Data analytics for advanced process monitoring and control in primary aluminum smelting

Prof. Carl Duchesne

Aluminium Research Centre – REGAL Department of Chemical Engineering Université Laval Québec (Qc), Canada

Outline

- Context
- Data analytics
- Advanced monitoring and control
- Some applications
- Challenges
- Latent Variable Methods vs Machine Learning

Manufacturing process

Process Data

Data analytics

Environmental conditions

Applications of data-driven models

- Process analysis / troubleshooting
- Develop sensors, process analytical technologies (PAT)
- Process monitoring, abnormal situation detection, diagnosis
- Quality control of raw materials and finished products
- Process control and optimization

Latent Variable Methods

- Also known as Multivariate Statistical Methods
- Principal Component Analysis (PCA), Projection to Latent Structures (PLS)
- Efficient methods to cope with the highly collinear structure of process data
- Deal with missing data
- Interpretable using process knowledge

Advanced monitoring in primary AI production

Research program on data analytics

TMS 2023 152ND ANNUAL MEETING & EXHIBITION

www.tms.org/TMS2023 · #TMSAnnualMeeting

Lack of measurements on key materials

THE WORLD COMES HERE.

152nd Annual Meeting & Exhibitio

- Coke properties
- Paste
- Green anodes
- Baked anodes

Some applications

- Measurements on materials
 - Coke : impact acoustics
 - Paste imaging
 - Baked anodes : Modal Analysis (MA) and Acousto-Ultrasonics (AU)
- Baked anodes in operation
 - Detection of anodic incidents using individual anode currents

Impact acoustics for coke particles

Optimal pitch demand of dry aggregates

- Increasing variability of coke properties
- Impact on pitch demand of dry aggregate mix
- Optimal pitch demand (OPD) determined experimentally at the plant
 - Infrequent
 - Disruptive
 - Costly
- Measure from images of the anode paste?

Anode paste imaging – pitch demand

Anode paste imaging – pitch demand

www.tms.org/TMS2023 · #TMSAnnualMeeting

152nd Annual Meeting & Exhibition

Optimal pitch ratio

Clustering of images features

J. Lauzon-Gauthier et al. (2020), JOM, 72(1), 287-295

Non-destructive inspection of pre-baked anodes

- Quality control scheme currently used in the field
 - Core sampling of <1% of anode production
 - Characterization in the lab (delay of ~2 weeks)
 - Cores representativeness (0.13% of anode block volume)
- Probability of detecting defects?
 - Cracks, abnormally porous regions, compositional heterogeneities
- Defect anodes strongly affect reduction cell performance
- Rapid and non-destructive inspection of the anodes

Modal Analysis

- Accelerometers
- Laser vibrometers (contactless)

D. Rodrigues et al. (2022), JOM, 72(2), 697-705

Modal Analysis

- 82 pre-baked anodes sampled from an Alcoa plant
 - No external defect: 36
 - Damaged: 46
- External damage (cracks, loose or broken pieces, etc.)
- Classification based on FFT periodograms of anode response

Acousto-Ultrasonic Inspection

M. Ben Boubaker et al. (2018), Ultrasonics, 89, 126-136

TMS 2023 152ND ANNUAL MEETING & EXHIBITION www.tms.org/TMS2023 • #TMSAnnualMeeting

Acousto-Ultrasonic Inspection

TMS 2023 152ND ANNUAL MEETING & EXHIBITION

www.tms.org/TMS2023 · #TMSAnnualMeeting

Maps of AU signal attenuation by damage

THE WORLD COMES HERE.

152nd Annual Meeting & Exhibition

- Blue: low
- Red: high

M. Ben Boubaker et al. (2018), Ultrasonics, 89, 126-136

Detection of anodic incidents

- Individual anode electrical currents
 - Increasingly used in plants
 - Mainly studied for anode effect detection
- Early detection of anodic incidents?
 - Spikes and other types of deformations
 - Anodes set too low

D. LaJambe *et al.* (2020), Light Metals 2020, 535-542 D. LaJambe *et al.* (2021), Minerals Engineering, 172, 10744

THE WORLD COMES HERE.

TMS 2023 152ND ANNUAL MEETING & EXHIBITION www.tms.org/TMS2023 · #TMSAnnualMeeting

Detection of anodic incidents

Detection of anodic incidents

Classification performance metrics at a recall level of 0.25

Cell	False Positive Rate	Precision	Detection Antecedence
B103	0.13	0.44	10.9
B104	0.07	0.39	5.9
B106	0.13	0.30	7.2
B108	0.17	0.29	7.6
B109	0.16	0.22	14.9
B120	0.06	0.38	0.5
	False alarm	Fraction of true alarms raised by system	f Days ahead s of detection by operators

D. LaJambe *et al.* (2020), Light Metals 2020, 535-542 D. LaJambe *et al.* (2021), Minerals Engineering, 172, 10744

22

TMS 2023 152ND ANNUAL MEETING & EXHIBITION www.tms.org/TMS2023 · #TMSAnnualMeeting

Challenges

- Data extraction and organization
 - Different sampling rates
 - Continuous and discontinuous process units (synchonization issues)
 - Few measurements on anode raw material properties
- How to set quality targets for pre-baked anodes?
 - Performance in the cell?
- Staff limitations at plant sites for technology transfer
- Need business case for testing technologies but need to implement them to demonstrate benefits (Catch-22 problem)

Latent Variable Methods vs Machine Learning

Avantages

- Model uniqueness
- Interpretability using process knowledge
- Require reasonable amounts of data

Drawbacks

- Structure less flexible
- Basic methods are linear

Avantages

- Very flexible structures
- Wide range of algorithms
- Nonlinear methods

Drawbacks

- Black boxes (no interpretation possible)
- Require massive amounts of data for training and validation
- Overfitting (e.g. millions of parameters to estimate)

Acknowledgements

- Graduate students
 - Jayson, Julien, Moez, Kamran, Amélie, Wilinthon, Adéline, David, Elias, Daniel, Petre
- Staff at REGAL / Université Laval
 - Donald, Hicham, Guillaume
- Alcoa staff
 - Jayson Tessier, Julien Lauzon-Gauthier, and many others

• NSERC and Alcoa for continuously funding research for ~16 years

