, 258	Adams, D	Aho, J
Abdeljawadf, F	Adams, Z	A.H.V., P
Abdelmotagaly, A	Adcock, E	Aibinu, M
Abdelwahab, A	Addiego, C	Aight adian A
Abdesselam, K	Adebola, O 188 Adeboye, S 132	Aigbodion, A 256 Aihara, Y 72
Abdi, F 8	Adeeko, O	Aindow, M 32, 63, 96, 130, 164, 184,
Abdiyan, F	Adejo, A	193, 216, 233, 253
Abd Jalil, S	Adekoya, A	Airoudj, A
Abdoelatef, M	Adeleke, A	Aitkaliyeva, A27, 33, 59, 65, 66, 92, 99,
Abdolrahim, N 19, 29, 49, 61, 76, 83, 94,	Adeosun, S 209	126, 128, 133, 159, 166, 191, 196,
118, 128, 145, 151, 161, 182, 192,	Adetan, O 96	214, 218, 235, 239, 269, 271
211, 215, 229, 232, 247, 252 Abdolvand, H72, 119, 152, 173	Adeva, P	Aitken, Z
Abdo, M	Adewale, K	Aizawa, T
Abdul Azeem, M	Aditya Mantri, S	Ajam, A
Abdul Aziz, M	Adjanor, G	Ajantiwalay, T 129, 159, 181, 210, 268 Akamatsu, S
Abdulfattah, F	Adkison, K	Akamo, D
Abdulhafez, M 23, 131	Adnan, S	Akanji, F
Abdul Halim, K	Adomako, N	Akanni, O
Abdul-Jabbar, N	Adoo, N	Akbari, E
Abdullah, A	Aerne, N	Akdim, B
Abadrahba S 5 25 66 100 135 169	Afshin, E	Akhmadaliev, S
Abedrabbo, S 5, 35, 66, 100, 135, 168, 197, 202	Agapiou, J	Akhmetov, S
Abel, A	Aga, R	Akhtar, S
Abelson, J	Agar, O	Akiba, K
Abernathy, D	Agarwal, A	Akintayo, O
Abidov, A	Agava, R	Akman, A
Abi Ghanem, M	Ager, J	Akın, T
Abooalizadeh, Z	Aghedo, O143, 173	Aksoy, D
Abouelella, H	Agiwal, H	Aktaa, J
Abou-Khalil, L	Agnew, S 94, 119, 139, 162, 192	Akter, A
Aboulkhair, N	Agnihotri, A	Akuh, M
Abram, M	Agorhom, E	Alabi, A
Abramova, M	Agraval B 22 181 241	Alabin, A
Abram, T	Agrawal, P	Alabi, O
Abrell, P 84	Ågren, J	A. Lados, D
Abrenica, G	Agudo Jácome, L	Alali Alkhalaf, A
Abu Amara, A	Aguiar, R	Alambo, A
Abu-Odeh, A	Aguilera-Grande, A	Alamdari, H
Acar, P	Ahad, I	Alam, M
1/0	Ahli, N	

Alam, S20, 33, 50, 64, 84, 98, 118, 132, 248, 272	Alman, D38, 89, 142, 174, 200, 203, 234, 256	Anderson, M
Al Ansari, T	Almarzooqi, F	Anderson, R
Alarcón-Furman, P	Al-Masud, M	Andersson, A
Al-Aridi, R	Almeida Bezerra, W	Andersson, D 27, 103, 208, 209, 228
Alarie, J	Almeida, J	Andersson, S
Alasfor, F	Almer, J	Andersson, T
All Azad, A	Almirall, N	Anderton, M
Albe, K	Almousa, N	Ando, D
Alberta, L	AlMousa, N	Ando, M
Alberts, M	Almuhana, B	Andreaco, A
Albert, T	Al-Omari, I	André, E
Albinet, A	Alonso Oña, I	Andre Junior, D
Albrecht-Schoenzart, T	Alonso, P	Andrews, C
Alderete, N	Alonso, R	Andrews, E
Alemaka, E 176, 228	Alonzo, A 55	Andrews, J
Ales, T	Alpay, S	Andrieu, E
Alewi, D	Alqarni, A	Anegbe, B
Alexander, M	Altarabshe, I	Anestis, A 80
Alexandre, J	Altınok, S	Aneziris, C
Alfredo, C	Alvarado, A	Angell, J
Alfreider, M 49, 88	Alvarez, A 63	Ang, H
Algendy, A 98	Alvarez, I	Anghel, V
Al Haddad, A	Alvarez Montano, V	An, J
Al Halwachi, H	Alverson, M	An, K 39, 104, 117, 128, 138, 139, 141,
Ali, A	Alwen, A	144, 202, 204, 211, 214, 257, 258, 272
Alice, C	Alyousif, O	Ankem, S
Aliev, R	Alzarooni, A	Ankit, K
Ali, F	Amachraa, M	Anklam, J
Ali, H	Amadeo, P	Annewandter, R
Alinejad, B	Amalia, L	Ånnhagen, L
Alipour Masoumabad, S 233, 254	Amann, F	An, Q 16, 114, 158, 193, 215
Ali, S	Amara, B	Ansari, M
Ali, T	Amara, H	Ansart, F
Ali, W	Ambade, B	Anthony, B
Ali, Y	Ameperosa, E	Antillon, E
Aljallabi, N	Ameri, A	Antonov, S 8, 12, 36, 40, 71, 75, 106,
Al Jallabi, N 49	Ameyama, K 23, 54, 88, 122, 155, 267	110, 141, 144, 176, 205, 225, 261
Aljasmi, A	Ameye, M	Antony, H
Alkali, V	Amin, H	Antoun, B
Alkayyali, M	Amini, S	Antrekowitsch, H
Allain, J	Aminu, T	Antrekowitsch, J
Allain, S	Amiri, M	An, X
Allaire, D	Amling, M	Aono, Y
Al-Lami, J	Amon, A	Aotani, K
Allanore, A 25, 33, 38, 65, 109, 132,	Amoroso, J	Ao, W
	Amroussia, A	Aoyama, K
142, 174, 203, 256		•
Allard, L	Anam, M	Aparecido Sampaio, J
Allers C	Annand, S	Apaza Huallpa, E
Alleman, C	Anber, E	Apelian, D 61, 108, 200, 204, 242, 259
Allen, C	Anderoglu, O 27, 59, 92, 126, 159,	Apel, M
Allen, J	191, 214, 271	Apostolopoulou, A
Alling D	Andersen, D	Appel, O
Alliare, D	Anderson, A 30, 58, 62, 95, 129, 158,	Appel, P
Allison, J 56, 72, 102, 150, 164, 173, 212	163, 193, 213, 215, 230, 232, 252, 270	Appiah, S
Allison, P6, 7, 185, 238, 242, 249, 250,	Anderson, C 30, 62, 95, 129, 163, 193,	Appolaire, B
259, 269	215, 232, 252	Arabelo, A
Almahmoud, S	Anderson, I67, 73, 102, 136, 140, 166,	Aragon, N
Al-Majali, Y	169, 170, 183, 192, 198, 217, 219, 240	Arai, N
Almalki, M	Anderson, K	Aramanda, S53, 77, 238, 267

102	A 1 G T	A 11 1 0 100
Aranas, C	Ashcroft, I	Azadehranjbar, S
Aranas Jr, C	Ashkhenazy, Y	Azadi, A
Araujo, A 24, 54, 88, 123, 155, 187, 267	Askari, H5, 18, 19, 35, 48, 49, 66, 82,	Azam, S
Araújo, P	83, 100, 117, 118, 135, 149, 151, 168,	Azeem, M
Arbeiter, J	181, 182, 197, 210, 211, 229, 246, 247	Azeredo, B
Arbouet, A	Asle Zaeem, M 67, 121, 154, 182, 186,	Azevedo, A 162, 252, 260, 263, 264, 265
Archambeau, C	212, 233	Azevedo, S
Archibong, U	Asokan, S	Azimi, G
Archuleta, C	Aspandiar, R	Azizi, G
Arcodaci, D	Asphaug, E	Aziziha, M
Ardakani, M	Assefa, T	Azizi, Y
Ard, J	Asta, M 11, 12, 25, 55, 56, 76, 89, 90,	
Ardrey, K	121, 123, 143, 156, 188, 223, 260	В
Arenas-Flores, A	Astbury, J	D 1 M
Ares, A	Asubonteng, D	Baak, N
Argibay, N	Atar, E	Baba, A 33, 64, 98, 132, 188, 272
Arif, S	Atehortua, J	Babamiri, B
Arisato, M	Atem de Carvalho, E	Babisk, M
Arivu, M 62	Athanasios, I	Babu, P
Ariyo, O	Athanasiou, C	Babu Rao, V
Arkhipov, A	Athènes, M	Babu, S 6, 20, 103, 182, 200, 210, 222
-		Baccou, J 82
Arkhurst, B	Atlan, C	Bachhav, M95, 127, 160, 161, 167, 179,
Arkoub, H	Atli, K	204
Armstrong, D	Atoe, B	Bach, M
Arnberg, L	Attallah, M 8, 35, 140, 145, 169, 220,	Bachmaier, A
Arndt, J	223, 238, 240	Bachus, N
Arndt, M	Attari, V	Bäcke, O
Arnesen, K	Attarzadeh, N	Backman, L
Arn, N	Attia, M	Badalassi, V
Arnold, B	Atwani, O	Bader, T
Arnold, C	Atwood, R 87, 121, 171, 214, 220	Badgett, N
Arnold, J 54	Aubert, A	Badgley, P
Aroh, J	Aubry, P	Badowski, M
Arola, D	Aubry, S	Badr, H
Arora, A52, 109, 212, 241	Aughterson, R	Badwe, N
Arputharaj, J	Auguste, R	Baecke, O
Arregui-Mena, J	Aumand, M	Bae, D
Arrington, J	Aune, R 45, 146, 173, 198, 250	
Arriortua, M	Ausejo, S	Bae, H
Arroyave, R8, 14, 42, 67, 101, 117, 126,	Austin, R	Bae, J
132, 137, 140, 149, 166, 167, 172,	Austin, T	Bae, M
173, 190, 195, 196, 198, 222, 223,	Autones, L	Bae, S
241, 262, 273	Avarmaa, K	Baez, C
Arróyave, R	Averback, R	Bagchi, S
Artalejo, E	Avery, D 6	Baggenstoss, I
Artrith, N	Avey, T	Bagnoli, K
Arul Kumar, M9, 36, 56, 71, 106, 141,	Awais, M	Bagot, P
155, 164, 173, 202, 223, 255	Awalgaonkar, N	Bagri, A
	=	Bagshaw, N
Arya, A	Awd, M	Bahadir Yildiz, A 162
Aryal, S	Awejori, G	Bahl, S
Aryana, K	Aydoğan Güngör, E	Bahman Rokh, G 248
Arzola, X	Aydogan, E 27, 29, 59, 81, 92, 126,	Bahr, D
Arzt, E	159, 191, 214, 271	Bai, D
Asadi, E 111, 145, 177, 206, 226, 262	Ayeke, P	Bailey, D
Asante, S	Ayers, N	Baima, J
Asari, Y	Ayinla, K	Bairagi, D
Asgari, M	Aysal, H	Baird, M
Asghari-Rad, P55, 243, 257, 259	Aytug, T 32, 64, 97, 131, 165, 194, 255	Baird, S 41, 48, 167, 169, 180, 262, 266
Asgharzadeh, A 145	Ayub, H	Bair, J
Ashbaugh, M		Duii, j

Bai, X	Bansal, D	Bates, A
228, 259, 263	Bao, J	Bates, J
Bai, Y	Ba o lu, D	Bathellier, D
Bajaj, N	Bao, S	Batista, I
Bajaj, P	Barake, E	Batmaz, R
Bajpai, S108, 204, 259	Barandiaran, J	Batson, M
Bajtošová, L	Barandiarán, J	Battas, B
Bakare, I	Barba, D 70, 71, 198, 230, 254	Battle, T
Bakas, M	Barbatti, C	Baty, G
Baker, A 39, 151, 183, 196, 235	Barber, R	Baudin, T
Baker, I	Barbosa, J	Bauer, E
Baker, K	Barbosa, W	Bauerlin, Q
Bakhtar Chavari, S	Barela, S 26, 56, 90, 124, 157, 251	Baulin, O
Bakhtiyarova, A	Baris, J	Baumbach, R
Bakhtiyarov, S	Barkar, T	Baum, D
Bakken, K 37 Balachandran, P 169, 234	Barker, C	Bawane, K27, 28, 148, 157, 166,
Balandin, A		180, 214 Bawkar, S98
Balani, K	Barlat, F	
Balaško, T	Barlow, Z	Bay, B
Balasubramani, S	Barman, A	B. Costa, M
Balbande, S	Barnard, N	Beamer, C
Balbus, G	Barnes, P	Bean, C
Baldinozzi, G	Barnett, A	Bean, R 80
Baldwin, J	Barnett, M	Beardslee, L
155, 161	Barr, C	Beard, W
Baldwin, K	Barreto, G	Beauchamp, S
Baldwin, O	Barreto, M	Beaudry, D
Baler, N	Barrick, E	Beausoleil II, G
Balke, T	Barrie, C	Bebak, A
Balk, J	Barrientos Hernández, F 253, 264, 265	Béchade, J
Balk, T	Barrios, A	Becker, C
Ballesteros, A	Barr, J	Becker, G
Ballor, J	Barron, N	Becker, M
Balogh, L	Barry, A	Beckermann, C
Balogun, A	Barry, M	Beckers, M
Balomenos, E 65, 98, 133, 255	Barsoum, M	Beckett, D
Balooch, M	Barta, N	Beck, M 246, 247, 259, 261, 271
Balta, A 69	Barthelat, F	Beckman, P
Baltaci, I	Bartlett, M	Beckman, S
Baltrusaitis, J	Barton, D47, 129, 211	Beck, P 59, 191
Balusu, K	Barton, N105, 160, 167, 201	Beck, T
Balzac, A	Bartova, K	Beck, W
Bami, Y	Barua, R	Beckwith, C
Bamney, D	Baruffi, C	Beddingfield, R 10
Banco, D	Barut, U	Bedewy, M 23, 53, 87, 122, 131, 155, 248
Bandari, Y 103, 138, 170, 199, 221, 240	Basak, A	Beeler, B 19, 61, 62, 92, 126, 127, 128,
Banderas, J	Baskes, M	158, 271, 272
Bandorf, J	Baslayici, S	Beeri, O
Bandyopadhyay, R	Bassen, G	Beese, A
Bandyopadhyay, S 19, 163, 229, 233	Bassett, K	Begley, B
Banerjee, A 161, 176, 191, 195, 257, 273	Bassim, N	Behara, S
Banerjee, D	Bastow, H 84	Behboud, A
Banerjee, R 12, 40, 70, 102, 141, 144,	Basu, R	Behera, A14, 24, 54, 88, 123, 155, 186,
150, 169, 193, 196, 222, 224,	Basuray, S	187, 267
240, 242, 247, 257	Basu, S 10, 37, 38, 72, 107, 142, 174,	Beheshti, A
Banerjee, S 142, 203, 222, 224, 242, 244	203, 224, 244	Behzadinasab, M
Banerjee, T	Bataller, A	Beidaghi, M
Ban, H	Bateman, A 166, 238	Beigzadeh, S
Banjo, A		Bei, H

D11.7	D	The second secon
Belak, J	Bertoli, G	Bilionis, I
Beland, L	Bertolus, M	Billone, M
Béland, L	Bertram, M 5, 113	Bill, T
Belcher, C 108, 136, 172, 204, 259	Bertrand, E	Bilodeau, J
Belharouak, I	Bertsch, J	Bilsland, C 80
Belkacemi, L	Bertsch, K 31, 62, 95, 118, 129, 163,	Binari, M
Bellcase, L	171 201 216	Bing, C
Bellec, E	Bertz, A	Birbasar, O
	Deliz, A	
Bello, N	Besmann, T 91, 115, 133, 218, 270	Birchall, S
Bellon Lara, B	Besser, M	Birch, R
Bellon, P 29, 82, 95, 117, 149, 150, 182,	Besson, S	Birnbaum, A7, 8, 70, 104, 139, 154,
210, 266	Bestetti, M	172, 201, 222, 242
Bell, S	Bettencourt, C 199	Birry, L 78
Bellucci, V	Betzing, M	Birsteinova, S 80
Belnap, R	Beura, V	Bisht, A
Belof, J	Beuth, J	Biswas, A
Belousov, M	Beyerlein, A	Biswas, P
	•	
Beltrán-Morales, A	Beyerlein, I 9, 23, 25, 34, 36, 38, 54,	Biswas, S 115, 148, 179, 208, 228, 263
Benchafia, E	56, 71, 88, 90, 106, 110, 111, 122, 124,	Biswas, T 48
Benderly-Kremen, E	141, 155, 157, 161, 173, 177, 185, 189,	Biwer, C
Benerjee, R	202, 211, 223, 229, 255, 267	Bjørlykke, G 80
Beneš, O	Beyer, T	Blackburn, T
Ben Haj Slama, M	Beyuo, M 58	Blackhurst, P
Ben Jedidia, Y	Bezerra, W	Black, R
Benko, J	Bezold, A	Blackwell, S
•	Bezuidenhout, P	
Benmore, C		Blades, W
Bennett, T	Bhaduri, A	Blair, R
Benoit, M	Bhagat, A	Blais, A
Benson, C	Bhagavath, S	Blanc, C
Benson, M127, 226	Bhandari, C	Blankenburg, M 61, 233
Benzesik, K	Bhandari, U	Blanpain, B
Benzing, J 24, 102, 165, 195, 198, 199,	Bharadwaj Vishnubhotla, S 151	Bleck, W
217, 233, 234, 238	Bhardwaj, A	Blendell, J
Bera, A	Bhashyam, G	Bleyer, J
Berbenni, S	Bhaskaran, S	Blickley, S
· · · · · · · · · · · · · · · · · · ·		
Berenguer, F	Bhate, D	Blinn, B
Berfield, T	Bhattacharya, A 9, 28, 31, 34, 46, 62,	Blondel, S
Bergeon, N	66, 100, 134, 167, 197, 219, 235, 273	Bloom, R
Berger, E	Bhattacharya, K 92	Blug, A
Bergin, A 80	Bhattacharya, S10, 19, 57, 99, 229	Bobel, A105, 136, 165, 168
Berglund, I 8, 170	Bhattacharyya, D81, 92, 126, 160, 191,	Boca, M
Bergmann, J	214, 231, 271	Bocanegra, C
Bergmann, L	Bhattacharyya, S	Bo-Chia, C
Berkson, M	Bhave, C	Bock, F
Berlia, R	Bhowmick, S	Bocklund, B 58, 167, 196, 204, 235
Berman, T56, 124, 150	Bhowmik, S	Boechler, N
Bermel, C	Bian, S	Boehler, R
Bermingham, M 50	Bible, A	Boehlert, C
Bernal-Choban, C30, 61, 95, 272	Bicalho Gava, V	Bogdanova, T
Bernal, R	Bickel, J	Bohanon, B
Bernard, E	Bidyk, B	Bohanon, R
Berneder, J	Bieberdorf, N	Bohlen, J 90
Bernier, J	Bieler, T	Bojarevics, V
Bernstein, N	Biermann, H21, 130, 211	Boldt, J
Berrie, C 44	Biggs, K	Boleininger, M
Berry, J	Bikmukhametov, I 94	Bolfarini, C
Bertheau, D	Bilal, H	Bolintineanu, D
Berthebaud, D	Bilen, A	Boller, C
Berthod, P	Bilheux, H	Bolme, C
Bertin, N 48, 105	Bilheux, J	Bolmin, O
Deruii, 14	Dinicux, j 40	Domini, O

Bolyachkin, A	Boykin, J	Brodnik, N
Bolzowski, R	Braatz, R	Broek, S43, 45, 49, 55, 67, 77, 79,
Bomba , D 9	Brabazon, D 112, 130, 209, 241,	101, 112, 114, 135, 146, 147, 178,
Bonafos, C	249, 254	179, 183, 207, 226, 227, 245
Bonnamy, S	Brabie, L	Broer, J
Bonneau, G	Brabzon, D	Bronkhorst, C
Bonnekoh, C	Bracken, C	Brookhart, J
Bonnet, F	Bracker, G	Brooks, G
Bonora, N	Brackman, P	Brooks, K
Bonucci, A	Bradaškja, B	Brooks, N
Bonzom, R	Bradicich, A	Brotsack, M
Booby, T	Bradley, P	Broucek, J
Boone, K	Brady, M42, 54, 65, 190	Broussard, A
Booth, C	Braems, I	Brown, A17, 46, 80, 115, 148, 180,
Booth, R91, 115, 218	Braga, F	209, 263
Bordas-Czaplicki, M 120	Braga, M	Brown, B
Bordas, R	Braham, E	Brown, C
Bordeenikasem, P 179	Brahlek, M 48	Brown, D13, 28, 56, 60, 93, 99, 106,
Bordeenithikasem, P	Branch, S	
Borenstein, C	Brandenburg, C	Browne, D
Borg, C	Brand, M	Brown, F
Borgenstam, A	Brandt, M100, 104, 137, 243	Brown, J121, 167
Borgonia, J	Brandt, R	Brown, N
Borisevich, A	Brandtzaeg, S 67	Brown, T
Borisov, V	Branicio, P208, 257, 263	Brubaker, Z
Borkar, T	Bras, W	Bruce, K
Borodin, V	Bratten, A	Bruckard, W
Boro, J	Brázda, M 249	Brückner-Foit, A
Borovikov, V	Brechtl, J	Bruder, E
Borowski, L	204, 224, 257, 259	Bruhis, M
Borra, V	Breczewski, T	Brumbauer, F
Borrello, M	Breen, A	Brumblay, H
Bor, T	Breguet, J	Bruno, G
Bos, C 88	Brennan, M	Bruno, N
Bose, A	Brennan, P	Brunson, Z 57
Bostanabad, R	Brenner, D	Brunstein, T
Boston, R	Brenza, T	Brust, A
Bosworth, P 45	Bresnahan, B	Bryars, D
Botros, A	Breton, L	Bryl, A 6, 137
Bottenus, D	Bretschneider, T	Brziak, P
Böttger, B	Brewer, L6, 7, 85, 102, 117, 150, 171,	Buchanan, K
Bottin-Rousseau, S	184, 185, 249, 272	Buck, E
Bouché, A	Brgoch, J	Buckley, J
Bouhattate, J	Brial, V 78	Buckthorpe, A
Bouman, C	Brice, C104, 165, 206	Buck, Z
Bouobda Moladje, G	Bridges, A	Bucsek, A 56, 92, 106, 150, 266
Bourasseau, E	Brierley, C	Budenkova, O 87, 231
Bourdin, B	Brietzke, C	Budrow, C
Bourges, C	Briggs, B 6	Buenrostro, B
Boury, C	Briggs, S 85, 92, 125, 161, 191	Buerstmayr, R
Bouvet, S	Brinkley, W	Buffière, J
Bovid, S	Bristow, A	Bufford, D
Bowden, D	Briton P	Bugallo Ferron, D
Bowen, P	Britton, B	Bugdayci, M 90, 97, 228, 246, 254
Bowman, E	Britton, T	Bugelnig, K
Bowman, W	Britt, S	Buhazza, H
Boyce, B19, 94, 166, 168, 170, 172,	Brizzolara, K	Bultel, A
182, 198, 237, 267	Broderick, S	Buonassisi, T
Boyce, D	Broderick, T 86, 110	Burak, A 91
Boyd, T 94	Brodie, J	Burba, M
•	•	

Burch, A	Caldas, P	Carlson, B
Buresh, S	Calderon, G	Carlson, K
Bureš, M	Calderon Rojas, M	Carmona-Saldarriaga, L
Burford, D	Caliari, F	Carneiro, D
Bürger, D	Calin, M	Carneiro De Oliveira, J
Burghardt, K	Callahan, P	Carneiro, J
Burgos, N 67, 170	Callanan, J	Carney, C
•		•
Burke, G	Callisti, M	Caron, A
Burke, J	Calvat, M	Caron, P
Burke, S	Calzolari, A	Caron, W
Burley, M	Cameriano, L	Carotti, F
Burling, L	Cameron, K	Carpenter, D
Burnett, M	Campanha, M	Carpenter, J17, 46, 71, 80, 115, 118,
Burnett, R	Campbell, A 17, 47, 81, 116, 192, 270	148, 172, 180, 209, 210, 263
Burns, J 6, 8, 21, 75, 160, 185	Campbell, C 14, 27, 42, 58, 89, 91, 125,	Carrado, A 5, 9, 35, 37, 66, 72, 100,
Burns, K	134, 158, 190, 216, 262, 268, 270	107, 135, 168, 197, 202, 256
Burtscher, M	Campbell, I	Carreño, F
	1	
Busch, R	Campbell, J	Carriero, A
Busse, B	Campbell, M	Carrillo, M
Butch, N	Campbell, Q	Carroll, J
Butler, B69, 132, 166, 182, 195, 199,	Campos, M	Carruthers, A
218, 234, 272	Camposo, A	Carsley, J
Butler, L	Camus, T	Carter, C
Butler, T51, 132, 195, 196	Canales Cantu, A	Carteret, C 5
Butterling, M	Canales-Cantu, A	Carter, J11, 39, 74, 89, 108, 143, 175,
Buziak, M	Candido, V	204, 224, 257, 259
Buzzy, M	Canepa, P	Carter, M
Bwala, M	Canfield, N	Carter, R
Byeon, J	Canfield, P	Carvalho, E
Byerly, K	Cangi, A	Carvallo, J
Byggmästar, J	Cankaya, E	Carver, D
Byggmästar, J	Canova, K	Carver, T
Byun, T	•	
, ee	Canova, K	Carver, T
Byun, T	Canova, K	Carver, T .93, 217, 235 Casalena, L 105 Casanas Montesdeoca, E 148
Byun, T	Canova, K	Carver, T .93, 217, 235 Casalena, L 105 Casanas Montesdeoca, E 148 Casas Luna, M 41, 259
Byun, T	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230
Byun, T	Canova, K	Carver, T .93, 217, 235 Casalena, L 105 Casanas Montesdeoca, E 148 Casas Luna, M 41, 259 Casata, M 70, 198, 230 Casati, N 222, 234
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131	Canova, K	Carver, T .93, 217, 235 Casalena, L 105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211
Byun, T	Canova, K	Carver, T .93, 217, 235 Casalena, L 105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133
Byun, T 27, 59 C C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23
Byun, T 27, 59 C C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176
Byun, T 27, 59 C C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro Baldivieso, S .55
Byun, T 27, 59 C Caballero, F. 88, 241 Cabascango, C 213 Cabon, G. 75 Cabo Rios, A. 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A. 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahil, J 58	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Baldivieso, S .55 Castro-Moreno, A .141
Byun, T 27, 59 C Caballero, F. 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahil, J 58 Cahill, C 219	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Baldivieso, S .55 Castro-Moreno, A .141 Catalino, P .55
Byun, T 27, 59 C Caballero, F. 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahil, J 58 Cahill, C 219 Cahill, N 91	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro Baldivieso, S .55 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120
Byun, T 27, 59 C Caballero, F. 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahil, J 58 Cahill, C 219	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183
Byun, T 27, 59 C Caballero, F. 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahil, J 58 Cahill, C 219 Cahill, N 91	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183 Catledge, K .185
Byun, T 27, 59 C Caballero, F. 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahill, J 58 Cahill, C 219 Cahill, N 91 Cahill, R 49, 183	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183 Catledge, K .185 Caughey, M .54
Byun, T 27, 59 C Caballero, F. 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahill, J 58 Cahill, C 219 Cahill, N 91 Cahill, R 49, 183 Cai, B 140, 238	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Baldivieso, S .55 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183 Catledge, K .185 Caughey, M .54 Cavin, J .124
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahill, J 58 Cahill, C 219 Cahill, N 91 Cahill, R 49, 183 Cai, B 140, 238 Cai, L 205, 225, 226 Cai, Q 135	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Baldivieso, S .55 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183 Catledge, K .185 Caughey, M .54 Cavin, J .124 Cawley, P .189
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahill, J 58 Cahill, N 91 Cahill, R 49, 183 Cai, B 140, 238 Cai, L 205, 225, 226 Cai, Q 135 Cai, S 63	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Baldivieso, S .55 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183 Catledge, K .185 Caughey, M .54 Cavin, J .124 Cawley, P .189 Caylak, M .226, 245
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahill, J 58 Cahill, N 91 Cahill, R 49, 183 Cai, B 140, 238 Cai, L 205, 225, 226 Cai, Q 135 Cai, S 63 Cai, T 43	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Baldivieso, S .55 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183 Catledge, K .185 Caughey, M .54 Cavin, J .124 Cawley, P .189
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahill, J 58 Cahill, C 219 Cahill, N 91 Cahill, R 49, 183 Cai, B 140, 238 Cai, L 205, 225, 226 Cai, Q 135 Cai, S 63 Cai, T 43 Cai, W 9, 20, 51, 85, 119, 152, 248	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Baldivieso, S .55 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183 Catledge, K .185 Caughey, M .54 Cavin, J .124 Cawley, P .189 Caylak, M .226, 245
Byun, T 27, 59 C C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahill, J 58 Cahill, C 219 Cahill, R 49, 183 Cai, B 140, 238 Cai, L 205, 225, 226 Cai, Q 135 Cai, S 63 Cai, T 43 Cai, W 9, 20, 51, 85, 119, 152, 248 Cai, Z 20, 46	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro-Baldivieso, S .55 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183 Catledge, K .185 Caughey, M .54 Cavin, J .124 Cawley, P .189 Caylak, M .226, 245 Cazic, I .154
Byun, T 27, 59 C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahill, J 58 Cahill, C 219 Cahill, N 91 Cahill, R 49, 183 Cai, B 140, 238 Cai, L 205, 225, 226 Cai, Q 135 Cai, S 63 Cai, T 43 Cai, W 9, 20, 51, 85, 119, 152, 248 Cai, Z 20, 46 Cakmac, E 93	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro Baldivieso, S .55 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183 Catledge, K .185 Caughey, M .54 Cavin, J .124 Cawley, P .189 Caylak, M .226, 245 Cazic, I .154 Cecchin, D .264 Ceder, G .25, 55
Byun, T 27, 59 C C Caballero, F 88, 241 Cabascango, C 213 Cabon, G 75 Cabo Rios, A 131 Cabral, B 146 Cabrioli, M 28 Cackett, A 166 Cadar, A 132 Cady, C 36, 115 Caffier, G 72 Cagin, T 164 Cagirici, M 68 Cahill, J 58 Cahill, C 219 Cahill, R 49, 183 Cai, B 140, 238 Cai, L 205, 225, 226 Cai, Q 135 Cai, S 63 Cai, T 43 Cai, W 9, 20, 51, 85, 119, 152, 248 Cai, Z 20, 46	Canova, K	Carver, T .93, 217, 235 Casalena, L .105 Casanas Montesdeoca, E .148 Casas Luna, M .41, 259 Casata, M .70, 198, 230 Casati, N .222, 234 Casella, A .148, 211 Casem, D .94, 115 Cashin, P .133 Castagnola, E .23 Castany, P .75, 144, 176 Castellanos, A .154 Castelluccio, G .9, 185 Castillo, E .207 Castro Baldivieso, S .55 Castro-Moreno, A .141 Catalino, P .55 Cater, S .120 Cathcart, C .183 Catledge, K .185 Caughey, M .54 Cavin, J .124 Cawley, P .189 Caylak, M .226, 245 Cazic, I .154 Cecchin, D .264

Ceguerra, A	Chaowalit Limmaneevichitr, C 98	Chen, K
Celebi, O	Cha, P	Chen, L 6, 69, 70, 104, 112, 125, 137,
Celikin, M	Chapman, H 80	138, 139, 155, 171, 176, 200, 221, 241
Cerboni, N	Charest, S	Chen, M. 91, 122, 150, 169, 202, 211, 226,
Cereceda, D	Charette, O 5	252
Cerecedo-Sáenz, E	Charit, I59, 185, 205, 269	Chen, N
Cerqueira, N	Charlebois, A	Chen, P 15, 44, 73, 83, 109, 206, 243
Cerreta, E	Charpagne, M	Chen, Q91, 99, 210
Cervellon, A	Charpentier, T	Chen, R
Chaddha, M	Charrier, M	Chen, S 14, 30, 34, 42, 55, 63, 65, 76, 77,
Chadha, K	Chason, E	99, 112, 134, 175, 245, 253, 259
Chadwick, A139, 154, 174, 177	Chataigneau, P65, 98, 133, 255	Chen, T
Chae, H	Chateauminois, A	Chen, W11, 28, 60, 68, 81, 93, 108,
Chales J	Chatelier, C	124, 127, 144, 196, 199
Chahee, J	Chatellier, C	Chen-Wiegart, K
Chai, G	Chatterjee, A	Chen-Wiegart, Y
Chaiprapa, J	Chatterjee, S	Chen, X 27, 73, 89, 91, 98, 112, 133,
Chai, Y	Chattopadhyay, A	146, 169, 234, 238, 240, 271
Chakin, V	Chattopadhyay, K	Chen, Y 19, 29, 61, 94, 125, 128, 138,
chakraborty, A	Chattopadhyay, S	144, 161, 192, 206, 211, 215, 232,
Chakraborty, A156, 178, 208, 229	Chatzidakis, S64	233, 241, 247, 252, 258, 259, 272
Chakraborty, J	Chaudhari, G	Chen, Z 6, 80, 91, 124, 150, 168, 171,
Chakraborty, P 82	Chaudhary, R	179, 182, 200, 235, 259
Chakravarty, S	Chaudhary, V	Cheong, K
Chamakos, N 80	Chaudhuri, M 147	Cherene, M
Chamard, V	Chauhan, A	Chernenko, V
Chamberlain, J	Chaussende, D	Chernov, A
Chambi, L	Chavan, A	Cherukara, M
Chamelot, P	Chaves, Y	Chery, N
Champagne, V 69, 234	Chavez, R	Chesetti, A
Champliaud, H	Cha, W	Chesser, I
Chancey, M	Chawla, N 38, 46, 50, 78, 85, 92, 147,	Chevalier, C
Chandan, A 181	173, 178, 234	Chevallier, G
Chandra, S	Chechik, L	Chevallier, P
Chandrasekar, S	Checketts, J	Chhetri, S
Chandross, M 147, 208, 226, 246, 263	Che Halin, D	Chiang, C
Chaney, H	Chekhonin, P	Chiang, Y
Chang, C	Chekotu, J	Chichester, D
Changeux, B	Chen, B 54, 112, 174, 176, 241	Chichignoud, G
Chang, F	Chen, C 31, 55, 63, 69, 96, 128, 130,	Chidambaram, D
Chang, H	184, 196, 220, 244, 253, 258	Chikhalikar, A
Chang, J	Chen, D 18, 48, 81, 116, 149, 180, 266	Childerhouse, T
•		Childs, H
Chang I	Cheney S	Chilese, F
Chang M	Cheney, S	
Chang, M	Chen, G	Chisa C
Chang, S	Cheng, B	Ching, C
Chang, T	Cheng, C	Chintalapalle, R 5, 9, 35, 37, 66, 72, 100,
Chang, W	Cheng, D	107, 135, 168, 197, 202, 256
Chang, Y	Cheng, H	Chintalappale, R
Chan, H27, 46, 57, 94, 124, 125,	Cheng, I	Chintapentha, V
248, 270	Cheng, J 23, 38, 155, 161, 229	Chinwego, C33, 157, 252
Chan, K	Cheng, K	Chipman, G
Chankitmunkong, S 98	Cheng, L	Chirdon, W
Chan, M	Cheng, S	Chiu, H
Chan, N	Cheng, W	Chiu, P
Chan, S	Cheng, Y	Chiu, W
Chao, H 61	Chen, H6, 42, 70, 99, 108, 156, 166,	Chiu, Y
Chao, J	178, 188, 195, 200, 211, 216, 245, 262	Chi, Y
Chao, P	Cheniour, A	Chmelík, F
Chao, Q	Chen, J	

Cl : 1 M (7 102 126 160 100		C.1 W
Chmielus, M67, 102, 136, 169, 198,	Chung, J	Cohen, M
219, 240	Chung, S	Cohen, S
Choa, F	Chung, T	Cohn, J
Cho, B	Chung, Y	Cohn, R
Choe, J	Chutia, A	Colak, H
Cho, H	Chu Yee, K	Colclasure, A
Choi, D	Chyrkin, A 84	Coleman, J 7, 69, 104, 145, 238, 239
Choi, H	Cieslar, M	Cole, S
Choi, I	Cil, D	Colin, F
Choi, J 10, 31, 37, 72, 107, 142, 174,	Cillessen, D	Colin, J
203, 224, 228, 244	Cinar Sahin, F	Colla, C
Choi, P249, 250, 258	Cinbiz, M94, 126, 127	Collado Cardenas, E 63
Choi, S 57, 223, 225, 245, 270	Cinbiz, N	Colldeweih, A
Choi, T248, 256, 266	Cinkilic, E	Colliander, M
Choi, W120, 230, 258, 262	Cipollone, D	Colliard, I
Choi, Y	Cisneros Flores, G	Colligan, K
Cho, J	Cistal Ci	Collins, B
	•	
Cho, K	Clancy, P	Collins, D
Cho, L	Clare, A	Collins, J
Cholkar, A	Clark, C	Collins, P
Cho, M	Clarke, A 7, 22, 24, 26, 32, 51, 54, 70,	Colombo, G
Chong, K 7	88, 138, 154, 165, 171, 181, 196,	Colombo, J
Chong, Y	218, 224, 241, 242, 258, 259, 260	Colon, C
Choo, H 6, 7, 86, 145, 216, 238, 239	Clarke, D	Colorado, H162, 252, 265
Choo, K	Clarke, K 7, 24, 26, 32, 51, 54, 57, 88,	Colorado Lopera, H
Chopp, D	123, 138, 150, 155, 181, 183, 187,	Colton, S
Cho, R	196, 224, 241, 242, 258, 259, 267	Comte, F
Chorney, J	Clark, S 14, 121, 171, 186, 233	Conciatori, D
Chorney, M	Clark, T	Conduit, G
Cho, S	Clark, W 74	Conner, R
Chotard, J	Clausen, B56, 106, 162, 235	Connick, R149, 209, 268
Choubey, P	Clausius, B	Connolly, J
Chou, C	Cleaves, H	Connolly, M
Choudhary, K 13, 41, 76, 110, 145,	Clement, C29, 124, 191, 216	Conte, E
149, 177, 206, 225, 261	Clement, R	Contescu, C
Choudhuri, D	Clément, R	Contopoulos, I 80
Choudhury, M 171	Clemmer, J	Contreras-Vega, V
Chou, K	Clifford, B	Conway, K
Cho, W	Cline, H	Cooke, S
Chowdhury, M	Clouet, E	Cooley, J
Chowdhury, S	Clowers, L	Coons, T
Cho, Y	Cloyd, A	Cooper, B
Chráska, T 41	Cluff, S	Cooper, D
Christ, H 20, 34, 86, 153, 224, 233, 273	Clyne, B	=
Christ, H 20, 34, 86, 153, 224, 233, 273 Christian, K	Clyne, B	Cooper, M 60, 93, 208, 209, 228
Christian, K	C. Martínez, A	Cooper, M 60, 93, 208, 209, 228 Cooper, V
Christian, K. 148 Christianson, D 34	C. Martínez, A	Cooper, M
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141	C. Martínez, A	Cooper, M 60, 93, 208, 209, 228 Cooper, V
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254	C. Martínez, A	Cooper, M
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223	C. Martínez, A	Cooper, M
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223 Chuang, A 87, 102, 138, 139, 210, 240	C. Martínez, A	Cooper, M. 60, 93, 208, 209, 228 Cooper, V. 48 Copeland-Johnson, T. 91, 157, 158, 214, 218 Copley, J. 258 Copp, S. 76 Cordeiro, N. 146
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223 Chuang, A 87, 102, 138, 139, 210, 240 Chuang, C 162, 221	C. Martínez, A	Cooper, M. 60, 93, 208, 209, 228 Cooper, V. 48 Copeland-Johnson, T. 91, 157, 158, 214, 218 Copley, J. 258 Copp, S. 76 Cordeiro, N. 146 Cordero, Z. 137, 196, 210, 223
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223 Chuang, A 87, 102, 138, 139, 210, 240 Chuang, C 162, 221 Chu, H 82	C. Martínez, A	Cooper, M. 60, 93, 208, 209, 228 Cooper, V. 48 Copeland-Johnson, T. 91, 157, 158, 214, 218 Copley, J. 258 Copp, S. 76 Cordeiro, N. 146 Cordero, Z. 137, 196, 210, 223 Cordes, N. 127, 192
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223 Chuang, A 87, 102, 138, 139, 210, 240 Chuang, C 162, 221 Chu, H 82 Chuirazzi, W 127, 192	C. Martínez, A	Cooper, M. 60, 93, 208, 209, 228 Cooper, V. 48 Copeland-Johnson, T. 91, 157, 158, 214, 218 Copley, J. 258 Copp, S. 76 Cordeiro, N. 146 Cordero, Z. 137, 196, 210, 223 Cordes, N. 127, 192 Cordill, M. 151, 255
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223 Chuang, A 87, 102, 138, 139, 210, 240 Chuang, C 162, 221 Chu, H 82 Chuirazzi, W 127, 192 Chu, J 208	C. Martínez, A	Cooper, M. 60, 93, 208, 209, 228 Cooper, V. 48 Copeland-Johnson, T. 91, 157, 158, 214, 218 Copley, J. 258 Copp, S. 76 Cordeiro, N. 146 Cordero, Z. 137, 196, 210, 223 Cordes, N. 127, 192 Cordill, M. 151, 255 Cordner, S. 195
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223 Chuang, A 87, 102, 138, 139, 210, 240 Chuang, C 162, 221 Chu, H 82 Chuirazzi, W 127, 192 Chu, J 208 Chu, K 15	C. Martínez, A	Cooper, M. 60, 93, 208, 209, 228 Cooper, V. 48 Copeland-Johnson, T. 91, 157, 158, 214, 218 Copley, J. 258 Copp, S. 76 Cordeiro, N. 146 Cordero, Z. 137, 196, 210, 223 Cordes, N. 127, 192 Cordill, M. 151, 255 Cordova, S. 195 Cordova, C. 196
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223 Chuang, A 87, 102, 138, 139, 210, 240 Chuang, C 162, 221 Chu, H 82 Chuirazzi, W 127, 192 Chu, J 208 Chu, K 15 Chulist, R 111	C. Martínez, A	Cooper, M. 60, 93, 208, 209, 228 Cooper, V. 48 Copeland-Johnson, T. 91, 157, 158, 214, 218 Copley, J. 258 Copp, S. 76 Cordeiro, N. 146 Cordero, Z. 137, 196, 210, 223 Cordes, N. 127, 192 Cordill, M. 151, 255 Cordova, C. 196 Corkhill, C. 180
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223 Chuang, A 87, 102, 138, 139, 210, 240 Chuang, C 162, 221 Chu, H 82 Chuirazzi, W 127, 192 Chu, J 208 Chu, K 15 Chulist, R 111 Chu, M 80	C. Martínez, A	Cooper, M
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223 Chuang, A 87, 102, 138, 139, 210, 240 Chuang, C 162, 221 Chu, H 82 Chuirazzi, W 127, 192 Chu, J 208 Chu, K 15 Chulist, R 111 Chu, M 80 Chung, D 94	C. Martínez, A	Cooper, M
Christian, K. 148 Christianson, D 34 Christofidou, K. 8, 36, 71, 106, 136, 141 Chrystal, J 254 Chrzan, D 110, 135, 223 Chuang, A 87, 102, 138, 139, 210, 240 Chuang, C 162, 221 Chu, H 82 Chuirazzi, W 127, 192 Chu, J 208 Chu, K 15 Chulist, R 111 Chu, M 80	C. Martínez, A	Cooper, M

