THE WORLD COMES HERE.

TMS2025

154th Annual Meeting & Exhibition

March 23-27, 2025

MGM Grand Las Vegas Hotel & Casino Las Vegas, Nevada, USA #TMSAnnualMeeting | www.tms.org/TMS2025

FINAL TECHNICAL PROGRAM

THE CONTENT IN THIS FINAL TECHNICAL PROGRAM WAS GENERATED ON MARCH 11, 2025.

Please refer to the online session sheets for the most up-to-date information. All times listed in this final technical program are in **Pacific Daylight Time** (PDT).

DOWNLOAD THE APP

Powered by Engagefully

See page 6 of the TMS 2025 Conference Guide for details.

PROGRAM AT-A-GLANCE		MON AM	MON PM	MON POSTER	TUE AM	TUE PM	TUE POSTER	WED AM	WED PM	THU AM	тно РМ
Symposium Name	ROOM			Σ	Ċ	·	1				
Additive Manufacturing											
A Career in Powder Processing and Additive Manufacturing: A MPMD Symposium Honoring David Bourell	309				×	×	×				
Additive Manufacturing and Alloy Design: Bridging Fundamental Physical Metallurgy, Advanced Characterization Techniques, and Integrated Computational Materials Engineering for Advanced Materials	311				×	×	×				
Additive Manufacturing and Innovative Powder/Wire Processing of Multifunctional Materials	315	×			×	×	×	×			
Additive Manufacturing and Innovative Powder/Wire Processing of Multifunctional Materials	350								×		
Additive Manufacturing Fatigue and Fracture: Towards Accurate Prediction	317	×			×	×	×				
Additive Manufacturing Keynote Session	120		×								
Additive Manufacturing Materials in Energy Environments II	109	×									
Additive Manufacturing Materials in Energy Environments II	301				×	×	×				
Additive Manufacturing Modeling, Simulation and Machine Learning	311						×	×	×	×	×
Additive Manufacturing of Refractory Metallic Materials	316	×			×	×	×	×			
Additive Manufacturing: Incorporating Breakthrough Functionalities for Building Large Scale Components	301							×	×	×	
Additive Manufacturing: Length-Scale Phenomena in Mechanical Response	310	×			×	×	×	×	×		
Additive Manufacturing: Marine Materials and Structures	315						×		×	X	
Additive Manufacturing: Microstructural and Mechanical Long-term Stability of AM Materials	302						×		×	×	×
Designing Complex Microstructures through Additive Manufacturing	317						×	×	×	×	×
Nano and Micro Additive Manufacturing	310							×			
Nano and Micro Additive Manufacturing	316						×		×	×	×
Advanced Characterization Methods											
Advanced Characterization Techniques for Quantifying and Modeling Deformation	122	×	×		×	×	×	×			
Advanced Characterization Techniques for Quantifying and Modeling Deformation	170								×	×	
Advanced Real Time Imaging	156	×	×		×		×				
Characterization of Materials through High Resolution Coherent Imaging	157	×	×		×						
Characterization of Minerals, Metals and Materials 2025: In- Situ Characterization Techniques	109								×	×	
Characterization of Minerals, Metals and Materials 2025: In- Situ Characterization Techniques	121	×	×		×	×	×	×			
Heterostructured and Gradient Materials (HGM VI): Principle, Processing and Properties	155	×	×		×	×	×	×	×		

PROGRAM AT-A-GLANCE		MON AM	MON PM	MON POSTER	TUE AM	TUE PM	TUE POSTER	WED AM	WED PM	тно ам	THU PM
Symposium Name	ROOM	Σ	2	Θ W	_	–	10	*	*	—	
Neutron and X-ray Scattering in Materials Science and Engineering	156						×	×	×	×	×
Novel Strategies for Rapid Acquisition and Processing of Large Datasets from Advanced Characterization Techniques	157						×	×	×	×	×
Biomaterials											
Advanced Biomaterials for Biomedical Implants	308			×				×	X	×	
Advances in Biomaterials for Bioink Formulation and 3D Printing of Scaffolds	307			×							
Bio-Nano Interfaces and Engineering Applications	307			×				×	X	×	×
Biological Materials Science	306	×	×	×	×	×		×	×		
Mechanics and Physiological Adaptation of Hard and Soft Biomaterials and Biological Tissues	308	×	×		×						
Natural Fibers and Biocomposites: A Sustainable Solution	307		×	×	×						
Porous Materials for Biomedical Applications	306									×	×
Data-Driven and Computational Material Design											
Al/Data Informatics: Computational Model Development, Verification, Validation, and Uncertainty Quantification	320	×	×		×	×	×	×	×	×	×
Algorithm Development in Materials Science and Engineering	319	×	×		×	×	×	×	×	×	
Artificial Intelligence Applications in Integrated Computational Materials Engineering	351						×	×	×	×	×
Bridging Scale Gaps in Multiscale Materials Modeling in the Age of Artificial Intelligence	353	×	×		×	×	×	×	×		
Chemistry and Physics of Interfaces	304	×	×		×	×	×	×	×		
Computational Thermodynamics and Kinetics	305	×	×		×	×	×	×	×	×	×
Dilute Alloying and Impurity Effects on Phase Transformations	310		×								
High Performance Steels	302	×	×		×	×	×	×			
Local Chemical Ordering and Its Impact on Mechanical Behaviors, Radiation Damage, and Corrosion	316		×								
Local Chemical Ordering and Its Impact on Mechanical Behaviors, Radiation Damage, and Corrosion	352					×	×	×	×	×	×
Materials Aging and Compatibility: Experimental and Computational Approaches to Enable Lifetime Predictions	308					×	×				
Materials Aging and Compatibility: Experimental and Computational Approaches to Enable Lifetime Predictions	309	×	×								
Microstructural Evolution and Material Properties Due to Manufacturing Processes: A Symposium in Honor of Anthony Rollett	303				×	×	×	×	×		
Thermodynamics and Kinetics of Alloys III	352	×	×		×						
Thermodynamics and Phase Diagrams Applied to Materials Design and Processing: An FMD/SMD Symposium Honoring Rainer Schmid-Fetzer	350	×	×		×	×					
Validation of Computational Tools - Industrial Perspectives	311	×	×								

PROGRAM AT-A-GLANCE		MON AM	MON PM	MON POSTER	TUE AM	TUE PM	TUE POSTER	WED AM	WED PM	THU AM	THU PM
Symposium Name	ROOM	Σ	2	MOI	_	_	101	>	>		
Verification, Calibration, and Validation Approaches in Modeling the Mechanical Performance of Metallic Materials	354	×	×		×	×	×				
Electronic, Magnetic, and Energy Materials											
2D Materials – Preparation, Properties, Modeling & Applications	362	×	×	×	×	×		×	×		
Advanced Materials for Energy Conversion and Storage 2025	356	×	×	×	×	×		×	×		
Advances and Discoveries in Non-equilibrium Driven Nanomaterials and Thin Films	354			×				×	×	×	×
Advances in Magnetism and Magnetic Materials	363	×	×	×	×	×		×	×		
Alloys and Compounds for Thermoelectric and Solar Cell Applications XIII	355	×	×	×	×	×		×	×		
Electronic Packaging and Interconnection Materials II	360	×	×	×	×	×		×	×		
Energy Technologies and CO2 Management	364	×	×	×	×	×					
Functional Nanomaterials	365			×		×		×	×	×	×
Hume-Rothery Symposium on Thermodynamics of Microstructure Stability and Evolution	357	×	×		×	×		×			
Innovations in Energy Materials: Unveiling Future Possibilities of Computational Modelling and Atomically Controlled Experiments	358	×	×	×	×	×					
Materials for Sustainable Hydrogen Energy	169					×					
Materials for Sustainable Hydrogen Energy	359							×	×	×	×
Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXIV	359	×	×	×	×	×					
Printed Electronics and Additive Manufacturing: Advanced Functional Materials, Processing Concepts, and Emerging Applications	361	×	×		×	×		×			
Revitalization of Materials through Upcycling: The 2025 Student-Led Symposium	315		×								
Light Metals											
2025 Light Metals Keynote Session	120	×									
Advances in Titanium Technology	108	×	×		×	×	×	×	×		
Alumina & Bauxite	111		×		X		×				
Aluminum Alloys: Development and Manufacturing	114		×			×	×	×	×	×	×
Aluminum Alloys: Development and Manufacturing Supplier Forum	114				×						
Aluminum Cast Shop Supplier Forum	109				×						
Aluminum Primary Processing - Decarbonization and Sustainability in Aluminum Primary Processing: Joint Session of Aluminum Reduction, Electrode Technology, and REWAS 2025	112								×		
Aluminum Reduction Technology	113		×		×	×		×	×	×	×
Bauxite Residue Valorization and Best Practices	111					×		×	X		
Electrode Technology for Aluminum Production	112		×					×		×	

PROGRAM AT-A-GLANCE		MON AM	MON PM	MON POSTER	TUE AM	TUE PM	TUE POSTER	WED AM	WED PM	тно ам	THU PM
Symposium Name	ROOM	2		Θ W			T	7	>		
Electrode Technology for Aluminum Production Supplier Forum	112				×						
Light Elements Technology	110					×					
Magnesium Technology 2024	115	×	×		×	×	×	×	×	×	
Melt Processing, Casting and Recycling	109		×			×	×	×			
Recycling and Sustainability in Cast Shop Technology: Joint Session with REWAS 2025	116									×	×
Scandium Extraction and Use in Aluminum Alloys	110							×	×		
Materials Degradation and Degradation by Design											
Environmental Degradation of Additively Manufactured Materials	169	×	×	×	×						
Environmental Degradation of Multiple Principal Component Materials	169			×				×	×	×	
Environmentally Assisted Cracking: Theory and Practice	167	×	×		×	×		×			
Materials and Chemistry for Molten Salt Systems	165	×	×	×	×	×		×	×	×	×
Nanostructured Materials in Extreme Environments II	166	×	×		×	×		×	×		
Refractory Metals 2024	168			×				X	×	×	×
Steels in Extreme Environments	168	×	×	×	×	×					
Materials Synthesis and Processing											
Advanced Laser Manufacturing of High-Performance Materials	105	×		×							
Advances in Bcc-Superalloys	102	×	×	×	×	×					
Advances in Ceramic Materials and Processing	106	×	×	×	×	×		×			
Advances in Materials Deposition by Cold Spray and Related Technologies	103	×	×		×	×					
Advances in Surface Engineering VII	107	×	×	×	×						
Composite Materials: Sustainable and Eco-Friendly Material Development and Applications	116	×	×	×	×	×					
Drying, Roasting, Calcining and Agglomeration of Feedstocks	104		×		×						
Electrical Steels	104	×		×							
Friction Stir Welding and Processing XIII	123			×					×	×	×
Friction Stir Welding and Processing XIII	124					×		×	×	×	×
Innovative Hydrometallurgical Technologies for Environmentally Benign Processing and Remediation: An EPD Symposium Honoring Fiona Doyle	101	×	×								
Materials Processing Fundamentals: Thermodynamics and Rate Phenomena	103			×				×	×	×	
Phase Transformations and Microstructural Evolution	123	×	×	×	×	×		×			
Phase Transformations and Microstructural Evolution	167								×	×	×
Powder Materials Processing and Fundamental Understanding	105			×	×	×		×	×	×	×

PROGRAM AT-A-GLANCE		MON AM	MON PM	MON POSTER	TUE AM	TUE PM	TUE POSTER	WED AM	WED PM	тно ам	THU PM
Symposium Name	ROOM	2	2	Θ W	_	_	ID I	>	>	_	
Rare Metal Extraction & Processing	104							×	×	×	
Recent Advances in Titanium Science and Technology: MPMD/SMD Symposium Honoring Professor Dipankar Banerjee	107							×	×	×	×
REWAS 2025: Automation and Digitalization in Recycling Processes	117								×		
REWAS 2025: Sustainable End-of-Life Management and Recycling Solutions for Batteries, Wind Turbines, and Photovoltaics	117	×	×	×	×						
REWAS 2025: Sustainable Practices in Strategic and Critical Raw Materials: Exploring Supply Chain Resilience and Recycling Innovations	117					×		×			
Sustainability of High Temperature Alloys	102			×				×	×	×	
Thin Films and Coatings: Properties, Processing and Applications	101			×		×		×	×	×	×
Mechanics of Materials											
Accelerated Discovery and Insertion of Next Generation Structural Materials	364								×	×	×
Advances in Multi-Principal Element Alloys IV: Mechanical Behavior	368	×	×	×	×	×		×	×	×	×
Atomistic Simulations Linked to Experiments to Understand Mechanical Behavior: A MPMD Symposium in Honor of Professor Diana Farkas	370	×	×		×	×		×	×	×	
Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling	318	×	×	×	×			×	×	×	
Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling	317					×					
Mechanical Behavior Related to Interface Physics IV	369	×	×	×	×	×		×	×	×	×
Mechanical Response of Materials Investigated through Novel In-situ Experiments and Modeling	366	×	×	×	×	×		×	×	×	
Solid-State Diffusion Bonding of Metals and Alloys	301	×	×	×							
Spatially Tailored Materials: Processing-Structure-Properties	351	×	×	×	×	X					
Structure-Property Relationships in Molecular Crystal Deformation	365	×	×		×						
Structure and Dynamics of Metallic Glasses	367	×	×	×	×	×		×	×	×	×
Nuclear Materials											
Composite Materials for Nuclear Applications III	164							X	×	×	X
Elucidating Microstructural Evolution Under Extreme Environments	162	×	×	×	×	×		×	×	×	
Materials Corrosion Behavior in Advanced Nuclear Reactor Environments II	164	×	×								
Mechanical Behavior of Nuclear Reactor Materials and Components IV	160	×	×	×	×	×		×	×	×	×
Meeting Materials Challenges for the Future of Fusion Energy	158	×	X	X	X	X		×	X	X	X

PROGRAM AT-A-GLANCE		MON AM	MON PM	MON POSTER	TUE AM	TUE PM	rue Poster	WED AM	WED PM	THU AM	THU PM
Symposium Name	ROOM	2	2	Θ Σ			D _T	>	2	-	
Microstructural, Mechanical, and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface II	159	×	×	×	×	×		×	×	×	×
Seaborg Institutes: Emerging Topics in Actinide Sciences	163	×	×		×	×		×	×		
Solid-state Processing and Manufacturing for Extreme Environment Applications: Integrating Insights and Innovations	161	×	×	×							
Special Topics in Nuclear Materials: Lessons Learned; Non- Energy Systems; and Coupled Extremes	161							×	×	×	
Spectroscopic Methods and Analysis for Nuclear Energy Related Materials	161			×	×						
Spectroscopic Methods and Analysis for Nuclear Energy Related Materials	163									×	
Special Topics											
TMS2025 All-Conference Plenary	120					×					
2025 Technical Division Student Poster Contest	Marquee Ballroom			×			×				
Acta Materialia Symposium	170					×					
Bladesmithing 2025	164				×						
DMMM5: A Decade of Creating Inclusion and Belonging for Diversity in the Minerals, Metals, and Materials Professions	150					×		×	×	×	
Frontiers of Materials Award Symposium: Manufacturing Structural and Functional Materials with Complexity: Lessons from Nature	116							×			
Looking Outside Materials Science: Lessons Learned for and from Materials Discovery - A Student-Led Symposium	170				×						
Nix Award and Lecture Symposium VI: Recent Developments in Investigating the Flow Mechanisms of Crystalline Solids	170							×			
Preparing Undergraduate and Graduate Students - And the Faculty Who Prepare Them - For Materials Careers (A Symposium Held in the Memory and Honor of Elizabeth Judson)	170	×	×								

LIGHT METALS

2025 Light Metals Keynote Session — Growing Pains: Advancing Aluminum Recycling, **Decarbonization, and Circular Innovations**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizer: Samuel Wagstaff, Oculatus Consulting

Monday AM | March 24, 2025

120 | MGM Grand

Session Chair: Samuel Wagstaff, Oculatus Consulting

8:30 AM Introductory Comments

8:35 AM Light Metals Subject Awards Presentation

8:45 AM Keynote

Integration of Aluminum Recycling Facility into EGA's Current Aluminum Portfolio: Abdulaziz Sarhan¹; ¹Emirates Global Aluminium

9:15 AM Keynote

Innovating Toward Net-Zero Emissions and Circular Aluminum: Christian Schmidt¹; ¹Hydro

9:45 AM Break

10:00 AM Keynote

Navigating the Aluminum Scrap Squeeze: Challenges and Solutions: Michael Hamm¹: ¹Constellium

10:30 AM Panel Discussion

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

2D Materials - Preparation, Properties, Modeling & Applications — Carbon Related Materials -**Processing, Properties & Applications**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Hesam Askari, University of Rochester; Ritesh Sachan, Oklahoma State University; Joshua Young, New Jersey Institute of Technology; Sufian Abedrabbo, Khalifa University; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Chintalapalle V Ramana, University of Texas

Monday AM | March 24, 2025 362 | MGM Grand

Session Chairs: Ramana Chintalapalle, University of Texas at El Paso; Nuggehalli Ravindra, New Jersey Institute of Technology

8:30 AM Introductory Comments

8:40 AM

Enhancement of Electrical Conductivity in Copper-Graphene Multilayer System: Chaochao Pan¹; Anand Gaur²; Jun Cui¹; ¹Ames National Laboratory; 2 lowa State University

9:00 AM Keynote

Flexible Nanocomposite Films Based on Carbon Nanotubes/ MXene/Cobalt Nanowires for Enhanced EMI Shielding Applications: Daniel Choi¹; Syed Sajl¹; ¹Khalifa University of Science & Technology

9:25 AM Invited

Laser Expansion of Intercalated Graphite for the Production of High Quality Liquid Phase Exfoliated Graphene: Yarjan Abdul Samad¹; Rami Elkaffas¹; Haider Butt¹; ¹Khalifa University of Science & Technology

9:45 AM

Effect of Orientation of Cobalt Nanowires in Carbon Nanotube Matrix on Electromagnetic Interference Shielding Effectiveness: Syed Sajl1; 1Khalifa University

10:05 AM Break

10:15 AM Invited

Phase Transformation of Diamond from Layered Graphene with Tilt Grain Boundaries: Kasra Momeni¹; Nuruzzaman Sakib¹; Md Rashidul Alam¹; ¹University of Alabama

10:35 AM

Spatial-Selective Electrostatic Doping of Graphene Through Metal Atom Precipitation at Substrate Heterointerface: Ke Ma1; Matthew Sherburne¹; Zakaria Al Balushi¹; Jiayun Liang¹; ¹University of California, Berkeley

10:55 AM Invited

Sustainable Synthesis of Reduced Graphene Oxide from Sugarcane Dry Leaves and Onion Peel Waste by Pyrolysis Process for Antibacterial Activity: Baskar Thangaraj¹; Pravin Solomon²; Jamal Hassan¹; Sufian Abedrabbo¹; ¹Khalifa University; ²Madurai Kamaraj University

11:15 AM

Novel Technique to Fabricate Thick Carbon Nanotube-Based Buckypaper for Electromagnetic Interference Applications: Syed Sajl1; 1Khalifa University

11:35 AM

Tuning Mechanical and Electronic Properties of Bilayer Graphene by Strain Engineering: Soumya Sarangi¹; Gary Cheng¹; ¹Purdue University

ADDITIVE MANUFACTURING

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials — **Shape Memory Alloys**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Magnetic Materials Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Henry Colorado, Universidad de Antioquia; Riccardo Casati, Politecnico Di Milano

Monday AM | March 24, 2025 315 | MGM Grand

Session Chair: Daniel Salazar, BCMaterials

8:30 AM

Multi-Material AM of Shape Memory Alloys for Tunable Mechanical Responses: Nerea Abando¹; Ralph Spolenak¹; ¹ETH Zurich

8:50 AM

Integrated Mechanical Working Assisted Directed Energy Deposition Process: Improving Structural Integrity by Modifying Microstructure in Iron-Based Shape Memory Alloy: Soumyajit Koley¹; Supriyo Ganguly²; ¹Tata Steel; ²Cranfield University

9:10 AM Invited

Powder-Blown Laser-Based Directed Energy Deposition of Ni-Mn-Ga Magnetic Shape Memory Alloy: Ville Laitinen1; Anastassia Milleret²; Mahsa Namvari¹; Pierangeli Rodriguez De Vecchis³; Moataz Attallah⁴; Markus Chmielus³; Kari Ullakko¹; ¹LUT University; ²University College London; ³University of Pittsburgh; ⁴University of Birmingham

9:40 AM

In Situ Synchrotron Imaging of Ni-Mn-Ga During Laser Powder Bed Fusion: Anastassia Milleret¹; Samy Hocine¹; Kwan Kim¹; Ville Laitinen²; Alexander Rack³: Peter Lee¹: Chu Lun Alex Leung¹: ¹University College London; ²LUT university; ³European Synchrotron Radiation Facility

10:00 AM Break

10:20 AM

Laser Powder Bed Fusion (L-PBF) of NiTi Shape Memory Alloys: Effect of Deposition Parameters and Rescanning on the Microstructure, Texture, and Thermomechanical Behavior: Naiyer Shokri¹; Sayed Sagahaian²; Thomas Berfield¹; ¹University of Louisville; ²Florida Institute of Technology

10:40 AM

Additive Manufacturing of Ni-Ti-Hf Shape Memory Alloys: Philipp Krooss¹; Christian Lauhoff¹; Seyedvahid Sajjadifar¹; Thomas Niendorf¹; ¹University Of Kassel

11:00 AM

Additive Manufacturing of Magnetic Shape Memory Alloys for Solid-State Refrigeration: Daniel Salazar¹; ¹BCMaterials

ADDITIVE MANUFACTURING

Additive Manufacturing Fatigue and Fracture: Towards Accurate Prediction — Process-Structure-Properties Relationships I

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; Nima Shamsaei, Auburn University; John Lewandowski, Case Western Reserve University; Mohsen Seifi, ASTM International/Case Western Reserve University

Monday AM | March 24, 2025 317 | MGM Grand

Session Chair: John Lewandowski, Case Western Reserve University

8:30 AM Invited

The Effect of Build Parameters on the Environmentally Assisted Cracking Behavior in AM 316L: James Burns¹; Michael Roach¹; ¹University of Virginia

8:50 AM

Effects of Process Parameters on the Mechanical Behavior of Wire Arc Additively Manufactured (WAAM) AISI 316LSi.: Vishnu Ramasamy¹; Brett Ley¹; John Lewandowski¹; ¹Case Western Reserve University

9:10 AM

Fatigue Criticality Assessment of Volumetric Defects in Notched **Specimens: A Non-Destructive Approach**: Arun Poudel¹; *Jonathan* Pegues¹; Matthew Kelly²; Shuai Shao¹; Nima Shamsaei¹; ¹Auburn University; 2U.S. Army DEVCOM Ground Vehicles System Center

9:30 AM Invited

Impact of Micro and Mesostructure on the Failure Resistance of Laser Powder Bed Fusion-Processed Materials: Bernd Gludovatz1; Moses Paul²; Jamie Kruzic¹; Christopher Hutchinson³; Upadrasta Ramamurty²; ¹University of New South Wales Sydney; ²Nanyang Technological University; ³Monash University

9:50 AM Break

10:10 AM

On the Structural Integrity of Fe-36Ni Invar Alloy Processed by Different Additive Manufacturing Techniques: Thomas Wegener¹; Thomas Niendorf¹; Johannes Günther²; ¹University of Kassel; ²Günter-Köhler Institute for Joining and Materials Testing

10:30 AM

Improving the Fatigue Resistance of Laser Powder Bed Fusion Components by Cavitation Abrasive Waterjet Finishing: Surface Texture and Residual Stress: Rohin Petram¹; Conall Wisdom¹; Alex Montelione¹; Cole Nouwens¹; Dan Sanders¹; Mamidala Ramulu¹; Dwayne Arola¹; ¹University of Washington

10:50 AM

NDE for Fatigue Assessment: a Study on the Anomaly Detection by X-CT: Stefano Beretta¹; Shaharyar Baig¹; Alireza Jam¹; Shuai Shao¹; Nima Shamsaei¹; ¹Auburn University

11:10 AM

Microstructure, Defect, Mechanical Properties of Binder Jet Printed 17-4 PH Stainless Steel: Meisam Khademitab1; Amir Mostafaei1; ¹Illinois Institute of Technology

Predicting Creep for AM Alloys Using the Larson-Miller Method: Limitation and Next Step: Yu-Tsen Yi1; Nicholas Lamprinakos1; Xiang Chen²; Anthony Rollett¹; ¹Carnegie Mellon University; ²Oak Ridge **National Laboratory**

ADDITIVE MANUFACTURING

Additive Manufacturing Materials in Energy Environments II — Joint Session: Accelerated **Discovery and Insertion of Next Generation** Structural Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Nuclear Materials Committee

Program Organizers: Isabella Van Rooyen, Pacific Northwest National Laboratory; Subhashish Meher, Pacific Northwest National Laboratory, Kumar Sridharan, University of Wisconsin-Madison; Xiaoyuan Lou, Purdue University; Yi Xie, Peking University; Michael Kirka, Oak Ridge National Laboratory; Mohan Sai Kiran Nartu, Pacific Northwest National Laboratory

Monday AM | March 24, 2025 109 | MGM Grand

Session Chairs: Kumar Sridharan, University of Wisconsin-Madison; Isabella Van Rooyen, Pacific Northwest National Laboratory

8:30 AM

Heterogeneity in Stainless Steel 316 Fabricated Using Laser Powder Bed Fusion: Peeyush Nandwana¹; Selda Nayir¹; Caleb Massey¹; Rangasayee Kannan¹; Geeta Kumari¹; Chase Joslin¹; Fred List III¹; Xuan Zhang¹; ¹Oak Ridge National Laboratory

8:50 AM

Time Dependence of 600°C Post-Weld Heat Treatment on the Microstructure and Mechanical Properties of Austenitic Stainless Steel Claddings on Low Carbon Steel Via Laser-Wire Directed Energy Deposition: Scott Bozeman¹; Lukas Daut¹; Brian Bay¹; O Isgor¹; Julie Tucker¹; ¹Oregon State University

Effect of Hydrogen Blended Natural Gas on Additive Manufactured 316L Stainless Steel in Pressure Regulator Environments: Gerardo Gamboa¹; Ali Babakr¹; Marcus Young²; ¹Emerson; ²University of North Texas

9:30 AM

Microstructural Evolution of Additively-Manufactured 316H Stainless Steel During High-Temperature Creep and Its Effects on Irradiation Resistance: John Snitzer¹; Wei-Ying Chen²; Xiaoyuan Lou¹; ¹Purdue University; ²Argonne National Lab

9:50 AM

Post Irradiation Examination of Neutron-Irradiated AM 316L Stainless Steel: Timothy Lach¹; Stephen Taller¹; Caleb Massey¹; ¹Oak Ridge National Laboratory

10:10 AM Break

10:20 AM

Creating Processing-Microstructure-Properties Libraries Additive Manufacturing of Complex Concentrated Alloys: Venkata Bhuvaneswari Vukkum¹; Tingkun Liu¹; Hari Harilal¹; Arun Devaraj¹; ¹Pacific Northwest National Laboratory

10:40 AM

Development and Additive Manufacturing of Oxide Dispersion Strengthened IN625 ALLOY for Gen. IV Nuclear Reactors: Kadir Tugrul Demirci¹; Eda Aydogan²; Selen Nimet Gurbuz Guner¹; Erhan Aksu¹; Ilhan Bukulmez¹; ¹Turkish Energy, Nuclear and Mineral Research Agency; ²Middle East Technical University

Nitride and Oxide Dispersion Strengthened of Fe12Cr6Al Alloys During Laser Powder Bed Fusion for Nuclear Applications: Omer Cakmak¹; Seong Gyu Chung¹; Seung-Hoon Lee¹; Hwasung Yeom¹; Jung-Wook Cho1; 1POSTECH

11:20 AM

Microstructure Control of Ferritic-Martensitic Steels During Wire-Arc Direct Energy Deposition Process: Yukinori Yamamoto¹; Wei Tang¹; Saket Thapliyal¹; Peeyush Nandwana¹; Riley Wallace¹; William Carter¹; Andrzej Nycz¹; Ben Schaeffer²; ¹Oak Ridge National Laboratory; ²Lincoln Electric

11:40 AM

The Effects of Process Parameters and Heat Treatment on the High-Temperature Creep Properties of Additively Manufactured 316H Stainless Steel: John Snitzer¹; Ben Sutton²; John Shingledecker²; Xiaoyuan Lou¹; ¹Purdue University; ²EPRI

ADDITIVE MANUFACTURING

Additive Manufacturing of Refractory Metallic Materials — Additive Manufacturing of Nb-Alloy and **High Temperature Mechanical Properties**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Refractory Metals & Materials Committee

Program Organizers: Fernando Reyes Tirado, Nasa Marshall Space Flight Center; Omar Mireles, Los Alamos National Laboratory; Faramarz Zarandi, RTX Corporation; Jeffrey Sowards, NASA Marshall Space Flight Center, Antonio Ramirez, Ohio State University; Eric Brizes, NASA Glenn Research Center; Eric Lass, University of Tennessee-Knoxville; Matthew Osborne, Global Advanced Metals; Joao Oliveira, Faculdade Ciencias Tecnologias; Ian Mccue, Northwestern University; Zachary Sims, Small Business Consulting Corporation

Monday AM | March 24, 2025 316 | MGM Grand

Session Chairs: Fernando Reyes Tirado, Nasa Marshall Space Flight Center; Omar Mireles, Los Alamos National Laboratory

8:30 AM Invited

A Comparison of Niobium Alloys C103 and Nb521: Eric Brizes1; Justin Milner¹; ¹NASA Glenn Research Center

Hot-fire Testing of C103 Nozzle Extensions: Fernando Reves Tirado¹: Carly Romnes¹; Colton Katsarelis¹; Joseph Hernandez McCloskey¹; Thomas Teasly¹; ¹Nasa Marshall Space Flight Center

Understanding the Elevated Temperature Properties of Niobium-Based Alloys Relevant to Aerospace Applications: Lauren Bowling¹; Noah Philips²; Daniel Matejczyk³; James Fitz-Gerald¹; William Riffe¹; Patrick Hopkins¹; Sean Agnew¹; ¹University of Virginia; ²ATI Materials; ³Aerojet Rocketdyne - L3 Harris

9:40 AM

Elevated Temperature Mechanical Performance of Historical Niobium Alloys: Eric Brizes¹; Justin Milner¹; ¹NASA Glenn Research

10:00 AM Break

10:20 AM

Impact of Multi-Scale Microstructural Heterogeneities on the Mechanical Behavior of Additively Manufactured and Post-Processed Nb-Based C103 Alloy: Advika Chesetti¹, Tirthesh Ingale¹; Sucharita Banerjee¹; Madhavan Radhakrishnan¹; Narendra Dahotre¹; Abhishek Sharma¹; Rajarshi Banerjee¹; ¹University of North Texas

10:40 AM

Uncovering the Ultra-High Temperature Deformation Mechanisms of Novel Refractory Alloys: Sharon Park¹; Mo-Rigen He¹; Syed I.A. Jalali¹; Michael Patullo¹; Noah Philips²; Abdelmoez Hussein³; Moataz Attallah3; Kevin Hemker1; 1Johns Hopkins University; 2ATI Specialty Alloys; 3University of Birmingham

11:00 AM

Laser Powder Bed Fusion of C103 and Refractory-Based Alloys -Material Development Using Ultrasonic Atomization: Jakub Ciftci¹; Tomasz Choma¹; Bartosz Morończyk¹; ukasz rodowski¹; ¹Amazemet

ADDITIVE MANUFACTURING

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response - Micromechanics and Ti-**Based Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sezer Ozerinc, University of Illinois at Urbana-Champaign; Yu Zou, University of Toronto; Tianyi Chen, Oregon State University; Wendy Gu, Stanford University; Eda Aydogan, Pacific Northwest National Laboratory; Keivan Davami, University of Alabama

Monday AM | March 24, 2025 310 | MGM Grand

Session Chairs: Yu Zou, University of Toronto; Keivan Davami, University of Alabama

8:30 AM Invited

Exploring Complex Microstructures in Additively Manufactured Alloys with Micro Mechanical Testing: Subin Lee¹; Nagamani Balila²; Pyuck-Pa Choi³; Christoph Kirchlechner¹; ¹Karlsruhe Institute of Technology; ²IIT Bombay; ³Korea Advanced Institute of Science and Technology

9:10 AM

Compositionally Graded Titanium Alloys: Correlation Between Local Microstructures and Mechanical Properties: Soumya Dashi; Zhiying Liu¹; Yu Zou¹; ¹University of Toronto

Indentation Size Effects on Hardness of Ti-6Al-4V Made by Laser **Directed Energy Deposition**: Janelle Hobbs¹; Kaka Ma¹; ¹Colorado State University

9:50 AM

The Automated Quantification of Alpha Laths and Tensile Behavior in Ti-6Al-4V Processed With Laser Powder Bed Fusion: Matthew Schreiber¹; Garrison Hommer¹; Craig Brice¹; Josh Norman²; Jenna Krynicki²; Joy Gockel¹; ¹Colorado School of Mines; ²RTX Technology Center

10:10 AM Break

10:30 AM

Size Effects, Mechanical Properties, and Yield Surface Evolution in Multiaxial Loading of Ti5553, Ti6Al4V alloys: Seyyed Danial Salehi¹; Mehrdad Pourjam¹; Thomas Voisin²; Kavan Hazeli¹; ¹University of Arizona; ²Lawrence Livermore National Laboratory

10:50 AM

Precipitation Hardening of Laser Powder Bed Fusion Ti-6Al-4V: Nicholas Derimow¹; Jake Benzing¹; Jacob Garcia¹; Howie Joress¹; Ping Lu²; Newell Moser¹; Chad Beamer³; Frank DelRio²; Nik Hrabe¹; ¹National Institute of Standards and Technology; ²Sandia National Laboratories; 3Quintus Technologies

Additive Manufacturing of Titanium Alloys: Microstructure-Mechanical Properties Relationship: Amir Hadadzadeh¹; ¹University of Memphis

ADVANCED CHARACTERIZATION METHODS

Advanced Characterization Techniques for Quantifying and Modeling Deformation — EBSD

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Wolfgang Pantleon, Technical University of Denmark; Irene Beyerlein, University of California, Santa Barbara; C. Tasan, Massachusetts Institute of Technology, M. Arul Kumar, Indian Institute of Technology Kanpur

Monday AM | March 24, 2025 122 | MGM Grand

Session Chairs: Wolfgang Pantleon, Technical University of Denmark; Gregory Thompson, University of Alabama

8:30 AM

Imaging Defects at the Mesoscale Using a Direct EBSD Detector: McLean Echlin¹; Nicolò Maria della Ventura¹; William Lenthe²; Kalani Moore³; James Lamb¹; Fulin Wang⁴; Wyatt Witzen¹; Irene Beyerlein¹; Tresa Pollock¹; Marc De Graef⁵; Dan Gianola¹; ¹University of California Santa Barbara; ²Gatan / EDAX; ³Direct Electron; ⁴Shanghai Jiao Tong University; 5 Carnegie Mellon University

8:50 AM

Evaluating the Precursors of Particle Fracture in Al Alloys Via High-Resolution EBSD: Philip Noell¹; Laura Vietz¹; William Gilliland¹; Timothy Ruggles¹; ¹Sandia National Laboratories

Dislocation Analysis in Fatigue Tested AISI 316L Stainless Steel: Johan Westraadt¹; Luchian Pullen²; Robert Knutsen³; ¹The Ohio State University; ²Nelson Mandela University; ³University of Cape Town

Application of an Iterative Optimization Algorithm on Residual Strain Extraction from Electron Backscatter Diffraction Patterns: Crestienne Dechaine¹; Marc De Graef¹; ¹Carnegie Mellon University

Assessing Local Deformation in Polycrystalline Materials Using HR-EBSD, ECCI and HR-DIC: Xinrui Huang1; Phani Karamched1; Angus Wilkinson¹; ¹University of Oxford

10:10 AM Break

10:30 AM

Multi-Scale Characterization of 3D Printable CrCoNi-Based ODS-MPEAs by Methods of Advanced Stereo-STEM Cross-Correlated with EDS - Resourcing Experimental Data to Act as Potential Input into the Quantitative Models: Milan Heczko¹; Timothy Smith²; Christopher Kantzos²; Antonín Dlouhý¹; Michael Mills³; ¹Institute of Physics of Materials, Czech Academy of Sciences; ²NASA Glenn Research Center; ³The Ohio State University

10:50 AM

Rationalizing Multiple Characterization **Approaches Determining Active Slip Systems in Ti-6-4**: Brigham Stacey¹; Tyson Neville¹; Blake Jensen¹; David Fullwood¹; Michael Miles¹; Talukder Oishi²; Marko Knezevic²; Brad Kinsey²; ¹Brigham Young University; ²University of New Hampshire

11:10 AM

Study of Strain Localization and Crystal Reorientation at the Early Stage of Plastic Deformation Using Laser Confocal Microscopy, EBD and DCT-6D: Damien Texier1; Sylvain Vallot1; Julien Genée1; Malo Jullien¹; Henry Proudhon²; Wolfgang Ludwig³; Jean-Charles Stinville⁴; ¹Institut Clement Ader - Umr Cnrs 5312; ²Centre des Matériaux Mines Paris PSL; 3MATEIS - UMR CNRS 5510; 4UIUC

11:30 AM

The Application of Digital Image Correlation to In Situ TEM **Deformation Investigations**: *Gregory Thompson*¹, Accalia Robinson¹; Thomas Koenig²: Alicia Koenig²: Eric Homer³: ¹University of Alabama: ²Lehigh University; ³Brigham Young University

MATERIALS SYNTHESIS AND PROCESSING

Advanced Laser Manufacturing of High-Performance Materials — Laser Metal Forming and Advanced Laser Manufacturing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Adam Hicks, Air Force Research Laboratory; Jared Speltz, University of Dayton Research Institute

Monday AM | March 24, 2025 105 | MGM Grand

Session Chairs: Adam Hicks, Air Force Research Laboratory; Jared Speltz, University of Dayton Research Institute

8:30 AM Introductory Comments: Advanced Laser Manufacturing for Aerospace Applications

9:00 AM

In-Space Laser Forming Simulated Under Thermal Vacuum Conditions: Andrew O'Connor¹; Jonathan Bonebrake¹; Thomas Bryan¹; Ellis Crabtree²; William Evans¹; John Ivester¹; Emma Jaynes¹; Louise Littles¹; Benjamin Rupp¹; Zachary Courtright¹; ¹NASA/MSFC; ²NASA Postdoctoral Program

9:20 AM

Controlling the Pre-Bending Delay During Laser Sheet Metal Forming: Nathan Fripp¹; Tianchen Wei¹; Benjamin Begley¹; Benjamin Anthony¹; Victoria Miller¹; ¹University of Florida

9:40 AM

Leveraging Advances in Additive Manufacturing Thermal Models to Predict Behavior During Laser Sheet Metal Forming: Benjamin Begley¹; Zoe Lipton¹; Daniel Bolden¹; Tianchen Wei¹; Nathan Fripp¹; Victoria Miller¹; ¹University of Florida

10:00 AM Break

10:20 AM

Microstructural Evolution in Austenitic Stainless Steels During Laser Sheet Metal Forming: Tianchen Wei¹; Nathan Fripp¹; Benjamin Begley¹; Benjamin Anthony¹; Victoria Miller¹; ¹University of Florida

Blue Laser Welding of Copper Foil: Jonah Duch¹; Jeffrey Rodelas¹; Peter Kinney¹; Jack Herrmann¹; ¹Sandia National Lab

Ultrafast Laser Dicing of Fused Silica Filled Epoxy Molding Compound (EMC): Process Mechanisms: Sijie Zhang¹; Yung Shin¹; ¹Purdue University

11:20 AM

Wear Characteristics of AL203 Ceramic Coatings Manufactured by Laser Cladding and Selective Laser Melting: Sumin Song¹; Yeonghwan Song¹; Taebum Kim¹; Jeongho Han²; Kyuntaek Cho¹; ¹Korea Institute of Industrial Technology; ²Hanyang University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advanced Materials for Energy Conversion and Storage 2025 — Advanced Engineering of Electrode **Materials**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Energy Conversion and Storage Committee, TMS: High Temperature Alloys Committee

Program Organizers: Surojit Gupta, University of North Dakota; Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania; Cengiz Ozkan, University of California

Monday AM | March 24, 2025 356 | MGM Grand

Session Chairs: Soumendra Basu, Boston University; Eric Detsi, University of Pennsylvania

8:30 AM Invited

Oxygen Electrodes for Reversible Solid Oxide Cells: Ayesha Akter¹; Jillian Mulligan¹; John-In Lee¹; Soumendra Basu¹; Uday Pal¹; Srikanth Gopalan¹; ¹Boston University

Enhancing Capacity of Cobalt-Free Lithium-Ion Batteries via Aerosol Jet Deposited Ultra Thick Micro Architected Electrode Structures: Michael Stefanov¹; Chunshan Hu¹; Sandra Ritchie¹; Rahul Panat¹; ¹Carnegie Mellon University

9:15 AM

Enhancement of the Electrochemical Performance of LiFePO4 Cathode Material by Nanosecond Laser Annealing: Siba Sundar Sahoo1; Jagdish Narayan1; Xiao-Guang Sun2; Parans Paranthaman2; Roger Narayan¹; ¹North Carolina State University; ²Oak Ridge **National Laboratory**

9:35 AM Invited

Relationship Between Microstructural Changes in Reversible Solid Oxide Cells and Their Performance: Emily Ghosh¹; Jillian Mulligan¹; John-In Lee¹; Ayesha Akter¹; Uday Pal¹; Srikanth Gopalan¹; Soumendra Basu¹; ¹Boston University

10:00 AM Break

10:15 AM

First-Principles Study on the Interfacial Stability Between Potential Anode Materials and Cubic LLZO Solid Electrolyte for Li-Ion Batteries: Ngoc Thanh Thuy Tran¹; Shih-kang Lin¹; ¹National Cheng Kung University

10:35 AM

Enhanced H+ Storage of a MnO2 Cathode Via a MnO2 Nanolayer Interphase Transformed from Manganese Phosphate: Danxuan Zhao1; You Zuo1; 1Northeastern University

10:55 AM

Exploring Electrodeposition Kinetics in Magnesium Metal Anodes: Vahid Attari¹; Sarbajit Banerjee¹; Raymundo Arroyave¹; ¹Texas A&M University

11:15 AM

Copper and Sulfur Codoped NiCo-LDH for High-Performance Supercapacitor Electrode Materials: Sudhir Kumar¹; Debabrata Pradhan¹; ¹Indian Institute of Technology Kharagpur

ADVANCED CHARACTERIZATION METHODS

Advanced Real Time Imaging — Additive **Manufacturing & Energy Materials**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: Biomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Jinichiro Nakano, MatterGreen; David Alman, National Energy Technology Laboratory; Il Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology; Noritaka Saito, Kyushu University; Zuotai Zhang, Southern University of Science and Technology; Bryan Webler, Carnegie Mellon University; Wangzhong Mu, KTH Royal Institute of Technology; Pranjal Nautiyal, Oklahoma State University; Jiawei Mi, University of Hull

Monday AM | March 24, 2025 156 | MGM Grand

Session Chair: Pranjal Nautiyal, Oklahoma State University

8:30 AM Invited

Beam Control in LPBF and High-Speed Visualization: Anthony Rollett¹; Guannan Tang¹; Nicholas Lamprinakos¹; Ziheng Wu¹; ¹Carnegie Mellon University

8:50 AM

Revealing Weld Bead Dynamics: High-Speed Imaging of Wire Arc **DED Process**: *Tyler Dolmetsch*¹; Sohail Mohammed¹; Blanca Palacios¹; Tanaji Paul¹; Arvind Agarwal¹; ¹Florida International University

9:10 AM

Study of Cracking Initiation and Evolution Dynamics with In-Situ X-Ray Imaging and Automated Machine Learning: M Matsive Ali¹; Nick Calta²; Christopher Tassone³; Sen Liu¹; ¹University of Louisiana at Lafayette; ²Lawrence Livermore National Laboratory; ³SLAC National Accelerator Laboratory

9:30 AM

Using Lock-in Thermography to Rapidly Screening Thermal Property of Additive Manufacturing Components: Zilong Hua1; Patrick Merighe²; Jorgen Rufner¹; Arin Preston¹; Amey Khanolkar¹; Asa Monson¹; William Chuirazzi¹; Michael McMurtrey¹; David Hurley¹; ¹Idaho National Laboratory; ²Utah State University

9:50 AM

Operando X-Ray Imaging of Solute Redistribution in Functionally Graded Materials: Steve Gaudez¹; Zhilang Zhang²; Andaç Özsoy¹; William Hearn¹; Yunhui Chen³; Alexander Rack⁴; Mohamadreza Afrasiabi⁵; Steven Van Petegem¹; ¹Paul Scherrer Institut; ²ETH Zurich; ³Royal Melbourne Institute of Technology; ⁴European Synchrotron Radiation Facility; 5ETH Zurich

10:10 AM Break

10:30 AM Invited

Real-Time Optical Visualization of Battery Reactions and Processes: Nian Liu¹; ¹Georgia Institute of Technology

10:50 AM

Real-Time Imaging and Analysis of Electroconvection Using Advanced Fluorescence Microscopy and Cloud Algorithms: Duhan Zhang¹; ¹Massachusetts Institute of Technology

11:10 AM

Operando Study of the Exfoliation Dynamics of 2D Materials by X-Ray Free Electron Laser MHz Imaging and Multiphysics Modelling: Kang Xiang¹; Ling Qin²; Jiawei Mi¹; ¹University of Hull; ²University of Wyoming

MATERIALS SYNTHESIS AND PROCESSING

Advances in Bcc-Superalloys — Refractory High **Entropy Superalloys (RSAs)**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee, TMS: Refractory Metals & Materials Committee

Program Organizers: Alexander Knowles, University of Birmingham; Christopher Zenk, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Howard Stone, University of Cambridge; Oleg Senkov, Air Force Research Laboratory; Eric Lass, University of Tennessee-Knoxville; Thomas Hammerschmidt, Ruhr University Bochum

Monday AM | March 24, 2025 102 | MGM Grand

Session Chairs: Sandy Knowles, University of Birmingham; Christopher Zenk, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

8:30 AM Invited

Design and Deformation of BCC - B2 Refractory Multiprincipal Element Alloys: Carolina Frey1; Sebastian Kube2; Ben Neumann1; Justin Mayer¹; Patrick McNutt¹; Irene Beyerlein¹; Tresa Pollock¹; ¹University of California - Santa Barbara; ²University of Wisconsin

9:00 AM

Advancing High-Temperature Structural Applications: Design and Manufacturing of BCC Refractory MPEAs Via Additive Manufacturing Technologies: Julia Chmielewska¹; Christian Leinenbach¹; ¹Empa

9:20 AM

Challenges Facing the Design of Refractory BCC-B2 Alloys for **3D Printing**: Kaitlyn Mullin¹; Carolina Frey¹; Syed I. A. Jalali²; Michael Patullo²; Kevin Hemker²; Tresa Pollock¹; ¹University of California Santa Barbara; ²Johns Hopkins University

9:40 AM

Investigation of Nano-Scale Phase Separation in Refractory High Entropy Alloys Using Complementary Techniques: Sudip Sarkar¹; Advika Chasetti¹; Nachiket Keskar¹; Abhishek Sharma¹; Vishal Soni¹; Tirthesh Ingale¹; Narendra Dahotre¹; Rajarshi Banerjee¹; ¹University of North Texas

10:00 AM Break

10:20 AM Invited

Evolution of the BCC + B2 Microstructure and Its High Temperature Stability in Refractory High Entropy Alloys: Vishal Soni¹; Abhishek Sharma¹; Sriswaroop Dasari¹; Zachary Kloenne²; Jean-Philippe Couzinie³; Oleg Senkov⁴; Daniel Miracle⁴; Srinivasan Srivilliputhur¹; Hamish Fraser²; Rajarshi Banerjee¹; ¹University of North Texas; ²The Ohio State University; 3Univ Paris Est Creteil, CNRS, ICMPE; 4Air Force Research Laboratory

