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Process Data
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 Key Performance Indicators (KPIs)
 Quality attributes, etc.

 Flows, valves openings
 Motor speeds, power
 Temperatures
 Pressures
 Levels
 Compositions, etc.

 Material properties
 Particle size distributions
 Formulation (ratios), etc.

 Outside temperature
 Moisture, etc.
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Applications of data-driven models
 Process analysis / troubleshooting

 Develop sensors, process analytical technologies (PAT)

 Process monitoring, abnormal situation detection, diagnosis

 Quality control of raw materials and finished products

 Process control and optimization
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Latent Variable Methods
 Also known as Multivariate Statistical Methods

 Principal Component Analysis (PCA), Projection to Latent Structures (PLS)

 Efficient methods to cope with the highly collinear structure of process data

 Deal with missing data

 Interpretable using process knowledge
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Advanced monitoring in primary Al production

Alumina properties

Ultimate goals:
 Monitor cell operation
 Detect abnormal events
 Find root causes
 Take action

Anode Plant

Tracability: Anode Tracking Systems
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Research program on data analytics
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Some applications
 Measurements on materials

 Coke : impact acoustics
 Paste imaging
 Baked anodes : Modal Analysis (MA) and Acousto-Ultrasonics (AU)

 Baked anodes in operation
 Detection of anodic incidents using individual anode currents
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Impact acoustics for coke particles

Coke particles

Cokes:
 Different suppliers
 Different sizes
 Unmixed and blends Impact sound Features Models Predictions

E. Ishak. (2020), M.Sc. Thesis, U. Laval and unpublished work
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Optimal pitch demand of dry aggregates
 Increasing variability of coke properties 

 Impact on pitch demand of dry aggregate mix

 Optimal pitch demand (OPD) determined experimentally at the plant
 Infrequent
 Disruptive
 Costly

 Measure from images of the anode paste?
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Anode paste imaging – pitch demand

Anode raw 
materials

Formulation and 
mixing

Paste sampling 
and imaging

Paste 
images

Empirical models Image texture 
analysis (wavelets)

J. Lauzon-Gauthier et al. (2020), JOM, 72(1), 287-295
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Anode paste imaging – pitch demand
Optimal pitch ratio

Clustering of images features

J. Lauzon-Gauthier et al. (2020), JOM, 72(1), 287-295
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Non-destructive inspection of pre-baked anodes

 Quality control scheme currently used in the field
 Core sampling of <1% of anode production
 Characterization in the lab (delay of ~2 weeks)
 Cores representativeness (0.13% of anode block volume)

 Probability of detecting defects?
 Cracks, abnormally porous regions, compositional heterogeneities

 Defect anodes strongly affect reduction cell performance

 Rapid and non-destructive inspection of the anodes
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Modal Analysis

 Accelerometers
 Laser vibrometers (contactless)

D. Rodrigues et al. (2022), JOM, 72(2), 697-705
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Modal Analysis

 82 pre-baked anodes sampled from 
an Alcoa plant
 No external defect: 36
 Damaged: 46

 External damage (cracks, loose or 
broken pieces, etc.)

 Classification based on FFT 
periodograms of anode response Classification

accuracy
True Positives
(no damage)

True Negatives
(damaged)

D. Rodrigues et al. (2022), JOM, 72(2), 697-705
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Acousto-Ultrasonic Inspection

AT = arrival time

M. Ben Boubaker et al. (2018), Ultrasonics, 89, 126-136
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Acousto-Ultrasonic Inspection

Maps of AU signal 
attenuation by damage

 Blue: low
 Red: high

M. Ben Boubaker et al. (2018), Ultrasonics, 89, 126-136
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Detection of anodic incidents

 Individual anode electrical currents
 Increasingly used in plants
 Mainly studied for anode effect detection

 Early detection of anodic incidents?
 Spikes and other types of deformations
 Anodes set too low

D. LaJambe et al. (2020), Light Metals 2020, 535-542
D. LaJambe et al. (2021), Minerals Engineering, 172, 10744
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Detection of anodic incidents

D. LaJambe et al. (2020), Light Metals 2020, 535-542
D. LaJambe et al. (2021), Minerals Engineering, 172, 10744

Anodes

Time

Anodes (~ 2500) set in:
 Different cells
 Different positions

Current trajectories Feature extraction
(Batch PCA model)

Classification
(asymptomatic vs problematic)
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Detection of anodic incidents

D. LaJambe et al. (2020), Light Metals 2020, 535-542
D. LaJambe et al. (2021), Minerals Engineering, 172, 10744

Classification performance metrics at a recall level of 0.25 

Cell False Positive Rate Precision Detection Antecedence 
B103 0.13 0.44 10.9 
B104 0.07 0.39 5.9 
B106 0.13 0.30 7.2 
B108 0.17 0.29 7.6 
B109 0.16 0.22 14.9 
B120 0.06 0.38 0.5 

False alarm Fraction of 
true alarms
raised by 
system

Days ahead
of detection
by operators
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Challenges
 Data extraction and organization

 Different sampling rates
 Continuous and discontinuous process units (synchonization issues)
 Few measurements on anode raw material properties

 How to set quality targets for pre-baked anodes?
 Performance in the cell?

 Staff limitations at plant sites for technology transfer

 Need business case for testing technologies but need to 
implement them to demonstrate benefits (Catch-22 problem)
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Latent Variable Methods vs Machine Learning
Avantages
Model uniqueness
 Interpretability using process knowledge
Require reasonable amounts of data

Avantages
Very flexible structures
Wide range of algorithms
Nonlinear methods

Drawbacks
Structure less flexible
Basic methods are linear

Drawbacks
Black boxes (no interpretation possible)
Require massive amounts of data for 

training and validation
Overfitting (e.g. millions of parameters to 

estimate)
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