Corona, S	Curtarolo, S	Das, A
Corso, L	Curtin, W	221, 227, 263, 266, 272
Cortes, P 74, 97, 194, 199, 200, 219	Curtis, A	Dasari, S 12, 32, 40, 63, 96, 130, 150,
Cortez, A	Curtis, N	164, 193, 196, 216, 222, 224,
Cortez, J	Curtis, T52, 117, 212	233, 247, 253, 257
Costa, D	Cusentino, M 197, 235	Das, D
Costa, E	Cygan, R	Das, G
Costa, R	Czerny, M	Das Gupta, T
Costa, U	7-	Das, H 52, 82, 124, 154, 181, 186, 210,
Cote, D	D	212, 228, 230, 246, 268
Cote, G	Dabney, T	Dash, D
Côté, J	Dabo, I 18, 48, 81, 116, 149, 180, 266	Dashe, C
Cotruvo, J	Daboiku, T	Dasika, P
Cotto-Figueroa, D	da Costa, R	da Silva Dias Filho, M
Cotts, E		da Silva, M
Couchet, C	Dada, M	Da Silveira, P
Couet, A 28, 29, 57, 125, 204, 270	Dadfarnia, M 52, 211	Das, P
	Daehn, G	
Coughlin, D	D'Agata, E	Das, S 15, 29, 78, 149, 174, 205
Courtenay, J	Dagdeviren, O 179	Dass, A
Coury, F224, 258, 260	Daghbouj, N	Datye, A
Couzinie, J		Daub, K
Couzinié, J	Dahlberg, C	Dau, E
Cowley, I	Dahotre, N7, 70, 102, 119, 137, 139,	Daut, L
·	144, 177, 206, 230, 240, 242	
Cox, B	Dai, C	Davami, K
Cox, C	Daigle, S	Davern, S
Cox, S	Dai, S	Davey, T
Coyle, R	Dai, Y	David, N 41
Cozzolino, E		David, R
Craft, A	Dalaker, H	Davidson, E
Craig, R	Dale, O	Davidson, L
	Dalger, T	Davidson, M
Cramer, B	Dalton, P	
Crawford, G	da Luz, F	Davids, W
Crawforth, P	Daly, M 19, 49, 83, 118, 151, 182, 211,	Davies, A
Cremer, T	229, 247, 258	Daviou, M
Cristescu, I	Daly, R	Davis, L
Cristiano, F	•	Davis, T
Crocombette, J	Daly, S	Davris, P
Croise, G	Damaschke, B	Davydok, A
	Damjanovic, N	•
Crossman, B	Dang, K	Daw, M
Cross, W	Dang, T	Dax, T
Croteau, J	Danielik, V	Dayalu, S
Crudden, D	Danielson, D	Daymond, M 21, 60, 127, 211, 266
Cruz, A	Daniewicz, S6, 68, 102, 137, 169,	Day, T
Cruz, L		Deacon, R
Cruz, R	198, 220, 240	Deal, A117, 171
Cueva Sola, A	Daniš, S	Dean, L
	Dankwah, J	
Cui, B20, 21, 51, 85, 89, 108, 119,	Dantzig, J	Deason, T
148, 152, 153, 185, 211, 234, 248	Dao, M	De Assis, F
Cui, J 73, 108, 136, 183, 257	Dapino, M	de Azevedo, A
Cui, S	Dara, B	de Barros, F
Cui, X		Debeer-Schmitt, L
Cui, Y	Daraio, C	DeBeer-Schmitt, L
Cullum, B	Daramola, A	de Bessa Schinkoeth Reis, A 162
Cunha, J	Dares, C	Deblonde, G
	Darling, K	
Cunningham, B	Darnbrough, E	Debnath, A
Cunningham, C	Darsell, J 120, 146, 192, 219, 230, 246	de Boer, M
Cunningham, N	Darvishi Kamachali, R 99, 156, 260	DebRoy, T
Cunningham, W	Darwish, A	De Campos, M
Cureton, W	Z wi W1011, 11	de Carlan, Y
Curiotto, S		De Carlan, Y

D : 14	D	D: 411 T
Decius, M	Dennett, C 60, 133, 148, 180, 228	Diaz Aldana, L
Deck, C	Denny, A	Diaz, D
Decker, P	Denonno, O	Díaz-García, Á
DeCost, B 85	Dentinger, B	Diaz, M
Deering, R	Depan, D146, 247	Díaz-Villaseñor, P
de Formanoir, C	Dépinoy, S	DiBenedetto, S
de Geuser, F	DePond, P	DiCiano, M
De Graef, M	DePottey, A	Dickel, D
Deguia, J	Depover, T	Dickey, E
Dehghani, S	Derakovic, E	Dickey, I
Dehm, G	Derby, B	Dicus, A
Dehoff, R	Der Garabedian, N	DiDomizio, R 8
DeHoff, R 200	Derimow, N 7, 24, 102, 198, 199, 233	Diedrich, B 6
Deitz, J	Derin, B	Diefenbach, A
deJong, M	Derlet, P 16, 45, 79, 114, 147, 167,	Diehl, M
DeJong, M	179, 208, 227, 263	Dieng, A
•	Dervishi, E	
Delagnes, D		Dietrich, R. 165 Diewwanit, O 98
Delaire, O	Desai, S 13, 41, 76, 110, 145, 177, 206,	•
Delannoy, S	225, 261	Di Feo, T
De la Pena, J	Deschamps, A	Di Fonzo, F
Delaqua, G	Deschenes, P	Di, J
de la Vega, J	Desgranges, L	Dikici, B
De Leo, M 23, 38, 155, 161, 229	Désilets, M	Dilemma, F
Delfin, L	de Sonis, E	Di Lemma, F 28, 127
Delfino de Campos Neto, N	de Sousa Oliveira, L	Dillon, R
Delfino De Campos Neto, N 196	de Souza, A	Dillon, S29, 61, 122, 215
Del Guercio, G 105, 246	Desrochers, A	Dimez, G
D'Elia, M	Desrosiers, A	Dimiduk, D 13, 41, 76, 110, 145, 177,
Deliere, L	Dessolier, T	206, 225, 261
Delmas, J	Detisch, M	Ding, H
Del Masto, A 82	Detlefs, C 56, 106	Ding, J
de Looze, G176, 201, 220	Detor, A	Ding, K
Delplanque, J	Detrois, M8, 36, 65, 71, 85, 106, 141,	Dingle, J 6
Delrio, F	143, 164	Ding, Q
DelRio, F	Detsi, E 10, 37, 72, 107, 142, 174, 203,	Ding, R
Del-Río, L	224, 244, 247	Dingreville, R 13, 19, 48, 82, 94, 177,
Del Rose, T	Deva, A	182, 226, 267
De Luca, A	Devadig, R	Ding, X
Demetriou, M	Devanathan, R 14, 32, 42, 63, 141, 142,	Ding, Z
Demircivi Baran, P 246	262	Dinkar, O 64, 188
Demircivi, P	Devaraj, A47, 78, 82, 85, 117, 129, 150,	Dion, L
Demir, K	159, 181, 182, 210, 239, 266, 268	DiPrete, D
Demirkal, E	Devarapalli, R 5, 23	Dispinar, D
Demirtas, M	Devaux, X 5, 107	Ditscherlein, L
Demkowicz, M	DeWald, A	Dittrich, C
De Moor, E 62, 215	Dewen, Y	Dittrich, J
Demosthenes, L	Dewitt, D	Dixit, M
	DeWitt, S	Dixon-Anderson, K
Demoulin, R		
Demura, M	Dey, A	Dixon, C
Deneef, D	Dey, M	Dixon, T
Deneys, A	Dezerald, L	Dizdar, K
Deng, C	Dhaif, A	Djambazov, G114, 213, 267
Deng, J	Dhakad, A	Dmowski, W
Deng, L	Dhal, A	Doan, J
Deng, P	Dhami, H	Doğan, O
Deng, Q	Dhas, J	Doğan, Ö
Deng, X	Dheeradhada, V	Dobbs, J
Deng, Z16, 55, 165, 262	Dial, L	Dobroň, P
Denis, S	Diao, J	Dobrowolski, T
Denizli, F147, 148	Diaz, A16, 46, 68, 80, 202	Dobson, S

1.0	D 1 1	D W
do Carmo, A	Drescher, J	Durst, K
Doddapaneni, V	Dresselhaus-Marais, L 62, 80, 95,	Dussa, S
Dogan, M	168, 247	Dutra Jr., S
Dogu, M	Drewry, S	Dutta, A
Do, H	Driscoll, D	Du, Y 58
Dolez, P	Drnek, T 40	Duy, H
Dolgos, M	Drobjnak, M	Du, Z 76
Dolmetsch, T	Drozdenko, D	Dwivedi, P
Domain, C	Drtina, T	Dwyer, D
Domankova, M 269	Dryepondt, S 36, 84, 118, 152, 184, 201	Dye, D
Domenico, J	Dshemuchadse, J 187	Dymek, S
Domínguez, G 173, 175	D. Sparks, T	Dyro, K
Dominici, S	Duarte, G	Dzhumaev, P
Dominic, J141, 186	Duarte Martinez, F 9, 185	_
Donca, O	Dubey, M5, 35, 66, 100, 121, 135,	E
Donegan, S	168, 191, 197	E. Allison, J
Dong, A	Dubey, S	Eapen, J
Dongare, A 69, 106	Dubourg, L	1
Dong, B	Ducharme, G	Earthman, J
Dong, F 11, 40, 74, 109, 144, 175,	Duchesne, C	Eason, T
204, 260	Duch, J	East, D
Dong, H	Duchoslav, J	Eastman, T
Dong, J	Dudarev, S	Easton, M
Dong, Q	Dudczig, S	Ebel, T
Dong, S	Duemmler, K	Ebeperi, D
Dong, W	Duerrschnabel, M 100, 268	Ebereonwu, D
Dong, X	Dufek, E	Eberheim, R
•		Eberl, C
Dong, Y	Duffie, W	Ebrahim, A
Dong, Z	Duffy, A	Echeverry-Rendón, M 173, 175
Doniger, W	Duffy, J	Echlin, M
Donik, C	Du Frane, W	Ecker, L
Donnelly, E	Dufresne, E79, 114, 263	Eckert, J
Donnelly, M	Dugast, F	Eckert, K
Donnelly, S	Dugic, I	Eckert, S
Donnerbauer, K	Duguay, D	Eckes, K
Dooryhee, E	Du, J15, 26, 38, 44, 78, 105, 113,	Edalati, K
Dorantes-Rosales, H 265	140, 146, 148, 173, 178, 255, 262	Eden, T 56, 272
Dorari, E	Dumas, O	Edern, M 24, 167
Dorin, T65, 98, 133, 255	Dumlu, H	Edgren, A
Dorman, S	Du, N	Edick, J
Dorn, J	Dunand, D 77, 105, 169, 207, 240	Edmonds, I
Dorreen, M	Dündar, K	Edmondson, P 34, 66, 100, 116, 134,
Dorula, M	Dunkelberger, A 203	167, 180, 197, 219, 235, 273
Dorvlo, S	Dunn, A	Edwards, D
Dos Santos, J	Dunne, F	Edwards, J
Dou, C 6	Dunsford, K	Edwards, N
Douglas, R 6	Dunstan, M	Efe, M
Douin, J	Dunzik-Gougar, M 92	
Dowden, S	Dupraz, M	Eff, M
Dowding, I	Du Preez, F	Eftekharian, A
Downey, C	Dupuis, M	Eftink, B
Downey, J	Dupuy, A7, 11, 12, 40, 74, 109, 144,	Egami, T
Doyle, J	175, 204, 260	Egan, A
Doyle, P	Durán, A	Egbers, O
Doyle, R	Durandet, Y	Egberts, P
Draper, M	Dureau, C	Eger, E
Draup, J	Durell, L	Eger, Z
Dravid, V	Durga, A	Eggeler, G24, 41, 81, 202
Dreisinger, D 50	Durmaz, A	Eggert, J
Drelich, J	Dürrschnabel, M	Eggert, R

Eghtand A 122	English D 271	Eranyaiialas C
Eghtesad, A	English, R	Ezenwajiaku, S
Ehigie, A 15 Ehlers, G 128	Engquist, M	EZE, W1/0, 228
	Engstler, M	F
Ehrhardt, B	Enikeev, N	•
Einarsrud, K	Enloe, C	Fabbris, G
Eipe, J	Enloe, M	Faber, K
Eisenbach, M	Enoki, M 6, 226	Fabijanic, D
Eisenhaure, J	Enright, M	Fabrice, F
Eisenlohr, P	Epler, M	Fagan, D
Eisner, S	Eppel, M	Fagbemi,, E
Eixenberger, J	Ercius, P	Fahrmann, M 14, 141
Ekambaram, O	Erdal, E	Faierson, E
Eklof, P	Erdeniz, D96, 153, 253	Failla, D
Ekun, R	Erdogan, M	Faisal, A
Elambasseril, J	Eres Castellanos, A	Falconer, C
El Atwani, O	Eres-Castellanos, A 171, 241	Falk, M56, 164, 182
El-Atwani, O	Erickson, G	Fan, A74, 108
El-Awady, J	Erickson, J	Fan, C
El-Awady, K	Ericson, M	Fancher, C 104, 128, 138, 196, 199
El-Azab, A23, 60, 95, 150, 247	Erikson, W	Fancher, R
El-Azab, S	Eriksson, E	Fang, C
Elbestawi, M	Erlebacher, J	Fang, I
El-Danaf, E	Ersoz, T	Fang, X
Elder, K	Escano, L	Fang, Y 7
Elesho, B 209	Escarcega Herrera, K	Fang, Z
Elgallad, E	Escarcega-Herrera, K 152, 205	Fan, H
ElGewaily, D115, 116	Escobar Atehortua, J	Fan, X 108, 119, 121, 138, 171, 220,
ElHalawani, J	Escobar, I	221, 224, 258
El-Husseiny, M	Escobar, J	Fan, Y29, 61, 79, 94, 128, 135, 147,
Eliaz, N	Escobar-Moreno, I	150, 161, 189, 192, 215, 232, 252
Elissalde, C	Escobedo-Diaz, J 17, 46, 80, 115, 148,	Farache, D
Elizabeth Varnell, K	180, 209, 263	
Elizabeth Varnell, K	180, 209, 263 Eshraghi, M	Fardeau, S
		Fardeau, S 135 Farfan, M 122
Ellendt, N 45	Eshraghi, M 199	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95
Ellendt, N 45 Eller, M 22	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257
Ellendt, N 45 Eller, M 22 Ellingsen, M 117	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. .5, 35, 67, 77, 98, 114	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. .5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. .5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254
Ellendt, N45Eller, M22Ellingsen, M117Elliott, J246Ellis, D159, 223Ellyson, B196, 224, 258, 259	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. .5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. .49 Espinosa, G. 157, 251	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20
Ellendt, N45Eller, M22Ellingsen, M117Elliott, J246Ellis, D159, 223Ellyson, B196, 224, 258, 259Elsayed, A173	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. .5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246
Ellendt, N45Eller, M22Ellingsen, M117Elliott, J246Ellis, D159, 223Ellyson, B196, 224, 258, 259Elsayed, A173Elsherkisi, M9, 185	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. .5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. .5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. .5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252 Esters, M. 40	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. .5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. .49 Espinosa, G. 157, 251 Espinosa, H. .44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252 Esters, M. .40 Estournes, C. .217	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165
Ellendt, N45Eller, M22Ellingsen, M117Elliott, J246Ellis, D159, 223Ellyson, B196, 224, 258, 259Elsayed, A173Elsherkisi, M9, 185Elsokaty, A171Elton, E69, 249Elverud, M140Elwany, A.67, 119, 137, 140, 166, 172,	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. .5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252 Esters, M. 40 Estournes, C. 217 Estournès, C. 217	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A .67, 119, 137, 140, 166, 172, 173, 222, 223, 241	Eshraghi, M.199Eskandari Sabzi, H.42, 238Eskin, D5, 35, 67, 77, 98, 114Esmaeilzadeh, R.234Espeland, O49Espinosa, G157, 251Espinosa, H44Espinosa-Marzal, R187Espitia-San Juan, L252Esters, M40Estournes, C217Estournès, C217Estrada, D32, 64, 67, 84, 92, 97, 131,	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A .67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22	Eshraghi, M	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A 67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254	Eshraghi, M	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A .67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254 Emelianenko, M 185	Eshraghi, M	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177 Fatto Offidani, D 20
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A 67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254 Emelianenko, M 185 Emelyanova, O 134	Eshraghi, M	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177 Fatto Offidani, D 20 Faue, P 186
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A 67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254 Emelianenko, M 185 Emelyanova, O 134 Emergy, R 182	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. 5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252 Esters, M. 40 Estournes, C. 217 Estournès, C. 217 Estrada, D. 32, 64, 67, 84, 92, 97, 131, 147, 165, 170, 194, 255 Estrada, S. 16, 78, 217 Estrin, Y. 23, 54, 88, 122, 155, 267 Eswaramoorthy, N. 243 Eswarappa Prameela, S. 82, 117, 150,	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177 Fatto Offidani, D 20 Faue, P 186 Fawcett, R 228
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A .67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254 Emelianenko, M 185 Emelyanova, O 134 Emergy, R 182 Emerson, T 262	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. 5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252 Esters, M. 40 Estournes, C. 217 Estournès, C. 217 Estrada, D. 32, 64, 67, 84, 92, 97, 131, 147, 165, 170, 194, 255 Estrada, S. 16, 78, 217 Estrin, Y. 23, 54, 88, 122, 155, 267 Eswaramoorthy, N. 243 Eswarappa Prameela, S. 82, 117, 150, 164, 182, 210, 266	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177 Fatto Offidani, D 20 Faue, P 186 Fawcett, R 228 Fayfar, S 128, 189
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A .67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254 Emelianenko, M 185 Emelyanova, O 134 Emergy, R 182 Emerson, T 262 Emery, J 71	Eshraghi, M	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177 Fatto Offidani, D 20 Faue, P 186 Fawcett, R 228 Fayfar, S 128, 189 Fay, J 127
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A .67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254 Emelianenko, M 185 Emelyanova, O 134 Emergy, R 182 Emerson, T 262 Emery, J 71 Emigh, M 120	Eshraghi, M	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fatto Offidani, D 20 Faue, P 186 Fawcett, R 228 Fayfar, S 128, 189 Fay, J 127 Fazzino, M 194, 249
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A .67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254 Emelianenko, M 185 Emelyanova, O 134 Emergy, R 182 Emerson, T 262 Emery, J 71 Emigh, M 120 Emile, P 75	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. 5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252 Esters, M. 40 Estournes, C. 217 Estournès, C. 217 Estrada, D. 32, 64, 67, 84, 92, 97, 131, 147, 165, 170, 194, 255 Estrada, S. 16, 78, 217 Estrin, Y. 23, 54, 88, 122, 155, 267 Eswaramoorthy, N. 243 Eswarappa Prameela, S. 82, 117, 150, 164, 182, 210, 266 Etienne, A. 30, 96 Etzion, R. 101 Eun Sun, H. 250	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177 Fatto Offidani, D 20 Faue, P 186 Fawcett, R 228 Fayfar, S 128, 189 Fay, J 127 Fazzino, M 194, 249 F. dos Santos, J 182
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A 67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254 Emelianenko, M 185 Emelyanova, O 134 Emergy, R 182 Emerson, T 262 Emery, J 71 Emigh, M 120 Emile, P 75 Emmanuel, O 35	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. 5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252 Esters, M. 40 Estournes, C. 217 Estournès, C. 217 Estrada, D. 32, 64, 67, 84, 92, 97, 131, 147, 165, 170, 194, 255 Estrada, S. 16, 78, 217 Estrin, Y. 23, 54, 88, 122, 155, 267 Eswaramoorthy, N. 243 Eswarappa Prameela, S. 82, 117, 150, 164, 182, 210, 266 Etienne, A. 30, 96 Etzion, R. 101 Eun Sun, H. 250 Evangelou, A. 153	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177 Fatto Offidani, D 20 Faue, P 186 Fawcett, R 228 Fayfar, S 128, 189 Fay, J 127 Fazzino, M 194, 249 F. dos Santos, J 182 Feaugas, X 51, 52, 82, 271
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A 67, 119, 137, 140, 166, 172, 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254 Emelianenko, M 185 Emelyanova, O 134 Emergy, R 182 Emery, J 71 Emigh, M 120 Emile, P 75 Emmanuel, O 35 Emmel, M 186	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. 5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252 Esters, M. 40 Estournes, C. 217 Estournès, C. 217 Estrada, D. 32, 64, 67, 84, 92, 97, 131, 147, 165, 170, 194, 255 Estrada, S. 16, 78, 217 Estrin, Y. 23, 54, 88, 122, 155, 267 Eswaramoorthy, N. 243 Eswarappa Prameela, S. 82, 117, 150, 164, 182, 210, 266 Etienne, A. 30, 96 Etzion, R. 101 Eun Sun, H. 250 Evangelou, A. 153 Evered, C. 95	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177 Fatto Offidani, D 20 Faue, P 186 Fawcett, R 228 Fayfar, S 128, 189 Fay, J 127 Fazzino, M 194, 249 F. dos Santos, J 182 Feaugas, X 51, 52, 82, 271 Fecht, H 231
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A 67, 119, 137, 140, 166, 172, 173, 222, 223, 241 173, 222, 223, 241 Emanet, S 22 Emdadi, A 233, 254 Emelianenko, M 185 Emelyanova, O 134 Emergy, R 182 Emery, J 71 Emigh, M 120 Emile, P 75 Emmanuel, O 35 Emmel, M 186 Enchinton, A 114	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. 5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252 Esters, M. 40 Estournes, C. 217 Estournès, C. 217 Estrada, D. 32, 64, 67, 84, 92, 97, 131, 147, 165, 170, 194, 255 Estrada, S. 16, 78, 217 Estrin, Y. 23, 54, 88, 122, 155, 267 Eswaramoorthy, N. 243 Eswarappa Prameela, S. 82, 117, 150, 164, 182, 210, 266 Etienne, A. 30, 96 Etzion, R. 101 Eun Sun, H. 250 Evangelou, A. 153 Evered, C. 95 Everett, M. 259	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177 Fatto Offidani, D 20 Faue, P 186 Fawcett, R 228 Fayfar, S 128, 189 Fay, J 127 Fazzino, M 194, 249 F. dos Santos, J 182 Feaugas, X 51, 52, 82, 271 Fecht, H 231 Fediuk, R 264
Ellendt, N 45 Eller, M 22 Ellingsen, M 117 Elliott, J 246 Ellis, D 159, 223 Ellyson, B 196, 224, 258, 259 Elsayed, A 173 Elsherkisi, M 9, 185 Elsokaty, A 171 Elton, E 69, 249 Elverud, M 140 Elwany, A .67, 119, 137, 140, 166, 172, 173, 222, 223, 241 22 Emdadi, A 233, 254 Emelianenko, M 185 Emelyanova, O 134 Emergy, R 182 Emerson, T 262 Emery, J 71 Emigh, M 120 Emile, P 75 Emmanuel, O 35 Emmel, M 186 Enchinton, A 114 Endsley, M 234, 244	Eshraghi, M. 199 Eskandari Sabzi, H. 42, 238 Eskin, D. 5, 35, 67, 77, 98, 114 Esmaeilzadeh, R. 234 Espeland, O. 49 Espinosa, G. 157, 251 Espinosa, H. 44 Espinosa-Marzal, R. 187 Espitia-San Juan, L. 252 Esters, M. 40 Estournes, C. 217 Estournès, C. 217 Estrada, D. 32, 64, 67, 84, 92, 97, 131, 147, 165, 170, 194, 255 Estrada, S. 16, 78, 217 Estrin, Y. 23, 54, 88, 122, 155, 267 Eswaramoorthy, N. 243 Eswarappa Prameela, S. 82, 117, 150, 164, 182, 210, 266 Etienne, A. 30, 96 Etzion, R. 101 Eun Sun, H. 250 Evangelou, A. 153 Evered, C. 95 Everett, M. 259 Evers, T. 16	Fardeau, S 135 Farfan, M 122 Farjaudon, B 95 Farkas, D 74, 257 Farkas, N 26 Farkoosh, A 207 Farmer, K 254 Farmer, W 20 Farndell, A 194, 241, 246 Faron, S 246 Farooq, A 140 Farquhar, L 242 Farrell, Z 165 Faschang, E 179 Fassadi Chimeh, A 207 Fattahpour, S 117 Fattebert, J 104, 177 Fatto Offidani, D 20 Faue, P 186 Fawcett, R 228 Fayfar, S 128, 189 Fay, J 127 Fazzino, M 194, 249 F. dos Santos, J 182 Feaugas, X 51, 52, 82, 271 Fecht, H 231

Fehri, F	Fischer, P	Francis, J
Feichter, G143, 245	Fischer, S	Franck, T
Feichtmayer, A	Fischer, T	Franco, V
Feldhausen, T 104, 128, 138, 170, 199	Fisher, C	Franke, D
Felling, F 55, 89	Fishman, T	Frankel, G 20, 51, 85, 119, 152, 184, 248
Fellowes, J	Fite, J	Franklin, A
Feng, B	Fitzpatrick, M 138, 194, 233, 241, 246	Franklin, R
Feng, G	Fjelldal, J	Franz, C
Feng Ji, C	Flagg, H	Frappart, S
Feng, L 106, 124, 160, 189, 210	Flampouri, A 80	Fraser, H 12, 74, 75, 99, 242, 261
Feng, R	Flater, P	Fraser, K
<u>C</u>		
Feng, S	Flaureau, A	Frater, G
Feng, T	Fleischer, K	Frazer, D 18, 124, 127, 166, 214
Feng, Z 10, 36, 86, 111, 154, 176	Fleming, A 84, 271	Frazier, W
Fenn, M	Fleming, N	Fredrickson, G 25, 55, 89
Fensin, S 11, 13, 16, 29, 46, 80, 122,	Fleming, T	Free, B
193, 201, 247, 256, 259	Fleuriault, C 12, 30, 40, 62, 75, 95, 109,	Free, M
	129, 163, 193, 215, 232, 252	Freeman, C
Ferblantier, G 5, 9, 35, 37, 66, 72, 100,		
107, 135, 168, 197, 202, 256	Flores, A	Freeman, T
Ferguson, J	Flores Guerrero, M	Freer, M34, 66, 100, 134, 167, 197,
Fernandez, A	Flores, J 50	219, 235, 273
Fernández-Arteaga, J	Flores, K 11, 16, 45, 79, 114, 147, 179,	Fregeac, A
Fernandez-Blanco, A	208, 227, 257, 263	Freibert, F
Fernández-de-Luis, R	Flores, M	Freitas, J
Fernandez, M	Floro, J	Frenkel, A
Fernandez, R	Flynn, S	Frenzel, J 81
Fernandez-Silva, B	Foadian, F 9	Freudenberger, J 153
Fernandez-Zelaia, P 103, 139, 193,	Foder, J 9	Freund, A 51
200, 201	Foit, A	Frey, C 13, 38, 39, 143, 144, 201, 234,
Fernquist, J	Fokin, D	257, 258, 259
Ferreira, F	Foley, A	Frey, M
	•	
Ferreirós, P	Foley, D	Freysoldt, C
Ferrigno, J 60, 180	Folstad, M	Freyss, M
Ferroni, P	Foltz, J	Frichtl, M
Fertey, P	Fonda, R24, 54, 88, 123, 155, 170,	Frick, C
Fey, L	187, 267, 268	Friedrich, B
Fezzaa, K 6, 145, 171, 186, 216, 241,	Fontes Vieira, C	Friedrich, J
242	Forde, J	Fries, S
Field, D	Forest, S	Friess, J
Fielding, R	Forien, J	Fripp, N
Field, K 28, 31, 60, 76, 84, 93, 127,	Forman, L	Frishkoff, J
160, 214	Förner, A	Fritton, M 163
Fields, B	Forrester, J	Fritzen, C
Fields, G	Forsberg, K	Fritzmaurice, M
Fields, S	Forsey, A	Fritzsch, R
Figueiredo, A	Forsik, S 24, 138, 172, 193, 255	Frizell, J
Figueiredo, R 82	Forsmark, J	Frizzera, E
=		
Figueroa Bengoa, A	Forton, M140, 200, 243	Froitzheim, J
Filho, E	Fortunier, R	Frolov, T
Filippou, D65, 98, 133, 255	Foster, M	Frondelius, T
Filleter, T	Fotopoulos, V	Fronk, C
Findley, K	Fourmann, J	Fronzi, M
Finel, A	Fowler, H 50	Frosik, B
Finfrock, C	Fox, R	Frost, M
Fink, C	Fraczkiewicz, A	Fry, T
Finkeldei, S	Fradet, G	Fu, C 14, 42, 66, 77, 112, 219, 245
Fink, R	Fraile, A115, 126, 202	Fucina, M
Fiory, A	Frame, L	Fu, E
Firdosy, S 102, 140, 200, 219, 242, 249	Francis, C	Fu, F
Firlus, A	Francisco, S	Fu, G

F 11	0.1.1.0	
Fu, H	Galvin, C	Garreau, Y
Fuhr, M	Gamage McEvoy, J	Garrido, C70, 198, 254
Fu, J	Gamble, K	Garrison, B
Fujii, H	Gammer, C	Garrison, L
Fujimoto, K23, 53, 64, 87, 122, 155,	Ganapathysubramanian, B 213	Garrivier, N
170, 248	Gandhi, A	Garthe, K
Fujiwara, H	Gandin, C 22, 104, 154, 190, 241	Garvie, L
Fu, K	Gandra, J	Garza, A
Fuller, M 89	Gandy, A	Garza, K 54
Fuller, R	Gandy, D	Gascoin, F14, 42, 77, 112, 245
Fullwood, D9, 41, 126, 202	Gangavarapu, S	Gaskey, B
Fultz, B30, 61, 95, 188, 272	Gangolu, S	Gaudez, S216, 222, 243, 254
Fumpa, N 50, 215	Ganguly, S	Gaudry, E
Funke, M	Gan, J	Gault, B 47, 51, 75, 82, 176, 200
Furcolo, H	Ganju, E	Gautam, P142, 244
Furrer, D	Ganvir, A	Gauthier, P
Fu, S	Gan, Z	Gauvin, G
Fu, W	Gao, C	Gazza, J
Fu, Y	Gao, H	Geandier, G
14, 1	231, 267	Gebert, A
G	Gao, L	Geers, M
	Gao, M11, 39, 42, 74, 85, 89, 108,	Gehrmann, B
Gaag, T		
Gabb, T	132, 137, 143, 175, 200, 202,	Geiger, I
Gabourel, A	204, 224, 234, 257, 259	Geimer, P
Gabriel, A	Gao, N	Geiser, P
Gaddam, S	Gao, R	Geiskopf, S
Gadelmeier, C111	Gao, S	Gelbstein, Y
Gadhamshetty, V 35, 168, 225, 261	Gao, W	Ge, M
Gaertner, H	Gao, X 72, 85, 91, 214, 216, 259	Genanu, M 50
Gaganidze, E	Gao, Y 55, 85, 86, 99, 108, 179, 206	Genau, A
Gagneur, V	Gao, Z	Gencturk, M
Gagniere, S	Garay, J	Genee, J
Gagnoud, A	Garbiec, D	Genée, J
Gaikwad, H	Garboczi, E	Geng, H
Gaisin, R	Garces, G	Geng, M
Gajo, T	Garcés, G	Gengor, G
Gakhar, R 27, 33, 57, 91, 157, 158, 181,	Garcia Barriocanal, J	Gensdarmes, F
	Garcia, C	Gentils, A 34, 66, 81, 100, 134, 167,
218	Garcia Chao, P	197, 219, 235, 273
Galan Argumedo, J	Garcia, D	Georgarakis, K
Galán Argumedo, J	Garcia, E	George, E 11, 13, 55, 85, 111, 143, 175
Galan-Lopez, J	Garcia Filho, F	Gerani, R
Galatanu, A	Garcia, G	Gerard, A
Galatanu, M	García, L	Gerard, C
Gale, L	Garcia Ortiz, H	Gerberich, W
Galenko, P121, 213	Garcia, R	Gerczak, T
Galera-Rueda, C	Gardener, J	
Galeros, G	Gardner, J	Geri, M
Galetz, M 41, 51, 68, 84, 133, 218	• •	Gerlich, A
Galindo-Nava, E	Gardner, N	Gerlt, A
Galitskiy, S 69	Garfias, F	German, R
Gallaway, G	Gargalis, L	Gerstl, S
Gallego, N	Garg, P	Gess, J
Gall, F	Garibaldi, M	Gester, A
Gallino, I	Garich, H	Getley, A
Gallivan, R 70	Garkida, A176, 209, 228	Geurts, R
Gall, S	Garland, A	Ge, Z71
Galluscio, C	Garlea, E 94, 162	Ghadimi, H
Gall, Y	Garmestani, H	Ghaffarian, H
Galodé, A	Garmroudi, F	Ghanbari, Z
,	Garnica-González, P	Gharbi, H216, 222, 243