10:50 AM

High-Temperature Evolution of Irradiation Defects in WTaCrV Refractory High-Entropy Alloy for Nuclear Fusion Applications: Damian Kalita¹; Iwona Jóźwik¹; Katarzyna Mulewska¹; Amin Esfandiarpour¹; Łukasz Kurpaska¹; Yanwen Zhang²; William J. Weber²; Jacek Jagielski¹; ¹National Centre for Nuclear Research; ²University of Tennessee

11:10 AM

Identification of the B2 Phase in the TaRe Binary BCC Phase Field Via Multiscale Characterization Techniques and Neutron Diffraction: Bryan Crossman1; Junxin Wang1; Loic Perriere2; Jean-Philippe Couzinie²; Maryam Ghazisaeidi¹; Michael Mills¹; ¹The Ohio State University; ²East Paris Institute of Chemisty and Materials

Superconductivity in the New Titanium-Rich BCC High-Entropy Alloy: Piotr Sobota1; Daniel Gnida2; Bartosz Rusin1; Wojciech Nowak1; Adam Pikul²; Rafal Idczak¹; ¹University of Wroclaw; ²Polish Academy of Sciences

MATERIALS SYNTHESIS AND PROCESSING

Advances in Ceramic Materials and Processing — **High Entropy Ceramics**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University, Kathy Lu, University of Alabama Birmingham; Faqin Dong, Southwest University of Science and Technology; Ruigang Wang, Michigan State University; Alexander Dupuy, University of Connecticut; Jinhong Li, China University of Geosciences; Gregory Thompson, University of Alabama; Babak Anasori, Purdue University

Monday AM | March 24, 2025 106 | MGM Grand

Session Chairs: Alexander Dupuy, University of Connecticut; Faqin Dong, Southwest University of Science and Technology

8:30 AM Invited

High-Entropy Oxides: Data and Discovery: Corey Oses¹; ¹Johns **Hopkins University**

8:50 AM

Monoclinic Phase Stabilization with the High Entropy Ceramics Approach in the Pseudobinary System In3Ti2AO10 - In6Ti6BO22 (A: Al, Ga; B: Mg, Zn): Victor Emmanuel Alvarez Montano¹; Subhash Sharma²; Miguel Olivas Martínez³; Francisco Brown³; Ofelia Hernández Negrete³; Javier Hernandez Paredes³; Alejandro Durán²; ¹Universidad De Sonora; ²Universidad Nacional Autónoma de México: 3Universidad de Sonora

9:10 AM

Reaction Pathways in the Formation and Decomposition of Rocksalt Entropy- Stabilized Oxides: John Heron¹; ¹University of Michigan

9:30 AM

Enhancing the Interfacial Activity of Zirconia Using Mg-Al-Si-Zr Microcrystalline Glass with Magnesium Olivine Crystalline Phase: Yun Song¹; Xiang Wang²; Yanru Shen²; Qiaomin Wei²; Wenhua Tong²; Jinhong Li²; Yuchun Sun²; ¹Peking University School and Hospital of Stomatology; 2 Peking University School and Hospital of Stomatology

9:50 AM

Refractory High Entropy Metal-Borides (Hf, Ta, Nb, Zr, W)B -Microstructure, Crystal Structure And Phase Evolution: Sercan Cetinkaya¹; Edward G. Obbard¹; Kevin J. Laws¹; Patrick A. Burr¹; Jamie J. Kruzic¹; Vanessa K. Peterson²; ¹University of New South Wales Sydney; ²ANSTO

10:10 AM Break

10:20 AM Invited

Local Structure Dynamics in High Entropy Oxide Thin Films: Christina Rost¹; Gabriela Niculescu²; Gerald Bejger¹; John Barber¹; Joshua Wright³; Saeed Almishal⁴; Matthew Webb⁵; Sai Venkata Gayathri Ayyagari⁴; Jon-Paul Maria⁴; Nasim Alem⁴; John Heron⁵; ¹Virginia Tech; ²James Madison University; ³Illinois Tech; ⁴Penn State; ⁵University of Michigan

10:40 AM

Novel Multi-Functional Low Temperature Fabricated Porous Si₂N₄-SiC Composites for High-Temperature Applications: Siddharth Siddharth¹; Prasanta Jana¹; Siddhartha Roy¹; ¹Indian Institute of **Technology Kharagpur**

11:00 AM

Microstructural Engineering of the Mechanical Behavior in (Co,Cu,Mg,Ni,Zn)O: Jacob Norman1; Alexander Dupuy2; Julie Schoenung¹; ¹Texas A&M University; ²University of Connecticut

Phase Equilibria and Thermodynamic Modeling of CaO-SiO2-MgO-Al2O3-TiO2 System: Mengjiao Jiao1; Guishang Pei2; Zhuoyang Li¹; Xuewei Lv¹; ¹Chongqing University; ²Seoul National University

11:40 AM

Quasi High Entropy 3D Alumina Based Glasses: Sintering, Structural Relaxation, and Nano-Crystallization: Angshuman Gupta¹; Ashutosh Gandhi¹; ¹Indian Institute of Technology Bombay Mumbai

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances in Magnetism and Magnetic Materials - Materials Discovery for Reducing Supply Chain Criticality

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Matthew Kramer, Ames Laboratory; Eric Theisen, Energy & Environmental Research Center; Yaroslav Mudryk, Ames National Laboratory/Iowa State University; Daniel Salazar, BCMaterials

Monday AM | March 24, 2025 363 | MGM Grand

Session Chairs: Eric Theisen, Energy & Environmental Research Center; Kinjal Gandha, Mp Materials

8:30 AM Invited

Developing Domestic Supply Chains for Permanent Magnet Manufacturing: Kinjal Gandha¹; ¹MP Materials

9:00 AM Invited

Discovering New Functional Magnetic Materials Through High-Throughput Methods: Heike Herper¹; Alena Vishina¹; Rafael Vieira¹; Madhura Marathe²; Olle Eriksson¹; ¹Uppsala University; ²KTH

9:30 AM

Linking Quantum Mechanical Features to Structural Phase-Transformation in Inorganic Solids: Prashant Singh¹; Anis Biswas¹; Yaroslav Mudryk¹; ¹Ames National Labratory

9:50 AM Break

10:10 AM Invited

Influencing Phase Development in Ferromagnetic Materials: Theory versus Practice: Laura Lewis¹; ¹Northeastern University

10:40 AM

Magnetic and Mechanical Hardening of Nano-Lamellar Magnets Using a Thermo-Magnetic Field: Liuliu Han1; Ruth Schwaiger2; Kovács András²; Dierk Raabe¹; Nicolas Peter²; Jin Wang²; Oliver Gutfleisch³; Fernando Maccari³; ¹Max Planck Institute For Iron Research; ²Forschungszentrum Julich; ³Technical University of Darmstadt

11:00 AM

Fabrication of Alnico Permanent Magnets with Optimized Microstructures via Magnetic-Field-Assisted Direct Energy **Deposition**: Anthony Duong¹; Ian Smitch¹; Maanav Patel¹; Omar Bishop¹; Kyle Snyder²; Everett Carpenter¹; Radhika Barua¹; ¹Virginia Commonwealth University; ²Commonwealth Center for Advanced Manufacturing

11:20 AM

Powder Consolidation of Ce-Based Permanent Magnets: Alfred Amon¹; Eunjeong Kim¹; Alexander Wilson-Heid¹; Ashley Lee¹; Joseph Boro¹; Alexander Baker¹; ¹Lawrence Livermore National Laboratory

MATERIALS SYNTHESIS AND PROCESSING

Advances in Materials Deposition by Cold Spray and Related Technologies — Process Development and **Optimization I**

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Materials Characterization Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: Ahmed Alade Tiamiyu, University of Calgary, Canada; Tanaji Paul, Florida International University; Yu Zou, University of Toronto; Maniya Aghasibeig, National Research Council Canada; Aaron Nardi, Vrc Metal Systems, Llc; Pin Lu, Solvus Global

Monday AM | March 24, 2025 103 | MGM Grand

Session Chairs: Ahmed Alade Tiamiyu, University of Calgary, Canada; Aaron Nardi, Vrc Metal Systems, Llc

8:30 AM Introductory Comments

8:35 AM Invited

Cold Spray Materials Deposition Technology for Nuclear Energy Systems: Kumar Sridharan¹; Benjamin Maier²; Tyler Dabney¹; Evan Willing¹; Nicholas Pocquette²; Carson Lukas¹; Noah Anderson¹; Hwasung Yeom³; ¹University of Wisconsin-Madison; ²Westinghouse Electric Company; ³Pohang University of Science and Technology

Advances in Toolpath Planning for Cold Spray Additive: Christopher Roper¹; Michael Kracum¹; ¹Sandia National Laboratories

Developing Hydrophilic Teflon via Cold Spray: Bahareh Marzbanrad¹; Hamid Jahed1; 1University of Waterloo

Investigation of Dynamic Contact and Adhesion Mechanism Between Zinc Cold Spray Particles and AZ91 Substrate Using **SPH Method**: *Lei Li*¹; Sridhar Niverty¹; Tanvi Anil Ajantiwalay¹; Rajib Kalsar¹; Vineet Joshi¹; Ayoub Soulami¹; ¹Pacific Northwest National Laboratory

10:05 AM Break

10:25 AM

Functionally Graded Al/SiC Composite Prepared by Cold Spray Deposition for Energy Absorption Applications: Amir Mansouri¹; Ahmad Nourian Avval¹; Sinan Muftu¹; ¹Northeastern University

10:45 AM

Effect of Turbulence on Particle Dynamics of Cold Spray Systems: Bikash Mahato¹; Jay Yoder¹; Gloyd Simmons¹; Nathan Huft¹; Isaac Nault²; Peter Lucon¹; ¹Montana Technological University; ²DEVCOM Army Research Laboratory ARD, Manufacturing Science and Technology Branch

11:05 AM Concluding Comments

MECHANICS OF MATERIALS

Advances in Multi-Principal Element Alloys IV: Mechanical Behavior — Alloy Development and Application I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Jennifer Carter, Case Western Reserve University; E-Wen Huang, National Yang Ming Chiao Tung University; T.S. Srivatsan, University of Akron; Xie Xie, Ford Motor Company; Jamieson Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Monday AM | March 24, 2025 368 | MGM Grand

Session Chairs: Peter Liaw. University of Tennessee: Michael Gao. National Energy Technology Laboratory

8:30 AM Keynote

Damage Tolerance in bcc vs. fcc High-Entropy Alloys: Robert Ritchie¹; Andrew Minor¹; Mark Asta¹; Punit Kumar¹; David Cook¹; Madelyn Payne¹; Wenging Wang¹; Pedro Borges¹; ¹University of California, Berkeley

9:00 AM Invited

Computational Design of Cost-Effective High-Entropy Thermal/ Environmental Barrier Coatings: Shiqiang Hao1; Richard Oleksak1; Ömer Doğan¹; Michael Gao¹; ¹National Energy Technology Laboratory

9:20 AM Invited

Intermetallic Alloys: Ductility, Structural Order, and High Entropy or Not: Joseph Poon¹; Jie Qi¹; Diego Hoyos¹; Xuesong Fan¹; Nathan Grain¹; Peter Connors¹; Jishnu Bhattacharyya¹; Michael Widom¹; Peter Liaw¹; Sean Agnew¹; John Scully¹; ¹University of Virginia

9:40 AM Invited

Design of High Performance Fe-Based Superalloys for Elevated Temperature Applications: C. Tasan¹; ¹Massachusetts Institute of Technology

10:00 AM Break

10:20 AM Invited

Deformation Induced Transformation in Metastability Engineered Alloys: Rajiv Mishra1; 1University of North Texas

10:40 AM Invited

Material Design for Nuclear Applications, High Entropy Alloys in Extreme Environments: Peter Hosemann¹; Thomas Astecker¹; Daryl Chrzan¹; wen Chen¹; Kavin Ram¹; Joseph McKeown¹; ¹University of California, Berkeley

11:00 AM

Superior High-Temperature Strength in a Supersaturated Refractory High-Entropy Alloy: Lia Amalia¹; Rui Feng²; Bojun Feng³; Michael Gao²; Chuan Zhang⁴; Joerg Neuefeind⁵; Jonathan Poplawsky⁵; Yang Ren⁶; Ke An⁵; Michael Widom³; Peter Liaw¹; ¹University of Tennessee; ²National Energy Technology Laboratory; ³Carnegie Mellon University; ⁴Computherm, LLC; ⁵Oak Ridge National Laboratory; 6Advanced Photon Source, Argonne National Laboratory

11:20 AM

Strain-Rate and Temperature Effects on Deformation Behaviors in Body-Centered-Cubic (BCC) Phase Refractory High-Entropy Alloys (RHEAs): Deva Neelakandan¹; Dongyue Xie²; Juntan Li³; Chia-Yi Wu⁴; Aomin Huang⁵; Marc Meyers⁵; Haixuan Xu³; Peter Liaw³; Yi-Chia Chou⁴; Ke An⁶; George Gray III²; Nan Li²; Gian Song⁷; Saryu Fensin²; Chanho Lee¹; ¹Auburn University; ²Los Alamos National Laboratory; ³The University of Tennessee, Knoxville; ⁴National Yang Ming Chiao Tung University; 5University of California, San Diego; 6Oak Ridge National Laboratory; 7Kongju National University

MATERIALS SYNTHESIS AND PROCESSING

Advances in Surface Engineering VII — Advances in Surface Engineering: Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Bharat Jasthi, South Dakota School of Mines & Technology; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University; Ning Zhu, Baylor University

Monday AM | March 24, 2025 107 | MGM Grand

Session Chairs: Bharat Jasthi, South Dakota School of Mines & Technology; Ning Zhu, Baylor University

8:30 AM Introductory Comments

8:35 AM

Enhancing Corrosion Resistance in Multimaterial Joints for Automotive Lightweighting Applications: Sridhar Niverty¹; Rajib Kalsar¹; Yucheng Fu¹; Yucheng Fu¹; Vilayanur Viswanathan¹; Benjamin Schuessler¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

Enhancement of Fatigue Enhancing Fatigue Performance of Pre-Damaged High-Strength Steel Using Ultrasonic Surface Modification: Md Shamsujjoha¹; Shirley Ruano¹; Michael Thurston¹; ¹Rochester Institute of Technology

9:15 AM

Microstructural Evolution and High Temperature Tribology of Wrought and Additively Manufactured Nickel-based Superalloy Subjected to Surface Enhancement Processes: Ali Beheshti¹; Manisha Tripathy²; Lloyd Hackel³; ¹George Mason University; ²Bruker; ³Curtiss Wright Surface Technology

9:35 AM

High-Temperature Surface Nitridation of 316H Stainless Steel: Formation of Nanolayered Nitride- Metal Composites: Kenneth Cooper¹; William Simon II, ¹; Kyle Williams¹; Anthony Cecchini¹; Trevor Parker1; Lin Shao1; 1Texas A&M University

9:55 AM

Diffusion-Induced Recrystallization **Associated** with Heterogeneous Elemental Distributions During Carburization of Ni-Cr-Fe Alloys: Farahnaz Haftlang¹; Mark B. Davis²; Deepak Kumar²; Robin Ziebarth²; Sandeep Dhingra²; Robert D. Morgan²; Peter W. Voorhees¹; David N. Seidman¹; ¹Northwestern University; ²Dow Chemical Company

10:15 AM Break

10:25 AM

Unraveling Roughness Effects to Enable Indentation-Based Microstructure Prediction: Mingwei Xu1; Cemal Tasan1; Michela Geri1; ¹MIT

10:45 AM

Micro-Mechanical Study of Surface Finish Effects on the Sealing Capacity of Aluminum Gaskets: You Na Lee1; Alex Wang1; Satoshi Nakazato²; Cemal Tasan¹; ¹Massachusetts Institute of Technology; ²Valgua, LTD.

11:05 AM

Cold Spray and Peening Surface Treatment Technologies for Mitigating Corrosion and SCC in Stainless Steel Containments for Used Nuclear Fuel Storage: Carson Lukas1; Evan Willing1; JP Lacy2; Nicholas Pocquette³; Kasturi Sasidhar¹; Jonathon Tatman²; Hwasung Yeom⁴; Kumar Sridharan¹; ¹University of Wisconsin Madison; ²EPRI; 3Westinghouse; 4Pohang University of Science and Technology (POSTECH)

11:25 AM

Surface Finishing of AM Metallic Parts by Electrochemical Polishing: Mary Louise Gucik1; Kasandra Escarcega Herrera1; Michael Melia¹; ¹Sandia National Laboratories

LIGHT METALS

Advances in Titanium Technology — Metastable **Beta Titanium Alloys I**

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Abhishek Sharma, University of North Texas; Srinivas Aditya Mantri, Argonne National Laboratory; Zachary Kloenne, Imperial College London; Fan Sun, Centre National de la Recherche Scientifique - Paris Sciences et Lettres University; Stoichko Antonov, National Energy Technology Laboratory

Monday AM | March 24, 2025 108 | MGM Grand

Session Chair: Abhishek Sharma, University of North Texas

8:30 AM Invited

Determination of the Influence of the Scale of Alpha Plates on the Mechanical Properties of Metastable Beta Titanium Alloys: Brian Welk¹; Gopal Viswanathan¹; Yufeng Zheng²; Hamish Fraser¹; ¹Ohio State University; ²University of North Texas

Stabilising the Transformation Behaviour of Superelastic Metastable β Ti Alloys: Nicole Church¹; Nicholas Jones¹; ¹University of Cambridge

Achieving High Yield Strength and Strain Hardening in a Strain Transformable Ti-Cr-Sn-Fe Based Beta-Ti Alloy: Nachiket Keskar¹; Yolaine Danard²; Srinivas Mantri³; Lola Lilensten²; Tirthesh Ingale¹; Abhishek Sharma¹; Fan Sun²; Frederic Prima²; Raj Banerjee¹; ¹University of North Texas; ²CHIMIE PARISTECH - PSL; ³Argonne National Laboratory

9:40 AM

Novel Deformation Behavior and Strain Accommodation Mechanism in a Selective Laser Melted Metastable β-Ti Alloy: Sydney Fields¹; Dian Li¹; Deepak Pillai¹; Yiliang Liao¹; Yufeng Zheng¹; ¹University of North Texas

10:00 AM Break

10:20 AM Invited

Microstructure and Mechanical Properties Evolution during the $\beta\text{-to-}\alpha$ and $\beta\text{-to-}\omega$ Transformations of Iron and Aluminum Modified Ti-11Cr(at.%): Joann Ballor¹; Jonathan Poplawsky²; Arun Devaraj³; Scott Misture⁴; Carl Boehlert¹; ¹Michigan State University; ²Oak Ridge National Laboratory; ³Pacific Northwest National Laboratory; ⁴Alfred University

10:50 AM

Achieving High Strength Coupled with High Work Hardening and Uniform Tensile Elongation in Titanium Alloys via Additive Manufacturing: Tirthesh Ingale¹; Abhishek Sharma¹; Advika Chesetti¹; Srinivas Aditya Mantri¹; Junhui Tang²; Fan Sun²; Fred Prima²; Narendra Dahotre¹; Rajarshi Banerjee¹; ¹University of North Texas; ²Chimie-**ParisTech**

11:10 AM

The Evolution of Athermal ω -Phase in Titanium Alloys Stabilized by Iron Additions: Paraic O'Kelly1; Abhishek Sharma2; Maheswari Meesa²; Alexander Knowles³; Srinivasan Srivilliputhur²; Hamish Fraser¹; ¹The Ohio State University; ²University of North Texas; ³University of Birmingham

11:30 AM

Evolution of $\omega\text{-Phase}$ in Metastable β Ti-V Alloys During Electric Current Treatment: Yijae Kim1; Howook Choi1; Yanghoo Kim2; Heung Nam Han¹; ¹Seoul National University; ²Korea Institute of Industrial Technology

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Verification, Validation, and **Uncertainty Quantification — Microstructure-Property Relationships**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories, Dehao Liu. Binghamton University; Matt Kasemer, The University of Alabama; Ashley Spear, University of Utah; Christopher Stiles, Johns Hopkins University Applied Physics Laboratory; Anh Tran, Sandia National Laboratories

Monday AM | March 24, 2025 320 | MGM Grand

Session Chair: Darren Pagan, Pennsylvania State University

8:30 AM

GrainPaint - A Multi-Scale Diffusion-Based Generative Model for Microstructure Reconstruction of Large-Scale Objects: Nathan Hoffman¹; Cashen Diniz¹; Dehao Liu²; Theron Rodgers³; Anh Tran³; ¹University of Maryland; ²Binghamton University; ³Sandia National Laboratories

8:50 AM

A Machine Learning Approach to Optimize T5 Heat Treatment Conditions for Al-Si Alloys: Dongwon Shin1; Tomas Grejtak1; Sun Yong Kwon¹; James Haynes¹; ¹Oak Ridge National Laboratory

Predicting Microstructure-Property Linkage in Alloys Using Graph Neural Network: Abigail Hogue¹; Benjamin Rhoads¹; Samrat Choudhury¹; ¹University of Mississippi

9:30 AM

Representativeness of Experimentally Observed Microstructures for Validation and Uncertainty Propagation: Arulmurugan Senthilnathan¹; Pranav Karve¹; Sankaran Mahadevan¹; ¹Vanderbilt University

9:50 AM Break

10:10 AM

A Generalizable, Accelerated, and Interpretable Artificial Intelligence Framework for Predicting Evolution of Materials Microstructure: Benjamin Rhoads¹; Abigail Hogue¹; Samrat Choudhury¹; ¹University of Mississippi

10:30 AM

Sensitivity Analysis and Uncertainty Quantification in Process-Structure-Property of IN718: Hasan Al Jame1; S. Mohadeseh Taheri-Mousavi¹; ¹Carnegie Mellon University

Bayesian Prediction and Optimization of Al-Ce-La-Nd-Mg-Ni Alloys' Mechanical Properties Post Heat Treatment: Jie Qi1; Pablo Luna Falcon¹; David Dunand¹; ¹Northwestern University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Algorithms Development in Materials Science and **Engineering — Advances in Phase-Field Simulations**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Process Technology and Modeling Committee, TMS: Alloy Phases Committee

Program Organizers: Remi Dingreville, Sandia National Laboratories; Saaketh Desai, Sandia National Laboratories; Hojun Lim, Sandia National Laboratories; Jeremy Mason, University of California, Davis; Vimal Ramanuj, Oak Ridge National Laboratory; Sam Reeve, Oak Ridge National Laboratory; Douglas Spearot, University of Florida

Monday AM | March 24, 2025 319 | MGM Grand

Session Chairs: Douglas Spearot, University of Florida; Remi Dingreville, Sandia National Laboratories

8:30 AM

A Multiphase-Field Formulation of the Sharp Phase Field Method: Alphonse Finel1; 1Onera

AMMBER: The AI-Enabled Microstructure Model BuildER: Alexander Mensah¹; W. Beck Andrews¹; Shibo Tan¹; Joshua Willwerth¹; Wenhao Sun¹; Katsuyo Thornton¹; ¹University of Michigan

Data Assimilation System Using Phase-Field Simulation for Polycrystalline Equiaxed Dendrite Growth: Shunsuke Kanki¹: Avano Yamamura¹; Shinji Sakane¹; Hideyuki Yasuda²; Tomohiro Takaki¹; ¹Kyoto Institute of Technology; ²Kyoto University

Surrogate Models for Accelerating CALPHAD-Informed Materials Simulations in MOOSE: Parikshit Bajpai¹; Daniel Schwen¹; Sourabh Bhagwan Kadambi¹; ¹Idaho National Laboratory

9:50 AM

Phase Field Modeling of the Impact of the Sub-Grain Structure on the Kinetics of Recrystallization: Anter El-Azab1; Shiwei Fu1; Sreekar Rayaprolu¹; ¹Purdue University

10:10 AM Break

10:30 AM

Crystallographic Orientation Dependence on Intragranular Void Evolution and Failure in Aluminum Alloy: A Case Study of Coupled Phase Field Damage and Crystal Plasticity Modeling: Aashique Rezwan¹; Nicole Aragon¹; Hojun Lim¹; ¹Sandia National Laboratories

Critical Cross Slip Stresses in Several FCC Metals Uncovered via Phase Field Dislocation Dynamics: Ian Wise¹; Abigail Hunter²; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²Los Alamos **National Laboratory**

11:10 AM

High Fidelity Phase-Field Models of Zr Corrosion with Experimental Validation: Scott Monismith¹; Sean Li²; Preet Singh²; Chaitanya Deo²; Remi Dingreville¹; ¹Sandia National Laboratories; ²Georgia Institute of Technology

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XIII — Advancements in Thermoelectric Materials and Device Engineering

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Taiwan University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CNRS Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute for Materials Science; Wan-Ting Chiu, Institute of Science Tokyo; Chenguang Fu, Zhejiang University

Monday AM | March 24, 2025 355 | MGM Grand

Session Chairs: Franck Gascoin, CNRS Crismat Unicaen; Hsin-Jay Wu, National Taiwan University

8:30 AM Invited

Controlling Defects in Epitaxial Thin Film Growth of Mg2Sn1xGex for Thermoelectric Device Applications: Takeaki Sakurai¹; Senados Magallon¹; Takashi Aizawa²; Isao Ohkubo²; Akira Uedono¹; Takao Mori²; ¹University of Tsukuba; ²National Institute for Materials Science (NIMS)

8:50 AM Invited

Bismuth Telluride: Performant Se Free n-Type: Franck Gascoin¹; Amélie Galodé¹; Tristan Barbier²; Chloe Forget³; ¹CNRS Crismat Unicaen; ²ENSICAEN; ³UNICAEN

9:10 AM

Decoupling of Electrical and Thermal Transport in CoSb3 Skutterudites by Compositing Effect: Krushna Raut1; Andrei Novitskii¹; Cédric Bourgès¹; Takao Mori¹; ¹National Institute for Materials Science

9:30 AM Invited

Enhancing the Stability and Efficiency of Environmental-Friendly Phonon-Glass Electron-Crystal Thermoelectric Materials: Hsin-Jay Wu1; 1National Taiwan University

9:50 AM Break

10:10 AM Invited

Thermoelectric Power Generation Module Made of Emerging Materials: Michihiro Ohta1; 1National Institute of Advanced Industrial Science and Technology (AIST)

10:30 AM Invited

Phonon-Drag-Driven Thermopower Enhancement in Oxide Thin-Film Heterostructure: Takayoshi Katase¹; ¹Tokyo Institute of Technology

10:50 AM

Tuning Conduction Behavior in Valence-Balanced Half-Heusler Alloys Through Synthesis Conditions: Illia Serhiienko¹; Michael Parzer²; Fabian Garmroudi²; Ernst Bauer²; Takao Mori¹; ¹NIMS; ²TU

11:10 AM Invited

Study of the Thermoelectric Properties of MnFe₂O, Thin Films Prepared by Pulsed Laser Deposition: Paolo Mele1; Alberto Giribaldi2; Anoop Divakaran³; Giovanna Latronico⁴; Hannes Rijckaert⁵; Marco Antonio Lopez de la Torre⁶; Kazumasa Iida⁷; Tsunehiro Takeuchi³; Cristina Artini²; ¹Shibaura Institute of Technology; ²University of Genoa; ³Toyota Technological Institute; ⁴CNR-ICMATE; ⁵Ghent University; ⁶University of Castilla La Mancha; ⁷Nihon University

MECHANICS OF MATERIALS

Atomistic Simulations Linked to Experiments to Understand Mechanical Behavior: A MPMD Symposium in Honor of Professor Diana Farkas — **Fundamentals**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Andrea Hodge, University of Southern California; Arun Nair, University of Arkansas; Alejandro Strachan, Purdue University; Chelsey Hargather, Los Alamos National Laboratory; Christopher Schuh, Northwestern University

Monday AM | March 24, 2025 370 | MGM Grand

Session Chairs: Chelsey Hargather, Los Alamos National Laboratory; Diana Farkas, Virginia Polytechnic Institute

8:30 AM Introductory Comments

8:40 AM Invited

Simulation vs. Experiment: The Limits of Predictive Models for Microstructural Evolution: Elizabeth Holm1; Meizhong Lyu1; ¹University of Michigan

9:10 AM

Understanding the Fundamental Fracture Behavior in NbMoTaW and NbTaTiHf: Wenging Wang1; Diana Farkas2; Robert Ritchie1; Mark Asta¹; ¹University of California, Berkeley; ²Virginia Tech

Development of an Analytical Surface Energy Model for Arbitrary (hkl) Surfaces in FCC and BCC Metals and Alloys: Axel Seoane¹; Xian-Ming Bai¹; ¹Virginia Polytechnic Institute and State University

9:50 AM Break

10:10 AM Invited

Multimodal Characterization to Uncover Complex Phase Evolution and Order in High Entropy Alloys: Mitra Taheri1; 1University of California, Berkeley

10:40 AM Invited

Experimental Evidence and First-Principles Verification of the Deformation Behavior of Basal Twist Grain Boundaries in Ti: Biaobiao Yang¹; Samuel Hémery²; Wei Shao¹; Victoria A. Tucker³; Michael Titus³; Miguel A. Monclús⁴; Javier Llorca¹; ¹IMDEA Materials Institute & Technical University of Madrid; ²Ecole Nationale Supérieure de Mécanique et d'Aérotechnique; ³Purdue University; ⁴IMDEA Materials Institute

11:10 AM Invited

Local Phase Transformation Strengthening in Ni-Base Superalloys: Michael Mills¹; Ashton Egan²; Andreas Bezold¹; Longsheng Feng³; Timothy Smith³; Maryam Ghazisaeidi¹; Yunzhi Wang¹; ¹Ohio State University; ²Friedrich-Alexander-Universität Erlangen-Nürnberg; ³Lawrence Livermore Laboratory

11:40 AM

High Strength and Deformable Intermetallics: Ke Xu1; Anand Mathew²; Chao Shen¹; Yifan Zhang¹; Xuanyu Sheng¹; Anyu Shang¹; Haiyan Wang¹; Yashashree Kulkarni²; Xinghang Zhang¹; ¹Purdue; ²University of Houston

BIOMATERIALS

Biological Materials Science — Mechanics of Hierarchical Materials I

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Yuxiao Zhou, Texas A&M University; Ling Li, University of Pennsylvania; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Grace Gu, University of California, Berkeley; Debora Lyn Porter, University of California Merced

Monday AM | March 24, 2025 306 | MGM Grand

Session Chairs: Yuxiao Zhou, Texas A&M University; Steven Naleway, University of Utah

8:30 AM

A Natural and Cultural Fabric from the Amazon Rainforest: Henry Colorado¹; Sheron Tavares²; Marc Meyers²; ¹Universidad de Antioquia; ²University of California San Diego

8:50 AM

Deeply Hierarchical Ceramic Materials with Outstanding Structural and Thermal Properties Manufactured from Diatom Frustules: Aidan Lucas¹; Hannes Schniepp¹; ¹William & Mary

9:10 AM Invited

Octopus-Inspired Adhesives for Intelligent and Rapidly Switchable Underwater Adhesion: Michael Bartlett¹; Chanhong Lee¹; ¹Virginia Tech

9:40 AM Invited

Catheter-Directed Endovascular Drug Delivery: Jingjie Hu1; 1North Carolina State University

10:10 AM Break

The Effect of Metastasis on Mechanical Competence of Human Trabecular Bone: Hanwen Fan¹; Hutomo Tanato¹; Yuxiao Zhou¹; ¹Texas A&M University

Nanomechanical Characterization of the Hierarchical Structure in Developing Teeth: Hutomo Tanoto¹; Hanwen Fan¹; Yuxiao Zhou¹; ¹Texas A&M University

11:10 AM

Mucosa-Interfacing Capsule Robot for In Situ Sensing the Elasticity of Biological Tissues: Xiaoguang Dong¹; ¹Vanderbilt University

11:30 AM Invited

Structure and Mechanics of Bone and the Impact of Aging and Cancer: Rizhi Wang¹; ¹University of British Columbia

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Bridging Scale Gaps in Multiscale Materials Modeling in the Age of Artificial Intelligence Bridging Length Scales Starting From First-**Principles Calculations**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan; Katsuyo Thornton, University of Michigan; Peter Voorhees, Northwestern University; Eric Homer, Brigham Young University; Srujan Rokkam, Advanced Cooling Technologies,

Monday AM | March 24, 2025 353 | MGM Grand

Session Chair: Liang Qi, University of Michigan

8:30 AM Invited

Surrogate Models in First-Principles Statistical Mechanics Methods: Anton Van der Ven¹; ¹University of California, Santa Barbara

AI-Enabled Upscaling of Ab Initio Thermodynamics for 3C-SiC(100) Surface Reconstructions: Salil Bavdekar¹; Michael MacIsaac²; Douglas Spearot²; Ghatu Subhash²; Richard Hennig²; ¹Illinois State University; ²University of Florida

9:20 AM Invited

Efficient High-Throughput Ab Initio Prediction of Liquidus Curves: Wenhao Sun¹; ¹University of Michigan

Developing On-Demand, Highly Efficient Digital Twins with DFT Accuracy for Iterative Alloy Discovery Frameworks: Doguhan Sariturk¹; Guillermo Vazquez Tovar¹; Daniel Sauceda¹; Raymundo Arróyave1; 1Texas A&M University

10:10 AM Break

10:30 AM Invited

First-Principles Models of Solute-Defect Interactions in Alloys: Anirudh Raju Natarajan¹; ¹École Polytechnique Fédérale de Lausanne

11:00 AM

Machine Learning for the Efficient Identification of High-Performance Metal-Doped Transition Metal Compounds for Hydrogen Evolution Catalysis: Lu Xue1; Jie Dang1; 1Chongqing University

ADVANCED CHARACTERIZATION METHODS

Characterization of Materials through High Resolution Coherent Imaging — Scientific **Applications of Coherent Imaging I**

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Xianghui Xiao, Brookhaven National Laboratory; Richard Sandberg, Brigham Young University; Ross Harder, Argonne National Laboratory; Brian Abbey, La Trobe University; Saryu Fensin, Los Alamos National Laboratory; Ana Diaz, Paul Scherrer Institute; Mathew Cherukara, Argonne National Laboratory

Monday AM | March 24, 2025 157 | MGM Grand

Session Chair: Ross Harder, Argonne National Laboratory

High-Resolution X-Ray Imaging of Integrated Circuits: Tomas Aidukas¹; Nicholas Phillips²; Ana Diaz¹; Emiliya Poghosyan¹; Elizabeth Muller¹; A. F. J. Levi³; Gabriel Aeppli¹; Manuel Guizar-Sicairos⁴; Mirko Holler¹; ¹Paul Scherrer Institute; ²CSIRO; ³University of Southern California; 4EPFL

Three-Dimensional Hard X-Ray Ptychographic Reflectometry Imaging on Extended Mesoscopic Surface Structures: Peco Myint¹; Ashish Tripathi¹; Jin Wang¹; Miaoqi Chu¹; Zhang Jiang¹; ¹Argonne **National Laboratory**

9:20 AM

Simultaneous Reciprocal and Real Space X-Ray Imaging for Hierarchical Characterization of 3D Nano-Architected Metamaterials: Matias Kagias¹; Seola Lee²; Dula Parkinson³; Nicholas Phillips⁴; Julia Greer²; ¹Lund University; ²California Institute of Technology; ³Lawrence Berkeley National Laboratory; ⁴Paul Scherrer Institute

9:40 AM

Direct Reciprocal Space Detection of Microelectronic Defects Using Coherent X-Ray Diffraction and Unsupervised Machine Learning: Jack Griffiths¹; Yuan Gao¹; ¹Brookhaven National Laboratory

10:00 AM Break

10:20 AM

Real-Time Imaging of Subsurface Dislocation Dynamics: Leora Dresselhaus-Marais¹; ¹Stanford University

10:50 AM

Physics-Informed Self-Supervised Learning of Structural Morphology Imaged by Scanning X-Ray Diffraction Microscopy: Aileen Luo¹; Tao Zhou²; Ming Du²; Martin Holt²; Andrej Singer¹; Mathew Cherukara²; ¹Cornell University; ²Argonne National Laboratory

11:10 AM

Single-Shot X-Ray Imaging of Density in Laser Shocked Materials for Fusion Energy Studies: Daniel Hodge1; Andrew Leong2; Silvia Pandolfi³; Kelin Kurzer-Ogul⁴; David Montgomery²; Pawel Kozlowsk²; Bob Nagler⁵; Hae Ja Lee⁵; Eric Galtier⁵; Hussein Aluie⁴; Jessica Shang⁴; Cindy Bolme²; Kyle Ramos²; Arianna Gleason⁵; Richard Sandberg¹; ¹Brigham Young University; ²Los Alamos National Laboratory; ³Sorbonne University; ⁴University of Rochester; ⁵SLAC National Accelerator Laboratory

11:30 AM

Single-Exposure Elemental Differentiation and Texture-Sensitive Phase-Retrieval Imaging with a Neutron-Counting Microchannel-Plate Detector: Brian Abbey1; Benedicta Arhatari2; David Paganin3; Henry Kirkwood⁴; Anton Tremsin⁵; Timur Gureyev⁶; Alexander Korsunsky⁷; Winfried Kockelmann⁸; Felix Hofmann⁷; Eric Huwald¹; Shu-Yan Zhang⁹; Joe Kelleher⁸; ¹La Trobe University; ²ANSTO; 3Monash University; 4European XFEL; 5SSL, University of California, Berkeley; ⁶The University of Melbourne; ⁷University of Oxford; 8STFC-Rutherford Appleton Laboratory; 9Center of Excellence for Advanced Materials, Songshan Lake Industrial Park

ADVANCED CHARACTERIZATION METHODS

Characterization of Minerals, Metals and Materials 2025: In-Situ Characterization Techniques — Advanced Characterization Methods I

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Zhiwei Peng, Central South University; Kelvin Xie, Texas A&M University; Mingming Zhang, Baowu Ouyeel Co. Ltd; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, AnalytiChem Group, USA; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, Devcom Arl Army Research Office; Shadia Ikhmayies, The University of Jordan

Monday AM | March 24, 2025 121 | MGM Grand

Session Chairs: Zhiwei Peng, Central South University; Sergio Monteiro, Instituto Militar de Engenharia

8:30 AM

A New Technology Innovation for Material Thermal Conductivity Measurements: Thermo-Optical Plane Source (TOPS): Ron Fisher¹; Jeffrey Braun¹; ¹Laser Thermal Analysis

8:50 AM

Advancing In-Situ Characterization and Processing With Raman Spectroscopy in Self-Driving Labs - Proof of Concept With Chocolate as Frugal Twin: Kinston Ackölf¹; Taylor Sparks¹; ¹University of Utah

9:10 AM

Characterizing Battery Materials with a New Mass Spectrometry Technique: Ellen Williams¹; Peyton Willis¹; Jeff Williams¹; Fergus Keenan²; ¹Exum Instruments; ²Exum Instuments

Correlating Grain Boundary Character with Ionic Conductivity via EIS and 3D Diffraction Tomography: Christopher Nyborg¹; Oliver Johnson¹; ¹Brigham Young University

Deep Learning Based Reconstruction From Sparse 2D Projection Datasets for In Situ Tensile Experiments: Nathan Johnson¹; Orion Kafka²; Hrishikesh Bale¹; Steve Kelly¹; Newell Moser²; Jake Benzing²; Jason Kilgore²; ¹Carl Zeiss Research Microscopy Solutions; ²National Institute of Standards and Technology

10:10 AM Break

10:20 AM

Developing In-Situ Diagnostics for Evaluation of Incipient Electrochemical Nucleation and Growth: Courtney Clark1; Daniel Hooks²; Janelle Wharry¹; David Bahr¹; ¹Purdue University; ²Los Alamos National Laboratory

10:40 AM

Development of Axlebox Bearing Temperature Monitoring System to Ensure the Operation Safety of Railway Vehicle: Jeongguk Kim¹; ¹Korea Railroad Research Institute

11:00 AM

Enabling Advances in Electron Backscatter Diffraction With Direct Electron Detectors (DED): Tianbi Zhang¹; Thomas Britton¹; ¹University of British Columbia

11:20 AM

Estimation of Elastic Constants in Low Symmetry Materials With In-Situ Neutron Diffraction: Nathan Peterson¹; Daniel Savage²; Donald Brown²; Bjorn Clausen²; Aaron Stebner³; Elena Garlea⁴; Sean Agnew¹; ¹University of Virginia; ²Los Alamos National Laboratory; ³Georgia Institute of Technology; ⁴Y-12 National Security Complex

11:40 AM

Implementing Transmission X-Ray Microscopy at X-Ray Free Electron Lasers for In-Situ Studies of Laser Powder Bed Fusion: Zane Taylor¹; Tharun Reddy¹; Lichao Fang¹; Matthew Seaberg¹; Matthieu Chollet²; Tim van Driel²; Philip Hart²; Franz-Josef Decker²; Frank Seiboth³; Patrick Oppermann²; Patrick Kramer²; Aliaksei Halavanau²; Matthew Dayton²; Christopher Tassone²; Adrian Lew¹; Leora Dresselhaus-Marais¹; ¹Stanford University; ²SLAC; ³DESY

12:00 PM

Deployment and Testing of a Fiber-Based Instrument for In-Reactor Thermal Property Measurements at MIT Research Reactor: Zilong Hua¹; Caleb Picklesimer¹; Alex Pomo¹; Robert Schley¹; Colby Jensen¹; Austin Fleming¹; Weiyue Zhou²; Michael Short²; David Carpenter²; David Hurley¹; ¹Idaho National Laboratory; ²MIT

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Chemistry and Physics of Interfaces — Structure and **Chemistry of Grain Boundary Phases**

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Timofey Frolov, Lawrence Livermore National Laboratory; Fadi Abdeljawad, Lehigh University; Kaila Birtsch, Los Alamos National Laboratory; Daniel Moore, Lehigh University; Christopher Schuh, Northwestern University

Monday AM | March 24, 2025 304 | MGM Grand

Session Chairs: Flynn Walsh, Lawrence Livermore National Laboratory; Ian Winter, Sandia National Laboratories

8:30 AM Invited

A Model of Thermodynamic Stabilization of Grain Boundaries: Omar Hussein¹; Yuri Mishin¹; ¹George Mason University

9:00 AM Invited

The Enumeration of Grain Boundary Microstates: Nikhil Chandra Admal¹; Giacomo Po²; Enrique Martinez³; ¹University of Illinois Urbana-Champaign; ²University of Miami; ³Clemson University

9:30 AM

Exploring Trends of Computed Grain Boundary Properties Within the EAM Space: Yasir Mahmood¹; Murray Daw¹; Michael Chandross²; Fadi Abdeliawad³; ¹Clemson University; ²Sandia National Laboratories; 3Lehigh University

9:50 AM Break

10:10 AM Invited

Direct Atomic-Scale Observations of Grain Boundary Phase and Segregation Transitions: Christian Liebscher¹; ¹Ruhr University **Bochum**

10:40 AM Invited

Grain Boundary Diffusion: Interplay of Segregation, Precipitation and Interface Structures: Sergii Divinskyi¹; ¹Univervsity of Munster

11:10 AM

Critical Point Ferroelectricity: Grain Boundary Complexion Transitions: Catherine Bishop¹; ¹University of Canterbury

Cyclical Restructuring of Emergent Grain Boundaries During Polycrystalline Thin Film Growth: Moneesh Upmanyu1; Hailong Wang²; Mengyuan Wang²; ¹Northeastern University; ²University of Science and Technology

11:50 AM

Disconnection Mobility and Grain Boundary Doping: Spencer Thomas¹; Jason Trelewicz¹; ¹Stony Brook University

MATERIALS SYNTHESIS AND PROCESSING

Composite Materials: Sustainable and Eco-Friendly Material Development and Applications — Sustainable and Eco-Friendly Materials: Advanced Composites for High-Temperature and Structural **Applications**

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Yahya Al-Majali, Ohio University; Brian Wisner, Ohio University; Ioannis Mastorakos, Clarkson University; Simona Hunyadi Murph, Savannah River National Laboratory; Muralidharan Paramsothy, NanoWorld Innovations (NWI)

Monday AM | March 24, 2025 116 | MGM Grand

Session Chair: Natasha Smith, CONSOL Innovations

8:30 AM

Achieving High Hardness in Metal-Ceramic Composites and Multilayers: Ramasis Goswami¹; Alex Moser¹; ¹Naval Research Laboratory

8:50 AM

Double Spray Forming Machine for In-Situ Production of Layered Composites: Dmitri Louzguine¹; ¹WPI-AIMR, Tohoku University

9:10 AM

Innovative Processing of Ni-Based Superalloy Composites Reinforced With Graphite: Manoel Kasalo¹; Sebastian Suarez²; Andrea Bachmaier¹; ¹Erich-Schmid Institute of Materials Science, Austrian Acadamy of Sciences; 2Saarland University

9:30 AM

Systematic Study of the Effect of KaTiFa Flux Content on the Microstructure and Mechanical Properties of Al-B₄C Composites: Chandan Kumar¹; Sukanta Sarkar¹; Indrani Sen¹; Siddhartha Roy¹; ¹IIT Kharagpur

9:50 AM Break

The Effect of the TiC Particle Pushing-Engulfment Phenomenon on the Mechanical Properties of In-Situ Al-Based Cast Composites: Ewa Olejnik¹; Pawe Kurtyka²; Agnieszka Czajka¹; Robert Chulist³; Karol Janus¹; Wojciech Maziarz³; ¹AGH University of Krakow; ²Innerco Sp. z o.o.; 3Institute of Metallurgy and Materials Science, Polish Academy of Science

10:30 AM

Metal Matrix Composites by Solid Stir Manufacturing Routes: Farhan Ishrak¹; Aniruddha Malakar¹; Md Jasim Uddin¹; Pankaj Kulkarni¹; Kumar Kandasamy¹; Bharat Gwalani¹; ¹North Carolina State University

10:50 AM

Mechanisms of Al Matrix Grains Refinement in the In-Situ Cast Al/ TiC Metal Matrix Composite: Wojciech Maziarz¹; Robert Chulist¹; Anna Wójcik¹; Akradiusz Szewczyk¹; Nikodem Poręba¹; Maciej Szlezynger¹; Pawe Kurtyka²; Ewa Olejnik³; ¹Polish Academy of Sciences; ²Innerco; ³AGH University of Science and Technology

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Computational Thermodynamics and Kinetics — **Grain Boundary Fundamentals**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Prashant Singh, Ames National Labratory; Rodrigo Freitas, Massachusetts Institute of Technology; Nicolas Argibay, Ames National Laboratory; Raymundo Arroyave, Texas A&M University; James Morris, Ames Laboratory

Monday AM | March 24, 2025 305 | MGM Grand

Session Chairs: Timofey Frolov, Lawrence Livermore National Laboratory; Daniel Moore, Lehigh University

8:30 AM Invited

Grain Boundary Segregation: From Quantum-Accurate Spectra to CALPHAD for Polycrystalline Materials: Christopher Schuh¹; ¹Northwestern University

9:10 AM Invited

Computational Studies of Grain Boundary Segregation and Solute Drag in Multicomponent Alloys: Fadi Abdeljawad¹; ¹Lehigh University

9:40 AM

An Open-Source Tool for Automated, High-Throughput Grain Boundary Structure Prediction: Enze Chen¹; Mark Asta²; Timofey Frolov³; ¹Stanford University; ²University of California, Berkeley; ³Lawrence Livermore National Laboratory

10:00 AM Break

10:20 AM

Migration of GB Phases in Tungsten: Daniel Moore1; Enze Chen2; Mark Asta³; Timofey Frolov⁴; Fadi Abdeljawad¹; Rob Rudd⁴; ¹Lehigh University; ²Stanford University; ³University of California Berkeley; ⁴Lawrence Livermore National Laboratory

10:40 AM Invited

Grain Boundary Phase Transformations in Segregated Metallic Alloys: Timofey Froloy¹; Enze Chen²; Vivek Devulapalli³; Tobias Brink³; Christian Liebscher⁴; ¹Lawrence Livermore National Laboratory; ²Stanford University; ³Max-Planck-Institut für Eisenforschung GmbH; ⁴Ruhr University Bochum

11:10 AM Invited

Quantifying the Microscopic Degrees of Freedom of Grain **Boundaries**: *Ian Winter*¹; Timofey Frolov²; ¹Sandia National Laboratories; ²Lawrence Livermore National Laboratory

11:40 AM

Three-Dimensional Interface Random Walk Method and Intrinsic Grain Boundary Shear Coupling Tensor: Xinyuan Song¹; Chuang Deng¹; ¹University of Manitoba

MATERIALS SYNTHESIS AND PROCESSING

Electrical Steels — Electrical Steels: Alloy Design, **Processing, and Properties**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Magnetic Materials Committee, TMS: Steels Committee

Program Organizers: Youliang He, CanmetMATERIALS, Natural Resources Canada; Kester Clarke, Los Alamos National Laboratory; Jun Cui, Iowa State University

Monday AM | March 24, 2025 104 | MGM Grand

Session Chairs: Jun Cui, Iowa State University; Clodualdo Aranas, University of New Brunswick; Gaoyuan Ouyang, Ames Laboratory; Youliang He, CanmetMATERIALS, Natural Resources Canada

8:30 AM Invited

Design of High Silicon Steel With Improved Physical Properties: Gaoyuan Ouyang¹; Nakyung Oh²; Ben Hilliard¹; Iver Anderson²; Matthew Kramer¹; Jun Cui²; ¹Ames Laboratory; ²Iowa State University

Alloy Development and Process Optimisation for High Performance Processable Electrical Steels: Carl Slater¹; ¹University of Warwick

Uniform Distribution of the Magnetic Easy Axis on the Lamination Sheet Plane: Nam Hoon Goo1; 1POSTECH

9:40 AM

Quasi-In-Situ EBSD Tracking of the Evolution of Microstructure and Microtexture During Hot Band Annealing of a 2.8 wt% Si Non-Oriented Electrical Steel: Youliang He¹; Mehdi Mehdi¹; ¹CanmetMATERIALS, Natural Resources Canada

10:00 AM Break

10:20 AM

Effects of Laser Treatment on the Magnetic Properties of FeSiB Amorphous Foil: Michael McKinstry1; Sameehan Joshi1; K.V. Mani Krishna¹; Madhavan Radhakrishnan¹; Narendra Dahotre¹; ¹University of North Texas

10:40 AM Invited

Crystallographic Texture of Electrical Steels After Hot Torsion Tests: Clodualdo Aranas¹; Youliang He²; Samuel Rodrigues³; Jubert Pasco¹; ¹University of New Brunswick; ²CanmetMATERIALS, Natural Resources Canada; ³Federal Institute of Education, Science and Technology of Maranhão

11:10 AM

Thermophysical Properties of Ladle Slag With Different SiO2 Content: Anton Yehorov¹; Olena Volkova¹; ¹Technical University Bergakademie Freiberg

11:30 AM

Subsurface Microstructure for Silicon Steel With Ultra-Low Iron Loss: So-Hyeon Lee1; Jiheon Jeon1; Seong hyeon Yoo2; Yongkeun Ahn²; Chun Ku Kang²; Ju-Young Kim¹; ¹UNIST (Ulsan National Institute of Science and Technology); ²Hyundai Steel R&D Center

11:50 AM

Improved Magnetic Properties of a Non-Oriented Electrical Steel Through Hot Dipping Process: Gyanaranjan Mishra¹; Youliang He²; Clodualdo Aranas¹; ¹University of New Brunswick; ²CanmetMaterials, Natural Resources Canada

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Electronic Packaging and Interconnection Materials II — Microstructural Analysis and Mechanical **Properties**

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: C. Kao, National Taiwan University; Yu-An Shen, Feng Chia University; Christopher Gourlay, Imperial College London; Fan-Yi Ouyang, National Tsing Hua University; Hiroshi Nishikawa, Osaka University; Hannah Fowler, Sandia National Laboratories; Kazuhiro Nogita, University of Queensland; Praveen Kumar, Indian Institute of Science; Tae-Kyu Lee, Cisco Systems; Yan Li, Samsung Semiconductor Inc.