Chasemi-Khouzami, M. 178	01 171 134		G 1 D 20 100
Chavmin A 263 Chavmin A 263 Chavmin A 264 Chaymor M 201 Chaymay, T 201 Chazaravi, T 129 Cha			
Chayworn M. 201 Chayworn M. 202 Chayworn M. 202 Chayworn M. 202 Chayworn M. 203 Chayworn M. 204 Cobalken. H. 146 Goodalm. D. 155, 225 Chazisaeidi, M. 34, 74, 68, 83, 90, 144 Cobalken. H. 146 Coodalm. M. 86, 186 Chaymari, T. 125 Coddwrd, W. 16, 114 Copodalm. P. 170 Chazmari, T. 125 Coddwrd, W. 16, 114 Copodalm. P. 205 Chiasabam, R. 136, 173 Coddwrd, W. 16, 114 Copodalm. E. V. 205 Chiasabam, R. 136, 173 Coddwrd, W. 16, 114 Copodalm. E. V. 205 Cholamarabh, H. 21 Coddwrd, W. 171, 140, 246, 264 Cholamarabh, H. 21 Coddwrd, W. 18, 114 Cholamarabh, H. 21 Coddwrd, W. 195, 221 Cholamarabh, H. 210 Coddwrd, W. 195, 221 Cholamarabh, H. 170 Coddwrd, W. 18, 114 Cholamarabh, H. 18, 114 Cholamarabh,			
Ghayoor, M. 201 Gnimpieba, E. 168 Goodelman, D. 155, 225 Chazisacidi, M. 34, 74, 76, 83, 30, 144 Gobakken, H. 146 Goodson, M. 86, 186 Chazisacidi, M. 149, 189, 196, 246 Gobert, C. 170 Goodspeed, D. 77, 37 Ghellal, F. 72 Goddard, W. 16, 114 Goodspeed, D. 73 37 Ghelanis Shiri, Z. 116 Godder, S. 16, 114 Gopalan, E. V. 20 10, 38 Gholami Shiri, Z. 116 Godder, S. 144 Gopalan, D. 216 Gholizadeh, R. 211 Godder, S. 144 Gopalan, D. 216 Ghosh, S. 241 Godfrey, A. 126 Gordh, A. 13 Gordin, D. 78 Ghosh, S. 13, 111, 171, 31, 147, 170 Goed, R. 149 Gordh, A. 186, 273 Ghosh, S. 13, 111, 171, 31, 147, 170 Goed, R. 178 Gordelm, M. 9, 41 Ghosh, S. 13, 111, 171, 31, 47, 170 Goed, R. 178 Gord			
Ghaisaeidi, M. 34, 74, 76, 83, 90, 144, 149, 149, 149, 149, 149, 149, 149		•	
Chaznavi, T. 19, 189, 196, 246 Gobert, C. 170 Goodspeed, D. 170 Ghaznavi, T. 125 Gockel, I. 68, 165, 195, 192, 127, 245 Goodwin, F. 3, 37 Ghellal, F. 7, 22 Goddard, W. 16, 114 Gopalan, E. V. 2, 265 Ghisasiana, R. 136, 173 Godec, M. 77, 140, 246, 261 Gopalan, S. 10, 38			
Gharnaya, T. 125 Gockel, J. 68, 165, 195, 198, 217, 234 Goodwin, F.	Ghazisaeidi, M 34, 74, 76, 83, 90, 144,	Gobakken, H	
Ghellal, F. 7. Goddard, W. 16,114 Goppalan, E., V. 26.5 Gholasaian, R. 13,6173 Godec, M. 77,140,245 261 Gopalan, S. 10,38 Gholamzadeh, H. 2.12 Godfrey, A. 126 Gorpalaswamy, R. 174 Ghomashchi, R. 3.9 Godfrey, D. 195,221 Gordin, D. 7.78 Ghosh, A. 1,40,74,109,144,175 Goebel, M. 3.43 Gordon, J. 202,222 Ghosh, D. 1,11,40,74,109,144,175 Goebel, M. 8,41 Gordin, J. 202,222 Ghosh, S. 13,111,117,31,147,170 Goel, R. 178 Gordon, J. 202,222 Giannopoulou, I. 209 Goel, Y. 251 Gorrell, R. 8,1 Giannopoulou, I. 209 Goel, Y. 251 Gorr, B. 20,34,51,85,119,195,195,191,191,191,191,191,191,19	149, 189, 196, 246	Gobert, C	Goodspeed, D
Ghiasaisana, R. 136,173 Goder, M. 77, 140, 246, 261 Gopalans, S. 10, 38 Gholami Shiri, Z. 116 Godefroy, A. 207 Gopalasawam, R. 174 Gholamosadch, R. 241 Goder, A. 126 Gorb, D. 125, 221 Gordin, D. 78 Ghosh, A. 204 Godfrey, D. 195, 221 Gordin, D. 78 66sh, D. 11, 40,74, 109, 144, 175 Goebel, M. 34 Gordin, D. 78 66sh, J. 13, 111, 117, 131, 147, 170 204, 260 Goeke, M. 8, 41 Gorelik, R. 8 120 8 60el, R. 178 60erlik, R. 8 120 60e	Ghaznavi, T	Gockel, J 68, 165, 195, 198, 217, 234	Goodwin, F
Gholamyadeh, H. 21 Godet, S. 144 Gopman, D. 126 Gholamyadeh, R. 39 Godfrey, A. 126 Gordn, S. 78 Ghomash, R. 241 Godfrey, A. 126 Gordn, D. 75 Ghosh, A. 267 Godha, A. 36 Gordon, A. 186, 273 Ghosh, D. 11, 40, 74, 109, 144, 170 Goeken, M. 8, 41 Gordon, J. 202, 222 Ghosh, S. 13, 111, 117, 131, 147, 70 Goek, R. 178 Gordlik, M. 120 Ghulan, M. 78 Goek, S. 243 Gorerlik, M. 120 Gianola, D. 1996, 139, 161, 189, 192 Goerzen, D. 154 Gorgen-Lesseux, G. 49 Gibbons, S. 140 Goettsch, J. 146 Gorgen-Lesseux, G. 49 Gibbons, S. 140 Goettsch, J. 146 Gorgen-Lesseux, G. 49 Gibbans, S. 140 Goettsch, J. 145 Gorgen-Lesseux, G. 49 Gibbans, S. 140 Goettsch, J. 2	Ghellal, F	Goddard, W 16, 114	Gopalan E., V
Gholamzadeh, H 21 Godeft, S. 144 Gopman, D. 216 Gholizadeh, R. 39 Godfrey, D. 195, 221 Gordin, D. 75 Ghosh, D. 11, 40, 74, 109, 144, 175 Godha, A. 36 Gordon, J. 202, 220 Ghosh, D. 11, 40, 74, 109, 144, 175 Goebel, M. 8, 41 Gordon, J. 202, 220 Ghosh, S. 13, 111, 117, 131, 147, 170 Goel, R. 178 Gorelik, R. 8, 41 Ghulam, M. 78 Goel, V. 231 Gorgen-Lesseux, G. 49 Giannopoulou, I. 209 Goel, V. 231 Gorgen-Lesseux, G. 49 Giannopoulou, I. 209 Goel, V. 231 Gorse, S. 20, 34, 51, 85, 119, 152, 152, 152, 152, 152, 152, 152, 152	Ghiaasiaan, R 136, 173	Godec, M77, 140, 246, 261	Gopalan, S
Gholamzadeh, H 21 Godeft, S. 144 Gopman, D. 216 Gholizadeh, R. 39 Godfrey, D. 195, 221 Gordin, D. 75 Ghosh, D. 11, 40, 74, 109, 144, 175 Godha, A. 36 Gordon, J. 202, 220 Ghosh, D. 11, 40, 74, 109, 144, 175 Goebel, M. 8, 41 Gordon, J. 202, 220 Ghosh, S. 13, 111, 117, 131, 147, 170 Goel, R. 178 Gorelik, R. 8, 41 Ghulam, M. 78 Goel, V. 231 Gorgen-Lesseux, G. 49 Giannopoulou, I. 209 Goel, V. 231 Gorgen-Lesseux, G. 49 Giannopoulou, I. 209 Goel, V. 231 Gorse, S. 20, 34, 51, 85, 119, 152, 152, 152, 152, 152, 152, 152, 152	Gholami Shiri, Z	Godefroy, A	Gopalaswamy, R 174
Ghomshchi, R. 241 Godfrey, D. 195, 221 Gordin, D. 75 Ghosh, A. 267 Godha, A. 36 Gordom, A. 186, 273 Ghosh, D. 11, 40, 74, 109, 144, 175, 204, 260 Goekel, M. 249 Gordon, J. 202, 222 Ghosh, S. 13, 111, 117, 131, 147, 170 Goel, R. 178 Gorelik, R. 81 Ghulam, M. 78 Goel, S. 243 Gorelik, R. 81 Giannopalou, I. 209 Goel, S. 243 Gorgelik, R. 81 Giannopalou, I. 209 Goel, S. 243 Gorgelik, R. 81 Gibbns, D. 19, 96, 139, 161, 189, 192, 20 Goerzen, D. 154 Gorgelik, S. 9.2 Gibbns, S. 140 Goettsch, J. 115 Gorse, S. 20, 159, 195 Gibeling, J. 24, 54, 55, 85, 89, 102, 249 Goettsch, J. 110 Gorsya, S. 20, 10, 195 Gibson, J. 110 Golk, P. 226 Gorsya, M. 206 Gibson, J. 110 G	Gholamzadeh, H 21	Godet, S	Gopman, D
Ghomshchi, R. 241 Godfrey, D. 195, 221 Gordin, D. 75 Ghosh, A. 267 Godha, A. 36 Gordom, A. 186, 273 Ghosh, D. 11, 40, 74, 109, 144, 175, 204, 260 Goekel, M. 249 Gordon, J. 202, 222 Ghosh, S. 13, 111, 117, 131, 147, 170 Goel, R. 178 Gorelik, R. 81 Ghulam, M. 78 Goel, S. 243 Gorelik, R. 81 Giannopalou, I. 209 Goel, S. 243 Gorgelik, R. 81 Giannopalou, I. 209 Goel, S. 243 Gorgelik, R. 81 Gibbns, D. 19, 96, 139, 161, 189, 192, 20 Goerzen, D. 154 Gorgelik, S. 9.2 Gibbns, S. 140 Goettsch, J. 115 Gorse, S. 20, 159, 195 Gibeling, J. 24, 54, 55, 85, 89, 102, 249 Goettsch, J. 110 Gorsya, S. 20, 10, 195 Gibson, J. 110 Golk, P. 226 Gorsya, M. 206 Gibson, J. 110 G	Gholizadeh, R	Godfrey, A	Gorb, S
Gbosh, D. 1.1, 40, 74, 109, 144, 175, 204, 204, 260 Goeken, M. 249 Gordon, J. 202, 222 Ghosh, S. 1.3, 111, 117, 131, 147, 170 Goek, R. 1.78 Gorelik, M. 210 Ghulam, M. 78 Goek, S. 243 Gorgen-Lesseux, G. 49 Gianola, D. 19, 96, 139, 161, 189, 192, 211, 258 Goerz, D. 1.54 Gors, B. 20, 34, 51, 85, 189, 191, 152, 20 Gibbons, S. 140 Goetrsch, J. 1.46 Gorsse, S. 20, 150, 195 Gibbins, J. 24, 54, 55, 88, 910, 2249 Goetrsch, J. 1.46 Gorsunova-Balkenhol, M. 1.47 Gibson, I. 1.71 Gob, B. 2.70 Gorsk, N. 2.0 Gibson, J. 1.10 Golk, P. 2.26 Goswami, M. 1.07 Gibeger, E. 1.10 Goke, G. 2.20 Goswami, M. 1.07 Gieger, E. 1.10 Goke, G. 2.25 Goswami, S. 1.45 Gieger, E. 1.10 Goke, G. 2.25 Goswami, S. 1.45 Giege	Ghomashchi, R	Godfrey, D	Gordin, D
204, 260 Goek, N. 8, 41 Gorelik, M. 1,20	Ghosh, A	Godha, A	Gordon, A
204, 260 Goek, N. 8, 41 Gorelik, M. 1,20	Ghosh, D11, 40, 74, 109, 144, 175,	Goebel, M	Gordon, J
Ghohsh, S. 13, 111, 117, 131, 147, 170 Goel, R. 178 Gorells, R. 81 Ghulam, M. 78 Goel, S. 243 Gorgen-Lesseux, G. 49 Giannopoulou, I. 209 Goel, V. 251 Gorr, B. 20, 34, 51, 85, 119, 152 Gianola, D. 19, 96, 139, 161, 189, 192. Goerzen, D. 154 Gorr, B. 224, 248, 273 Gibbons, S. 140 Goettsch, J. 116 Gorse, S. 20, 150, 195 Gibbins, M. 196, 254 Gibeling, J. 24, 54, 55, 85, 89, 102, 249 Gogotsi, Y. 91, 107 Gorsun-Balkenhol, M. 147 Gibson, I. 1171 Gohk, P. 226 Goswami, R. 24, 46, 63, 96, 130, 164 Gineger, E. 110 Goke, G. 250 Goswami, R. 32, 46, 63, 96, 130, 164 Gietzelt, T. 92 Goken, M. 45 Goswami, R. 32, 46, 63, 96, 130, 164 Gietzelt, T. 92 Goken, M. 106 Gotawala, N. 7 Gilbert, A. 49, 147 Goken, M. 115 Gotawala, N.			
Ghulam, M. 78 Goel, S. 243 Gorgn-Lesseux, G. 49 Giannopoulou, I. 209 Goel, V. 251 Gorr, B. 20, 34, 51, 85, 119, 152 Gianola, D. 19, 96, 139, 161, 189, 192, Goerzen, D. 154 224, 248, 273 Gibbons, S. 140 Goettsch, J. 146 Gorsse, S. 20, 150, 195 Gibbs, M. 196, 254 Gofryk, K. 33, 65, 99, 133, 166, 196, Gorsunova-Balkenhol, M. 147 Giblaro, M. 25, 57 Gogotsi, Y. 91, 107 Görz, M. 206 Gibson, I. 171 Goh, B. 270 Goshi, N. 247 Gibson, S. 163 Go, J. 251 Goswami, R. 30, 1 216 Gibson, S. 163 Go, J. 251 Goswami, R. 206 60sbin, N. 247 Gibson, J. 110 Goke, G. 250 Goswami, R. 32, 46, 63, 96, 130, 164 61 36 1, 2 60swami, R. 32, 46, 63, 96, 130, 164 61 61 63 60swami, R. 32	Ghosh, S 13, 111, 117, 131, 147, 170		
Giannopoulou, I. 209 Goel, V. 251 Gorr, B. 20, 34, 51, 85, 119, 152, Gianola, D 19, 96, 139, 161, 189, 192, Goerzen, D 154 224, 248, 273 273 274 275, 275, 275, 275, 275, 275, 275, 275,			
Gianola, D 19, 96, 139, 161, 189, 192,			· ·
Correct Corr			
Gibbson, S			
Gibbs, M. 196, 254 Gofryk, K. .33, 65, 99, 133, 166, 196, Gorsunova-Balkenhol, M. 147 Giblairo, M. 25, 57 Gogotsi, Y. 91, 107 Gorz, M. 206 Gibson, I. 171 Goh, B. 270 Goshi, N. 247 Gibson, J. 110 Golk, P. 226 Goswami, M. 247 Giddey, S. 163 Go, J. 251 Goswami, R. 32, 46, 63, 96, 130, 164, 63 60, 1 251 Goswami, R. 32, 46, 63, 96, 130, 164, 63 60, 1 251 Goswami, M. 247 Goswami, R. 32, 46, 63, 96, 130, 164, 63 60, 1 251 Goswami, R. 32, 46, 63, 96, 130, 164, 63 60, 1 251 Goswami, M. 247 Goswami, R. 32, 46, 63, 96, 130, 164, 164 60, 1 60 60 60 100 60 60 60 100 60 60 60 100 60 60 100 60 60 70 70 60 70 70 60 70 70 70 70 70 <th< td=""><td></td><td></td><td></td></th<>			
Gibeling, J. 24, 54, 55, 85, 89, 102, 249 218, 235 Goryaeva, A 181 Giblaro, M. 25, 57 Gob, B 91, 107 Görz, M 206 Gibson, J. 110 Gok, B 270 Gosh, N 247 Gibson, J. 110 Goik, P 226 Goswami, M 107 Giddey, S. 163 Go, J 251 Goswami, R. 32, 46, 63, 96, 130, 164 Gienger, E. 110 Goke, G 250 193, 211, 216, 233, 253 Gietl, H 47 Gokelma, M 45 Goswami, R. 32, 46, 63, 96, 130, 164 Gietzel, T 92 Gokelma, M 45 Goswami, S. 145 Gietzel, T 92 Goken, M 106 Gotawala, N 7 Gigax, J 29, 118 Göken, M 119, 119, 187, 225, 226, 229 Goto, Y 995 Gilani, N 49, 147 Golder, A 115 Gorublack, N 7 7 Gilbert, B 49, 147 Golder, A 115 Gourblifeau, F 7 <td></td> <td></td> <td></td>			
Giblaro, M. 25, 57 Gogotsi, Y. 91, 107 Görz, M. 206 Gibson, I 171 Goh, B. 270 Goshi, N. 247 Gibson, J. 110 Gok, P. 226 Goswami, M. 107 Giddey, S. 163 Go, J. 251 Goswami, M. 32, 46, 63, 96, 130, 164, Gienger, E. 110 Gokce, G. 250 193, 211, 216, 233, 253 Gietl, H. 47 Gokelma, M. 45 Goswami, S. 145 Gietzelt, T. 92 Goken, M. 71, 119, 187, 225, 226, 229 Goto, Y. 95 Gillani, N. 249 Goldenstein, H. 63 Goulas, C. 171, 219 Gilbert, A. 49, 147 Golder, A. 115 Gourbilleau, F. 72 Gilbert, D. 39, 143, 157 Golder, A. 115 Gourgues-Lorenzon, A. 216 Gomes, F. 146 Gourgues-Lorenzon, A. 216 Gomes, E. 146 Gomes, F. 146 Gourgues-Lorenzon, A. 216 Gomes, E. 1657, 167, 181 Gomez, A. 219 Gowa, D. 142 Gilleans, C. 221 Gomez, A. 219 Gowa, D. 142 Gilleans, C. 88 Gomez, L. 40, 260 Goyal, G. 257 Gill, S. 16, 57, 167, 181 Gomez, R. 164, 251 Graceffa, R. 80 Giraldo, J. 162 Gonçalves, D. 156 Gradl, P. 136, 137, 31, 39, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 216 Girodi Delayu, G. 264 Gong, P. 216 Girodi Delayu, G. 264 Gong, P. 253 Gradoboev, A. 98, 133 Girdharan, P. 212 Gonderman, S. 18, 261 Graening, T. 31, 139, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 35, 70, 105, 116, 140, 166, Graening, T. 31, 139, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 35, 70, 105, 116, 140, 166, Graening, T. 31, 139, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 35, 70, 105, 116, 140, 166, Graening, T. 31, 139, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 35, 70, 105, 116, 140, 166, Graening, T. 31, 139, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 35, 70, 105, 116, 140, 166, Graening, T. 31, 139, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 35, 70, 105, 116, 140, 166, Graening, T. 31, 139, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 35, 70, 105, 116, 140, 166, Graening, T. 31, 139, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 35, 70, 105, 116, 140, 166, Graening, T. 31, 139, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 35, 70, 105, 116, 140, 166, Graening, T. 31, 139, 160, 191, 267 Girodi Delayu, G. 264 Gong, P. 35, 70, 71, 234 Grandield, J. 215 Girodi Del		•	
Gibson, I. 171 Goh, B. 270 Goshi, N. 247 Gibson, J. 110 Gok, P. 226 Goswami, M. 107 Giddey, S. 163 Go. J. 251 Goswami, R. 32, 46, 63, 96, 130, 164, 63 Go. J. 251 Goswami, R. 32, 46, 63, 96, 130, 164, 63 Gorger, E. 110 Goke, G. 250 193, 211, 216, 233, 253 Gietl, H. 47 Gokelma, M. 45 Goswami, S. 145 Gietzelt, T. 992 Goken, M. 71, 119, 187, 225, 226, 229 Goto, Y. 95 Gilani, N. 249 Goldenstein, H. 63 Goulas, C. 171, 219 Gilbert, A. 49, 147 Golder, A. 115 Gourbilleau, F. 72 Gilbert, D. 33, 143, 175 Golumbískie, W. 185 Gourgues-Lorenzon, A. 216 Gilbert, M. 34, 66, 100, 197 Gomes, F. 146 Gourlay, C. 19, 50, 83, 151, 184, 248 Gilcrase, E. 178 Gomes, M. 264, 265 Gourrier, A. 153 Govea, D. 142 Gilles, R. 163 Gómez-Cortés, J. 83 Govindarajan, M. 13, 41, 76, 111 Gilliams, C. 88 Gomez, L. 40, 260 Goyal, G. 257 Gill, S. 16, 57, 167, 181 Gomez, R. 164, 251 Graceffia, R. 80 Giraldo, J. 162 Goncalwan, P. 122 Goncalwan, S. 18, 214 Graceffia, R. 80 Giraldo, J. 162 Goncalwan, S. 18, 214 Graceffia, R. 80 Giraldo, J. 264 Gong, J. 88, 70, 105, 116, 140, 166, Graeve, O. 97, 164, 194, 217, 234 Graff, A. 272 Git, P. 81 Gong, S. 260, 268 Gramming, T. 31, 139, 160, 191, 267 Graeve, O. 97, 164, 194, 217, 234 Graff, S. 83, 184 Giuntini, D. 97, 131, 143, 164, 183, Gong, P. 35 Granding, H. 35 Granding, H. 35 Gonzalez, J. 600, 21, 600, 22, 500, 22, 500, 24, 500, 2	•		·
Gibson, J. 110 Goik, P. 226 Goswami, M. 107 Giddey, S. 163 Go, J. 251 Goswami, R. 32, 46, 63, 96, 130, 164, Gienger, E. 110 Goke, G. 250 193, 211, 216, 233, 253 Gietl, H. 47 Gokelma, M. 45 Goswami, S. 145 Goswami, N. 7 Gokelma, M. 45 Goswami, N. 7 Gigax, J. 29, 118 Göken, M. 71, 119, 187, 225, 226, 229 Goto, Y. 95 Gillani, N. 249 Goldenstein, H. 63 Goulas, C. 171, 219 Gilbert, A. 49, 147 Golder, A. 115 Goulmbfskie, W. 185 Gourlay, C. 19, 50, 83, 151, 184, 248 Gilcrease, E. 178 Gomes, M. 264, 265 Gourrier, A. 291 Gomes, A. 219 Gomes, A. 219 Govea, D. 142 Gilles, R. 163 Gómez-Cortés, J. 83 Govilarajan, M. 13, 41, 76, 111 Gilliams, C. 88 Gomez, L. 40, 260 Goyal, G. 257 Gill, S. 16, 57, 167, 181 Gonez, R. 164, 251 Graefia, R. 80 Giridharan, P. 122 Gonderman, S. 18, 261 Graedia, G. 36, 37, 31, 39, 160, 191, 267 Giroux, P. 216 Gong, M. 216, 40, 200 Gorden, M. 137 Gong, P. 53 Gilvaria, A. 194, 174, 234 Graening, T. 31, 139, 160, 191, 267 Giroux, P. 216 Gong, S. 260, 268 Grandle, J. 38, 31, 44, 48, 31, 44, 41, 41, 41, 41, 41, 41, 41, 41, 4		•	
Giddey, S. 163 Go, J. 251 Goswami, R. 32, 46, 63, 96, 130, 164, 61, 61, 61, 62, 62, 63, 63, 64, 63, 96, 130, 164, 61, 62, 63, 64, 63, 96, 130, 164, 61, 62, 63, 64, 63, 96, 130, 164, 61, 62, 63, 64, 63, 96, 130, 164, 61, 62, 63, 64, 63, 96, 130, 164, 61, 62, 63, 64, 63, 96, 130, 164, 63, 63, 64, 63, 96, 130, 164, 63, 63, 64, 63, 96, 130, 164, 63, 63, 64, 63, 96, 130, 164, 63, 63, 64, 63, 96, 130, 164, 63, 63, 64, 63, 96, 130, 164, 63, 63, 64, 63, 96, 130, 164, 63, 63, 64, 63, 96, 130, 164, 63, 63, 64, 63, 96, 130, 164, 63, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 65, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 64, 63, 96, 130, 164, 63, 65, 63, 64, 63, 96, 130, 164, 63, 65, 63, 64, 63, 96, 130, 164, 63, 65, 64, 63, 96, 130, 164, 65, 65, 64, 63, 96, 130, 164, 65, 65, 64, 63, 96, 130, 164, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65			
Gienger, E. 110 Gokce, G. 250 193, 211, 216, 233, 253 Gietl, H. 47 Gokelma, M. 45 Goswami, S. 145 Gietzelt, T. 92 Goken, M. 106 Gotawala, N. 7 Gigax, J. 29, 118 Göken, M. 71, 119, 187, 225, 226, 229 Goto, Y. 95 Gillani, N. 249 Goldenstein, H. 63 Goulas, C. 171, 219 Gilbert, A. 49, 147 Golder, A. 115 Gourbilleau, F. 72 Gilbert, D. 39, 143, 175 Gomes, F. 146 Gourbay, C. 19, 50, 83, 151, 184, 248 Gillerseae, E. 178 Gomes, M. 264, 265 Gourlay, C. 19, 50, 83, 151, 184, 248 Gilles, R. 163 Gómez, A. 219 Govea, D. 142 Gillaspie, C. 221 Gomes, M. 264, 265 Gourrier, A. 59 Gillasma, C. 88 Gomez, L. 40, 260 Goyal, G. 257 Gill, S. 16, 57, 167, 181 Gomez, R. 164,			
Gietl, H 47 Gokelma, M 45 Goswami, S 145 Gietzelt, T 92 Goken, M 106 Gotawala, N 7 Gigax, J 29, 118 Göken, M 71, 119, 187, 225, 226, 229 Goto, Y 95 Gilani, N 249 Goldenstein, H 63 Goulas, C 171, 219 Gilbert, A 49, 147 Golder, A 115 Gourbilleau, F 72 Gilbert, D 39, 143, 175 Golumbískie, W 185 Gourlay, C 195, 08, 3151, 184, 248 Gilcrease, E 178 Gomes, F 146 Gourlay, C 19, 50, 83, 151, 184, 248 Gillaspie, C 221 Gomez, A 219 Govea, D 142 Gillasmis, C 88 Gomez, C 219 Govea, D 142 Gillasmis, C 88 Gomez, L 40, 260 Goyal, G 257 Gill, S 16, 57, 167, 181 Gomez, R 164, 251 Graceffa, R 80 Giraldo, J 162 Gon, A 193 Gradoboev, A </td <td></td> <td></td> <td></td>			
Gietzelt, T. 92 Goken, M 106 Gotawala, N 7 Gigax, J 29, 118 Göken, M 71, 119, 187, 225, 226, 229 Gilani, N 249 Goldenstein, H 63 Gilbert, A 49, 147 Gilbert, A 49, 147 Gilbert, D 39, 143, 175 Gilbert, M 34, 66, 100, 197 Gomes, F 146 Gilcrease, E 178 Gomes, M 264, 265 Gillaspie, C 221 Gomez, A 219 Gomez, A 219 Gowea, D 142 Gilles, R 163 Gómez-Cortés, J 83 Govindarajan, M 13, 41, 76, 111 Gilliams, C 88 Gomez, L 40, 260 Goyal, G 257 Gill, S 16, 57, 167, 181 Gomez, R 164, 251 Giri, A 94 Gordano, J 162 Goncalves, D 156 Giraldo, J 162 Goncharov, V 93 Giridharan, P 122 Gonderman, S 18, 261 Giroux, P 216 Git, P 81 Gong, M 182 Giroux, P 216 Git, P 81 Gong, M 182 Giroux, P 216 Git, P 81 Gong, M 182 Gong, S 260, 263 Giver, M 137 Gong, Y 71, 234 Giroux, P 154 Giver, M 137 Gong, Y 71, 234 Giadstein, A 146 Gonzales, A 93, 228 Glaser, B 124, 1, 159 Gladstein, A 146 Gonzalez, C 173, 175 Glazel, U 41, 111 González, C 173, 175 Glazon, A 80 Gonzalez, J 68 Genan, D 125 Gonzalez, M 55, 117, 241, 276 Grant, P 212 Gonzalez, M 55, 117, 241, 276 Grant, G 221 Grant, P 38 Grant, G 38 Grant, G 32 G			
Gigax, J			
Gilani, N. 249 Goldenstein, H. 63 Goulas, C. 171, 219 Gilbert, A. 49, 147 Golder, A. 115 Gourbilleau, F. 72 Gilbert, D. 39, 143, 175 Golmbfskie, W. 185 Gourgues-Lorenzon, A. 216 Gilbert, M. 34, 66, 100, 197 Gomes, F. 146 Gourlay, C. 19, 50, 83, 151, 184, 248 Gilcrease, E. 178 Gomes, M. 264, 265 Gourrier, A. 59 Gillaspie, C. 221 Gomez, A. 219 Gowea, D. 142 Gilles, R. 163 Gómez-Cortés, J. 83 Govindarajan, M. 13, 41, 76, 111 Gilliams, C. 88 Gomez, L. 40, 260 Goyal, G. 257 Gill, S. 16, 57, 167, 181 Gomez, R. 164, 251 Graceffa, R. 80 Giraldo, J. 162 Gonçalves, D. 156 Gradl, P. 136, 173 Giridharan, P. 122 Gonderman, S. 18, 261 Graceffa, R. 31, 139, 160, 191, 267 Girondi Delaqua, G. 264 Gong, J. 8, 70, 105, 116, 140, 166, Graeve, O. 97, 164, 194, 217, 234 Giroux, P. 216 Gong, M. 182 Giuntini, D. 97, 131, 143, 164, 183, Gong, P. 53 Givord, M. 137 Gong, Y. 71, 234 Glaser, B. 124, 41, 159 González, A. 93, 228 Glaser, B. 12, 41, 159 González, C. 173, 175 Gladstein, A. 46 González, I. 67 Glaze, U. 41, 111 González, C. 173, 175 Gladstein, A. 80 Gonzalez, J. 68 Grant, G. 52, 56, 120, 124, 150, 192, Glendening, A. 80 Gonzalez, M. 55, 117, 241, 70 Grant, P. 125 Gonzalez, M. 55, 117, 241, 70 Grant, P. 25 Gonat, P. 26 Gonzalez, M. 55, 117, 241, 70 Grant, P. 32 Gonat, P. 38 Genn, P. 38 Genn, P. 38 Genn, P. 38 Grant, F. 38, 384 Grant, G. 52, 56, 120, 124, 150, 192, Glendening, A. 195 Gonzalez, M. 55, 117, 241, 70 Grant, P. 328 Genn, P. 35			
Gilbert, A			
Gilbert, D. 39, 143, 175 Gilbert, M. 34, 66, 100, 197 Gomes, F. 146 Gilcrase, E. 178 Gomes, M. 264, 265 Gillaspie, C. 221 Gomez, A. 219 Gomez, A. 219 Gomez, A. 219 Gomez, D. 142 Gilles, R. 163 Gomez, C. 88 Gomez, L. 40, 260 Goyal, G. 257 Gill, S. 16, 57, 167, 181 Gomez, R. 164, 251 Graceffa, R. 80 Giraldo, J. 162 Goncalves, D. 156 Gradl, P. 136, 173 Giri, A. 94 Goncharov, V. 93 Giridharan, P. 122 Gonderman, S. 18, 261 Giroux, P. 216 Girondi Delaqua, G. 264 Gong, J. 8, 70, 105, 116, 140, 166, Graeve, O. 97, 164, 194, 217, 234 Giroux, P. 216 Given, M. 137 Given, M. 137 Given, M. 137 Given, M. 137 Gong, S. 260, 268 Gong, S. 260, 268 Gonzales, A. 93, 228 Glaser, B. 12, 41, 159 Gladstein, A. 146 Gonzales, A. 93, 228 Glaser, B. 12, 41, 159 Glazoff, M. 42 González, L. 40, 260 Gourlay, C. 19, 50, 83, 151, 184, 248 Govindarajan, M. 13, 417, 6111 Gomez, R. 164, 251 Graceffa, R. 80 Goraler, B. 18, 261 Graceffa, R. 80 Gradoboev, A. 99, 133 Gradoboev, A. 99, 133 Graening, T. 31, 139, 160, 191, 267 Graeve, O. 97, 164, 194, 217, 234 Graff, A. 272 Graff, R. 272 Graff, R. 80 Grandering, T. 31, 139, 160, 191, 267 Grave, O. 97, 164, 194, 217, 234 Gram, B. 184 Grandillo, L. 215 Grandillo, L. 215 Grandfield, J. 95 Glatzel, U. 41, 111 González, C. 173, 175 Grandfield, K. 59 Glatzel, U. 41, 111 González, C. 173, 175 Grandfield, K. 59 Glatzel, U. 41, 111 González, L. 62 Gonzalez, J. 68 Grant, G. 52, 56, 120, 124, 150, 192, 28 Glenn, J. 22 Gonzalez Morales, D. 147 Grant, P. 87		-	
Gilbert, M			
Gilcrease, E. 178 Gomes, M. 264, 265 Gourrier, A. 59 Gillaspie, C. 221 Gomez, A. 219 Govea, D. 142 Gilles, R. 163 Gómez-Cortés, J. 83 Govindarajan, M. 13, 41, 76, 111 Gills, S. 16, 57, 167, 181 Gomez, R. 164, 251 Graceffa, R. 80 Giraldo, J. 162 Gonçalves, D. 156 Gradl, P. 136, 173 Giri, A. 94 Goncharov, V. 93 Gradoboev, A. 98, 133 Giridharan, P. 122 Gonderman, S. 18, 261 Graening, T. 31, 139, 160, 191, 267 Giroux, P. 216 172, 201, 223, 243 Graering, T. 31, 139, 160, 191, 267 Git, P. 81 Gong, J. 8, 70, 105, 116, 140, 166, Graeve, O. 97, 164, 194, 217, 234 Git, P. 81 Gong, S. 201, 223, 243 Graffier, S. 83, 184 Giutinin, D. 97, 131, 143, 164, 183, Gong, S. 266, 268 Gramha-Brady, L. 81 Givord, M.			ě .
Gillaspie, C. 221 Gomez, A. 219 Govea, D. 142 Gilles, R. 163 Gómez-Cortés, J. 83 Govindarajan, M. 13, 41, 76, 111 Gilliams, C. 88 Gomez, L. 40, 260 Goyal, G. 257 Gill, S. 16, 57, 167, 181 Gomez, R. 164, 251 Graceffa, R. 80 Giraldo, J. 162 Gonçalves, D. 156 Giridharan, P. 122 Gonderman, S. 18, 261 Gracoboev, A. 98, 133 Giridharan, P. 122 Gonderman, S. 18, 261 Graening, T. 31, 139, 160, 191, 267 Girondi Delaqua, G. 264 Gong, J. 8, 70, 105, 116, 140, 166, Graeve, O. 97, 164, 194, 217, 234 Giroux, P. 216 172, 201, 223, 243 Graff, A. 272 Git, P. 81 Gong, M. 182 Gräfner, S. 83, 184 Giuntini, D. 97, 131, 143, 164, 183, Gong, P. 53 Givord, M. 137 Gong, Y. 71, 234 Grandillo, L. 215 Gladstein, A. 146 Gonzales, A. 93, 228 Glaser, B. 12, 41, 159 González, B. 245 Glazoff, M. 42 González, G. 173, 175 Glazoff, M. 42 González, J. 67 Gleason, A. 80 Gonzalez, J. 68 Glenna, D. 125 Glenn, J. 22 Gonzalez, M. 55, 117, 241, 270 Grant, P. 87	_		•
Gilles, R			
Gilliams, C 88 Gomez, L 40, 260 Goyal, G 257 Gill, S .16, 57, 167, 181 Gomez, R 164, 251 Graceffa, R 80 Giraldo, J .162 Gonçalves, D .156 Gradl, P .136, 173 Giri, A .94 Goncharov, V .93 Gradoboev, A .98, 133 Giridharan, P .122 Gonderman, S .18, 261 Graening, T .31, 139, 160, 191, 267 Girondi Delaqua, G .264 Gong, J .8, 70, 105, 116, 140, 166, Graeve, O .97, 164, 194, 217, 234 Giroux, P .216 .172, 201, 223, 243 Graff, A .272 Git, P .81 Gong, M .182 Gräher, S .83, 184 Giuntini, D .97, 131, 143, 164, 183, Gong, P .53 Graham-Brady, L .81 Givord, M .137 Gong, S .260, 268 Gramling, H .135 Glastein, A .146 González, A .93, 228 Grande, H .38 Glaster, B .12, 41, 159 González,	•		
Gill, S 16, 57, 167, 181 Gomez, R 164, 251 Graceffa, R 80 Giraldo, J 162 Gonçalves, D 156 Gradl, P 136, 173 Giri, A 94 Goncharov, V 93 Gradoboev, A 98, 133 Giridharan, P 122 Gonderman, S 18, 261 Graening, T 31, 139, 160, 191, 267 Girondi Delaqua, G 264 Gong, J 8, 70, 105, 116, 140, 166, Graeve, O 97, 164, 194, 217, 234 Giroux, P 216 172, 201, 223, 243 Graff, A 272 Git, P 81 Gong, M 182 Gräfner, S 83, 184 Giuntini, D 97, 131, 143, 164, 183, Gong, P 53 Graham-Brady, L 81 Givord, M 137 Gong, S 260, 268 Gramling, H 135 Gidastein, A 146 Gonzales, A 93, 228 Grande, H 38 Glaser, B 12, 41, 159 González, B 245 Grandfield, J 95 Glatzel, U 41, 111 González, L 6			
Giraldo, J. 162 Gonçalves, D. 156 Gradl, P. 136, 173 Giri, A. 94 Goncharov, V. 93 Gradoboev, A. 98, 133 Giridharan, P. 122 Gonderman, S. 18, 261 Graening, T. 31, 139, 160, 191, 267 Giroux, P. 216 Gong, J. 8, 70, 105, 116, 140, 166, Graeve, O. 97, 164, 194, 217, 234 Git, P. 81 Gong, M. 182 Gräfner, S. 83, 184 Giuntini, D. 97, 131, 143, 164, 183, Gong, P. 53 Graham-Brady, L. 81 Givord, M. 137 Gong, S. 260, 268 Gramling, H. 135 Glastein, A. 146 Gonzales, A. 93, 228 Grande, H. 38 Glaser, B. 12, 41, 159 González, B. 245 Grandfield, J. 95 Glazoff, M. 42 González, C. 173, 175 Grandfield, K. 59 Gleason, A. 80 González, J. 68 Grant, G. 52, 56, 120, 124, 150, 192, Glendening, A. 195 Gonzalez, M. .55, 117, 241, 270 Grant, J. Grant, J.			•
Giri, A 94 Goncharov, V 93 Gradoboev, A 98, 133 Giridharan, P 122 Gonderman, S 18, 261 Graening, T 31, 139, 160, 191, 267 Girondi Delaqua, G 264 Gong, J 8, 70, 105, 116, 140, 166, 140, 166, 172, 201, 223, 243 Graeve, O 97, 164, 194, 217, 234 Giroux, P 216 172, 201, 223, 243 Graff, A 272 Git, P 81 Gong, M 182 Gräfner, S 83, 184 Giuntini, D 97, 131, 143, 164, 183, 183, 184, 183, 194, 183, 184, 184, 184, 184, 184, 184, 184, 184			
Giridharan, P 122 Gonderman, S 18, 261 Graening, T 31, 139, 160, 191, 267 Girondi Delaqua, G 264 Gong, J 8, 70, 105, 116, 140, 166, Graeve, O 97, 164, 194, 217, 234 Giroux, P 216 172, 201, 223, 243 Graff, A 272 Git, P 81 Gong, M 182 Gräfner, S 83, 184 Giuntini, D 97, 131, 143, 164, 183, Gong, P 53 Graham-Brady, L 81 Givord, M 137 Gong, S 260, 268 Gramling, H 135 Glastein, A 146 Gonzales, A 93, 228 Grande, H 38 Glaser, B 12, 41, 159 González, B 245 Grandfield, J 95 Glatzel, U 41, 111 González, C 173, 175 Grandfield, K 59 Gleason, A 80 González, J 68 Grant, G 52, 56, 120, 124, 150, 192, Glendening, A 195 Gonzalez, M .55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, F 87	•		
Girondi Delaqua, G 264 Gong, J 8, 70, 105, 116, 140, 166, Graeve, O 97, 164, 194, 217, 234 Giroux, P 216 172, 201, 223, 243 Graff, A 272 Git, P 81 Gong, M 182 Gräfner, S 83, 184 Giuntini, D .97, 131, 143, 164, 183, Gong, P 53 Graham-Brady, L 81 194, 217, 233, 254 Gong, S 260, 268 Gramling, H 135 Givord, M 137 Gong, Y 71, 234 Granadillo, L 215 Glastein, A 146 Gonzales, A 93, 228 Grande, H 38 Glaser, B 12, 41, 159 González, B 245 Grandfield, J 95 Glatzel, U 41, 111 González, C 173, 175 Grandfield, K 59 Gleason, A 80 González, J 68 Grant, G 52, 56, 120, 124, 150, 192, Glendening, A 195 Gonzalez, L 62 212, 219, 228, 246 Glenn, D 125 Gonzalez, M .55, 117, 241, 270 Grant, F .87 Glenn, J 22 Gonzalez Morales, D			
Giroux, P. 216 172, 201, 223, 243 Graff, A 272 Git, P. 81 Gong, M 182 Gräfner, S. 83, 184 Giuntini, D. 97, 131, 143, 164, 183, Gong, P. 53 Graham-Brady, L 81 194, 217, 233, 254 Gong, S. 260, 268 Gramling, H 135 Givord, M. 137 Gong, Y. 71, 234 Granadillo, L 215 Gladstein, A. 146 Gonzales, A. 93, 228 Grande, H 38 Glaser, B. 12, 41, 159 González, B. 245 Grandfield, J 95 Glatzel, U. 41, 111 González, C. 173, 175 Grandfield, K 59 Glazoff, M. 42 González, I 67 Granroth, G 128, 272 Gleason, A. 80 Gonzalez, J 68 Grant, G .52, 56, 120, 124, 150, 192, Glendening, A. 195 Gonzalez, L 62 212, 219, 228, 246 Glenn, D. 125 Gonzalez, M 55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, P			
Git, P 81 Gong, M 182 Gräfner, S 83, 184 Giuntini, D 97, 131, 143, 164, 183, Gong, P 53 Graham-Brady, L 81 194, 217, 233, 254 Gong, S 260, 268 Gramling, H 135 Givord, M 137 Gong, Y 71, 234 Granadillo, L 215 Gladstein, A 146 Gonzales, A 93, 228 Grande, H 38 Glaser, B 12, 41, 159 González, B 245 Grandfield, J 95 Glatzel, U 41, 111 González, C 173, 175 Grandfield, K 59 Glazoff, M 42 González, I 67 Granroth, G 128, 272 Gleason, A 80 Gonzalez, J 68 Grant, G 52, 56, 120, 124, 150, 192, Glendening, A 195 Gonzalez, L 62 212, 219, 228, 246 Glenna, D 125 Gonzalez, M 55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, P 87	•	•	
Giuntini, D 97, 131, 143, 164, 183, Gong, P 53 Graham-Brady, L 81 194, 217, 233, 254 Gong, S 260, 268 Gramling, H 135 Givord, M 137 Gong, Y 71, 234 Granadillo, L 215 Gladstein, A 146 Gonzales, A 93, 228 Grande, H 38 Glaser, B 12, 41, 159 González, B 245 Grandfield, J 95 Glatzel, U 41, 111 González, C 173, 175 Grandfield, K 59 Glazoff, M 42 González, I 67 Granroth, G 128, 272 Gleason, A 80 Gonzalez, J 68 Grant, G 52, 56, 120, 124, 150, 192, Glendening, A 195 Gonzalez, L 62 212, 219, 228, 246 Glenna, D 125 Gonzalez, M 55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, P 87			
194, 217, 233, 254 Gong, S 260, 268 Gramling, H 135 Givord, M 137 Gong, Y 71, 234 Granadillo, L 215 Gladstein, A 146 Gonzales, A 93, 228 Grande, H 38 Glaser, B 12, 41, 159 González, B 245 Grandfield, J 95 Glatzel, U 41, 111 González, C 173, 175 Grandfield, K 59 Glazoff, M 42 González, I 67 Granroth, G 128, 272 Gleason, A 80 Gonzalez, J 68 Grant, G 52, 56, 120, 124, 150, 192, Glendening, A 195 Gonzalez, L 62 212, 219, 228, 246 Glenna, D 125 Gonzalez, M 55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, P 87		•	
Givord, M 137 Gong, Y 71, 234 Granadillo, L 215 Gladstein, A 146 Gonzales, A 93, 228 Grande, H 38 Glaser, B 12, 41, 159 González, B 245 Grandfield, J 95 Glatzel, U 41, 111 González, C 173, 175 Grandfield, K 59 Glazoff, M 42 González, I 67 Granroth, G 128, 272 Gleason, A 80 Gonzalez, J 68 Grant, G 52, 56, 120, 124, 150, 192, Glendening, A 195 Gonzalez, L 62 212, 219, 228, 246 Glenna, D 125 Gonzalez, M 55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, P 87		<u> </u>	•
Gladstein, A 146 Gonzales, A 93, 228 Grande, H 38 Glaser, B 12, 41, 159 González, B 245 Grandfield, J 95 Glatzel, U 41, 111 González, C 173, 175 Grandfield, K 59 Glazoff, M 42 González, I 67 Granroth, G 128, 272 Gleason, A 80 Gonzalez, J 68 Grant, G 52, 56, 120, 124, 150, 192, Glendening, A 195 Gonzalez, L 62 212, 219, 228, 246 Glenna, D 125 Gonzalez, M 55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, P 87		•	•
Glaser, B. 12, 41, 159 González, B. 245 Grandfield, J. 95 Glatzel, U. 41, 111 González, C. 173, 175 Grandfield, K. 59 Glazoff, M. 42 González, I. 67 Granroth, G. 128, 272 Gleason, A. 80 Gonzalez, J. 68 Grant, G. 52, 56, 120, 124, 150, 192, Glendening, A. 195 Gonzalez, L. 62 212, 219, 228, 246 Glenna, D. 125 Gonzalez, M. 55, 117, 241, 270 Grant, J. 258 Glenn, J. 22 Gonzalez Morales, D. 147 Grant, P. 87		<u> </u>	_
Glatzel, U. 41, 111 González, C. 173, 175 Grandfield, K 59 Glazoff, M. 42 González, I 67 Granroth, G 128, 272 Gleason, A. 80 Gonzalez, J 68 Grant, G 52, 56, 120, 124, 150, 192, Glendening, A 195 Gonzalez, L 62 212, 219, 228, 246 Glenna, D 125 Gonzalez, M 55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, P 87			
Glazoff, M. 42 González, I 67 Granroth, G 128, 272 Gleason, A. 80 Gonzalez, J 68 Grant, G 52, 56, 120, 124, 150, 192, Glendening, A 195 Gonzalez, L 62 212, 219, 228, 246 Glenna, D 125 Gonzalez, M 55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, P 87			
Gleason, A. 80 Gonzalez, J. 68 Grant, G. 52, 56, 120, 124, 150, 192, Glendening, A. 195 Gonzalez, L. 62 212, 219, 228, 246 Glenna, D. 125 Gonzalez, M. 55, 117, 241, 270 Grant, J. 258 Glenn, J. 22 Gonzalez Morales, D. 147 Grant, P. 87			
Glendening, A 195 Gonzalez, L 62 212, 219, 228, 246 Glenna, D 125 Gonzalez, M 55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, P 87			
Glenna, D 125 Gonzalez, M 55, 117, 241, 270 Grant, J 258 Glenn, J 22 Gonzalez Morales, D 147 Grant, P 87			
Glenn, J			
Gienzei, 5			
	Giciizei, 5100, 233	Gonzaicz-woran, C	Grasino, G