Monday AM | March 24, 2025 360 | MGM Grand

Session Chairs: Kazuhiro Nogita, University of Queensland; Yu-An Shen, Feng Chia University

8:30 AM Introductory Comments

8:35 AM

Temperature and Strain Rate Dependence of Mechanical Properties in Sn-Bi Alloys: Kazuhiro Nogita¹; Xin Fu Tan¹; Xiaozhou Ye¹; Kazuhiro Yasuda²; Stuart McDonald¹; ¹University of Queensland; ²Kyushu University

8:55 AM

Influence of Minor Alloying Elements on the Properties of Sn-Bi Alloys: Yu-Hsin Lin¹; Fu-Ling Chang¹; Pei-Kang Wu¹; Meng-Chi Chuang¹; C. Robert Kao¹; ¹National Taiwan University

9:15 AM

The Mechanisms for Enhancing Mechanical Properties Through Trace Element Addition in Sn-Bi Solder: Meng-Chi Chuang¹; Fu-Ling Chang¹; Yu-Hsin Lin¹; Pei-Kang Wu¹; C. Robert Kao¹; ¹National Taiwan University

Sn-Bi Solder Alloys With Sb and Ag Additions: Effect of Microstructure on Mechanical Properties: Lijia Xie1; Hannah Fowler2; Sean Lai¹; Ganesh Subbarayan¹; John Blendell¹; Carol Handwerker¹; ¹Purdue University; ²Sandia National Laboratories

9:55 AM

Nanoindentation Study of Sn and Bi Phases in Sn-Bi Alloys: Xin Tan¹; Viola Paul²; Takahito Ohmura²; Kazuhiro Nogita¹; ¹University of Queensland: 2National Institute for Materials Science (NIMS)

10:15 AM Break

10:35 AM

Enhancement of Strength and Aging Resistance in Sn-9Zn Alloys With Minor Bi Addition: Yu-An Shen1; Hao-Zhe Kao1; Chih-Ming Liang¹; ¹Feng Chia University

10:55 AM

Microstructures of Ag-In Transient Liquid Phase Bonding Using In-Coated Ag Sheet: Xunda Liu¹; Hiroaki Tatsumi¹; Zhi Jin¹; Hiroshi Nishikawa1; 1Osaka University

11:15 AM

A New Method for High Precision Work of Adhesion Measurements of Micron-Scale Copper Bonds: Alex Wang1; Carl Thompson1; Cemal Cem Tasan¹; ¹Massachusetts Institute of Technology

11:35 AM

Indentation Rate Response to Enable Property Mapping in Multiphase Solders: Jia-Huei Tien1; Lijia Xie1; John Blendell1; Carol Handwerker¹; David Bahr¹; ¹Purdue University

NUCLEAR MATERIALS

Elucidating Microstructural Evolution Under Extreme Environments — Emulating Radiation **Effects Using Heavy Ions and Protons**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Mukesh Bachhav, Idaho National Laboratory; Boopathy Kombaiah, Idaho National Laboratory; Janelle Wharry, University of Illinois; Assel Aitkaliyeva, University of Florida; Miaomiao Jin, Pennsylvania State University; Farida Selim, Arizona State University; Nathan Almirall, GE Aerospace

Monday AM | March 24, 2025 162 | MGM Grand

Session Chair: Janelle Wharry, University of Illinois

8:30 AM Introductory Comments

8:35 AM Keynote

2025 Institute of Metals Lecture/Robert Franklin Mehl Award: Answering the Challenge to Rapid Qualification of Core Materials for Advanced Reactor Designs: Gary Was1; 1University of Michigan

9:15 AM Invited

Accelerating Nuclear Material Discovery: Integrating Machine Learning With In-Situ Ion Irradiation Experiments: Kevin Field¹; Hangyu Li²; Ian Steigerwald¹; Ethan Poselli¹; Robert Renfrow³; T.M. Kelsy Green⁴; Boopathy Kombaiah⁵; Charles Hirst⁶; ¹University of Michigan; ²University of Michigan Ann Arbor; ³University of Michigan, Radiant Industries, Inc.; 4University of Michigan, Antares Industries; ⁵Idaho National Laboratory; ⁶University of Michigan, University of Wisconsin-Madison

9:45 AM Invited

Using Ion Irradiation as a Surrogate for Neutron Radiation: Credibility, Issues, and Mitigation: Lin Shao1; Frank Garner1; 1Texas A&M University

10:15 AM Break

10:30 AM

Development of Techniques to Explore Materials in Coupled Extreme Environments at Tennessee Ion Beam Materials Laboratory: Khalid Hattar¹; ¹University of Tennessee Knoxville

10:50 AM

Hydrogen Transport During Proton Irradiation: Richard Smith1; Bruce Kammenzind¹; ¹Naval Nuclear Laboratory

11:10 AM

Emulation of Microchemical Evolution at High Doses in Neutron Irradiated 800H Using Dual Ion Irradiation: Xingyu Liu1; Antoine Waegaert¹; Xing Wang¹; Arthur Motta¹; ¹Pennsylvania State University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Energy Technologies and CO2 Management — Sustainable Production & Carbon Management

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee, TMS: Recycling and **Environmental Technologies Committee**

Program Organizers: Onuralp Yucel, Istanbul Technical University; Chukwunwike Iloeje, Argonne National Laboratory; Shafiq Alam, University of Saskatchewan; Donna Guillen, Idaho National Laboratory; Fiseha Tesfaye, Metso Finland Oy, Åbo Akademi University; Lei Zhang, University of Alaska Fairbanks; Susanna Hockaday, Curtin University, WASM; Neale Neelameggham, IND LLC; Hong Peng, University of Queensland; Nawshad Haque, Commonwealth Scientific and Industrial Research Organization; Alafara Baba, University of Ilorin; Tuan Nguyen, University of Queensland; Adam Powell, Worcester Polytechnic Institute; Thomas Battle; Duhan Zhang, Massachusetts Institute of Technology

Monday AM | March 24, 2025 364 | MGM Grand

Session Chairs: Onuralp Yucel, Istanbul Technical University; Fiseha Tesfaye, Metso Finland Oy, Åbo Akademi University; Adam Powell, Worcester Polytechnic Institute

8:30 AM Introductory Comments

8:40 AM Keynote

EPD Distinguished Award Lecture: Energy-Intensive Metal Processing in the Age of Low-Cost Intermittent Renewables: Adam Powell¹; Isaak Olson¹; Johanna Castillo¹; Matvei Shreshtapalov¹; Nathan Hastings¹; ¹Worcester Polytechnic Institute

Life Cycle Assessment for the Energy Technologies: Issues and Challenges for Conventional and Hydrogen Energy: Avash Kumar Saha¹; Nawshad Haque¹; ¹Commonwealth Scientific and Industrial Research Organization

9:40 AM

Net Zero 2040: Navigating Economic and Environmental Challenges: Alexander Wimmer¹; ¹Constantia Teich

10:00 AM Break

10:20 AM

Benchmarking Energy, Emissions, and Resource Sustainability in Semiconductor Manufacturing: Cassidy Holdeman¹; John Howarter¹; ¹Purdue University

Environmental Benefits of Reusing Automotive Parts: Hyunsoo Jin¹; Michael Cohen²; Brajendra Mishra¹; ¹Worcester Polytechnic Institute; ²Automotive Dismantlers and Recyclers Association

Combined Evaluation of EAF Steel and Aluminum Smelting Wastes: Onuralp Yucel¹; Ahmet Turan²; Kağan Benzeşik¹; Selçuk Kan¹; Simay May¹; Yusuf Kendir¹; Kağan Kırlı¹; Zeynep Çancı¹; ¹Istanbul Technical University; 2Yeditepe University

11:20 AM Concluding Comments

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmental Degradation of Additively Manufactured Materials — Additive Manufacturing: Material Behavior in Extreme Temperature and **Environmental Conditions**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Kinga Unocic, North Carolina State University; Sebastien Dryepondt, Oak Ridge National Laboratory; Michael Kirka, Oak Ridge National Laboratory; Xiaoyuan Lou, Purdue University; Emma White, DECHEMA Forschungsinstitut; Benjamin Adam, Oregon State University; Mark Stoudt, National Institute of Standards and Technology, Xiaolei Guo, Colorado School of Mines

Monday AM | March 24, 2025 169 | MGM Grand

Session Chairs: Kinga Unocic, North Carolina State University; Michael Kirka, Oak Ridge National Laboratory; Sebastien Dryepondt, Oak Ridge National Laboratory

8:30 AM Invited

On the Irradiation-Assisted Stress Corrosion Cracking of 316L Stainless Steel Made by Laser Additive Manufacturing: Xiaoyuan Lou¹; Jingfan Yang²; Evan Mcdermott¹; ¹Purdue University; ²Idaho **National Laboratory**

9:00 AM Invited

The effect of Microstructure and Heat Treatment on the Oxidation Behavior of Additively Manufactured 316H Alloy: Sebastien Dryepondt¹; Juho Lehmusto²; Peeyush Nandwana¹; Selda Nayir²; ¹Oak Ridge National Laboratory; ²Abo Akademi University

9:30 AM

High Temperature Oxidation of Ni-Based Superalloy 247 Processed by Electron Beam-Powder Bed Fusion Additive Manufacturing: Karthikeyan Hariharan¹; Oswaldo Luengas¹; Christopher Zenk¹; Sannakaisa Virtanen¹; ¹Friedrich Alexander University, Erlangen-Nuremberg

9:50 AM Invited

Accelerated Additive Manufacturing Synthesis, Testing, and Characterization of High-Temperature Alloys for High-Throughput Environmental Degradation Resistance: Adrien Couet¹; Dan Thoma¹; Lianyi Chen¹; Nathan Curtis¹; Caleb Hatler¹; Rohan Mishra²; Nick Crnkovich¹; ¹University of Wisconsin-Madison; ²Washington University in St. Louis

10:20 AM Break

10:35 AM Invited

High Temperature Oxidation of an ODS NiCr Additive Manufactured Alloy: Fernando Pedraza¹; A. Duval¹; G. Bonnet¹; ¹La Rochelle Université, LaSIE UMR 7356- CNRS

Metal Dusting of Additively Manufactured Ni-Cu Alloys: Beyza Öztürk¹; Emma White¹; Clara Schlereth¹; Till König¹; Jan-Philipp Roth¹; Anke Silvia Ulrich¹; Katrin Jahns²; Mathias Galetz¹; ¹DECHEMA-Forschungsinstitut; ²University Osnabrück

11:25 AM

Utilizing a Hot-Isostatic Pressing Controlling Pore Defect in Direct Energy Deposited CoCrNi Medium-Entropy Alloy and Its Mechanical Stability at Liquid Helium Temperature: Sang-Hun Shim1; Seong-June Youn1; Ka Ram Lim1; Young-Kyun Kim1; Young-Sang Na¹; ¹Korea Institutute of Materials Science (KIMS)

11:45 AM

Ablation Characterization of a Novel Additively Manufactured AlCeMo Alloy: Daniel Baker1; Anthony Koumpias1; Kareem Ahmed2; Amberlee Haselhuhn¹; ¹LIFT; ²UCF

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmentally Assisted Cracking: Theory and Practice — Hydrogen Embrittlement

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Monday AM | March 24, 2025 167 | MGM Grand

Session Chairs: C. Tasan, Massachusetts Institute of Technology; Xavier Feaugas, LaSIE, La Rochelle University, UMR CNRS 7356

8:30 AM Invited

Surface and Microstructure Design Solutions in Titanium Alloys to Limit Hydrogen Embrittlement: C. Tasan¹; ¹Massachusetts Institute of Technology

9:00 AM

About the Implication of Grain Boundaries and Precipitates on the Hydrogen Embrittlement Mechanisms of Nickel Base Alloys: Abdelali Oudriss1; Yasmine Ben Jedidia1; Siva Murugan1; Xavier Feaugas¹; ¹Lasie Cnrs Umr 7356

Hydrogen Concentration Effects on Monotonic and Cyclic Plasticity of Pure Nickel: Mohammad Imroz Alam¹; Leonidas Zisis²; Joseph Ronevich³; Michael Sangid²; Zachary Harris¹; ¹University of Pittsburgh; ²Purdue University; ³Sandia National Laboratories

9:40 AM

Hydrogen Embrittlement Behavior of an Additive Friction Stir Deposition Processed aa7075 Aluminum Alloy: Ebenezer Acquah¹; Nilesh Kumar¹; ¹The University of Alabama

10:00 AM Break

10:20 AM

A Review About the Influence of Metallurgical States on Hydrogen Embrittlement Mechanisms in High-Strength Carbon Steels: Abdelali Oudriss¹; Xavier Feaugas²; ¹La Rochelle University, LaSIE CNRS UMR 7356; ²LaSIE, La Rochelle University, UMR CNRS 7356

Sub-Stoichiometry and Vacancy Structures in Carbide Precipitates in Steels, and Implications to Hydrogen Embrittlement: Jun Song¹; Xiaohan Bie1; 1McGill University

11:00 AM

Some Like it Soft: Understanding the Role of Dislocation Density on Hydrogen Embrittlement of Pure Aluminum: Adam Freund¹; Josh Edwards¹; Ruben Ochoa¹; Suveen Mathaudhu¹; ¹Colorado School of Mines

11:20 AM Invited

New Advances of the Impact of Hydrogen on the Plasticity of Nickel Alloys Based on Nano-Indentation Investigations: Yasmine Ben Jedidia¹; Siva Prasad Murugan¹; Abdelali Oudriss¹; Xavier Feaugas¹; ¹LaSIE, La Rochelle University, UMR CNRS 7356

MECHANICS OF MATERIALS

Fatique in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling — **Fatigue Properties in Extreme Environments**

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Orion Kafka, National Institute of Standards and Technology; J.C. Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Brian Wisner, Ohio University; Krzysztof Stopka, Purdue University; Kelly Nygren, Cornell University

Monday AM | March 24, 2025 318 | MGM Grand

Session Chair: J.C. Stinville, University of Illinois Urbana-Champaign

8:30 AM

High Cycle Fatigue Behavior of Haynes 282 Subjected to Accelerated Ageing: Amey Parnaik1; Pavan A. H. V.2; Lakshmi Narayan Ramasubramanian¹; ¹Indian Institute of Technology Delhi; ²Bharat Heavy Electricals Limited

Effect of Sensitization on Corrosion and Fatigue Response of AA5086 Weld Joints: Rajneesh Jaisawal¹; Vidit Gaur¹; ¹Indian Institute of Technology Roorkee

Crack Behaviour of Hydrogen Embrittled Stainless Steel Analysed Through Thermoelasticity: Pasquale Cavaliere1; Francesco Panella1; Claudia Barile²; Paramsamy Kannan Vimalathithan²; ¹University of Salento; ²Politecnico di Bari

9:30 AM

Hydrogen and Metallurgical State Impact on Cyclic Creep of an Austenitic Stainless Steel: Xavier Feaugas1; Gildas Gachot1; Hisao Matsunaga¹; Sungacheol Park¹; Abdelali Oudriss¹; Gouenou Girardin¹; Pierre Osmond¹; Marion Risbet¹; ¹Lasie Cnrs Umr73

9:50 AM

Hydrogen Impact on Cyclic Behaviour of Pure Alpha Titanium Alloy: Larissa Martins Moreira¹; Abdelali Oudriss¹; Aude Mathis²; Cyril Berziou¹; Guillaume Lotte¹; Jamaa Bouhattate¹; Simon Frappart²; Stéphane Cohendoz¹; Thierry Millot²; Xavier Feaugas¹; ¹LaSIE, La Rochelle University, UMR CNRS 7356; 2Naval Group

10:10 AM Break

10:30 AM

How Can the Non-Metallic Inclusions Distribution Lead to an Anisotropy in the Fatigue Life Durability of Forged Y/Y Ni-Based Disks Alloys?: Adèle Govaere¹; Moubine Al Kotob¹; Xavier Baudequin¹; Romain Lambert¹; Caitline Lasne¹; Alexia Wu¹; Azdine Nait-Ali²; Cormier Jonathan²; Malo Prié²; ¹Safran Aircraft Engines; ²Pprime Institute

10:50 AM

In-Situ Fatigue Cracking at Room and Elevated Temperatures of a Dual-Phase High Entropy Alloy: Yuanbo Tang1; Qinan Han1; ¹University of Birmingham

11:10 AM

Isothermal and Thermomechanical Fatigue of Additively Manufactured Nickel-Based Superalloy IN939: Ivo Kubena¹; Markéta Gálíková¹; Ivo Šulák¹; ¹Institute of Physics of Materials

ADVANCED CHARACTERIZATION METHODS

Heterostructured and Gradient Materials (HGM VI): Principle, Processing and Properties — **Fundamentals**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Shaping and Forming Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Tsinghua University; Ke Lu, Liaoning Academy of Materials; Hyoung Seop Kim, Pohang University of Science and Technology; Xiaolei Wu, Institute of Mechanics

Monday AM | March 24, 2025 155 | MGM Grand

Session Chairs: Dmytro Orlov, Lund University; Liming Xiong, North Carolina State University/Iowa State University; Tomotsugu Shimokawa, Kanazawa University

8:30 AM Invited

Origins of High Strength and Dislocation Density in a Gradient Microstructure Revealed by a Simple Function: Darcy Hughes¹; ¹Sandia National Labs (ret.)

8:55 AM

Some Misconceptions on Heterostructured Materials: Yuntian Zhu¹; ¹City University of Hong Kong

Harmonic-Structure Material Design: What is Truly Special to **Deliver Unique Properties?**: *Dmytro Orlov*¹; Yan Beygelzimer²; ¹Lund University; ²Donetsk Institute for Physics and Engineering, NASU

9:40 AM Invited

An Atomistic-to-Mesoscale Computational Analysis of the Internal Stress and Its Role in Controlling the Deformation Mechanisms of **Gradient Structured Metallic Materials**: *Liming Xiong*¹; Thanh Phan¹; ¹North Carolina State University/Iowa State University

10:05 AM Break

10:25 AM Invited

Influence of Gradient Direction on the Mechanical Properties of Gradient Ni: Yi Li¹; ¹Shenyang National Laboratory For Materials Science

10:50 AM Invited

Mechanism for Both High Strength and High Ductility in Hetero-Structured Materials: Insight From Atomic Simulations: Tomotsugu Shimokawa¹; ¹Kanazawa University

11:15 AM

Gradient Structure Guided Optimal Deformation and Stress Partition in Engineering Steels: Yujie Wei1; 1LNM Institute of Mechanics CAS

Internal Length Gradient / ILG Material Mechanics - An Update: Elias Aifantis¹; ¹Aristotle University of Thessaloniki and Michigan **Technological University**

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

High Performance Steels — Properties and Performance

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Benjamin Adam, Oregon State University; C. Tasan, Massachusetts Institute of Technology; Adriana Eres-Castellanos, Colorado School of Mines: Krista Limmer, DEVCOM Army Research Laboratory; Jonah Klemm-Toole, Colorado School of Mines; Pello Uranga, University of Navarra

Monday AM | March 24, 2025 302 | MGM Grand

Session Chairs: Adriana Eres-Castellanos, Colorado School of Mines; Benjamin Adam, Oregon State University

8:30 AM Invited

Engineering Yield Strength by Tailoring the Nano-Precipitation Sequence in Novel Mn-Stabilized Austenitic Steel: Colin Stewart¹; Edwin Antillon¹; Keith Knipling¹; Patrick Callahan¹; David Rowenhorst¹; Paul Lambert²; ¹US Naval Research Laboratory; ²Johns Hopkins **Applied Physics Laboratory**

9:00 AM

Fatigue Design Curve and Creep-Fatigue Interaction for Alloy 709 at 816 °C: Xuesong Fan1; Brad Hall1; Yanli Wang1; 10ak Ridge National Laboratory

9:20 AM

Tribological Performance of Lightweight Steel Alloys in Rolling-Sliding Contact: Wenbo Wang¹; Chanaka Kumara¹; David Pienta¹; Harry Meyer¹; Dean Pierce¹; Jun Qu¹; ¹Oak Ridge National Laboratory

Influence of Chemical Composition on the Fracture Behavior of Advanced High Strength Steels: Nhu Ngo1; Bryan Webler1; Petrus Pistorius¹; ¹Carnegie Mellon University

10:00 AM Break

10:20 AM

Influence of Low Temperature Treatments on Mechanical Behavior of a Press Hardened 22MnB5 Steel Grade: Eliseo Hernandez1; Jun Hu¹; Grant Thomas¹; ¹Cleveland-Cliffs Inc.

New Insight of Hole Expansion Ratio in Advanced High Strength Steels: Seungho Lee1; Heung Nam Han1; Woojin Cho1; Deunbom Chung¹; Jewoong Lee²; Sung-Il Kim²; ¹Seoul National University; ²POSCO Technical Research Lab

10:40 AM

Assessing the Variability in Mechanical Properties of a Martensitic Ultra-High Strength Steel for Performance Optimizations: Joydeep Kundu¹; Caelan Kennedy²; Ibrahim Karaman¹; ¹Texas A&M University; ²Steel Founders' Society of America

11:20 AM

Nanoindentation and Machine Learning, it's all About the Features!: Claus Trost¹; Stanislav Žák¹; Megan Cordill¹; ¹Erich Schmid Institute of Materials Science

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Hume-Rothery Symposium on Thermodynamics of Microstructure Stability and Evolution — Phase Field Modeling and Strain Effects on Phase **Transformations**

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee

Program Organizers: Yunzhi Wang, Ohio State University; Wei Xiong, University of Pittsburgh; Jiamian Hu, University of Wisconsin Madison; Chuan Zhang, CompuTherm LLC

Monday AM | March 24, 2025 357 | MGM Grand

Session Chairs: Yunzhi Wang, Ohio State University; Alain Karma, Northeastern University

8:30 AM Introductory Comments

8:40 AM Keynote

William Hume-Rothery Award Lecture: Thermodynamic Basis for the Phase-Field Method of Microstructure Stability and Evolution: Long Qing Chen¹; ¹The Pennsylvania State University

9:10 AM Invited

Phase-Field Modeling of Far-From-Equilibrium Solidification Microstructures: Alain Karma¹; Kaihua Ji²; Mingwang Zhong¹; Amy Clarke³; ¹Northeastern University; ²LLNL; ³LANL and CSM

9:35 AM Invited

Connecting the Atomic Scale to Phase Field Models: Anton Van der Ven¹; ¹University of California, Santa Barbara

10:00 AM Break

10:20 AM Invited

Strain-Induced Phase Separation and Mesocrystal Formation in Refractory HEAs: Shalini Koneru¹; Jongjie Hu²; Jian-Feng Nie³; Hamish Fraser¹; Yunzhi Wang¹; ¹Ohio State University; ²Drexel University; 3Monash University

10:45 AM Invited

An Integrated Simulation and Experimental Framework for Investigating Deformation Mechanisms in Alloys: John Allison¹; ¹University of Michigan

11:10 AM Invited

Thermodynamics of Strain Phase Equilibria and Phase Diagrams: Bo Wang¹; Long-Qing Chen²; ¹Lawrence Livermore National Laboratory; ²Penn State University

11:35 AM Invited

First-Principles Calculations of the Mg-Al Phase Diagram Under Hydrostratic Pressure: Sha Liu¹; Wei Shao²; Zhijie Wang¹; Jun Hu³; Javier Llorca²; ¹Yanshan University; ²IMDEA Materials Institute & Technical University of Madrid; 3Northeastern University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Innovations in Energy Materials: Unveiling **Future Possibilities of Computational Modelling** and Atomically Controlled Experiments — **Computational Tools and Materials Informatics**

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Energy Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Composite Materials Committee

Program Organizers: Paolo Mele, Shibaura Institute of Technology; Julio Gutierrez Moreno, Barcelona Supercomputing Center; Hussein Assadi, RIKEN (The Institute of Physical and Chemical Research); Esmail Doustkhah, Istinye University; Marco Fronzi, The University of Sydney; Donna Guillen, Idaho National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Tuan Nguyen, University of Queensland

Monday AM | March 24, 2025 358 | MGM Grand

Session Chairs: Marco Fronzi, The University of Sydney; Prashun Gorai, Rensselaer Polytechnic Institute

8:30 AM Introductory Comments

8:35 AM Keynote

Coordination Engineering in Nanomaterials Design for Energy Applications: Ting Liao¹; ¹Queensland University of Technology

9:15 AM Invited

A Journey From Atoms to Materials: Designing Functional Materials for Energy and Microelectronics: Prashun Gorai¹; ¹Rensselaer Polytechnic Institute

9:40 AM Invited

Standards for Meaningful Evaluations of Machine Learning Interatomic Potentials Software: Rika Kobayashi¹; Emily Kahl²; Roger Amos³; ¹Australian National University; ²Pawsey Supercomputing Research Centre; 3UNSW Canberra

10:05 AM Break

10:25 AM

Beyond the Linear Scaling Relation: Novel Strategies: Kihyun Shin1; ¹Hanbat National University

Development of Kinetic Lattice Monte Carlo Model to Study Ionic Diffusion at Misfit Dislocations in Oxide Heterostructures: William Ebmeyer¹; Peter Hatton²; Blas Uberuaga²; Pratik Dholabhai¹; ¹Rochester Institute of Technology; ²Los Alamos National Laboratory

MATERIALS SYNTHESIS AND PROCESSING

Innovative Hydrometallurgical Technologies for Environmentally Benign Processing and Remediation: An EPD Symposium Honoring Fiona Doyle — Honorary Session I

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Pyrometallurgy Committee

Program Organizers: Christina Meskers, SINTEF; Michael Free, University of Utah; Kerstin Forsberg, KTH Royal Institute of Technology; Gisele Azimi, University of Toronto; Hani Henein, University of Alberta

Monday AM | March 24, 2025 101 | MGM Grand

Session Chair: Kerstin Forsberg, KTH Royal Institute of Technology

8:30 AM Invited

Innovative Environmentally Benign Ion Separations Using Electrical and Centrifugal Forces Rather Than Chemicals: Michael Free1; 1University of Utah

8:50 AM Invited

Innovative Environmentally Benign Hydrometallurgical Rare Earth Elements Separations Using a Magnetic Force Rather Than Chemical Reactions: Michael Free1; 1University of Utah

9:10 AM Invited

Advanced Absorber Materials for Sustainable Extraction of Critical Metals: Innovations and Applications: Prashant Sarswat1; ¹University of Utah

9:30 AM Invited

Hydro/Biohydrometallurgical Innovations for Copper Extraction from Primary Copper Sulfides: Jaeheon Lee1; 1Colorado School of Mines

9:50 AM Invited

Sustainable Hydrometallurgical Processes for Hazardous Element Control and Li-Ion Cathode Material Synthesis and Recycling: George Demopoulos¹; ¹McGill University

10:10 AM Break

10:30 AM

Extraction of Lithium From Brine by Electrodialysis: Amilton Botelho Junior¹; Kristen Abels¹; William Tarpeh¹; ¹Stanford University

Hydrometallurgical Treatment of Nickel Saprolite Ores Using the Atlas Materials Process for Sustainable Critical Material Supply: David Dreisinger¹; ¹University of British Columbia

11:10 AM

Total Recycling of Valuable Constituents in Black Mass of Spent Lithium-Ion Batteries (LIBs) via Environmentally Friendly Methods: Kurniawan Kurniawan¹; Sookyung Kim²; Mooki Bae²; Hyunju Lee²; Jae-chun Lee²; ¹Korea University of Science and Technology; ²Korea Institute of Geoscience and Mineral Resources (KIGAM)

11:30 AM

Supported Liquid Membranes for Separation of Critical Raw Metals: Amilton Botelho Junior¹; Guilherme Dalvi²; Vinícius Cavalcante²; Ana Carolina Miyashita²; Jorge Tenório²; Denise Espinosa²; ¹Stanford University; 2University of São Paulo

11:50 AM Concluding Comments

LIGHT METALS

Magnesium Technology 2025 — Computational Methods

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Domonkos Tolnai, Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon; Aaron Palumbo, Big Blue Technologies; Aeriel Murphy-Leonard, Ohio State University; Neale Neelameggham, IND LLC

Monday AM | March 24, 2025 115 | MGM Grand

Session Chairs: Domonkos Tolnai, Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon; Aaron Palumbo, Big Blue **Technologies**

8:30 AM Presentation of Magnesium Technology Awards and **Introductory Comments**

8:45 AM

Bob Brown - A Great Friend to Worldwide Magnesium Production Industry & Insights for Magnesium Metal Producers: Neale Neelameggham¹; Randy Beals²; Onuralp Yucel³; ¹IND LLC; ²Magna Inc; 3Istanbul Technical University

9:05 AM Keynote

Computational Modelling of Mg Alloy Biodegradation and Bone Growth: Berit Zeller-Plumhoff¹; Tamadur AlBaraghtheh¹; Domenik Priebe¹; Nik Pohl¹; Sascha Trostorff²; Ralf Köhl²; Regine Willumeit-Römer¹; ¹Helmholtz-Zentrum Hereon; ²Kiel University

Recapturing and Reusing Published Mg Alloy Texture Data: Benjamin Begley¹; Victoria Miller¹; ¹University of Florida

10:05 AM Break

10:25 AM

Crystal Plasticity Analysis of Extension Twin Activity in Mg-7Y Alloy Using PRISMS-Plasticity Framework: Chaitali Patil¹; Qianying Shi¹; Veera Sundararaghavan¹; John Allison¹; ¹University of Michigan

10:45 AM Invited

Experimental and Computational Studies of Recrystallization in the Mg-Zn-Ca Alloy System: Tracy Berman¹; Supriyo Chakraborty¹; David Montiel¹; Chaitali Patil¹; Michael Pilipchuk¹; Abdulhamit Sarac1; Qianying Shi1; Ashley Bucsek1; Elizabeth Holm1; Veera Sundararaghavan¹; Katsuyo Thornton¹; John Allison¹; ¹University of Michigan

11:15 AM

The Role of Geometry in Mg Implant Design: Norbert Hort1; Björn Wiese¹; Petra Maier²; ¹Helmholtz-Zentrum Hereon; ²University of Applied Sciences Stralsund

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Materials Aging and Compatibility: Experimental and Computational Approaches to Enable Lifetime Predictions — Aging and Compatibility of Metals I

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Corrosion and **Environmental Effects Committee**

Program Organizers: Bishnu Khanal, Sandia National Laboratories; Michael Melia, Sandia National Laboratories; Coby Davis, Sandia National Laboratories; Kerri Blobaum, Lawrence Livermore National Laboratory; Anthony Van Buuren, Lawrence Livermore National Laboratory; Nan Butler, Sandia National Laboratories

Monday AM | March 24, 2025 309 | MGM Grand

Session Chair: Michael Melia, Sandia National Laboratories

8:30 AM Invited

Modeling Corrosion: Efficient Models and Validation for Long Term **Degradation**: Ryan Katona¹; David Montes de Oca Zapiain¹; Matthew Roop¹; Aditya Venkatraman¹; Philip Noell¹; Rebecca Schaller¹; ¹Sandia National Laboratories

9:10 AM

Accelerated Aging of Aluminum Alloys for Long-Term Predictions of Corrosion Under Atmospheric Conditions of Temperature and Relative Humidity: David Chen¹; Steven Buchsbaum¹; Warren York¹; Tian Li¹; Sarah Matt¹; Savanna Richardson²; Benjamin Pham¹; Susan Carroll¹; Siping Qiu¹; ¹Lawrence Livermore National Lab; ²University of Oregon

9:30 AM

Characterization of Localized Oxidation in Tantalum and Cracking Susceptibility at High Temperatures Using Auger Electron **Spectroscopy**: Mila Nhu Lam¹; ¹Sandia National Labs

9:50 AM Break

10:10 AM Invited

Bimodal Microstructure Modeling due to Non-Isothermal Loading in Ni-Based Single-Crystal Superalloys via Phase-Field Method: Emily Dunn¹; Jose Dominic²; Jean-Briac le Graverend²; University; ²Texas A&M University

10:50 AM

High-Throughput Creep Characterization for Use in Accelerated Aging Prediction: Samuel Inman¹; Kevin Garber¹; Andrew Slezak¹; Brad Boyce¹; ¹Sandia National Labs

Environmentally Assisted Corrosion Testing of 7xxx Series Aluminum to Create an SCC Susceptibility Profile for Temperature, Humidity, and Stress Through Accelerated Testing: Paul Paradise¹; Zachary Harris²; Steven Buchbaum¹; David Chen¹; Sylvie Aubry¹; Greg Nyce1; Roger Qiu1; 1Lawrence Livermore National Lab; 2University of Pittsburgh

11:30 AM

Accelerating Computational Calculations of Galvanic Corrosion Using Machine Learning: David Montes De Oca Zapiain¹; Aditya Venkatraman¹; Matthew Roop¹; Demitri Maestas¹; Michael Melia¹; Philip Noell¹; Ryan Katona¹; ¹Sandia National Laboratories

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Materials and Chemistry for Molten Salt Systems — **Experimental Investigations of Metals/Alloys**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials

Program Organizers: Stephen Raiman, University of Michigan; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Yu-chen Karen Chen-Wiegart, Stony Brook University / Brookhaven National Laboratory; Nathaniel Hoyt, Argonne National Laboratory; Jinsuo Zhang, Virginia Polytechnic Institute and State University, Weiyue Zhou, Massachusetts Institute of Technology

Monday AM | March 24, 2025 165 | MGM Grand

Session Chair: Yu-Chen Karen Chen-Wiegart, Stony Brook University/ Brookhaven National Lab.

8:30 AM Introductory Comments

8:35 AM Invited

In-Situ Synchrotron X-Ray Absorption Spectroscopy of Ni-20Cr and High-Entropy Alloys Molten Salt Corrosion: Adrien Couet1; Kailee Buttice¹; Jagadeesh Sure¹; Changkyu Kim¹; Shea McCarthy¹; Karen Chen-Wiegart²; Bobby Lane³; Bruce Ravel⁴; ¹University of Wisconsin-Madison; ²Stony Brook University; ³Brookhaven National Laboratory; 4Brookhaven National Laboratory

9:00 AM

Development of Molten Salt Corrosion Resistant Material: Rongjie Song¹; Xinchang Zhang¹; Qiufeng Yang¹; Jia-Hong Ke¹; Jingfan Yang¹; Ruchi Gakhar¹; Michael McMurtrey¹; ¹Idaho National Laboratory

9:20 AM Invited

Corrosion and Microstructural Dynamics in Nuclear Reactor Alloys Exposed to Fluoride Molten Salts: Insights From 4D-STEM Analysis: Andrew Minor¹; Sean Mills¹; Dongye Liu¹; Yang Yang²; ¹University of California Berkeley; ²Penn State University

Corrosion and Deposition in Flowing Molten Salt Experiments: Stephen Raiman¹; ¹University of Michigan

10:05 AM Break

10:25 AM

Microstructural Stability, Hardness Change, and Helium Behavior of Dual Ion-Irradiated Ni-Base Alloys for Molten Salt Reactor Applications: Ryan Thier1; Jaimie Tiley2; Bruce Pint2; Ryan Gordon3; Kumar Sridharan³; Steven Zinkle¹; ¹University of Tennessee Knoxville; ²Oak Ridge National Laboratory; ³University of Wisconsin, Madison

10:45 AM Invited

Molten Salt Corrosion of Additively Manufactured Stainless Steels: Lingfeng He1; 1North Carolina State University

Interaction Between Irradiation-Induced Heterogeneity and Corrosion Dealloying in Ni20Cr (wt.%) Alloy: Sean Mills1; Ho Lun Chan2; Matthew Chancey3; Benjamin Derby3; Elena Romanovskaia2; Nathan Bieberdorf¹; Harjot Singh²; Valentin Romanovski²; Mark Asta¹; Yongqiang Wang³; Peter Hosemann¹; John Scully²; Andrew Minor¹; ¹University of California, Berkeley; ²University of Virginia; ³Los **Alamos National Laboratory**

11:30 AM

In-Situ Corrosion Monitoring of Alloy-625 in the Flowing Molten Salt Using Natural Convection Microloop by Radioactive Isotope Tracking: Jagadeesh Sure¹; Aeli Olson¹; Cole Evered¹; Ivan Mitchell²; Yafei Wang¹; Cody Falconer²; Jonathan Engle¹; Adrien Couet¹; ¹University of Wisconsin; ²TerraPower, LLC

NUCLEAR MATERIALS

Materials Corrosion Behavior in Advanced Nuclear Reactor Environments II — Corrosion in Liquid Metal

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Trishelle Copeland-Johnson, Idaho National Laboratory; Cheng Sun, Clemson University; Suraj Persaud, Queen's University; Osman Anderoglu, University of New Mexico; Adrien Couet, University of Wisconsin-Madison

Monday AM | March 24, 2025 164 | MGM Grand

Session Chairs: Xin Pang, Canmetmaterials; Osman Anderoglu, University of New Mexico

Influence of Proton Irradiation on Corrosion in Liquid Lead: Weiyue Zhou¹; Wande Cairang¹; Paola Amadeo¹; Kevin Woller¹; Michael Short¹; ¹Massachusetts Institute of Technology

8:50 AM

In-Situ Characterization of Heavy Liquid Metal Eutectic During Corrosion Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS): Nicole Virgili¹; ¹University of Rome Tor Vergata

9:10 AM

Thermomechanical, Lead Corrosion and Thermal Stability Assessment of Innovative Alumina Forming Austenitic Alloys for LFRs: Enrico Virgillito¹; Daniele De Caro¹; Antonino Meli¹; Davide Loiacono¹; Francisco Ferrè¹; ¹newcleo

9:30 AM

Effects of Sodium Exposure on Tensile Properties of Advanced Reactor Materials: Yiren Chen1; Zuotao Zeng1; Wei-Ying Chen1; Meimei Li¹; ¹Argonne National Laboratory

9:50 AM

Microstructural Evolution in 316L Stainless Steel Under Lead-Bismuth Eutectic Corrosion: Zhiyu Zhang¹; Sarah Wang²; Peter Hosemann²; Yang Yang¹; Andrew Minor²; ¹Pennsylvania State University; 2University of California at Berkeley

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components IV — In Situ and Small Scale **Mechanical Testing**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Kayla Yano, Pacific Northwest National Laboratory; Assel Aitkaliyeva, University of Florida; Eric Lang, University of New Mexico; Eda Aydogan, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Benjamin Eftink, Los Alamos National Laboratory; Tanvi Ajantiwalay, Pacific Northwest National Laboratory

Monday AM | March 24, 2025 160 | MGM Grand

Session Chairs: Eda Aydogan, Pacific Northwest National Laboratory; Assel Aitkaliyeva, University of Florida

8:30 AM Invited

Failure Behavior of Nuclear Composite Materials Revealed Through In-Situ Testing: Tianyi Chen1; Spencer Doran1; Pierre-Alexandre Juan²; Brandon Haugh²; David Frazer³; George Jacobsen³; ¹Oregon State University; ²Kairos Power; ³General Atomics

9:00 AM

Bridging Microscale to Macroscale Mechanical Property Measurements and Predication of FeCrAl Alloys Under Extreme Reactor Applications: Jian Wang¹; Xinghang Zhang²; Lin Shao³; ¹University of Nebraska-Lincoln; ²Purdue University; ³Texas A&M University

9:20 AM

Deformation Behavior of Irradiated Metallic Materials Using In-Situ Mechanical Test With SEM-EBSD: Soyoung Kang1; Maxim Gussev1; ¹Oak Ridge National Laboratory

9:40 AM

Effect of Processing on the Nanomechanical Properties of 14YWT ODS Steels: Kevin Jacob1; Sid Pathak1; Jordan Tiarks2; Nicolas Argibay²; Iver Anderson²; Hyosim Kim³; Stuart Maloy⁴; ¹Iowa State University; ²Ames National Laboratory; ³Los Alamos National Laboratory; 4Pacific Northwest National Lab

10:00 AM Break

10:20 AM

Microstructure Evolution in Alloy 709 Following Proton Irradiation: Abhishek Kc1; Caleb Massey2; Khalid Hattar3; Eric Lang1; 1University of New Mexico; ²Oak Ridge National Lab; ³University of Tennessee Knoxville

10:40 AM

Recent Innovation in Scanning Electron Microscope (SEM) In-Situ Extreme Mechanical Testing in Nuclear Environments: Nicholas Randall¹; Renato Pero¹; ¹Alemnis

Machine Learning-Based Correlation of Tensile Properties for Sub-Sized and Standard-Sized Specimens of SS316: Longze Li¹; John Merickel²; Yalei Tang²; Rongjie Song²; Joshua Rittenhouse²; Aleksandar Vakanski¹; Fei Xu²; ¹University of Idaho; ²Idaho National Laboratory

MECHANICS OF MATERIALS

Mechanical Behavior Related to Interface Physics IV — Interfacial Characterization and Structure/ **Property Relationships**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Nuclear Materials Committee, TMS: Surface Engineering Committee

Program Organizers: Stanislav Zak, Austrian Academy of Sciences; Nathan Mara, University of Minnesota; Barbara Putz, Empa Swiss Federal Laboratories for Materials Science and Technology; Glenn Balbus, MRL Materials Resources LLC; Kevin Schmalbach, Bruker Nano; Youxing Chen, University of North Carolina Charlotte

Monday AM | March 24, 2025 369 | MGM Grand

Session Chairs: André Clausner, Fraunhofer IKTS; Stanislav Zak, Austrian Academy of Sciences

8:30 AM

Influence of Local Melting on the Strength of 316L/7075 Dissimilar Metal Bonding Interface in Ultrasonic Spot Welding: Jheyu Lin1; Hsiang-Yu Chiu¹; ¹National Taipei University of Technology

8:50 AM

An Improved Technique for Accurate Mechanical Characterization of Free-Standing Films and Its Applications: Gang Feng1; Henna Khosla¹; Bo Li¹; ¹Villanova University

9:10 AM

Quantifying Superlubricity of Heterostrained Bilayer Graphene From the Mobility of Interface Dislocations: Md Tusher Ahmed¹; Harley T Johnson¹; Nikhil Chandra Admal¹; Moon-ki Choi¹; ¹University of Illinois at Urbana-Champaign

9:30 AM Invited

Interface Mechanics of Metallic Nanomultilayers: Vladyslav Turlo¹; ¹Empa

10:00 AM Break

10:20 AM

In Situ Nanoindentation of a Soft Three Phase Eutectic Exhibiting Non-Uniform Pile-Up: Forrest Wissuchek1; Didem Kaplan2; Aye Ecem Yürük²; Melis erefolu²; Amit Misra¹; ¹University of Michigan; ²Marmara University

10:40 AM

Superelastic Dissipation of Energy in Monazite Ceramics From Twin Boundary Interfaces: Henry Afful¹; Corinne Packard¹; ¹Colorado School of Mines

11:00 AM Invited

Mechanical Behavior of Epitaxial Thin Film Exfoliation: Corinne Packard¹; Anna Braun²; ¹Colorado School of Mines; ²SRI International

MECHANICS OF MATERIALS

Mechanical Response of Materials Investigated Through Novel In-Situ Experiments and Modeling — **High Temperatures**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Minh-Son Pham, Imperial College London; Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dongchan Jang, Korea Advanced Institute of Science and Technology; Josh Kacher, Georgia Institute of Technology; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization

Monday AM | March 24, 2025 366 | MGM Grand

Session Chair: Robert Wheeler, Microtesting Solutions LLC

8:30 AM Invited

Contribution of Slip, Twinning and De-Twinning to the Mechanical Deformation of Haynes 244® Alloy at 23°C and 650°C: Biabiao Yang¹; Miguel A. Monclús²; Victoria Ann Tucker³; Michael Titus³; Javier Llorca¹; ¹IMDEA Materials Institute & Technical University of Madrid; ²IMDEA Materials Institute; ³Purdue University

9:00 AM

Advancing High-Temperature Image Analysis and Physical Property Measurements With Ultra-Violet Imaging: Syed Idrees Afzal Jalali¹; Michael Patullo¹; Sharon Park¹; Carolina Frey²; Leah Mills³; Kaitlyn Mullin³; Colin Goodman¹; Mark Foster³; Tresa Pollock³; Kevin Hemker¹; ¹Johns Hopkins University; ²University of California, Santa Barbara; 3University of California, Santa Barbara

9:20 AM

Billion-Cycle Fatigue Endurance Enabled via Grain Boundary Stabilization: Manish Jain1; Daniel Vizoso1; Alejandro Hinojos1; Alejandro Barrios²; Kyle Dorman¹; Yichen Yang³; David Adams¹; Douglas Medlin¹; Olivier Pierron³; Remi Dingreville¹; Brad Boyce¹; ¹Sandia National Laboratories; ²Colorado School of Mines; ³Georgia Insititute of Technology

High Temperature Profilometry-Based Indentation Plastometry (HT-PIP) - Influence of Creep on Experimental Outcomes: James *Miller*¹; Philip McKeown¹; Chizhou Fang¹; Bill Clyne¹; ¹Plastometrex

10:00 AM

Hydrogen Assisted Vacancy Production and Its Effects on Creep in Structural Steels: Yash Pachaury¹; Aaron Kohnert¹; Laurent Capolungo¹; ¹Los Alamos National Lab

10:20 AM Break

In Situ Digital Imaging Correlation Analysis of Ultrasonic Effects on Dynamic and Static Strain Aging: Xun Liu1; 1The Ohio State University

11:00 AM

Influence of Unimodal and Bimodal y' Precipitate Size Distributions on the Deformation Mechanisms in ATI 718Plus: Geeta Kumari¹; M. Sundararaman²; Carl Boehlert³; Chanchal Ghosh⁴; Mythili R⁴; Arup Dasgupta⁴; Jonathan Poplawsky⁵; S. Sankaran²; ¹Michigan State University; Indian Institute of Technology, Madras; Oak Ridge National Laboratory; ²Indian Institute of Technology, Madras; ³Michigan State University; 4Indira Gandhi Centre for Atomic Research; 5Oak Ridge **National Laboratory**

11:20 AM

Kindling of Burning Particles to Metallic Substrates in High-Pressure Oxygen: Spencer Taylor¹; Suhas Eswarappa Prameela²; Zachary Cordero¹; ¹Massachusetts Institute of Technology; ²University of Utah

11:40 AM

Stochastic Direct Modeling of Mechanical and Thermal Properties of Polycrystals: Matthew Beck1; 1University of Kentucky

BIOMATERIALS

Mechanics and Physiological Adaptation of Hard and Soft Biomaterials and Biological Tissues — Mineralized Tissues

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Bernd Gludovatz, UNSW Sydney; Elizabeth Zimmermann, McGill University; Steven Naleway, University of Utah; Sunita Ho, University of California, San Francisco

Monday AM | March 24, 2025 308 | MGM Grand

Session Chair: Sunita Ho, University of California, San Francisco

8:30 AM Introductory Comments

8:35 AM Keynote

Advances in Bone Research - 60 Years of Progress: David Burr1; ¹Indiana University School of Medicine

Multi-Scale Adaptation of Bone in Health and Disease: Elizabeth Zimmermann¹; ¹McGill University

9:40 AM

Insights to Enhance Toughness of Human Bone Through Nanoscale Deformation and Fracture Analysis: John Howarter¹; Thomas Siegmund¹; Elizabeth Montagnino¹; Glynn Gallaway¹; ¹Purdue University

10:00 AM Break

10:20 AM Invited

Multi-Scale Fracture Resistance of Young Brittle Bones Treated With Bisphosphonates: Alessandra Carriero1; 1The City College of New York

10:50 AM Invited

Impact of Type 2 Diabetes on the Lacunar Canalicular Network in Cortical Bone: A Connectomic Analysis: Claire Acevedo¹; ¹University of California San Diego

Exploring the Effects of Disease on Teeth: Mouse Models of Type 1 and Type 2 Diabetes: Katherine Tang¹; Sophie Ceteznik¹; May Kim¹; Karin Bornfeldt¹; Jenny Kanter¹; Hai Zhang¹; Dwayne Arola¹; ¹University of Washington

NUCLEAR MATERIALS

Meeting Materials Challenges for the Future of Fusion Energy — Ceramic & Functional Materials I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Tianyi Chen, Oregon State University; Amy Gandy, United Kingdom Atomic Energy Authority; Reuben Holmes, Kyoto Fusioneering; Ian Mccue, Northwestern University; Sneha Prabha Narra, Carnegie Mellon University; Jason Trelewicz, Stony Brook University; Weicheng Zhong, Oak Ridge National Laboratory

Monday AM | March 24, 2025 158 | MGM Grand

Session Chairs: Taishi Sugiyama, Kyoto Fusioneering; Kun Wang, Alfred University

8:30 AM Keynote

Transmutations in Advanced Nuclear Ceramics Exposed to Fusion Environments: James Wade-Zhu¹; Alex Leide¹; Hazel Gardner¹; Max Rigby-Bell¹; Max Emmanuel¹; Douglas Andrews¹; ¹UK Atomic Energy Authority

9:00 AM Invited

Functional Coating Development for Fusion Reactors: Takumi Chikada¹; ¹Shizuoka University

9:30 AM

Tungsten Boride Shielding Material for Fusion Reactors: David Jarvis¹; Rosanna van den Blik-Jarvis¹; Rosie Mellor¹; Max Rigby-Bell²; ¹VSCA; ²UKAEA

9:50 AM

Micromechanical Investigation of WC for Shielding Applications in Compact Fusion Devices: Max Chester Jude Emmanuel¹; Max Rigby-Bell¹; James Wade-Zhu¹; ¹UK Atomic Energy Authority

10:10 AM Break

10:30 AM Invited

Current R&Ds on Advanced Breeding Functional Materials for JA DEMO Activities: Jae-Hwan Kim1; Taehyun Hwang1; Yutaka Sugimoto¹; Suguru Nakano¹; Hiroyasu Tanigawa¹; ¹National Institutes for Quantum Science and Technology

Processing and Irradiation Damage in Novel Tritium Breeding Ceramics with High Lithium Content: David Armstrong¹; ¹University of Oxford

Innovative Lithium-Based Tritium Breeder Material with Promising Microstructure: Saurabh Sharma¹; Chase Taylor²; Dong Zhao¹; Kevin Yan¹; Jie Lian¹; ¹Rensselaer Polytechnic Institute; ²Idaho National Laboratory

11:40 AM

Phase Field Fracture Modeling to Investigate the Integrity of Lithium Aluminate Pellets Used for Tritium Breeding: Kranthi Balusu¹; Andrew Casella¹; Ayoub Soulami¹; ¹Pacific Northwest National Lab

NUCLEAR MATERIALS

Microstructural, Mechanical, and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface II — Oxide Fuels I: Fundamental Behaviors of Fission **Products and Defects**

Sponsored by: TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Xing Wang, Pennsylvania State University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Dong (Lilly) Liu, University of Oxford; Caleb Clement, Westinghouse Electric Company; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida; Yi Xie, Peking University

Monday AM | March 24, 2025 159 | MGM Grand

Session Chairs: Michael Tonks, University of Florida; Pierre-Clement Simon, Idaho National Laboratory

8:30 AM Invited

Fission Gas Behavior Modeling at High Burnup in UO2: Pierre-Clement Simon¹; Larry Aagesen¹; David Andersson²; Sudipta Biswas¹; Nathan Capps³; Michael Cooper²; Stephen Novascone¹; ¹Idaho National Laboratory; ²Los Alamos National Laboratory; ³Oak Ridge National Laboratory

Recent Transient Fission Gas Results from High Burnup UO2 Under Severe Accident Conditions: Jason Harp¹; Yong Yan¹; Peter Doyle¹; Matthew Jones¹; Nathan Capps¹; ¹Oak Ridge National Laboratory

9:20 AM

Irradiation-Induced Formation of High- and Low-Angle Grain Boundaries, Microcracking, and Fission Gas Release: Charles Lieou¹; Nathan Capps²; Pierre-Clement Simon³; Michael Cooper⁴; Brian Wirth¹; ¹University of Tennessee; ²Oak Ridge National Laboratory; 3Idaho National Laboratory; 4Los Alamos National Laboratory

9:40 AM

Phase-Field Modeling of Fission Fragment Track Effects on Nucleation and Re-Solution of Fission Gas Bubbles in UO2: Albert Lin¹; Yongfeng Zhang¹; ¹University of Wisconsin - Madison

10:00 AM Break

10:20 AM

Oxygen Potential and Uranium Diffusion in UO_{2+x}: Density Functional Theory Calculations Including Spin-Orbit Coupling Effect and Dispersion Interactions: William Neilson¹; Jason Rizk¹; Michael Cooper¹; David Andersson¹; ¹Los Alamos National Laboratory

10:40 AM

Pipe Diffusion Along Edge Dislocation in UO2 and UN Nuclear Fuels: Romain Perriot¹; Conor Galvin¹; Anton Schneider¹; Michael Cooper¹; ¹Los Alamos National Laboratory

Faulted Loop Formation by Rapid 1D Migration of Interstitial Clusters in ThO2: Insights from Molecular Dynamics Simulations: Lin-Chieh Yu1; Yongfeng Zhang1; 1University of Wisconsin-Madison

11:20 AM

Cluster Dynamics Modeling of Interstitial Loop Evolution and Unfaulting Process in Proton-Irradiated Single Crystal ThO2: Md Minaruzzaman¹; Marat Khafizov¹; Anshul Kamboj²; Kaustubh Bawane²; Miaomiao Jin³; Lin Shao⁴; Lingfeng He⁵; David Hurley²; Boopathy Kombaiah²; ¹The Ohio State University; ²Idaho National Laboratory; ³Penn State University; ⁴Texas A&M University; ⁵North Carolina State University

11:40 AM

Effect of FIB Damage on the Defect Evolution in Ceramic Fuels Under In-Situ TEM Annealing: Anshul Kamboi¹: Kaustubh Bawane¹: J. Matthew Mann²; Marat Khafizov³; David H. Hurley¹; Boopathy ¹Idaho National Laboratory; ²Air Force Research Laboratory; 3Ohio State University

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Nanostructured Materials in Extreme Environments III — Radiation Environment I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Youxing Chen, University of North Carolina Charlotte; Haiming Wen, Missouri University of Science and Technology; Yue Fan, University of Michigan; Khalid Hattar, University of Tennessee Knoxville; Ashley Bucsek, University of Michigan; Jessica Krogstad, University of Illinois at Urbana-Champaign; Irene Beyerlein, University of California, Santa Barbara; Trevor Clark, Commonwealth Fusion Systems

Monday AM | March 24, 2025 166 | MGM Grand

Session Chair: Youxing Chen, University of North Carolina Charlotte

8:30 AM Invited

Global Self-Organization Induced by Ion Irradiation in Alloy Nanocrystalline Films: Pascal Bellon1; Sourav Das1; Amit Verma1; Yen-Ting Chang¹; Gabriel Bouobda Moladje¹; Nicholas Saunders¹; Marie-Agathe Charpagne¹; Robert Averback¹; ¹University of Illinois at Urbana-Champaign

8:55 AM Invited

Enthalpy as a Driver of Irradiation-Induced Amorphization and Crystallization in Nanostructured Materials: Janelle Wharry¹; Soumita Mondal¹; Md. Ali Muntaha¹; Nicole Keninger¹; Sooyeon Hwang²; Arya Chatterjee¹; Tristan Olsen³; Cyrus Koroni³; Sarah Pooley³; Hui (Claire) Xiong³; ¹Purdue University; ²Brookhaven National Laboratory; ³Boise State University

Competition Between Radiation-Induced Segregation and Grain Growth in Dilute Nanocrystalline Ni-Zr: Yen Ting Chang1; Pascal Bellon¹; Robert Averback¹; Marie Charpagne¹; ¹University of Illinois Urbana Champaign

9:40 AM Invited

Nanostructure Development of Localized Helium Implanted Materials and Property Implications: Peter Hosemann¹; Mehdi Balooch¹; Thomas Astecker¹; Kooknoh Yoon¹; California, Berkeley

10:05 AM Break

10:25 AM Invited

Instability of Single-Phase Nanocrystalline Materials Versus Stability of Dual-Phase Nanocomposites Under Ion Irradiation at Elevated Temperatures: Kelvin Xie1; Digvijay Yadav1; Kenneth Cooper¹; Benjamin Derby²; Yongqiang Wang²; Jon Kevin Baldwin²; Yaqiao Wu³; Jiaqi Dong¹; JungHun Park⁴; Sunkyung Lee⁴; Gi-Dong Sim⁴; Lin Shao¹; Michael Demkowicz¹; ¹Texas A&M University; ²Los Alamos National Lab; 3Boise State University, Idaho; 4KAIST

Effect of Grain Size on Radiation-Induced Segregation in Fe-Based Alloys: Marie Thomas¹; Daniele Fatto Offidani²; Emmanuelle Marquis²; Suveen Mathaudhu¹; ¹Colorado School of Mines; ²University of Michigan

11:10 AM

Radiation Resistance of Nanocrystalline Fe-Ti and Fe-Ta Systems Under Ion Irradiation: Alice Perrin¹; Erik Herbert¹; Amrita Anand²; Wei Tang¹; Miguel Crespillo³; Matt Boebinger¹; Khalid Hattar³; ¹Oak Ridge National Laboratory; ²Penn State University; ³University of Tennessee

11:30 AM Invited

Self-Organization of Void and Gas Bubble Superlattices in Metals Under Irradiation - The Impacts of Irradiation Condition and Material Properties: Yongfeng Zhang¹; Anton Schneider²; ¹University of Wisconsin; ²Los Alamos National Laboratory

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXIV — Characterization and Modeling

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Yu-Chen Liu, National Cheng Kung University; Hiroshi Nishikawa, Osaka University; Shih-kang Lin, National Cheng Kung University; Yee-wen Yen, National Taiwan University of Science and Technology; Chih-Ming Chen, National Chung Hsing University; Chao-hong Wang, National Chung Chung University; Jaeho Lee, Hongik University; Zhi-Quan Liu, Shenzhen Institutes of Advanced Technology; Ming-Tzer Lin, National Chung Hsing University; A.S.Md Abdul Haseeb, Bangladesh University of Engineering and Technology (BUET); Ligang Zhang, Central South University; Sehoon Yoo, Korea Institute of Industrial Technology; Ping-Chuan Wang, Suny New Paltz; Yu-An Shen, Feng Chia University

Monday AM | March 24, 2025 359 | MGM Grand

Session Chairs: Yu-Chen Liu, National Cheng Kung University; Shih-kang Lin, National Cheng Kung University

8:30 AM Keynote

Advanced Characterization and Analysis for Improved Stable Material Structures: Roland Brunner¹; ¹Materials Center Leoben Forschung GmbH

9:05 AM Invited

The Effect of Temperature on the Microstructure, Lattice, Mechanical and Electrical Properties of Sn-Bi Alloys: Xin Tan¹; Stuart McDonald¹; Keith Sweatman²; Kazuhiro Nogita¹; ¹University of Queensland; 2Nihon Superior Co., Ltd.

Interfacial Reactions between Sn and Ru for EUV Photolithography Applications: Hsiu-Mei Yang¹; Tzu-hsuan Huang¹; Shih-kang Lin¹; ¹National Cheng Kung University

9:55 AM

Exploring Low-Temperature Soldering with Good Soldering Strength: Investigating Soldering Behavior: Yu-An Shen¹; ¹Feng Chia University

10:15 AM Break

10:35 AM

Exploring Solder Wetting Angle by Using Machine Learning Approach: Yu-Chen Liu¹; Bing-Xi Lee¹; ¹National Cheng Kung University

10:55 AM

Growth of Cu6Sn5 in a Cu/Sn/Cu Micro-Joint with a TFMG/Cu Dual Diffusion Barrier Layer During Thermocompression Bonding: Ren-Jie Wu¹; Chi-Hang Lin¹; Yu-Qian Zhang¹; Ya-Han Ye¹; Zhu-Yuan Zhao¹; Kai-An Yang¹; Ming-Tzer Lin¹; ¹National Chung Hsing University

11:15 AM

In-situ Characterization of Electrical Current Induced Structural Changes in Single-Phase -Cu6Sn5 Using Synchrotron Radiation: Shubhayan Mukherjee1; Shih-kang Lin1; 1National Cheng Kung University

MATERIALS SYNTHESIS AND PROCESSING

Phase Transformations and Microstructural **Evolution — High Entropy Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State University; Ashley Paz y Puente, University of Cincinnati; Jonah Klemm-Toole, Colorado School of Mines; Sriram Vijayan, Michigan Technological University; Mohsen Asle Zaeem, Colorado School of Mines; Le Zhou, Marquette University; Adriana Eres-Castellanos, Colorado School of Mines; Sophie Primig, University of New South Wales

Monday AM | March 24, 2025 123 | MGM Grand

Session Chairs: Bharat Gwalani, North Carolina State University; Ashley Paz y Puente, University of Cincinnati

Compositionally Optimising the Volumetric Contraction of the Liquid-To-Solid Phase Transformation in Multi-Component Alloys - the Minimisation of Solidification Shrinkage: Kevin Laws¹; Henchel Guo¹; Audrey Thiessen²; Aurora Pribram-Jones³; Lori Bassman²; ¹UNSW; ²Harvey Mudd College; ³University of California, Merced

Modeling the Effects of Initial Grain Size, Martensitic Transformation Induced Dynamic Grain Refinement, Phases, and Texture on Strength of a High Entropy Alloy Using Crystal Plasticity: Marko Knezevic1; 1University of New Hampshire

9:10 AM

Alloying Effects and Mechanical Behavior of FCC Multi-Principal Element Alloys Containing Sigma Precipitates: Bibhu Prasad Sahu¹; Wenle Xu¹; Daniel Salas¹; Mrinalini Mulukutla¹; Trevor Hastings¹; Raymundo Arróyave¹; Ibrahim Karaman¹; ¹Texas A&M University

9:30 AM

Tailoring Mechanical Properties of a Multi-Principle-Element Alloy by a Multi-Length-Scale Approach: Chang-Yu Hung1; Milan Heczko²; Chenyang Li³; Dallin Barton⁴; Paul Jablonski¹; Wei Chen³; Arun Devaraj⁴; Michael Mills²; Martin Detrois¹; Stoichko Antonov¹; ¹National Energy Technology Laboratory; ²The Ohio State University; 3University at Buffalo; 4Pacific Northwest National Laboratory

9:50 AM

Testing Compositionally Complex Alloys for Phase Stability in High Radiation Environments: Sydney Copp¹; Siwei Chen¹; Yajie Zhao¹; Sicilia Christadore¹; Steven Zinkle¹; ¹University of Tennessee, Knoxville

10:10 AM Break

10:20 AM

Decomposition of the B2 Phase Following Isothermal Annealing, and a Study of the Interface Characteristics of the Product Phase in a High Entropy Alloy: Paraic O'Kelly¹; Gopal Viswanathan¹; Brian Welk¹; Shalini Roy Koneru²; Yunzhi Wang¹; Hamish Fraser¹; ¹The Ohio State University; ²TCS Limited

10:40 AM

Deformation Induced Transformation: Alloy Design with FCC-HCP-BCC Burgers Transformation Triangle as the Framework: Priyanka Agrawal¹; Amit Singh¹; Roopam Jain¹; Supreeth Gaddam¹; Rajiv Mishra¹; ¹University of North Texas

Influence of Si on Solidification Microstructure and Mechanical Properties of CrFeCoNi High Entropy Alloy: Toru Maruyama¹; Ritsuki Mizukami¹; ¹Kansai University

11:20 AM

Microstructure and Texture of Heavily Cold-Rolled and Annealed Al-Modified Extremely Low Stacking Fault Energy Cr1.3Co1Fe1Mn1NiO.7 High Entropy Alloy: Krishna Nuli¹; Suvra Paul¹; Pankaj Ojha¹; Saha Rajib²; Mayur Vaidya¹; Pinaki Bhattacharjee¹; ¹IITHyderabad; ²R&D tata Steel

SPECIAL TOPICS

Preparing Undergraduate and Graduate Students -And the Faculty Who Prepare Them - For Materials Careers (A Symposium Held in the Memory and Honor of Elizabeth Judson) — Innovations in Course **Design and Assessment**

Sponsored by: TMS: Education Committee

Program Organizers: Marian Kennedy, Clemson University; Alison Polasik, Campbell University; Jeffrey Fergus, Old Dominion University; Jennifer Carter, Case Western Reserve University

Monday AM | March 24, 2025 170 | MGM Grand

Session Chairs: Marian Kennedy, Clemson University; Jennifer Carter, Case Western Reserve University

8:30 AM Introductory Comments

Expanding the List of Materials Properties to Add Depth and Challenge to Standard Engineering Classes: Alison Polasik1; ¹Campbell University

9:00 AM

Integrating So-Called "Soft-Skills" in a Formal Way into a Materials Science and Engineering Class: Peter Collins¹; ¹Iowa State University

Assessing Student Learning with Oral Exams in a Graduate Thermodynamics Course: Susan Gentry¹; ¹University of California, Davis

9:50 AM Break

10:10 AM

Student Attitudes and Beliefs Around Computational Work in MSE: Timothy Chambers1; Alison Polasik2; 1University of Michigan; ²Campbell University

10:35 AM

Visual Communication and Representations in Materials Science and Engineering: Enze Chen1; 1Stanford University

11:00 AM

Intro to Materials Course Design Using Concepts from Grading for Growth: Steven Yalisove1; 1University of Michigan

ELECTRONIC. MAGNETIC. AND ENERGY MATERIALS

Printed Electronics and Additive Manufacturing: Advanced Functional Materials, Processing Concepts, and Emerging Applications — Printed **Electronics I - Ink Development**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Yong Lin Kong, Rice University; Konstantinos Sierros, West Virginia University; Masoud Mahjouri-Samani, Auburn University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ethan Secor, Iowa State University

Monday AM | March 24, 2025 361 | MGM Grand

Session Chairs: Tolga Aytug, Oak Ridge National Laboratory; Ethan Secor, Iowa State University

8:30 AM Invited

Printed Electronics for Cultivating Plants in Space: Ying Diao1; ¹University of Illinois at Urbana Champaign

8:55 AM Invited

Liquid Metal Printed Ultraconductive Transparent Two-Dimensional Oxides for Wearable Bioelectrodes: William Scheideler¹; ¹Dartmouth College

9:20 AM Invited

Conductive, Additive-Free MXene Inks to Replace Metals and Carbons in Printed Electronics: Yury Gogotsi¹; ¹Drexel University

Discovery and Optimization of Conductive Nanoparticle Inks for Printed Electronics Using an Autonomous Ecosystem: Alison Roth¹; ¹Sandia National Laboratories

10:05 AM Break

10:25 AM Invited

MXene-Based Inks for Direct Ink Writing of 3D Energy Storage Devices: Majid Beidaghi¹; ¹University of Arizona

10:50 AM Invited

Nanomaterial-Based Material Extrusion: Printability and Applications: Bo Li1; 1Villanova University

11:15 AM Invited

NonSLED²=SLED: Jonathan Singer¹; ¹Rutgers University

11:40 AM

Development of a Ceramic Ink for Stereolithography Based 3D Printing: Hrudaya Jyoti Biswal1; Cristina Stefanescu1; Janice Lucon1; Peter Lucon¹; ¹Montana Technological University

MATERIALS SYNTHESIS AND PROCESSING

REWAS 2025: Sustainable End-of-Life Management and Recycling Solutions for Batteries, Wind Turbines, and Photovoltaics — Circularity in Li-Ion Batteries Technologies I

Sponsored by: TMS Extraction and Processing Division, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Christina Meskers, SINTEF; Mertol Gokelma, Izmir Institute of Technology; Adamantia Lazou, National Technical University of Athens; Elsa Olivetti, Massachusetts Institute of Technology

Monday AM | March 24, 2025 117 | MGM Grand

Session Chair: Cathrine Solem, SINTEF

8:30 AM Introductory Comments

8:35 AM Plenary

Recycling of Lithium-Ion Batteries Cathode Material Using **Supercritical Fluid Extraction**: Gisele Azimi¹; ¹University of Toronto

9:05 AM

Leaching Studies of LiCoO2 Cathode Powder in Phosphoric Acid Medium: Sadia Ilyas1; Rajiv Srivastava2; 1Luleå University of Technology; ²Duy Tan University

9:25 AM

Optimizing Early-Stage Lithium Recovery: Investigating Oxalic Acid Leaching of Black Mass from End-of-Life NMC 622 Batteries: Luka Nils Mettke¹; Bengi Yagmurlu¹; ¹Clausthal University of Technology

9:45 AM Break

10:00 AM Invited

Upcycling Spent Battery Cathodes into Steel with Green Hydrogen: Ming Chen¹; David Dunand¹; ¹Northwestern University

Opportunities and Challenges in Lithium-Ion Battery Recycling: Emphasis on Pretreatment and Pyrometallurgical Processing: Guozhu Ye1; Xianfeng Hu1; Elsayed Mousa1; 1Swerim

Reductive Leaching Investigation of Li-NMC Cathode Material Related to Spent Battery Recycling: Gokce Kilic1; Krystal Davis2; George Demopoulos¹; ¹McGill University; ²National Research Council of Canada

11:10 AM

Synergistic Processing of Mixed LFP-NMC Black Mass for Improved Recycling Operations: Marius Mueller¹; Bengi Yagmurlu¹; ¹Technical University Clausthal

11:30 AM

Reductive Leaching of Cathode Active Material from Li-Ion Batteries and Recovery of Copper Reductant: Arundhati Jena1; Sreeya Chidere¹; Chenna Borra¹; Mehmet Recai Onal²; Shaikh Saida¹; Prakash Venkatesan³; ¹IIT Kharagpur; ²Genomines; ³Universite libre de Bruxelles

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Sciences — Actinide Physics I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Mavrik Zavarin, Lawrence Livermore National Laboratory; Rebecca Abergel, University of California Berkeley; Matthew Watrous, Idaho National Laboratory

Monday AM | March 24, 2025 163 | MGM Grand

Session Chairs: Krzysztof Gofryk, Idaho National Laboratory; Eteri Svanidze, Max Planck Institute for Chemical Physics of Solids

8:30 AM Invited

Itineracy Versus Localization in f-Electron Systems: Gertrud Zwicknagl¹; ¹Institute for Mathematical Physics, TU Braunschweig

9:00 AM Invited

New Insights into f-Electron Interactions in Superconductor UTe2: Nicholas Butch¹; ¹Nist Center For Neutron Research

9:30 AM Invited

Emergence of Complex Magnetism and Protected Topologies in LnTAl4Ge2 (Ln = lanthanide and T = transition metal): Ryan Raumbach¹ UCSC

10:00 AM Break

10:20 AM Invited

Magnetoelastic Interactions in Uranium-Based Compounds Probed by Magnetostriction and Thermal Expansion Measurements: Volodymyr Buturlim¹; Sabin Regmi²; Dominik Legut³; Alexander Andreev⁴; Ladislav Havela⁵; Krzysztof Gofryk¹; ¹Glenn T. Seaborg Institute, Idaho National Laboratory; 2Idaho National Laboratory; ³IT4Innovations, VŠB - Technical University of Ostrava; ⁴FZU Institute of Physics, Czech Academy of Sciences; 5Charles University

10:50 AM Invited

Lattice Distortions and Swelling Resilience in Aged -Phase $\textbf{Plutonium}: \textit{Jason Jeffries}^1; \ ^1Lawrence \ Livermore \ National \ Laboratory$

Exploring Complex Electronic and Magnetic Behaviors in Actinide Binary Oxides and Chalcogenides: Binod Rai¹; Rosalie Greer¹; krzysztof Gofryk²; Hanno Zur Loye³; ¹Savannah River National Laboratory; ²Idaho National Laboratory; ³University of South Carolina Columbia

MECHANICS OF MATERIALS

Solid-State Diffusion Bonding of Metals and Alloys Diffusion Bonding of High Temperature Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Mohamed Elbakhshwan, University of Wisconsin Madison; Peng Wang, University of Michigan; Tate Patterson, Idaho National Laboratory; Fei Gao, University of Michigan; Todd Allen, University of Michigan; Mark Anderson, University of Wisconsin Madison

Monday AM | March 24, 2025 301 | MGM Grand

Session Chair: Peng Wang, University of Michigan

8:30 AM Introductory Comments

8:35 AM

The Basic Research on Plastic Bonding of Zr-Based Metallic Glasses: Peng Jia1; 1Northeastern University

9:00 AM

Microstructural Characteristics, Mechanical Properties, and Corrosion Behavior of Field-Assisted Diffusion Welded Alloy 617: Xinchang Zhang¹; Jorgen Rufner¹; Michael McMurtrey¹; Tate Patterson¹; Qiufeng Yang¹; Ruchi Gakhar¹; ¹Idaho National Laboratory

9:25 AM

Exploring Scalable Solutions for Scrap Metal Consolidation: Abhi Sharda¹; Onur Guvenc¹; Gillian Roeder¹; Cemal Tasan¹; ¹Massachusetts Institute of Technology

9:50 AM Break

10:10 AM

Advancing the Understanding of Mechanical Properties of Diffusion-Bonded 316H and A617 for High-Temperature Nuclear Compact Heat Exchanger Applications: Mahmud Hasan Ovi¹; Tamim Hossain¹; Intisher Al-Tahmid Omi¹; Hoon Lee¹; James Stubbins¹; ¹University of Illinois Urbana-Champaign

10:35 AM

Ultrasonic Metal Welding of Interlayers to Improve Joint Performance of Aluminum to Steel Resistance Spot Welds in Automotive Applications: Rakhi Bawa¹; Antonio Ramirez¹; Kelly Osborn¹; Kaue Riffel¹; ¹The Ohio State University

11:00 AM

Diffusion Bonding of an AA7075 Aluminium Alloy: Yan Huang¹; ¹Brunel University London

11:25 AM

Diffusion Bonding of Nickel-Based Alloy 617 and 316H Stainless Steel: Mohamed Elbakhshwan¹; Lukas Desorcy¹; Ian Jentz¹; Mark Anderson¹; ¹University of Wisconsin Madison

NUCLEAR MATERIALS

Solid-state Processing and Manufacturing for **Extreme Environment Applications: Integrating** Insights and Innovations — Solid-State Processing and Manufacturing for Extreme Environment Applications: Integrating Insights and Innovations: Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Shaping and Forming Committee

Program Organizers: Priyanka Agrawal, University of North Texas; Hang Yu, Virginia Polytechnic Institute and State University; Boopathy Kombaiah, Idaho National Laboratory; Joao Oliveira, Faculdade Ciencias Tecnologias; Tianhao Wang, Pacific Northwest National Laboratory; Mukesh Bachhay, Idaho National Laboratory; John Shelton, Northern Illinois University; Shivakant Shukla, Pacific Northwest National Laboratory; Efthymios Polatidis, University of Patras; Lakshmi Narayan Ramasubramanian, Indian Institute of Technology; Sanya Gupta, Cummins Inc.

Monday AM | March 24, 2025 161 | MGM Grand

Session Chairs: Semanti Mukhopadhyay, Pacific Northwest National Laboratory; Priyanka Agrawal, University of North Texas

8:30 AM Invited

Considerations in Process Related Microstructural Evolution: Mark Patterson¹; Robert Amaro²; ¹Kratos Defense and Rocket Support Services; ²Advanced Materials Testing and Technologies

High Strength and Wear Resistance Al-TiB2 Composite Fabricated via Friction Consolidation: Xiao Li1; Hrishikesh Das1; Mayur Pole1; Lei Li¹; Ayoub Soulami¹; Glenn J Grant¹; Darrell Herling¹; Mert Efe¹; ¹Pacific Northwest National Laboratory

9:20 AM

Cold Spray Coating Technology to Enhance Accident Tolerance of Control Rods in LWRs: Noah Anderson¹; Bennett LaSalle¹; William Ward¹; Hakan Ozaltun²; Evan Willing¹; Kasturi Sasidhar¹; Hwasung ¹University of Wisconsin, Madison; Yeom³; Kumar Sridharan¹; ²Nuclear Regulatory Commission; ³Pohang University of Science and Technology

9:40 AM

Near Net Shape PM HIP Technology of Large Parts for Critical Applications: Victor Samarov¹; Evgeny Khomyakov¹; Alexandr Bisikalov¹; ¹Synertech Pm Inc.

10:00 AM Break

10:15 AM Invited

Ion Irradiation Effects on High Entropy Alloy and Additively Manufactured Materials: Bibhudutta Rout¹; Lutfun Nipa¹; Mohin Sharma¹; Sriswaroop Dasari¹; Hector Siller¹; Reza Mirshams¹; Rajarshi Banerjee¹; ¹University of North Texas

10:40 AM

A Hybrid Additive and Field-Assisted Sintering Process for Novel Refractory Metal Compact Heat Exchanger Manufacturing: Xinchang Zhang¹; Jorgen Rufner¹; Michael McMurtrey¹; Arin Preston¹; Stephen Raiman²; Yanliang Zhang³; Kaidong Song³; Raymond Weitekamp⁴; ¹Idaho National Laboratory; ²University of Michigan; ³University of Notre Dame; ⁴polySpectra

11:00 AM

Dissimilar Metal Joint by Hot Isostatic Pressing (HIP) - Design, Optimization, and Properties: Evan Mcdermott¹; Chenglu Tang¹; Victor Samarov¹; Xiaoyuan Lou¹; ¹Purdue University

11:20 AM

A New Route for Fabricating Oxide Dispersion Strengthened (ODS) Alloy Cladding With Friction Extrusion and Pilgering: Dalong Zhang¹; Xiang Wang²; Jens Darsell²; Xiao Li²; Curt Lavender²; Mark Rhodes²; Justin Olson²; Kayla Yano²; Tingkun Liu²; Ramprashad Prabhakaran²; Iver Anderson³; Eda Aydogan²; Stuart Maloy²; ¹Baylor University; ²Pacific Northwest National Laboratory; ³Ames Laboratory

11:40 AM

ICME-Based Modeling and Design of Cermet Composite for Extreme Environment Applications: Qiaofu Zhang1; Supreeth Gaddam²; Rajiv Mishra²; ¹University of Alabama; ²University of North

MECHANICS OF MATERIALS

Spatially Tailored Materials: Processing-Structure-Properties — Designing and Characterizing Gradients

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Gianna Valentino, University of Maryland; Marie Charpagne, University of Illinois; Ian Mccue, Northwestern University; J.C. Stinville, University of Illinois Urbana-Champaign

Monday AM | March 24, 2025 351 | MGM Grand

Session Chairs: Gianna Valentino, University of Maryland; Ian Mccue, Northwestern University

8:30 AM Invited

Tools for Tailoring Properties in Functionally Graded Materials: Allison Beese1; 1Pennsylvania State University

9:00 AM

Optimizing The Kinetic Properties of Materials Gradients: Samuel Price1; Zhaoxi Cao1; lan McCue1; 1Northwestern University

Gradient Alloy Design Guidelines via High-Throughput CALPHAD-Based ICME Simulations With Machine Learning: Jixuan Dong¹; S. Mohadeseh Taheri-Mousavi¹; ¹Carnegie Mellon University

9:40 AM

Production and Validation of Refractory Functionally Graded Materials Using CALPHAD-Assisted Path Planning for Property Predictions: Jennifer Glerum¹; Nicholas Ury¹; Benjamin Ellyson¹; Michael Juhasz¹; Brandon Bocklund¹; Raiyan Seede¹; Scott Peters¹; Aurelien Perron¹; Kaila Bertsch¹; ¹Lawrence Livermore National Laboratory

10:00 AM Break

10:20 AM Invited

Updated High-Throughput Rapid Experimental Alloy Development: Kenneth Vecchio¹; ¹University of California, San Diego

10:50 AM

Computational-Experimental Integrated Framework for Production of Additively Manufactured Functionally Graded Materials From Structural to Refractory Alloys: Kaila Bertsch1; Brandon Bocklund¹; Benjamin Ellyson¹; Jennifer Glerum¹; Michael Juhasz¹; Scott Peters¹; Raiyan Seede¹; Nicholas Ury¹; Aurelien Perron¹; ¹Lawrence Livermore National Laboratory

11:10 AM

Diffusion Gradients to Rapidly Explore Composition Space & Precipitation Behaviour of Bcc-Superalloys and Refractory High Entropy Alloys: Alexander Knowles¹; Paraic O'Kelly²; Vincent Gagneur¹; Adam Cretton³; Matthew Lloyd¹; ¹University of Birmingham; ²The Ohio State University; 3Technical University of Denmark

High Throughput Design of Refractory High Entropy Alloys With Improved Oxidation Resistance: Sebastian Lech1; David Beaudry1; Loïc Perrière²; Jean Philippe Couzinie²; Mitra Taheri¹; ¹Johns Hopkins University; ²Univ Paris Est Creteil, CNRS

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Steels in Extreme Environments — Opening Presentations / Steels Under Hydrogen **Environments I**

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Hyunseok Oh, University of Wisconsin -Madison; Lawrence Cho, Colorado School of Mines; Jeongho Han, Hanyang University; Motomichi Koyama, Tohoku University; Peeyush Nandwana, Oak Ridge National Laboratory; Fnu Kasturi Narasimha Sasidhar, University of Wisconsin - Madison

Monday AM | March 24, 2025 168 | MGM Grand

Session Chairs: Hyunseok Oh, University of Wisconsin - Madison; Jeongho Han, Hanyang University

8:30 AM Introductory Comments

8:35 AM Keynote

Steel Degradation in Energy Technologies with Extreme Environments: May Martin¹; Emma Coatney²; Ross Rentz¹; Lawrence Cho²; Kip Findley²; Andrew Slifka¹; ¹National Institute of Standards and Technology; ²Colorado School of Mines

9:05 AM Keynote

Effect of Microalloying on the Hydrogen Embrittlement in Press Hardened Steel: Seokhwan Ju¹; Seawoong Lee²; Dong-Woo Suh¹; ¹Pohang University of Science and Technology; ²POSCO

9:35 AM Invited

Intense Hydrogen-Related Acceleration of Fatigue Crack Growth in High-Strength Steels: the Mechanism and Solution: Motomichi Koyama¹; Tingshu Chen²; Yuhei Ogawa³; ¹Tohoku University; ²CNPC Tubular Goods Research Institute; 3 National Institute for Materials Science

9:55 AM Invited

Metallurgical Design to Enhance Strength and Hydrogen Embrittlement Resistance of Steels: Lawrence Cho1; Yuran Kong1; Pawan Kathayat¹; John Speer¹; Kip Findley¹; ¹Colorado School of Mines

10:15 AM Break

10:35 AM Invited

Electrochemical Control of Hydrogen: From Hydrogen Embrittlement to Hydrogen Storage: Kyung-Shik Kim1; Ju Li1; Bilge Yildiz¹; C. Tasan¹; ¹Massachusetts Institute of Technology

10:55 AM Invited

Hydrogen Segregation to Dislocations in Austenitic Stainless Steels: Fernando Daniel Leon Cazares¹; Xiaowang Zhou¹; Coleman Alleman¹; Chris San Marchi¹; ¹Sandia National Laboratories

11:15 AM Invited

Impact of Hydrogen on the Microstructure Changes in Steels: Ab Initio Based Multiscale Approaches: Tilmann Hickel¹; Ali Tehranchi²; Jorg Neugebauer²; ¹Bam Federal Institute For Materials Research and Testing; ²MPI for Sustainable Materials

MECHANICS OF MATERIALS

Structure-Property Relationships in Molecular **Crystal Deformation — Deformation Across Time and** Length Scales I

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Daniel Bufford, Sandia National Laboratories; Sushmita Majumder, University of Minnesota-Twin Cities; Paul Ryan, Atomic Weapons Establishment; Judith Brown, Sandia National Laboratories; Nathan Mara, University of Minnesota; Raimundo Ho, AbbVie Inc.

Monday AM | March 24, 2025 365 | MGM Grand

Session Chairs: Daniel Bufford, Sandia National Laboratories; Changquan Sun, University of Minnesota

8:30 AM Invited

Elucidating Tabletability of Pharmaceutical Solids Based on Plasticity Quantified by Nanoindentation: Changquan Sun¹; ¹University of Minnesota

9:00 AM

Understanding the Correlation Between Mechanical Properties, Crystal Structure and Tabletability of Pharmaceutical Cocrystals: Sushmita Majumder¹; Vikram Chandrashekhar Joshi¹; Changquan Calvin Sun¹; Nathan A. Mara¹; ¹University of Minnesota-Twin Cities

Mechanical Properties in Pharmaceutical Solid Oral Dosage Form **Development: Bridging Molecular Interactions and Performance:** Raimundo Ho1; 1AbbVie Inc.

9:40 AM

Understanding Milling Behavior of Pharmaceutical Crystals Through Quasistatic and Dynamic Mechanical Testing: Soumyadeep Sen1; Jamshid Ochilov1; Peter Yip1; Tianyi Xiang1; Nick Seaton¹; Geoffrey Rojas¹; Suraj Ravindran¹; Changquan Sun¹; Nathan Mara¹; ¹University of Minnesota

10:00 AM Break

10:15 AM Invited

Crystal Structure Prediction of Energetic Materials Using Genarris and GAtor: Noa Marom1; 1Carnegie Mellon University

10:45 AM

Impact of Nanoindentation Tip Geometry on Orientation-Dependent Nanomechanical Behavior of PETN: Morgan Chamberlain¹; Alexandra Burch²; David Bahr¹; ¹Purdue University; ²Los Alamos National Laboratory

11:05 AM

Dislocation Mediated Plasticity in PETN: Indentation and High-Rate Deformation: Milovan Zecevic1; Alexandra Burch1; Morgan Chamberlain²; David Bahr²; Marc Cawkwell¹; Virginia Manner¹; ¹Los Alamos National Laboratory; ²Purdue University

A Shocking Look into the Large Single Crystal Energetics and Their Analogues: Alice Mintoff¹; ¹Cranfield University

11:45 AM Invited

Interconnections Between High Explosive Mechanical Strength and Reactivity in the Buildup to Detonation: Matthew Kroonblawd¹; ¹Lawrence Livermore National Laboratory

MECHANICS OF MATERIALS

Structure and Dynamics of Metallic Glasses — **Atomic Structure and Dynamics**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Sebastian Kube, University of Wisconsin - Madison; Katharine Flores, Washington University in St. Louis; Daniel Sopu, Erich Schmid Institute; Yonghao Sun, The Chinese Academy of Sciences; A. Lindsay Greer, University of Cambridge; Peter Derlet, Paul Scherrer Institut

Monday AM | March 24, 2025 367 | MGM Grand

Session Chair: A. Lindsay Greer, University of Cambridge

8:30 AM Introductory Comments: Sebastian Kube on behalf of organizer team.

8:40 AM Invited

Lorentz 4D-STEM: Correlative Imaging of Magnetic & Strain Fields and Atomic Packing in Metallic Glasses: Sangjun Kang¹; Di Wang²; Xiaoke Mu³; Christian Kuebel²; ¹TU Darmstadt; ²Karlsruhe Institute of Technology; 3Lanzhou University

9:05 AM Invited

Medium-Range Order in Metallic Glasses Probed by 4D-STEM: Birte Riechers¹; Robert Maass²; ¹Federal Institute of Materials Research And Testing (BAM); ²Federal Institute of Materials Research and Testing (BAM); University of Illinois at Urbana-Champaign; Technical University of Munich

9:30 AM

Relation Between Structural and Dynamical Heterogeneities Analyzed by 5 Dimensional Scanning Transmission Electron Microscopy: Katsuaki Nakazawa1; Kazutaka Mitsuishi1; Shinji Kohara1; Koichi Tsuchiya¹; ¹National Institute For Materials Science

Enhanced Structural Ordering Within Shear Bands of Zr-Based Metallic Glasses Probed by 4D-STEM: Minhazul Islam1; Gabriel Calderon Ortiz¹; Birte Riechers²; Robert Maaß²; Jinwoo Hwang¹; ¹The Ohio State University; ²Federal Institute of Materials Research and Testing (BAM)

10:10 AM Break

10:30 AM Invited

Two-Stage, Non-Classical Crystal Nucleation from the SupercooledLiquid of a Metallic Glass Alloy: Carter Francis1; Shuoyuan Huang1; Paul Voyles¹; ¹University of Wisconsin

Local Structure and Atomic Mobility in a Zr-Based Bulk Metallic Glass: Olivia Vaerst1; Harald Rösner1; Oliver Gross2; Gerhard Wilde1; ¹University of Münster, Institute of Materials Physics; ²Amorphous Metal Solutions GmbH

11:15 AM

Experimentally Identifying Stable Metal Clusters in Binary (Bulk) Metallic Glasses: Kevin Laws1; Rebekah Kim1; 1UNSW

11:35 AM

Observation of the Three-Dimensional Nanostructure of Medium-Range Order Clusters in Bulk Metallic Glasses by Atom Probe Microscopy: Jamie Kruzic1; Keita Nomoto2; Huma Bilal2; Bosong Li¹; Christoph Gammer³; Jürgen Eckert⁴; Bernd Gludovatz¹; Simon Ringer²; ¹University of New South Wales (UNSW Sydney); ²The University of Sydney; ³Erich Schmid Institute of Materials Science; ⁴Montanuniversität Leoben

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Thermodynamics and Kinetics of Alloys III — Phase **Transition and Diffusion**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Chuan Zhang, CompuTherm LLC; Dilpuneet Aidhy, Clemson University; Bin Ouyang, Florida State University; Jicheng Zhao, University of Maryland

Monday AM | March 24, 2025 352 | MGM Grand

Session Chairs: Chuan Zhang, CompuTherm LLC; Andrew Hoffman, Catalyst Science Solutions

8:30 AM Invited

Improved Understanding of the Time-Temperature-Transformation (TTT) Characteristics of the CrMnFeCoNi High-Entropy Alloy: Easo George¹; ¹University of Tennessee

9:00 AM Invited

The Interplay of Defects and Recovery in High Entropy Alloys: Bharat Gwalani¹; ¹North Carolina State University

Mechanisms of Tribolayer Breakdown During Frictional Ignition in High-Pressure Oxygen: Andres Garcia Jimenez¹; Zachary Cordero¹; ¹Massachusetts Institute of Technology

9:50 AM Invited

Contributions to Diffusion in Complex Materials Quantified with Machine Learning: Dallas Trinkle1; Soham Chattopadhyay2; ¹University of Illinois at Urbana-Champaign; ²Los Alamos National Laboratory

10:20 AM Break

10:40 AM Invited

The Language of Metals: Understanding the Interplay Between Data, Scientists, and Materials Design: Andrew Hoffman¹; ¹Catalyst **Science Solutions**

11:10 AM

Global Stability Models of Multi-Principal Element Alloys: Lin Wang¹; Zhengda He¹; Bin Ouyang¹; ¹Florida State University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Thermodynamics and Phase Diagrams Applied to Materials Design and Processing: An FMD/SMD Symposium Honoring Rainer Schmid-Fetzer — Thermodynamics, Phase Diagrams and Applications of the CALPHAD Method

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shuanglin Chen, CompuTherm LLC; Ji-Cheng Zhao, University of Connecticut; Ursula Kattner, National Institute of Standards and Technology; Greta Lindwall, KTH Royal Institute of Technology; Alan Luo, Ohio State University; Arthur Pelton, Ecole Polytechnique; John Agren, Royal Institute of Technology; Sinn-wen Chen, National Tsing Hua University

Monday AM | March 24, 2025 350 | MGM Grand

Session Chairs: Fan Zhang, CompuTherm LLC; Ursula Kattner, National Institute of Standards and Technology

8:30 AM Introductory Comments - Fan Zhang

8:35 AM Invited

Thermodynamics and Phase Diagrams Applied to Materials **Design and Processing**: Rainer Schmid-Fetzer¹; ¹Clausthal University

9:05 AM Invited

Evolution of the Calphad Method and Its Application: Ursula Kattner¹; ¹National Institute of Standards and Technology

Hillert-Style Irreversible Thermodynamics and the Entropy Production: John Agren¹; ¹Royal Institute of Technology

9:55 AM Break

10:15 AM Invited

Designing Lightweight Alloys Based on CALPHAD Modeling and Machine Learning: Alan Luo1; Renhai Shi1; Jianyue Zhang1; ¹Ohio State University

10:40 AM Invited

Application of the CALPHAD Method to Alloy Design and Processing Optimization: Fan Zhang¹; Chuan Zhang¹; Weisheng Cao¹; Kamalnath Kadirvel¹; Songmao Liang¹; Jun Zhu¹; Shuanglin Chen1; 1CompuTherm LLC

11:05 AM Invited

Phase Stability Through Machine Learning: Raymundo Arroyave¹; ¹Texas A&M University

11:30 AM Invited

The Application of Phase Diagram in Materials Science and Engineering: Yee-wen Yen1; Mavindra Ramadhani1; Ssu-Chi Huang1; ¹National Taiwan University of Science and Technology

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Validation of Computational Tools - Industrial Perspectives — Validation of Computational Tools I

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Qiaofu Zhang, University of Alabama; Michael Titus, Purdue University; Stephane Forsik, Carpenter Technology Corporation: Govindarajan Muralidharan, Oak Ridge National Laboratory; Jonathan Priedeman, GE Aerospace

Monday AM | March 24, 2025 311 | MGM Grand

Session Chairs: Muralidharan Govindarajan, Oak Ridge National Laboratory; Stephane Forsik, Carpenter Technology Corporation; Qiaofu Zhang, University of Alabama

8:30 AM Invited

The Evolution of ICME in the Aerospace Industry: Past, Present, and Future: Adam Pilchak¹; Vasisht Venkatesh¹; Manish Kamal¹; Lee Semiatin²; David Furrer¹; ¹Pratt & Whitney; ²Materials Resources LLC

Accelerating Materials Innovation in Industry Using ICME: David Linder¹; Savya Sachi¹; Fuyao Yan¹; John Aristeidakis¹; Ida Berglund¹; ¹Questek Europe AB

Microstructure-Informed Multiscale Structural Analysis and Design Software for Additively Manufactured Metal Alloys: Chamara Herath¹; Evan Pineda²; Trenton Ricks²; Brett Bednarcyk²; Steven Arnold²; Ioannis Mastorakos¹; Ajit Achuthan¹; University; 2NASA Glenn Research Center

9:45 AM Invited

Process Modeling for Predicting Microstructure and Properties of Investment-Cast Ni-Based Superalloy: Jiten Shah¹; Govindarajan Muralidharan¹; ¹Product Development and Analysis (PDA) LLC

10:20 AM Break

10:40 AM

Validation of Microstructure Evolution and Strength Prediction Models on Two Commercial Gamma-Prime Strengthened Ni-base **Superalloys**: *Michael Fahrmann*¹; Owen Appel¹; Erin Kiss¹; Thomas Mann¹; ¹Haynes Intl.