0 m 134		
Grätzel, M	Guedes, A	Gu, W19, 49, 83, 92, 118, 151, 182,
Grau-Crespo, R	Guérard, S	191, 199, 211, 222, 229, 234, 247
Graybill, B	Guetard, G	Gu, Y34, 66, 104, 208
Graydon, K	Gueudet, P 40	Gu, Z
Gray, G	Gu, G	Guzman, P
Gray, J	Guguchia, Z	Gwak, J
Gray, S	Gu, H	Gwak, M
Greaney, P	Guillemot, G	Gwalani, B 136, 150, 168, 181, 182,
Greaves, G	Guillen, D 20, 29, 50, 78, 84, 118,	206, 209 Gwon, H
Greeley, D	191, 220, 248	
Greenquist, I	Guillory, R	Gylver, S
Green, S	Guillot, I	**
Green, T	Guillou, R	Н
Greer, A	Guin, S	Haag, J
Greer, J	Guirguis, D	O ,
Greer, L 16, 45, 79, 114, 147, 154, 179,	Gu, J	Haake, E
208, 227, 263	Guler, D	Haapalehto, M
Gregurek, D	Gülver, M	Haase, C169, 223
115, 180		Haataja, Z
	Gumaste, A	Haberl, B
Greiner, C	Gümü soy, A	Haber, R
Grennan, H148, 247	Gunasegaram, D176, 221, 222	Habib, A
Grenzer, J	Gunda, N	Habiba, U
Gres, A	Gunduz, K 84	Habibnejad Korayem, M 102, 238
Greš, A	Gungor, S	Habiyaremye, F
Greuner, H 47	Gunzburger, M	Haché, M
Griebel, A	Guo, H54, 144, 204	
Griesbach, C	Guo, J	Hachtel, J
Griesemer, S	Guo, M	Hackel, L 9, 103
Griffith, R	Guo, Q 70, 138, 139, 171, 188, 221	Hadadzadeh, A
		Haddad, B
Griffiths, M	Guo, R	Hadian, F 50
Grimes, T	Guo, S	Hadjipanayis, G
Grimm, J	Guo, X	Haefelfinger, R
Grisolia, C	Guo, Z83, 95, 183	Haegeli Lohaus, S
Griveau, J	Gupta, A6, 23, 26, 39, 49, 71, 94, 132,	Hafez Haghighat, M
Grobert, N	135, 195, 223, 227	Hafner, M
Groeber, M	Gupta, I	Haftlang, F
Groetsch, A	Gupta, K	
Grogan, J	Gupta, M	Hagelstein, J
Groiss, H	Gupta, R 152, 176, 205, 225, 261	Hagen, L
Grolimund, D	Gupta, S10, 20, 23, 37, 49, 53, 72, 87,	Haghdadi, N 6, 104, 171, 200, 241, 242
Gross, A	_	Haghshenas, M 7, 70, 103, 104, 139,
	107, 122, 142, 155, 174, 203,	172, 201, 222, 242
Gross, B	224, 244, 248, 272	Hague, R 67, 201
Grossklaus, K	Gupta, V	Hahn, C 6
Grossman, J	Gu, Q	Hahn, H11, 157, 204
Gross, S	Gursoy, D	Hahn, M 81
Grubbs, J 69, 194	Gu, S	Hahn, Y 5
Gruber, M	Gusain, R	Haigh, S
Gruber, R	Gussev, I	Haile, M
Gruendlinger, A	Gussev, M 59, 93, 104, 191, 214	
Gruenewald, T	Guss, G	Haines, C
Grushin, I	Gustafson, S 106, 185	Haines, M
Grydin, O	Gustmann, T	Hait, J
G.Saiz, P	Guthrie, M	Ha, J 57
		Hajavifard, R
G. Spangenberger, A 170	Guthrie, R	Hakonsen, A 5
Guay, F	Guth, S	Halada, G
Gudbrandsen, H 109	Guvenc, O	Håland, B 49
Gude, S	Guven, F	Halder, R
Gudjonsdottir, M 84	Güven, F	Hale, C
Gudmundsson, H 45, 79, 114, 147, 179	Gu, w	Hales, J
Gudmundsson, S		11aics, J
,		

Hales, S	Hardy, M	Hautier, G 25, 48, 55, 85, 89, 123,
Halet, J	Hareland, C	156, 188, 259
Haley, J	Hargather, C7, 27, 55, 58, 91, 125, 158,	Havela, L
Hallais, S	175, 190, 237, 239, 246, 270	Hawkins, C
Halleux, H	Hargather, D	Hawkins, L
Halliday, S	Hargather, M7	Hawk, J
Hall, J	Hargrove, C	Hayashi, S
	•	
Hall, T	Harhash, M	Hayes, P
Halstenberg, P	Haridas, R12, 22, 40, 181, 241	Hayes, R
Halvarsson, M	Hariharan, A141	Hayman, D
Hamaguchi, D	Harik, V 8	Hayne, M59, 191, 214, 254
Hamdy, I	Hari, V	Haynes, J
Hamed, A	Harjo, S141, 144, 258	Hayslett, Phd, M44
Hameed, A	Harper, C	Hazeli, K
Hamel, W	Harp, J 28, 29, 60, 93, 127, 128, 160,	Hazell, P
Hamer, W	161, 167, 208, 214, 272	Headings, L
		Headley, C
Ham, G	Harpur, B	•
Hamidi, M	Harris, B	Heard, D
Hamilton, A22, 86, 154, 229	Harris, C 62	Hebert, R184, 194, 233, 249
Hamilton, C	Harris, Z 6, 8, 21, 75, 94, 118, 185	Hecht, U53, 159, 258
Hamilton, E	Harr, M 86, 110	Heckman, E
Hamilton, R	Hart, A	Heckmann, K
Ham, K	Hart, G	Hecquet, A
Hammond, V	Hart, J	Hector, Jr, L
Hamuyuni, J	Hartley, C	Hector, K
Hamza, M	Hartley, N	Heczel, A 6, 117
	•	
Han, B	Hartweg, H	Heczko, M
Han, D	Hartwig, K	He, D
Handwerker, C31, 34, 50	Haruna, M	Hedin, J 63
Handy-Cardena, L	Harvey, J	Hedrick, I
Hanebeck, C 84	Harvill, G 171	Hedström, P 21, 61, 141, 154, 162
Han, F	Harwig, D	Heelan, J
Han, H	Ha, S	Heerema, J
Han, I	Hasan, A	He, G 17, 54, 60
Hania, P	Hasan, M 87, 175, 226, 247, 258, 262	Hegedues, Z
Han, J24, 39, 58, 61, 81, 82, 119, 123,	Haseeb, A	He, H
187, 195, 217, 233, 254, 257, 258, 268	Hasemann, G	Heiden, M
Han, L11, 111, 268	Hasenbusch, Z	Heidowitzsch, M 239
Hannard, F	Hashimoto, N	Heilmaier, M20, 153, 224, 273
Han, S	Hasieber, M	Heintz, I
Hansen, A	Haskel, D143, 235	He, J
Hansen, M	Haslinger, G	He, L18, 28, 59, 60, 83, 91, 92, 94,
Hansol, S	Hassanalian, M	115, 127, 148, 157, 158, 179, 180,
Hanson, K	Hassan, H	208, 218, 228, 263
Hanson, M 57	Hassani, M 82, 92, 117, 150, 182,	Heldt, R
Hanson, S		Helfer, T
	210, 266	
Hansson, C	Hassanipour, M	Helgeland, J
Han, X	Hassan, M	Helgeson, E
Han, Y 90	Hassan, S	Hellman, F
Hao, Q	Ha, T 31	Hellmich, C
Hao, Y	Hatipoglu, U	Helmreich, G116, 128
Haque, N 20, 50, 84, 118, 163, 248, 252	Hatmaker, A	Helthuis, N
Haraldsson, H	Hattar, K 28, 29, 30, 38, 61, 85, 94,	He, M 129, 140, 161, 171, 191, 195
Hara, R 50, 215	122, 124, 128, 159, 161, 182, 192,	Hemery, S
Hara, Y	215, 216, 232, 252, 267	Hemker, K140, 161, 169, 171, 191,
Harcuba, P	Hatton, P	195, 260, 269, 273
Harder, R	Hattori, A	Hemley, R
Hardie, C	Haugstad, G 9	Hemmendinger, K
Hardin, J	Hauser, A	Henaff, G
Hardin, T147	Haussmann, L	Henager Jr., C 47

** 1 ** ** ** ** **	** **	** 1
Henderson, H39, 65, 70, 96, 140, 167,	He, Y	Hohenwarter, A
196, 204, 207, 235	Heydrich-Bodensieck, J 244	Ho, I
Henderson, R	Heywood, S 97	Ho, J
Hendili, S	Hezcko, M	Hojjatzadeh, S 70, 171
Hendrickson, M	Hibbard, G 41	Holcomb, D
Hendy, M 50, 215	Hibino, S	Holcombe, E
Henein, H	Hickam, S	Holdsworth, R
Heniken, N	Hickel, T51, 82, 125, 210	Holdsworth, S
Hennig, R	Hickman, L	Holgate, C234, 244
Henry, C	Hidalgo, I	Holländer Pettersson, N139, 158
Henry, J	Hideyuki, Y 87	Holland, S
Henson, N	Highland, M	Holley, E
Heo, S	Higley, E	Holliday, K
Heo, T	Higuchi, K	Hollingworth, E
Heo, Y	Hijazi, F	Holm, E 48, 52, 76, 137, 177, 217,
He, R	Hill, C	218, 238, 254, 271
Herath, C	Hill, M	Holmefjord, E
	Hill, S	
Hercher, O		Holmes, A
Herderick, E	Hilmas, A	Holschuh, T
Héripré, E	Hilpert, B	Holtham, N
Herisson de Beauvoir, T	Hilty, F	Holt, M
Herling, D 10, 124, 186, 228, 230, 246	Hindenlang, B90	Holt, N
Herman, A	Hinojos, A	Homer, E41, 161, 177
Herman, G	Hintsala, E59, 247, 269	Hommer, G
Herman, M	Hiraga, T	Honarmandi, P
Hermann, R	Hirales, A	Honein, T
Hermansen, O	Hirano, S	Hone, L
Hermans, M 103, 171, 219	Hirata, M	Hong, D
Hermawan, H119, 234	Hire, A	Hong, H153, 195, 216
Hermse, C	Hirschey, J	Hong, M 57, 94, 125, 248, 270
Hernandez, A	Hirst, C115, 149, 209	Hong, Q
Hernández-Ávila, J 107	Hisham, S	Hong, S
Hernandez-Bocanegra, C 270	Hitchcock, D	254, 261
Hernández-Bocanegra, C 271	Hitter, M	Hong, T
Hernández-Lara, J	Hixson, W141, 145	Hong, W
Hernández Negrete, O 11	Hlawacek, G	Hong, X
Hernández Paredes, J	Hoarston, J	Hong, Y
Hernandez, R	Hobbs, J	Honma, H
Hernández Ramírez, A 264, 265	Höber, L	Hono, K
Hernandez, S	Ho, C	Honrao, S 13, 41, 76, 110, 145, 177,
Hernandez-Santiago, F 265	Hocine, S143, 194, 241, 246	206, 225, 261
Heron, J	Hockaday, L 12, 20, 40, 50, 75, 84,	Hoogendoorn, B
Herrera del Valle, R	109, 118, 248	Hooks, D
Herrera, M	Hodder, K	Hooshmand, M
Herrera-Ortega, M	Hodge, A 54, 61, 118, 148, 155, 168,	Hoover, B
Herrera, S	180, 225, 257	Hoover, R
Herriott, C	Hodge, D	Ho, P
	· ·	
Herrmann, S	Hodges, E	Hopkins, E
Hersam, M	Hodille, E	Hopkins, P
Hershokovitz, E	Hoe, A	Höppel, H
He, S	Hoefnagels, J	Hoppenrath, L
Heshmati, N	Hoelzer, D	Horie, T
Hesmondhalgh, O	Hofer, C	Horita, Z
Hess, C	Hoffman, A20, 31, 60, 62, 84, 85, 95,	Hornbuckle, B
Hessong, E	99, 118, 129, 152, 163, 184, 216	Horne, G192, 196
Hestroffer, J	Hofman, D	Horner, J
Hetts, S	Hofmann, D 67, 179	Hörnqvist Colliander, M 141, 254
Heuser, B27, 29, 94, 272	Hofmann, F	Horn, T140, 166, 170, 220
He, X94, 242, 244	Hofmann, S	Horst, O
	Hogg, B	Hort, N

TT 1: T	II B	
Horwitz, J	Huang, P	Huynh, T
Höschen, T 47	Huang, S 104, 157, 180, 202, 260, 268	Hu, Z 66, 128
Hosemann, P 26, 27, 57, 93, 94, 103,	Huang, T	Hwang, A
124, 125, 142, 159, 168, 214,	Huang, W 10, 45, 78, 83, 212, 249, 259	Hwang, J17, 46, 79, 80, 115, 148,
248, 255, 266, 270	Huang, X	180, 209, 263
Hosoda, H112	Huang, Y 10, 28, 37, 44, 113, 192, 220	Hwang, M
Hossain, M	Hua, Z148, 169, 180, 271	Hwang, S
Hossain, S	Hu, B	Hwang, Y
Hosseini, E	Huber, N	Hwa, Y
Hosseini, S	Huber, W	Hyde, D 7
Hosseini, Z	Huber, Z	Hyer, H 70, 170
Hosseinzadeh, H 104	Hübner, R	Hyers, R 69, 159, 190, 213, 231
Hossein Zadeh, S	Hu, C	Hye Sun, S
Ho, T	Huck, A	Hyland, M 101
Hotz, E	Hücking, J	Hyunh, T140
Hou, D	Hufenbach, J	Hyun, J
Houghton, O	Hufnagel, T	Hyunjoo, C
Hou, h	Huft, N	11, 411,000, 011111111111111111111111111
Hou, J	Hu, G	I
Hou, R	Hughes, D	
Hou, X	Hu, H	Iadicola, M 57
Hou, Z	Hui, X	Iams, A
210, 229, 246	Hu, J	Iannitti, G
Hovanski, Y22, 52, 86, 120, 154,	Hu, K	Iantaffi, C143, 241
		Iaroslavtseva, O 80
186, 212, 230 Hoving E	Hu, L	Ibañez, E
Hovig, E	Hulchanski, R	Ibbotson, D
Howard, H	Humble, P	Ibrahim, A
Howard, J	Hummel, S	Ibrahim, P
Howarter, J	Humphry-Baker, S	Ibrahim, S
Howland, W	Hunag, S	Ichitsubo, T
Ho, Y	Hung, C	Ickes, M
Hoyt, J	Hunger, K	Iffert, M 67
Hoyt, N 26, 57, 91, 125, 158, 189, 270	Hung, H	Ifijen, I 15, 35, 44, 105, 141, 143, 173,
Hrabe, N 6, 68, 102, 137, 169, 195,	Hunn, J	178, 203, 256, 261
198, 199, 220, 233, 240	Hunt, B	Ighodaro, A
Hruszkewycz, S 16, 17	Hunter, A	Iijima, S
Hruszkewyzcz, S	Hunter, B	Ikechukwu, C
Hryha, E	Hunt, J	Ikeda, Y
Hsiao, C	Hunt, R	Ikeh, O
Hsiao, H	Hunt, S	Ikhmayies, S 17, 46, 80, 81, 115,
Hsieh, E	Hunyadi Murph, S 209, 228, 246	148, 180, 209, 263
Hsieh, M	Huotilainen, C	Ikhuoria, E105, 178, 256
Hsieh, P	Huo, W	Ilavsky, J192, 268
Hsieh, T	Huo, Y	Ilcan, H
Hsieh, W	Hurley, D 65, 133, 180, 228, 271	Iliukha, N 175
Hsu, P	Hurley, M	Ilogebe, A
Hsu, Y	Hurley, R	Ilyas, S
Hu, A	Hurst, M	Imagawa, Y 52
Huai, P	Hurwitz, F	Imasato, K
Huaixuan, F	Hu, S 51, 89, 126, 127, 182, 234	Imhoff, S
Huanca Choque, S	Hussein, A	Im, J
Huang, A	Hussein, M	Im, S
Huang, B	Hussein, O	Inman, S
Huang, C186, 251, 268	Hutabalian, Y14, 63, 245, 253	Inoue, A
Huang, E 11, 39, 74, 108, 143, 175,	Hutchinson, A	Inoue, J
204, 224, 257, 259	Hu, X	Inoue, S
Huang, G	Hu, Y 11, 56, 88, 91, 141, 175, 187, 247	Inui, H
Huang, H	Huyan, H	Ioannidou, C
Huang, J	Huyghe, T 9	Ionescu, M
Huang, M251, 257, 268	Huynh, N	100

Ioroi V 24	Jackson, M	Jarry, P
Ioroi, K	Jackson, O9, 36, 71, 106, 141, 173,	Jasien, C
Irmak, F	202, 223, 255	Jasiuk, I
Isaac, A	Jacob, J	Jassim, A
Isac, M	Jacobsen, G	Jasthi, B
Isaksen, M	Jacobson, P	212, 225, 261
Isano, H	Jacobs, R	Jaswandkar, S
Isasti, N	Jacobs, T33, 65, 99, 133, 151, 166,	Jatobá, T
Isbill, S	183, 196, 218, 235	Jauregui, L
Ishak, M	Jacot, A	Jauß, T
Ishida, T	Jacquelin, C	Javaheri, I
Ishiem, D	Jacquemetton, L	Javaid, S
Ishii, A	Jaeger, E	Javey, A
Ishii, S	Jaewon, J	Jaware, D
Ishikawa, N	Jaffe, M	Jaya, B
Ishimwe, J	Jagatramka, R	Jayakumari, S
Ishiyama, O	Jagdale, V	Jayaraman, T
Ishtiaq, M249, 268	Jäger, S	Jayaram, V110, 201, 243, 261
Isiksacan, C	Jägle, E	Jayathilaka, P 28, 113
Iskounen, N	Jahed, H	Jean-Philippe, C
Isiksacan, C	Jahns, K	Jeffries, J
Islam, A	Jahrsengene, G	Jellison, G
Islamgaliev, R 62	Jain, A123, 229, 244	Jen, I14, 77, 245
Islam, M	Jain, J	Jennion, A
Islam, S	Jain, M	Jensen, C
Islam, T	Jaitman, M	Jensen, S
Islam, Z	Jak, E 129	Jenus, P
Isner, A	Jakes, J	Jeon, A222, 257
Issa, I	Jakovljevic, K	Jeong, B
Issa, R145, 167	Jakumeit, J	Jeong, D
Issa, S	Jaladurgam, N 141	Jeong, H
Isupov, F	Jalali, M	Jeong, J
Iten, J	Jalan, V	Jeong, K
Itoi, S	Jamalkhani, M	Jeong, M
Ito, K	Jambor, M	Jeong, S
Ito, M	Jambur, V	Jeong, W 81
Ito, T	James, J	Jeong, Y
Iturrioz, I	James, M	Jeon, J
Ivanisenko, J	James, S 62	Jeoung, H
Ivanov, A	Jamie, T	Jeppsson, J
Ivanov, D	Jamison, L	Jérémy, R
Ivanov, I	Jamshidi, P	Jeyapalina, S
Ivanov, Y	Jana, S	Jeyavalan, S
Iveković, A 47	Janeček, M254, 259	Jha, A
Iwabuchi, Y	Jang, D92, 126, 145, 160, 191, 214,	Jha, M
Iwamatsu, K	231, 271	Jha, S
Iyamu, J	Jang, G	Jhon, M
Ize-Iyamu, O	Jang, H	Jiang, C
Izumi, D	Jangid, D	Jiang, E
_	Jang, J222, 230, 241, 257	Jiang, H
J	Janish, M	Jiang, K
Jabed, A	Jankowski, A	Jiang, L
Jablonka, K	Jannotti, P	Jiang, M
Jablonksi, P	Janoszka, A	Jiang, N
Jablonski, P	Janssen, J	Jiang, P 50
Jaca, E	Jäntsch, U	Jiang, R
Jacintho, D	Jaques, B92, 166, 170, 238	Jiang, T
Jackson, J	Jared, B15, 166, 170	Jiang, W47, 60, 148, 168, 197, 208,
Jackson, K	Jarosinski, W	209, 228
,	Jarreta, D	Jiang, Y

Jiang, Z 80	Jones, T 6, 68	Kabra, S
Jiao, Y 18, 48, 81, 116, 149, 180, 266	Jonigk, D 80	Kacher, J 92, 126, 151, 160, 173, 191,
Jiao, Z	Joo, G245, 246	214, 231, 271
		Kadambi, S
Jia, Q	Joo, M	
Jia, W	Jordan, B	Kadirel, K
Jia, Z	Jordon, B 6, 7, 150, 234, 238, 242,	Kadirvel, K
Ji, F	249, 250	Kadivar, S
Ji, K22, 154, 159, 213	Jordon, J	Kadkhodaei, S 18, 48, 81, 116, 117,
Ji, M		
	Joress, H	149, 180, 266
Jimenez, N	Jorgensen, C	Kafka, O 21, 52, 86, 102, 120, 153,
Jimenez, X	Jo, S	185, 195, 199, 212, 233, 266
Jing, D44, 105, 140, 173	Joshi, K	Kagay, B
Jing Rou, L	Joshi, P5, 32, 64, 97, 131, 165, 194, 255	Kagias, M
	Joshi, R	
Jin, H		Kainuma, R
Jin, J	Joshi, S7, 70, 92, 102, 126, 137, 160,	Kainz, C
Jin, M 28, 60, 93, 127, 160, 180, 228, 272	191, 206, 214, 230, 231, 240, 242, 271	Kaipainen, J
Jinschek, J 6, 28, 195, 210	Joshi, V10, 37, 56, 90, 124, 161, 230,	Kakar, A
Jin, Y 43, 73, 106, 137, 174, 256, 266	246, 251	Kaker, V
Ji, S	Jossou, E	Kalamegham, P
		e e
Ji, X107, 244	Jouhari, C 14, 262	Kalay, I
Jodi, D	Joulain, A	Kalay, Y 17, 46, 80, 96, 115, 148, 169,
Johannes, M	Jourdan, T	180, 189, 209, 239, 248, 255, 263
Johansen, S	Jo, W	Kale, C
Johansson, A	Joyce, L	Kalel, M
John, D	Jreidini, P	Kalidindi, S 13, 42, 76, 111, 130,
John, M	Jssuja, H	206, 231
John, R 52, 126	Juarez, T	Kalimuthu, J
Johnsen, R	Juarez Tapia, J	Kalita, B
Johnson, B	Juárez Tapia, J	Kallien, Z
Johnson, C	Jublot-Leclerc, S	Kalsar, R
Johnson, D 14, 132, 149, 166, 195, 257	Judd, K	Kamada, K
Johnson, E	Jue, J	Kamathewatta, N
Johnson, J	Juhasz, M	Kamath, R 6, 7, 145, 216, 238,
Johnson, K 57, 67, 71, 92, 102, 103,	Jullien, M	239, 268
136, 161, 169, 198, 219, 220, 221, 240	Jumaev, E	Kamboj, A
Johnson, M 65, 206	Jund, P14, 42, 77, 112, 245	Kamerman, D
Johnson, N	June, D	Kamiya, K
,		7 *
Johnson, O41, 177, 254	Juneja, R	Kammenzind, B
Johnson, S	Jung, C249, 250	Kammermeier, E 8
Johnson, W	Junghanns, P 47	Kampe, S
Johns, S	Jung, J 106, 150, 221, 257, 258	Kampgen, M
Johnsson, B	Jung, K	Kanan, M
	•	
Joiner, C	Jung, Y	Kanbargi, N
Jokar, E	Jun, H	Kancharla, R127, 192
Jokisaari, A	Junio, R	Kandadai, A
Jolley, B	Junior, E	Kandadai, V35, 117, 168, 225
Jolly, M	Jun, J 10, 90, 93, 176, 184, 250, 251	Kandaraj, V
Jomboh, K	Jun, S	Kandasamy, K
		·
Jonathan, C	Jun Woo, K	kandel, S
Jonathan, E	Jupudi, H	Kane, D
Jones, A	Jurewicz, T	Kane, J
Jones, C	Jürgen Seifert, H	Kane, K
Jones, D74, 80, 164, 201	Juršek, B	Kaneko, Y
Jones, E	Jusnes, K	Kaneshita, T
	Jyothi, R	
Jones, H	Jyoun, K	Kang, B
Jones, J	V	Kang, C
Jones, K	K	Kang, D
Jones, M 69, 102, 138, 220, 233	Kaaliveetil, S	Kang, G
Jones, N 12, 141, 194, 241, 246	Kaban, I	Kang, H
	Navali, 1	Kang, J 64, 123, 173, 184, 188, 253
		0, ,

Kang, K	Kassner, M	Kengne Choumele, C 107
Kang, N	Kastelic, S	Kennedy, D145
Kang, P	Kastengren, A	Kennedy, J33, 65, 99, 133, 166, 196,
Kang, S 20, 29, 51, 57, 85, 119, 129,	Kate, K	218, 235
152, 177, 191, 227, 248	Kathayat, P	Kennedy, R
Kanjilal, A	Kato, H	Kennedy, Z 70, 199
Kanmaz Kelesoglu, N 228	Katoh, Y	Kenny, S
Kanmaz, N	Kato, Y	Keplinger, C
Kannan, A 106	Katsube, R 87	Keppens, V
Kannan, R 36, 103, 170, 199, 201	Katsu, Y	Kerbrat, O
Kan, S 78	Katti, D	Kerbstadt, M
Kantonen, T	Katti, I	Kerdiles, S
Kantzos, C	Katti, K	Kermouche, G
Kao, A 87, 121, 171, 213, 221, 267	Kattner, U	Kernion, S
Kao, C34, 83, 184	Kauffmann, A20, 153, 224, 273	Kero, I
Kaoumi, D27, 31, 59, 92, 94, 126, 140,	Kaufman, M	Kersell, H
159, 166, 170, 191, 214, 220, 266, 271	Kaul, A112, 142, 168	Kersting, A
Kapoor, M	Kauomi, D159, 191, 270	Kerwin, L
Kappagantula, K 13, 42, 63, 142, 154,	Kaur, A	Keshavarz, S
206, 209, 230, 262, 269	Kaushik, H	Keshri, A
Kappes, B	Kaushik, L	Kesler, M
Kar, A	Kautz, E	Kessel, C
Karakaya, İ 69	Kauws, A	Keßler, O
Karakaya, N	Kavousi, S	Kestens, L
Karakoc, O	Kawagishi, K	Ketkaew, J 179
Karamalidis, A 33, 64, 98, 132, 272	Kawaguchi, T	Kettimuthu, R
Karamalidis, T 255	Kawamura, Y	Keum, J
Karaman, I 47, 67, 119, 130, 136, 137,	Kawasaki, M 32, 61, 63, 82, 96, 122,	Kevan, S
140, 156, 166, 172, 173, 198,	130, 164, 181, 193, 216, 217, 233, 253	Kevorkijan, V
222, 223, 241, 254	Kawasak, T	Kewish, C
Karanth, Y	Kayacetin, H	Ke, Y
Karasz, E	Kaya, I	Keylin, V
Kardoulaki, E	Kayesh, E	Khafizov, M
Kargar, F	Kayser, M	Khairallah, S
Kargl, F	Kazazi, A	Khajehvand, M
Karimialavijeh, H	Kazembeyki, M	Khalid, H
Karim, M	Kazemi, H	Khalil, P
Kar, J		Khalkho, J
Karki, D	Kazemzadeh Farizhandi, A 181	Khan, E
Karlik, M	K C, B	Khan, F
Karlsson, T	Ke, A	Khan, G
Karma, A	Kebbede, A 20 Ke, D 80	Khanh, D
Karmarkar, S	Keeler, M 68	Khan, M
Karna, S	Keilbart, N	Khanolkar, A
Karpe, S	Keil, T	Khan, R
Karpstein, N	Keiser, D	Khan, S
Karra, A	Ke, J	Khanwale, M
Karra, V	Ke, K	Khatamsaz, D
Karri, M	Kellam, M	Khattab, A
Karri, V	Kellar, J	Khawarizmi, R
Kar, S	Kelleher, B	Khaykovich, B
Karthik, G243	Kelleher, J	Kheiri, S
Karumudi, S	Kelley, D	Khodabakhshi, F
Karumuri, S	Kellogg, F	Khodavirdi, A
Karunakar, D	Kelly, D	Kholik, A
Karunamurthy, E	Kelly, J	Khose, G
Kasalo, M	Kemp, R149, 268	Khosla, H
Kasemer, M	Kenesei, P 68, 99, 127, 138, 159,	Khosla, N
Kaspar, T	221, 266	Kiani, M
1 /	221, 200	,

Kidder I 200	171: 17	TZ::1 D
Kidder, T 209	Kita, K	Köhnen, P
Kido, J	Kitashima, T172, 241, 261	Kohnert, A27, 106, 126, 270
Kiehl, C	Kitt, A	Koike, M
Kiener, D	Křivská, B	Koizumi, Y
Kihm, K 87	Kjos, O	Ko, J
Kilian, K	Klaehn, J	Kojima, T
Killeen, C	Kleemann, A	Koju, R
Killgore, J	Kleindienst, J	Ko, K
Kim, B 5, 245	Klein, M	Kokaji, R 6
Kim, C	Klemm-Toole, J7, 24, 54, 68, 88, 123,	Koklioti, M
Kim, D52, 163, 216, 242, 244, 253, 254	136, 138, 155, 165, 168, 171, 187, 188,	Kolbe, M
Kim, E 140, 201, 243, 259, 263	202, 218, 221, 224, 241, 242, 267	Kolesnikov, A
Kim, G	Kleszczynski, S	Koley, S 69, 220
Kim, H10, 11, 23, 25, 27, 29, 33, 55,	Klimenkov, M	Koliyadu, J
59, 64, 74, 93, 98, 116, 132, 140, 149,	Klimova, O	Komarasamy, M120, 124
153, 157, 158, 163, 168, 170, 187, 201,	Kling, M 168	Komari, O
238, 239, 243, 249, 253, 257, 259, 267,	Kljestan, N	Komazaki, S
269, 270, 272	Kloenne, Z 12, 40, 74, 75, 110, 144,	Komilian, A 242
Kim, I	176, 205, 225, 261	Komuro, M
Kiminami, C	Klomp, A	Konda Gokuldoss, P 193
Kim, J10, 11, 46, 54, 57, 66, 79, 106,	Klug, J	Konečná, A
130, 201, 219, 230, 243, 249, 254, 257,	Klunnikova, Y	Koneru, S
258, 259, 260, 261, 263, 267, 269	Klusemann, B22, 182, 206, 230	Kong, F
Kim, K 32, 153, 180, 254, 256, 266	Knapek, M115, 231, 251, 259	Kong, Y 23, 32, 53, 56, 64, 87, 97, 122,
Kim, M 5, 19, 83, 130, 184, 225, 245,	Knapp, G 7, 22, 69, 104, 145, 238, 239	131, 155, 165, 194, 197, 248, 255
253, 257	Knapp, T	Kong, Z 6, 138
Kim, N245, 251	Knezevic, M 9, 36, 110, 111, 140, 146	Konig, H
Kim, S 11, 29, 82, 132, 163, 170, 237,	Knight, K 7	König, H
242, 244, 245, 257, 258, 261, 268	Knipling, K	König, T 84
Kim, T	Knott, R	Konings, R
Kimura, Y	Knowles, A 132, 133, 136, 166, 195,	Konishi, H
Kim, Y 10, 23, 64, 105, 168, 223, 245,	244, 252	Kons, C
Killi, 1 10, 23, 04, 103, 100, 223, 243,		
250, 260		
250, 269	Knutson, A	Kontis, P
Kinaci, A	Knutson, A	Kontis, P
Kinaci, A	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265	Kontis, P
Kinaci, A	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247	Kontis, P
Kinaci, A	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187	Kontis, P
Kinaci, A	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207	Kontis, P
Kinaci, A43, 226, 245Kinahan, D112King, D260King, G58King, J55King, W69Kinser, R269	Knutson, A237Kobayashi, M176, 268Kobayashi, Y264, 265Kober, E13, 247Köbrich, M187Kocaefe, D49, 207Kocaefe, Y49, 207Kocak, C86	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185	Knutson, A237Kobayashi, M176, 268Kobayashi, Y264, 265Kober, E13, 247Köbrich, M187Kocaefe, D49, 207Kocaefe, Y49, 207Kocak, C86Koc, B81	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57	Knutson, A237Kobayashi, M176, 268Kobayashi, Y264, 265Kober, E13, 247Köbrich, M187Kocaefe, D49, 207Kocaefe, Y49, 207Kocak, C86Koc, B81Kocen, M47	Kontis, P
Kinaci, A43, 226, 245Kinahan, D112King, D260King, G58King, J55King, W69Kinser, R269Kinsey, A185Kinsey, B9, 57Kinsler-Fedon, C39	Knutson, A237Kobayashi, M176, 268Kobayashi, Y264, 265Kober, E13, 247Köbrich, M187Kocaefe, D49, 207Kocaefe, Y49, 207Kocak, C86Koc, B81Kocen, M47Kocevski, V228	Kontis, P .8, 36, 71, 106, 141 Kontsos, A .21, 22, 52, 86, 120, 153, 185, 212, 266 Koonce, J .230 Koopmann, J .220 Koo, T .249 Ko, P .259 Kopp, A .173 Kopyściański, M .212 Kordmir, S .226 Korenko, M .135
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250	Knutson, A237Kobayashi, M176, 268Kobayashi, Y264, 265Kober, E13, 247Köbrich, M187Kocaefe, D49, 207Kocaefe, Y49, 207Kocak, C86Koc, B81Kocen, M47Kocevski, V228Koch, A207	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80	Knutson, A237Kobayashi, M176, 268Kobayashi, Y264, 265Kober, E13, 247Köbrich, M187Kocaefe, D49, 207Kocaefe, Y49, 207Kocak, C86Koc, B81Kocen, M47Kocevski, V228Koch, A207Koch, C11, 108	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51	Knutson, A237Kobayashi, M176, 268Kobayashi, Y264, 265Kober, E13, 247Köbrich, M187Kocaefe, D49, 207Kocaefe, Y49, 207Kocak, C86Koc, B81Kocen, M47Kocevski, V228Koch, A207Koch, C11, 108Koch, H159	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19	Knutson, A237Kobayashi, M176, 268Kobayashi, Y264, 265Kober, E13, 247Köbrich, M187Kocaefe, D49, 207Kocaefe, Y49, 207Kocak, C86Koc, B81Kocen, M47Kocevski, V228Koch, A207Koch, C11, 108Koch, H159Kocijan, A140, 249	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163 Kirka, M .7, 68, 103, 137, 139, 170,	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254 Kockelmann, W 61, 183	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163 Kirka, M .7, 68, 103, 137, 139, 170,	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254 Kockelmann, W 61, 183	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163 Kirka, M 7, 68, 103, 137, 139, 170, 172, 193, 199, 200, 220, 234	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kockelmann, W 61, 183 Koc, M 243	Kontis, P 8, 36, 71, 106, 141 Kontsos, A 21, 22, 52, 86, 120, 153,
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163 Kirka, M .7, 68, 103, 137, 139, 170, 172, 193, 199, 200, 220, 234 Kirk, T 8, 31	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kockelmann, W 61, 183 Koc, M 243 Kodera, Y 109, 165, 204	Kontis, P 8, 36, 71, 106, 141 Kontsos, A 21, 22, 52, 86, 120, 153,
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirka, M 7, 68, 103, 137, 139, 170, 172, 193, 199, 200, 220, 234 Kirk, T 8, 31 Kirkwood, H 80 Kirsch, D 169	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254 Kockelmann, W 61, 183 Koc, M 243 Kodera, Y 109, 165, 204 Ko, E 250 Koelmans, W 122	Kontis, P 8, 36, 71, 106, 141 Kontsos, A 21, 22, 52, 86, 120, 153,
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirka, M 7, 68, 103, 137, 139, 170, 172, 193, 199, 200, 220, 234 Kirk, T 8, 31 Kirkwood, H 80 Kirsch, D 169 Kisailus, D 45, 78	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254 Kockelmann, W 61, 183 Koc, M 243 Kodera, Y 109, 165, 204 Ko, E 250 Koelmans, W 122 Koenig, A 71, 143	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163 Kirka, M .7, 68, 103, 137, 139, 170, 172, 193, 199, 200, 220, 234 Kirk, T 8, 31 Kirkwood, H 80 Kirsch, D 169 Kisailus, D 45, 78 Kishida, K 76, 259	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254 Kockelmann, W 61, 183 Koc, M 243 Kodera, Y 109, 165, 204 Ko, E 250 Koelmans, W 122 Koenig, A 71, 143 Koenig, B 199, 200	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163 Kirka, M 7, 68, 103, 137, 139, 170, 172, 193, 199, 200, 220, 234 Kirk, T 8, 31 Kirkwood, H 80 Kirsch, D 169 Kisailus, D 45, 78 Kishida, K 76, 259 Kishore, K 181	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254 Kockelmann, W 61, 183 Koc, M 243 Kodera, Y 109, 165, 204 Ko, E 250 Koelmans, W 122 Koenig, A 71, 143 Koenig, B 199, 200 Koenig, T 71, 94	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163 Kirka, M 7, 68, 103, 137, 139, 170, 172, 193, 199, 200, 220, 234 Kirk, T 8, 31 Kirkwood, H 80 Kirsch, D 169 Kisailus, D 45, 78 Kishida, K 76, 259 Kishore, K 181 Kiss, L 178, 207	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254 Kockelmann, W 61, 183 Koc, M 243 Kodera, Y 109, 165, 204 Ko, E 250 Koelmans, W 122 Koenig, A 71, 143 Koenig, B 199, 200 Koermann, F 117, 125	Kontis, P 8, 36, 71, 106, 141 Kontsos, A 21, 22, 52, 86, 120, 153,
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163 Kirka, M 7, 68, 103, 137, 139, 170, 172, 193, 199, 200, 220, 234 Kirk, T 8, 31 Kirkwood, H 80 Kirsch, D 169 Kisailus, D 45, 78 Kishida, K 76, 259 Kishore, K 181 Kiss, L 178, 207 Kisslinger, K 16	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254 Kockelmann, W 61, 183 Koc, M 243 Kodera, Y 109, 165, 204 Ko, E 250 Koelmans, W 122 Koenig, A 71, 143 Koenig, B 199, 200 Koenig, T 71, 94 Koermann, F 117, 125 Koga, N 268	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163 Kirka, M 7, 68, 103, 137, 139, 170, 172, 193, 199, 200, 220, 234 Kirk, T 8, 31 Kirkwood, H 80 Kirsch, D 169 Kisailus, D 45, 78 Kishida, K 76, 259 Kishore, K 181 Kiss, L 178, 207	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254 Kockelmann, W 61, 183 Koc, M 243 Kodera, Y 109, 165, 204 Ko, E 250 Koelmans, W 122 Koenig, A 71, 143 Koenig, B 199, 200 Koerig, T 71, 94 Koermann, F 117, 125 Koga, N 268 Kohara, S 79	Kontis, P
Kinaci, A 43, 226, 245 Kinahan, D 112 King, D 260 King, G 58 King, J 55 King, W 69 Kinser, R 269 Kinsey, A 185 Kinsey, B 9, 57 Kinsler-Fedon, C 39 Kiosidou, E 250 Kiran, A 80 Kirchheim, R 51 Kirchlechner, C 19 Kirchmayer, A 119, 163 Kirka, M 7, 68, 103, 137, 139, 170, 172, 193, 199, 200, 220, 234 Kirk, T 8, 31 Kirkwood, H 80 Kirsch, D 169 Kisailus, D 45, 78 Kishida, K 76, 259 Kishore, K 181 Kiss, L 178, 207 Kisslinger, K 16	Knutson, A 237 Kobayashi, M 176, 268 Kobayashi, Y 264, 265 Kober, E 13, 247 Köbrich, M 187 Kocaefe, D 49, 207 Kocaefe, Y 49, 207 Kocak, C 86 Koc, B 81 Kocen, M 47 Kocevski, V 228 Koch, A 207 Koch, C 11, 108 Koch, H 159 Kocijan, A 140, 249 Kociscakova, V 254 Kockelmann, W 61, 183 Koc, M 243 Kodera, Y 109, 165, 204 Ko, E 250 Koelmans, W 122 Koenig, A 71, 143 Koenig, B 199, 200 Koenig, T 71, 94 Koermann, F 117, 125 Koga, N 268	Kontis, P

V (D	T/ T/ 41 141	V D
Kotzem, D	Kucera, K	Kwon, P
Ko, U	Kudlac, M	Kwon, Y
Kouraytem, N	Kuchel, C	Kyoo Sil, C
Koury, D	Kugaswaran, L	Kyriakou, E
Koutny, D	Kugler, G	Kytzia, L
Kovarik, L	Kuglstatter, M	Rytzia, L
Ko, W	Kuhr, S	L
Ko, Y	Kukofka, A	
Koyanagi, T	Kuksenko, S	Labat, S
Koziol, A	Kuksenko, V	Lach, T
Kozlík, J	Kulikowski, J	LaClair, T
Kozmel, T	Kulkarni, A	Lacy, J
K.P., H 80	Kulkarni, K	Lados, D 6, 86, 217
Krajewski, A	Kulkarni, Y	Ladygin, V
Králík, R	Kumagai, T 60	Lafferty, C
Kral, M	Kumar, A 8, 27, 42, 85, 173, 211, 225	Lago, J
Král, R	Kumaran, V	Lai, B
Kramer, M73, 102, 108, 136, 183,	Kumar, C	Lai, J
212, 257	Kumar, D	Lai, K
Krane, M 5, 186, 267	Kumar, G	Lai, T
Kranendonk, W 88	Kumari, G	Lai, Y
Kraske, U	Kumar, M103, 173, 190	Lai, Z
Kraß, H	Kumar, N22, 52, 86, 107, 120, 123,	Lakes, R
Kratz, N	154, 186, 212, 230	Lakshmanan, A
Kremer, R	Kumar, P 6, 11, 24, 110, 137, 143, 151,	Lakshmi Narayan, R
Kremeyer, L	198, 201, 202, 243, 260, 261	Laksono, A
Kremmer, T	Kumar, R	Lalancette, F
Krenn, H	Kumar, S	Lalh, M
Krentz, T	Kümmel, F	Lall, A70, 137, 199
Kreter, A	Kuna, L	Lalwani, G
Krick, B	Kung, C	Lamarre, J
Kriewaldt, K	Kung, P	Lambard, G
Krishnamurthy, A 103	Kuntz, J	Lambeets, s
Krishnamurthy, R 24	Kuo, C	Lambeets, S
Krogstad, J26, 28, 51, 74, 107, 128,	Kuo, R	Lambert-Garcia, R 194, 241, 246
144, 191	Kurley, J	Lambert, P
Krogstad, M	Kurniawan, K	Lamb, J
Krokhin, A	Kürnsteiner, P	Lam, M
Kronenberg, A	Kuroiwa, S	Lamprinakos, N 84, 103, 195, 210, 238
Krooss, P 67	Kurokawa, S	Lam, S
Krooß, P	Kurpaska, Ł	Lam, T
Krüger, M	Kuruma, T	Lancaster, R 6, 7, 68, 70, 104, 139, 172,
Krugla, M 88	Kusano, M 6, 241	201, 222, 242
Krug, M	Kushibe, S	Lancelot, C
Kruizenga, A	Kushwaha, A	Lance, M
Kruk, R	Kustas, A 67, 102, 136, 138, 169, 198,	Lanceros-Mendez, S
Krupp, U	219, 220, 240, 249	Landeiro Dos Reis, M 52, 82, 153
Kruska, K	Kutschke, Z200, 272	Lane, B
Krutz, N	Kuwata, S	Langan, S
Kruzic, J 28, 59, 113, 198, 227	Kuzior, B	Langan, T65, 98, 133, 255
Krynicki, J	Kvande, H	Lang, E28, 30, 85, 122, 124, 159,
K. Shargh, A	Kvinge, H	197, 215, 271
Kuang, W	Kvinge, 11	Langendorf, J
Kubacki, G	Kwak, C	Langford, L
Kubásek, J	Kwak, M	Lang, L
Kube, S	Kwiatkowski da Silva, A	Lang, M35, 94, 138, 162
Kublik, N	Kwon, H	Langsrud, Y80
Kubota, M	Kwon, J	Lanigan-Atkins, T
Kuca, T	Kwon, O	Lan, S
1 11/	100	