11:00 AM

Numerical Simulation and Experimental Validation of the Vacuum Arc Remelting Process: Zilong Zhang¹; Elaheh Dorari²; Ramesh Minisandram³; Shankarjee Krishnamoorthi³; Lang Yuan⁴; ¹University of South Carolina; ²Ati Specialty Materials; ³ATI Specialty Materials; ⁴Unviersity of South Carolina

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Verification, Calibration, and Validation Approaches in Modeling the Mechanical Performance of Metallic Materials — UQ & Plasticity I

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: George Weber, NASA Langley Research Center; Joshua Pribe, Analytical Mechanics Associates; Saikumar Reddy Yeratapally, Science and Technology Corporation; Kirubel Teferra, Naval Research Laboratory; Diwakar Naragani, Cornell University

Monday AM | March 24, 2025 354 | MGM Grand

Session Chairs: George Weber, NASA Langley Research Center; Joshua Pribe, Analytical Mechanics Associates

8:30 AM Invited

Computational Materials for Qualification and Certification Steering Group and Community Vision Roadmap: Edward Glaessgen¹; Michael Gorelik²; ¹NASA Langley Research Center; ²Federal Aviation Administration

9:00 AM Invited

Uncertainty Quantified Parametrically Upscaled Constitutive Models for Fatigue Nucleation in Polycrystalline Metallic Materials: Somnath Ghosh¹; Deniz Ozturk¹; Shravan Kotha¹; Kishore Nair¹; Tawgeer Tak¹; ¹Johns Hopkins University

9:30 AM Invited

Quantifying Uncertainties Using Crystal Plasticity Modeling of Microstructural Clones: Hojun Lim¹; Kaitlynn Fitzgerald¹; Nicole Aragon¹; Tim Ruggles¹; Jay Carroll¹; ¹Sandia National Laboratories

9:50 AM Invited

Bayesian Calibration and Validation of a Physics-Based Crystal Plasticity and Damage Model for Shock Compression and Spall: Justin Wilkerson¹; ¹Texas A&M University

10:10 AM Break

10:30 AM Invited

Predicting the Variability in Performance of Zircaloy in Nuclear Reactors: Andrea Rovinelli¹; Jobin Joy¹; Anjana Talapatra¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

10:50 AM Invited

Experiment and Crystal Plasticity Model-Based Investigation of Surface Roughness Influence in the Fatigue Life of Additive Manufactured Nickel-Supperalloys: Jiahao Cheng¹; Daniel Ryan²; Patxi Fernandez-Zelaia¹; Brandon Kemerling²; Sudhakar Bollapragada²; Michael Kirka¹; ¹Oak Ridge National Laboratory; ²Solar Turbines Inc.

Non-Uniqueness in Crystal Plasticity Fitting Parameters: Effects on Intragranular Mechanical Behavior: Harry Smith¹; William Musinski¹; ¹University of Wisconsin-Milwaukee

11:30 AM

Strain-Gradient Crystal Plasticity Finite Element Modeling of Phenomena Pertaining to the Sequential Strain Path Changes in AA6016-T4: Sajjad Izadpanah¹; Sarah Sanderson²; Asher Webb²; Michael Miles²; David Fullwood²; Marko Knezevic¹; ¹University of New Hampshire; ²Brigham Young University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

2D Materials - Preparation, Properties, Modeling & Applications — Processing, Characterization & **Applications I**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Hesam Askari, University of Rochester; Ritesh Sachan, Oklahoma State University; Joshua Young, New Jersey Institute of Technology; Sufian Abedrabbo, Khalifa University; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Chintalapalle V Ramana, University of Texas

Monday PM | March 24, 2025 362 | MGM Grand

Session Chairs: Mengqiang Zhao, New Jersey Institute Of Technology; Hesam Askari, University of Rochester

2:00 PM Introductory Comments

2:10 PM

Atomic Structure and Mechanical Properties of Grain Boundaries in MoS2: Daniel Moore1; Ian Winter2; Scott Bobbitt2; Michael Chandross²; Fadi Abdeljawad¹; ¹Lehigh University; ²Sandia National

2:30 PM Invited

3D Complex and Hierarchical Architectures Titanium Carbide (MXene) Nanosheets into for Energy Applications: Rahul Panat¹; Mert Arslanoglu¹; Bin Yuan¹; Burak Ozdoganlar¹; Chunshan Hu¹; ¹Carnegie Mellon University

2:50 PM Keynote

3D Printed Nanomaterials-Based Electronics: Yong Lin Kong¹; ¹Rice University

3:15 PM Invited

3D Integration of 2D Devices for Advanced Memory, Logic, and Bio-Inspired Computing: Saptarshi Das¹; ¹Pennsylvania State University

3:35 PM Break

3:45 PM Invited

A Mechanistic Study of MXene Current Collectors for Lithium-Metal-Based Batteries: Ruocun Wang¹; Ray Unocic²; Jaehoon Choi³; Yan Burets¹; Mark Anayee⁴; Geetha Valurouthu¹; Wan-Yu Tsai⁵; Yury Gogotsi⁵; ¹Drexel University; ²Oak Ridge National Lab; ³Karlsruhe Institute of Technology; ⁴Air Force Research Laboratory; ⁵University of Lille

4:05 PM Invited

Advanced ORR Electrocatalyst from Physicochemical Integration of N-doped Graphene, MOF, and MXene by Wet Ball Milling: Eon Soo Lee1; Niladri Talukder1; 1New Jersey Institute of Technology

4:25 PM Invited

Amorphous-to-Crystalline Phase Transition Behavior a Quasi-One Dimensional Van Der Waals Material: Yi Shuang¹; Yuta Saito¹; Shogo Hatayama²; Paul Fons³; Ando Daisuke¹; Yuji Sutou¹; ¹Tohoku University; ²National Institute of Advanced Industrial Science and Technology (AIST); 3Keio University

ADDITIVE MANUFACTURING

Additive Manufacturing Keynote Session — Additive **Manufacturing Keynote Session**

Sponsored by: TMS: Additive Manufacturing Committee

Program Organizer: Joy Gockel, Colorado School of Mines

Monday PM | March 24, 2025

120 | MGM Grand

Session Chair: Joy Gockel, Colorado School of Mines

2:00 PM Introductory Comments

2:05 PM Keynote

America Makes Accelerating AM Technology Maturation and Integration: Brandon Ribic¹; ¹America Makes

2:35 PM Keynote

Electron Beam Powder Bed Fusion: Past, Present, and Future Directions in Microstructure Control and Refractory Metal Processing: Tim Horn1; 1North Carolina State University

3:05 PM Keynote

Physics-Based Al-Assisted Design and Control in Metal Additive Manufacturing: Jian Cao1; 1Northwestern University

3:35 PM Highlight: Dave Bourell Honorary Symposia

3:45 PM Break

4:05 PM Highlight: Anthony Rollett Honorary Symposia

4:15 PM Keynote

Reinventing Industrial Workhorse Alloys Through Additive Manufacturing with Break Through Performance: Youping Gao1; ¹Castheon, Inc

4:45 PM Keynote

TMS Young Innovator in the Materials Science of Additive Manufacturing Award: Unlocking the Hidden Potential of Additive Manufacturing: Microstructure Control and Material Innovation: Atieh Moridi¹; ¹Cornell University

ADVANCED CHARACTERIZATION METHODS

Advanced Characterization Techniques for Quantifying and Modeling Deformation — **Dislocations and TKD**

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Wolfgang Pantleon, Technical University of Denmark; Irene Beyerlein, University of California, Santa Barbara; C. Tasan, Massachusetts Institute of Technology; M. Arul Kumar, Indian Institute of Technology Kanpur

Monday PM | March 24, 2025 122 | MGM Grand

Session Chairs: Ben Britton, University of British Columbia; Marc De Graef, Carnegie Mellon University

2:00 PM

Revealing Dislocations Using Electron Channeling Contrast Imaging and Diffraction in Olivine: Muhammad Qaisar¹; Jessica White²; David Wallis²; Thomas Britton¹; ¹University of British Columbia; ²University of Cambridge

2:20 PM

The Influence of Yttrium Segregation on the Grain Boundary Plasticity of PolycrystallineMg Alloys Using Nanoindentation and In Situ SEM Tensile Testing Combined with HR-EBSD: Eunji Song¹; Amit Misra¹; ¹University of Michigan

2:40 PM

Transmission Electron Microscopy Characterization of Deformation Features in Refractory High Entropy Alloys: Madelyn Payne¹; David Cook¹; Punit Kumar¹; Pedro Borges¹; Wenqing Wang¹; Mingwei Zhang¹; Robert Ritchie¹; Mark Asta¹; Andrew Minor¹; ¹University of California Berkeley/LBNL

3:00 PM

An Integrated Experimental - PRISMS-Plasticity Study of Geometrically Necessary Dislocation Density Development in Mg Alloys.: Michael Pilipchuk¹; Tracy Berman¹; John Allison¹; Veera Sundararaghavan¹; ¹University of Michigan

3:20 PM

Three-Dimensional Discrete Dislocation Dynamics Simulations in Pure Titanium: Ruidong Mei1; Jaafar El-Awady1; 1Johns Hopkins University

3:40 PM Break

4:00 PM

In-Situ TKD Nano-tensile Testing: Unveiling Nanoscale Crystal Plasticity, TWIP, and TRIP: Tijmen Vermeij1; Amit Sharma1; Johann Michler¹; Xavier Maeder¹; ¹EMPA

4:20 PM

Observation of As-Quenched DU-6wt%Nb Microstructure by Transmission Kikuchi Diffraction: Christian Walters¹; Rodney McCabe²; Matthew Schneider²; Daniel Savage²; Donald Brown²;

Elena Garlea³; Sean Agnew¹; ¹University of Virginia; ²Los Alamos National Laboratory; 3Y-12 National Security Complex

4:40 PM

Texture Based Reference Frame Alignment: Will Lenthe1; James Lamb²; McLean Echlin²; Stuart Wright¹; Matt Nowell¹; Tresa Pollock²; ¹Gatan / EDAX; ²University of California, Santa Barbara

5:00 PM

How to Make Material Textures Amenable to Analysis by Neural Networks: Marc De Graef¹; ¹Carnegie Mellon University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advanced Materials for Energy Conversion and Storage 2025 — Advanced Engineering of Solid Oxide Cells (SOCs)

Sponsored by: TMS Functional Materials Division. TMS Structural Materials Division, TMS: Energy Conversion and Storage Committee, TMS: High Temperature Alloys Committee

Program Organizers: Surojit Gupta, University of North Dakota; Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania; Cengiz Ozkan, University of California

Monday PM | March 24, 2025 356 | MGM Grand

Session Chairs: Adam Powell, Worcester Polytechnic Institute; Stephen Sofie, Montana State University

2:00 PM Keynote

Materials Interfacial Stability In Solid Oxide Cells: Scott Barnett¹; ¹Northwestern University

2:30 PM Invited

Direct Carbon Fuel Cell with Liquid Fe-Mn-Sn-Based Alloy Anode: Adam Powell¹; Jacob Fleischer¹; Casey LaMarca¹; Eric Aimone¹; Christopher Pandapas¹; Matthew Ford¹; Yu Zhong¹; Uday Pal²; ¹Worcester Polytechnic Institute; ²Boston University

2:55 PM Invited

Unveiling the High-Temperature DegradationMechanism of Solid Oxide Electrolysis CellsThrough Direct Imaging of Nanoscale Interfacial Phenomena: Kyung Joong Yoon¹; ¹Kist

3:20 PM

Enhanced Mechanical Toughness in LLZO Solid Electrolytes Through Phase Transformation: Stephen Heywood¹; Matthew Lessmeier¹; David Driscoll¹; Stephen Sofie¹; ¹Montana State University

3:40 PM Break

3:55 PM

Onto the Process of Scandium Doped Zirconia Phase Decomposition During Solid Oxide Fuel Cell Operation: Julian Escobar¹; Matthew Olszta¹; Danny Edwards¹; Elango Elangovan²; Tyler Hafen²; Jenna Pike²; Mark Bowden¹; Olga Marina¹; ¹Pacific Northwest National Laboratory; 2OxEon Energy

4:15 PM

In-Situ Formed Ni Conjugated Nanoparticles for the Anode of Ammonia Solid Oxide Fuel Cells: Jong-Eun Hong1; Keejung Kim1; Dong Woo Joh1; Hye-Sung Kim1; Tak-Hyoung Lim1; Seok-Joo Park1; Rak-Hyun Song¹; ¹Korea Institute of Energy Research

Local and Global Structural Effects of Doping on Ionic Conductivity in Na3SbS4 Solid Electrolyte: Cheng-Wei Lee1; Mayu Maegawa2; Hirofumi Akamatsu²; Katsuro Hayashi²; Saneyuki Ohno³; Prashun Gorai⁴; ¹Colorado School of Mines; ²Kyushu University; ³Tohoku University; 4Rensselaer Polytechnic Institute

Carbon Fiber Electrodes: A Scalable Solution for Nickel Recovery from Industrial Wastewater: Annu Pandey1; Richard Olsson1; 1KTH -Royal Institute of Technology

ADVANCED CHARACTERIZATION METHODS

Advanced Real Time Imaging — Emerging Imaging **Techniques**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: Biomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Jinichiro Nakano, MatterGreen; David Alman, National Energy Technology Laboratory; Il Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology; Noritaka Saito, Kyushu University; Zuotai Zhang, Southern University of Science and Technology; Bryan Webler, Carnegie Mellon University; Wangzhong Mu, KTH Royal Institute of Technology; Pranjal Nautiyal, Oklahoma State University; Jiawei Mi, University of Hull

Monday PM | March 24, 2025 156 | MGM Grand

Session Chair: Jinichiro Nakano, MatterGreen

2:00 PM Invited

Exploring the Applications of Contact-Mode High-Speed AFM: Stacy Moore1; Tomas Martin1; Tom Scott1; Oliver Payton2; Loren Picco1; ¹University of Bristol; ²Bristol Nano Dynamics

2:20 PM Invited

Accelerating Plasma and Radiation Surface Science Using Transient Grating Spectroscopy: Angus Wylie¹; Kevin Woller¹; Max Rae¹; Andrew Lanzrath¹; Benjamin Dacus¹; Sara Ferry¹; Michael Short¹; ¹Massachusetts Institute of Technology

2:40 PM

Microparticl Impact and Ignition in High-Pressure Oxygen: Spencer Taylor¹; Zachary Cordero¹; ¹Massachusetts Institute of Technology

Ultra-High Strain Rate Impact Response of Polyethylene at Critical **Transition Temperatures**: Jacob Rogers¹; Aniket Mote¹; Sidney Davis¹; Paul Mead¹; Charles Pittman²; Edwin Thomas¹; Justin Wilkerson¹; Thomas Lacy Jr¹; ¹Texas A&M University; ²Mississippi State University

MATERIALS SYNTHESIS AND PROCESSING

Advances in Bcc-Superalloys — Modelling & Phase **Stability**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee, TMS: Refractory Metals & Materials

Program Organizers: Alexander Knowles, University of Birmingham; Christopher Zenk, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Howard Stone, University of Cambridge; Oleg Senkov, Air Force Research Laboratory; Eric Lass, University of Tennessee-Knoxville; Thomas Hammerschmidt, Ruhr University Bochum

Monday PM | March 24, 2025 102 | MGM Grand

Session Chairs: Eric Lass, University of Tennessee-Knoxville; Thomas Hammerschmidt, Ruhr University Bochum

2:00 PM Invited

Stability and Slip Mechanisms of B2 Phases in Refractory Alloys: Junxin Wang¹; Maryam Ghazisaeidi¹; ¹Ohio State University

2:30 PM

Atomistic Simulation of Dislocation Behavior in a Model BCC-B2 Alloy Using Machine Learning Interatomic Potentials: Junxin Wang¹; Maryam Ghazisaeidi¹; ¹Ohio State University

Atomistic Simulations of Cr-Si Alloys: Thomas Hammerschmidt1; ¹Ruhr University Bochum

Thermodynamics and Phase Transformation Pathways in BCC-B2 Refractory Superalloys: Eric Lass1; 1University of Tennessee-Knoxville

3:40 PM Break

4:00 PM Invited

Interaction of Cr-Si-Base Alloys with Ceramics at High Temperatures: Lucas Pelchen¹; Giulia Bianchi²; Maren Lepple²; Anke Ulrich¹; ¹University of Bayreuth; ²Justus Liebig University Giessen

Recent Improvements in BCC-Based Alloy Prediction Capabilities in Thermo-Calc Software and Databases: Carl-Magnus Lancelot1; Huahai Mao¹; Reza Naraghi¹; Paul Mason²; ¹Thermo-Calc Software AB; 2Thermo-Calc Software Inc

4:40 PM

Stability of Undesired AlxZry Ordered Omega Phases in Al-Containing Refractory High Entropy Superalloys: Vishal Soni¹; Advika Chesetti¹; SriSwaroop Dasari²; Abhishek Sharma¹; Oleg Senkov³; Daniel Miracle⁴; Rajarshi Banerjee¹; ¹University of North Texas; 2Idaho National Laboratory; 3MRL Materials Resources LLC; ⁴Air Force Research Laboratory

5:00 PM

High Entropy Superalloys in Advanced Modular Reactors: Cameron Yousefian¹; Alexander Knowles¹; Alex Cackett²; ¹University of Birmingham; 2National Nuclear Laboratory

MATERIALS SYNTHESIS AND PROCESSING

Advances in Ceramic Materials and Processing — **Ultra-High Temperature Ceramics**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, University of Alabama Birmingham; Faqin Dong, Southwest University of Science and Technology; Ruigang Wang, Michigan State University; Alexander Dupuy, University of Connecticut; Jinhong Li, China University of Geosciences; Gregory Thompson, University of Alabama; Babak Anasori, Purdue University

Monday PM | March 24, 2025 106 | MGM Grand

Session Chairs: Babak Anasori, Purdue University; Eugene Olevsky, San Diego State University

2:00 PM Invited

Advances in Synthesis, Assembly, and Performance of MXenes for Energy Storage Applications: Majid Beidaghi¹; ¹University of Arizona

2:20 PM Invited

Synthesis and Application of Two-Dimensional Transition Metal Carbo-Chalcogenides (TMCCs): Michael Naguib¹; ¹Tulane University

Very High Cycle Fatigue of a SiC/SiC Ceramic Matrix Composite at 1000°C: Mathieu Calvat1; Jonathan Cormier2; Yannick Pannier2; Florent Mauget²; ¹University of Illinois at Urbana Champaign; ²Institut Pprime

3:00 PM

Pushing Performance With High Temperature Composite Material Solutions: Andrew Giles¹; Christian Deck¹; David Frazer¹; Sean Gonderman¹; Hesham Khalifa¹; Alden Moore¹; ¹General Atomics

3:20 PM Break

3:30 PM Invited

Gas-Phase MXene Synthesis via Dry Halide-Based Etching: Benjamin Davis¹; Hyunho Kim¹; Yury Gogotsi¹; ¹Drexel University

3:50 PM Invited

Synthesis of Cost-Effective and Environmentally Stable Ti3C2Tx MXenes for Various Practical Electronic Applications: Chong Min Koo1; 1Sungkyunkwan University

MXenes as 2D Nanoceramic Additives in Silicon Carbide Matrices for High-Temperature Applications: Nithin Chandran¹; S. Kartik Nemani¹; Brian Wyatt¹; Babak Anasori¹; ¹Purdue University

4:30 PM

Challenges for the Refractory Industry by Usage of Hydrogen as Reductant in Industrial Processes: An Investigative Laboratory Test Study: Lukas Konrad¹; Efstathios Kyrilis¹; Daniela Gavagnin¹; Erick Estrada Ospino¹; Philip Schantl¹; ¹RHI Magnesiata

4:50 PM

The Morphological and Compositional Stability of Nanoporous UHTCs During Fabrication From Metallic Precursors: Catherine Ott¹; Ian McCue¹; ¹Northwestern University

5:10 PM

Test Method for High-Throughput, 4 Point Bend Testing at Temperatures up to 2500C: Brian Allen¹; ¹Dynamic Systems Inc.

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances in Magnetism and Magnetic Materials — **New Permanent Magnet Materials**

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Matthew Kramer, Ames Laboratory; Eric Theisen, Energy & Environmental Research Center; Yaroslav Mudryk, Ames National Laboratory/Iowa State University; Daniel Salazar, BCMaterials

Monday PM | March 24, 2025 363 | MGM Grand

Session Chairs: Frank Johnson, Niron Magnetics, Inc.; Laura Lewis, Northeastern University

2:00 PM Invited

High-Throughput Design and Discovery of Novel Magnetic Nitrides: Rebecca Smaha1; 1National Renewable Energy Lab

Iron Nitride Permanent Magnets: Frank Johnson¹; ¹Niron Magnetics, Inc.

3:00 PM

Magnetic Model Informed Design of Architected Permanent Magnets for Electric Machines: David Smith¹; Brennan Yahata¹; Adam Gross¹; Chris Henry¹; Alireza Fatemi²; Thomas Nehl²; ¹HRL Laboratories; ²General Motors

3:20 PM Break

3:40 PM Invited

Sustainable Magnets for Green Energy: Pelin Tozman¹; Konstantin Skokov¹; Alex Aubert¹; Semih Ener¹; Imants Dirba¹; Fernando Maccari¹; Oliver Gutfleisch¹; ¹Technical University of Darmstadt

4:10 PM

New Fe-rich Ferromagnets Without Critical Elements: Akila Raja¹; Olena Palasyuk¹; Deborah Schlagel¹; Andriy Palasyuk¹; ¹Ames National Laboratory

4:30 PM

Structural, Magnetic and Mechanical Characterization of Fe-Co-Ni-B-Ti Powder Medium-Entropy Alloys: Lukasz Hawelek¹; Krzysztof Pecak¹; Anna Czech¹; Anna Wojcik²; Robert Chulist²; Wojciech Maziarz²; Maciej Kowalczyk¹; Tymon Warski¹; ¹Lukasiewicz Research Network - Institute of Non-Ferrous Metals; 2Institute of Metallurgy and Materials Science Polish Academy of Sciences

4:50 PM

Investigation of Magnetron Sputtered AlO.25CrFeCoNi Thin Films for Enhanced Magnetic Properties: Md Imran Noor1; Tibra Das Gupta¹; Aastha Vasdev¹; Michael Detisch¹; Lance De Long¹; William J. Gannon¹; Thomas John Balk¹; J. Todd Hastings¹; Paul F. Rottmann¹; ¹University of Kentucky

MATERIALS SYNTHESIS AND PROCESSING

Advances in Materials Deposition by Cold Spray and Related Technologies — Process Development and Optimization II

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Materials Characterization Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: Ahmed Alade Tiamiyu, University of Calgary, Canada; Tanaji Paul, Florida International University; Yu Zou, University of Toronto; Maniya Aghasibeig, National Research Council Canada; Aaron Nardi, Vrc Metal Systems, Llc; Pin Lu, Solvus Global

Monday PM | March 24, 2025 103 | MGM Grand

Session Chairs: Tanaji Paul, Florida International University; Maniya Aghasibeig, National Research Council Canada

2:00 PM

Oil and Gas Pipelines Repair by High Pressure Cold Spray Technology: Mehand Tebib1; Francesco Delloro1; Yazid Madi1; Abdennour Meddour¹; Abdessalem Hayat²; Caminde Fabas³; Hervé Marchebois⁴; Alain Reiser⁵; ¹Ecole des Mines de Paris; ²GRT Gaz; ³Vallourec; ⁴Totalenergies; ⁵KTH Royal Institute of Technology

2:20 PM

Cold-Spray Welding and Direction for Future Optimization: Muhammad Zia ud din Urf Umer¹; Ahmed Alade Tiamiyu¹; ¹University of Calgary

2:40 PM Invited

Properties of As-Sprayed and Thermally Processed Cold Spray Deposited Materials Using Multiple Gas Compositions: Aaron Nardi¹; Marius Ellingsen¹; David Brennan¹; Quentin Goley¹; Quenten Dean¹; ¹VRC Metal Systems, LLC

3:10 PM Break

Understanding Cr Cold Spray Coating Deposition on Zr-Alloy Substrate: Evan Willing¹; Tyler Dabney¹; Kasturi Sasidhar¹; Kumar Sridharan¹; Ben Maier²; Nicholas Pocquette²; Katerina Frederick²; Hwasung Yeom³; ¹University of Wisconsin Madison; ²Westinghouse Electric Company; ³Pohang University

Enhancement of Properties in Nitrogen-Based Cold-Sprayed Niobium Deposits: Solomen Azu¹; Rajashekara Sarvesha¹; James Caudill¹; Adolfo Blassino²; Isaac Nault²; Ibrahim Jawahir¹; ¹University of Kentucky; ²DEVCOM US Army Research Laboratory

MECHANICS OF MATERIALS

Advances in Multi-Principal Element Alloys IV: Mechanical Behavior — Alloy Development and Application II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Jennifer Carter, Case Western Reserve University; E-Wen Huang, National Yang Ming Chiao Tung University; T.S. Srivatsan, University of Akron; Xie Xie, Ford Motor Company; Jamieson Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Monday PM | March 24, 2025 368 | MGM Grand

Session Chairs: Eric Lass, University of Tennessee-Knoxville; Raymundo Arroyave, Texas A&M University

2:00 PM Invited

Disordered Enthalpy-Entropy Descriptor for **High-Entropy** Ceramics Discovery: Stefano Curtarolo¹; ¹Duke University

2:20 PM Invited

From High-Entropy Ceramics (HECs) to Compositionally Complex Ceramics (CCCs): A Review and New Perspective: Jian Luo1; ¹University of California, San Diego

2:40 PM Invited

100+ Fold Acceleration in Multi-Objective Alloy Development: Application of the BIRDSHOT Framework to the Efficient **Exploration of FCC HEA Alloy Spaces**: Raymundo Arroyave¹; ¹Texas A&M University

3:00 PM Invited

Large-Language Model-Assisted High Entropy Alloy Design: Knowledge Transfer and Hypothesis Generation: Quantiang Liu¹; Maciej Polak¹; So Yeon Kim²; MD Al Amin Shuvo¹; Hrishikesh Deodhar¹; Jeongsoo Han¹; Dane Morgan¹; Hyunseok Oh¹; ¹University of Wisconsin - Madison; 2 Massachusetts Institute of Technology

3:20 PM

Achieving High Strength and Ductility in Single-Phase Refractory Multi-Principle-Element Alloys via DFT-Guided Tailoring of Chemical Short-Range Order: Hailong Huang¹; Prashant Singh¹; Duane D Johnson²; Gaoyuan Ouyang¹; Rameshwari Naorem¹; Ryan Ott¹; Rajarshi Banerjee³; Vishal Soni³; Thomas Scharf³; Nicolas Argibay¹; ¹Ames National Laboratory; ²Iowa State University; ³University of North Texas

3:40 PM Break

4:00 PM Invited

Composition Design of Refractory High-Entropy Alloys with Machine Learning Models: Haixuan Xu¹; ¹University of Tennessee

Unexpected Intermetallic Plasticity Within Lightweight, Low Cost, and Corrosion-Resistant Compositionally Complex Alloys (CCAs) Containing FCC and L21 Heusler Phases: Sean Agnew1; Mark Wischhusen¹; Jishnu Bhattacharyya¹; ¹University of Virginia

4:40 PM Invited

The Thermodynamics of Mechanical Behavior in BCC Refractory Compositionally Complex Alloys: Eric Lass1; ¹University of Tennessee-Knoxville

5:00 PM

Design of L12 Precipitation-Strengthened Face-Centered-Cubic High-Entropy Alloys: Xuesong Fan1; Michael Gao2; Jonathan Poplawsky³; Yan Chen³; Dunji Yu³; Ke An³; Chuan Zhang⁴; Lizhi Ouyang⁵; Peter Liaw¹; ¹University of Tennessee; ²National Energy Technology Laboratory; 3Oak Ridge National Laboratory; ⁴CompuTherm, LLC; ⁵Tennessee State University

MATERIALS SYNTHESIS AND PROCESSING

Advances in Surface Engineering VII — Advances in **Surface Engineering: Session II**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Bharat Jasthi, South Dakota School of Mines & Technology; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University; Ning Zhu, Baylor University

Monday PM | March 24, 2025 107 | MGM Grand

Session Chair: Avik Samanta, University of South Florida

2:00 PM Introductory Comments

Cleanability Testing of Fluoropolymer Linings to Combat Corrosion in Pharmaceutical Applications: Lucas Bolster¹; Drew Klaus²; George Fisher²; Taylor Sparks¹; ¹University of Utah; ²Fisher Company

Pattern Formation via the Oriented Growth of Au-Si Thin Films on Si(001) Substrate: Rotem Zilberberg1; Iryna Polishchuk1; Lotan Portal¹; Silvia Milita²; Giuseppe Falini³; Alexander Katsman¹; Boaz Pokroy¹; ¹Technion - Israel Institute of Technology; ²CNR-Institute for Microelectronic and Microsystems; 3University of Bologna

2:45 PM

Increase in Mechanical, Tribological, Anticorrosive and Bactericidal Properties in DLC Coatings with the Incorporation of Silver Nanoparticles: Leidy Guamanga¹; Jesús Gutiérrez¹; Katia Conceição²; Ariel Capote Sanchez³; Gil Capote¹; ¹Universidad Nacional de Colombia; ²Universidade Federal de São Paulo; 3University of Southern California

3:05 PM

Harvesting Dislocations and Deformation Twin Traces for Auto-Catalytic Growth of Semiconductors on Surfaces of Gold Alloys and Gold Thin-Films: Lotan Portal¹; Boaz Pokroy¹; ¹Technion Israel Institute of Technology

3:25 PM

Graphene Nanocomposite Films on Carbon-Coated Metals: A Path to Macroscale Superlubricity: Tabiri Asumadu¹; Winston Soboyejo¹; Nima Rahbar¹; Desmond Klenam¹; Mobin Vandadi¹; Kwadwo Mensah-Darkwa¹; Samuel Kwofie¹; Emmanuel Gikunoo¹; ¹SUNY Polytechnic Institute

3:45 PM Break

4:00 PM

A Comparative Study of Surface Hardening Using WC-Co and WC-CrMnFeCoNi HEA Cemented Carbides Formed by the Multi-Beam Laser Directed Energy Deposition: Takahiro Kunimine¹; Kaito Ebihara¹; Guo Wenheng¹; Yorihiro Yamashita²; ¹Kanazawa University; ²University of Fukui

Unlocking Tribological Performance of Silver-Infused Cu-Al2O3 Self-Lubricating Cermet: Subin Antony Jose¹; ¹University of Nevada,

LIGHT METALS

Advances in Titanium Technology — Metastable **Beta Titanium Alloys II**

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Abhishek Sharma, University of North Texas; Srinivas Aditya Mantri, Argonne National Laboratory; Zachary Kloenne, Imperial College London; Fan Sun, Centre National de la Recherche Scientifique - Paris Sciences et Lettres University; Stoichko Antonov, National Energy Technology Laboratory

Monday PM | March 24, 2025 108 | MGM Grand

Session Chair: Zachary Kloenne, Imperial College London

2:00 PM Invited

Microstructure Engineering in Metastable Beta Titanium Alloys: Dian Li¹; Sydney Fields¹; Deepak Pillai¹; Rongpei Shi²; Stoichko Antonov³; Yufeng Zheng¹; ¹University of North Texas; ²Harbin Institute of Technology; 3National Energy Technology Laboratory

2:30 PM Invited

TWIP Effect in Beta Metastable Ti and Zr Alloys: Comparison of the Microstructures and the Deformation Mechanisms: Fan Sun1; Bingnan Qian¹; Junhui Tang¹; Philippe Vermaut¹; Frédéric Prima¹; Rajarshi Banerjee²; Sucharita Banerjee³; Agata Sotniczuk⁴; Philippe Castany⁵; Witold Chrominski⁶; Nicolas Jobit⁵; Thierry Gloriant⁵; ¹Chimie-Paristech, IRCP, PSL University; ²University of North Texas, Denton; 3University of Texas, Austin; 4NOMATEN Centre of Excellence, National Centre for Nuclear Research; 5INSA-Rennes; ⁶Warsaw University of Technology

The Role of Heat Treatment on Microstructure Evolution and Dynamic Compression Behavior of Additively Manufactured and Wrought Ti-5553: Finn Bamrud¹; Tulika Dixit¹; Robin Montoya²; Erik Rogoff³; Kester Clarke⁴; Leslie Lamberson¹; Amy Clarke⁴; ¹Colorado School of Mines; ²Los Alamos National Laboratory; ³ATI Speciality Materials; 4Los Alamos National Laboratory; Colorado School of Mines

3:20 PM

The Effect of Fe on the Nanoscale Inhomogeneities in Ti-Fe Alloy: Deepak Pillai¹; Sydney Fields¹; Merbin John¹; Yufeng Zheng¹; ¹University of North Texas

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Verification, Validation, and Uncertainty Quantification — Non-Metallic and **Functional Materials**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Dehao Liu, Binghamton University; Matt Kasemer, The University of Alabama; Ashley Spear, University of Utah; Christopher Stiles, Johns Hopkins University Applied Physics Laboratory; Anh Tran, Sandia National Laboratories

Monday PM | March 24, 2025 320 | MGM Grand

Session Chair: Kamal Choudhary, National Institute of Standards and Technology

2:00 PM Invited

Accelerating Semiconductor Design with DFT and Deep Learning: Multiscale Modeling with Quantum Mechanical Accuracy: Daniel Wines1; Brian DeCost1; Kamal Choudhary1; 1NIST

2:40 PM

A Materials Informatics Approach to Quantify Processing -Structure - Property Relationship in Boron Carbide Ceramics: Omer Gokhan Tarman¹; Irmak Sargin¹; ¹Middle East Technical University

3:00 PM

Minimizing Hysteresis in NiTi-Based Non-Platinum Group Metal (PGM) High Temperature Shape Memory Alloys via Experimentally Validated Neural Network Machine Learning: Tayler Sundermann¹, John Broucek²; Ben Brown³; Ibrahim Karaman²; ¹Texas A&M University; ²Texas A&M University; ³Kansas City National Security Campus

3:20 PM Break

A Complete Al-Accelerated Workflow for Superconductor Discovery: Jason Gibson¹; Ajinkya Hire¹; Benjamin Geisler¹; Phil Dee¹; Peter Hirschfeld¹; Richard Hennig¹; ¹University of Florida

Borides as Promising M2AX Phase Materials with High Elastic Modulus Using Machine Learning and Optimization: Ashwin Mhadeshwar¹; *Trupti Mohanty*¹; Taylor Sparks¹; ¹University of Utah

4:20 PM

Data-Driven Assessment and Selection of Magnetocaloric Materials by Grey Relational Analysis: Tanjore Jayaraman¹; ¹United States Air Force Academy

4:40 PM

Digital Twin Application for Carbon Fiber Reinforced Polymer Composite Manufacturing: Yuksel Yabansu¹; Tiffany Stewart¹; David Shahan¹; Gwen Gross²; Andrew Bauer²; ¹HRL Laboratories, LLC; ²The **Boeing Company**

Novel Superhard Materials Synthesis Using Generative ML: Lavanya Mohnani¹; Taylor Sparks¹; Michael Alverson²; ¹University of Utah: 2Google

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Algorithms Development in Materials Science and Engineering — Algorithms and Methods for Manufacturing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Process Technology and Modeling Committee, TMS: Alloy Phases Committee

Program Organizers: Remi Dingreville, Sandia National Laboratories; Saaketh Desai, Sandia National Laboratories; Hojun Lim, Sandia National Laboratories; Jeremy Mason, University of California, Davis; Vimal Ramanuj, Oak Ridge National Laboratory; Sam Reeve, Oak Ridge National Laboratory; Douglas Spearot, University of Florida

Monday PM | March 24, 2025 319 | MGM Grand

Session Chairs: Sam Reeve, Oak Ridge National Laboratory; Saaketh Desai, Sandia National Laboratories

2:00 PM

Toucan: Revolutionizing Grain Growth Simulations with Parallelin-Time Scalability: Benjamin Stump¹; Samuel Reeve¹; Matthew Rolchigo¹; Daniel Arndt¹; ¹Oak Ridge National Laboratory

2:20 PM

Development of Interoperable Process-Structure-Property Simulation Workflows of Additive Manufacturing Using the "Materialize" Framework: Brodan Richter¹; Joshua Pribe²; George Weber¹; Edward Glaessgen¹; ¹NASA Langley Research Center; ²Analytical Mechanics Associates

2:40 PM

3D Surrogate Modeling of Elasto-Viscoplastic FFT Simulations for Porosity-Driven Fatigue Prediction in Additive Manufacturing: Daniel Diaz1; Xingyang Li1; Elizabeth Holm2; Anthony Rollett1; ¹Carnegie Mellon University; ²University of Michigan

Elastic Strain Coupling in DFT-Informed Kinetic Monte Carlo Simulation of Multiphase Thin Film Growth: Anter El-Azab1; Ahmad Ahmad1; 1Purdue University

3:20 PM

Leveraging Increasingly Complex Test Artifacts to Accelerate Materials Development: Additively Manufactured Aluminum Metal Matrix Composites: Jamila Khanfri¹; Alex Butler¹; Aaron Stebner¹; Animesh Chhotaray¹; ¹Georgia Institute of Technology

3:40 PM Break

4:00 PM

Optimizing Material Compositions Using an Ising Model-Based Annealing Method: Yoshishige Okuno¹; Suguru Sakaguchi¹; ¹Resonac Corporation

4:20 PM

Revealing Features in Kikuchi Patterns to Predict Plastic Deformation Localization Differences Between Wrought and Additively Manufactured Metallic Materials: Mathieu Calvat1; Christopher Bean¹; Jean-Charles Stinville¹; ¹University of Illinois at Urbana Champaign

4:40 PM

Phase Field Simulation of Crystal Facet Growth of Diamonds Using MFEM Software: Xiaotian Hua1; Sergey Baryshev1; Rebecca Anthony¹; Hui-Chia Yu¹; ¹Michigan State University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XIII — Innovations in Thermoelectric Materials and Device Design

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Taiwan University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CNRS Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute for Materials Science; Wan-Ting Chiu, Institute of Science Tokyo; Chenguang Fu, Zhejiang University

Monday PM | March 24, 2025 355 | MGM Grand

Session Chairs: Takao Mori, National Institute for Materials Science; Philippe Jund, Montpellier University

2:00 PM Invited

Development of Various Forms of Thermoelectric Devices with Novel Materials: Takao Mori¹; ¹National Institute for Materials Science

2:20 PM Invited

Calcium-Manganate Oxides for Thermoelectric Energy Harvesting: Charge and Heat Transport Mechanisms: Yaron Amouyal¹, ¹Technion Israel Institute of Technology

2:40 PM Invited

Carbogel Based Vacuum Insulation Panels for Large Scale Thermoelectric Application: Shoeb Athar¹; Jérémy Guazzagaloppa²; Philippe Jund¹; ¹Montpellier University; ²Hutchinson

Unexpected Interfacial Reactions in Co/BiTe and Co/GeTe Couples: Cheng-Hsi Ho1; Jia-Ruei Chang1; Hong-Dian Chiang1; Sinnwen Chen¹; ¹National Tsing Hua University

3:20 PM Break

3:40 PM Invited

New Efficient Half-Heusler Compositions from Machine Learning, DFT Calculations and Experiments: Philippe Jund¹; Shoeb Athar¹; ¹Montpellier University

4:00 PM Invited

Novel Elaboration Route for Thermoelectric Legs Shaping: The Case of p-Type Higher Manganese Silicide and the Impact of the Geometry: Yohann Thimont¹; Alexia Mortagne Coderch¹; Geoffroy Chevalier¹; Benjamin Duployer¹; Amélie Galodé²; David Berthebaud³; Franck Gascoin²; Lionel Presmanes¹; ¹CIRIMAT UMR 5085 UPS-CNRS-INP, Institut Carnot, Université Toulouse III Paul SABATIER; ²CRISMAT, ENSICAEN, UNICAEN, CNRS Normandie Université (UMR 6508); 3Institut des Matériaux de Nantes Jean Rouxel, CNRS - Nantes Université

4:20 PM Invited

Progress in Doping Mg3Sb2 for P-Type Zintl Thermoelectrics: Nagendra Chauhan1; Takao Mori1; 1NIMS, Japan

LIGHT METALS

Alumina and Bauxite — Bauxite and Alumina I

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Efthymios Balomenos, Metlen Energy and Metals; Les Edwards, Rain Carbon Inc.

Monday PM | March 24, 2025 111 | MGM Grand

Session Chair: Jose Erik Araujo, Norsk Hydro

2:00 PM Keynote

Pathways to Decarbonise the Alumina Industry: Jordan Parham¹; Graham Nathan1; Woei Saw2; Peter Ashman2; 1HILT CRC; 2University of Adelaide

2:40 PM

Sustainability Initiatives at Muri Alumina Refinery by Utilizing 100% Waste, Conservation of Natural Resources and Reduction of Carbon Emission: Prasanta Bose1; Rohit Chourasia1; Navnit Srivastava¹: Kenneth Dvaz¹: ¹Prasanta

Sustainable Green Application of Kaolin Ore for Alumina Recovery Based on Lower Temperatures Sintering Process: Abdul-Majid Shamroukh¹; Amr Eldeeb²; Salah Salman²; Mohamed Farghly³; ¹Aluminium Company of Egypt (Egyptalum); ²Al-Azhar University -Cairo; 3Al-Azhar University - Qena

3:30 PM Question and Answer Period

LIGHT METALS

Aluminum Alloys: Development and Manufacturing Alloy Development

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mihaiela Isac, McGill Metals Processing Centre; Les Edwards, Rain Carbon Inc.

Monday PM | March 24, 2025 114 | MGM Grand

Session Chairs: Mihaiela Isac, McGill Metals Processing Centre; Les Edwards. Rain Carbon Inc.

2:00 PM Introductory Comments

2:05 PM Invited

Towards the Design of Highly Heterogeneous Aluminum Alloys: Dmitry Eskin¹; Suwaree Chankitmunkong²; Chengbo Zhu¹; ¹Brunel University; ² King Mongkut's Institute of Technology Ladkrabang

Al-Ce-Based Alloys: Processing, Mechanical Properties and High Temperature Stability: Humphrey Odhiambo¹; Gaurav Singh²; Mohamad Tasneem²; Monica Soare³; Jason Leszczewicz³; Jun Cui¹; Ralph Napolitano¹; Gaoyuan Ouyang⁴; Catalin Picu²; ¹Iowa State University; ²Rensselaer Polytechnic Inst; ³General Electric Global Research; ⁴Ames National Laboratory

2:55 PM

A New Approach to the Design of Al Alloys with Low Cracking Susceptibility and High-Temperature Strength for Casting and Additive Manufacturing: Chengbo Zhu1; Da Guo2; Kai Zhang2; lakovos Tzanakis³; Alex Leung²; Peter Lee²; Dmitry Eskin¹; ¹Brunel University London; ²University College London; ³Oxford Brookes University

Effects of Cu on Microstructure of Al7SiMgFeMn-Based Thin-Wall High-Pressure Die Casting: Fei Xue1; Yang Huo1; Joy Forsmark1; Mei Li¹; ¹Ford Motor Company

3:45 PM Break

4:00 PM Keynote

Dilute Eutectic Casting Aluminium (DECA) Alloys for Structural Shaped Castings: Sumanth Shankar¹; Xiaochun Zeng¹; ¹McMaster University

 $Rheological \, Behavior \, and \, Microstructural \, Evolution \, of \, AlMg 5 Si 2 Mn$ Alloy for Semi-Solid Casting: Gihoon Moon¹; Brajendra Mishra¹; ¹Worcester Polytechnic Institute

4:50 PM

Al-Mg-Si Development Using Combinatorial Laser Directed Energy Deposition: Aleena Masaeng¹; Qingyu Pan¹; Monica Kapoor²; John Carsley²; Xiaoyuan Lou¹; ¹Purdue University; ²Novelis Global Research and Technology Center

5:15 PM

Enhancing Thermal Stability of Al-Mg-Si-Cu Alloys through Ag and Sc Additions: Hyeon-Woo Son1; Jae-Seok Lee1; Kwangjun Euh1; ¹Korea Institute of Materials Science

The Use of Artificial Intelligence When Planning the Composition and Production of Wrought Aluminum Alloys with a Majority Share of Post-Consumed Scrap: Varuzan Kevorkijan¹; ¹Impol Aluminium

LIGHT METALS

Aluminum Reduction Technology — Start-Up, Early Life and Advances in Cell Operation

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Andre-Felipe Schneider, Hatch Ltd.; Les Edwards, Rain Carbon Inc.

Monday PM | March 24, 2025 113 | MGM Grand

Session Chair: Trond Eirik Jentoftsen, Hydro Aluminium

2:00 PM Introductory Comments

2:05 PM

Ma'aden Reduction Potline Partial Failure Incident and Recovery: Subah Alshammari¹; Abdulrahman Al-Shammari¹; Ali Al-Shami¹; Brent Pekoba¹; Sultan Al-Boqami¹; Saad Al-Shammari¹; Umakanta Nayak¹; Yousef Alfarsi¹; Kishor Pant¹; Mohammed Al Hunaini¹; ¹Maaden Aluminum

2:30 PM

Optimizing Aluminum Production: Overview of Semi-Partial Pot Reconstruction at PT Inalum: Gratha Adhitya Putra¹; Ivan Ermisyam¹; Firman Ashad¹; Edi Mugiono¹; Juperisya Anas¹; ¹PT. INALUM

2:55 PM

Anode Change Resistance Addition Optimization: Melissa Von Grapp¹; Camila Rabelo da Silva¹; Michel Pena¹; Pierre Reny²; Valfredo Filho¹; Glaucia da Costa Cesar¹; ¹Albras; ²Hydro

3:20 PM Break

Task Cycle Transition Strategy at ALBRAS Potlines: Franciny Lobato¹; Camila Silva¹; Michel Pena¹; Vanderlei Fernandes¹; ¹ALBRAS Alumínio Brasileiro SA

Reducing Cell Voltage at ALBRAS: Glaucia Pamela Da Costa Cesar¹; Camila da Silva¹; Michel Pena¹; Johnson Machado¹; Pierre Reny²; ¹Albras; ²Hydro

4:25 PM

High End Robot for Reduction Cells Basement Cleaning In EGA Smelter: Mohamed Aldhanhani¹; Balakrishnan Palanisamy¹; Satish Rajput¹; Amit Dubey¹; Syam Sudabattula¹; Mohamed Alhammadi¹; Jayaprakash Rajagopal¹; Alya Alshamsi¹; Hashim Alhammadi¹; Mohammad Shahid¹; Amiya Jena¹; ¹Emirates Global Aluminium

4:50 PM Concluding Comments

MECHANICS OF MATERIALS

Atomistic Simulations Linked to Experiments to Understand Mechanical Behavior: A MPMD Symposium in Honor of Professor Diana Farkas — Fundamentals II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Andrea Hodge, University of Southern California; Arun Nair, University of Arkansas; Alejandro Strachan, Purdue University; Chelsey Hargather, Los Alamos National Laboratory; Christopher Schuh, Northwestern University

Monday PM | March 24, 2025 370 | MGM Grand

Session Chair: Arun Nair, University of Arkansas

2:00 PM

Insights into the Soft Brittle-to-Ductile Transition in BCC Metals Using Multiscale Modeling: Hunter Brumblay¹; Gregory Thompson²; Christopher Weinberger¹; ¹Colorado State University; ²University of Alabama

2:20 PM Invited

The Intrinsic Ductile-Brittle Transition in Metals and Alloys: William Curtin¹; ¹Brown University

2:50 PM Invited

Role of Microstructure and Strength on the Development of Slip Localizations in Polycrystals: Behnam Ahmadikia¹; Rembert White¹; Jean-Charles Stinville²; Tresa Pollock¹; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²University of Illinois

3:20 PM Break

3:40 PM Invited

Atomistic Insights into Microstructural Engineering of High Entropy and Ni-Based Superalloys Thin Films: Paulo Branicio¹; Aoyan Liang¹; Mohammad Hadi Yazdani¹; Daniel Goodelman¹; Andrea Hodge¹; Diana Farkas²; ¹University of Southern California; ²Virginia Tech

4:10 PM

Design of High-Performance Lightweight High Entropy Alloys Using High-Throughput Method: Lia Amalia¹; Rui Feng²; Chuan Zhang³; Michael Gao²; Zongrui Pei²; Fan Zhang³; Yan Chen⁴; Dong Ma⁵; Ke An⁴; Jonathan Poplawsky⁴; Lizhi Ouyang⁶; Yang Ren⁷; Jeffrey Hawk2; Michael Widom8; Peter Liaw1; 1University of Tennessee; ²National Energy Technology Laboratory; ³Computherm, LLC; ⁴Oak Ridge National Laboratory; 5Neutron Science Platform, Songshan Lake Materials Laboratory; ⁶Tennessee State University; ⁷Advanced Photon Source, Argonne National Laboratory; 8Carnegie Mellon University

4:30 PM

Virtual Diffraction as a Method to Bridge Atomistic and Mesoscale Simulations with Experiments: Shawn Coleman¹; Darshan Bamney²; Aaron Tallman³; Laurent Capolungo²; Douglas Spearot⁴; Army DEVCOM Army Research Laboratory; ²Los Alamos National Laboratory; ³Florida International University; ⁴University of Florida

4:50 PM

Characterizing Variants During Phase Transformation and Twinning in BCC Microstructures During Deformation and Unloading: Phillip Tsurkan¹; Evan Byers¹; Avinash Dongare¹; ¹University of Connecticut

BIOMATERIALS

Biological Materials Science — Mechanics of Hierarchical Materials II

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Yuxiao Zhou, Texas A&M University; Ling Li, University of Pennsylvania; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Grace Gu, University of California, Berkeley; Debora Lyn Porter, University of California Merced

Monday PM | March 24, 2025 306 | MGM Grand

Session Chairs: Yuxiao Zhou, Texas A&M University; Xiaoguang Dong, Vanderbilt University

2:00 PM Invited

Multiscale Composition-Structure-Property Relationship of Bone: Chenxu Yue¹; Yichun Tang¹; Dingchuan Xue¹; Yuxiao Zhou²; Zian Jia³; Xin Tang⁴; Sulin Zhang¹; Jing Du⁴; ¹Pennsylvania State University; ²Pennsylvania State University; Texas A&M University; ³Princeton University; 4Southern University of Science and Technology

2:30 PM

Bioinspired Microstructural Alignment in Freeze-Cast Scaffolds via the Hall Effect: Maddie Schmitz¹; Steven Naleway¹; ¹University of Utah

2:50 PM

Structure-Property Relationships in Filamentous Fungi: Steven Naleway1; James Gallagher1; Ihsan Elnunu1; Atul Agrawal1; Jessica Redmond¹; ¹University of Utah

3:10 PM Invited

Programmable and Flexible Optics with Hydrogels: Xinyue Liu1; ¹Michigan State University

3:40 PM Break

4:00 PM Invited

Material Strategies for Chronically-Stable, High-Precision Bioelectronic Interfaces: Yuanwen Jiang¹; ¹University of Pennsylvania

4:30 PM

The 3D Structure of Dental Enamel: Synchrotron CT Insights and Property Relationships: Cameron Renteria1; Jack Grimm1; Carli Marsico¹; Juliana Fernández-Arteaga²; Donna Guillen³; Viktor Nikitin⁴; Dula Parkinson⁵; Dwayne Arola¹; ¹University of Washington; ²Institución Universitaria Digital de Antioquia; ³Idaho National Laboratory; ⁴Argonne National Laboratory; ⁵Lawrence Berkeley National Laboratory

4:50 PM Invited

Stiff Morphing Beams Inspired from Fish Fins: Saurabh Das1; Prashant Kunjam¹; Baptiste Moling¹; Francois Barthelat¹; ¹University of Colorado Boulder

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Bridging Scale Gaps in Multiscale Materials Modeling in the Age of Artificial Intelligence — **Machine Learning Interatomic Potentials and Their Applications**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan; Katsuyo Thornton, University of Michigan; Peter Voorhees, Northwestern University; Eric Homer, Brigham Young University; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Monday PM | March 24, 2025 353 | MGM Grand

Session Chairs: Vaidehi Menon, University of Michigan; Eric Homer, **Brigham Young University**

2:00 PM Invited

Machine Learning Potentials for Chemically Complex Alloys: Rodrigo Freitas¹; ¹Massachusetts Institute of Technology

2:30 PM

UF3: Fast and Interpretable MLIP for High-Performance Molecular **Dynamics**: Ajinkya Hire¹; Hendrik Krass²; Stephen Xie³; Jason Gibson¹; Michael MacIsaac¹; Sung Hoon Jung⁴; Matthias Rupp⁵; Richard Hennig¹; ¹University of Florida; ²University of Konstanz; ³NASA Ames Research Center; 4University of Texas at Austin; 5Luxembourg Institute of Science and Technology

2:50 PM Invited

Revealing the Impact of Hydrogen on Iron: Large-Scale Quantitative Atomistic Analysis with Highly Accurate and Transferrable Machine Learning Interatomic Potentials: Shigenobu Ogata1; 1Osaka University

3:20 PM

Material-Agnostic Training Data Generation for Machine-Learning Interatomic Potentials: Aparna P. A. Subramanyam¹; Danny Perez¹; ¹Los Alamos National Laboratory

3:40 PM Break

4:00 PM Invited

Pathways to the 7 x 7 Surface Reconstruction of Si(111) Revealed by Machine-Learning Molecular Dynamics Simulations: Yidi Shen¹; Kun Luo¹; William Goddard²; Qi An¹; ¹Iowa State University; ²Caltech

4:30 PM

Influence of Surface Structure on Graphene Formation via Thermal Decomposition of Silicon Carbide: Michael MacIsaac1; Salil Bavdekar²; Douglas Spearot¹; Richard Hennig¹; Ghatu Subhash¹; ¹University of Florida; ²Illinois State University

ADVANCED CHARACTERIZATION METHODS

Characterization of Materials through High Resolution Coherent Imaging — Scientific Applications of Coherent Imaging II

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Xianghui Xiao, Brookhaven National Laboratory; Richard Sandberg, Brigham Young University; Ross Harder, Argonne National Laboratory; Brian Abbey, La Trobe University; Saryu Fensin, Los Alamos National Laboratory; Ana Diaz, Paul Scherrer Institute; Mathew Cherukara, Argonne National Laboratory

Monday PM | March 24, 2025 157 | MGM Grand

Session Chair: Xianghui Xiao, Brookhaven National Laboratory

Explanation of the High-Dielectric Constant of BaTiO3 Used in Multilayer Capacitors: Ian Robinson¹; ¹University College

Probing Cryogenic Strain Evolution in SrTiO3 Using Multi-Reflection Bragg Coherent Diffraction Imaging: David Yang¹; Sung Soo Ha²; Sung Wook Choi²; Jialun Liu³; Daniel Treuherz³; Longlong Wu¹; Ana Suzana⁴; Gareth Nisbet⁵; Dan Porter⁵; Hyunjung Kim²; Ian Robinson¹; ¹Brookhaven National Laboratory; ²Sogang University; ³University College London; ⁴Argonne National Laboratory; ⁵Harwell Science and Innovation Campus

3:00 PM

Bragg Coherent Diffractive Imaging With Twisted X-Rays: Edwin Fohtung¹; Dmitry Karpov²; ¹Rensselar Polytechnic Institute; ²ESRF

3:20 PM

Synchrotron Ptychographic X-Ray Computed Tomography (PXCT) to Study Micro-Fabricated Fully Hybrid 3D Metal-Ceramic Metamaterials: Alexander Groetsch1; Christopher Gunderson2; Peter Schweizer³; Ana Diaz⁴; Janne-Petteri Niemelä²; Helen Le Clézio⁵; Mirko Holler⁴; Ivo Utke²; Xavier Maeder²; Dennis Kochmann⁵; Johann Michler²; Jakob Schwiedrzik²; ¹KTH Royal Institute of Technology; ²Empa - Swiss Federal Laboratories for Materials Science and Technology; ³Lawrence Berkeley National Laboratory; ⁴Paul Scherrer Institute; 5ETH Zurich

3:40 PM Break

Origin of Structural Degradation in Layered Oxide Cathode for Li-Ion Batteries: Tongchao Liu¹; ¹Argonne National Laboratory

Characterization of Crystalline Materials at the Atomic Scale with X-Ray Bragg Coherent Diffraction Imaging: Jason Meziere¹; Abi Mae Hardy¹; Anastasios Pateras²; Ross Harder³; Richard Sandberg¹; ¹Brigham Young University; ²DESY Deutsches Elektronen-Synchrotron; ³Argonne National Laboratory

ADVANCED CHARACTERIZATION METHODS

Characterization of Minerals, Metals and Materials 2025: In-Situ Characterization Techniques — **Advanced Characterization Methods II**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Zhiwei Peng, Central South University; Kelvin Xie, Texas A&M University; Mingming Zhang, Baowu Ouyeel Co. Ltd; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, AnalytiChem Group, USA; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, Devcom Arl Army Research Office; Shadia Ikhmayies, The University of Jordan

Monday PM | March 24, 2025 121 | MGM Grand

Session Chairs: Jiann-Yang Hwang, Michigan Technological University; John Carpenter, Los Alamos National Laboratory

2:00 PM

In-Situ Characterization Methods for Thermophysical Property Measurements Using the Electro-Magnetic Levitator On-Board the International Space Station: Marcelina Stasik¹; Stephan Schneider²; Wilhelmus Sillekens¹; ¹European Space Agency; ²German Aerospace Center (DLR)

2:20 PM

In-Situ Mechanical Property Measurement Using Laser Ultrasound: Zilong Hua1; Amey Khanolkar1; Stephen Reese1; William Chuirazzi1; Michael McMurtrey¹; David Hurley¹; ¹Idaho National Laboratory

2:40 PM

In-Situ Sensor Monitoring and Multiclass Porosity Defects Prediction for Laser Powder Bed Fusion With Machine Learning: Sandesh Giri¹; Sen Liu¹; Nick Calta²; Christopher Tassone³; ¹University of Louisiana at Lafayette; ²Lawrence Livermore National Laboratory; 3SLAC National Accelerator Laboratory

3:00 PM

Leveraging XRD, Total Scattering, and XAFS Techniques to Decipher Structure-Property-Performance Relationships Ammonia Decomposition Catalysts: Tolga Han Ulucan¹; ¹SLAC National Accelerator Laboratory

3:20 PM

Opening Pandora's Box: Addressing the Closed Nature of Post-Processing Methods for Computed Tomography (CT) Images With Application Perspectives for Energetic Materials: Stewart Youngblood¹; Sean Palmer¹; Alan Williams¹; ¹Sandia National Laboratories

3:40 PM Break

3:50 PM

Low Voltage Electron Back-Scatter Diffraction: Enabling High Resolution Mapping of Early Stage Recrystallization: Zehua Liu¹; Marc DeGraef¹; ¹Carnegie Mellon University

4:10 PM

Phase Evolution of a Spinodal Copper Alloy, Characterized by In Situ Synchrotron X Ray Diffraction: James Hogg¹; Nicole Church¹; Annie Andersson¹; Catherine Dejoie²; Howard Stone¹; ¹University of Cambridge; ²European Synchrotron Radiation Facility

4:30 PM

Put a Gleeble in the Beam: Concepts for the Materials Oscilloscope: Klaus-Dieter Liss1; 1University of Tennessee, Knoxville

4:50 PM

Microstructural Evolution of Fe-Bearing Intermetallic Particle After Thermo-Mechanical Processing Using X-Ray Microcomputed Tomography: Satyaroop Patnaik¹; Eshan Ganju¹; XiaoXiang Yu²; Minju Kang²; Jaesuk(Jay) Park²; DaeHoon Kang²; Rajeev Kamat²; John Carsley²; Nikhilesh Chawla¹; ¹Purdue University; ²Novelis Global Research and Technology Center

5:10 PM

In-Situ Multi-Scale Analysis of Local Deformation Behavior of Lath Martensite in Low-Carbon-Steel: Shuang Gong¹; Junya Inoue¹; ¹The University of Tokyo

5:30 PM

High Energy Diffraction Microscopy as a Tool for In-Situ Characterization of Materials: Hemant Sharma¹; Weijian Zheng¹; Jun-Sang Park¹; Peter Kenesei¹; Rajkumar Kettimuthu¹; Antonino Miceli¹: ¹Argonne National Laboratory

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Chemistry and Physics of Interfaces — Theory and **Modeling of Grain Boundary Phases and Phase Transitions**

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Timofey Frolov, Lawrence Livermore National Laboratory; Fadi Abdeljawad, Lehigh University; Kaila Birtsch, Los Alamos National Laboratory; Daniel Moore, Lehigh University; Christopher Schuh, Northwestern University

Monday PM | March 24, 2025 304 | MGM Grand

Session Chairs: Blas Uberuaga, Los Alamos National Laboratory; Ryan Sills, Rutgers University

2:00 PM Invited

Structural Transitions in Grain Boundaries and the Role of Line Defects: Ian Winter1; 1Sandia National Laboratories

2:30 PM

Energetics of Disconnection Nucleation and Glide in Symmetric Tilt Grain Boundaries: Himanshu Joshi¹; Ian Chesser²; Brandon Runnels³; Nikhil Admal¹; ¹University of Illinois, Urbana-Champaign; ²Los Alamos National Laboratory; ³University of Iowa, Ames

2:50 PM

Describe, Transform, Machine Learning: Feature Engineering for Grain Boundaries and Other Variable-Sized Atom Clusters: Eric Homer¹; Braxton Owens¹; Gus Hart¹; Tyce Olaveson¹; Jacob Tavenner²; Edward Kober³; Garritt Tucker⁴; Nithin Mathew³; ¹Brigham Young University; 2NASA; 3Los Alamos National Laboratory; 4Baylor University

3:10 PM Invited

Everything is not Affine: How Non-Affine Transformations Enable a New State of Crystalline Interfacial Coherency: Ryan Sills1; Alejandro Hinojos²; Trevor Murray¹; Xiaowang Zhou²; Douglas Medlin²; ¹Rutgers University; ²Sandia National Laboratories

3:40 PM Break

4:00 PM Invited

Interfaces in Oxides: Blas Uberuaga¹; ¹Los Alamos National Laboratory

4:30 PM

Vacancy Segregation to Grain Boundaries in Diamond: Christian Brandl¹; ¹The University of Melbourne

4:50 PM

Modification of Defects Dynamics in Ga(Al)As Heterostructures by Photo-Doping: Ella Pek1; Chao Jiang1; Kevin Vallejo1; Brelon May¹; Amey Khanolkar¹; Zilong Hua¹; Kaustubh Bawane¹; Anshul Kamboj¹; Marat Khafizov²; David Hurley¹; Farida Selim³; Trent Garrett⁴; Maddison Nordstrom⁴; Paul Simmonds⁴; Cody Dennett⁵; ¹Idaho National Laboratory; ²Ohio State University; ³Arizona State University; 4Boise State University; 5Massachussets Institute of Technology

5:10 PM

On the Origin of Finite-Size Effects in Atomistic Simulations of Grain Boundary Migration: Sanad Alturk¹; Nithin Mathew²; Enrique Martinez¹; Jason Trelewicz³; Blas Uberuaga²; Spencer Thomas³; ¹Clemson University; ²Los Alamos National Laboratory; ³Stony Brook University

MATERIALS SYNTHESIS AND PROCESSING

Composite Materials: Sustainable and Eco-Friendly Material Development and Applications — Sustainable and Eco-Friendly Materials: Nanocomposites and Nanomaterials for **Environmental and Energy Applications**

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Yahya Al-Majali, Ohio University; Brian Wisner, Ohio University; Ioannis Mastorakos, Clarkson University; Simona Hunyadi Murph, Savannah River National Laboratory; Muralidharan Paramsothy, NanoWorld Innovations (NWI)

Monday PM | March 24, 2025 116 | MGM Grand

Session Chair: Brian Wisner, Ohio University

2:00 PM

Exploring the Potential of PVDF/CCB Composites in Energy Harvesting Technologies: Fawad Ali¹; Mohammad Albakri¹; ¹Texas A&M University

2:20 PM

Green Synthesis of Multifunctional Nanomaterials: Simona Hunyadi Murph¹; ¹Savannah River National Laboratory

High-Performance Nanoparticle-Mediated Surfaces for Bio-Medical Applications: Simona Hunyadi Murph¹; ¹Savannah River **National Laboratory**

Modelling of Ultrasonic Cavitation for Deagglomeration of Carbon Nanotubes in Water With or Without Surfactant: Catherine Tonry¹; Zhuocheng Xu²; Christopher Beckwith¹; Andrew Kao¹; Milo Shaffer²; Qianqian Li²; ¹University of Greenwich; ²Imperial College London

3:20 PM Break

3:40 PM

Nanomaterial-Engineered Surfaces for Decontamination of Water Resources: Simona Hunyadi Murph¹; ¹Savannah River National Laboratory

4:00 PM

Adsorption of Low-Concentration Fluoride Ions from Simulated Metallurgical Wastewater by Zr-MOF: Hongfei Ma¹; Wenjuan Wang¹; Zhan Chu¹; Yanfang Huang¹; Guihong Han¹; ¹Zhengzhou University

4:20 PM

Optimization of Mix Formulation and Compressive Strength Evaluation of Casted and 3D Printed Geopolymer Specimens: Demetris Nicolaides¹; Loucas Papadakis¹; Ponsian Robert¹; ¹Frederick University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Computational Thermodynamics and Kinetics Machine Learning and Artificial Intelligence in **Material Design**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Prashant Singh, Ames National Labratory; Rodrigo Freitas, Massachusetts Institute of Technology; Nicolas Argibay, Ames National Laboratory; Raymundo Arroyave, Texas A&M University; James Morris, Ames Laboratory

Monday PM | March 24, 2025 305 | MGM Grand

Session Chairs: Dilpuneet Aidhy, Clemson University; Yifan Cao, Massachusetts Institute of Technology

2:00 PM Invited

Predicting Synthesis Outcomes With DFT Calculations and Literature Mining: Anubhav Jain¹; ¹Lawrence Berkeley National Laboratory

2:30 PM Invited

Understanding Materials Synthesis Using the Thermodynamics of Interfacial Reactions: Chris Bartel¹; ¹University of Minnesota

Cluster Expansion by Transfer Learning for Phase Stability Predictions: Amirreza Dana¹; Lingxiao Mu²; Simon Gelin²; Susan Sinnott²; Ismaila Dabo¹; ¹Carnegie Mellon University; ²Pennsylvania State University

3:20 PM

Machine-Learning Assisted Design of Hydrogen-Storage Materials: Tanumoy Banerjee¹; Kevin Ji¹; Prashant Singh¹; ¹Ames National Labratory

3:40 PM Break

4:00 PM Invited

Applying Computer Vision to Electron Micrography in Al-Supported Alloy Synthesis and Solidification: Kaelin Mittel¹; Taylor Sparks1; 1University of Utah

4:30 PM Invited

Predictive Models of Glass Formation for Design: James Saal¹; ¹Citrine Informatics

Leveraging In-Situ Raman Spectroscopy for Thermodynamic and Kinetic Studies in Self-Driving Lab by Using Chocolate As Frugal Twin: Kinston Ackölf¹; Taylor Sparks¹; ¹University of Utah

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Dilute Alloying and Impurity Effects on Phase Transformations — Dilute Alloying and Impurity **Effects on Phase Transformations**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Matthew Steiner, University of Cincinnati; Dinc Erdeniz, University of Cincinnati; Le Zhou, Marquette University

Monday PM | March 24, 2025 310 | MGM Grand

Session Chairs: Matthew Steiner, University of Cincinnati; Dinc Erdeniz, University of Cincinnati; Le Zhou, Marquette University

2:00 PM Invited

Role of Impurities and Dilute Alloying Elements on Long-Range Order in Ni-Cr-Based Alloys: Julie Tucker1; Jia-Hong Ke2; Noah Weible¹; David Sprouster³; ¹Oregon State University; ²Idaho National Laboratory; 3Stony Brook University

2:30 PM Invited

Impact of Impurity Elements Introduced During Joining on the Properties of Superelastic Nitinol: Zhaoxi Cao¹; Samuel Price¹; Ian Mccue1: 1Northwestern University

3:00 PM

Effect of Silicon Addition on the Stability and Precipitation of Delta Phase in Inconel 718 and Associated Mechanical Properties: Amir Hasan¹; Manas Paliwal¹; Debalay Chakrabarti¹; ¹Indian Institute of Technology Kharagpur

3:20 PM

Effects of Dilute Phosphorus Alloying on Phase Transformations in the Fe-Ni System: Ugochukwu Ochieze1; Matthew Steiner1; ¹University of Cincinnati

3:40 PM Break

4:00 PM Invited

The Role of Minor Alloying in the Plasticity of Bulk Metallic Glasses: Gerhard Wilde1; 1University of Muenster

4:40 PM

Phase Transformation in Al-Cu-Sc Alloy and Its Impact on Corrosion Performance: Bo Zhao1; Jiashi Miao2; Alan Luo2; Shuaihang Pan1; ¹University of Utah; ²The Ohio State University

In-Situ Formation of Lamellar α+β Ti Alloys With Dilute Fast Diffusive **Elements**: Takuma Teramae¹; Ammarueda Issariyapat²; Shota Kariya²; Junko Umeda²; Katsuyoshi Kondoh²; ¹Osaka University; ²Joining and Welding Research Institute, Osaka University

5:20 PM Break

MATERIALS SYNTHESIS AND PROCESSING

Drying, Roasting, Calcining and Agglomeration of Feedstocks — Keynotes and Highlights

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Stuart Nicol, Glencore Technology; Dean Gregurek, RHI Magnesita; Jesse White, Kanthal AB; Allie Anderson, RHI Magnesita; Elmira Moosavi, Ecole De Technolgoie Superieure; Kristian Mackowiak, Kingston Process Metallurgy Inc.

Monday PM | March 24, 2025 104 | MGM Grand

Session Chair: Allie Anderson, RHI Magnesita

2:00 PM Introductory Comments

2:05 PM

Agglomeration Processes at RHI Magnesita: Thomas Drnek1; 1Rhi Magnesita Gmbh

Investigating Ferronickel Concentrate Oxidation Behavior During Drying After Wet Physical Upgrading: Wei Lv1; Samuel Marcuson1; Mansoor Barati¹; ¹University of Toronto

2:55 PM

Advancing Sustainability in Metallurgical Sectors Through Innovative Agglomeration and Biocarbon Utilization: Elsayed Mousα¹; Karthik Manu¹; Ludvig Ånnhagen²; ¹Swerim; ²Vargön Alloys

3:15 PM Break

Spinospheres - A Novel Technology Influencing Refractory Brick's Properties: Martin Geith1; Roland Krischanitz1; 1RHI Magnesita GmbH

Research and Improvement on Quality Deviation of Belt Roaster: Dawei Sun1; 1Shougang Jingtang United Iron & Steel Co. Ltd

LIGHT METALS

Electrode Technology for Aluminum Production — Anode Production and Raw Materials

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Egil Skybakmoen, SINTEF Industry; Les Edwards, Rain Carbon Inc.

Monday PM | March 24, 2025 112 | MGM Grand

Session Chairs: Viktorija Tomkute, Hydro Aluminium; Egil Skybakmoen, SINTEF Industry

2:00 PM Introductory Comments

2:05 PM Invited

A Review of Technical Responses to Anode Production Challenges Encountered Since 2000 - With a Look Forward for the Next 10 Years: Barry Sadler1; 1Net Carbon Consulting Pty Ltd

A Review of Coke Bulk Density Testing: Maia Hunt1; Heather Riche1; Trey Neal¹; Les Edwards¹; ¹Rain Carbon Inc.

2:55 PM

DENSICROSS - Intelligent Process Control: Edson Cruz¹; Andersen Dag Herman²; Emmily Fonseca¹; André Ferraioli¹; ¹Albras Aluminio Brasileiro S.A.; ²Hydro Aluminium AS

3:20 PM

Development of a Traceable Marker for Pitch Distribution Analysis in Baked Carbon Anodes: Nafiseh Shadvar1; Guillaume Gauvin1; Simon Laliberté-Riverin¹; Julien Lauzon-Gauthier²; Houshang Alamdari¹; ¹Aluminium Research Centre-REGAL, Laval University; ²Alcoa Corporation

3:45 PM Break

4:00 PM

EGA Addresses Calcined Petroluem Coke (CPC) Quality Variation Impact on Anode Quality and Performance: Rawa Baraheem¹; Ravi Nanath¹; Bienvenu Ndjom¹; Abdalla Al Sharji¹; Jasem Al Obaidli¹; Amer Al Marzoogi¹; ¹Midstream

4:25 PM

Experimental Study on Sodium in Carbon Anodes: Xavier Baril-Boudreault¹; Duygu Kocaefe¹; Dipankar Bhattacharyay¹; Yasar Kocaefe¹; Jules Côté¹; ¹University of Quebec at Chicoutimi

4:50 PM

Determining the Optimal Anode Baking Level Amidst Coke Quality Variation and Productivity Constraints: Pragasan Palavar¹; Jasem Al Obaidli¹; Aiyaz Thaseen¹; Mohammed Al Ghawi¹; Amer Al Marzoogi¹; ¹Midstream

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Electronic Packaging and Interconnection Materials II — Low Temperature Soldering and Thermal Management

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: C. Kao, National Taiwan University; Yu-An Shen, Feng Chia University; Christopher Gourlay, Imperial College London; Fan-Yi Ouyang, National Tsing Hua University; Hiroshi Nishikawa, Osaka University; Hannah Fowler, Sandia National Laboratories; Kazuhiro Nogita, University of Queensland; Praveen Kumar, Indian Institute of Science; Tae-Kyu Lee, Cisco Systems; Yan Li, Samsung Semiconductor Inc.

Monday PM | March 24, 2025 360 | MGM Grand

Session Chairs: C. Kao, National Taiwan University; Xin Tan, University of Queensland

2:00 PM

A Study on Novel Thermal Interface Composite Indium-Based/Diamond Composite for High-Performance Computing Applications: Yuan-Han Ku1; Wei-Chen Huang1; Pei-Tsen Heish1; C. Robert Kao¹; ¹National Taiwan University

2:20 PM

Impact of Temperature Gradient on the Growth of Intermetallic Compounds in Solid-State Cu and In-Solder System: Po-Hsun Yang¹; Pei-Ni Jiang¹; Fan-Yi OuYang¹; ¹National Tsing Hua University

2:40 PM

Effect of In and Zn Addition on the Interfacial Reaction of Sn-Bi/Cu **Solder Joints**: *Pei-Kang Wu*¹; Fu-Ling Chang¹; Yu-Hsin Lin¹; Meng-Chi Chuang¹; C. Robert Kao¹; ¹National Taiwan University

3:00 PM

Advanced Thermal Management in Electronics: Micro-Nano Copper Forest Wicks for Thin Vapor Chambers: Meng-Wen Wang¹; Chien-Neng Liao¹; ¹National Tsing Hua University

3:20 PM Break

3:40 PM

Influence of the Bi Phase Distribution on the Electrical and Thermal Properties of Sn-Bi Alloys: Choong-un Kim¹; Tae-Kyu Lee²; Pushkar Gothe¹; Yujin Park²; Gnyaneshwar Ramakrishna²; ¹University of Texas at Arlington; ²CISCO Systems

4:00 PM

Void Reduction in Indium TIM in BGA and Large Size Packaging: Mina Yaghmazadeh¹; Youngjin Kim¹; ¹Ningbo SJ Electronics, Ltd.

4:20 PM

The Effect of Recent Heating on the Room Temperature Microstructure of Sn-Bi Alloys: Xiaozhou Ye1; Stuart McDonald1; Xin Fu Tan¹; Kazuhiro Nogita¹; ¹Nihon Superior Centre for the Manufacture of Electronic Materials (NS CMEM)

4:40 PM

Enhancing Low-Temperature Solder Reliability with Hybrid SAC/ SnBi Systems: Po-Kai Chang¹; Shang-Yang Chen¹; Kelvin Li²; Chang-Meng Wang²; Albert T. Wu¹; ¹National Central University; ²Shenmao Technology INC.

NUCLEAR MATERIALS

Elucidating Microstructural Evolution Under Extreme Environments — Modeling and Simulation **Tools to Understand Radiation Effects**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Mukesh Bachhav, Idaho National Laboratory; Boopathy Kombaiah, Idaho National Laboratory; Janelle Wharry, University of Illinois; Assel Aitkaliyeva, University of Florida; Miaomiao Jin, Pennsylvania State University; Farida Selim, Arizona State University; Nathan Almirall, GE Aerospace

Monday PM | March 24, 2025 162 | MGM Grand

Session Chair: Miaomiao Jin, Pennsylvania State University

2:00 PM Invited

On the Microstructural Evolution Under Irradiation in Reactor Pressure Vessel Steels and Its Effects on Hardening and Embrittlement: Lorenzo Malerba1; Nicolas Castin2; 1CIEMAT; 2SCK CEN

2:20 PM Invited

Mesoscale Modeling of Dislocation Cell Structure Evolution and Radiation-Induced Segregation in Additively Manufactured Austenitic Stainless Steel: Sourabh Bhagwan Kadambi¹; Wei-Ying Chen²; Andrea Jokisaari¹; ¹Idaho National Laboratory; ²Argonne National Laboratory

2:40 PM Invited

Slip Banding and Frank-Read Model in Multi-Principal Element Alloys: Penghui Cao1; 1University of California, Irvine

The Role of Dilute Phosphorus, Copper, and Excess Vacancies on the Formation of Solute Clusters in Low-Alloy Steels: Jia-Hong Ke¹; Mukesh Bachhav¹; Anshul Kamboj¹; ¹Idaho National Laboratory

3:20 PM Break

3:35 PM

Combination of Homogeneous Void Nucleation Theory and Defect Reaction Rate Theory Calculation for Understanding the Safe Analysis Zone Boundary in Self-Ion Irradiated Fe: Zhihan Hu¹; Yongchang Li¹; Aaron French¹; Frank Garner¹; Lin Shao¹; ¹Texas A&M University

3:55 PM

Microstructural Evolution of 800H Alloy With Cluster Dynamics Simulations: Sophie Blondel¹; Michael Ashburn¹; Dwaipayan Dasgupta¹; Brian Wirth¹; ¹University of Tennessee

DFT-Informed Design of Radiation-Resistant Dilute Ternary Cu Alloys: Vaibhav Vasudevan¹; Robert Averback¹; Pascal Bellon¹; Thomas Schuler²; ¹University of Illinois Urbana-Champaign; ²Université Paris-Saclay, CEA

4:35 PM

Impact of Grain Boundary Structures on Defect Evolution in Irradiated Polycrystalline Aluminum Using Molecular Dynamics Simulations: Alhassan Issaka¹; Assel Aitkaliyeva¹; Michael Tonks¹; Simon Phillpot¹; ¹University of Florida

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Energy Technologies and CO2 Management — Decarbonizing Materials Processing

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee, TMS: Recycling and **Environmental Technologies Committee**

Program Organizers: Onuralp Yucel, Istanbul Technical University; Chukwunwike Iloeje, Argonne National Laboratory; Shafiq Alam, University of Saskatchewan; Donna Guillen, Idaho National Laboratory, Fiseha Tesfaye, Metso Finland Oy, Åbo Akademi University, Lei Zhang, University of Alaska Fairbanks; Susanna Hockaday, Curtin University, WASM; Neale Neelameggham, IND LLC; Hong Peng, University of Queensland; Nawshad Hague, Commonwealth Scientific and Industrial Research Organization; Alafara Baba, University of Ilorin; Tuan Nguyen, University of Queensland; Adam Powell, Worcester Polytechnic Institute; Thomas Battle; Duhan Zhang, Massachusetts Institute of Technology

Monday PM | March 24, 2025 364 | MGM Grand

Session Chairs: Chukwunwike Iloeje, Argonne National Laboratory; Shafiq Alam, University of Saskatchewan

2:00 PM Introductory Comments

Study on Co-Extraction Behavior of Biomass and Low-Rank Coal: Jun Zhao1; 1China University of Mining and Technology (CUMT)

Study on Mathematical Modeling of Carbon Dioxide Emission and Emission Reduction Countermeasures of Baosteel Co., Ltd China: Danxuan Zhao¹; Yanwen Yu¹; ¹Northeastern University

Greenhouse Gas Life Cycle Assessment of Traditional and Biomass-Integrated Steelmaking Routes: Avash Kumar Saha¹; Chunlin Chen²; Nawshad Haque²; Arup Mandal¹; ¹NIT Durgapur; ²CSIRO Clayton

3:05 PM

Using 14C as an Analytical Approach for Documenting the Relative Share of Biocarbon Used in the Production of FeMn Alloy: Per Anders Eidem¹; Martin Seiler²; Bente Philippsen²; Michal Ksiazek³; Ingeborg Solheim³; Michal Srejdak⁴; Sten Yngve Larsen⁵; Piotr Szecówka⁶; ¹SINTEF Helgeland; ²Norwegian University of Technology and Science; ³SINTEF; ⁴Institute of Energy and Fuel Processing Technology; 5Eramet Norway AS; 6Koksownia Czstochowa Nowa

3:25 PM Break

3:45 PM

Feasibility of Biochar From Seaweed for Ferroalloy Production: Samuel Senanu1; Judit Sandquist1; Jorunn Skjermo1; Stein Rørvik1; Magnus Windfeldt¹; ¹SINTEF

Calcium Aluminate Production from Non-metallic Residue of Aluminum White Dross in an EAF: Bora Yıldız1; Eren Yücedağ1; Veysel Kımış¹; Barbaros Bostan¹; Pelin Özbek¹; Selcuk Kan¹; Kağan Benzeşik¹; Onuralp Yücel¹; ¹Istanbul Technical University

4:25 PM

Potential Uses of CO-Rich Off-Gas From Mn Ferroalloy Production: Ida Kero¹; Halvor Dalaker²; ¹Luleå University of Technology; ²Sintef

4:45 PM

Recent Studies on Use of Waste Plastics in Integrated Ironmaking: Ender Keskinkilic1; 1Atilim University

5:05 PM Concluding Comments

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmental Degradation of Additively Manufactured Materials — Corrosion Behavior of Additive Manufactured Materials in Chloride **Environments**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Kinga Unocic, North Carolina State University; Sebastien Dryepondt, Oak Ridge National Laboratory; Michael Kirka, Oak Ridge National Laboratory; Xiaoyuan Lou, Purdue University; Emma White, DECHEMA Forschungsinstitut; Benjamin Adam, Oregon State University; Mark Stoudt, National Institute of Standards and Technology; Xiaolei Guo, Colorado School of Mines

Monday PM | March 24, 2025 169 | MGM Grand

Session Chairs: Xiaolei Guo, Colorado School of Mines; Mark Stoudt, National Institute of Standards and Technology; Benjamin Adam, Oregon State University

2:00 PM Invited

Corrosion Mechanisms of Additively Manufactured 316L Stainless Steels in Simulated Seawater: Thomas Voisin1; Shohini Sen-Britain1; Shinyoung Kang¹; Yuliang Zhang¹; Zhen Qi¹; Seongkoo Cho¹; Yinmin "Morris" Wang²; Brandon Wood¹; ¹Lawrence Livermore National Laboratory; ²University of California Los Angeles

Wear-Enhanced Corrosion of Compositionally Varying AM Stainless Steels: M. Parker¹; Scott Wells²; Andrew Birnbaum³; Anna Rawlings⁴; Derek Horton¹; ¹US Naval Research Laboratory; ²Excet, A Precise Systems Company; 3Us Naval Research Laboratory; 4U.S. Naval Research Laboratory

2:50 PM

Effect of Microstructure Evolution on Hot Corrosion Resistance of P91&304 Graded Composition Transition Joint: Ting Sun¹; Yuying Wen¹; Shanshan Hu¹; Zhili Feng²; Haiyang Qian³; Xingru Tan¹; Xingbo Liu¹; ¹West Virginia University; ²Oak Ridge National Laboratory; ³GE Steam Power

3:10 PM Invited

Corrosion Behavior of a Ni-Free Austenitic Stainless Steel Produced by Additive Manufacturing: Sophia Isacco1; Rahul Agrawal¹; Alex Helmer¹; Sean O'Brien¹; Sofia Antinozzi¹; Andrzej Wojcieszynski²; Rajeev Gupta¹; ¹North Carolina State University; ²Wingens Consulting, LLC

3:40 PM Break

3:55 PM

Exceptional Localized Corrosion Resistance of Ni-Based Alloy 625 Processed by Directed Energy Deposition Additive Manufacturing in Concentrated Chloride Environments: Karthikeyan Hariharan¹; Andrew lams²; James Zuback²; Todd Palmer³; Narasi Sridhar¹; Rashed Alazemi¹: Gerald Frankel¹: Eric Schindelholz¹: ¹The Ohio State University; ²National Institute of Standards and Technology; ³The Pennsylvania State University

Studying Microstructure and Stress Corrosion Cracking of an Additive Friction Stir Deposition Processed aa7075 Aluminum Alloy: Ebenezer Acquah¹; Nilesh Kumar¹; ¹The University of Alabama

Additive Manufacturing Technique to Achieve a Chemically Homogeneous Zinc/AA5456 Mixture to Arrest Corrosion Propagation: Minh Tran¹; Fanyue Kong¹; Elena Romanovskaia¹; Valentin Romanovski¹; James Burns¹; Ji Ma¹; John Scully¹; ¹University of Virginia

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmentally Assisted Cracking: Theory and Practice — Stress Corrosion Cracking

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Monday PM | March 24, 2025 167 | MGM Grand

Session Chairs: Ryan Katona, Sandia National Laboratories; Arya Chatterjee, University of Illinois Urbana-Champaign

2:00 PM Invited

Localized Corrosion and Repassivation Behavior of Ni600 and SS304 Under Conditions Relevant to SCC: Mariana Georges1; Thodla Ramgopal²; Christopher Taylor¹; N. Sridhar¹; Gerald Frankel¹; ¹The Ohio State University; ²DNV Columbus, Inc.

2:30 PM Invited

Internal Pitting Mechanisms of Chloride-Induced Stress Corrosion Cracking: Janelle Wharry¹; Nathan Gehmlich¹; Haozheng Qu²; Maria Okuniewski¹; ¹Purdue University; ²GE Vernova

On the Stress Corrosion Cracking Behavior of Aluminum Alloy Sheet for Can Applications: Borna Rafiei¹; Adam Thompson¹; Debjit Misra¹; Mary Lyn Lim²; Daehoon Kang²; Zachary Harris¹; ¹University of Pittsburgh; 2Novelis Global Research and Technology Center

3:20 PM Break

3:40 PM Invited

CISCC of 304/316 Stainless Steels in Atmospheric Conditions: Mychailo Toloczko¹; Dexter Kling¹; Gabrielle Schuler¹; Northwest National Laboratory

4:10 PM Invited

Decoupling the Role of Dissolution and H-Embrittlement on the Stress Corrosion Cracking Behavior of 304L Austenitic Stainless **Steel**: James Burns¹; Sarah Blust¹; ¹University of Virginia

Exploring the Effect of Various Atmospheric Environmental Parameters on Pit-to-Crack Transition and SCC Failure in SS304: Daria Bentley¹; Jenifer Locke¹; ¹The Ohio State University

MECHANICS OF MATERIALS

Fatigue in Materials: Fundamentals, Multiscale **Characterizations and Computational Modeling** Fatigue of Non-Metallic Materials and **Unconventional Alloys**

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Orion Kafka, National Institute of Standards and Technology; J.C. Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Brian Wisner, Ohio University; Krzysztof Stopka, Purdue University; Kelly Nygren, Cornell University

Monday PM | March 24, 2025 318 | MGM Grand

Session Chair: Kelly Nygren, Cornell University

2:00 PM

Assessment Techniques for Fatigue Damage Evolution in Composite Structures: Selim Mrzljak¹; Lars Gerdes¹; Ramon Helwing¹; Alexander Delp¹; Ronja Scholz¹; Frank Walther¹; Dortmund University - Chair of Materials Test Engineering (WPT)

2:20 PM

Short-Time Fatigue Damage Evaluation in Thermoplastic-Based Fiber Metal Laminates: Selim Mrzljak¹; Frank Walther¹; ¹TU Dortmund University - Chair of Materials Test Engineering (WPT)

2:40 PM

Fatigue Properties Versus Tunable Partially Recrystallized Heterostructures - The Case of Ultra-High Strength and Exceptional Fracture Toughness CrCoNi MPEA: Milan Heczko1; Connor Slone²; Veronika Mazánová¹; Punit Kumar³; Qin Yu³; Bryan Crossman⁴; Jaroslav Polák¹; Easo George⁵; Robert Ritchie³; Michael Mills⁴; ¹Institute of Physics of Materials, Czech Academy of Sciences; ²Exponent; ³Lawrence Berkeley National Laboratory; ⁴The Ohio State University; 5Oak Ridge National Laboratory

Fatigue of Solid State Electrolytes for Lithium Ion Batteries: David Armstrong¹; Johann Perera¹; ¹University of Oxford

3:20 PM Break

3:40 PM

In Situ SEM Micromechanical Testing to Assess Local Fatigue Properties in Nanostructured Metals: Daniel Kiener¹; Hannah Lichtenegger¹; Alexander Jelinek¹; Markus Alfreider¹; ¹University of Leoben

4:00 PM

Effect of Carbon Concentration on LCF Properties of N105 Alloy: Kyle Rozman¹; Stoichko Antonov¹; Martin Detrois¹; Paul Jablonski¹; ¹National Energy Technology Laboratory

ADVANCED CHARACTERIZATION METHODS

Heterostructured and Gradient Materials (HGM VI): Principle, Processing and Properties — Design

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Shaping and Forming

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Tsinghua University; Ke Lu, Liaoning Academy of Materials; Hyoung Seop Kim, Pohang University of Science and Technology; Xiaolei Wu, Institute of Mechanics

Monday PM | March 24, 2025 155 | MGM Grand

Session Chairs: David Field, Washington State University; Andrea Hodge, University of Southern California, Yunzhi Wang, Ohio State University; Ting Zhu, Georgia Institute of Technology

2:00 PM Invited

Design and Quantification of Gradient Microstructures by Solid Phase Processing: David Field¹; ¹Washington State University

2:25 PM Invited

Accelerated Discovery of Heterogeneous Superalloys: Andrea Hodge¹; ¹University of Southern California

2:50 PM

Tailoring Mechanical Behavior in Ti/Nb Nanolayered Composites via Thick 3-Dimensional Interfaces: Mauricio De Leo1; Nicholas Fuchs-Lynch²; Benjamin Derby³; Jon Baldwin³; Jonathan Poplawsky⁴; Irene Beyerlein²; Nathan Mara¹; ¹University of Minnesota; ²University of California, Santa Barbara; 3Los Alamos National Laboratory; 4Oak Ridge National Laboratory

Superior Tensile Properties and Formability Synergy of High-Entropy Alloys Through Inverse-Gradient Structures: Kim Rae Eon¹; Yeon Taek Choi¹; Hyoung Seop Kim¹; ¹Postech

3:30 PM Break

3:50 PM Invited

Mechanics of Gradient Nanostructured Metals: Ting Zhu¹; ¹Georgia Institute of Technology

4:15 PM

Designing Scalable Metallic Composites by Leveraging Liquid Phase Separation in Additive Manufacturing: Nabila Ali¹; Yuheng Nie¹; Mia Mikolajczak¹; Marie Charpagne¹; ¹University of Illinois at Urbana- Champaign

4:35 PM Invited

Computational Design of Compositionally and Structurally Modulated Materials for Desired Stress-Strain Responses: Zexu Chen¹; Hariharan Sriram¹; Taiwu Yu¹; Yunzhi Wang¹; ¹Ohio State University

5:00 PM

Using Hydrogen as a Temporary Alloying Element for Microstructure Control During Thermo-Mechanical Processing: Can Okuyucu¹; Haoxue Yan²; Cemal Cem Tasan¹; ¹Massachusetts Institute of Technology; 2Stanford University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

High Performance Steels — Properties and Characterization

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Benjamin Adam, Oregon State University; C. Tasan, Massachusetts Institute of Technology; Adriana Eres-Castellanos, Colorado School of Mines; Krista Limmer, DEVCOM Army Research Laboratory; Jonah Klemm-Toole, Colorado School of Mines; Pello Uranga, University of Navarra

Monday PM | March 24, 2025 302 | MGM Grand

Session Chairs: C. Tasan, Massachusetts Institute of Technology; Krista Limmer, DEVCOM Army Research Laboratory

2:00 PM Invited

Application of Emerging EBSD Tools for Phase Detection in Martensitic Steels: Patrick Callahan¹; David Rowenhorst¹; ¹US Naval Research Laboratory

2:30 PM

Microstructure-Correlated Strain Maps of '1D', '2D, & '3D' Tests Reveal Strong Lath Martensite Plastic Anisotropy in DP Steel: Tijmen Vermeij¹; Job Wijnen²; Jorn Verstijnen²; Roy Kerkhof²; Casper Mornout²; Vahid Rezazadeh²; Ron Peerlings²; Marc Geers²; Johan Hoefnagels²; ¹EMPA; ²Eindhoven University of Technology

2:50 PM Invited

Structure-Property Relationships in Hvbrid Additively Manufactured Stainless Steel 316L: Andrew Neils1; Quinn Campbell2; Thomas Keller¹; Jack Lesko¹; Nathan Post¹; David Hayrikyan³; Sam Boese¹; ¹The Roux Institute at Northeastern University; ²Kostas Research Institute at Northeastern University; ³bluShift Aerospace

Nanomechanical Response of Rolled Homogenous Armor (RHA) Steel: Niraj Atale1; Kevin Jacob1; Ethan Shimak1; Sid Pathak1; 1lowa State University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Hume-Rothery Symposium on Thermodynamics of Microstructure Stability and Evolution — Microstructural Modeling in Alloys

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee

Program Organizers: Yunzhi Wang, Ohio State University; Wei Xiong, University of Pittsburgh; Jiamian Hu, University of Wisconsin Madison; Chuan Zhang, CompuTherm LLC

Monday PM | March 24, 2025 357 | MGM Grand

Session Chairs: Katsuyo Thornton, University of Michigan; Jacob Zorn, Corvid Technologies, LLC

2:00 PM Invited

Direct Observation of the Atomic Scale Mechanism of Grain Rotation: Xiaoqing Pan1; 1University of California Irvine

2:25 PM Invited

Phase-Field Simulations of Microstructure Evolution: Application of PRISMS-PF for Complex Processing Conditions: Katsuyo Thornton¹; ¹University of Michigan

2:50 PM Invited

Harnessing Nano/Microstructures: Unlocking the Shape Memory and Ferroelastic Potential of Zirconia-Based Ceramics: Mohsen Asle Zaeem1; 1Colorado School of Mines

3:15 PM Invited

Coherent Phase Stability and Short-Range Order in Multicomponent Systems: Christopher Wolverton¹; ¹Northwestern University

3:40 PM Break

4:00 PM Invited

Microstructure Evolutions in Ni-Based Superalloys Under Complex Creep Loadings: Yann Le Bouar¹; Maeva Cottura²; Alphonse Finel¹; Benoit Appolaire²; ¹Lem, Cnrs/Onera; ²IJL, Univ. de Lorraine

4:25 PM Invited

Multiphysics Microstructural Modeling With Mixed Inhomogeneous Boundary Conditions With Fourier Spectral Methods: Jacob Zorn¹; ¹Corvid Technologies, LLC.