Lanteigne, J	Leach, C104, 128, 138	le Graverend, J 130, 141, 164, 185,
Lany, S	Leake, S	186, 216
Lapington, M	Leal-Quiros, E	Legris, A
Laplanche, G34, 111, 153, 259	Lear, C	Legros, M
LaPlant, D	Leary, A10, 11, 38, 73, 108, 122, 143,	Leguy, H
	•	Lehnert, R
Lapointe, C	164, 244, 245	
Lara, C	Leary, M	Lei, B
Lara-Curzio, E	Lebeau, J	Leide, A
Large, M	Lebel, F 88	Leidigkeit, C 86
La Riviere, B	Lebensohn, R 27, 36, 42, 71, 111, 142,	Leimeroth, N
LaRiviere, B	155, 229	Leinenbach, C
Lark, A 171	Lebepe, T	Leineweber, A
Larrieu, G	Leblanc, S	Lei, T
Larson, E	LeBlanc, S	Lemarquis, L
Larsson, J	Leblond, A	Le, N
Lasheras, A	Le Bouar, Y	Lenau, A
Lass, E	Le Bourlot, C	Lenka, R
150, 164, 171, 181, 193, 200, 216,	Lebreux, M	Lenka, S
222, 224, 233, 242, 253	Lechner, S	Lennon, A
Lastovich, M	Le Coq, A	Leo, M
Latronico, G	Le Corre, M	Leonard, A 7, 26, 70, 92, 104, 120, 139,
Latta, R	Lecrivain, T	164, 172, 201, 222, 242, 251
Latypov, M	Ledford, C 7, 139, 193, 200, 234	Leonard, D
Lau, A	Lee, A	Leon-Cazares, F
Laube, S	Lee, B 66, 168, 190, 250, 251, 257	Leong, A 80
Laubyer, E	lee, C	Leonhardt, T132, 166, 195, 218,
Lau, C	Lee, C11, 39, 81, 96, 130, 153, 204,	234, 272
Lauhoff, C	249, 250, 253, 257	Leosson, K
Laukkanen, A 105, 136, 139, 160,	Lee, D	Leost, N
188, 224	Lee, E	LePage, W
Lau, M	Lee, G	
		Le Pape, Y
Lauria, D	Lee, H 31, 50, 51, 150, 177, 183, 184,	Leriche, N
Laurin, E	187, 204, 237, 266, 268, 270	Lerman, S
Lauzon-Gauthier, J	Lee, I	le Roux, W
LaVan, D	Lee, J 10, 31, 38, 39, 45, 58, 62, 63, 64,	Leroy, F
Lavelle, A	74, 96, 98, 130, 132, 141, 188, 193, 196,	Leshchev, D
Lavender, C	205, 213, 230, 237, 239, 241, 247, 249,	Lester, B
Lavenstein, S	251, 253, 254, 256, 257, 259, 260, 263,	Lesyk, D
LaVerne, J	266, 269, 271	Letrun, R
Lavernia, E 25, 34, 54, 56, 61, 90, 108,	Lee, K 39, 145, 219, 223, 225, 257, 263	Lettiere, B
124, 136, 157, 172, 189, 204,	Lee, M57, 145, 150, 153, 208, 238,	Leunda, J
216, 233, 242, 259	253, 263	Leung, C 138, 143, 154, 171, 194, 220,
Lavogiez, C	Lee, P 80, 87, 121, 130, 138, 140, 143,	233, 241, 243, 246
Lavoie, J	154, 171, 194, 214, 220, 221, 233,	Leung, V
Lavoie, P	241, 243, 246	Levano Blanch, O
Law, A	Lee, S 5, 10, 17, 27, 32, 49, 56, 79, 83,	Levesque, J43, 77, 112, 146, 178, 207,
		-
Lawalin, J	86, 93, 144, 170, 205, 221, 230, 240,	226, 245
Law, J	241, 242, 247, 248, 252, 253, 258,	Levesque, M
Law, K	261, 268, 271	Levi, C
Lawrence, J	Lee, T19, 40, 50, 64, 81, 83, 130, 151,	Levi, M
Lawrence, S	184, 201, 248	Levine, L
Lawson, J	Lee, W23, 53, 87, 122, 155, 177,	Levine, S
Lawson, M	208, 248	Levin, Z 132, 133, 166, 195, 218,
Lawson, S	Lee, Y 19, 31, 42, 61, 96, 103, 104, 128,	234, 272
Laxminarayana, R 136	138, 146, 170, 199, 201, 204, 221,	Levy, A 57
Laza, J	238, 239, 240, 244, 258, 259	Lewandowska, M
Lazarus, B	Lefler, M	Lewandowski, J 6, 52, 68, 102, 137,
Lazou, A	Le Gallet, S	169, 170, 198, 220, 223, 240
Lazpita, P	Le Gall, N	Lewis, A
Lázpita, P		Lewis, D
r,		, =, 212

I : D	T: D	T. D. 10
Lewis, E	Lima, P	Liu, B
Lewis, J	Lima, T	Liu, C20, 36, 41, 58, 59, 79, 125, 201,
Leygue, A	Lim, B 6, 139	204, 205, 208, 268
Leyland, M	Limberg, W	Liu, D11, 17, 47, 81, 116, 143, 172, 269
Lhermitte, C	Limbu, D	Liu, F
Li, A	Lim, G	Liu, G 53, 77, 114, 147, 213
Liang, A	Lim, H 71, 111, 145, 177, 206, 226,	Liu, H
Liang, D 67, 137	245, 262	Liu, I
Liang, S	Lim, J	Liu, J31, 73, 85, 89, 93, 105, 113,
Liang, Z	Lim, K	157, 168, 174, 192, 199, 200, 210,
Lian, J	Limmer, K24, 54, 88, 123, 136, 155,	219, 240, 256, 259, 266, 268
Liao, C	187, 267	Liu, K
Liao, S	Lim, S	Liu, L
Liao, W	Lim, Y	Liu, M
Liao, X 6, 139, 171, 200, 221, 241, 242	Li, N 11, 19, 28, 29, 59, 61, 71, 85, 94,	Liu, N
Liaw, P	118, 122, 128, 150, 159, 161, 191,	Liu, P
108, 114, 119, 143, 144, 147, 175, 179,	192, 215, 216, 232, 252	Liu, S 58, 73, 104, 112, 138, 169, 184,
202, 204, 208, 224, 227, 257, 258,	Lin, A	206, 210, 245
		Liu, T 47, 82, 85, 129, 159, 182, 210, 211
259, 263	Lin, B	
Li, B	Lin, C	Liu, W 17, 106, 129, 135, 138, 227
105, 109, 115, 144, 148, 175, 180,	Lind, C	Liu, X 10, 26, 51, 61, 73, 89, 108, 115,
188, 202, 204, 209, 223, 227, 235,	Lindemann, G	138, 148, 157, 205, 217, 228, 233,
247, 260, 263	Linder, D	234, 254, 261
Libero, J	Lindroos, M	Liu, Y 14, 19, 24, 31, 52, 63, 77, 94, 96,
Li, C 30, 45, 61, 78, 85, 94, 108, 128,	Lindsay, S	116, 120, 128, 130, 135, 174, 206,
129, 135, 159, 162, 192, 211, 271, 272	Lindwall, G139, 158	227, 253, 262, 268
Lichtenegger, H	Lin, F 80, 128	Liu, Z 27, 31, 63, 91, 96, 125, 130, 132,
Lichtenstein, T 57	Ling, L	137, 142, 158, 195, 242, 253
Li, D 12, 19, 20, 50, 55, 71, 75, 83, 89,	Ling, W	Livera, E
136, 139, 151, 165, 181, 184, 193,	Linhares, J252, 264, 265	Li, w
197, 234, 239, 248	Linhares Junior, J252, 263, 265	Li, W 43, 55, 106, 108, 132, 205, 227,
Li, E	Lin, I	257, 266
Liedke, M	Lin, J 19, 24, 82, 94, 158, 176, 182, 272	Li, X
Lienert, T	Lin, M31, 63, 96, 130, 253	146, 156, 183, 186, 200, 212, 217,
Lienert, U	Linne, M	221, 228, 230, 267
Lien, H	Lin, P	Li, Y 46, 47, 107, 114, 154, 168, 182,
Liese, M	Lin, S	251, 253, 254
Lies, N	195, 237, 253, 258	Liyanage, N
Liewald, M115, 206	Linsley, C	Li, Z 38, 56, 111, 113, 119, 159, 161,
Liew, L	Linton, K	182, 204, 209, 229, 247, 272
Li, F194, 221	Lints, J	Llorca, J. 120, 160, 173, 175, 210, 221, 251
Life, T	Lin, W	LLorca, J
Li, G	Lin, Y 7, 14, 28, 34, 83, 91, 100, 184,	Lloyd, J40, 144, 181
Li, H	197, 205, 221, 273	Lloyd, M
Liim, D	Liotti, E	Lloyds, M
Li, J 11, 17, 28, 40, 46, 74, 80, 91, 109,	Li, P	Loaiza, A
115, 125, 126, 144, 148, 175, 176, 180,	Lipkin, E	Loaiza, T
199, 200, 203, 204, 209, 215, 260, 263,	Li, Q	Locke, J 21, 51, 84, 85, 118, 119, 152,
270, 272	Li, R	153, 184, 185, 211
Li, K	Lirio, J	Lodin, J
Likozar, B	Li, S 89, 110, 146, 198, 201, 222, 223	Löffler, J
Li, L 10, 15, 16, 32, 37, 44, 45, 78, 86,	Lis, M	Loge, R
113, 119, 142, 146, 150, 152, 178,	Lison-Pick, M	Logé, R
182, 208, 230, 246, 259, 262	Liss, K 61, 122, 202, 217, 233, 254	Lohaus, S
Lilensten, L	Lister, S	Loh, H
Lillo, T	Lister, T	Lohmann, S
Li, M18, 28, 61, 68, 127, 135, 173,	List, F	Loiacono, D
184, 230, 233, 247	Litschewski, A	Lo, K
Lima Chaves, G	Littrell, K	Lokhande, A
Lima, M	Litwin, P	Lokitz, B
12		,,,,,,,,,,

Lomello, F	Lu, K10, 11, 23, 40, 54, 74, 88, 97,	Machado, J
London, A	109, 122, 131, 144, 153, 155, 164, 175,	Macha, J
Long, A	194, 204, 217, 233, 254, 260, 267	Mach, R
Long, F 60, 127	Luke, M	Macias, D
Longkumer, I 40	Luktuke, A	Maciel, B
Lopes, A	Lum, B	Mackay, K
Lopes, F	Lum, E	Mackenzie, A
-		
Lopes, L	Lumper, L	Mackenzie, L
Lopez, A	Lumsden, M 61	Mackey, B
Lopez-Castaño, S	Lund, E	Mackey, P
Lopez, E	Lunder, C	MacNider, B
Lopez-Galilea, I 260	Lund, J	Madam, S
Lopez-Granados, N	Lüneburg, H 69	Maddali, S
López-Granados, N	Lunev, A	Madden, N
Lopez-Hirata, V	Luo, A 34, 91, 124, 157, 205, 207, 241	Madelain, M
Lopez, J	Luo, B	Madhavan, R
Lopez, L	Luo, H	Madireddy, G
López-Martínez, E	Luo, J 39, 40, 157, 205, 257, 259	Madisetti, D
Lopez Morales, A	Luo, M	Madison, J
Lopez, N	Luo, Y	Mädler, L 45
Lopez-Perez, C	Lu, P	Madrigal-Camacho, M
Lordi, V	Lupini, A	Ma, E
Lota, A	Luposchainsky, S 198	Maeda, M 42
Lotfolahpour, A 154, 233	Lu, Q	Maeder, X
Lotfpour, M	Lürbke, R 47	Maegawa, Y
-		•
Lotte, G	Lu, S	Maeng, H
Louapre, A	Luscher, D	Maftouni, M
Louca, K	Luscher, W 115, 148, 179, 208, 228, 263	Magagnosc, D
Louis, M	Lu, T	Magee, D
Lou, X59, 68, 84, 91, 103, 118, 137,	Luther, E	Magno, J 168
152, 170, 178, 184, 199, 220	Luu, R	Magnusson, T
Louzguine, D	Lu, W	Magula, V
Louzguine-Luzgin, D	Lu, X	Ma, H
Love, A	Lu, Y 12, 29, 59, 83, 85, 121, 148, 191	Mahaffey, D
Love, C	Lu, Z29, 61, 94, 128, 161, 181, 192,	Mahajan, S
Lovenduski, C	215, 232, 252	Mahan, T
Lowe, O	Luzanilla Meléndrez, Z	Mahapatra, S
		•
Lowery, A	Lv, B	Mahat, R
Lowe, T	L'vov, V	Mahayoni, E
Low, J	Lv, P	Mahbuba, K
Loyer-Prost, M	Lv, X	Mahendran, R
Loza-Hernandez, I	Lynch, K	Mahjouri-Samani, M
Lquebal, A	Lynch, M	Mahmood, Y
Luca, S	Lyn Porter, D	Mahmoudiniya, M 103
Lucas, T	Lyu, M	Mahmoud, M
Lucheta, A	Lyu, T	Mahmud, A
Luckabauer, M	Lyu, Y	Mahoney, W
Lücker, L	Lyu, Z	Mahurin, S
	Lyu, Z 224	Maier-Kiener, V
Lucon, P	M	
Ludtka, G	141	Maier, P 26, 56, 90, 124, 157, 251
Ludwig, A	Maass, R 16, 45, 79, 114, 147, 179,	Maillard, F
Ludwig, K 57	208, 227, 263	Maioriv, B
Ludwig, W	Maaß, R114, 156, 179, 231	Mai, P
Luebbe, M	Mabrouki, M	Mairizal, A 50
Luecke, W		Maisonnette, D
	Mahuwa S 260	171010011110110, 2 77777777777777777777777777777777777
Lu, H146, 156, 188	Mabuwa, S	
Lu, H146, 156, 188	Macchi, J	Maity, A
Lu, H	MacChi, J	Maity, A
Lu, H	MacChi, J	Maity, A
Lu, H	MacChi, J	Maity, A

Majumdar, D	Mao, K	Martinez-Pañeda, E
Majumder, S 9	Mao, Q	Martinez, R
Ma, K 106, 133, 165, 166, 234, 244, 252	Mao, Y	Martinez Rojo, E
Makineni, S	Ma, P	Martinez Saez, E 18, 48, 82, 111, 117,
Makowska, M137, 139, 270	Mara, N 9, 23, 38, 59, 136, 155, 161, 229	145, 149, 177, 181, 193, 206, 210,
Makurunje, P	Marandi, B	226, 229, 246, 262
Ma, L	Maraschky, A	Martinez Salazar, D
Malafaia, S	Marathe, S	Martinez, T
Malakkal, L127, 148, 180	Marceau, D	Martin, H8, 70, 105, 140, 172, 194,
Malak, R	Marcellin, P178, 207, 227	199, 200, 201, 223, 243
Malaplate, J	Marchhart, T	Martini, A
Malayil, S	Marchi, B	Martin, J 120, 138, 169, 230, 233
·		
Male, J	March, K	Martin, K
Malek, A 50	March, N	Martin, M
Malet, L	Marconnet, A	Martin, N
Malié, A	Marcum, W 92	Martin, P
Malik, A 107	Maresca, F	Martin, S
Malik, H	Margetts, L	Marussi, S138, 171, 194, 220, 233, 241,
Maliki, M143, 178	Margolies, J	243, 246
Maloy, S 27, 29, 59, 103, 120, 159	Margousian, A	Maruyama, I
	ĕ	·
Maltais, A	Marianetti, C	Marvel, C
Mamani Calcina, E	Marian, J 56, 66, 93, 167, 257, 260	Marvila, M252, 263, 264, 265
Mambiri, L	Mariano, R	Marx, M
Mamivand, M	Marinel, S	Ma, S
Mamun, O	Marinha, D	Masden, M
Mancias, J	Marinica, M	Mase, K
Mancuso, A 80	Marinos, D 65, 255	Mashrafi, N
Mandal, S	Markelj, S	Masic, A
Mandrus, D	Marks, L	Masimore, B
Manera, A	Marlaud, T	Maskrot, H
Mangelinck-Noel, N 87	Marotta, A	Maslouhi, A
Mangold, L	Marques Junior, A	Mason, D
Mangolini, F	Marques Oliveira, D 85	Mason, H
Mangus, D	Marquez Guevara, A	Mason, J
Mani, B	Marquez Rossy, A	
	•	Mason, P
Maniere, C	Marquis, E 20, 25, 90, 95, 205, 258	Mason, S
Manimaran, M	Marrey, M	Mason, T
Manjunath, B	Marschall, U	Masquelier, C
Mankame, N	Marsden, E	Masri, S
Manley, M30, 61, 65, 94, 128, 162,	Marshall, C	Masse-Denicourt, V 24
192, 272	Marshall, M	Masse, N
Mann, A	Marsico, C	Massey, C27, 59, 92, 126, 128, 159,
Manna, M	Martelles, M	160, 182, 191, 214, 271
Mann, J	Martens, I	Massion, C
Mann, S219, 235	Martens, P	Massot, L
Mann, T	Martin, A	Mastorakos, I 209, 228, 246, 258
Mann, V	Martin, C	Mastromarino, S
Manoharan, S	Martin, D	Mathaudhu, S 15, 23, 24, 26, 27, 30, 44,
Manoharan, V	Martin, E	51, 54, 56, 68, 88, 90, 114, 122, 124,
Manohar, M	Martinez, A	150, 155, 157, 182, 246, 251, 267
Mansfield, E	Martinez-Cruz, C	Mather, T
Mansoor, B	Martinez, D	Mathesan, S
Mansoori, M	Martinez de Luca, D 22	Mathew, N
Mansoz, B	Martinez, E	Mathis, A
Mantha, D	Martínez Escamilla, A 264	Mathis, K
Mantovani, D	Martinez Lopez, R	Mathoho, I
Mantri, S 40, 144, 169, 240, 242	Martinez-Lopez, R	Matinfar, M
Manuel, M	Martínez López, R	Matmor, M
Manz, O	Martinez, M	Matos, D
Manzo, M	Martinez-Paneda, E 6	Matos, P

Matson, D	McDermid, J205, 253, 268	Meisel, M
Matson, T	McDonald, S50, 146, 184	Meisnar, M
Matsumoto, K	McDonnell, M	Mei, Z
Matsunaga, S	McDonnell, S	Mejia, D
Matsunami, T	McDowell, D 8, 49, 88, 185	Mejia-Reinoso, A
Matsuura, K 62	McDowell, M	Mekala, B 60
Matthews, B 159	McElearney, J	Melander, R
Matthews, C	McElroy, K	Melcher, C
Matthews, K	Mcenerney, B	Mele, P
Matthews, M	McEnerney, B	Melia, M
Mattocks, J	McFadden, P 68	Mellor, R
Matveey, S	McGrath, J	Melly, M 175, 271
Maurel, A	McGregor, D	Melo, F
Maurel, V	McGuire, M	Melo, T
Maurya, P	McKay, B	Mendelev, M
·	•	
Mauseth, T	Mckeown, J	Mendes Fonseca, N
Mauvy, F	McKeown, J 138, 139, 154, 167, 171,	Mendonça, E
Mavroudis, A	196, 235, 259, 273	Menezes, P194, 205, 261
Ma, W	McKerns, M	Meng, H
Ma, X 6, 10, 77, 181, 192, 219, 228, 246	McKibben, N	Mengiste, E
Maximenko, A 69	Mckinnell, J 6	Meng, J
Ma, Y 64, 75, 99, 180, 188, 200	McKinnell, J	Meng, S
May, A	McKinney, C	Menon, V
May, B	McKinstry, M	Menzel, A
Mayer, T	McLachlan, J	Mercan, O
Mayeur, J	McLinden, M	Meredig, B
Maynor, E	McMahan, C	Meredith, C
Mazanova, V 71, 74, 120, 144, 196	McMahon, M	Merle, B
Mazumder, S	McMullin, C	Merritt, B
Mazur, J	McMurray, J	Merritt, S
Mazzoni, A	McMurtrey, M	Mertz, A
Mcalpine, M	McNeff, P	Merwin, A 57
McArthur, D	McNider, B	Meshot, E
McAuliffe, T	McQuaid, S	Meskers, C30, 62, 95, 129, 163, 193,
McBride, E	McQueen, T51, 85, 110	215, 232, 252
McBride, M	Mcwilliams, B	Meslin, E
McCabe, R 36, 71, 118, 164, 173, 210	McWilliams, B 8, 70, 140, 219, 221	Messe, O
Mccall, S	Meagher, P	Messina, L
McCall, S39, 65, 70, 73, 167, 207,	Meakins, E	Messner, M
235, 259	Medina Estrada, I	Metera, J
McCarthy, E	Medina, F	Metsanurk, E
McCarthy, M	Medina, J	Metson, J
McCartney, D	Medjkoune, M	Metzger, L
·	•	Mewes, C
McCary, L	Medlin, D 48, 94, 129, 182, 267	
Mcclelland, Z	Medved, J	Mewes, T
McClelland, Z	Meents, A	Meydanoglu, O
Mcclellan, K	Meesa, M	Meyer, A
McClellan, K	Megahed, M 170, 223, 241	Meyer, III, H 176
McClenny, L	Mehboob, H	Meyer, J
McClintock, D	Meher, S68, 92, 103, 137, 150, 170,	Meyer, L
McClung, R	199, 220	Meyers, M 15, 45, 202, 204, 223, 259
McClure, A 9	Mehrabi, A	Meyerson, M 58
McClure, Z	Mehta, A	Meza, A
McCluskey, F 169	Mehta, H	Meza, L
McCluskey, P	Mehta, R	Meziere, J
McConville, D	Mehta, V	Mezouar, M
Mccormack, S	Meier, J	Miao, H
McCrink, J	Meiers, J	Miao, J
McCue, I	Mei, H	Michael, B
McDaniel, A		Michalik, S
ivicidallici, A	Meijer, K	whendik, 5

NO. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16: 1 0 100 15: 000 000 010	16.1 · · · · · · · · · · · · · · · · · · ·
Michaud, J	Mireles, O 139, 171, 200, 222, 242	Mohanty, T
Micheletti, C	Mirihanage, W 20, 190	Mohd Salleh, M 19, 50, 83, 151, 152,
Michelis, T	Mirkouei, A	184, 248
Michelson, A	Mirone, A	Moholwa, S
Michi, R	Misak, H	Mohraz, A
Michler, J	Mishan, Y	Mohr, L
Michopoulos, J	Mishin, Y	Mohr, M
Middendorf, J	Mishra, A	Mohsini, M
Middleburgh, S 115, 126, 148, 179,	Mishra, B 78, 132, 213, 232, 237	Mohun, R
180, 208, 210, 228, 263	Mishra, G	Moiseev, D
Middlemas, S	Mishra, R7, 8, 11, 22, 88, 143, 144,	Mokobia, K
Midgley, J 45	181, 186, 230, 241, 257	Molaei, R
Midson, S	Mishra, S	Molina-Aldareguia, J 204
Mielke, C	Mishra, T	Molinari, A
Mignot, G	Misra, A18, 23, 69, 70, 118, 161, 173,	Mollaoglu Altuner, H
Mi, J 67, 87, 135, 174, 260	224, 247, 267	Mollecker Rausch, M
Mika, M	Misra, M	Molley, T
Mika, V	Missoum-Benziane, D	Mo, M
Mikeli, E	Mistarihi, Q	Momeni, M
Mikhliev, O	Mistry, A	Momida, H
Miklas, A	Mistry, Y	Mompiou, F
Mikša, D	Misture, S	Monceau, D
Milani, V	Mitchell, I	Monclus, M
Mileski, S	Mitchell, J	Mondal, K 89
Miles, M	Mitchell, R	Mondal, R
Milhet, X	Mitra, P	Mönius, M
Miller, B	Mitsuishi, K	Monnet, G
Miller, C26, 57, 161, 210	Mittal, R	Monni, F
Miller, E 52	Mitterecker, J 45	Monreal, M25, 158, 189
Miller, J	Miura, H	Monson, T
Miller, M	Miura, T	Montagnino, E
Miller, N 9	Miyakawa, M 144	Montalbano, T
Miller, R	Miyanaji, H	Monteiro, A
Miller, V15, 26, 42, 56, 90, 96, 124,	Miyoshi, E	Monteiro, G
157, 182, 238, 239, 251	Mi, Z	Monteiro, S17, 46, 80, 115, 148, 162,
Milligan, B	Mizohata, K 60	180, 209, 237, 246, 252, 260,
Millot, T	Mizuta, R	263, 264, 265
Mills, L	Moat, R	Montenegro-Brown, R 147
Mills, M13, 25, 41, 71, 74, 76, 83, 90,	Mock, C	Montes de Oca Zapiain, D 111
106, 111, 144, 173, 189, 196, 216, 239	Moen Strømsnes, L	Montes De Oca Zapiain, D 145
Mills, S125, 128, 192	Moens-Van Swygenhoven, H 202	Montgomery, D
Milne, C	Mofrad, A	Montiel, D
Milwich, M 47	Mogeritsch, J	Montiel, G
Mimura, S	Moghimi, L	Monti, J
Minarik, P	Mohaghegh, N	Montini, M
Minárik, P	Mohamed, M	
		Montoya, K
Min, D	Mohammad, I	Montoya Pacheco, R
Ming, K	Mohammadi, M8, 140, 172, 178	Montroni, D
Min, H	Mohammadpour, P	Montupet-Leblond, F
Minnert, C	Mohammadzadeh, A	Moodispaw, M
Minor, A 11, 25, 76, 90, 125, 128, 143,	Mohammed, A	Moody, M
192, 223, 260	Mohammed, F	Moo, K
Mir, A	Mohammed, S	Moon, B
Mirabal, A	Mohanan, N	Moon, H
Mirabedini, P	Mohankumar, N 269	Moon, J 11, 18, 147, 243, 259
Miracle, D	Mohan, S	Moon, K
Miraj, R 8	Mohan Sai Kiran, N 12	Moore, C
Miramontes, E 170	Mohanti, T	Moore, D
Miranda-Hernández, J 107	Mohanty, A	Moore, E
Miranda, R	Mohanty, S	Moorehead, M 169, 204

Moore, J	Mousa, E	Murakami, H 20, 63, 258
Moore, K	Movaghgharnezhad, S 5	Murakami, R
Moore, R	Moverare, J	Muralidharan, G 24, 41, 125, 272
Mooring, L	Mo, W	Murali, N
•	Mowery, E	Muransky, O
Morakinyo, J	•	•
Morales, E	Mo, Y	Murayama, M49
Morales, F	Moylan, S	Murdoch, H
Morana, R	Moyle, M	Muribwathoho, O 269
Morankar, S	M. Porro, J	Murphy, A
Moran, T	Mroczka, K	Murphy, B
		- •
Morcos, P 166, 172, 222, 223, 241	Mrvar, P 9	Murphy, D
Mordehai, D	Mshar, A	Murphy-Leonard, A 26, 56, 90, 124,
Mordyuk, B	Msomi, V	157, 251
Moreira de Lima, M	Mtileni, E	Murphy, S
Moreira, E	Mubarok, A	Murray, D
		•
Moreira, L	Mudide, S 61	218, 226
Moreira Lana, G	Mudryk, Y	Murty, B 61, 239
Moreland, J	Mueller, B	Murty, K
Moreno, C	Mueller, J32, 63, 96, 130, 164, 193,	Murugan, S
Moreno, D	216, 233, 253	Musgrove, B
Moreno-Ramírez, L	Mueller, R	Mushongera, L
Morgan, B	Mueller, S	Musico, B
Morgan, D 38, 41, 76, 89, 93, 204	Muftu, S 7	Musinski, W 52, 195, 217
Morgan, F	Muhammad, M 136, 225	Muskeri, S144, 247
Morgan-Smith Myers, H 239	Muhd Amli, S	Musowoya, D
·		•
Morgan, V	Muilwijk, C	Mustafa, M
Moridi, A8, 70, 105, 138, 140, 172,	Mukherjee, A	Mustafi, L
200, 201, 221, 223, 243	Mukherjee, P 10, 37, 72, 107, 142, 174,	Musukwa, I 50, 215
Mori, M	200, 203, 224, 244	Muth, T
Morimitsu, M	Mukherjee, R	Muusha, P
Morisada, Y	Mukherjee, S 77, 106, 130, 144, 247	Mu, W
Mori, T14, 42, 77, 112, 245	Mukherjee, T	Mu, X
Mori, Y	Mukhlis, R215, 252, 253	Muzquiz, D
Morley, S	Mukhopadhyay, S 90, 189, 239	Myers, J
Morral, J	Mu, L	Myint, P
Morra, M	Mula, D	11/1115,1111111111111111111111111111111
		N
Morris, J	Mula, S	14
Morrison, G	Mulik, R	Nabaa, A
Morrison, K	Mullen, J	Nababan, D
Morrow, B	Muller, A	
Morton, J	Muller, D	Nabeel, M
		Naccarelli, A
Moschini, J	Muller, F	Nadeem, A
Moser, D69, 103, 218, 249	Müller, L	Nadjem, Y
Moser, N	Müller, M	Nadot, Y
Mossadeghian, S 57	Müller, S	Naeem, M
Mossop, T 69	Mulligan, J	•
Mostafaei, A	Mullin, K	Nafisi, S
		Nagao, A
Mostaghel, S	Mullurkara, S	Nagata, K
Mota, F	Mummareddy, B	Nag, S 26, 136, 139, 168, 196, 224
Motallebzadeh, A 96, 179	Mumm, D	=
Mota, R	Mummery, P	Nahian, M
Motly, R	Mundada, Y	Naik, K
·		Nai, S 6
Motta, A	Mundhra, G 61, 239	Nait-Ali, A184, 220, 223
Motuzas, J	Mundundu, J	Na, J
Motz, C	Munevar-Ortiz, L	
Mouche, P	Munna, A	Najafi, A
Moudgal, A	Muñoz Hernandez, E	Najafizadeh, N
_		Najaf Tomaraei, G 23
Mougin, K 5, 9, 35, 37, 66, 72, 100,	Munoz, J	Najjar, F
107, 135, 168, 197, 202, 256	Munro, T	Najmaei, S
Mourot, A	Muntaha, M	,,

Najm, H 177	Naumov, A 22, 52, 86, 120, 154, 186,	Ngomesse, F
Nakahara, K	212, 230	Nguyen, A 87, 209
Nakamura, J	Naunheim, Y 82	Nguyen, B
Nakanishi, K	Nautiyal, P 38, 142, 174, 203, 256	Nguyen, D
Nakano, A 38, 142, 174, 203, 256	Navarre, C	Nguyen-Manh, D
Nakano, J 38, 142, 174, 203, 256	Navarrete Argiles, N	Nguyen, T
Nakano, T	Navarrete Argilés, N	Nguyen-Thi, H
	•	• •
Nakashima, K	Navarro, J	Nguyen, V
Nakazawa, K	Nave, G	Niauzorau, S
Nakhmanson, S 194, 249	Na, Y	Nice, T
Nalam, P	Nayak, A 45	Nicholas, J
Naleway, S 15, 28, 44, 59, 78, 113,	Nazari, G	Nichols, S
146, 147, 178, 262	Nazário, F	Nickerson, E
Nallan, S	Necheporenko, I	Nicodemus, T
Namazifard, A	Nedeljkovic, D 84	Nicolaides, D 209
Namba, K	Neelameggham, N 20, 26, 33, 50, 56,	Nicol, S
Nam, C	64, 84, 90, 98, 118, 124, 132, 156,	Niedziela, J 30, 61, 94, 128, 162, 192,
Namgung, S	157, 188, 248, 251, 272	193, 272
Namilae, S	Neffati, D	Nie, J
Namiluko, Y	Negron Lopez, J 63	Niekter, M
Nam, J	Neilan, J	Nielsch, K
Nam, K	Neira-Arenas, G	Nielson, O
Namq, V	Nelaturu, P166, 204, 234	Nielson, S
Nam, S	Nelson, A	Niendorf, T
	Nelson, C	Nieto, E
Nam, T		
Nanda, T	Nelson, M	Nieto-Perez, M
Nandwana, P	Nelson, T	Nieto-Valeiras, E
Nanstad, R	Nemanich, R	Nie, Y
Nantes, K	Nemati, S	Niezgoda, S76, 82, 90, 106, 126, 173,
Napolitano, R 166, 217	Neogi, A	189, 202, 206, 255
Napora, A 175, 271	Neophytou, N	Nigmetova, A
Narayanan, S 80	Neshani, R 69	Ni, H
Narayan, J 5, 35, 128	Ness, S	Ni, J
•	Neto, R	Nikandrov, K
Narayan, R 5, 155		
Narciso, M	Neuba, L	Nikitina, M
Nardi, A	Neuefeind, J	Nikitin, V
Narra, A	Neugebauer, J	Nikolai, D
Narra, S 103, 138, 170, 199, 221, 240	Neu, J	Nikolic, S
Nartu, K	Neuking, K	Nikolov, S
Nartu, M 40, 144, 150, 222, 242	Neumann-Heyme, H	Nilsson, F
Nartu, S	Neumeier, S 8, 36, 41, 71, 106, 119,	Nimer, S
Narumi, T	163, 187	Nimishakavi, K
Narvaez, P	Neupane, M 18, 48, 81, 116, 149,	Nino, J
	-	Nirudhoddi, B
Na, S	180, 266	
Nascimento, L	Neu, R	Nishiguchi, A
Nasim, W	Neves, E	Nishijima, M 184
Nasiri, S	Neves Monteiro, S 162, 263, 264, 265	Nishikawa, H
Naskar, A 10	Neves, R	Nishimura, T112, 151, 152
Nastac, L	Neves, S	Nitschke, R
Nastar, M	New, A	Nittala, A
Natarajan, A	Newcombe, P	Niverty, S
Nataraj, C	Newell, P	Nix, W
Nathan, G	Newman, C	Ni, Y
Nathaniel II, J	Newman, R	Nizolek, T
Nathaniel, J	Newton, M	Nizzi, T
Nath, S	Nezhadfar, P	Nlebedim, C
Nations, M	Ng, A 247	Nlebedim, I
Natsui, S	Ng, J	Nodeh, M 10
Nault, I	Ngo, A52, 102, 170	Noebe, R
	Ngomba, M	Noell, P
	- 0	

Nogami II	O'Compell I	Oleveler F 11 40 60 74 07 100 121
Nogami, H	O'Connell, J	Olevsky, E 11, 40, 69, 74, 97, 109, 131, 144, 164, 175, 190, 194, 204, 217,
C	O'Connor, A	233, 254, 260
Nogita, K19, 50, 83, 146, 151, 152,		
184, 248 Noh, S	Odette, G	Olive, D
	Odette, R	Oliveira, G
Nolan, Z	Odiachi, I	Oliveira, J 139, 171, 180, 199, 200, 209,
Nó, M	O'Donnell, A	222, 242
Nomoto, K	O'Donnell, K	Oliveira, L
Noonan, M	Odqvist, J	Oliveira, M
Noor, I	Oerte, C	Olivetti, E
Nordlund, K	Oeztuerk, B	Olivier, F
Norgren, S	Offerman, S	Olivo, E
Norkett, J	Offidani, D	Olleak, A
Norman, J	Ofori-Okai, B	Olmsted, D
Norman, V	Ogata, S	Olsen, A
Noronha, J	Ogawa, Y	Olsen, S
Norris, E	Ogbeide, O	Olsen, T
Nosal, E	Ogle, K	Olson, A
Notarangelo, M	Oguchi, T	Olson, G 14, 27, 54, 65, 116, 136, 166
Noujima, M	Ogudu, O	Olson, N
Novak, S	Ogunseitan, O	Olsson, R
Novich, K	Oh, C	Olszta, m
Nowak, W	O'Hern, C	Olszta, M85, 106, 168, 181, 182,
Nozariasbmarz, A	O'Hern, C	210, 211
Nozawa, T34, 66, 100, 134, 167, 197,	Oh. H	Oluleke, R
219, 235, 273	Oh. J. 201, 267	Olumor, I
Ntanzi, L	Oh. J	Oluwafemi, S
N'Tsouaglo, K	Ohkubo, I	Omar, M
Nuckols, L	Ohkubo, T	Ombogo, J
Nuggehalli, R 9, 32, 37, 64, 72, 97, 107,	Oh	Ommedal, M
131, 165, 194, 202, 255, 256	Ohman, A	Omori, T
Nunez, L	Ohm, V	Omorogbe, D
Nuñez, L	Ohno, M	Omorogbe, S
Nunez, P	Ohodnicki, P 10, 11, 32, 37, 72, 107,	Omoruyi I
Nuraeni, B	122, 142, 164, 174, 203, 224, 244 Oh, S 66, 87, 146, 168, 210, 238	Omoruyi, J
Nussbaum, G		Onaiwu, G
Nyberg, E	Oh V 244	Onda, S
Nycz, A 103, 138, 170, 199, 221, 240	Oh, Y	Ong, S
Nygren, K 52, 72, 109, 162, 185, 214	Oikonomou, C	Ooi, S
Nyman, M	Oitaben, D	Opila, E
Nzeh, N	Ojeda, A	234, 248
142611, 14	Ojeda Mota, R	Opilia, E
0	Okabe, T	Oppelstrup, T
	Okamoto, N	Oppenheimer, S
O'Connell, J	Okazaki, M	Oppong-Antwi, L
Obali, A	O'Keeffe, C	O'Quinn, E
Obata, Y	Okeke, U	Orberger, B
Obazee, E	O'Kelly, P	O'Regan, C
Obeidi, M	Okosun, T	Orhan, O
Ober, D	Okuda, H	Orikasa, K
Obiri, M	Chuuda II	
O'Brien, A199, 200, 272	Okuniewski, M127, 161, 167, 218	Orlandi, G
O'Brien, A	Okuniewski, M	Orlandi, G
O'Brien, A 199, 200, 272 O'Brien, M 235 O'Brien, S 259	Okuniewski, M	Orlandi, G
O'Brien, A 199, 200, 272 O'Brien, M 235 O'Brien, S 259 Obstalecki, M 162, 173, 255	Okuniewski, M.	Orlandi, G. 250 Ornelas-Rascon, C. 17 Oros, T. 24 Orozco, A 250
O'Brien, A 199, 200, 272 O'Brien, M 235 O'Brien, S 259 Obstalecki, M 162, 173, 255 O'Cearbhaill, E 157	Okuniewski, M. .127, 161, 167, 218 Okuno, Y. .177, 226 Okuyucu, C. .96, 189, 239 Olaoluwa, D. .188 Olcay, R. .265	Orlandi, G. 250 Ornelas-Rascon, C. 17 Oros, T. 24 Orozco, A. 250 Orozco-Caballero, A. 87, 160
O'Brien, A 199, 200, 272 O'Brien, M 235 O'Brien, S 259 Obstalecki, M 162, 173, 255 O'Cearbhaill, E 157 Ochoa-Correa, L 209	Okuniewski, M.	Orlandi, G. 250 Ornelas-Rascon, C. 17 Oros, T. 24 Orozco, A 250 Orozco-Caballero, A 87, 160 Ortega, G. 33
O'Brien, A 199, 200, 272 O'Brien, M 235 O'Brien, S 259 Obstalecki, M 162, 173, 255 O'Cearbhaill, E 157 Ochoa-Correa, L 209 Ochoa, R 171, 241, 242	Okuniewski, M. 127, 161, 167, 218 Okuno, Y. 177, 226 Okuyucu, C. 96, 189, 239 Olaoluwa, D. 188 Olcay, R. 265 Olds, D. 57	Orlandi, G. 250 Ornelas-Rascon, C. 17 Oros, T. 24 Orozco, A. 250 Orozco-Caballero, A. 87, 160
O'Brien, A 199, 200, 272 O'Brien, M 235 O'Brien, S 259 Obstalecki, M 162, 173, 255 O'Cearbhaill, E 157 Ochoa-Correa, L 209	Okuniewski, M. 127, 161, 167, 218 Okuno, Y. 177, 226 Okuyucu, C. 96, 189, 239 Olaoluwa, D. 188 Olcay, R. 265 Olds, D. 57	Orlandi, G. 250 Ornelas-Rascon, C. 17 Oros, T. 24 Orozco, A 250 Orozco-Caballero, A 87, 160 Ortega, G. 33 Ortega, S 97