4:50 PM Invited

Macroscopic Energy Barrier and Thermodynamic Hysteresis in Magnetic Shape Memory Alloys: Yongmei Jin¹; Yu Wang¹; ¹Michigan Technological University

5:15 PM Invited

The Development of Phenomenological Thermodynamic Energies: Yijia Gu¹; ¹Missouri University of Science and Technology

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Innovations in Energy Materials: Unveiling **Future Possibilities of Computational Modelling** and Atomically Controlled Experiments — **Thermoelectrics**

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Energy Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Composite Materials Committee

Program Organizers: Paolo Mele, Shibaura Institute of Technology; Julio Gutierrez Moreno, Barcelona Supercomputing Center; Hussein Assadi, RIKEN (The Institute of Physical and Chemical Research); Esmail Doustkhah, Istinye University; Marco Fronzi, The University of Sydney; Donna Guillen, Idaho National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Tuan Nguyen, University of Queensland

Monday PM | March 24, 2025 358 | MGM Grand

Session Chairs: Eleonora Isotta, Max Planck Institute Susmat; Takayoshi Katase, Tokyo Institute of Technology

2:00 PM Invited

Ab Initio Calculations of the Thermoelectric Figure of Merit: Laurent Chaput1; 1Lorraine University

Body Heat Harvester Based on Thermoelectrics for Continuous Operation of Sensors and Actuators: Woochul Kim1; ¹Yonsei University

2:50 PM Invited

Design of Eco-Friendly and High-Efficiency Thermo-Photoelectric Conversion Materials: Takayoshi Katase¹; ¹Tokyo Institute of Technology

3:15 PM Invited

Nanomaterial and Nanostructure Physics for Thermoelectric Performance Enhancement: Yoshiaki Nakamura¹; ¹Osaka University

3:40 PM Break

3:55 PM Invited

Starrydata2: an Open Platform for Materials Data Curated From Literature: Yukari Katsura¹; ¹National Institute for Materials Science

4:20 PM Invited

Structure Low Dimensionality and Lone-Pair Stereochemical Activity: The Key to Low Thermal Conductivity in Sulfides: Emmanuel Guilmeau¹; ¹CRISMAT/CNRS

4:45 PM Invited

Local Thermal Conductivity Imaging and Modelling to Guide Microstructure Engineering in Energy Materials: Eleonora Isotta¹; Christina Scheu²; G. Jeffrey Snyder¹; Oluwaseyi Balogun¹; ¹Northwestern University; ²Max Planck Institute for Iron Research

5:10 PM

Bragg Coherent X-Ray Diffraction Imaging of Strain in Energy Materials: Ross Harder¹; Wonsuk Cha¹; ¹Argonne National Laboratory

MATERIALS SYNTHESIS AND PROCESSING

Innovative Hydrometallurgical Technologies for Environmentally Benign Processing and Remediation: An EPD Symposium Honoring Fiona Doyle — Honorary Session II

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee, TMS: Pyrometallurgy Committee

Program Organizers: Christina Meskers, SINTEF; Michael Free, University of Utah; Kerstin Forsberg, KTH Royal Institute of Technology; Gisele Azimi, University of Toronto; Hani Henein, University of Alberta

Monday PM | March 24, 2025 101 | MGM Grand

Session Chair: Michael Free, University of Utah

2:00 PM

Rare Earth Elements Recovery Using Thermo-Responsive Virus: Inseok Chae1; Fiona Doyle1; Seung-Wuk Lee1; 1University of California, Berkeley

2:30 PM

Dissolution Behavior of Vanadium and Iron From Their Oxide Compounds in D2EHPA and Investigation of the Stripping Behavior: Kurniawan Kurniawan¹; Jae-chun Lee²; Mooki Bae²; Sookyung Kim²; Alexandre Chagnes³; ¹Korea University of Science and Technology; ²Korea Institute of Geoscience and Mineral Resources (KIGAM); ³Universite de Lorraine CNRS

Structure and Electrical Conductivity of Urea-Choline Chloride Deep Eutectic Solvent: Rajyashree Lenka¹; Ramana Reddy¹; ¹The University of Alabama

Evaluation of the Glycine-Citrate System for the Leaching of Lead and Zinc From Mining Tailings: Erick Muñoz Hernandez¹; Edith Sarai Llanos Blancas¹; Angel Ruiz Sánchez²; Martin Reyes Pérez¹; Felipe Legorreta García¹; Julio Cesar Juarez Tapia¹; ¹Universidad Autonoma del Estado de Hidalgo; ²Universidad Nacional Autónoma de México

3:30 PM Break

3:50 PM

Effect of Applied Potential on the Electrodeposition of Ti-Al Alloys in AlCl3:BMIC Ionic Liquid Electrolyte: Md Khalid Nahian¹; Ramana Reddy¹; ¹University of Alabana Tuscaloosa

4:10 PM

Investigation Interaction Acidic the **Retween** on Organophosphorous Extractants and Tri-n-octylamine (TOA) for the Extraction of Rare Earths in HCl System: Arsyad Dzulgornain¹; Jae-chun Lee¹; Hosung Yoon¹; Rina Kim¹; Kyeong-woo Chung¹; ¹Korea Institute of Geoscience and Mineral Resource (KIGAM)

4:30 PM

Removal Studies of Mo(VI) Ions From Simulated Metallurgical Waste Liquid by MIL-100(Fe): Zhan Chu1; Hongfei Ma1; Wenjuan Wang¹; Yanfang Huang¹; Guihong Han¹; ¹Zhengzhou University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Local Chemical Ordering and Its Impact on Mechanical Behaviors, Radiation Damage, and Corrosion — Modeling

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Rodrigo Freitas, Massachusetts Institute of Technology; Sriswaroop Dasari, University of Texas at El Paso; Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Mitra Taheri, Johns Hopkins University; Megan McCarthy, Sandia National Laboratories; Irene Beyerlein, University of California, Santa Barbara; Rajarshi Banerjee, University of North Texas; Srinivasan Srivilliputhur, University of North Texas

Monday PM | March 24, 2025 316 | MGM Grand

Session Chairs: Megan McCarthy, Sandia National Laboratories; Mitra Taheri, Johns Hopkins University

2:00 PM Invited

Short and Medium-Range Order in Novel Battery Materials: Gerbrand Ceder¹; ¹University of California at Berkeley

2:30 PM Invited

Developing New Modeling Capability to Enable Explicit Characterization of Short-Range Order in Alloys: Tianshu Li1; Shunda Chen¹; Xiaochen Jin¹; Lilian Vogl²; Andrew Minor²; Shang Liu³; Jifeng Liu³; ¹George Washington University; ²University of California, Berkeley; 3Dartmouth College

Tuning Chemical Short-Range Order in Metallic Alloys via Thermomechanical Processing: Mahmudul Islam¹; Killian Sheriff¹; Yifan Cao¹; Rodrigo Freitas¹; ¹Massachusetts Institute of Technology

3:20 PM Break

3:40 PM Invited

Bottom-Up Models for Capturing Local Chemical Order in Complex Alloys Exhibiting Magnetism -- Application to Austenitic Stainless Steels and Magnetic Shape Memory Alloys: Brian Blankenau1; Tianyu Su¹; Elif Ertekin¹; ¹University of Illinois

4:10 PM

FYL-CVM: A Thermodynamic Model With Intrinsic Chemical Short-Range Order: Rajendra Prasad Gorrey¹; Chu-Liang Fu¹; Bi-Cheng Zhou1; 1University of Virginia

LIGHT METALS

Magnesium Technology 2025 — Experimental Characterization

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Domonkos Tolnai, Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon; Aaron Palumbo, Big Blue Technologies; Aeriel Murphy-Leonard, Ohio State University; Neale Neelameggham, IND LLC

Monday PM | March 24, 2025 115 | MGM Grand

Session Chairs: Gerardo Garces, Cenim-Csic; Victoria Miller, University of Florida

2:00 PM Keynote

Microstructural Aspects of Mechanical Uncovering the Performance of Mg-LPSO Alloys Using In-Situ Experimental Techniques: Kristian Mathis¹; ¹Nuclear Physics Institute of the CAS; Charles University

2:40 PM

Effects of Zn and Ca Microalloying on -Series Precipitation in Mg-Nd Alloys a Comparison of Electron Microscopy and Small-Angle Scattering Techniques: Janet Meier1; Jiashi Miao2; Lisa DeBeer-Schmitt¹; Jan Ilavsky³; Alan Luo²; ¹Oak Ridge National Laboratory; ²The Ohio State University; ³Argonne National Laboratory

Experimental Investigation on Twinning Behavior in Mg-Y Alloys: Qianying Shi¹; John Allison¹; ¹University of Michigan

3:20 PM

Understanding the Role of Interfaces and Elemental Segregation on Texture Weakening in Mg-Zn-Ca Alloys During Recrystallization: Rogine Gomez¹; Aeriel Leonard¹; ¹The Ohio State University

3:40 PM Break

4:00 PM

Shear Banding Mechanim and Fracture Behavior in Pure Magnesium: Connor Lopez1; Reza Motallebi1; Brady Butler2; Kelvin Xie¹; ¹Texas A&M University; ²DEVCOM Army Research Laboratory South at Texas A&M University

SiC Nanowhisker Reinforced Lightweight Metal Composites: A Detailed Study of the Interface: Zhuocheng Xu1; Anne Bonnin2; Benjamin Watts²; Xinyi Hao¹; Yuting Dai³; Christopher Gourlay¹; Christian Kübel³; Milo Shaffer¹; Qianqian Li¹; ¹Imperial College London; ²Paul Scherrer Institute, Switzerland; ³Institute of Nanotechnology, Karlsruhe Institute of Technology

4:40 PM

Effect of Subsequent Heat Treatment on Microstructure, Hardness and Corrosion Behavior of Extruded and Swaged Mg0.15Ca: Petra Maier¹; Benjamin Clausius¹; Thea-Simone Tegtmeier¹; Jeremy Schaffer²; Adam Griebel²; ¹University of Applied Sciences Stralsund; ²Fort Wayne Metals

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Materials Aging and Compatibility: Experimental and Computational Approaches to Enable Lifetime Predictions — Aging and Compatibility of Metals II

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Corrosion and **Environmental Effects Committee**

Program Organizers: Bishnu Khanal, Sandia National Laboratories; Michael Melia, Sandia National Laboratories; Coby Davis, Sandia National Laboratories; Kerri Blobaum, Lawrence Livermore National Laboratory; Anthony Van Buuren, Lawrence Livermore National Laboratory; Nan Butler, Sandia National Laboratories

Monday PM | March 24, 2025 309 | MGM Grand

Session Chair: Michael Melia, Sandia National Laboratories

2:00 PM Invited

Predicting Compatibility and Aging at the System-Level With a Reaction, Sorption, Transport, and Chemo-Mechanics (ReSorT-M) **Model**: Sylvie Aubry¹; Maxwell Murialdo¹; Brandon Foley¹; Pratanu Roy¹; Stephen Castonguay¹; Andrew Tompson¹; Kayyum Mansoor¹; ¹Lawrence Livermore National Laboratory

2:40 PM

Materials Compatibility Testing and Assessment for Materials Reliability: Kirsty Leong-Hau¹; Dustin Murtagh¹; Brent Wickemeyer¹; Nan Butler¹; ¹Sandia National Laboratories

3:00 PM

Research on Shape Optimization of Work Roll in Hot Rolling: Jianhua Wei¹; Aimin Zhao¹; ¹University of Science and Technology Beijing, Beijing

3:20 PM

Characterization of Long Term Service Effect on Turbine Blade Alloy: Alwaleed Alduaij¹; Mohammed Akbar¹; Hariharan Sundaram¹; ¹GE Vernova

3:40 PM Break

4:00 PM Invited

A Mean-Field Approach for High-Temperature Shape Memory Alloys: Adrien Cassagne¹; Jean-Briac le Graverend¹; ¹Texas A&M University

4:20 PM

Predicting Electrochemical Responses Using Machine Learning: Matthew Roop¹; David Montes de Oca Zapiain¹; Aditya Venkatraman¹; Sam Moran¹; Rebecca Schaller¹; Ryan Katona¹; ¹Sandia National Laboratories

4:40 PM

Strain-Controlled High-Cycle Fatigue of Aged Solder Joints for High-Reliability Environments: David Kemmenoe¹; John Laing¹; Benjamin White¹; Hannah Fowler¹; ¹Sandia National Laboratories

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Materials and Chemistry for Molten Salt Systems — Computational Methods applied to Molten Salts and Molten Salt Corrosion

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Yu-chen Karen Chen-Wiegart, Stony Brook University / Brookhaven National Laboratory; Nathaniel Hoyt, Argonne National Laboratory; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Weiyue Zhou, Massachusetts Institute of Technology

Monday PM | March 24, 2025 165 | MGM Grand

Session Chair: Yu-Chen Karen Chen-Wiegart, Stony Brook University/ Brookhaven National Lab.

2:00 PM Invited

A Computational Approach to Investigate the Impact of Impurities on Corrosion Behavior in Molten Salt Reactors: Soumya Bandyopadhyay¹; Thompson Igunma¹; Michael Tonks¹; ¹University of Florida

Morphological Aspects of Ni-Based Alloys Undergoing Molten Salt Dealloying Corrosion: A Phase Field Study: Nathan Bieberdorf¹; Justin Kerr²; Xueyang Bognarova³; Laurent Capolungo³; Mark Asta¹; ¹University of California, Berkeley; ²Lawrence Livermore National Laboratory; 3Los Alamos National Laboratory

2:40 PM

Atomistic Insights Into Orientation-Assisted Corrosion of NiCr Alloys in Molten FLiNaK Salt Using ReaxFF Molecular Dynamics: Hamdy Arkoub¹; Daniel Flynn¹; Miaomiao Jin¹; ¹Pennsylvania State University

3:00 PM

Molecular Dynamics Exploration of the Impurity and Radiolysis Effects on the Thermal Properties of Molten FLiBe Salt: Nicholas Dailey¹; Jiangi Xi¹; ¹University of Illinois at Urbana-Champaign

Design of Corrosion-Resistant Ceramic Coatings Against Molten Chlorides via Computational Thermodynamics: Sangtae Kim1; ¹Hanyang University

3:40 PM Break

4:00 PM Invited

Understanding Coarsening of Dealloyed Ni-20Cr in a Molten Salt **Environment Through the Comparison of Phase-Field Simulations** to 4-D Experiments: W. Beck Andrews¹; Ellery Hendrix¹; Xiaoyang Liu²; Karen Chen-Wiegart³; Katsuyo Thornton¹; ¹University of Michigan; ²Argonne National Laboratory; ³Stony Brook University

Investigation of Structural Alloy Corrosion in Molten Salt Mesoscale Modeling of Electrochemical Experiments: Xueyang Bognarova¹; Nathan Bieberdorf²; Mark Asta²; Laurent Capolungo¹; ¹Los Alamos National Laboratory; ²University of California, Berkeley

4:45 PM

Application of an Extensive Thermodynamic Database Models to Characterize Molten Salt Reactor Behavior: Theodore Besmann¹; Juliano Schorne-Pinto¹; Jorge Paz Soldan Pinto¹; Amir Mofrad¹; Clara Dixon¹; Ronald Booth¹; Jack Wilson¹; Aiswarya Padinhare Manissery¹; Zachary Gardiner¹; ¹University of South Carolina

Phase-Field Simulations of Corrosion and Dealloying in Molten Salt: Ellery Hendrix1; W. Beck Andrews1; Xiaoyang Liu2; Yuxiang Peng2; David Montiel¹; Yu-chen Karen Chen-Wiegart²; Katsuyo Thornton¹; ¹University of Michigan; ²Stony Brook University

NUCLEAR MATERIALS

Materials Corrosion Behavior in Advanced Nuclear Reactor Environments II — Corrosion in Fusion **Environments**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Trishelle Copeland-Johnson, Idaho National Laboratory; Cheng Sun, Clemson University; Suraj Persaud, Queen's University; Osman Anderoglu, University of New Mexico; Adrien Couet, University of Wisconsin-Madison

Monday PM | March 24, 2025 164 | MGM Grand

Session Chair: Trishelle Copeland-Johnson, Idaho National Laboratory

2:00 PM

Liquid Lithium Corrosion of Structural Fusion Materials: David Armstrong¹; ¹University of Oxford

2:20 PM

Impact of Oxidation and Helium Irradiation-Induced Defects in Fe-18Cr Samples: Mira Khair¹; Santiago Cavazos¹; Valeria Vessi¹; Shakira Medellin¹; Blas Uberuaga²; Peter Hosemann³; Elizabeth Sooby¹; ¹University of Texas San Antonio; ²Los Alamos National Laboratory; 3University of California Berkeley

2:40 PM

Corrosion of Advanced Materials Exposed to High Temperature Helium: Lawrence Coghlan¹; Robert Burrows²; Ronald Clark²; David Kumar²; Mariia Zimina¹; Aya Shin³; Tomas Martin¹; ¹University of Bristol; 2National Nuclear Laboratory Limited; 3EDF Energy

3:00 PM

Development and Construction of a Liquid Lead-Lithium Loop at UNM: Xavier Angus1; Sergey Smolentsev2; Bruce Pint2; Claude De lamater-Brotherton²; Marie Romedenne²; G. Ivan Maldonado³; Nicholas Brown³; Quang Son³; Michael Trombetta¹; Daniel Levario¹; Osman Anderoglu¹; ¹University of New Mexico; ²Oak Ridge National Lab; 3University of Tennesse Knoxville

3:20 PM Break

3:40 PM

Alumina Scale Stability Under Combined High Temperature Liquid Metal Corrosion and Neutron Irradiation: Marie Romedenne¹: Yi-Feng Su¹; Cansu On²; Josina W Geringer¹; Nick Russell¹; Masatoshi Kondo³; Yuji Hatano⁴; Jiheon Jun¹; Yutai Kato¹; Bruce A. Pint¹; ¹Oak Ridge National Laboratory; ²Y12; ³Tokyo Institute of Technology; ⁴University of Toyama

4:00 PM

Evaluating Compatibility of Structural Materials for a FLiBe Fusion Breeder Blanket: Rishi Pillai¹; Marie Romedenne¹; Monica Gehrig¹; Adam Willoughby¹; Paul Humrickhouse¹; ¹Oak Ridge National Laboratory

4:20 PM

Evaluation of Compatibility of Steel, Vanadium Materials and Steel-Insulator-Steel Structures With High Temperature Liquid Lithium: Claude De Lamater-Brotherton1; Marie Romedenne2; Jim Pickles³; Bruce Pint²; ¹University of Tennessee; ²Oak Ridge National Labratory; ³Tokamak Energy

4:40 PM Break

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components IV — Research from Early Career **Scientists**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Kayla Yano, Pacific Northwest National Laboratory; Assel Aitkaliyeva, University of Florida; Eric Lang, University of New Mexico; Eda Aydogan, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Benjamin Eftink, Los Alamos National Laboratory; Tanvi Ajantiwalay, Pacific Northwest National Laboratory

Monday PM | March 24, 2025 160 | MGM Grand

Session Chairs: Eric Lang, University of New Mexico; Kayla Yano, Pacific Northwest National Laboratory

2:00 PM Invited

Evaluating Mechanical Properties of Irradiated Ferritic/Martensitic Steels With Nanoindentation and Strengthening Model Predictions: Pengcheng Zhu¹; Yajie Zhao²; Yan-Ru Lin³; Valentin Pauly⁴; Stephen Taller³; Jean Henry⁵; Shradha Agarwal²; Steven Zinkle²; ¹Los Alamos National Laboratory; ²University of Tennessee, Knoxville; ³Oak Ridge National Laboratory; ⁴University of Michigan, Ann Arbor; ⁵CEA, DEN, Service de Recherches Métallurgiques Appliquées

2:30 PM Invited

Quantitative Analysis of Interfacial Defect Densities in Ion Irradiated Dual-Phase Alloy Systems: James Haag1; Ana Garcia Caraveo²; Tanvi Ajantiwalay¹; Matthew Olszta¹; Weilin Jiang¹; Wahyu Setyawan¹; ¹Pacific Northwest National Laboratory; ²Oregon State University

3:00 PM Invited

Irradiation-Creep and Irradiation-Creep-Fatigue of Austenitic and Ferritic-Martensitic Alloys for Advanced Nuclear Reactors: Charles Hirst¹; Mackenzie Warwick²; Wyatt Peterson²; Kevin Field²; ¹University of Wisconsin-Madison; ²University of Michigan

3:30 PM Break

3:50 PM Invited

Unraveling the Roles of Grain Boundary Chemistry and Stress State on the Oxidation Response of Ni-Cr Alloys: Elizabeth Kautz¹; Karen Kruska²; Ziqing Zhai²; Robert McRobie¹; Josephine Hartmann¹; Daniel Schreiber²; Matthew Olszta²; ¹North Carolina State University; ²Pacific Northwest National Laboratory

4:20 PM Invited

Understanding the Thermomechanical Response of Incumbent and ATF Fuel Claddings to Accident Transients: Samuel Bell1; Nathan Capps¹; Caleb Massey¹; Takaaki Koyanagi¹; Kory Linton¹; Peter Doyle¹; Yong Yan¹; Jason Harp¹; Nicholas Brown²; Jennifer Espersen²; Daniel Sweeney¹; Daniel Schappel¹; Mackenzie Ridley¹; ¹Oak Ridge National Laboratory; ²University of Tennessee, Knoxville

4:50 PM Invited

Towards NRC Approval of the Fracture Toughness Test for RPV Integrity Evaluation for Long-Term Operation: Challenges and Opportunities: Caleb Clement¹; Brian Hall¹; ¹Westinghouse Electric Company

MECHANICS OF MATERIALS

Mechanical Behavior Related to Interface Physics IV Strength and Fracture Resistance of Interfaces

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Nuclear Materials Committee, TMS: Surface Engineering Committee

Program Organizers: Stanislav Zak, Austrian Academy of Sciences; Nathan Mara, University of Minnesota; Barbara Putz, Empa Swiss Federal Laboratories for Materials Science and Technology; Glenn Balbus, MRL Materials Resources LLC; Kevin Schmalbach, Bruker Nano; Youxing Chen, University of North Carolina Charlotte

Monday PM | March 24, 2025 369 | MGM Grand

Session Chairs: Thomas Nizolek, Los Alamos National Laboratory; Stanislav Zak, Austrian Academy of Sciences

2:00 PM

Characterization of Interfacial Bonding Strength Between 316 Stainless Steel and Electrodeposited Nickel Layers via Mesoscale Mechanical Testing: Yuxin Hu1; Sebastian Lam1; Fei Teng2; Peter Hosemann¹; ¹University of California, Berkeley; ²Idaho National Lab

Variation in Oxide Dispersion Strengthening Due to Interfacial Structure: Jacob Tavenner¹; Mikhail Mendelev²; Gabriel Plummer²; Timothy Smith³; John Lawson²; ¹Kbr - NASA Ames Research Center; ²NASA Ames Research Center: ³NASA Glenn Research Center

2:40 PM

Tensile Failure of Epitaxial TiN/Cu/TiN Sandwich Pillar Structures: X. Zhang¹; R. Namakian¹; D. Moldovan¹; Wen Meng¹; ¹Louisiana State University

3:00 PM Invited

In-Situ Characterization of Interface Properties as Well as Modelling of Crack-Steering Processes in Nano-Scale Multi-Layer and Multi-Material Composite Stacks in Microelectronics: André Clausner¹; Stefan Weitz¹; Jendrik Silomon¹; Kristina Kutukova²; ¹Fraunhofer IKTS; ²Fraunhofer IZM-ASSID

3:30 PM Break

3:50 PM

The Enigma of Solute Effect on Strength of Metal Alloys at the Nanoscale: Zhao Liang¹; Feitao Li¹; Eugen Rabkin¹; ¹Technion

4:10 PM

Ultra-High Strength, Deformable Nanocrystalline Al-Pd Alloys: Xuanyu Sheng¹; Zhongxia Shang¹; Nicholas Richter¹; Anyu Shang¹; Haiyan Wang¹; Xinghang Zhang¹; ¹Purdue University

4:30 PM

Ultrahigh Strength in Al-AlxGey Eutectics: Arkajit Ghosh¹; Wenqian Wu²; Jian Wang²; Amit Misra¹; ¹University of Michigan; ²University of Nebraska - Lincoln

4:50 PM Invited

Can Zinc be Strengthened by Voids? Micromechanical Testing and Microstructural Insights Into Electrodeposited Zinc Coating: Maria Watroba¹; Killang Pratama¹; Chunhua Tian²; Krzysztof Mackosz³; Amit Sharma¹; Wiktor Bednarczyk⁴; Johann Michler¹; Jakob Schwiedrzik¹; ¹Empa Swiss Federal Laboratories for Materials Science and Technology; ²RWTH Aachen University; ³Empa Swiss Federal Laboratory for Materials Science and Technology; ⁴AGH University of Science and Technology

MECHANICS OF MATERIALS

Mechanical Response of Materials Investigated Through Novel In-Situ Experiments and Modeling — **High Strain Rates**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials

Program Organizers: Minh-Son Pham, Imperial College London; Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dongchan Jang, Korea Advanced Institute of Science and Technology; Josh Kacher, Georgia Institute of Technology; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization

Monday PM | March 24, 2025 366 | MGM Grand

Session Chair: Dongchan Jang, Korea Advanced Institute of Science and Technology

2:00 PM

Finite Element Modeling of Impacts for the Measurement of Material Properties: Hyein Na1; Yang Liu1; Christopher Schuh2; ¹Massachusetts Institute of Technology; ²Massachusetts Institute of Technology / Northwestern University

2:20 PM

In-Situ Imaging of Spall Fracture: Jacob Diamond¹; Justin Moreno¹; Lily Zhao¹; K.T. Ramesh¹; ¹Johns Hopkins University

2:40 PM

Influence of Lattice Metamaterial Topology on Mechanical Response From Quasistatic to Shock Compaction Regimes: Brandon Zimmerman¹; Eric Herbold¹; Mukul Kumar¹; Jonathan Lind¹; ¹Lawrence Livermore National Laboratory

Modeling Laser-Induced Microparticle Acceleration Using a Mesoscale-Continuum Approach: Ching Chen1; Avinash Dongare1; ¹University of Connecticut

3:20 PM

Nitrogen Hardening and Its Resistance to Aging in a Martensitic Nitrided Steel Investigated by High Speed Nanoindentation: Romain Bordas¹; Damien Texier²; Jacques Bellus¹; ¹Aubert&Duval; ²Institut Clément Ader

3:40 PM Break

4:00 PM

Quantifying the Response of Metals at Elevated Temperatures and Strain Rates Above 106 s-1: Ian Dowding1; Christopher Schuh2; ¹Massachusetts Institute of Technology; ²Northwestern University

Small-Scale Mechanical Testing of Material Properties Enabled by Site-Specific Femtosecond Laser Machining: Zachary Barker¹; Brian Schuster¹; ¹The University of Texas at El Paso

Strain Rate Dependence of Activation Volume in Au Ultrafine Grained Thin Films Investigated by In Situ TEM: Yichen Yang¹; Kunqing Ding¹; Xing Liu¹; Ting Zhu¹; Josh Kacher¹; Olivier Pierron¹; 1Gatech

5:00 PM

Strain Rate Sensitivity: A Comparative Analysis of Nanoindentation and Split Hopkinson Bar Measurement Techniques: Daniel Lewis¹; James Paramore¹; Brady Butler²; Nicole Person¹; Christopher Walker¹; George Pharr¹; ¹Texas A&M University; ²DEVCOM Army Research Laboratory South at Texas A&M University

BIOMATERIALS

Mechanics and Physiological Adaptation of Hard and Soft Biomaterials and Biological Tissues — Metals & **Hierarchical Relationships in Biological Materials**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Bernd Gludovatz, UNSW Sydney; Elizabeth Zimmermann, McGill University; Steven Naleway, University of Utah; Sunita Ho, University of California, San Francisco

Monday PM | March 24, 2025 308 | MGM Grand

Session Chair: Elizabeth Zimmermann, McGill University

2:00 PM Invited

Effects of Zinc Deficiency and Arsenic Co-Exposure on Bone in Growing Female Mice: Russell Turner¹; Laura Beaver¹; Carmen Wong¹; Laurie Hudson²; Emily Ho¹; Adam Branscum¹; Urszula Iwaniec¹; ¹Oregon State University; ²University of New Mexico

2:30 PM

Zone-Specific Flocking of Zinc and Sulfur in the Temporoman dibular Joint: Brandon Lee¹; Mark Yang²; Yongmei Wang³; Stephen Connelly⁴; Nobumichi Tamura⁵; Dilworth Parkinson⁵; Samuel Webb⁶; Sunita Ho7; 1University of California, San Francisco; University of California, Davis; ²University of California, San Francisco; University of Washington; ³Universityof California, San Francisco; ⁴Veterans Affairs San Francisco Hlth. Care; 5Lawrence Berkeley National Laboratory; 6Stanford Synchrotron Radiation Lightsource, SLAC Natl. Accelerator Laboratory; 7University of California, San Francisco

2:50 PM Invited

Assessing Molar Incisor Hypomineralisation Through Multiscale Imaging and Analytics: Bjorn Busse1; 1University Medical Center Hamburg

3:20 PM Break

3:40 PM

Understanding Self-Sharpening Mechanism of Sea Urchin Tooth via Nanostructural and Nanomechanical Mapping: Gang Feng1; Zhuonan Wang¹; Riley McCarry¹; ¹Villanova University

4:00 PM Invited

The Osteoinductive Capacity of Demineralized Allogenic Bone Matrix is Impaired by Chronic Heavy Alcohol Consumption: Urszula Iwaniec¹; Adam Branscum¹; Russell Turner¹; ¹Oregon State University

4:30 PM

Impact of Heavy Alcohol Consumption on Cortical Bone Mechanical Properties in Male Rhesus Macaques: Bernd Gludovatz¹; Mihee Shin¹; Russel Turner²; Urszula Iwaniec²; Jamie Kruzic¹; ¹UNSW Sydney; ²Oregon State University

4:50 PM

Understanding the Impact Physiologically Relevant Stressors on the Structure and Properties of Fungi: Steven Naleway1; Atul Agrawal¹; Ihsan Elnunu¹; James Gallagher¹; Jessica Redmond¹; ¹University of Utah

NUCLEAR MATERIALS

Meeting Materials Challenges for the Future of Fusion Energy — Ceramic & Functional Materials II

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Tianyi Chen, Oregon State University; Amy Gandy, United Kingdom Atomic Energy Authority; Reuben Holmes, Kyoto Fusioneering; Ian Mccue, Northwestern University; Sneha Prabha Narra, Carnegie Mellon University; Jason Trelewicz, Stony Brook University; Weicheng Zhong, Oak Ridge National Laboratory

Monday PM | March 24, 2025 158 | MGM Grand

Session Chairs: Ian Mccue, Northwestern University; Takaaki Koyanagi, Oak Ridge National Laboratory

2:00 PM Keynote

ARPA-E CHADWICK Fusion Materials Program Overview: Ahmed Diallo¹; Cheng Xu²; Assel Aitkaliyeva³; ¹ARPA-E; ²Booz Allen Hamilton; ³ARPA-E and University of Florida

2:30 PM Keynote

Development of SiC Composite Blanket for Fusion: *Tatsuya Hinoki*¹; Junyeab Lee¹; Fujio Shinoda¹; Taishi Sugiyama²; Takaaki Koyanagi³; Sosuke Kondo⁴; ¹Kyoto University; ²Kyoto Fusioneering Ltd.; ³Oak Ridge National Laboratory; 4Tohoku University

3:00 PM

Ultra High Temperature Ceramics for Fusion Energy Applications: Lance Snead¹; David Sprouster¹; Ju Li²; ¹Stony Brook University; ²Massachusetts Institute of Technology

3:20 PM

First Principles Calculations of Fusion-Relevant Transmutation Defects in SiC: Alex Leide1; Isabel Fernandez-Victorio1; Yixuan Huang²; Tesni Haddon-McMillan³; Duc Nguyen-Manh¹; ¹UKAEA; ²University of Oxford; ³Ministry of Defence

3:40 PM Break

4:00 PM Invited

Toward Understanding of the Response of SiC to Fusion Neutron Irradiation: Takaaki Koyanagi¹; Weicheng Zhong¹; Benjamin Lamm¹; Yutai Katoh¹; ¹Oak Ridge National Laboratory

4:30 PM Invited

A Carbon Foam to SiC Conversion Technology for Flow Channel Inserts: Jiping Zhang¹; Osman Trieu¹; George Jacobsen¹; Tyler Abrams¹; Shawn Zamperini¹; ¹General Atomics

LIGHT METALS

Melt Processing, Casting and Recycling — DC-**Casting and Microstructure & Sensors and Control Systems**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Arild Hakonsen, Hycast As; Les Edwards, Rain Carbon Inc.

Monday PM | March 24, 2025 109 | MGM Grand

Session Chairs: Dmitry Eskin, Brunel University; Akash Pakanati, Hydro Research And Development Center

2:00 PM Introductory Comments

2:05 PM

The Effect of Nucleating Particle Agglomerates on Grain Refiner Efficiency of 7xxx Aluminium Alloys: Christopher Wheatley¹; Georges Salloum-Abou-Jaoude¹; ¹Constellium C-Tec

2:30 PM

In Situ Observations of the Nucleation and Growth of Al-Si-Fe-Mn Intermetallics in Model Aluminium Alloys: Eliane Farhi¹; Georges Salloum-Abou-Jaoude²; Silvère Akamatsu³; Philippe Jarry²; Christine Nardin²; Sabine Bottin-Rousseau¹; ¹Sorbonne Université; ²Constellium Technology Center C-TEC; ³CNRS

Smart Sensors for Additive Manufacturing and Aluminum Foundry 4.0 Initiatives: Koustav Dey1; Grant Whitham1; Ben Hilgers1; Laura Bartlett¹; Rony Saha¹; Jie Huang¹; Ronald O'Malley¹; Jeffrey Smith¹; ¹Missouri University of Science & Technology

3:20 PM

Application of Digital Twins for Complete DC-Casting Lines: Vegard Innerdal¹; Birger Ellevseth¹; Arild Hakonsen¹; ¹Hycast As

3:45 PM Break

4:00 PM

Liquid Composition Analysis of Wrought Aluminum Alloys Using Laser-Induced Breakdown Spectroscopy (LIBS) for Industrial Furnace Applications: Georges Salloum-Abou-Jaoude1; Alexandre Nadeau²; Kristján Leósson³; Elise Garel¹; ¹Constellium C-Tec; ²Tecnar; ³DTE

4:25 PM

Tracking Primary Al3Ti and Al3Zr Phase Formation in Liquid Aluminum Alloys Using LIBS: Mehdi Maghsoudi¹, Georges Salloum-Abou-Jaoude²; Juan-Ricardo Castillo-Sanchez²; Snorri Ingvarsson³; Kristjan Leosson¹; ¹DTE; ²Constellium Technology Center C-TEC; 3Science Institute, University of Iceland

4:50 PM

BATSCAN - A Breakthrough for Industrial Inclusion Measurement in Aluminium Casthouses: Jean-Louis Achard1; Jules Quinonero-Galindo¹; Pierre Le Brun¹; Marc Bertherat¹; Pierre-Yves Menet¹; Vincent Milani¹; Nicoals Bauret¹; ¹Constellium C-Tec

Investigating the Castability of Recycling AZ91 Machining Chips Through Shape Casting: Xinyi Hao1; Zhuocheng Xu1; Christopher Gourlay¹; Qianqian Li¹; ¹Imperial College London

NUCLEAR MATERIALS

Microstructural, Mechanical, and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface II Oxide Fuels II: Mechanical Behaviors

Sponsored by: TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Xing Wang, Pennsylvania State University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Dong (Lilly) Liu, University of Oxford; Caleb Clement, Westinghouse Electric Company; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida; Yi Xie, Peking University

Monday PM | March 24, 2025 159 | MGM Grand

Session Chairs: Xing Wang, Pennsylvania State University; Tianyi Chen, Oregon State University

2:00 PM Invited

Understanding Burnup Effects on UO2 Mechanical Behavior Using Surrogate Materials: Tianyi Chen1; Mack Cullison1; Fabiola Cappia²; David Frazer²; Fei Teng²; Jie Lian³; Kun Mo⁴; Michael Tonks⁵; ¹Oregon State University; ²Idaho National Laboratory; ³Rensselaer Polytechnic Institute; ⁴Argonne National Laboratory; ⁵University of Florida

2:30 PM

Atomistic-Scale Simulations to Predict Creep Rates in Doped UO2: Conor Galvin¹; David Andersson¹; Andrea Rovinelli¹; Laurent Capolungo¹; Pieterjan Robbe²; Michael Cooper¹; ¹Los Alamos National Laboratory; 2Sandia National Laboratory

2:50 PM

Investigation of Fuel Cladding Chemical Interactions with UO, and Doped UO, Using Diffusion Couples: Rebecca Manns¹; Josephine Libero-Cruzado¹; Daniel Koury¹; ¹University of Nevada, Las Vegas

Investigation of the Creep and Fracture Behavior of Irradiated UO, Fuel Through Density Functional Theory (DFT): Maria Giamouridou¹; Huan Liu²; Pär Olsson¹; ¹KTH Royal Institute of Technology; ²University of Helsinki

3:30 PM Break

Comprehensive Fracture Property Analysis of High Burnup UO, Fuels Using Multiscale Phase-Field Fracture Modeling: Merve Gencturk¹; Nicholas Faulkner¹; Abdurrahman Ozturk¹; Mohammed Abdoelatef²; David Andersson³; Michael WD Cooper³; Larry Aagesen⁴; Wen Jiang⁵; Jason Harp⁶; Karim Ahmed¹; ¹Texas A&M University; ²EPRI; ³Los Alamos National Laboratory; ⁴Idaho National Laboratory; 5NC State University; 6Oak Ridge National Laboratory

Development of a Macroscopic Model of Irradiation-Enhanced **Densification**: Brandon Battas¹; Michael Tonks¹; ¹University of Florida

Investigating the Effect of Grain Growth Additive Incorporation on the Microstructure and Radiation Stability of UO, Fuels: Ritesh Mohun¹; Sarah Vallely¹; John Thomas Prabhakar¹; Simon Middleburgh¹; ¹Bangor University

4:50 PM

Microstructurally Informed Modeling of Fragment Size in the BISON Fuel Performance Code: Oliver Baldwin1; Nathan Capps2; Brian Wirth¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

5:10 PM Poster Pitches

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Nanostructured Materials in Extreme Environments III — Radiation Environment II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Youxing Chen, University of North Carolina Charlotte; Haiming Wen, Missouri University of Science and Technology; Yue Fan, University of Michigan; Khalid Hattar, University of Tennessee Knoxville; Ashley Bucsek, University of Michigan; Jessica Krogstad, University of Illinois at Urbana-Champaign; Irene Beyerlein, University of California, Santa Barbara; Trevor Clark, Commonwealth Fusion Systems

Monday PM | March 24, 2025 166 | MGM Grand

Session Chair: Yue Fan, University of Michigan

2:00 PM Invited

Self-Patterned Metal Carbide - Amorphous Ceramics Nanostructure Enabled High Temperature Strength and Plasticity and Irradiation Resistance: Jian Wang1; Bingqiang Wei1; Lin Shao2; Nan Li³; Lin Li⁴; ¹University of Nebraska-Lincoln; ²TAMU; ³LANL; ⁴Arizona State University

2:25 PM Invited

Stability of Nanostructured Nitride and Oxide Surrogate Nuclear Fuels Under Ion Irradiation: Yanwen Zhang¹; ¹Queen's University

2:50 PM

Microstructural Effects and Mechanical Characteristics of Novel Ti-BN Coatings Post-Space Irradiation Exposure on the International Space Station: Abhijith Sukumaran¹; Sara Rengifo²; William Scott²; Sang Hyon Chu³; Cheol Park³; Michael Renfro⁴; Sudipta Seal⁵; Arvind Agarwal¹; ¹Florida International University; ²National Aeronautics and Space Administration, Marshall Space Flight Centre; 3Advanced Materials and Processing Branch, NASA Langley Research Center; ⁴Plasma Processes; ⁵Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, University of Central Florida

3:10 PM

Spatially Selective Catalyst Irradiation Induced Graphitization of Monocrystalline Diamond for Semiconductor Applications: Alexandros Spyromilios¹; Peter Hosemann¹; ¹University of California, Berkeley

3:30 PM Break

3:50 PM Invited

Trapping Vacancy and Suppressing Void Formation in Irradiated Refractory Alloys: Penghui Cao1; 1University of California, Irvine

In-Situ Analysis of Electron Beam Irradiation on Amorphous Nanostructured Ceramic Materials: Nicole Keninger¹, Sooyeon Hwang²; Md Ali Muntaha¹; Tristan Olsen³; Cyrus Koroni³; Sarah Pooley³; Claire Xiong³; Janelle Wharry¹; ¹Purdue University; ²Brookhaven National Laboratory; ³Boise State University

4:35 PM

Atomistic-Level Understanding of Structure and Stability of Three-Dimensional Interfaces Under Irradiation: Youxing Chen1; Qiang Zhu¹; ¹University of North Carolina Charlotte

BIOMATERIALS

Natural Fibers and Biocomposites: A Sustainable Solution — Natural Fibers: Fundamentals and **Applications**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee, TMS: Composite Materials Committee

Program Organizers: Henry Colorado, Universidad de Antioquia; Sergio Monteiro, Instituto Militar de Engenharia; Marc Meyers, University of California, San Diego; Carlos Castano Londono, Virginia Commonwealth University; George Youssef, San Diego State University; Felipe Perisse Duarte Lopes, Universidade Estadual do Norte Fluminense; Daniel Salazar, BCMaterials

Monday PM | March 24, 2025 307 | MGM Grand

Session Chairs: Henry Colorado, Universidad de Antioquia; Felipe Perisse Duarte Lopes, Universidade Estadual do Norte Fluminense; Sergio Neves, Instituto Militar de Engenharia

2:00 PM Introductory Comments

2:05 PM

Hydroxyapatite Surface Modification of Jute Fiber for Thermoset Composites: Interfacial Enhancement, Thermal Functionalization, and Additive Manufacturing: Yuxuan Wu¹; Zhuoyuan Yang¹; Yizhou Jiang¹; Sirish Namilae¹; ¹Embry-Riddle Aeronautical University

2:25 PM

Recovery of Textile Waste and Its Viability and Resistance for Application in Orthopedic Prostheses: Angélica Campanhão1; Bruna Nogueira Simões Cobuci¹; David Coverdale Rangel Velasco¹; Noan Tonini Simonassi¹; Carlos Maurício Fontes Vieira¹; Felipe Perisse Duarte Lopes²; ¹UENF; ²Universidade Estadual do Norte Fluminense

2:45 PM Invited

Diatoms: A Sustainable Resource for Carbon-Negative, Multi-Functional Ceramic and Organic Materials: Aidan Lucas¹; Hannes Schniepp1; 1William & Mary

3:10 PM

Comparison of Advanced Sample Preparation Techniques for High-Resolution Imaging of Sponge Spicule Cross-Sections: Fariborz Tavangarian¹; Niloofar Fani¹; Armaghan Hashemi Monfared¹; Sorour Sadeghzade²; ¹Pennsylvania State University; ²Westlake University, Hangzhou

3:30 PM Break

3:50 PM Invited

Tagua, the Vegetable Ivory: and Inexpensive and Sustainable Material: Henry Colorado¹; George Youssef²; Marc Meyers³; ¹Universidad de Antioquia; ²San Diego State University; ³University of California San Diego

4:15 PM

Bottle Holder Composite for High Performance Cycling: Exploring the Potential of Rami Fiber: Luis Fernando Fortunato de Freitas¹; Darcy Oliveira¹; Luis Arrubla Agudelo¹; Carlos Fontes Vieira¹; Felipe Perissé Duarte Lopes¹; ¹UENF

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXIV — **Bonding Technology and Mechanism**

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Yu-Chen Liu, National Cheng Kung University; Hiroshi Nishikawa, Osaka University; Shih-kang Lin, National Cheng Kung University; Yee-wen Yen, National Taiwan University of Science and Technology; Chih-Ming Chen, National Chung Hsing University; Chao-hong Wang, National Chung Chung University; Jaeho Lee, Hongik University; Zhi-Quan Liu, Shenzhen Institutes of Advanced Technology; Ming-Tzer Lin, National Chung Hsing University; A.S.Md Abdul Haseeb, Bangladesh University of Engineering and Technology (BUET); Ligang Zhang, Central South University; Sehoon Yoo, Korea Institute of Industrial Technology; Ping-Chuan Wang, Suny New Paltz; Yu-An Shen, Feng Chia University

Monday PM | March 24, 2025 359 | MGM Grand

Session Chairs: Yu-An Shen, Feng Chia University; Hiroshi Nishikawa, Osaka University

2:00 PM Keynote

Bonding Mechanism for Cu/SiO2 Hybrid Joints: Chih Chen1; ¹National Yang Ming Chiao Tung University

2:35 PM Invited

Microstructural Analysis and Mechanical Properties Evaluation of Zinc-Coated Aluminum Particles: Tatsuya Kobayashi¹; Rika Goto¹; Ikuo Shohji¹; ¹Gunma University

3:05 PM Invited

Computational Simulation of Interfacial Bonding Behavior with Various Grain Structures in Cu-Cu Bonding: Hiroaki Tatsumi¹; ¹Osaka University

3:35 PM Break

3:55 PM

Joint Properties of Ni-Less Surface Finish / Sn-Alloy Solder Using Laser-Assisted Bonding (LAB) Technique: Seonghui Han1; Sang-Eun Han¹; Tae-Young Lee²; Young-Bae Park³; Sehoon Yoo¹; ¹Korea Institute of Industrial Technology; ²Tech University of Korea; ³Andong **National University**

Electrodeposited Gallium for Cu-to-Cu Interconnection: Tzu-Hsuan Huang¹; Jian-wei Huang¹; Zhih-feng Lin¹; Shih-kang Lin¹; ¹National Cheng Kung University

Fabrication and Properties of Nanotwinned Copper Doped with Carbon Nanotubes by Electrodeposition: Ciao-Yun Luo1; Chih Chen1; ¹National Yang Ming Chiao Tung University