Osborn, C	P	Pantawane, M119, 177, 230
Osborne, M132, 139, 166, 171, 195,	1	Panteli, C
200, 218, 222, 234, 242, 272	Pace, K	Pantleon, W 9, 36, 47, 71, 106, 141,
Osborn, R	Pachaury, Y	173, 202, 222, 223, 254, 255
Osbourne, M	Padamata, S	Pant, P
Osen, K	Padhy, S	Panuganti, S
Oses, C	Padilla-Espinosa, I	Pan, X
Osetskiy, Y	Padilla, K11, 257	Pan, Z
Osetsky, Y	Padin-Monroig, R 96, 238	Papaleo, A
Oskay, C 84	Padture, N	Papanikolaou, S 259
Osman, A	Pagan, D 13, 41, 52, 72, 76, 106, 110,	Paplham, T 10, 122
Ossa, A	126, 138, 145, 177, 206, 225, 261	Pappas, D
Ossa, E	Pagan, M	Paques, M
Ostergaard, H	Page, K	Paquet, D
Oterdoom, H	Paget, A	Paquin, M
Otis, R 27, 58, 91, 125, 140, 158, 190,	Pagone, E	Paquit, V
219, 221, 270	Paguaga, S 258 Paillard, V 72	Parakh, A92, 191
Otsuka, K	Paiva do Nascimento, A	Paramore, J
Otter, G	Palacios, B	Paramsothy, M 209, 228, 246
Ott, P	Palacios Beas, E	Paranjape, H
Ott, R	Palacios, D	Paranjape, S
Ouchen, F	Palaniappan, S	Paranthaman, M
Ouchi, T	Palasyuk, A	Paraye, N
Oudriss, A 21, 51, 52, 82, 153, 271	Pal, D	Pareige, P
Ouellet-Plamondon, C	Paliwal, M	Parent, L
Ou, Y	Palkowski, H5, 9, 35, 37, 66, 72, 100,	Parikh, J
Ouyang, B 25, 55, 89, 123, 156, 188	107, 135, 168, 197, 202, 256	Parikh, P
Ouyang, F 19, 31, 50, 83, 151, 184, 248 OuYang, F	Palmcook, A	Parirenyatwa, S
Ouyang, G10, 38, 73, 108, 143, 183,	Palmer, G	Park, A
244, 257	Palm, F65, 98, 133, 255	Park, B
Ouyang, M	Pal, R	Park, C
Overman, N	Pal, S	Park, E 11, 79, 106, 130, 179, 193, 208,
Owen, C	Pal, U 10, 37, 38, 55, 57, 193	227, 243, 253, 254, 257, 258, 260, 263
Owen, L	Palumbo, A	Parker, D
Owens, C	Palya, N	Parker, S
Owusu, C	Panat, R 32, 64, 97, 131, 165, 194, 197, 255	Parkes, N 195
Owusu-Mensah, M 81	Pan, C	Park, G
Oxtoby, O	Panchal, M	Park, H 86, 105, 142, 168, 171, 250,
Oyarzabal, I	Panda, P	254, 257, 266
Oyerinde, O	Panda, R	Parkin, C
Ozalp, A	Pandee, P	Parkinson, D 146
Ozcan, M	Pandey, A 10, 37, 72, 92, 107, 126, 142,	Park, J 66, 68, 99, 127, 145, 203, 205,
Ozcelik, G	160, 174, 181, 191, 203, 214, 224,	229, 243, 248, 265, 266, 268, 269
Ozcelik, G	231, 244, 271	Park, K238, 239, 249
Ozcetin, Y	Pandey, P	Park, M
Özçetin, Y	Pandey, R	Park, N
Ozdemir, A	Pandhi, T	Park, S 153, 171, 219, 245, 251, 258
Ozdemir, A	Pandit, N	Park, T 111, 145, 187, 263, 270
Ozdemir, O	Pandolfi, S	Park, Y
Ozdogru, E	Pandya, T	Parmar, H
Ozen, Z	Pan, G	Parrish, K
Ozerinc, S	Pang, J	Parry, S
Özerinç, S	Pang, Q	Parsa, A
Ozhegov, M	Pang, X	Parsazadeh, M
Özkaya, E	Pan, Q	Parson, N
Özmen, L	Pan, S	Parsons, E
Ozpineci, B	Pansiot, B	Parween, R
Oztan, Y	Panta, S 50	Parzer, M
Ozturk, A	2	Pascall, A

D 10	D '' M	D ' D 157 251
Pascal, S	Pegritz, M	Perrin, B
Paschalis, G	Pegues, J 102, 137, 138, 166, 205,	Perron, A58, 65, 96, 167, 196, 204,
Pascual-González, C	220, 249	235, 259, 273
Pasebani, S 104, 136, 165, 172, 198, 201	Peillon, s	Perry, K
Passieux, J	Pei, Z	Perry, M
Passolano, C 203	Pekala, M	Persaud, S
Pastor, J	Pek, E	Persson, K
Pataky, G 21, 52, 86, 120, 153, 172,	Pekol, C 107	Perumal, G141, 205
185, 212, 266	Pelaez, A	Perumaram Rangarajan, S 203
Patel, A 32, 121	Pelletier, M	Pešička, J
Patel, D	Pelt, D	Petel, O
Patel, M	Pena, E	Peter, F
Patel, R 7	Pena, M	Peter, K
Patel, S	Peng, H20, 33, 50, 54, 64, 84, 98, 118,	Peterman, E 16, 262
Patel, Z	132, 146, 239, 248, 272	Peter, N
Patenaude, H	Peng, J	Peters, B
Pateras, A	Peng, S	Peters, E
Pathak, A 143	Peng, Z17, 46, 80, 115, 148, 180,	Petersen, H
Pathak, S	209, 263	Petersen, N
Pathare, P	Penick, C	Peterson, E
Patil, C	Penilla, E	Peterson, K 106, 126
Patil, S	Penney, J	Peterson, N
Patki, P	Penney, S	Peterson, R 80
Patra, N	Penny, R	Pethö, L
Patra, S	Pepas, J	Petrella, A
Patsavellas, J 175	Pépin, Y	Petric, M 9
Pattamatta, S	Perander, L	Petrie, C
Patterson, B	Perbix, C	Petrič, M
Patterson, E	Percival, S	Petrou, M
Pattison, A	Perdicakis, B	Petrov, V
Patullo, M	Perea, D	Pettinari-Sturmel, F
Paudyal, D	Pereira, A	Peuker, U
Paul, A	Pereira da Silva, J 90	Pfalz, T
Paul, B	Pereira dos Santos, J 58	Pfefferkorn, F
Paulin, I	Pereira Dos Santos, J	Pfeffer, N
Paulischin, A	Pereira, I	Pfeiff, C
Paul, M	Pereira, M	Pham, H
Paul, S	Perepezko, J	Pham, M 70, 92, 119, 126, 160, 191,
Paul, T	Peretti, A	214, 231, 271
	Perez, A	Pham, V
Pauques, M		
Pavel, M	Pérez-Cerrato, M	Phaneuf, M
Payet, M	Perez, D	Phan, N
Payne, M	Perez, L	Phan, T
Payton, E32, 39, 63, 96, 126, 130, 164,	Perez Labra, M	Pharr, G
165, 193, 195, 206, 216, 217, 233,	Pérez Labra, M	Pharr, M
234, 239, 253, 255, 257	Pérez-Labra, M	Phelan, A
Paz Soldan Palma, J	Perez-Lopez, E	Phero, T
Paz y Puente, A 32, 63, 96, 130, 164,	Perez, O	Philipp, S
165, 193, 195, 216, 217, 233, 234, 253	Perez, P	Philips, N
Pęcak, K	Pérez, P	Phillion, A22, 53, 69, 87, 121, 154,
Pearson, C	Pérez-Prado, M	186, 214, 267
Pearson, J	Pericleous, K 114, 121, 213, 221, 267	Phillippe Couzinie, J
Pecak, K	Perlade, A	Phillips, N
Pecharsky, V	Perlee, C	Phillips, W
Peco, C	Perlitz, T	Phillpot, S
Peddeti, C	Pero, R	Phongikaroon, S 189
Pedersen, Ø	Perosanz, S	Phukan, H
Pedgaonkar, A	Perriere, L	Phung, B
Pedrazzini, S	Perrière, L	Piatko, C
Peerlings, R	Perrin, A	Picak, S

D. 15	P. 1	P. 1.0
Picard, D	Polizzi, A	Prameela, S
Pichot, F	Polke, A	Prasad, N
Pickering, E	Pollock, T6, 13, 38, 39, 76, 101, 120,	Prasetyo, E
Pickron, E	132, 139, 143, 144, 171, 172, 185,	Prayitno, Y
Pidaparthy, S	192, 193, 201, 233, 234, 241, 244,	Preger, Y
Piedmont, D	257, 258, 259	Preis, J
Pierce, A	Poloni, R	Preisler, D
Pierce, D 54	Polonsky, A 6, 71	Prentice, L215, 252, 253
Pietras, A	Polsky, W	Present, S
Pietsch, U 86	Pommerenke, H	Preston, A
Piette, T 6	Ponce Vergara, D	Preuss, M
Pike, A	Ponga, M 50, 117, 136, 215	Price, P
Pilania, G	Ponge, D	Price, S140, 195
Pilarczyk, R	Ponnambalam, V	Prichard, P 7, 69, 97, 131, 164, 194,
Pilchak, A	Pons, R	217, 233, 242, 254
Pillai, D	Poole, L	Priddy, M
Pilz, S	Poole, W	Prillhofer, B
Pimblott, S	Poon, J	Prima, F
Ping, Y	Poon, S	Primig, S 6, 8, 36, 71, 104, 106, 139,
Pinho, J	Poorganji, B 8, 70, 105, 140, 172, 201,	141, 171, 200, 241, 242
Pinkowitz, A	223, 243	Prisk, T
Pinney, P	Pope, D	Pritchard, M
Pino, J	Popelar, C	Prithiv, T
Pinomaa, T 105, 133, 136, 139, 160, 224	Poplawsky, J 31, 40, 62, 65, 68, 71, 74,	Priya, S
Pinsard, H	88, 119, 138, 139, 140, 145, 161,	Proehl, E
Pinson, M	172, 202, 219	Profazi, C
Pint, B	Popoola, P	Prokop, A
Pintsuk, G	Popovich, V	Promoppatum, P
Pinz, M	Porfyrakis, K	Proschel, A
Pippan, R11, 108, 218	Porro, J 10, 38, 39, 73, 108, 143, 244	Prosser, M
Pircher, L	Porter, D 44, 59, 147, 178, 223	Proudhon, H
Pirzada, T	Porter, I	Prouteau, J
Pissarenko, A	Porter, J	Provatas, N
Pistorius, P	Porter, N	Prusnick, T
Pitenis, A	Poscher, A	Puchala, B
Pitike, K	Poschmann, M	Pucher, P
Pitts, S	Post, B	Puente-Orench, I
Pizano, L	Post, Z	Pugh, J
Plapp, M 53, 159	Potesser, M	Pugmire, A
Plateau, T	Potter, J	Purcell, D
Plazaola, F	Pottore, N	Purcell, T
Plotkowski, A 6, 68, 69, 71, 96, 104,	Poudel, B	Purdie, J
105, 128, 138, 170, 171, 184,	Poulain, R	Puri, S 13, 41, 76, 92, 110, 126, 145, 160,
200, 206, 221, 241, 250	Poulon-Quintin, A	177, 191, 206, 214, 225, 231, 261, 271
P, N	Poumirol, J	Pusch, K 6, 172, 193
Pocquette, N	Pourbahari, B	Putman, J
Podaný, P	Pourboghrat, F111, 145	Putyera, K
Poehle, G	Pourkand, A	Pyczak, F
Poenitzsch, V	Poursaman, S 207	Pyles, C
Poerschke, D	Powalka, B	1 /105, 0 203
Pogatscher, S	Powell, A 33, 55, 57, 84, 157, 251, 252	Q
Pogue, E	Powell, C	
Poineau, F	Powell, I	Qadir, M
		Qian, B
Pokharel, R	Pownceby, M	Qian, M67, 68, 97, 104, 131, 137, 164,
Polatidis, E 104, 169, 222, 243, 256	Pozzo, L	194, 217, 233, 238, 244, 254
Polcar, T	Prabhakaran, R	Qian, X18, 48, 81, 116, 144, 149,
Polden, J	Prabhakaran, V	180, 266
Pole, M	Pradhan, P	Qian, Y
Poling, W	Prahin, E	Qian, Z
Polisetti, V	Prakash, P	

Q1, J	Radovic, M	Ramesn, K129, 148
Qi, L	Rae, C71	Ramesh, M
Qin, L	Raeker, E 6, 172, 193	Ramirez, A136, 139, 168, 171, 185,
Qin, M	Rafailov, G	200, 222, 242
Qin, S	Rafferty, B	Ramirez, J
Qiu, A	Raghuraman, V	Ramírez, P
Qiu, D	Ragi, S	Ramirez Tamayo, D
Qiu, J	Raguraman, S	Ramirez-Tamayo, D 10
Qiu, Q	Rahbar, N	Ramli, M
Qiu, R	Rahimi Chegeni, M	Ramos, B
- ·	Rahimi, S	Ramos-Banderas, J
Qiu, Y		
Qi, Y	Rahman, M	Ramos, J
Qi, Z134, 152, 219	Rahman, T	Ramos, K
Quadir, S	Rahman, Z	Ramos, M
Quaicoe, I	Rai, D	Rampelberg, C
Quammen, R	Raiman, S 26, 27, 57, 85, 91, 125, 148,	Rana, R
Quan, H	158, 189, 263, 270	Ranasinghe, J
Quan, P	Rainho Teixeira, S	Ran, C
Qu, D	Rai, S	Randall, N
Quek, S	Raj, A	Randhawa, A
Queylat, B	Rajabi, H	Randhawa, N
- 1	•	
Qu, H	Rajabi Kouchi, F	Rangasamy, V
Quick, C	Rajagopalan, J 88, 92, 126, 160, 191,	Rangel Garcez de Azevedo, A 264
Quigley, L	214, 231, 271	Rangel, H
Quigley, T	Raja, K	Rankin, W
Quillin, K	Rajamudili, K	Rao, M
	•	
Quincey, J	Rajan, I	Rao, R 7
Quinn, T	Rajan, K	Rao, S 38, 39, 86, 110, 195, 257
Quintana, I	Rajashekara, S	Rao, Y
Quintana, M	Rajendran, R	Rao, Z111
	•	
Ouintana T		Danatti A 24 167
Quintana, T	Rajendran, V	Rapetti, A
Quintana, X85, 92, 125, 218	Rajgire, S	Raphaëlle, G
	•	•
Quintana, X85, 92, 125, 218	Rajgire, S	Raphaëlle, G
Quintana, X	Rajgire, S 135, 227 Raji, H 145 Raji, M 132	Raphaëlle, G
Quintana, X	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34	Raphaëlle, G
Quintana, X	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210	Raphaëlle, G 12 Rappaz, M .22, 53, 87, 121, 154, 186, 187, 267 Rapp, J 219 Rappleye, D .25, 55, 89 Rasmussen, E .17 Rath, L .22, 230
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117,	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227	Raphaëlle, G
Quintana, X	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27	Raphaëlle, G 12 Rappaz, M .22, 53, 87, 121, 154, 186, 187, 267 Rapp, J 219 Rappleye, D .25, 55, 89 Rasmussen, E .17 Rath, L .22, 230 Rathmann, D .247
Quintana, X	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269	Raphaëlle, G 12 Rappaz, M .22, 53, 87, 121, 154, 186, 187, 267 Rapp, J .219 Rappleye, D .25, 55, 89 Rasmussen, E .17 Rath, L .22, 230 Rathmann, D .247 Rathod, H .160
Quintana, X	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189	Raphaëlle, G 12 Rappaz, M .22, 53, 87, 121, 154, 186, 187, 267 Rapp, J 219 Rappleye, D .25, 55, 89 Rasmussen, E .17 Rath, L .22, 230 Rathmann, D .247 Rathod, H .160 Ratto, C .110
Quintana, X	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17	Raphaëlle, G 12 Rappaz, M
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261	Raphaëlle, G 12 Rappaz, M
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17	Raphaëlle, G 12 Rappaz, M
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216	Raphaëlle, G 12 Rappaz, M .22, 53, 87, 121, 154, 186, 187, 267 Rapp, J .219 Rappleye, D .25, 55, 89 Rasmussen, E .17 Rath, L .22, 230 Rathmann, D .247 Rathod, H .160 Ratto, C .110 Ratvik, A .46 Raupp-Pereira, F .265 Raush, J .159
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202	Raphaëlle, G 12 Rappaz, M .22, 53, 87, 121, 154, 186, 187, 267 Rapp, J .219 Rappleye, D .25, 55, 89 Rasmussen, E .17 Rath, L .22, 230 Rathmann, D .247 Rathod, H .160 Ratto, C .110 Ratvik, A .46 Raupp-Pereira, F .265 Raush, J .159 Ravanappa, P .201
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190	Raphaëlle, G 12 Rappaz, M .22, 53, 87, 121, 154, 186, 187, 267 Rapp, J .219 Rappleye, D .25, 55, 89 Rasmussen, E .17 Rath, L .22, 230 Rathmann, D .247 Rathod, H .160 Ratto, C .110 Ratvik, A .46 Raupp-Pereira, F .265 Raush, J .159 Ravanappa, P .201 Ravary, B .40
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229	Raphaëlle, G 12 Rappaz, M
Quintana, X	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramakrishna, K 229	Raphaëlle, G 12 Rappaz, M
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramakrishna, K 229	Raphaëlle, G 12 Rappaz, M
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramamurty, U 6, 68, 137, 198, 208, 219, 222, 257	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rack, P .29, 182	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramakrishna, K 229 Ramamurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rack, P .29, 182 Rackwitz, J .54	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramadurai, R 229 Ramamurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168 Ramanathan, B 256	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rack, P .29, 182	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramamurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168 Ramanathan, B 256 Ramanathan, R 164	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabbi, A .212 Rabeh, A .213 Rabin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rack, P .29, 182 Rackwitz, J .54 Rader, K .146	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ramph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramamurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168 Ramanathan, B 256 Ramanathan, R 164 Raman, L 132, 257	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabbi, A .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rackel, M .69 Rackel, M .69 Rackwitz, J .54 Rader, K .146 Radhakrishnan, B .72, 104	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramamurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168 Ramanathan, B 256 Ramanathan, R 164	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rack, P .29, 182 Rackwitz, J .54 Rader, K .146 Radhakrishnan, B .72, 104 Radhakrishnan, J .6, 137, 198	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ramachandramoorthy, R 160, 202 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramamurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168 Ramanathan, B 256 Ramanathan, R 164 Raman, L 132, 257 Ramanujan, R 102, 143, 169	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rack, P .29, 182 Rackwitz, J .54 Radhakrishnan, B .72, 104 Radhakrishnan, J .6, 137, 198 Radhakrishnan, M .7, 102, 119	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramamurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168 Ramanathan, B 256 Ramannthan, R 164 Raman, L 132, 257 Ramanujan, R 102, 143, 169 Ramanuj, V 111, 145, 177, 206,	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rack, P .29, 182 Rackwitz, J .54 Rader, K .146 Radhakrishnan, B .72, 104 Radhakrishnan, J .6, 137, 198 Radhi, A .49	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramamurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168 Ramanathan, B 256 Ramannathan, R 164 Raman, L 132, 257 Ramanujan, R 102, 143, 169 Ramanuj, V 111, 145, 177, 206, 226, 262	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rack, P .29, 182 Rackwitz, J .54 Radhakrishnan, B .72, 104 Radhakrishnan, J .6, 137, 198 Radhakrishnan, M .7, 102, 119	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramahrishna, K 229 Ramanurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168 Ramanathan, B 256 Ramanujan, R 164 Ramanujan, R 102, 143, 169 Ramanujan, R 102, 143, 169 Ramanujan, R 111, 145, 177, 206, 226, 262 Ramasubramanian, L 208	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rack, P .29, 182 Rackwitz, J .54 Rader, K .146 Radhakrishnan, B .72, 104 Radhakrishnan, J .6, 137, 198 Radhakrishnan, M .7, 102, 119 Radhi, A .49 Radiguet, B .30, 96	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ramachandramoorthy, R 160, 202 Ramachandramoorthy, R 160, 202 Ramadurai, R 229 Ramadurai, R 229 Ramamurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168 Ramanathan, B 256 Ramanujan, R 164 Ramanujan, R 102, 143, 169 Ramanujan, R 102, 143, 169 Ramasubramanian, L 208 Ramaswamy, V 140	Raphaëlle, G
Quintana, X .85, 92, 125, 218 Quispe Cardenas, L .63 Qu, M .70, 171, 221 Qureshi, M .52 R Raabe, D .9, 51, 75, 82, 90, 111, 117, 150, 180, 183, 188, 200 Rabbani, M .183 Rabbi, I .139 Rabbi, M .223 Rabby, R .212 Rabeh, A .213 Rabin, A .66, 128 Rabkin, E .16, 17, 19, 49, 83, 118, 151, 160, 182, 183, 211, 229, 247 Racineux, G .186 Rack, A .194, 241, 246 Rackel, M .69 Rack, P .29, 182 Rackwitz, J .54 Rader, K .146 Radhakrishnan, B .72, 104 Radhakrishnan, J .6, 137, 198 Radhi, A .49	Rajgire, S 135, 227 Raji, H 145 Raji, M 132 Raj, K 184 Rajkowski, M 34 Rajpoot, D 71, 227 Raju Natarajan, A 210 Rakib, G 27 Rakoczy, Ł 269 Rakos, J 189 Ralbovsky, P 17 Ralls, A 205, 261 Ralph, T 216 Ramachandramoorthy, R 160, 202 Ramachandran, S 20, 190 Ramadurai, R 229 Ramahrishna, K 229 Ramanurty, U 6, 68, 137, 198, 208, 219, 222, 257 Ramana, C 107, 168 Ramanathan, B 256 Ramanujan, R 164 Ramanujan, R 102, 143, 169 Ramanujan, R 102, 143, 169 Ramanujan, R 111, 145, 177, 206, 226, 262 Ramasubramanian, L 208	Raphaëlle, G

Razzaq, S	Revathy Rajan, P	Rinehart, S
Razzell, T	Revuelta, J	Ringdalen, E
Ready, W	Reyes, A	Ringer, S 6, 108, 139, 171, 200, 221,
Reali, L	Reyes Cruz, V	227, 241, 242, 243
Rebak, R20, 21, 31, 51, 60, 62, 85, 95,	Reyes Domínguez, I	Rinko, E67, 73, 102, 136, 169, 198,
99, 119, 129, 153, 163, 185, 211, 216	Reyes, H	219, 240
Reddy, R 25, 30, 62, 95, 129, 163, 193,	Reyes, I	219, 240 Rinnert, H5, 72, 107
215, 232, 252	Reyes, J	Río-López, N
Redeman, B	Reyes Pérez, M253, 264, 265	Rios, A
Redemann, B 51	Reyes, R	Rios, O8, 65, 70, 96, 105, 107, 140,
	·	
Redlich, C	Reyes Tirado, F	172, 201, 207, 223, 243
Reed, P	Reynolds, C	Rippy, K
Reed, R	Reynolds, Q12, 40, 75, 109, 159	Riquet, G
Reek, T	Reza, A	Riseborough, P
Rees, D	Rezaei Mianroodi, J	Riss, A
Reeve, A	Reza E Rabby, M 209	Ritchie, D
Reeve, S 7, 111, 145, 238, 239	Reza-E-Rabby, M	Ritchie, R11, 13, 25, 41, 56, 76, 90, 111,
Regula, G 87	Reza, M 60	124, 143, 157, 189, 211, 260
Rehman, S	Rezwan, A	Rittenhouse, J
Reid, A	Rhamdani, A 95	Rivera-Diaz-del-Castillo, P 238
Reidemann, T	Rhamdhani, M50, 62, 65, 95, 98, 133,	Rivera-Diaz-Del-Castillo, P 42
Reid, N	215, 232, 252, 253, 255	Rivera, J
Reidy, J	Rhein, R	Rizk, J
Reiff, L	Rhoads, B	R., J
Reiff-Musgrove, B	Rhodes, M	R. Madejski, G145
Reilly, D	Ribardo, C	Roach, A
Reimann, C	Ribble, R	Robbe, P
Reimann, J	Ribeiro, F 82	Robert, P
Reinfurt, D	Ribeiro, L	Roberts, A
Reinhart, G 87, 190	Ribeiro, M148, 264, 265	Roberts, E
Reinhart, W	Ribeiro, R	Robertson, A
Reis, A	Ribis, J	Robertson, S
Reis, C	Ricciardi, D	Roberts, S
Reiser, A	Ricci, S	Robert, Y
Reiser, W	Rice, M	Robin, I
Reith, H 42	Richard, D 5	Robino, C
Reizabal, A	Richard, M	Robinson, A
Remazeilles, C	Richardsen, S	Robinson, B
Rementeria, R	Richardson, D	Robinson, F
Rems, E	Richer, T	Robinson, I
Ren, B111, 176	Richmond, S	Robinson, J 67, 161
Rendón Giraldo, J 252	Richter, A	Robinson, L34, 131, 224
Rendon, N	Richter, G 80	Robinson, R 90, 176
Renganathan, V	Richter, J	Robin, V
Renk, O	Richter, N	Robles, G
Ren, M	Ridley, M	Roccella, S
Renner, P	Riechers, B79, 114, 179, 231	Rocha, D
Ren, Q	Riedemann, T	Rochet, N
Ren, S	Riedmüller, K	Rock, C
Renshaw, D	Riemann, J	Rodela, J
Renteria, C	Rienäcker, A	Rodenkirchen, C
Rentz, R	Riesch, J	Rodgers, B
Ren, Y	Rietema, C 167, 196, 201, 235, 258	Rodgers, T 69, 103, 177, 218, 249, 250
Ren, Z	Rieth, M	Rodrigues, A 189
Requena, G	Rigby-Bell, M 18, 270	Rodrigues, C
Resta, A	Rijal, B	Rodrigues, T
Restrepo, D 15, 44, 78, 113, 146,	Riley, D	Rodriguez, A 85
178, 262	Rimoldi, F	Rodríguez Fernández, J
Retterer, S	Rincon Troconis, B 84, 118, 152, 184	Rodriguez, I
Reuter, M	Rinderspacher, C	Rodriguez-Ibabe, J 155
,		0

P. 1	B	D 1 D
Rodriguez Laguna, M	Ross, K7, 21, 52, 120, 137, 186,	Rush, R
Rodriguez-Lamas, R	219, 230	Rushton, M115, 208, 210
Rodriguez, N 42	Rössler, R	Rusinek, C
Rodriguez, P	Rossy, A103, 182, 199, 200	Russell, K
Rodriguez-Velamazan, J	Rota, A	Russell, R
Roehling, J	Rotella, J	Russo, S
Rogers, J 68, 155	Roters, F	Rust, E
Roger, T	Rothchild, E	Ruta, B
Rohatgi, A	Rottmann, P	Rutherford, M
Rohde, M	Roucoules, V	Rutledge, J
Rohrer, G	Roué, V	Ruybalid, A
Rohrer, J	Rougier, L	Ryabov, D
Rohr, T	Rouland, S	Ryan, D
Rohskopf, A	Roumeli, E	Ryan, K
Rohskpof, A	Roup, D	Ryman, D
Rojas, J	Rousselle, M	Ryu, C
Rojas, V	Roustan, H	Ryu, H
Rokkam, S20, 21, 33, 51, 85, 86, 119,	Rout, A	Ryu, I
120, 152, 153, 185, 211, 248	Rouwane, A	Ryu, W130, 179, 208, 227, 253, 254,
Rolchigo, M	Rouxel, B	260, 263
Rolinska, M 61	Rovinelli, A	Rzepa, S
Rollet, A	Rowenhorst, D 17, 92, 170, 226, 268	теери, о
Rollett, A 17, 41, 46, 52, 84, 87, 103,	Roy, A	S
137, 142, 170, 195, 200, 206, 210,	Roy, B	
		Saal, J 8, 14, 27, 42, 58, 70, 91, 105, 119,
217, 218, 238	Roychowdhury, S	125, 140, 158, 172, 190, 201, 223,
Rollins, B	Royet, A	243, 257, 262, 270
Rolli, R	Roy, I	Sabau, A58, 111, 145, 158, 177, 206,
Rolly, L	Roy, M	213, 226, 230, 262, 270
Romain, C	Roy, S103, 138, 143, 170, 199, 221, 240	Sabharwall, P
Romano, G	Rozak, G	Sabirov, I
Romanoski, G	Rozas, R	Sabisch, J
Romanovskaia, E 27, 57, 119, 124, 125	Rozman, K	Sablosky, E
Romanovskia, E 248, 270	Rozo Vasquez, J 86	Sabolsky, E
Romanovski, V	R. Scully, J	Sabry, N
Romero Resendiz, L	Ruck, E	Sachan, R
Romero Serrano, J	Rucker, B	Sachdev, A
Romero-Serrano, J	Ruckh, E194, 241, 246	Sachi, S
Rometsch, P	Ruddock, J 41, 70	Sack, H
Romick, N	Rudd, R	Sadagopan, S
Rommel, S	Rudolf, C	Sadallah, A
Romnes, C	Rudraraju, S	
Rondinelli, J 51, 85, 124, 224	Ruediger, A	Sadayappan, K
Ronevich, J	Ruff, J	Sadeghilaridjani, M
Ronning, F	Rufner, J	Sadeghi, O
Rook, R	Ruggiero, A	Sadler, B
Roongta, S110	Ruggles, T	Sadoh, A
Roos, A	Ruhatiya, C	Sadoway, D
Roosendaal, T146, 161, 186	Ruiz-Larrea, I	Sadowski, J
Roper, C	Ruiz-Pérez, S	Sadrameli, S
Rørvik, S	Ruiz, S	Saedi, S
Rosales, J	Rukini, A	Saeed, N
Roscioli, G	Ruller, J	Saefan, A
		Saevarsdottir, G
Rosefort, M	Runciman, D	Sævarsdóttir, G
Rose, K	Rupert, T 19, 26, 34, 76, 96, 161,	Saez, A
Rosenkranz, S	189, 229, 257	Saez, E
Rosero-Romo, J	Rupinen, M	Saha, B
Rose, W	Rupnik, A	Sahaluddin, M
Rosseel, T	Rupp, M	Saha, S
Rossi, E	Rusch, J	Sahimi, M
	Rushing, M	

C.1: II 245 250	C.1 + D	6 :1 1 1/4
Sahin, H	Salvato, D	Saridede, M
Sahin, O	Salvucci, R	Sari, I
Sahmaran, M	Samadiani, N	Sariturk, D
Sahoo, A	Samanta, A	Sarkar, A
Sahoo, M	Samanta, S	Sarkar, S11, 132, 203, 224
Sahoo, S	Samberger, S	Sarker, D
Sahragard-Monfared, G 24, 54, 55,	Sambo, S	Sarkissian, A
89, 249	Sami, S	Sarney, W 101
Sahu, B	Samolyuk, G 27, 66, 111, 167, 219	Sarswat, P
Sahul, R	Sampaio, J	Sarıtürk, D
Sahu, S	Sampath Kumar, B 159	Sarvesha, R
Said, A	Sampath, S	Sasaki, T56, 164, 182
Saida, J	Sampat, S	Šašek, S
Saidi, P211, 266	Samuel, A	Satapathy, Y
Said, M 92	Samuha, S	Sathanur, A
Saidou Barry, T	Samwer, K	Sathiaraj, G
Saigal, A 148	Sanaei, N	Sato, A
Sai Gautam, G	Sánchez, R	Sato, T 80
Saikiran, P219, 241	Sandaunet, K 80	Sato, Y22, 52, 86, 120, 154, 186,
Saini, P	Sandberg, R	212, 230, 259
Sainju, R 60	Sanders, A	Sattari, M 84
Saito, J	Sanders, P	Satyavolu, J
Saito, N 38, 142, 174, 203, 256	Sanders, R	Sauber, M
Saito, T	Sandfeld, S	Saucedo-Muñoz, M 264, 265
Saiz, D	Sandhage, K	Saud, N
Saiz, N	Sandoval-Reyes, B	Sauerschinig, P
Saiz, P	Sangang, C	Saukas, C
Sajl, S	Sangid, M 106, 109, 137, 170, 185, 195	Sau, M
Sakamoto, R	Sanjay, K	Saunders, A
Sakane, S	San Juan, J	Saunders, B
Sakidja, R	Sanjurjo-Rodriguez, C	Saunders, C
Sakineh, A	Sankaran, S	Saunders, E
Sakkas, K	Sankar, K	Saunders, R
Sakurai, T	San Marchi, C 51, 85, 102, 118, 129, 159	Sauvage, X
Salama, A	San, S	Savage, D
Salas, D	Sansoucie, M	Saville, A
Salazar, D67, 102, 136, 169, 198,	SanSoucie, M	Savorici, A
219, 240	Santacruz, D	Savva, P
		Sawamoto, H
Salazar Jaramillo, D	Santala, M	
Saleeby, K 104, 128, 138, 170, 199	Santana, A	Sawvel, A
Saleh T 20 50 106 120 101 106 214	Santana, W	Sayeed, H
Saleh, T 29, 59, 106, 129, 191, 196, 214	Santander Borrego, M	Sayyad Rezaeinejad, S
Salem, A	Santa Rosa Coradini, D	Scannapieco, D
Saleme, K	Santiago, H	Scarlata, S
Salem, H	Santodonato, L	Scarlat, R
Sales, A	Santos-Florez, P	158, 189, 192, 270
Sales, D	Santos, L	Schaarschuch, R
Sales, E	Santos Macias, J	Schaffer, J
Sales, M	Santos Maldonado, C	Schaller, R
Salgado, J	Sapanci, G	Schanche, T
Salib, Y	Sapiro, D	Schantl, P
Salihagic Hrenko, H	Saptarshi, S	Schaper, M
Salinas, E	Saputo, J	Schappel, D
Salleh, A	Sarac, B	Scharfenberg, R
Salliot, F	Sarafraz, Y	Scharf, T
Salloom, R	Sarangi, C	Schaub, A
Salloum-Abou-Jaoude, G	Saraswat, P	Schäublin, R
Salminen, A	Sarebanzadeh, M 87, 160	Scheel, M
Salonitis, K	Sarfraz, S	Scheffler, M
Salvador, H	Sargent, N	Scheinker, A 177

Schellert, S20, 224, 273	Schuessler, B 10, 37, 246	Sen, A
Schell, N	Schuh, C 48, 82, 117, 181, 189, 231	Sen-Britain, S
Schemer-Kohrn, A 161	Schulli, T	Sener, H
Schenck, C	Schulte, J	Senkov, O
Schenek, A	Schulthess, J	Senninger, O104, 190
Schenk, T	Schultz, L	Seno, R
Scherer, J	Schulze, S 69	Senor, D
	Schumacher, P	Senthilnathan, A
Scherrer, A		
Schick, D	Schürch, P	Seo, G
Schier, S	Schvaneveldt, M	Seo, H
Schiffl, A	Schwaiger, R	Seo, J
Schill, W	Schwalbach, E 165, 195, 206, 217, 234	Seok, J
Schimmel, J	Schwalenberg, D 47	Seol, J106, 201, 243, 249, 250, 267, 268
Schindelholz, E	Schwartz, E 62, 232	Seo, S
Schlenger, L	Schwarz, N 80	Sepehrband, P 20, 247
Schlereth, C	Schwarz-Selinger, T 47	Seppänen, H
Schleyer, M	Schwarz, U	Serdy, J
Schley, R	Schweitzer, E	Serefoglu, M 22, 53, 87, 121, 154,
Schluetter, R	Schwich, H	186, 187, 267
Schmalbach, K 136, 247	Schwiedrzik, J	Sernia, P
Schmidbauer, N	Scott, A 160	Serralde-Lealba, J
Schmid, F	Scott, C	Serrano, J
Schmid-Fetzer, R 58, 134	Scully, J 6, 21, 27, 57, 74, 85, 94, 118,	Serrano, M 244
Schmid, R	119, 124, 125, 185	Serventi, A
Schmidt, C	Scuseria, T	Šestan Zavašnik, A 47
Schmidt, D	Searight, W	Setyawan, W 47, 168, 192, 197, 219
Schmidt, F	Sebastiani, M	Sevinç, M
Schmidt, H	Sebastian Riegler, S	Sevinç, S
Schmidt, K	Secor, E	Seznec, V
Schmiedel, A	Seddon, B	S. Garitaonandia, J
Schmitt, I	Sediako, D	Shabalin, A
Schmitz, M	Sedighiani, K	Shabani Nezhad, P
Schmitz, T	Seede, R	Shachar, M
Schmuck, K	Seegmiller, C	Shade, P 52, 162, 173, 217, 255
Schnebly, L	Seffens, R	Shadle, D
Schneider, A 5, 16, 66, 125	Segatz, M	Shaeffer, M
Schneider, E	Segawa, H	Shafer, J
Schneider, G	Segersäll, M 71	Shaffer, M
Schneider, M 34, 118, 128, 153,	Sehar, D	Shahabi, M
159, 173	Sehgal, M	Shahabuddin, M 78
Schneiderman, B	Sehitoglu, H106, 110, 175	Shahani, A53, 80, 146, 187, 212,
Schneider, S	Seibert, R	238, 267
Schnelle, J	Seidel, A	Shahin, G
Schniepp, H	Seidl, T	Shah, J
Schoell, R 28, 85, 94, 159, 191, 266	Seidman, D	Shah, K
Schoenung, J 11, 12, 34, 40, 61, 62, 136,	Seifert, H	Shah, M
172, 204, 232, 233, 260	Seifi, M 6, 35, 68, 102, 137, 169, 198,	Shahmir, H
Schökel, A	220, 240	Shah, N
Scholz, F	Seif, M246, 247, 261, 271	Shahriar, M73, 174, 175
Schönbauer, B	Seiner, H	Shahriar, S
Schönen, S	Seisdedos, G	Shah, S241, 243
Schopf, T	Seita, M	Shah, V
Schorne Pinto, J	Sejati, P	Shaik, A
	•	
Schorne-Pinto, J	Seker, E	Shaked, D
Schrad, C	Sekiguchi, T96	Shaker Ardakani, M
Schreiber, D 85, 106, 119, 268, 270	Seku a, A	Shakerin, S
Schreiber, M	Seleson, P	Shaker, S
Schröder, C	Selezneff, S	Shakib, F
Schroers, J 16, 45, 53, 147, 179, 227	Selim, F94, 128, 142, 214	Shakibi, A
Schrone Pinto, J	Sembada, A 50	Shalnova, S
• • • • • • • • • • • • • • • • • • • •		

Shamberger, P 10, 19, 38, 50, 73, 83,	Shen, X168, 188, 235	Short, M 26, 54, 57, 60, 66, 91, 115,
108, 142, 143, 151, 184, 244, 248, 254	Shen, Y 30, 61, 96, 114, 202, 271	125, 137, 149, 157, 158, 189, 209,
Shamir, N	Shepherd, J 87	268, 270, 271, 272
Shamsaei, N 6, 21, 32, 68, 86, 102, 103,	Sherif, Z	Shortt, H
136, 137, 169, 173, 198, 201, 205,	Sherman, A	Shoukr, D
220, 221, 225, 240, 266	Sherrard, C	Shousha, S
Shanazarov, K	Sheu, E	Shower, P
	Shevchenko, N	
Shanbhag, S		Shrivastava, A
Shane, A	She, X	Shrivastav, S
Shang, A	Sheyfer, D16, 17, 106, 129	Shuai, M
Shang, S	Shi, B	Shubert, H
Shang, X	Shibata, A	Shuh, D
Shang, Z	Shibata, H 38, 142, 174, 203, 256	Shukla, S
Shankar, B	Shibata, S	Shuleshova, O
Shanks, K 72, 106, 222, 266, 272	Shield, J	Shultz, M
Shan, Z	Shi, F	Shyam, A 68, 71, 96, 104, 105, 184, 250
Shao, L. 16, 66, 68, 91, 121, 128, 157, 254	Shigemune, H	Sibley, T
Shao, Q	Shih, H	Sibutani, H
Shao, S 21, 86, 103, 136, 137, 173, 201,	Shih, P	Sichone, K
205, 221, 225, 266	Shih, T	Sickafus, K
Shao, W	Shi, J	Siders, L
	Shi, M	
Shao, Y		Siegmund, T
Shapeev, A	Shim, A	Siemenn, A
Shareef, K	Shimamura, Y	Siemens, C
Shargh, A	Shimizu, Y	Sieradzki, K
Sharifzadeh, S	Shimokawa, T49, 176, 268	Sierlinger, R
Sharma, A 7, 12, 40, 122, 150, 152,	Shin, D42, 71, 96, 190	Sierros, K32, 35, 64, 97, 131, 165,
204, 222, 224, 225, 247, 251, 257	Shin, G	194, 255
Sharma, D	Shingledecker, J	Sietsma, J
Sharma, H106, 127	Shin, H 50	Sieurin, H
Sharma, K	Shin, I	Sievers, C
Sharma, S 7, 70, 137, 164, 230, 257	Shin, J19, 96, 189, 238, 239, 245,	Sievers, J
Sharmila, S	246, 254	Sieverts, M
Sharon, J	Shin, K	Siewenie, J
Sharpe, C 52	Shin, M 59, 74	Sigdel, P
Shashaani, A	Shinohara, Y	Sigloch, S
Shashank, S	Shin, S 87, 175, 247, 258, 260, 268	Signor, L
Shatoff, H	Shin, Y	Sikorski, E
Shattuck, M	Shi, Q	Silaen, A
Shaw, B	Shi, R 12, 40, 75, 110, 144, 152, 176,	Silbernagel, C
Shaw, L		
	205, 225, 261	Sillstone W. 150, 100, 213, 221
Shaw, M	Shiraiwa, T 6	Sillekens, W159, 190, 213, 231
Shawon, A	Shirato, N	Siller, H
Shayer, Z	Shirsalimian, A	Silling, S
Shchyglo, O	Shishehbor, M	Sills, R
Sheets, C	Shittu, J 39, 167, 196, 235, 273	Silva, A
Sheik, A	Shivakumar, S	Silva, B
Sheikh, M 38, 89	Shivprasad, A	Silva, C
Sheikh, S	Shi, Y	Silva, D
Sheldon, B	Shi, Z	Silva, F
Shelly, D	Shklover, D	Silva, G 146
Shen, A	Shlafstein, Y 56	Silva, M
Shen, B	Shluger, A	Silva, P
Shen, C83, 104, 184, 203	Shoemaker, C	Silva, T
Shen, H 67	Shoemaker, D	Silverstein, J 206, 209
Shen, J	Shoemaker, T 8	Silverstein, R
Shen, M	Shokuhfar, T105, 140, 173, 255	Simão, L
Shen, P	Shooshtari, A	Sim, J
Shen, T		Simko, F
Shen, W		Simmonds, P
,, 213		

Simmons, J	Small, K	Soman, R17, 46, 80, 115, 148, 180,
Simmons, K	Small, L	209, 217, 263
Simms, M	Smid, M	Somerday, B
Simonassi, N 162, 180, 209, 246,	Šmilauerová, J	Sommer, N
252, 265	Smirnov, A	Sommerseth, C
Simonds, B	Smit, B	Somsen, C
Simonelli, M 67, 105, 201, 202, 246	Smith, A	Song, C
Simonne, D	Smith, C68, 120, 127, 165, 167,	Song, G 17, 39, 249, 257, 258, 259
Simpson, M25, 55, 89, 189, 270	218, 270	Song, H91, 206, 249, 260
Simpson, R	Smith, D	Song, J56, 111, 139, 176, 254, 257, 258
Simsek, E	Smith, E 86	Song, K
Sims, H	Smith, H16, 30, 61, 94, 128, 162,	Song, L
Sims, J140, 200, 243	192, 272	Song, M
Sims, Z 70, 167, 196, 204, 207	Smith-Hanssen, N	Song, S
Sinclair, D	Smith, J	Song, T
Singer, L	Smith, K	Song, W
Singh, A	Smith, L	Song, X
143, 149, 180, 241, 266	Smith, M	Song, Y
Singh, B	Smith, N	Son, H
Singh, D	Smith, T 55, 81, 89, 90, 106, 129	Soni, V
Singh, G	Smith, W	Son, K
Singh Gaur, R	Smudde, C	Son, S257, 267
Singh, K 98	S M, V	Sonule, A
Singh, M 60	Snead, L34, 116, 192, 219	Sooby, E93, 99, 116, 160, 161, 166,
Singh, N	Snell, R	228, 238
Singh, P 14, 37, 98, 109, 132, 149, 158,	Snow, B	Sood, A
166, 185, 195, 239, 257	Snow, M	Sopcisak, J
Singh, R	Snyder, C	Sopu, D
Singh, S	Snyder, G14, 77	Sorelli, L
Singla, R	Snyder, J	Sorgenfrei, T
Singleton, P	Soare, M	Sorg, K
Sinha, V	Soares Barreto, E	Sorhuus, A
Sinnott, S	Soar, P	Sorin, F
Sinogeikin, S	Sobalvarro, E	Sornin, D
Siraj, K	Sobieraj, D	Sorour, A
Sireesha, P	· ·	
	Sobotka, J	Sotskov, V
Sirkar, K	Soboyejo, W	Soucek, P
Sirrenberg, M	Soffa, W	Soulami, A 10, 37, 86, 150, 161, 182,
Sirtalan, M	Sofie, S	186, 230, 246
Sirvin, Q	Sofinowski, K	Sounders, C
Sisco, K	Sofras, C 104	Sourmail, T
Sisik, B	Sofronis, P	Sousa, B
Sitefane, M	Sohn, H	Sousa, J
Sivaswamy, G	Sohn, I	Souza, A
Si, Y	Sohn, M 83	Souza, C
Sjögren, A	Sohn, S16, 45, 52, 53, 147, 179,	Souza, D
Sket, F	245, 258	Souza Filho, I
Skitt, D	Sohn, Y 70, 140, 158, 216, 262	Souza, M
Skolrood, L	Soisson, F18, 48, 82, 117, 149, 181,	Souza, V
Skopic, B	210, 229, 246	Sowards, J 139, 171, 200, 222, 242
Skorodumova, N	Sokolova, A	Soyama, H
Škraban, T	Sokolov, M	Soykan, B
Skrotzki, W	Sokolowski-Titen, K 168	Soylu, E
		· · · · · · · · · · · · · · · · · · ·
Skszek, T	Solanki, K 56, 152, 156, 161, 164, 188,	Spaepen, F
Skyllas-Kazacos, M	211, 225, 251	Spain, D
Slafsky, A	Solem, C	Spangenberg, A
Slattery, S	Solheim, A	Spangenberger, A
Slifka, A	Sologubenko, A	Spanring, A
Slone, C	Solorio-Diaz, G	Sparkman, D
Slotwinski, J	Somani, A	

Consults C	Ctanan D	Studio I
Sparks, G	Staron, P 182 Startt, J 226	Strain, J 6, 7 Straker, M 129
•	Stauffer, D	Strange, L
180, 225, 262, 266 Spartacus, G	Stauliei, D	Strangward-Pryce, G
Spattacus, G	Stavroulakis, P	Strantza, M
Speakman, S	Staykov, A	Stráská, J
Spear, A	Stebner, A 57, 67, 130, 145, 162, 198,	Strasky, J
120, 137, 145, 153, 177, 185, 206,	240, 242	Stráský, J
212, 225, 240, 261, 262, 266	Steckley, T	Straub, T
Spearot, D	Steenkamp, J12, 40, 75, 109, 156	Straus, M
Speer, J24, 56, 88, 215	Steglich, D	Street, S
Spencer, B	Stegman, B	Strickland, R
Spencer, M	Steinbach, I	Strifas, A
Spencer, P	Steinberg, K	Strik, S
Spiak, S	Steineder, K	Stringfellow, E
Spicer, J	Steiner, M	Strmsek, S
Spiecker, E	Steingrimsson, B	Strobl, M
Spieckermann, F	Steinlechner, S	Strodick, S
Spiller, E30, 62, 95, 129, 163, 193,	Stemper, L	Stroh, J
215, 232, 252	Stempien, J	Ström, E
Spinelli, I	Stender, M	Strubell, E
Spoerke, E	Stennett, M	Strutzenberg, L
Spray, J	Stephens, G	Stryjewski, W
Sprengel, W	Stephens, K	Stryzhyboroda, O
Sprigode, T	Sterjovski, Z 6	Stubbers, A
Springer, H	Stern, F	Stubbins, J
Sprouster, D 34, 61, 66, 95, 97, 100,	Steuben, J	Stubbs, T
116, 123, 134, 167, 189, 192, 197,	Stevanovic, A	Stull, J
216, 219, 235, 273	Steveler, E	Stump, B
Sratong-On, P	Stevens, R	Stump, J
Sreden, A	Stewart, C 24, 170	Sturm, E
Sreenilayam, S 209	Stewart, S	Suarez, F
Sridar, S	Stich, P	Suarez Ocano, P
Sridharan, K 18, 21, 26, 28, 57, 59, 68,	Stifter, D	Suarez, S
91, 103, 125, 137, 158, 170, 185,	Stiles, C	Subasic, E
189, 191, 199, 220, 270	Stiller, K	Subbaraman, H
Sridharan, N	Stinehart, J	Subbarayan, G 50
Srinivasan, D201, 243, 261	Stinn, C	Sublet, J
Srinivasan, G	Stinville, J8, 9, 21, 38, 52, 86, 120, 139,	Subramaniam, S
srinivasan, S	153, 169, 185, 192, 212, 266	Subramanian, G
Srinivasan, S	Stitt, C	Subroto, T
Srinivasan Tirunilai, A 153	Stocks, G	Su, C
Srinivasan, V	Stoddard, C	Sudbrack, C71, 103, 138, 170, 171,
Sriram, H	Stoddard, M	199, 221, 234, 240
Srivastava, A	Stoffel, M	Sudhakar, K
Srivastava, N	Stoica, M	Sudhanshu, K
Srivastava, R	Stokes, J	Suganuma, K
Srivatsan, T	Stone, D	Sugar, J
Srivilliputhur, S	Stone, H	Sugathan, S
Srolovitz, D	Stone, M	Sugimoto, M
S. Stopka, K	Stoodt, K	Suhas, E
Staab, F	Stopka, K	Suh, J
Staley, N	Storck, S 140, 152, 170, 178, 233, 260	Suhonen, T
Stalheim, D	Stormvinter, A	Suhuddin, U
Stan, C	Storti, E	Sukhotskiy, V
Stanek, C	Stotler, T	Su, L
Stanford, B	Stotts, J	Sulejmanovic, D
Stapelberg, M	Stotz, J	Suljevic, O
Stark, A	Stoudt, M	Sullivan, E
Starke, P	Strachan, A 14, 83, 149, 152, 258, 259	Sullivan, T

	0.11	m 1. b
Sultana, S	Swinburne, T	Tandaiya, P
Summers, A	Sy, A	Tandoc, C
Summers, H	Sylvie, L	Tandon, R
Sun, B51, 90, 138, 188	Syvertsen, M	Tang, B91
Sun, C	Szajewski, B	Tang, G
Sundaram, H	Szczesniak, S	Tang, J
Sundararaghavan, V 8, 41, 70, 72, 124,	Szlufarska, I19, 114, 128, 150	Tangstad, M 30, 58, 75, 118, 129, 213
150, 173, 233, 239	Szpunar, B	Tang, T
Sundararaman, M 239	Szpunar, J	Tanguy, A
Sundar, K	ozpana, j	Tanguy, B
Sundermann, T	T	Tang, W
	-	•
Sunderman, R	Ta, A	Tang, X
Sun, F12, 40, 75, 91, 110, 119, 144,	Ta an, C	Tang, Y
173, 176, 205, 225, 261	Tabata, T	Tang, Z
Sung, H 106, 201, 243, 250, 267, 268	Tabei, A	Tanigawa, H
Sun, H 132, 135, 183, 211, 261	Tabor, C	Tanji, A
Sun, K93, 227, 240	Tachida, Y	Tan, L27, 143, 216
Sun, L	Tafani, C	Tan, Q
Sun, P		Tan, S
Sun, Q	Tafazzolimoghaddam, B91	Tanses, A
Sun, S	Tafforeau, P	Tanses, A
Sun, T	Taggart-Scarff, J 219, 221	Tanvar, H
Sun, W	Taghipour, E	
	Taghizadeh, M	Tan, W 6, 10, 69, 104, 138, 171, 200,
Sun, X	Tahara, M	221, 241
Sun, Y 16, 45, 54, 79, 90, 114, 142, 147,	Taheri Andani, M70, 173, 201	Tan, X 50, 54, 151, 184, 219
179, 204, 208, 227, 261, 263	Taheri, M11, 51, 56, 70, 74, 85, 93,	Tao, J
Sun, Z	124, 191, 224	Tapaswi Nori, S
Supakul, S	Taheri-Mousavi, S	Tappan, B
Su, R	Tajuelo Rodriguez, E	Taqi, A
Sur, D74, 85, 119, 124		Tarafder, S
Surendran, A	Takahashi, E	Tarakanova, A
Suresh, S	Takaki, T	Tareq, F
Suri, S	Taka, N	Tarifa, A72, 256
Surter, W	Takeda, O	Tari, V
Susan, D	Takei, M	Tarnowski, M
	Takemoto, S 177, 226	Tasan, C9, 24, 26, 32, 36, 54, 71, 88,
Sushko, M	Takeuchi, I	
Sushko, P	Talachian, M	106, 108, 110, 123, 141, 150, 153,
Su, T	Talapatra, A	155, 161, 173, 180, 187, 188, 202,
Suter, R	Talbot, E	223, 255, 267
Sutherland, J	Taleff, E	Tassone, C
Sutou, Y	Talha, K	Tate, S
Sutton, B	Talignani, A	Tathavadkar, V 49
Su, Y10, 14, 32, 61, 90, 94, 105, 173,	<u> </u>	Tatman, J
176, 184, 245, 251	Taller, S	Tatsumi, H
Su, Z	Tallman, A	Taub, A
Suzana, A	Talukder, N	Taufique, M
Suzuki, A	Tamakloe, S	Taunque, A
Suzumura, T	Tambara Junior, L	Tavangarian, F
	Tambara Júnior, L 263, 264, 265	=
Svanidze, E	Tambara, L	Tavares, K
Svantesson, J	Tamblyn, I	Tavares, S
Svärd, M 64	Tamenori, Y	Tavazza, F13, 41, 76, 110, 145, 177,
Svendsen, B	Tamerler, C 15, 38, 44, 142, 174,	206, 225, 261
Svetlizky, D	203, 256	Tawfick, S 69
Swaminathan, P	Tamimi, S	Tayari, T115, 259
Swanson, A	Tamm, A	Taylor, B
Swartz, W	Tammas-Williams, S	Taylor, C
Swayne, M141, 205		Taylor, H
Sweatman, K	Tan, A	Taylor, J
Swick, B	Tanaka, F	Taylor, M
Swift, M	Tan, C	Taylor, P
22., 2.2 200		

Tl., C	Thamas D. 15 166 204 224	T-1 V 55
Taylor, S	Thoma, D	Tolman, K
Taysom, B	Thomas, B	Toloczko, M
Teferra, K	Thomas, H	Toman, J
TeGrotenhuis, W		Tomar, V
Tei, S	Thomas, J	Tomasello, C
Teixeira, A	Thomas, O	Tome, C141, 164, 173
	Thomas, S	
Teixeira, J		Tomsett, A
Teixeira, T	Thomas, V	Tondro, A
Tejado, E	Thome, P	Tong, A
Teja Ruiz, A	Thompson, A	Tong, M
Tejas, U	Thompson, C	Tong, Z
Tekawade, A	Thompson, G 71, 94, 118, 123, 143,	Tonini Simonassi, N
Tekerek, E	161, 177, 196, 218, 253	Tonks, M 28, 57, 60, 63, 93, 96,
Tekoglu, E	Thompson, J	127, 160, 208, 272
Telgerafchi, A	Thompson, M	Tonry, C
Temel, O	Thornley, L	Tôn-Thật, L
Temple, A	Thornton, K	Topping, M
Temsal, M	Thorogood, G	Topsakal, M
Tencé, Q	Thrope, F	Torbatisarraf, H
Tener, Z	Thrun, M	Torbati-Sarraf, H
Teng, F 92, 148, 157, 159, 214	Thune, Z	Torbet, C
Teng, W	Thurston, B	Toro-Gonzalez, M
Tenkamp, J	Tian, C	Torralba, J
Terada, A	Tian, H	Torrence, C
Terada, D	Tian, Q	Torresani, E97, 109, 131, 164, 190,
Terada, S	Tian, X	194, 217, 233, 254
Teran, J	Tiariks, J	Torres-Castro, L
Tercelj, M	Tiarks, J	Torrie, J
Terdik, J	Tichy, S	Toshihiro, T
Terentyev, D	Tiedje, N	Tosone, R
Terigele, T	Tieu, A	Tosti, S
Termuhlen, R	Tiley, A	Toth, K
Terrani, K	Tiley, J	Tourret, D 18, 22, 48, 53, 82, 87, 117,
Terricabras, A	Tillmann, L	121, 149, 154, 171, 181, 186,
Terry, B	Timelli, G	210, 229, 246, 267
Tertuliano, O	Tin, H	Towrie, M
Teschke, M	Tin, S	Traka, K
Tesfahunegn, Y	Tiong, L	Tran, A
Tesfaye, F20, 50, 84, 118, 248	Tiparti, D	Tranchida, J
Testa, G	Tippey, K	Tranell, G
Tew, Z	Tirumalai, S 11, 39, 74, 108, 143, 175,	Tran, H
Texier, D 9, 38, 120, 141, 191, 205, 214	204, 224, 257, 259, 260 Timunilai A	Tran, N
Thalayr M	Tirunilai, A	Tran, T
Thakur, M	Tischler, J	Traxel, K
Thanagam, V		Treadwell, L
* *	Tiwari, S	
Thapliyal, S 22, 103, 200, 234, 241 Theisen, E 10, 102	Tjus, K	Tréglia, G
Theresia, G	T. Mousavian, R	Trehern, W
	To, A	·
Thermitus, M		152, 197 Tremblay, S 207
Theyamaran, R	221, 240 Tobash, P	·
Thewes, A	Todd, I	Trembly, J
Thiaudière, D	Todorova, M	Trentin, A
Thibault, Y	Toher, C	Trigg, D
Thiele, N	Tokita, S	Trikanada, A
Thier, R	Tolbert, C	Trimarchi, G
Thimm, M	1010011, 0	11 milaiciii, 0
	Toledo P 13/	Trindade K 146
Thiraux, R	Toledo, P	Trindade, K

Trinkle, D	Tylczak, J	Utton, C
Tripathi, A	Tyurnina, A	
Tripathi, G	Tzanakis, I	V
Tripathi, S	Tzevelekou, T 80	Vaara, J
Tripathy, M	Tzini, M	Vachaparambil, K
Tripathy, P	U	Vadiraja, S
Tripathy, R	C	Vagovic, P
Trivedi, R	Uahengo, G144, 165	Vahidi, E
Trombley, M 102 Trouba, J 215	Uberuaga, B 28, 90, 128, 142, 157,	Vahidi, H
Truchon, M	181, 197, 270	VahidMohammadi, A
Trumble, K	Ubic, R	Vailhe, M
Truong, L	Ucar, H 10, 38, 73, 108, 143, 244 Uchic, M	Vajedian, S. 233 Vajragupta, N. 136, 224
Truong, N	Uddagiri, M	Vakhromov, R
Truong, Q	Udokpoh, N	Vaknin, M
Tsai, A	Udono, H	Valadani, A
Tsai, C	Ueda, N	Valayil Varghese, T 165
Tsai, M	Uedono, A	Valdenaire, A 5, 107
Tsai, R	Ugarte, O	Valdevit, L 7, 136, 172, 200, 233, 244
Tsakadze, Z	Ugelstad, A	Valdez, J
Tsaknopoulos, K 7, 69, 242	Uggowitzer, P	Valdez, N
Tsao, C	Uitslag-Doolaard, H189Ulhaq-Bouillet, C107	Valdovinos, L
Tsebe, S	Ulrich, A	Valente, D
Tse, K 50	Ulrich, G	Valentino, G
Tseng, J	Ulrich II, T	Valenza, T
Tseng, M	Ulrich, T	Valenzuela Carrillo, M 264, 265
Tseng, Y	Ulus, A147, 148	Valenzuela-Carrillo, M 265
Tse, Y	Umetsu, K	Valiev, R29, 61, 94, 128, 161, 192,
Tsiros, J	Umretiya, R 20, 60, 62, 85, 99, 152	215, 232, 252
Tsuchiyama, T	Unfried-Silgado, J	Valilla, J
Tsuji, N	Unocic, K 31, 36, 62, 84, 95, 118, 129,	Valiquette, D
Tsumuraya, T	152, 163, 184, 201, 216, 219 Unocic, R	Vallejo, K
Tuchinda, N	Unruh, T	Vallely, S
Tuck, C	Unterreiter, G	Valle, V
Tucker, C	Upadhyay, K	Vallé, V
Tucker, D	Upadhyay, M 70, 111, 126, 154, 214,	Valloton, J
Tucker, G71, 94, 111, 118, 145, 177,	216, 222, 243, 254, 256	Vallot, S
206, 226, 262 Tucker, J 85, 92, 95, 123, 125, 159, 191	Upadhyay, P 22, 26, 52, 57, 82, 86, 120,	Van Bastian, L 102
Tucker Roper, B	154, 181, 186, 210, 212, 230, 246, 268	Van Camp, M
Tucker, V	Upadrasta, R	Vandadi, M
Tudu, B	Uporov, P	Vandenbroeder, G 127 Van den Bulck, A 232
Tuhser, T	Uranga, P	Van Der Eijk, C
Tu, J 54	Urban, A	van der Laan, H 65, 98, 133, 251, 255
Tumbleson, R	Urbánek, M	van der Laan, L
Tunes, M	Urbano Reyes, G	Vandervelde, T
Tung, C	Ure, M	Van der Ven, A25, 34, 55, 89, 117, 123,
Tun, K 74, 260 Tunqui Labra, E 63	Urionabarrenetxea, E 67	125, 132, 134, 150, 156, 188
Tu, Q	Urk, D	Van Devener, B
Turan, A	Urones-Garrote, E	van de Walle, A
Turenne, S	Ury, N	Van de Walle, A
Turnage, S	Usami, K	van Kempen, F
Turner, J	Usman, C	van Petegem, S
Turner, R	Utada, S	Van Petegem, S 139, 143, 162, 202,
Turteltaub, S	Utili, M	216, 243
Tutika, R	Utt, D	Van Renterghem, W 66
1. vvu, A 184		

van Rooyen, I	Vermaut, P	Voyles, P 114, 157 V Pillai, D 239
199, 220	Ver Steeg, G	Vreeman, G
van Veelen, A	Veselý, J	Vukkuma, V
Varahabhatla, S	Veser, G	Vuksanovich, B
Varfolomeev, I	Vetland, E	Vu, L
Varga, T	Veverková, A	Vuorinen, V31, 63, 96, 130, 253
Varlet, J	Veysset, D	W
Varley, Z	Vidal, E 30, 62, 95, 129, 163, 193, 215,	VV
Varma, S	232, 252	Wachs, D
Varma, V	Vidal, J	Wachtor, A
Varnell, K	Vieira, C 162, 180, 209, 252, 263,	Wackwitz, A
Varney, C	264, 265	Wada, K
Varshney, P	Vijayan, S6, 28, 144, 165, 195, 210,	Wadehra, A 57
Varvenne, C 82, 259	217, 234	Wade, N
Vary, C	Vijayvargia, K	Wade-Zhu, J
Vasconcelos, B	Vikrant, K	Wadsworth, J
Vasquez, V	Vilas-Vilela, J	Wagih, M
Vasudevamurthy, G	Vilckas, J	Wagman, E
Vasudevan, V	Villada Vargas, C	Wagner, G37, 154, 186
Vaughan, D	Villanova, J	Wagner, R
Vaughan, G	Villanueva Perez, P 80	Wagoner, R
Vaughan, J	Villaret, F	Wagstaff, S58, 65, 79, 98, 114, 133,
Vaughan, M	Villechaise, P 75, 120, 139, 144,	158, 213, 230, 255, 270
Vaughan, T	220, 223	Wahaz, N
Vaz Junior, D	Villegas-Cardenas, J	Wakai, A
Vazquez-Duhalt, R 217	Vincent, M	Waliser, W
Vázquez-Gómez, O 254	Vinoy, T	Walker, C
Vazquez Prudencio, A 198	Viola, A	Walker, J
Vazquez Tovar, G	Vishnugopi, B	Walker, T
Vega, H	Vishnu, J 141	Wallace, G
Vega, M	Vishwakarma, S	Wallace, L
Vela, B 132, 149, 166, 190, 222, 223	Viswanathan, G 12, 74, 261	Walla, N
Velasco, D	Viswanathan, K	Wallbrink, C
Velasquez, B	Vitral, E	Wallis, T
Velasquez-Gonzalez, J 44, 262	Vivek, A	Walsh, C
Velay, V	Vizcaya, A	Walsh, F
Veley, L	Vlad, A	Walsh, W
Velez, M	Vladimirov, P	Walters, L
Velikajne, N	Vladova, K	Walters, M
Veloso-Fernández, A	Vogel, S 53, 56, 127, 129, 158, 167,	Walther, F
Vendrasco, S	189, 213, 219, 235	Walunj, G
Venegas, J	Vo, H	Walusiak, B
Venkata Subramanian, V 171	Voisin, B	Wan, D
Ventura, A	Voisin, T 105, 118, 152, 160, 167, 196,	Wang, A
Ventura, N	201, 273	Wang, B
Verbaan, N	Vojtěch, D	Wang, C5, 11, 12, 14, 31, 63, 96, 99,
Verbeken, K	Volkova, O	130, 206, 253, 257, 260
Verdenik, A 178	Vollmer, M	Wang, D
Verdon, C	vom Scheidt, A	Wang, F 19, 50, 89, 120, 139, 148,
Verduzco, J	Vo, N87, 105, 140	192, 213, 234
Vergara-Hernández, H 254	Voncina, M	Wang, G 11, 12, 27, 39, 74, 108, 143,
Vergari, L	von Hehl, A	158, 175, 204, 224, 253, 257, 259
Vergnat, M 5, 107	Vončina, M	Wang, H 6, 17, 23, 42, 63, 71, 79, 83,
Verma, A 29, 41, 73, 161, 165, 177,	Von Mueller, A	115, 171, 176, 181, 183, 194, 199,
195, 199, 217, 234	von Tiedemann, S	204, 221, 222, 241
Vermaak, N 18, 48, 81, 116, 149,	von Tulganburg, C	, , ,
180, 266	Voorhees, P22, 23, 92, 104, 135, 139,	
Verma, M	154, 164, 174, 177	
Verma, S	Vos, B	

Wang, J 23, 47, 49, 58, 70, 73, 74, 80,	Weber, M	Wermers, j
115, 118, 128, 142, 181, 182, 189, 190,	Weber, P	Werner, F
230, 231, 246, 247, 251, 253, 257, 258,	Weber, W	Weslley, B
267, 269	Webler, B38, 142, 172, 174, 203, 238,	Wessman, A 8, 201
Wang, K 42, 56, 134, 145, 152, 230, 245	256, 271	West, B
Wang, L 12, 39, 72, 122, 168, 235	Webster, G	West, H
Wang, M23, 53, 87, 122, 155, 182, 193,	Webster, S	Wetteland, C96
199, 211, 248, 257	Weddle, P	Wewer, L
Wang, P18, 58, 130, 199, 240, 254, 268	Weeks, P	W glowska, A
Wang, Q	Weeks, R 41	Whalen, S
Wang, R6, 11, 38, 40, 59, 74, 109, 138,	Weerasekera, N	Wharry, J21, 29, 31, 62, 95, 124, 129,
144, 175, 204, 244, 260	Wegener, M	163, 185, 191, 214, 216
Wang, S	Wegener, T	Wheeler, J 19, 49, 83, 118, 151, 169,
•		
163, 182, 272	Wegner, J	
Wang, T7, 43, 45, 77, 138, 181, 215,	Wegner, N	Wheeler, K
230, 246	Wehinger, B	Wheeler, R 38, 92, 126, 160, 191, 195,
Wang, W 42, 73, 90, 91, 119, 149, 169,	Wei, B 49, 94, 128, 135, 182, 247	214, 215, 231, 271
183, 238, 241, 249, 260	Weible, A	Whetten, S
Wang, X19, 26, 34, 40, 47, 61, 63, 74,	Wei, D	White, B63, 170, 172
114, 125, 136, 140, 144, 172, 179,	Weidinger, A	White, D 148
197, 204, 215, 216, 227, 233, 271	Weidinger, J	White, E67, 68, 84, 102, 136, 169,
Wang, Y7, 10, 11, 19, 26, 27, 40, 41,	Weidner, A21, 130, 211	198, 218, 219, 240
43, 55, 61, 63, 74, 90, 93, 95, 99, 104,	Weigl, M	White, J 12, 29, 40, 75, 93, 109, 127, 228
105, 106, 122, 124, 125, 129, 139, 147,	Weihrauch, M	White, L145, 216
152, 154, 157, 160, 161, 164, 168, 177,	Weihs, T 32, 104, 106, 164, 182, 258	Whitelam, S
179, 180, 184, 189, 197, 201, 210, 216,	Wei, L	White, R 8
221, 224, 235, 241, 244, 270	Weinberg, A	White, T
Wang, Z32, 47, 69, 79, 109, 114,	Weinberger, C20, 51, 85, 119, 152, 196,	Whitfield, T
192, 203	218, 248, 254	Whiting, G
Wanni, J	Wei, Q	Whitney, B
Ward, C	Wei, S	Whitt, A
Ward, D	Weiser, M	Whitworth, J
Wardini, J	Weiss, D65, 96, 146, 207	Wibner, S
Warner, D	Weissitsch, L	Wicker, R
Warren, J	Weiss, M	Widgeon Paisner, S 29, 93, 228
Warren, P	Wei, T	Widgeon-Paisner, S
Warren, R	Weitz, D	Widmer, R
Was, G	Wei, Z74, 244	Widom, M
Watanabe, C	Welch, B	Wiecha, P
Watanabe, M 6, 42, 172, 213, 241, 261	Welch, N	Wiegart, L
Watanabe, Y	Welch, R 169	Wieland, F
Waterman, J	Welk, B	Wiese, B
Waters, M	Welland, M	Wiezorek, J
Waters, S	Weller, A	Wigger, T
Watkins, E	Wells, D	
-		Wight, C
Watkins, J 28, 60, 93, 127, 160, 247, 272	Wells, M	Wiik Ånes, H
Watkins, N	Wen, D	Wijesinghe, K
Watkins, R	Wen, G	Wijeyeratne, N
Watring, D	Weng, Y	Wijnen, J
Watson, H	Weng, Z	Wilcox, J
Watson, T	Wen, H 29, 30, 61, 62, 94, 115, 128,	Wilde, F
Watzman, S	161, 192, 215, 232, 252	Wilde, G 79
Weaver, D 86, 132	Wen, P	Wildeis, A
Weaver, J 7, 16, 138, 172, 199, 231	Wentlent, L	Wilfong, B
Weaver, M20, 51, 85, 119, 152, 242,	Wen, W	Wilke, A
248, 259	Wen, X	Wilkens, L
Weaver, S	Wenzel, G	Wilkerson, R
Webb, A	Wenzlick, M	Wilkin, M
Weber, F	Werden, J	Wilkinson, D
Weber, G	Werlein, C	Wilkinson, T
		,

Willenshofter P. 94 Wong, M. 15.5, 218 Xiang, K. 8.7, 260 Willenshofter P. 94 Wong, M. 15.5, 45 Xiao, F. 30, 65 Williams, A. 59 Won, J. 240 Xiao, F. 30, 65 Williams, D. 61 Wone, Y. 81 Xiao, S. 9. 152 Williams, B. 122, 263 Wond, B. 12, 118, 152 Xiao, S. 9. 152 Williams, B. 122, 263 Wood, B. 12, 118, 152 Xiao, Y. 204, 260 Williams, J. 205 Wood, D. 33, 65, 99, 131, 166, 196, Xie, A. 218 Williams, M. 6, 216, 249, 259, 269 Wood, D. 33, 65, 99, 131, 166, 196, Xie, C. 1119 Wood, K. 9. 80 Xie, D. 11, 55, 122 Williams, T. 25, 89, 190 Woods, J. 107 Xie, H. 234 Williams, J. 263 Xie, Wood, M. 197, 226, 229, 235 Xie, G. 710 Williams, J. 263 Xie, Wood, M. 197, 226, 229, 235 Xie, G. 710 Williams, J. 263 Xie, Wood, M. 197, 226, 229, 235 Xie, G. 710 Williams, J. 264 Wood, M. 197, 226, 229, 235 Xie, G. 710 Williams, J. 264 Wood, M. 197, 226, 229, 235 Xie, G. 710 Williams, J. 263 Xie, Wood, J. 107 Xie, H. 234 Williams, J. 264 Wood, M. 197, 226, 229, 235 Xie, G. 710 Williams, J. 263 Xie, Wood, J. 107 Xie, H. 324 Williams, J. 263 Xie, Wood, J. 107 Xie, H. 324 Xie, J. 110 Xie, M. 324 Xie, J.
Williams, A. 59 Won, J. 240 Xiao, E. 30, 65 Williams, C. 18, 38, 94, 133 Wonner, S. 95 Xiao, P. 152 Williams, D. 61 Won, Y. 81 Xiao, S. 49 Williams, H. 158, 189 Wood, C. 232 Xiao, Y. 16, 16, 64, 80, 132, 192 Williams, I. 205 Wood, D. 33, 65, 99, 133, 166, 196, 242, 252 Xie, A. 218 Williams, M. 6, 216, 249, 259, 269 Woodd, P. 196 Xie, D. 11, 55, 122 Williams, G. 150, 171 Wood, M. 197, 226, 229, 235 Xie, C. 119 Williams, T. 25, 89, 190 Woods, M. 197, 226, 229, 235 Xie, D. 111, 55, 122 Williams, B. 218 Woods, J. 107 Xie, H. 234 Williams, B. 218 Wood, M. 197, 226, 229, 235 Xie, C. 119 Williams, J. 26 Wood, M. 197, 226, 229, 235 Xie, C. 119 Williams, B. 218 <
Williams, C. 18,38,94,133 Wonner, S. 95 Xiao, P. 152 Williams, D. 61 Won, Y. 81 Xiao, S. 4.99 Williams, E. 122,263 Wood, D. 232 Xiao, Y. 164,64,80,132,192 Williams, H. 158,189 Wood, D. 33,65,99,133,166,196, 196, Xie, A. 218 Williams, M. 6,216,249,259,269 Wood, D. 33,65,99,133,166,196, Xie, A. 218 Williams, M. 6,216,249,259,269 Wood, M. 197,226,229,235 Xie, C. 119 Williams, T. 25,89,190 Wood, M. 197,226,229,235 Xie, G. 71 Williams, W. 218 Woods, M. 27,33,57,91,157,158 Xie, K. 7,19,28,46,47,182,191,216 Williard, J. 249 Woodward, C. 195 Xie, X. 7,19,28,46,47,182,191,216 William, B. 263,264 Woodward, C. 195 Xie, X. 7,19,28,46,47,182,191,216 Wilson, P. 263,264 Woodward, C. 195 Xie, X. 1,19,418,131,75,204,24 Wilson, B.
Williams, D. 61 Won, Y. 81 Xiao, S. 49 Williams, E. 1.22, 263 Wood, B. 1.21, 18, 152 Xiao, X. 1.64, 64, 80, 132, 192 Williams, H. 1.58, 189 Wood, C. 2.32 Xiao, Y. 204, 260 Williams, I. 205 Wood, D. .33, 65, 99, 133, 166, 196, 218, 235 Xie, C. 119 Williams, M. 6, 216, 249, 259, 269 Wooddy, P. 196 Xie, D. 11, 55, 122 Williamson, J. 6 Wood, M. 197, 226, 229, 235 Xie, C. 119 Williams, T. 25, 89, 190 Wood, M. 197, 226, 229, 235 Xie, D. 11, 55, 122 Williams, T. 25, 89, 190 Wood, M. 197, 226, 229, 235 Xie, C. 11, 155, 122 Williams, J. 210 Wood, M. 197, 226, 229, 235 Xie, C. 11, 152 Williams, J. 249 Wood, M. 197, 235, 79, 157, 158, 188, 182 Xie, M. 49 Williams, J. 260 Wood, T. 98, 255 Xie, X. 113, 137, 204 <
Williams, E. 1.22, 263 Wood, B. .12, 118, 152 Xiao, Y. .16, 46, 64, 80, 132, 192 Williams, H. .158, 189 Wood, C. .232 Xiao, Y. .204, 260 Williams, K. .27 Wood, D. .33, 65, 99, 133, 166, 196, Xie, C. .119 Williams, M. 6, 216, 249, 259, 269 Wood, M. .98 Xie, D. .11, 55, 122 Williams, M. .218, 235 Wood, M. .197, 226, 229, 235 Xie, D. .11, 55, 122 Williams, M. .218 Wood, M. .197, 226, 229, 235 Xie, D. .11, 55, 122 Williams, W. .218 Wood, M. .197, 226, 229, 235 Xie, G. .71 Williams, W. .218 Woods, M. .27, 33, 57, 91, 157, 158, Xie, G. .71 Williams, P. .263, 264 Wood, T. .98, 255 Xie, K. 7, 192, 84, 64, 71, 82, 191, 216 William, P. .210 Woolard, D. .151 Xie, X. .11, 39, 74, 108, 143, 175, 204, 204 Wilson, P. .263, 264 Woolrich, J. .71, 153 X
Williams, F. 1.22, 263 Wood, B. 1.2, 118, 152 Xiao, Y. 1.64, 64, 64, 80, 132, 192 Williams, H. 1.58, 189 Wood, C. 2.32 Xiao, Y. 2.04, 260 Williams, I. 205 Wood, D. .33, 65, 99, 133, 166, 196, Xie, C. 1.12 Williams, M. 6.249, 259, 269 Wood, K. .98 Xie, D. 1.15, 129 Williams, M. 6.216, 249, 259, 269 Wood, K. .98 Xie, D. 1.15, 5129 Williams, M. 2.18, 230 Wood, M. 1.97, 226, 229, 235 Xie, C. 1.15, 5129 Williams, W. 2.18 Wood, M. 1.97, 226, 229, 235 Xie, C. .71 Williams, W. 2.18 Woods, M. 2.19, 226, 223, 255 Xie, C. .71 Williams, P. 2.263, 264 Wood, M. 2.97, 33, 57, 91, 157, 158 Xie, K. 7, 19, 28, 46, 47, 182, 191, 216 Wilson, P. 2.63, 264 Woodward, C. 1.95 Xie, X. 11, 39, 74, 108, 143, 175, 204, 204 Wilson, P. 1.61 Woolrich, J. 71, 153 Xie
Williams, H. 158, 189
Williams, I. 205 Wood, D .33, 65, 99, 133, 166, 196, 196 Xie, C .119 Williams, M 6, 216, 249, 259, 269 Wooddy, P .196 Xie, D .11, 55, 122 Williamson, C .150, 171 Wood, K .98 Xie, D .150 Williams, T .25, 89, 190 Woods, J .107 Xie, E .71 Williams, W .218 Woods, M .197, 226, 229, 235 Xie, K
Williams, K. 27 218,235 Xie, C. 119 Williams, M. 6,216,249,259,269 Woodk, P. 196 Xie, D. 11,55,122 Williamson, C. 150,171 Wood, K. 98 Xie, D. 150 Williams, T. 25,89,190 Woods, J. 107 Xie, H. 234 Williams, W. 218 Woods, M. 27,33,57,91,157,158, Xie, K. 7,192,846,47,182,191,216 Williams, B. 218 Wood, T. 98,255 Xie, S. 18,230 Williams, P. 263,264 Woodward, C. 195 Xie, X. 11,39,74,108,143,175,204,108 Wilson, J. 210 Woolrich, J. 7,1153 Xie, Y. 28,60,68,93,103,124,127,137,137,109,100,100,100 Wilson, M. 220 Wooldridge, B. 79 224,125,7259 Wilson, P. . 165,195,217,234 Worku, M. 62 Xie, Y. 28,60,68,93,103,124,127,137,137,137,176,200,201,220 Wilthan, B. . 14 Woraick, C. . 148 Xing, B. 90,215 Wilthan, S. . 14
Williams, M. 6, 216, 249, 259, 269 Woody, P. 196 Xie, D. 11, 55, 122 Williamson, I. 6 Wood, M. 197, 226, 229, 235 Xie, G. 71 Williams, T. 25, 89, 190 Woods, J. 107 Xie, H. 234 Williams, J. 218 Woods, M. 27, 33, 57, 91, 157, 158 Xie, K. 7, 19, 28, 46, 47, 182, 191, 216 Williard, J. 249 Wood, T. 98, 255 Xie, K. 7, 19, 28, 46, 47, 182, 191, 216 Williard, J. 249 Wood, T. 98, 255 Xie, S. 18, 230 Willison, E. 18 Wood, T. 9, 255 Xie, X. 11, 39, 74, 108, 143, 175, 204 Wilson, B. 210 Wooldridge, B. 79 Xie, Y. 28, 60, 68, 93, 103, 124, 127, 137, Wilson, R. 253 Wook, M. 258 Xie, Y. 28, 60, 68, 93, 103, 124, 127, 137, Wilson, R. 137, 176, 200, 201, 200 Worsnop, F. 161 160, 170, 199, 220, 248, 270, 272 Wilson, R. 137, 176, 200, 201, 200 Worsnop, F. 161 Xin, H.
Williamson, C. 150, 171 Wood, K. 98 Xie, D. 150 Williamson, J. 6 Wood, M. 197, 226, 229, 235 Xie, G. 71 Williams, T. 25, 89, 190 Woods, J. 107 Xie, G. 71 Williams, W. 218 Woods, M. 27, 33, 57, 91, 157, 158 Xie, K. 7, 19, 28, 46, 47, 182, 191, 216 Williams, J. 249 181, 218 Xie, M. 1.46 Williams, W. 1.61 Xie, M. 1.46 146 Williand, J. 249 Wood, T. .98, 255 Xie, S. 1.82, 30 Willian, J. 2.01 Woodward, C. 195 Xie, X. 1.13, 974, 108, 143, 175, 204, 2072 Wilson, J. 2.01 Woolrich, J. 7.1, 153 Xie, Y. 28, 60, 68, 93, 103, 124, 127, 137, 204, 257, 259 Wilson, P. 2.165, 195, 217, 234 Woolrich, J. 7.1, 153 Xie, Y. 28, 60, 68, 93, 103, 124, 127, 137, 204, 207, 272 Wilson, P. 1.165, 195, 217, 234 Worku, M. 62 Xie, Y. 28, 60, 68, 93, 103, 124, 127, 137, 247 Wilson, P. 1.157, 108, 144, 127, 117, 133 Xie, Y.
Williamson, J. 6 Wood, M. 197, 226, 229, 235 Xie, G. 71 Williams, T. 25, 89, 190 Woods, J. 107 Xie, H. 234 Williams, W. 218 Woods, M. 27, 33, 57, 91, 157, 158. Xie, K. 7, 19, 28, 46, 47, 182, 191, 216 Williand, J. 249 Wood T. 98, 255 Xie, S. 7, 19, 28, 46, 47, 182, 191, 216 Willian, E. 18 Wood, T. 98, 255 Xie, S. 118, 230 Willis, P. 263, 264 Woodward, C. 195 Xie, X. 11, 39, 74, 108, 143, 175, 204, Wilson, J. 210 Wooltrich, J. 71, 153 Xie, Y. 28, 66, 89, 3103, 124, 127, 137 Wilson, M. 220 Wooltschi, J. 71, 153 Xie, Y. 28, 66, 89, 3103, 124, 127, 137 Wilson, D. 253 Woo, W. 258 Xie, Y. 28, 66, 89, 3103, 124, 127, 137 Wilson, R. 137, 176, 200, 201, 220 Worku, M. 62 Xie, Y. 28, 66, 89, 3103, 124, 127, 137 Wilson, P. 165, 195, 217, 231 Worku, M. 62
Williams, T.
Williams, W 218 Woods, M 27, 33, 57, 91, 157, 158, Xie, K 7, 19, 28, 46, 47, 182, 191, 216 William, I 249
Williams, W 218 Woods, M 27, 33, 57, 91, 157, 158, Xie, K 7, 19, 28, 46, 47, 182, 191, 216 William, I 249
Williard, J. 249 181,218 Xie, M 1.46 Willing, E. 18 Wood, T 98,255 Xie, S 18,230 Willis, P. 263, 264 Woodward, C 195 Xie, X 1.11,39,74, 108, 143, 175, 204, Wilson, J. 210 Wooldridge, B. 79 Wilson, M. 220 Wooltenhulme, N 1.61 160, 170, 199, 220, 248, 270, 272 Wilson, N. 253 Woo, W. 258 Xie, Z 227 Wilson, P. 165, 195, 217, 234 Worku, M 62 Xi, L 159, 266 Wilson, R. 137, 176, 200, 201, 220 Worku, M 62 Xi, L 159, 266 Wilson, R. 137, 176, 200, 201, 220 Worku, M 62 Xi, L 159, 266 Wilthan, B. 14 Woznick, C 148 Xing, B 90, 215 Wilthan, B. 166, 200, 201, 220 Worank, R 171 Xin, H 11, 81, 119, 257, 260, 266 Winch, N 97 Wright, B 21 Xin, M 11, 18, 119, 257, 260, 261
Willing, E. 18 Wood, T. 98,255 Xie, S. 18,230 Willis, P. 263,264 Woodward, C. 195 Xie, X. 11,39,74,108,143,175,204,204 Wilson, Heid, A. 70,249 Woodridg, B. 79 224,257,259 Wilson, J. 210 Woolrich, J. 71,153 Xie, Y. 28,60,68,93,103,124,127,137,247,247,272 Wilson, N. 223 Woolstenhulme, N. 161 160,170,199,220,248,270,272 Wilson, P. 165,195,217,234 Worku, M. 62 Xi, L. 159,266 Wilson, R. 137,176,200,201,220 Worsnop, F. 161 Xing, B. 90,215 Wilthan, B. 14 Woznick, C. 148 Xing, H. 121 Wimmer, A. 50 Wright, R. 171 Xin, H. 11,81,119,257,260,266 Winch, N. 97 Wright, B. 91 Xiong, H. 121 Wimmer, A. 161 Wright, B. 91 Xiong, L. 138,173,221 Winfrey, L. 115 Wright, W. 163
Willis, P. 263, 264 Woodward, C. 195 Xie, X. 11, 39, 74, 108, 143, 175, 204, Wilson, J. 204 Wooldridge, B. 79 224, 257, 259 224, 257, 259 252, 259 252, 259 252, 259 252, 259 253 20, 21, 227 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
Wilson-Heid, A 70, 249 Wooldridge, B 79 224, 257, 259 Wilson, J 210 Woolrich, J 71, 153 Xie, Y 28, 60, 68, 93, 103, 124, 127, 137, 137, 137, 137, 137, 137, 137, 13
Wilson, J 210 Woolrich, J 71, 153 Xie, Y 28, 60, 68, 93, 103, 124, 127, 137, 79, 103, 103, 104, 127, 137, 103, 104, 104, 104, 104, 104, 104, 104, 104
Wilson, M 220 Woolstenhulme, N 161 160, 170, 199, 220, 248, 270, 272 Wilson, N 253 Woo, W 258 Xie, Z 227 Wilson, P 165, 195, 217, 234 Worku, M 62 Xi, L 159, 266 Wilson, R 137, 176, 200, 201, 220 Worsnop, F 161 Xing, B 90, 215 Wilthan, B 14 Woznick, C 148 Xing, H 121 Wimmer, A 50 Wright, R 171 Xin, H 11, 81, 119, 257, 260, 266 Winch, N 97 Wright, A 22, 120 Xin, Y 23 Windes, W 116, 270 Wright, B 91 Xiong, L 138, 173, 221 Winnrey, L 115 Wright, J 173 Xiong, W 25, 34, 55, 65, 71, 89, 91, 99 Winkeljohn, C 230, 247 Wrobel, J 66, 149, 193 Xiu, P 84 Winner, N 121 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xi., Z 18 Wirter, I 18, 223, 246 Wu, B 105, 113
Wilson, N 253 Woo, W 258 Xie, Z 227 Wilson, P. .165, 195, 217, 234 Worku, M .62 Xi, L .159, 266 Wilson, R. .137, 176, 200, 201, 220 Worsnop, F .161 Xing, B .90, 215 Wilthan, B .14 Woznick, C .148 Xing, H .121 Wimmer, A .50 Wraith, R .171 Xin, H .118, 119, 257, 260, 266 Winch, N .97 Wright, A .22, 120 Xin, Y .23 Windes, W .116, 270 Wright, B .91 Xiong, H .124 Winfrey, L .115 Wright, B .91 Xiong, H .124 Winiarski, B .80, 81 Wright, W .163 Xiong, W .25, 34, 55, 65, 71, 89, 91, 99, Winkeljohn, C .230, 247 Wrobel, J .66, 149, 193 123, 134, 139, 140, 156, 171, 188, 219 Winner, N .121 Wu, A .19, 42, 50, 63, 83, 151, 184, 244 Xi, P .84 Wirther, G .150 Wu, C
Wilson, P. .165, 195, 217, 234 Worku, M 62 Xi, L .159, 266 Wilson, R. .137, 176, 200, 201, 220 Worsnop, F 161 Xing, B .90, 215 Wilthan, B .14 Woznick, C .148 Xing, H .121 Wimmer, A .50 Wraith, R .171 Xin, H .118, 119, 257, 260, 266 Winch, N .97 Wright, A .22, 120 Xin, Y .23 Windes, W .116, 270 Wright, B .91 Xiong, H .124 Winfrey, L .115 Wright, W .163 Xiong, L .138, 173, 221 Winarski, B .80, 81 Wright, W .163 Xiong, W .25, 34, 55, 65, 71, 89, 91, 99, Winkeljohn, C .230, 247 Wrobel, J .66, 149, 193 .123, 134, 139, 140, 156, 171, 188, 219 Winn, B .30 Wrona, A .139, 240 Xiu, P .84 Winner, I .18, 223, 246 Wu, B .151, 184, 248 Xi, Z .18 Winter, B .293, 34, 60, 134 Wu, C </td
Wilson, R. 137, 176, 200, 201, 220 Worsnop, F 161 Xing, B 90, 215 Wilthan, B 14 Woznick, C 148 Xing, H 121 Wimmer, A 50 Wraith, R 171 Xin, H 11, 81, 119, 257, 260, 266 Winch, N 97 Wright, A 22, 120 Xin, Y 23 Windes, W 116, 270 Wright, B 91 Xiong, H 124 Winfrey, I 115 Wright, J 173 Xiong, L 138, 173, 221 Winkeljohn, C 230, 247 Wrobel, J 66, 149, 193 123, 134, 139, 140, 156, 171, 188, 219 Winn, B 30 Wrona, A 139, 240 Xiu, P 84 Winter, I 18, 223, 246 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xi, Z 18 Winter, I 18, 223, 246 Wu, B 105, 113 Xu, A 81, 160 Winther, G 150 Wu, C 95 Xuan, C 203 Wirth, M 47 Wu, D 13, 149, 246 Xu, B <t< td=""></t<>
Wilthan, B. 14 Woznick, C. 148 Xing, H 121 Wimmer, A 50 Wraith, R 171 Xin, H 11, 81, 119, 257, 260, 266 Winch, N 97 Wright, A 22, 120 Xin, Y 23 Windes, W 116, 270 Wright, B 91 Xiong, H 124 Winfrey, L 115 Wright, J 173 Xiong, L 138, 173, 221 Winiarski, B 80, 81 Wright, W 163 Xiong, W 25, 34, 55, 65, 71, 89, 91, 99, Winkeljohn, C 230, 247 Wrobel, J 66, 149, 193 123, 134, 139, 140, 156, 171, 188, 219 Winner, N 121 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xiu, Z 18 Winter, I 18, 223, 246 Wu, B 105, 113 Xu, A 81, 160 Wirth, B 29, 34, 60, 134 Wu, C 95 Xuan, C 203 Wirth, B 29, 34, 60, 134 Wu, F 20 Xu, C 53, 73, 76, 174, 175, 256 Wirth, B 49, 13, 230 Wu, F 20
Wilthan, B. 14 Woznick, C. 148 Xing, H 121 Wimmer, A 50 Wraith, R 171 Xin, H 11, 81, 119, 257, 260, 266 Winch, N 97 Wright, A 22, 120 Xin, Y 23 Windes, W 116, 270 Wright, B 91 Xiong, H 124 Winfrey, L 115 Wright, J 173 Xiong, L 138, 173, 221 Winiarski, B 80, 81 Wright, W 163 Xiong, W 25, 34, 55, 65, 71, 89, 91, 99, Winkeljohn, C 230, 247 Wrobel, J 66, 149, 193 123, 134, 139, 140, 156, 171, 188, 219 Winner, N 121 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xiu, Z 18 Winter, I 18, 223, 246 Wu, B 105, 113 Xu, A 81, 160 Wirth, B 29, 34, 60, 134 Wu, C 95 Xuan, C 203 Wirth, B 29, 34, 60, 134 Wu, F 20 Xu, C 53, 73, 76, 174, 175, 256 Wirth, B 49, 13, 230 Wu, F 20
Wimmer, A 50 Wraith, R 171 Xin, H 11, 81, 119, 257, 260, 266 Winch, N 97 Wright, A 22, 120 Xin, Y 23 Windes, W 116, 270 Wright, B 91 Xiong, H 124 Winfrey, L 115 Wright, J 173 Xiong, L 138, 173, 221 Winarski, B 80, 81 Wright, W 163 Xiong, W 25, 34, 55, 65, 71, 89, 91, 99, Winkeljohn, C 230, 247 Wrobel, J 66, 149, 193 123, 134, 139, 140, 156, 171, 188, 219 Winn, B 30 Wrona, A 139, 240 Xiu, P 84 Winner, N 121 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xi, Z 18 Winther, G 150 Wu, C 95 Xuan, C 203 Wirth, B 29, 34, 60, 134 Wu, D 13, 149, 246 Xu, B 205, 213 Wirth, M 47, 129 Wu, H 14, 42, 77, 112, 245, 258 Xu, D 446 Wirtz, M 47 Wu, L 50, 67, 213, 269
Winch, N. .97 Wright, A. .22, 120 Xin, Y. .23 Windes, W. .116, 270 Wright, B. .91 Xiong, H. .124 Winfrey, L. .115 Wright, J. .13 Xiong, L. .138, 173, 221 Winarki, B. .80, 81 Wright, W. .163 Xiong, W. .25, 34, 55, 65, 71, 89, 91, 99, Winkeljohn, C. .230, 247 Wrobel, J. .66, 149, 193 .123, 134, 139, 140, 156, 171, 188, 219 Winn, B. .30 Wrona, A. .139, 240 Xiu, P. .84 Winner, N. .121 Wu, A. .19, 42, 50, 63, 83, 151, 184, 248 Xi, Z. .18 Winter, I. .18, 223, 246 Wu, B. .105, 113 Xu, A. .81, 160 Winther, G. .150 Wu, C. .95 Xuan, C. .20 Wirth, B. .29, 34, 60, 134 Wu, D. .13, 149, 246 Xu, B. .205, 213 Wirth, M. .47, 129 Wu, H. .14, 42, 77, 112, 245, 258 Xu, C. .53, 73, 76, 174, 175, 256 Wirth, M.
Windes, W 116, 270 Wright, B 91 Xiong, H 124 Winfrey, L 115 Wright, J 173 Xiong, L 138, 173, 221 Winharski, B 80, 81 Wright, W 163 Xiong, W 25, 34, 55, 65, 71, 89, 91, 99, Winkeljohn, C 230, 247 Wrobel, J 66, 149, 193 123, 134, 139, 140, 156, 171, 188, 219 Winn, B 30 Wrona, A 139, 240 Xiu, P 84 Winner, N 121 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xi, Z 18 Winter, I 18, 223, 246 Wu, B 105, 113 Xu, A 81, 160 Winther, G 150 Wu, C 95 Xuan, C 203 Wirth, B 29, 34, 60, 134 Wu, D 13, 149, 246 Xu, B 205, 213 Wirth, M 47, 129 Wu, F 20 Xu, C 53, 73, 76, 174, 175, 256 Wirth, M 47, 129 Wu, J 50, 67, 213, 269 Xue, F 25, 90 Wischhusen, M 119 Wu, L 50, 67, 213, 269
Winfrey, L 115 Wright, J 173 Xiong, L 138, 173, 221 Winiarski, B 80, 81 Wright, W 163 Xiong, W 25, 34, 55, 65, 71, 89, 91, 99, Winkeljohn, C 230, 247 Wrobel, J 66, 149, 193 123, 134, 139, 140, 156, 171, 188, 219 Winn, B 30 Wrona, A 139, 240 Xiu, P 84 Winner, N 121 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xi, Z 18 Winther, G 150 Wu, C 95 Xuan, C 203 Wirth, B 29, 34, 60, 134 Wu, D 13, 149, 246 Xu, B 205, 213 Wirth, M 47, 129 Wu, H 14, 42, 77, 112, 245, 258 Xu, D 37, 376, 174, 175, 256 Wirtty, M 47 Wu, J 50, 67, 213, 269 Xue, F 25, 90 Wischhoff, E 250 Wu, K 210 Xue, F 25, 90 Wishart, J 57, 157 Wulandana, R 130 Xue, Y 90 Wisner, B 21, 52, 86, 120, 153, 185, 209, 212, 228, 246, 266 Wu, P 13 Xu, H 73, 93, 174, 256 Wissu
Winiarski, B 80, 81 Wright, W 163 Xiong, W 25, 34, 55, 65, 71, 89, 91, 99, Winkeljohn, C 230, 247 Wrobel, J 66, 149, 193 123, 134, 139, 140, 156, 171, 188, 219 Winn, B 30 Wrona, A 139, 240 Xiu, P 84 Winner, N 121 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xi, Z 18 Winther, G 150 Wu, B 105, 113 Xu, A 81, 160 Wirth, B 29, 34, 60, 134 Wu, D 55 Xuan, C 203 Wirth, M 47, 129 Wu, F 20 Xu, C 53, 73, 76, 174, 175, 256 Wirth, M 47, 129 Wu, H 14, 42, 77, 112, 245, 258 Xu, D 146 Wirtz, M 47 Wu, J 50, 67, 213, 269 Xue, F 25, 90 Wischhoff, E 250 Wu, K 210 Xue, F 25, 90 Wishart, J 57, 157 Wulandana, R 130 Xue, Y 90 Wisner, B 21, 52, 86, 120, 153, 185, Wu, M 95, 105, 160, 201 Xu, F 127, 192, 226, 261 Wiss, T 167 Wurr
Winkeljohn, C 230, 247 Wrobel, J 66, 149, 193 123, 134, 139, 140, 156, 171, 188, 219 Winn, B 30 Wrona, A 139, 240 Xiu, P 84 Winner, N 121 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xi, Z 18 Winter, I 18, 223, 246 Wu, B 105, 113 Xu, A 81, 160 Winther, G 150 Wu, C 95 Xuan, C 203 Wirth, B 29, 34, 60, 134 Wu, D 13, 149, 246 Xu, B 205, 213 Wirth, M 47, 129 Wu, H 14, 42, 77, 112, 245, 258 Xu, D 146 Wirtz, M 47 Wu, J 50, 67, 213, 269 Xue, F 25, 90 Wischhoff, E 250 Wu, K 210 Xue, F 25, 90 Wisner, B 21, 52, 86, 120, 153, 185, Wu, M 95, 105, 160, 201 Xu, F 127, 192, 226, 261 Wiss, T 209, 212, 228, 246, 266 Wu, P 13 Xu, H 73, 93, 174, 256 Wissuchek, F 247 Wurster, S 11, 108, 218 Xu, M 26, 189, 216 Witteman, L 19
Winn, B 30 Wrona, A 139, 240 Xiu, P 84 Winner, N 121 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xi, Z 18 Winter, I 18, 223, 246 Wu, B 105, 113 Xu, A 81, 160 Winther, G 150 Wu, C 95 Xuan, C 203 Wirth, B 29, 34, 60, 134 Wu, D 13, 149, 246 Xu, B 205, 213 Wirth, L 134, 230 Wu, F 20 Xu, C 53, 73, 76, 174, 175, 256 Wirth, M 47, 129 Wu, H 14, 42, 77, 112, 245, 258 Xu, D 146 Wirtz, M 47 Wu, J 50, 67, 213, 269 Xue, F 25, 90 Wischhosf, E 250 Wu, K 210 Xue, L 67, 173 Wischhusen, M 119 Wu, L 5, 16 Xue, Q 253 Wisner, B 21, 52, 86, 120, 153, 185, Wu, M 95, 105, 160, 201 Xu, F 127, 192, 226, 261 Wiss, T 167 Wurmshuber, M 88 Xu, J 71, 72 Wissuchek, F 247 Wurster, S 11, 108
Winner, N 121 Wu, A 19, 42, 50, 63, 83, 151, 184, 248 Xi, Z 18 Winter, I 18, 223, 246 Wu, B 105, 113 Xu, A 81, 160 Winther, G 150 Wu, C 95 Xuan, C 203 Wirth, B 29, 34, 60, 134 Wu, D 13, 149, 246 Xu, B 205, 213 Wirth, L 134, 230 Wu, F 20 Xu, C 53, 73, 76, 174, 175, 256 Wirth, M 47, 129 Wu, H 14, 42, 77, 112, 245, 258 Xu, D 146 Wirtz, M 47 Wu, J 50, 67, 213, 269 Xue, F 25, 90 Wischhoff, E 250 Wu, K 210 Xue, F 25, 90 Wishart, J 57, 157 Wulandana, R 130 Xue, Y 90 Wisner, B 21, 52, 86, 120, 153, 185, Wu, M 95, 105, 160, 201 Xu, F 127, 192, 226, 261 Wiss, T 167 Wurmshuber, M 88 Xu, J 17, 72 Wissuchek, F 247 Wurster, S 11, 108, 218 Xu, M 26, 189, 216 Witteman, L 193 Wu, S 14,
Winter, I. 18, 223, 246 Wu, B. 105, 113 Xu, A. 81, 160 Winther, G. 150 Wu, C. 95 Xuan, C. 203 Wirth, B. 29, 34, 60, 134 Wu, D. 13, 149, 246 Xu, B. 205, 213 Wirth, L. 134, 230 Wu, F. 20 Xu, C. 53, 73, 76, 174, 175, 256 Wirth, M. 47, 129 Wu, H. 14, 42, 77, 112, 245, 258 Xu, D. 146 Wirtz, M. 47 Wu, J. 50, 67, 213, 269 Xue, F. 25, 90 Wischhoff, E. 250 Wu, K. 210 Xue, L. 67, 173 Wischhusen, M. 119 Wu, L. 5, 16 Xue, Q. 253 Wishart, J. 57, 157 Wulandana, R. 130 Xue, Y. 90 Wisner, B. 21, 52, 86, 120, 153, 185, Wu, M. 95, 105, 160, 201 Xu, F. 127, 192, 226, 261 Wiss, T. 167 Wurmshuber, M. 88 Xu, J. 71, 72 Wissuchek, F. 247 Wurster, S. 11, 108, 218 Xu, M. 26, 189, 216 Wittgens, B. 113
Winther, G 150 Wu, C 95 Xuan, C 203 Wirth, B 29, 34, 60, 134 Wu, D 13, 149, 246 Xu, B 205, 213 Wirth, L 134, 230 Wu, F 20 Xu, C 53, 73, 76, 174, 175, 256 Wirth, M 47, 129 Wu, H 14, 42, 77, 112, 245, 258 Xu, D 146 Wirtz, M 47 Wu, J .50, 67, 213, 269 Xue, F 25, 90 Wischhoff, E 250 Wu, K 210 Xue, F 25, 90 Wischhusen, M 119 Wu, L 51, 6 Xue, Q 253 Wisner, B 21, 52, 86, 120, 153, 185, Wu, M 95, 105, 160, 201 Xu, F 127, 192, 226, 261 Wiss, T 167 Wurmshuber, M 88 Xu, J 71, 72 Wissuchek, F 247 Wurster, S 11, 108, 218 Xu, M 26, 189, 216 Witteman, L 193 Wu, S 14, 41, 253 Xu, Q 175 Wittgens, B 113 Wu, T 105 Xu, Q 175 Wittgens, B 113 Wu, W 49, 118, 182, 247 Xu, S
Winther, G 150 Wu, C 95 Xuan, C 203 Wirth, B 29, 34, 60, 134 Wu, D 13, 149, 246 Xu, B 205, 213 Wirth, L 134, 230 Wu, F 20 Xu, C 53, 73, 76, 174, 175, 256 Wirth, M 47, 129 Wu, H 14, 42, 77, 112, 245, 258 Xu, D 146 Wirtz, M 47 Wu, J .50, 67, 213, 269 Xue, F 25, 90 Wischhoff, E 250 Wu, K 210 Xue, F 25, 90 Wischhusen, M 119 Wu, L 51, 6 Xue, Q 253 Wisner, B 21, 52, 86, 120, 153, 185, Wu, M 95, 105, 160, 201 Xu, F 127, 192, 226, 261 Wiss, T 167 Wurmshuber, M 88 Xu, J 71, 72 Wissuchek, F 247 Wurster, S 11, 108, 218 Xu, M 26, 189, 216 Witteman, L 193 Wu, S 14, 41, 253 Xu, Q 175 Wittgens, B 113 Wu, T 105 Xu, Q 175 Wittgens, B 113 Wu, W 49, 118, 182, 247 Xu, S
Wirth, B. 29, 34, 60, 134 Wu, D. 13, 149, 246 Xu, B. 205, 213 Wirth, L. 134, 230 Wu, F. 20 Xu, C. 53, 73, 76, 174, 175, 256 Wirth, M. 47, 129 Wu, H. 14, 42, 77, 112, 245, 258 Xu, D. 146 Wirtz, M. 47 Wu, J. .50, 67, 213, 269 Xue, F. .25, 90 Wischhoff, E. 250 Wu, K. 210 Xue, L. .67, 173 Wischhusen, M. 119 Wu, L. 5, 16 Xue, Q. .253 Wishart, J. 57, 157 Wulandana, R. 130 Xue, Y. .90 Wisner, B. 21, 52, 86, 120, 153, 185, Wu, M. .95, 105, 160, 201 Xu, F. .127, 192, 226, 261 Wiss, T. 167 Wurmshuber, M. 88 Xu, J. .71, 72 Wissuchek, F. 247 Wurster, S. 11, 108, 218 Xu, M. .26, 189, 216 Wittgens, B. 113 Wu, T. 105 Xu, Q. .17, 47, 81, 116, 261 Witt, K. .95 Wu, W. .49, 118, 182, 247 Xu, S. .23, 38, 56, 122, 153, 155, 161,
Wirth, L. 134, 230 Wu, F. 20 Xu, C. 53, 73, 76, 174, 175, 256 Wirth, M. 47, 129 Wu, H. 14, 42, 77, 112, 245, 258 Xu, D. 146 Wirtz, M. 47 Wu, J. 50, 67, 213, 269 Xue, F. 25, 90 Wischhoff, E. 250 Wu, K. 210 Xue, L. 67, 173 Wischhusen, M. 119 Wu, L. 5, 16 Xue, Q. 253 Wishart, J. 57, 157 Wulandana, R. 130 Xue, Y. 90 Wisner, B. 21, 52, 86, 120, 153, 185, Wu, M. 95, 105, 160, 201 Xu, F. 127, 192, 226, 261 209, 212, 228, 246, 266 Wu, P. 13 Xu, H. 73, 93, 174, 256 Wiss, T. 167 Wurmshuber, M. 88 Xu, J. 71, 72 Wissuchek, F. 247 Wurster, S. 11, 108, 218 Xu, M. 26, 189, 216 Witteman, L. 193 Wu, S. 14, 41, 253 Xu, P. 17, 47, 81, 116, 261 Wittgens, B. 113 Wu, T. 105 Xu, Q. 175 Witt, K. 95 Wu, W. </td
Wirth, M 47, 129 Wu, H 14, 42, 77, 112, 245, 258 Xu, D 146 Wirtz, M 47 Wu, J 50, 67, 213, 269 Xue, F 25, 90 Wischhoff, E 250 Wu, K 210 Xue, L 67, 173 Wischhusen, M 119 Wu, L 5, 16 Xue, Q 253 Wishart, J 57, 157 Wulandana, R 130 Xue, Y 90 Wisner, B 21, 52, 86, 120, 153, 185, 200, 153, 185, 200, 153, 185, 200, 201 Wu, M 95, 105, 160, 201 Xu, F 127, 192, 226, 261 Wiss, T 167 Wurmshuber, M 88 Xu, J 73, 93, 174, 256 Wissuchek, F 247 Wurster, S 11, 108, 218 Xu, M 26, 189, 216 Witteman, L 193 Wu, S 14, 41, 253 Xu, P 17, 47, 81, 116, 261 Wittgens, B 113 Wu, T 105 Xu, Q 175 Witt, K 95 Wu, W 49, 118, 182, 247 Xu, S 23, 38, 56, 122, 153, 155, 161,
Wirtz, M 47 Wu, J 50, 67, 213, 269 Xue, F 25, 90 Wischhoff, E 250 Wu, K 210 Xue, L 67, 173 Wischhusen, M 119 Wu, L 5, 16 Xue, Q 253 Wishart, J 57, 157 Wulandana, R 130 Xue, Y 90 Wisner, B 21, 52, 86, 120, 153, 185, Wu, M 95, 105, 160, 201 Xu, F 127, 192, 226, 261 209, 212, 228, 246, 266 Wu, P 13 Xu, H 73, 93, 174, 256 Wiss, T 167 Wurmshuber, M 88 Xu, J 71, 72 Wissuchek, F 247 Wurster, S 11, 108, 218 Xu, M 26, 189, 216 Witteman, L 193 Wu, S 14, 41, 253 Xu, P 17, 47, 81, 116, 261 Wittgens, B 113 Wu, T 105 Xu, Q 175 Witt, K 95 Wu, W 49, 118, 182, 247 Xu, S 23, 38, 56, 122, 153, 155, 161,
Wischhoff, E 250 Wu, K 210 Xue, L 67, 173 Wischhusen, M 119 Wu, L 5, 16 Xue, Q 253 Wishart, J 57, 157 Wulandana, R 130 Xue, Y 90 Wisner, B 21, 52, 86, 120, 153, 185, Wu, M 95, 105, 160, 201 Xu, F 127, 192, 226, 261 209, 212, 228, 246, 266 Wu, P 13 Xu, H 73, 93, 174, 256 Wiss, T 167 Wurmshuber, M 88 Xu, J 71, 72 Wissuchek, F 247 Wurster, S 11, 108, 218 Xu, M 26, 189, 216 Witteman, L 193 Wu, S 14, 41, 253 Xu, P 17, 47, 81, 116, 261 Wittgens, B 113 Wu, T 105 Xu, Q 175 Witt, K 95 Wu, W 49, 118, 182, 247 Xu, S 23, 38, 56, 122, 153, 155, 161,
Wischhusen, M 119 Wu, L 5, 16 Xue, Q 253 Wishart, J 57, 157 Wulandana, R 130 Xue, Y 90 Wisner, B 21, 52, 86, 120, 153, 185, 209, 212, 228, 246, 266 Wu, M 95, 105, 160, 201 Xu, F 127, 192, 226, 261 Wiss, T 167 Wurmshuber, M 88 Xu, J 71, 72 Wissuchek, F 247 Wurster, S 11, 108, 218 Xu, M 26, 189, 216 Witteman, L 193 Wu, S 14, 41, 253 Xu, P 17, 47, 81, 116, 261 Wittgens, B 113 Wu, T 105 Xu, Q 175 Witt, K 95 Wu, W 49, 118, 182, 247 Xu, S .23, 38, 56, 122, 153, 155, 161,
Wishart, J. 57, 157 Wulandana, R. 130 Xue, Y. 90 Wisner, B. 21, 52, 86, 120, 153, 185, 209, 212, 228, 246, 266 Wu, M. 95, 105, 160, 201 Xu, F. 127, 192, 226, 261 Wiss, T. 167 Wurmshuber, M. 88 Xu, J. 71, 72 Wissuchek, F. 247 Wurster, S. 11, 108, 218 Xu, M. 26, 189, 216 Witteman, L. 193 Wu, S. 14, 41, 253 Xu, P. 17, 47, 81, 116, 261 Wittgens, B. 113 Wu, T. 105 Xu, Q. 175 Witt, K. 95 Wu, W. 49, 118, 182, 247 Xu, S. 23, 38, 56, 122, 153, 155, 161,
Wisner, B. 21, 52, 86, 120, 153, 185, Wu, M 95, 105, 160, 201 Xu, F .127, 192, 226, 261 209, 212, 228, 246, 266 Wu, P 13 Xu, H .73, 93, 174, 256 Wiss, T 167 Wurmshuber, M 88 Xu, J .71, 72 Wissuchek, F 247 Wurster, S .11, 108, 218 Xu, M .26, 189, 216 Witteman, L 193 Wu, S .14, 41, 253 Xu, P .17, 47, 81, 116, 261 Wittgens, B 113 Wu, T .105 Xu, Q .175 Witt, K .95 Wu, W .49, 118, 182, 247 Xu, S .23, 38, 56, 122, 153, 155, 161,
209, 212, 228, 246, 266 Wu, P 13 Xu, H .73, 93, 174, 256 Wiss, T 167 Wurmshuber, M 88 Xu, J .71, 72 Wissuchek, F 247 Wurster, S .11, 108, 218 Xu, M .26, 189, 216 Witteman, L 193 Wu, S .14, 41, 253 Xu, P .17, 47, 81, 116, 261 Wittgens, B 113 Wu, T 105 Xu, Q .175 Witt, K .95 Wu, W .49, 118, 182, 247 Xu, S .23, 38, 56, 122, 153, 155, 161,
Wiss, T. 167 Wurmshuber, M. 88 Xu, J. 71, 72 Wissuchek, F. 247 Wurster, S. 11, 108, 218 Xu, M. 26, 189, 216 Witteman, L. 193 Wu, S. 14, 41, 253 Xu, P. 17, 47, 81, 116, 261 Wittgens, B. 113 Wu, T. 105 Xu, Q. 175 Witt, K. 95 Wu, W. 49, 118, 182, 247 Xu, S. 23, 38, 56, 122, 153, 155, 161,
Wiss, T. 167 Wurmshuber, M. 88 Xu, J. 71, 72 Wissuchek, F. 247 Wurster, S. 11, 108, 218 Xu, M. 26, 189, 216 Witteman, L. 193 Wu, S. 14, 41, 253 Xu, P. 17, 47, 81, 116, 261 Wittgens, B. 113 Wu, T. 105 Xu, Q. 175 Witt, K. 95 Wu, W. 49, 118, 182, 247 Xu, S. 23, 38, 56, 122, 153, 155, 161,
Wissuchek, F. 247 Wurster, S 11, 108, 218 Xu, M 26, 189, 216 Witteman, L 193 Wu, S 14, 41, 253 Xu, P 17, 47, 81, 116, 261 Wittgens, B 113 Wu, T 105 Xu, Q 175 Witt, K 95 Wu, W 49, 118, 182, 247 Xu, S 23, 38, 56, 122, 153, 155, 161,
Witteman, L 193 Wu, S 14, 41, 253 Xu, P 17, 47, 81, 116, 261 Wittgens, B 113 Wu, T 105 Xu, Q 175 Witt, K 95 Wu, W 49, 118, 182, 247 Xu, S 23, 38, 56, 122, 153, 155, 161,
Wittgens, B 113 Wu, T 105 Xu, Q 175 Witt, K 95 Wu, W 49, 118, 182, 247 Xu, S 23, 38, 56, 122, 153, 155, 161,
Witt, K
WITUSIEWICZ, V
Wohlberg, B
Wojcek, M
Wojcik, M
Wojcik, T
Woldring, C
Wolk, J 6
Wall C
Yablinksy, C
Wolverton C 14 56 90 152 100 Advict, F
Adviet, G200, 204, 203
VVIIIV 1. 101 100
Wong, C

Yadav, D	Yan, Z	Yıldırım, Y
Yadav, R	Yao, L	Yılmazer, H
Yaddanapudi, K 118	Yao, T 95, 127, 160, 161, 192, 226	Yılmazer, O
Yadroytsev, I	Yao, Y	Yob, A
Yaghoobi, M 72, 124, 150, 164, 185, 212	Yao, Z	Yoo, A
Yagmurlu, B	Yaqoob, K	Yoo, G 79, 179, 208, 227, 253, 254, 263
ě	Yarasi, S	
Yagodzinskyy, Y		Yoo, J
Yagoubi, S	Yasin, M	Yoon, J
Yaguchi, K	Yasmeen, T 57	Yoon, K 11, 179, 193, 253, 254, 260
Yaki, N 50	Yastrebov, V	Yoon, S
Yakout, M	Yasuda, H 87, 151, 152, 184, 267	Yoon, Y
Yakubu, M	Yasuda, M	Yoo, S31, 63, 82, 96, 130, 168, 170, 253
Yalcin, Y	Yasuda, Y	Yoo, T
Yamada, R149, 179, 227	Yates, C	Yoshida, R
Yamagishi, K	Yavas, B	Yoshida, S
Yamaguchi, H	Ya, W	Yoshikawa, A
ě		
Yamaguchi, K	Yazlak, M	Yoshimi, K
Yamamoto, A	Yeager, J	Yoshino, K
Yamamoto, H	Yearsley, A	Yoshioka, T
Yamamoto, T27, 81, 89, 114, 192	Ye, B	You, H
Yamamoto, Y 42, 52, 54, 65, 103, 190	Yedra, L	You, J
Yamamura, A	Yee, J	Youm, J
Yamanaka, A151, 177, 182	Ye, F	Young, B
Yan, D 19, 50, 83, 144, 151, 184, 248	Ye, G	Young, D
Yañez, F	Yeh, A	Young, G
		•
Yan, F	Yeh, C	Young, J5, 35, 66, 100, 113, 135,
Yang, B	Yeh, J	168, 197
Yang, C 29, 83, 124, 214, 216	Yehya, S	Youngju, R
Yang, D	Ye, J	Young, S
Yang, G	Yekta, A	Young, Z
Yang, H14, 78, 81, 105	Yelamanchi, B97, 199, 200	Yousefpour, A
Yang, J7, 59, 91, 124, 210, 221, 248, 258	Yen, D	Youssef, M
Yang, K 29, 67, 88, 176, 200, 201, 220	Yen, H54, 88, 260, 261	Yu, A
Yang, L	Yen, S	Yuan, B
Yang, M	Yen, W	Yuan, C
Č		
Yang, P27, 151, 157, 158	Yen, Y 31, 63, 96, 130, 134, 253	Yuan, H
Yang, Q 148	Yeom, H	Yuan, J
Yang, R	Yeom, J	Yuan, L6, 69, 104, 138, 171, 177, 200,
Yang, S243, 245, 253	Yeo, T	221, 233, 241, 255
Yang, T 31, 63, 96, 125, 130, 253	Ye, Q	Yuan, M
Yang, W	Yeshurun, S	Yuan, S
Yang, X	Yetter, K	Yuan, X
Yang, Y25, 27, 31, 34, 56, 60, 74, 90,	Ye, W	Yu, C63, 221, 237, 271
96, 111, 124, 151, 157, 158, 160, 175,	Yi-Cheng, L	Yucel, O
176, 189, 200, 216, 247, 267, 269, 272	Yi, F	Yücel, O
Yang, Z80, 112, 238	Yi, J	Yu, D 83, 104, 128, 141, 144, 259
Yan, H57, 150, 193	Yi, K	Yu, H 6, 7, 22, 60, 107, 177, 210
Yan, J	Yildirim, C 56, 106	Yu, J
Yankee, J	Yildiz, B	Yu, K
Yankey, J	Yin, D	Yu, L
Yan, L20, 50, 84, 118, 248	Yingling, J	Yu, M
Yan, M 108	Ying, P	Yun, D
Yanmaz, L	Yin, H	Yun, H
Yano, K 27, 59, 92, 126, 159, 161, 191,	Yin, J	Yu, Q
214, 268, 270, 271	Yin, S	Yurdakul, Ö
Yan, Q	Yin, T	Yurek, Q
Yan, S	Yi, P	Yurtışık, K
Yan, X	Yi, S	Yury, O27, 66, 219
Yanxon, H 177	Yi Wang, W	Yu, S
Yan, Y145	Yi, Y	Yushu, D

_		
Yusuf, S	Zhang, F 95, 138, 139, 166, 196, 205,	Zhiyi, Z
Yusupov, D	212, 213, 216, 221, 270	Zhong, A
Yu, T14, 164	Zhang, G	Zhong, S 23, 53, 87, 122, 155, 204, 248
Yu, W	Zhang, H29, 54, 61, 81, 101, 146, 208,	Zhong, W 25, 27, 31, 34, 60, 160, 170,
Yu, X20, 51, 85, 91, 119, 152, 163, 248	222, 270	175, 216, 234, 258, 272
Yu, Y	Zhang, J26, 34, 41, 43, 57, 71, 91,	Zhong, Y 27, 38, 55, 57, 58, 87, 91, 122,
	0	e
Yuya, P	125, 158, 174, 189, 207, 233, 235,	125, 158, 190, 270
Yu, Z 10, 138, 159, 175, 202, 224	240, 241, 242, 254, 261, 270	Zhou, A
7	Zhang, K	Zhou, B27, 56, 58, 65, 91, 99, 121, 125,
Z	Zhang, L 19, 20, 31, 50, 60, 63, 84, 96,	134, 152, 158, 167, 190, 234, 270
Zaefferer, S	118, 130, 208, 227, 248, 253	Zhou, C 58, 75, 91, 179, 213, 215
Zafra, A 6, 119	Zhang, M17, 24, 30, 46, 54, 55, 59, 62,	Zhou, D
	72, 80, 89, 95, 115, 129, 143, 148,	Zhou, F
Zagrtdenov, N	163, 180, 193, 209, 215, 232, 249,	Zhou, G126, 202
Zahiri, A	252, 260, 263	Zhou, H
Zahiri, B	Zhang, N 15, 44, 78, 113, 146, 178, 262	Zhou, J
Zaiser, M	Zhang, P	Zhou, L
Zakaria, M	Zhang, Q	
Zak, S151, 255	•	193, 212, 216, 217, 233, 253
Zalkind, S	Zhang, R	Zhou, M
Zaman, R	Zhang, S	Zhou, N
Zameroski, R 170	Zhang, T 107, 201, 221, 233, 255	Zhou, S 65, 218
Zang, A	Zhang, W 107, 166, 182, 214, 238	Zhou, T
Zanjani Foumani, Z	Zhang, X 7, 23, 24, 28, 60, 68, 70, 93,	Zhou, W 54, 60, 91, 114, 144, 157, 158
Zapata, M	94, 95, 104, 108, 127, 139, 163, 165,	Zhou, X
-	166, 172, 201, 203, 204, 206, 208,	Zhou, Y
Zarandi, F 139, 171, 200, 222, 242	218, 222, 242, 247, 268	Zhou, Z
Zare, A	Zhang, Y 8, 16, 17, 19, 27, 29, 39, 46,	Zhuang, C
Zargaran, A	47, 55, 57, 61, 71, 88, 94, 97, 106, 108,	Zhuang, H13, 18, 41, 48, 76, 81, 110,
Zarkadoula, E 18, 48, 61, 82, 111, 117,	118, 125, 126, 127, 128, 152, 169, 175,	116, 145, 149, 177, 180, 206, 225,
149, 175, 181, 210, 219, 229, 246	180, 183, 210, 211, 222, 247, 255, 257	261, 266
Zarkevich, N		
Zaronikola, N	Zhang, Z 9, 11, 19, 38, 41, 73, 108,	Zhu, D
Zarouni, A	119, 135, 139, 142, 161, 174,	Zhu, G
Zavala Alvarado, G	184, 203, 254, 255, 256, 257	Zhu, H
Zavanelli, D	Zhao, C	Zhu, J
Zavarin, M	Zhao, D	Zhu, K
Zavattieri, P	Zhao, H	Zhu, L
Zawodzki, M	Zhao, J25, 34, 60, 65, 99, 134, 158,	Zhu, M
Zbib, M	170, 234, 258	Zhu, N
Zecevic, M	Zhao, M	Zhu, P
	Zhao, N	Zhu, Q 145, 152, 177, 189, 231
Zechmann, N	Zhao, R	Zhuravleva, M
Zedel, H	Zhao, S	Zhu, S
Zeibig, V	Zhao, W	Zhu, T
Zekriardehani, S	Zhao, X	Zhu, Y23, 54, 60, 71, 88, 122, 150,
Zella, L	Zhao, Y 46, 62, 103, 121, 159, 191, 198,	
Zeltmann, S		152, 155, 200, 223, 267
Zeng, C	208, 210, 214, 222, 257	Zhu, Z 6, 38, 47, 148, 229, 240, 244
Zeng, Q	Zhao, Z	Ziamahmoodi, N
Zeng, X	Zha, R	Ziegler, L
Zeng, Y	Zheng, B	Zietsman, J
Zenk, C	Zheng, G 165, 189	Zikry, M122, 150
Zetek, M	Zheng, H	Zilahi, G
Zevalkink, A	Zheng, K	Zimbeck, W
Zhai, Z	Zhenglong, L	Zimmerman, J
	Zheng, R 6, 170	Zimmerman, M
Zhang, B	Zheng, S 105, 139, 160, 181, 221	Zimmermann, E 28, 59
Zhang, C 34, 54, 65, 67, 80, 99, 104,	Zheng, T	Zimmermann, G
119, 134, 139, 173, 202	Zheng, X	Zimmermann, J
Zhang, D7, 8, 40, 192, 193, 197, 205,	Zheng, Y 12, 40, 75, 110, 136, 144, 176,	Zimmermann, S
219, 257, 259, 260	181, 183, 193, 205, 225, 239, 261	
	Zhiu, N	
	Zanu, 14 1/2	

Zinkle, S 27, 28, 31, 34, 46, 62, 66, 76,
91, 100, 116, 134, 167, 182, 197,
210, 216, 219, 220, 235, 267, 273
Zinn, M
Ziomek-Moroz, M
Zirker, D
Žist, S
Zois, A
Zok, F
Zollinger, J 53, 154
Zolotoyabko, E
Zorn, G
Zou, M 10, 38, 73, 108, 143, 244
Zou, Y70, 81, 83, 117, 137, 142, 144,
166, 191, 192, 200, 233, 241, 242,
247, 259, 260, 261
247, 259, 260, 261 Zou, Z
Zou, Z
Zou, Z 202 Zrodowski, L 198
Zou, Z 202 Zrodowski, L 198 Zuanetti, B 115
Zou, Z 202 Zrodowski, L 198 Zuanetti, B 115 Zuback, J 216
Zou, Z 202 Zrodowski, L 198 Zuanetti, B 115 Zuback, J 216 Züch, V 186
Zou, Z 202 Zrodowski, L. 198 Zuanetti, B. 115 Zuback, J. 216 Züch, V. 186 Zukas, B. 113
Zou, Z 202 Zrodowski, L. 198 Zuanetti, B. 115 Zuback, J. 216 Züch, V. 186 Zukas, B. 113 Zuo, J. 26, 46, 74, 156
Zou, Z 202 Zrodowski, L. 198 Zuanetti, B. 115 Zuback, J. 216 Züch, V. 186 Zukas, B. 113