4:55 PM

High-Strength and High-Conductivity Nanotwinned Copper Foils Via Cu-Ni Co-Electrodeposition: Kang Ping Lee¹; Chih Chen¹; ¹National Yang Ming Chiao Tung University

5:15 PM

Effect of Copper Grain Size on Interfacial Reactions of Copper/ Solder/Copper Sandwiched Joints: Man-Hsuan Chung¹; Chih-Ming Chen¹; ¹National Chung Hsing University

MATERIALS SYNTHESIS AND PROCESSING

Phase Transformations and Microstructural Evolution — Steels I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State University; Ashley Paz y Puente, University of Cincinnati; Jonah Klemm-Toole, Colorado School of Mines; Sriram Vijayan, Michigan Technological University; Mohsen Asle Zaeem, Colorado School of Mines; Le Zhou, Marquette University; Adriana Eres-Castellanos, Colorado School of Mines; Sophie Primig, University of New South Wales

Monday PM | March 24, 2025 123 | MGM Grand

Session Chairs: Adriana Eres-Castellanos, Colorado School of Mines; Bharat Gwalani, North Carolina State University

2:00 PM

Deformation and Strain Partitioning in a Double Soaked Medium Manganese Steel With Differing Martensite Fractions: Alexandra Glover¹; Paul Gibbs²; Donald Brown²; Bjørn Clausen²; John Speer³; Emmanuel De Moor³; ¹Michigan Technological University; ²Los Alamos National Laboratory; ³Colorado School of Mines

2:25 PM

Effect of Electrical Resistance Heating on Recrystallization of Cold-Rolled Low-Carbon Steel: Dawn Van Iderstine¹; Shiraz Mujahid¹; YubRaj Paudel¹; Hongjoo Rhee¹; ¹Mississippi State University, Center for Advanced Vehicular Systems

2:45 PM

Microstructure Refinement During Hot Rolling of 0.3 CrMoV Steel: Role of Crystallographic Texture: Pravendra Singh¹; KS Suresh¹; M.K. Karthikeyan²; ¹Indian Institute of Technology Roorkee; ²Vikram Sarabhai Space Centre, Indian Space Research Organization

3:05 PM

Investigation of Microstructural Evolution and Mechanical Behaviour of Low Carbon 'Nb'-Added Micro Alloyed Steel Developed Through Quenching and Partitioning Method: *SK Arif*¹; Durbadal Mandal¹; Himadri Bar²; ¹NIT Durgapur; ²CSIR- National Metallurgical Laboratory, Jamshedpur-India

3:25 PM Break

3:40 PM

The Effects of Ta Additions on the Microstructure of HP-Micro Alloys for Steam-Methane Reformer Applications: *Martin Tse¹*; Yunus Azakli¹; Dominique Flahaut²; Naveen Manikanteswaran²; Katerina Christofidou¹; ¹University of Sheffield; ²Paralloy Group

4:00 PM

Influence of Al2O3 on Crystallization Behavior of Mold Slag Film Based on Soret Effect: *Qiuping Li*¹; Peng Cheng¹; Guanghua Wen¹; Ping Tang¹; Zibing Hou¹; Xinyun Mo¹; ¹Chongqing University

4:20 PM

Electro-Recrystallization Behavior in Cold-Rolled Nickel-Chromium Alloys Under Direct Current Stressing: Meng-Chun Chiu¹; Min Ku¹; Chih-An Wu³; Chien-Lung Liang¹; ¹National Taiwan University of Science and Technology

4:40 PM

Annealing Behavior of Additive Manufactured 304L Using In-Situ EBSD: Yuheng Nie¹; Marie Charpagne¹; Jack Donoghue²; Albert Smith³; Katerina Christofidou⁴; ¹University of Illinois Urbana-Champaign; ²The University of Manchester; ³TESCAN-UK Ltd.; ⁴The University of Sheffield

SPECIAL TOPICS

Preparing Undergraduate and Graduate Students -And the Faculty Who Prepare Them - For Materials Careers (A Symposium Held in the Memory and Honor of Elizabeth Judson) — Building a Global Workforce and Satisfying ABET Along the Way

Sponsored by: TMS: Education Committee

Program Organizers: Marian Kennedy, Clemson University; Alison Polasik, Campbell University; Jeffrey Fergus, Old Dominion University; Jennifer Carter, Case Western Reserve University

Monday PM | March 24, 2025 170 | MGM Grand

Session Chairs: Enze Chen, Stanford University; Timothy Chambers, University of Michigan

2:00 PM

Student Learning Through Performing Materials Science and Engineering Research in a Foreign Country: Carl Boehlert¹; ¹Michigan State University

2:25 PM

Strategies for Attracting Indian Undergraduate Students to a Career in Materials Research and Technology: Rajiv Shekhar¹; ¹IIT Kanpur

2:50 PM

Updates to ABET Criteria: Information and Q&A: Alison Polasik¹;
¹Campbell University

3:15 PN

Building a Sustainable and Easy Process for ABET Student Outcomes Assessment: Steven Yalisove¹; ¹University of Michigan

3:40 PM Break

4:00 PM ABET PEV Panel Discussion: Preparing for a Successful Visit

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Printed Electronics and Additive Manufacturing: Advanced Functional Materials, Processing Concepts, and Emerging Applications — Additively Manufactured Printed Structures

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Yong Lin Kong, Rice University; Konstantinos Sierros, West Virginia University; Masoud Mahjouri-Samani, Auburn University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ethan Secor, Iowa State University

Monday PM | March 24, 2025 361 | MGM Grand

Session Chairs: Pooran Joshi, Elbit Systems of America; Kai Li, Oak Ridge National Laboratory

2:00 PM Invited

Additive Manufacturing of Soft Magnetic Materials: Prospects and Challenges: Parans Paranthaman¹; ¹Oak Ridge National Laboratory

2:25 PM Invited

Binder Jet Printing of Soft Magnetic Ferrite Materials: Motivations and Progress to Date: Paul Ohodnicki¹; Bishal Bhandari¹; Chuyuan Zheng¹; Dipika Mandal¹; Suraj Mullurkara¹; ¹University of Pittsburgh

2:50 PM Invited

Radically-Accessible Approach to 3D Printing of Full-Density Aluminum Alloys: Keng Hsu1; 1Arizona State University

Additive Manufacturing of Magnetostrictive Transducers: Joy Morin¹; Zhangxian Deng²; ¹Idaho National Laboratory; ²Boise State University

3:35 PM Break

3:45 PM Invited

Towards Fast, Efficient, and Sustainable Metal AM: Novel Ultra-High Speed Regime in LPBF Printing of Pure Copper: Natalya Kublik C1; Laura Duenas Gonzalez1; David Deisenroth2; Bruno Azeredo1; ¹Arizona State University; ²NIST

4:10 PM Invited

Additive Manufacturing of Elastomer, Ceramic and Metal Multi-Functional Structures: Eric MacDonald¹; ¹The University of Texas at El Paso; Oak Ridge National Laboratory

4:35 PM

Enhance Electrical Conductivity and Machinal Properties of Cu-Cr Alloys Through Rapid Directional Solidification: Arthur Zhang¹; Tao Sun²; Ji Ma¹; ¹University of Virginia; ²Northwestern University

4:55 PM

3D Printing of Composites With Controlled Micro/Macrostructure Design for Electronic Packaging: Hortense Le Ferrand¹; ¹Nanyang **Technological University**

5:15 PM

Unveiling the Potential of Hybrid Additive Manufacturing for Next-Generation Functionality in Printed Electronics: Devin Roach1; ¹Oregon State University

Thermal Conductivity Measurement of a Thin Layer of the Single Crystals of PMN-PT Using Time Domain Thermoreflectance (TDTR) Technique: Sagar Kumar Verma¹; Sieun Chae¹; Nirmala Kandadai¹; ¹Oregon State University, Corvallis

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Revitalization of Materials through Upcycling: The 2025 Student-Led Symposium — Upcycling of Metals, Mine Waste, Concrete and Polymers

Sponsored by: TMS: Education Committee

Program Organizers: Dylan Miley, University of California Davis; Ayeman Nahin, University of California Davis; Tamanna Zakia, University of California Davis

Monday PM | March 24, 2025 315 | MGM Grand

Session Chairs: Tamanna Zakia, University of California, Davis; Aveman Nahin, University of California Davis; Dylan Miley, University of California Davis

2:00 PM

Key Challenges for Upcycling to Obtain High Quality Materials: Christina Meskers¹; Anne Kvithyld¹; ¹SINTEF

2:30 PM

Utilization of Novel Reactor Constructed using Batches of Waste Natural Substrates for the Recovery and Reuse of Valuable Resources from Acid Mine Drainage: Deogratius Titus Maiga1; Khuthadzo Mudzanani¹; Terence Phadi¹; Titus Msagati²; Linda Sibali²; Matome Mothetha³; ¹MINTEK; ²UNISA; ³City of Ekurhuleni

Enhancement of Recycled Concrete Aggregate Through Slag-Coated Carbonation: Hammad Ahmed Shah¹; Weina Meng¹; ¹Stevens Institute of Technology

3:30 PM Break

3:50 PM

Life Cycle Assessment Approach for Upcycling Expanded Polystyrene Across Industrial Sectors: Haoyang He¹; Jon Timbers²; Claude-Anne Duval²; Johnny Lincoln²; Michael Cech³; Joel DeMeritt³; Oladele A. Ogunseitan⁴; Julie M. Schoenung¹; ¹Texas A&M University; ²Epsilyte LLC; ³Trek Bicycle Corporation; ⁴University of California -Irvine

MATERIALS SYNTHESIS AND PROCESSING

REWAS 2025: Sustainable End-of-Life Management and Recycling Solutions for Batteries, Wind Turbines, and Photovoltaics — Circularity in Li-Ion **Batteries Technologies II**

Sponsored by: TMS Extraction and Processing Division, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Christina Meskers, SINTEF; Mertol Gokelma, Izmir Institute of Technology; Adamantia Lazou, National Technical University of Athens; Elsa Olivetti, Massachusetts Institute of Technology

Monday PM | March 24, 2025 117 | MGM Grand

Session Chair: Mertol Gokelma, Izmir Institute of Technology

2:00 PM Introductory Comments

2:05 PM Plenary

Advancing Circular Economy: Copper Recovery from E-Waste at Aurubis' New US Facility: Owais Waseem1; Tom Adam1; 1Aurubis Richmond

2:35 PM

End-of-Life Recycling of Lithium-Ion Batteries in India: Shalini Verma¹; Akshoy Ranjan Paul¹; Nawshad Haque²; Warren Bruckard²; Avash Kumar Saha³; ¹MNNIT Allahabad; ²CSIRO; ³Nit Durgapur, India

2:55 PM

Reviews and Perspectives: Selective Leaching-A Promising Approach for Recycling Lithium Iron Phosphate Batteries: Tianyu Zhao1; Yeonuk Choi1; 1Queen's University

A Separation-Free and Purification-Free Method for Direct Production of Lithium-Rich Solution from Industrial-Grade Lithium-Ion Battery Waste: Tianyu Zhao1; Yeonuk Choi1; 1Queen's University

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Sciences — Theory and Modeling

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Mavrik Zavarin, Lawrence Livermore National Laboratory; Rebecca Abergel, University of California Berkeley; Matthew Watrous, Idaho National Laboratory

Monday PM | March 24, 2025 163 | MGM Grand

Session Chair: Evgenia Tereshina-Chitrova, Institute of Physics

2:00 PM Invited

Modeling Uranium Dioxide from First Principles: Magnetic Ordering and Phonon Transport: Shuxiang Zhou¹; Enda Xiao²; Hao Ma³; Himani Mishra1; Krzysztof Gofryk1; Chao Jiang1; Michael Manley3; David Hurley¹; Chris Marianetti²; ¹Idaho National Laboratory; ²Columbia University; 3Oak Ridge National Laboratory

2:30 PM Invited

Thermal Conductivity in Actinides: Dominik Legut¹; Urszula Wdowik¹; ¹VSB - Technical University of Ostrava

DFT Studies of Electronic Properties and Swelling of Selected High Density Fuels: Barbara Szpunar¹; Jerzy Szpunar¹; ¹University Of Saskatchewan

3:20 PM Break

3:40 PM

First-Principles and Experimental Determination of Thermal Transport Due to Fission Products in ThO₂: Linu Malakkal¹; Ankita Katre²; Shuxiang Zhou¹; Ella Pek¹; Amey Khanolkar¹; Zilong Hua¹; James Matthew Mann³; Chao Jiang¹; David Hurley¹; Chris Marianetti⁴; Marat Khafizov⁵; ¹Idaho National Laboratory; ²SP Pune University; ³AFRL; ⁴Columbia University; ⁵Ohio State University

4:00 PM

Density Functional Theory Study of Interfacial Defects in Plutonium Oxides: Larissa Woryk¹; Raymond Atta-Fynn¹; Aaron Kohnert¹; Sarah Hernandez¹; ¹Los Alamos National Laboratory

4:20 PM

Thermo-Kinetics of Impurities in Uranium Alloys: Emily Moore1; Adrian Gonzales¹; Jibril Shittu¹; Joseph Boro¹; Nicholas Ury¹; Kyoung Kweon¹; Bradley Childs¹; ¹Lawrence Livermore National Laboratory

MECHANICS OF MATERIALS

Solid-State Diffusion Bonding of Metals and Alloys - Modeling, Simulation, and Qualifications of **Diffusion Bonded Joints**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Mohamed Elbakhshwan, University of Wisconsin Madison; Peng Wang, University of Michigan; Tate Patterson, Idaho National Laboratory; Fei Gao, University of Michigan; Todd Allen, University of Michigan; Mark Anderson, University of Wisconsin Madison

Monday PM | March 24, 2025 301 | MGM Grand

Session Chair: Xinchang Zhang, Idaho National Laboratory

2:00 PM Introductory Comments

2:05 PM

An Aluminum-Steel Bi-Metal Compound Forging and Its Joining Characteristics: Minkwang Baek1; Inbeom Lee2; Hyun-min Sung2; Minki Kim³; Myoung-Gyu Lee¹; ¹Seoul National University; ²Hyundai Motor Group; ³Korea Institute of Industrial Technology (KITECH)

Preserving Bond Strength in Solid State Diffusion Bonding of Inconel 718: Reggie Angell¹; Leila Ladani²; William Nickerson³; ¹Honeywell; ²Arizona State University; ³Office of Naval Research

2:55 PM

Modeling Process-Structure-Property Relationship in Diffusion Bonded 316H Stainless Steel Microstructure Using Phase-Field and Crystal Plasticity Methods: Sagar Bhatt1; Rui Wang2; Fei Gao2; Mark Messner¹; ¹Argonne National Laboratory; ²University of Michigan

3:20 PM

Phase-Field Modeling of Diffusion Bonding for Nuclear Engineering Applications: Rui Wang¹; Peng Wang¹; Sagar Bhatt²; Mark Messner²; Todd Allen¹; Fei Gao¹; ¹University of Michigan; ²Argonne National Laboratory

3:45 PM Break

4:05 PM

Similar and Dissimilar Joining of Nitinol via Transient Liquid Phase Bonding: Zhaoxi Cao1; Samuel Price1; Ian McCue1; 1Northwestern Universwity

4:30 PM

Property Comparison of Different Corrosion-Resistant Nickel Alloys for use in Explosion Cladding: Thomas Mann¹; Paul Crook¹; Ling Chen¹; Austin Hernandez¹; Alex Post¹; Andrew Roginski²; Michael Fahrmann¹; ¹Haynes Intl.; ²Purdue University

NUCLEAR MATERIALS

Solid-state Processing and Manufacturing for Extreme Environment Applications: Integrating Insights and Innovations — Solid-State Processing and Manufacturing for Extreme Environment **Applications: Integrating Insights and Innovations:** Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Shaping and Forming Committee

Program Organizers: Priyanka Agrawal, University of North Texas; Hang Yu, Virginia Polytechnic Institute and State University; Boopathy Kombaiah, Idaho National Laboratory; Joao Oliveira, Faculdade Ciencias Tecnologias; Tianhao Wang, Pacific Northwest National Laboratory; Mukesh Bachhav, Idaho National Laboratory; John Shelton, Northern Illinois University; Shivakant Shukla, Pacific Northwest National Laboratory; Efthymios Polatidis, University of Patras; Lakshmi Narayan Ramasubramanian, Indian Institute of Technology; Sanya Gupta, Cummins Inc.

Monday PM | March 24, 2025 161 | MGM Grand

Session Chairs: Shivakant Shukla, Pacific Northwest National Laboratory; John Shelton, Northern Illinois University

2:00 PM Invited

Material Needs for Deployment of Advanced Reactors: Mitchell Meyer1; 1NuCube Energy, Inc.

2:30 PM

Multiscale and Multiphysics Computational Framework for Shear-Assisted Processing and Extrusion (ShAPE) of Nuclear Cladding Materials: Lei Li¹; Kuna Lukasz¹; Shadab Anwar Shaikh¹; Mohan Sai Kiran Kumar Yadav Nartu¹; Mageshwari Komarasamy¹; Dalong Zhang¹; Stuart Maloy¹; Isabella van Rooyen¹; Ayoub Soulami¹; ¹Pacific Northwest National Laboratory

2:50 PM

Numerical Analysis of Microstructure Evolution in Additive Friction Stir Deposition Using Smoothed Particle Hydrodynamics: Vignesh Shankar Iyer¹; *Veera Sundararaghavan*¹; ¹University of Michigan

3:10 PM

Performance of Cold Spray Cr Coatings on Zr-Alloy Fuel Cladding: Tyler Dabney¹; K. Sasidhar¹; Evan Willing¹; Ben Eftink²; Nan Li²; Ben Maier³; Jorie Walters³; Kumar Sridharan¹; ¹University of Wisconsin-Madison; ²Los Alamos National Laboratory; ³Westinghouse Electric Company

3:30 PM Break

3:45 PM Invited

On the Development of SolidStir®-Extrusion for Consolidation and Extrusion of Advanced Nuclear Materials: Kumar Kandasamy¹; Pankaj Kulkarni¹; Devin Davis¹; Osman El Atwani²; Stuart Maloy²; Shubhrodev Bhowmik³; Nilesh Kumar³; ¹Enabled Engineering; ²Pacific Northwest National Laboratory; ³University of Alabama

4:10 PM

Radiation Shielding and Neutron Capture Mechanisms in Friction Stir Processed Aluminum-Boron Nitride Nanocomposite: Sohail Mohammed¹; Kazue Orikasa¹; Zehao Li²; Arun Devaraj²; David Garcia³; Anil Lama¹; R. Sarvesha⁴; Cheol Park⁵; Sang-Hyon Chu⁵; Ken Ross³; Arvind Agarwal¹; ¹Florida International University; ²Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory; ³Energy and Environment Directorate, Pacific Northwest National Laboratory; ⁴University of Kentucky; ⁵Advanced Materials and Processing Branch, NASA Langley Research Center

4:30 PM

Solid Phase Processing of High Temperature Materials for Extreme Environments: Mageshwari Komarasamy¹; David Garcia¹; Jarrod Crum¹; Mark Hall¹; ¹Pacific Northwest National Laboratory

4:50 PM

The Use of Powder Injection Molding for the Fabrication of Oxygen-Sensitive Advanced Nuclear Fuels: Deana Tsang¹; Adrien Terricabras¹; Joshua White¹; ¹Los Alamos National Laboratory

5:10 PM

Additive Friction Stir Deposition of a Tantalum-Tungsten Refractory Alloy: Robert Griffiths1; Alex Wilson-Heid1; Marissa Linne1; Eleanna Garza¹; Aiden Martin¹; Arnold Wright²; ¹Lawrence Livermore National Lab; ²Bond Technologies

MECHANICS OF MATERIALS

Spatially Tailored Materials: Processing-Structure-**Properties — Additive Manufacturing Gradients**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Gianna Valentino, University of Maryland; Marie Charpagne, University of Illinois; Ian Mccue, Northwestern University, J.C. Stinville, University of Illinois Urbana-Champaign

Monday PM | March 24, 2025 351 | MGM Grand

Session Chairs: Marie Charpagne, University of Illinois; Gianna Valentino, University of Maryland

2:00 PM Invited

A Framework for the Co-Design of Composition and Process Conditions for Functionally Graded Materials via Directed-Energy Deposition: Jian Cao1; Rujing Zha1; Nhung Nguyen1; Faith Rolark1; ¹Northwestern University

2:30 PM

Composition Gradient DED Printed Materials in Complex Build Geometries: Jeffrey Riemann¹; Kenneth Vecchio²; ²University of California, San Diego

2:50 PM

Evaluation of Bimetallic Interfaces Created by Directed Energy Deposition Metal Additive Manufacturing: Michael Santangelo1; ¹University of Alabama Huntsville

3:10 PM

Improving Interfacial Performance Through Directed Energy Deposition of Additively-Graded Combustion Chambers: Madeline Selby¹; Alex Lark²; Mo-Rigen He¹; Li Ma²; Gianna Valentino³; Kevin Hemker¹; ¹Johns Hopkins University; ²Johns Hopkins University Applied Physics Laboratory; ³University of Maryland, College Park

3:30 PM Break

3:50 PM Invited

3D Analysis of "Meta Grain Boundaries" in "Meta Polycrystals" Produced by Laser Powder Bed Fusion: Samuel Taylor¹; Matteo Seita1; 1University of Cambridge

Thermal Stability and Microstructural Evolution in Compositionally Graded Refractory Alloys: Benjamin Ellyson¹; Jennie Glerum¹; Michael Juhasz¹; Raiyan Seede¹; Kaila Bertsch¹; ¹Lawrence Livermore National Laboratory

4:40 PM

Fundamental Investigation of the Interface Formation of Multi-Material Additive Manufactured 316L-CuSn10 Structures: Alasdair Bulloch1; Andy Harris2; Allin Groom2; Amanda Cruchley3; Chris Tuck1; Marco Simonelli¹; ¹University of Nottingham; ²Autodesk Research; ³The Manufacturing Technology Centre

Precipitation Behavior in a Soft Magnetic, Multi-Component Alloy Using Single Laser Tracks: Jeffrey Brookins¹; Bryan Lim¹; Chase Joslin¹; Chris Fancher¹; ¹Oak Ridge National Laboratory

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Steels in Extreme Environments — Steels Under Hydrogen Environments II / Steels Under Elevated **Temperatures**

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Hyunseok Oh, University of Wisconsin -Madison; Lawrence Cho, Colorado School of Mines; Jeongho Han, Hanyang University; Motomichi Koyama, Tohoku University; Peeyush Nandwana, Oak Ridge National Laboratory; Fnu Kasturi Narasimha Sasidhar, University of Wisconsin - Madison

Monday PM | March 24, 2025 168 | MGM Grand

Session Chairs: Motomichi Koyama, Tohoku University; Lawrence Cho, Colorado School of Mines

2:00 PM Invited

Segmentation of Microscopy Images of Lower Bainite and Tempered Martensite High Strength Steels: Jun Song¹; Xiaohan Bie¹; Manoj Arthanari¹; ¹McGill University

2:20 PM Invited

Accelerated Creep Deformation of Steels Under Hydrogen Pressure at Elevated Temperature: Du-Hyun Kim¹; Han-Jin Kim¹; Ehsan Norouzi¹; Jin-Yoo Suh¹; Seok Su Sohn²; ¹Korea Institute of Science and Technology; 2Korea University

2:40 PM Invited

Imaging the Nanoscale Hydrogen Distribution in a Creep Ruptured Austenitic Stainless Steel (347H) Using Atom Probe Tomography: Jonathan Poplawsky¹; Tanzilur Rahman²; Qing-Qiang Ren¹; Dongwon Shin¹; Yajie Zhao³; Geeta Kumari¹; Yukinori Yamamoto¹; ¹Oak Ridge National Laboratory; ²Michigan State University; ³University of Tennessee

3:00 PM

Nanoindentation Study on Hydrogen Embrittlement in Martensite Microstructure of 2.0 GPa Hot Stamping Steel: Byung-Gil Yoo1; Seong Kyung Han¹; Jewoosoo Kim¹; Tae Woo Kwon²; Jae-il Jang²; ¹Hyundai Steel; ²Hanyang University

3:20 PM

Understanding the Critical Role of Microstructure in Enhanced Resistance to H-Assisted Fatigue Crack Growth in Ausformed and Tempered Martensitic Steels: Rama Srinivas Varanasi¹; Motomichi Koyama¹; Timothee Redarce²; Kosei Kobayashi³; Hiroshi Kakinuma¹; Akinobu Shibata⁴; Hisao Matsunaga²; Eiji Akiyama¹; ¹Institute for Materials Research, Tohoku University; ²Kyushu University; ³Tohoku University; 4National Institute for Materials Science

3:40 PM Break

4:00 PM

3D Characterization and Cohesive Zone Model Analysis on Hydrogen-Related Intergranular Fracture in Martensitic Steel: Akinobu Shibata¹; Ivan Gutierrez-Urrutia¹; Akiko Nakamura¹; Taku Moronaga¹; Kazuho Okada¹; Toru Hara¹; Yazid Madi²; Jacques Besson²; ¹National Institute for Materials Science; ²MINES Paris-PSL

4:20 PM

Characterization of Precipitation-Strengthening Heat-Resistant Austenitic Stainless Steels with Minor Alloying Additions: Qing-Qiang Ren¹; Yajie Zhao¹; Rishi Pillai¹; Jonathan Poplawsky¹; Yukinori Yamamoto¹; Martin Detrois²; Paul Jablonski²; ¹Oak Ridge National Laboratory; ²National Energy Technology Laboratory

4:40 PM

Nanoscale Analysis of Hydrogen Pick Up in Fe-Based Alloys Using Cryogenic Transfer Atom Probe Tomography: Venkata Bhuvaneswari Vukkum¹; Zehao Li¹; Vaithiyalingam Shutthanandan¹; Arun Devaraj¹; ¹Pacific Northwest National Lab

5:00 PM

Implications of Additively Manufactured Microstructures for Hydrogen Embrittlement Resistance of Steels: Saket Thapliyal¹; Jiahao Cheng¹; Weicheng Zhong¹; Andrzej Nycz¹; Yukinori Yamamoto¹; ¹Oak Ridge National Laboratory

MECHANICS OF MATERIALS

Structure-Property Relationships in Molecular Crystal Deformation — Deformation Across Time and Length Scales II

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Daniel Bufford, Sandia National Laboratories; Sushmita Majumder, University of Minnesota-Twin Cities; Paul Ryan, Atomic Weapons Establishment; Judith Brown, Sandia National Laboratories; Nathan Mara, University of Minnesota; Raimundo Ho, AbbVie Inc.

Monday PM | March 24, 2025 365 | MGM Grand

Session Chairs: Sushmita Majumder, University of Minnesota-Twin Cities; Raimundo Ho, AbbVie Inc.

2:00 PM Invited

Molecular Crystals - A New Class in the Global Materials Space: Panche Naumov¹; ¹New York University Abu Dhabi

Using Terahertz Spectroscopy to Probe the Reactive Coordinates and the Mechanical Response of Crystalline Solids: Michael Ruggiero¹; ¹University of Rochester

2:50 PM Invited

The Onset of Plasticity in Molecular Crystals During Contact **Loading**: David Bahr¹; Hugh Grennan¹; Morgan Chamberlain¹; ¹Purdue University

3:20 PM Break

3:35 PM Invited

Organic Molecular Crystals as Explosive Simulants in Polymer Composites: Alexandra Burch¹; John Yeager²; ¹Los Alamos National Laboratory; ²University of Dayton Research Institute

4:05 PM

The Ultimate Strength of Plastic Bonded Explosives Under Uniaxial Stress Compression at Strain-Rates Beyond 1000 /s: Bryan Zuanetti¹; Cindy Bolme¹; Claudine Armenta¹; Erik Vettergren¹; Kyle Ramos¹; ¹Los Alamos National Laboratory

4:25 PM

In-situ Mechanical Characterization of Molecular Crystal Materials: Daniel Bufford¹; Danielle Hartstein¹; Adam Pimentel¹; Dustin Ellis¹; ¹Sandia National Laboratories

4:45 PM Invited

Mechanical Response of Single Crystal Acetaminophen Over an Extended Strain Rate: Kyle Ramos1; Cindy Bolme1; John Lazarz2; Bryan Zuanetti¹; Milovan Zecevic¹; Tom Pilvelait³; Marc Cawkwell¹; ¹Los Alamos National Laboratory; ²U.S. Department of Energy, National Nuclear Security Administration; ³Brown University

MECHANICS OF MATERIALS

Structure and Dynamics of Metallic Glasses — **Processing and Manufacturing**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Sebastian Kube, University of Wisconsin - Madison; Katharine Flores, Washington University in St. Louis; Daniel Sopu, Erich Schmid Institute; Yonghao Sun, The Chinese Academy of Sciences; A. Lindsay Greer, University of Cambridge; Peter Derlet, Paul Scherrer Institut

Monday PM | March 24, 2025 367 | MGM Grand

Session Chair: Katharine Flores, Washington University in St. Louis

2:00 PM

Understanding How Rejuvenation and Residual Stress Engineering Affect the Mechanical Properties of Metallic Glasses: Daniel Sopu¹; Florian Spieckermann²; Xudong Yuan³; Christoph Gammer¹; Juergen Eckert1; ¹Erich Schmid Institute; ²Montan University Leoben; ³Chinese Academy of Sciences

2:20 PM

Fictive Temperature-Based Annealing Effects on the Deformation Behavior of Metallic Glasses with Different Initial Structure: Myeongjun Lee1; Geun Hee Yoo1; Wook Ha Ryu1; Eun Soo Park1; ¹Seoul National University

2:40 PM

Atomistic Insights into the Formation and Properties of CuZr Metallic Glass Nanoparticles: Xuezhen Ren¹; Suyue Yuan¹; Emily Gurniak¹; Paulo Branicio¹; ¹University of Southern California

Fractal Evolution of Metallic Glass Structure Under High Pressure: Qiaoshi Zeng1; 1Hpstar

3:20 PM Break

3:40 PM

Bulk Metallic Glass Powders Production via Ultrasonic Atomization for 3D Printing: Parthiban Ramasamy1; Haoyang Liu1; Eray Yuce1; Zhishuai Jin²; Devinder Singh¹; Jürgen Eckert²; ¹Erich Schmid Institute of Materials Science; ²Montanuniversitat Leoben

4:00 PM

Semi-Analytical and Experimental Heat Input Study of Additively Manufactured Zr-Based Bulk Metallic Glass: Sepide Hadibeik Neishaboori¹; Emanuel Gingl¹; Lukas Schretter²; Benedikt Bochtler³; Jiehua Li¹; Christoph Gammer²; Anton Hohenwarter²; Florian Spieckermann¹; Jürgen Eckert¹; ¹Montanuniversität Leoben; ²Erich Schmid Institute of Materials Science (ESI); 3Amorphous Metal Solutions GmbH

4:20 PM

Assessing Printability of Bulk Glass-Forming Alloys and Composites Using Single and Multi-Track Laser Experiments: Soumva Mohan¹: Harrison Holberton²; Aaron Stebner¹; Douglas Hofmann³; ¹Georgia Institute of Technology; ²Applied Technical Services; ³NASA Jet Propulsion Laboratory/ California Institute of Technology

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Thermodynamics and Kinetics of Alloys III — Alloy **Design and Thermodynamic Modeling**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Chuan Zhang, CompuTherm LLC; Dilpuneet Aidhy, Clemson University; Bin Ouyang, Florida State University; Jicheng Zhao, University of Maryland

Monday PM | March 24, 2025 352 | MGM Grand

Session Chairs: Yijia Gu, Missouri University of Science and Technology; Theresa Davey, Bangor University

2:00 PM Invited

Alloy Design for Cr-Alloy Coated Zr-Alloy Cladding of Nuclear Fuel: Ying Chen1; Theresa Davey2; Bo Li3; Hiroaki Abe3; 1Tohoku University; ²Bangor University; ³The University of Tokyo

2:30 PM Invited

Uncertainty-Guided Determination of a Thermodynamic Database for Compositionally Complex UHTC Transition Metal Carbides: Theresa Davey¹; William Rosenberg²; Ying Chen³; Scott McCormack²; ¹Bangor University; ²University of California, Davis; ³Tohoku University

A Third Generation CALPHAD Description of Pure Nb: Felicia Larsson¹; Lorenzo Fenocchio²; Qing Chen¹; Gabriele Cacciamani²; Malin Selleby¹; ¹KTH Royal Institute of Technology; ²Università di Genova

3:20 PM

Thermodynamic Assessment of the fcc/hcp Transformation in Fe-Mn Alloys: Julian Rackwitz1; Gregory Olson1; 1Massachusetts Institute of Technology

3:40 PM Break

4:00 PM Invited

A Phase-Field Model of Stoichiometric Compound in Solidification: Yijia Gu¹; ¹Missouri University of Science and Technology

4:30 PM Invited

A Software Platform Integrating Microstructure Modeling with Finite Element Method: Weisheng Cao1; Fan Zhang1; Kamalnath Kadirvel¹; Eric Payton²; Matthew Krug³; ¹CompuTherm LLC; ²University of Cincinnati; ³Air Force Research Laboratory

5:00 PM

Prediction of the Composition for the Al-Co-Cr-Fe-Ni High-Entropy Alloys by the CALPHAD Method and Study on Microstructure and Mechanical Properties: Ssu-Chi Huang¹; Yung-Chin Lin¹; Yee-Wen Yen¹; ¹National Taiwan University of Science and Technology

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Thermodynamics and Phase Diagrams Applied to Materials Design and Processing: An FMD/SMD Symposium Honoring Rainer Schmid-Fetzer — Progress of Thermodynamic Modeling Including Ab-**Initio Methods**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shuanglin Chen, CompuTherm LLC; Ji-Cheng Zhao, University of Connecticut; Ursula Kattner, National Institute of Standards and Technology; Greta Lindwall, KTH Royal Institute of Technology; Alan Luo, Ohio State University; Arthur Pelton, Ecole Polytechnique; John Agren, Royal Institute of Technology; Sinn-wen Chen, National Tsing Hua University

Monday PM | March 24, 2025 350 | MGM Grand

Session Chairs: Patrice Chartrand, Ecole Polytechnique; Jörg Neugebauer, Max-Planck-Institut für Eisenforschung GmbH

2:00 PM Invited

Thermodynamic Models from Ab Initio Insights: Joerg Neugebauer¹; Jing Yang¹; Lifang Zhu¹; Mira Todorova¹; Tilmann Hickel¹; ¹MPI for Sustainable Materials

2:25 PM Invited

CALPHAD Modeling of Electrons and Holes in Compound Semiconductors: Qing Chen1; 1Thermo-Calc Software AB

2:50 PM Invited

On the Development of the Next Generation of Thermodynamic Models of Metallic Solid Solutions: Jean-Philippe Harvey¹; ¹Polytechnique Montréal

3:15 PM Invited

On Gibbs Equilibrium and Hillert Nonequilibrium Thermodynamics and CALPHAD Modeling: Zi-Kui Liu¹; ¹Pennsylvania State University

3:40 PM Break

4:00 PM Invited

Thermodynamic Modeling of Hydrogen in the LiF-BeF2-BeO System for MSR Applications: Patrice Chartrand¹; ¹Polytechnique Montréal

4:25 PM Invited

A Generalized Approach for Rapid Entropy Calculation of Liquids and Solids: Qijun Hong1; 1Arizona State University

4:50 PM Invited

Predicting Electrical Resistivity and Thermal Conductivity of Multicomponent Multiphase Alloys: Hai-Lin Chen¹; Qing Chen¹; ¹Thermo-Calc Software AB

5:15 PM Invited

Thermodynamic Modeling: Extreme Challenges, Emerging Opportunities: Wei Xiong1; 1University of Pittsburgh

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Validation of Computational Tools - Industrial Perspectives — Validation of Computational Tools II

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Qiaofu Zhang, University of Alabama; Michael Titus, Purdue University; Stephane Forsik, Carpenter Technology Corporation: Govindarajan Muralidharan, Oak Ridge National Laboratory; Jonathan Priedeman, GE Aerospace

Monday PM | March 24, 2025 311 | MGM Grand

Session Chairs: Jonathan Priedeman, GE Aerospace; Stephane Forsik, Carpenter Technology Corporation; Qiaofu Zhang, University of Alabama

2:00 PM Invited

Validation of Electro-Slag Remelting Process Simulations for the Production of Commercial HAYNES® 282® Alloy Ingots: Ram Krishnamurthy¹; Michael Fahrmann¹; ¹Haynes International

Finite Element Simulation of Edge and Crack Evolution in Thin Slab Rolling Process: Jiazheng Zhang¹; JiongMing Zhang¹; ¹University of Science and Technoloy Beijing

Modeling of Microstructure Evolution during Multi-Pass Hot-Rolling of 316L Stainless Steel: Goran Kugler¹; David Bombač¹; Milan Tercelj¹; Tomaž Šuštar²; Primož Šuštarič²; Noel Gregori³; Jan Foder³; Boštjan Bradaškja³; Boštjan Pirnar³; Robert Robič³; Mojca Loncnar³; ¹University of Ljubljana; ²C3M; ³SIJ Acroni d.o.o.

Multiphase Flow, Particle Transport and Capture During a Ladle Exchange in Steel Continuous Casting: Vipul Gupta1; Brian Thomas1; ¹Colorado School of Mines

3:35 PM Break

3:55 PM Invited

The Role of Process Variability within ICME Tool Development for Aerospace Turbine Applications: Nicholas Krutz¹; Chen Shen¹; ¹GE Aerospace

4:30 PM

Development and Validation of Optimization Tool for Continuous Caster Operations Based on CFD Simulations: Sai Bhuvanesh Nandipati¹; Kyle Toth¹; Armin Silaen¹; Yufeng Wang²; Sunday Abraham²; Dallas Brown²; Chenn Zhou¹; ¹Purdue University Northwest; 2SSAB Americas

Fluidodynamic Analysis in the Continuous Casting Mold for Conventional Slab and Inside the Submerged Entry Nozzle (Sen) Using Mathematical Simulation: Cesar Ayala Calderon¹; ¹Instituto Tecnologico de Morelia

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Verification, Calibration, and Validation Approaches in Modeling the Mechanical Performance of Metallic Materials — Advanced Experimental Validation

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: George Weber, NASA Langley Research Center; Joshua Pribe, Analytical Mechanics Associates; Saikumar Reddy Yeratapally, Science and Technology Corporation; Kirubel Teferra, Naval Research Laboratory; Diwakar Naragani, Cornell University

Monday PM | March 24, 2025 354 | MGM Grand

Session Chairs: Diwakar Naragani, Cornell University; Saikumar Reddy Yeratapally, Science and Technology Corporation

2:00 PM Invited

Experiments and Methods to Calibrate and Validate Defect-Sensitive Fatigue Models: Orion Kafka1; Jake Benzing1; Newell Moser¹; Nicholas Derimow¹; Nik Hrabe¹; ¹National Institute of Standards and Technology

2:20 PM Invited

Digital Twins to Accelerate AM Qualification: Defining Challenge Problems to Validate Model Performance: Brendan Croom¹; David Furrer²; Michael Presley¹; Morgan Trexler¹; Somnath Ghosh³; Anthony Rollett⁴; ¹JHU Applied Physics Laboratory; ²Pratt & Whitney; ³Johns Hopkins University; 4Carnegie Mellon University

2:40 PM Invited

Micromechanical Model Verification of Additively Manufactured Inconel 625 Informed by In Situ High-Energy X-Ray Diffraction: Reilly Knox¹; Robert Carson²; Matthew Rolchigo³; Katherine Shanks⁴; Jim Belak²; Darren Pagan¹; ¹Pennsylvania State University; ²Lawrence Livermore National Laboratory; ³Oak Ridge National Laboratory; 4Cornell High Energy Synchroton Source

3:00 PM Invited

Synchrotron-Based Experiments and Microstructure-Sensitive Modeling: William Musinski¹; ¹University of Wisconsin-Milwaukee

3:20 PM Break

3:40 PM Invited

Microstructure Dependence of Spall Failure in Mg-Al Alloys at Extreme Strain Rates: Debjoy Mallick¹; ¹Devcom Us Army Research Laboratory

4:00 PM

Establishing Temperature-Based Relationships for Mechanical Properties and Crystal Plasticity Parameters of Additively Manufactured Haynes-214 Alloy: Mohammad M Keleshteri¹; Mehrdad Pourjam¹; Subhadip Sahoo¹; Jason Mayeur²; Kavan Hazeli¹; ¹University of Arizona; ²Oak Ridge National Laboratory

Advanced Calibration of the GTN Damage Model for Aluminum Alloy AA6111 via Bayesian Inference and Digital Image Correlation Techniques: Seyed Mohammad Ali Seyed Mahmoud¹; Dominic Renner¹; Raj Mahat¹; Ali Khosravani²; Surya Kalidindi¹; ¹Georgia Institute of Technology; ²Multiscale Technologies

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

2D Materials - Preparation, Properties, Modeling & Applications — Processing, Characterization, **Modeling & Applications I**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Hesam Askari, University of Rochester; Ritesh Sachan, Oklahoma State University; Joshua Young, New Jersey Institute of Technology; Sufian Abedrabbo, Khalifa University, Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Chintalapalle V Ramana, University of Texas

Tuesday AM | March 25, 2025 362 | MGM Grand

Session Chairs: Ritesh Sachan, Oklahoma State University; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory -CNRS

8:00 AM Introductory Comments

8:10 AM Invited

ICME in Chemical Vapor Deposition Synthesis and Characterization of 2D Refractory Metal Carbides: Eric Payton¹; Sajjad Hasan¹; Nishat Sultana¹; ¹University of Cincinnati

8:30 AM Invited

Exploring Radiation Tolerance of MoS2: Assel Aitkaliyeva1; Aaron Rabin¹; Zhihan Hu²; Preston Valiant¹; Kai Nordlund³; Lin Shao²; Richard Hennig¹; ¹University of Florida; ²Texas A&M University; ³University of Helsinki

8:50 AM Keynote

Heteroegenous Integration of 2D/3D Heterostructures: Nicholas Glavin¹; Michael Altvater¹; ¹Air Force Research Laboratory

Evaluating the Diffusion Coefficient of TiSe for High-Performance Battery Applications: Prince Sharma¹; Gen Hasegawa¹; Santosh Chhetri²; Jin Hu²; Naoaki Kuwata¹; ¹National Institute for Materials Science Japan; ²University of Arkansas

9:35 AM Break

9:45 AM Invited

Enhancing Flexible Device Applications With 2D Materials: Harish Subbaraman¹; ¹Oregon State University

10:05 AM Keynote

Recent Advancements in Computational Modeling Accelerating 2D Material Design and Applications: Mohsen Asle Zaeem1: 1Colorado School of Mines

10:30 AM Invited

Data-Driven Discovery of 2D Materials' Systems for Solar Energy Conversion: Arunima Singh1; 1Arizona State University

11:10 AM

Sensing and Removal of PFAS by Titanium Carbide MXene: Impact of the MXene Surface Properties on PFAS Removal: Milad Esfahani¹; ¹University of Alabama

10:50 AM

Influence of Graphene and Mos2 Buffer Layer Thickness on Performance of Copper Zin Tin Sulfide Solar Cells: Matias De Almeida¹; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

ADDITIVE MANUFACTURING

A Career in Powder Processing and Additive Manufacturing: A MPMD Symposium Honoring David Bourell — Laser-Based Processing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Powder Materials Committee

Program Organizers: Paul Prichard, Oak Ridge National Laboratory; Allison Beese, Pennsylvania State University; Iver Anderson, Iowa State University Ames Laboratory

Tuesday AM | March 25, 2025 309 | MGM Grand

Session Chair: Allison Beese, Pennsylvania State University

8:00 AM Introductory Comments

Limits of Dispersoid Size and Number Density in ODS Alloys Fabricated with Laser Powder Bed Fusion: Nathan Wassermann¹; Alan McGaughey¹; Sneha Narra¹; ¹Carnegie Mellon University

Comparison of Mechanical Properties Between Laser Powder Bed Fusion and Wrought 17-4 PH: Ola Harrysson1; Harvey West1; Christopher Rock¹; Satya Konala¹; Erik O'Luanaigh¹; ¹North Carolina State University

8:50 AM

Liquid-Induced Healing of Cracks in Nickel-Based Superalloy Fabricated by Laser Powder Bed Fusion: Xiaogang Hu¹; Qiang Zhu¹; ¹Southern University of Science and Technology

The Evolution of Additive Manufacturing: Khershed Cooper¹; Paul ¹National Science Foundation; ²Oak Ridge National Prichard²: Laboratory

9:40 AM Break

10:00 AM Invited

Moving Metal AM into Mainstream Manufacturing: lan Gibson¹; ¹University Tech Twente

ADDITIVE MANUFACTURING

Additive Manufacturing and Alloy Design: Bridging Fundamental Physical Metallurgy, Advanced Characterization Techniques, and Integrated Computational Materials Engineering for Advanced Materials — Alloy Design Principles and Multiscale Microscopy

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Amir Farkoosh, Northwestern University; David Seidman, Northwestern University; Enrique Lavernia, Texas A&M University; Noam Eliaz, Tel-Aviv University; Lee Semiatin, MRL Materials Resources LLC

Tuesday AM | March 25, 2025 311 | MGM Grand

Session Chairs: Charles-Andre Gandin, Mines Paris | PSL University; Marie Charpagne, University of Illinois

8:00 AM Keynote

Navigating Additive Manufacturing Processing Space via Multi-Scale Microscopy: Simon Ringer¹; ¹University of Sydney

8:40 AM Invited

Visualization of Solidification Under Additive Manufacturing Conditions: Amy Clarke¹; ¹Los Alamos National Laboratory

9:10 AM Invited

Designing Printable Alloys by Leveraging In-Situ Reactions in the Liquid State: Marie Charpagne¹; ¹University of Illinois

9:40 AM Break

9:55 AM Invited

A Bayesian Approach to the Discovery and Optimization of Printable Refractory Alloys: Raymundo Arroyave¹, ¹Texas A&M University

Precipitation Reactions in Supersaturated Nickel-Based Superalloys: A Multi-Length-Scale Study: Yuanbo Tang¹; ¹University of Birmingham

10:40 AM Invited

Using ICME to Design a Novel High Strength, Printable, and Burn Resistant Nickel-Based Superalloy for Re-Usable Rocket Engines: Gary Whelan¹; Kerem Taskin¹; ¹Questek Innovations Llc

11:05 AM Invited

Towards Autonomy in the Additive Manufacturing of Refractory High Entropy Alloys: Dan Thoma¹; ¹University of Wisconsin-Madison

ADDITIVE MANUFACTURING

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials — **Magnetic and Shape Memory Materials**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Magnetic Materials Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Henry Colorado, Universidad de Antioquia; Riccardo Casati, Politecnico Di Milano

Tuesday AM | March 25, 2025 315 | MGM Grand

Session Chair: Markus Chmielus, University of Pittsburgh

8:00 AM Invited

Impact of Magnetic, Atomic and Microstructural Ordering on the Magnetocaloric Performance of Powdered NiCoMnSn Metamagnetic Shape Memory Ribbons: Jose Maria Porro¹, Bosco Rodriguez-Crespo²; Natalia Rio-Lopez²; Patricia Lazpita³; Santiago Ceballos²; Mariana Rios²; Daniel Domenech²; Jose Alberto Rodriguez-Velamazan⁴; Javier Lopez-Garcia⁵; Volodymyr Chernenko³; Daniel Salazar²; ¹BCMaterials & Ikerbasque; ²BCMaterials; ³University of the Basque Country; 4Institute Laue-Langevin; 5University of Oviedo

8:25 AM Invited

Isothermal Oxidation of Ni-Mn-Ga Magnetic Shape Memory Alloys and Its Application to Sintering Atmosphere: Pierangeli Rodriguez De Vecchis¹; Rafael Rodriguez De Vecchis¹; Brian Gleeson¹; Markus Chmielus¹; ¹University of Pittsburgh

Binder Jet Printing and Sintering of Ni-Mn-Ga Magnetic Shape Memory Alloy Foams with Increased Porosity Through Powder **Space-Holders**: Pierangeli Rodriguez de Vecchis¹; *Markus Chmielus*¹; ¹University of Pittsburgh

9:10 AM

Microstructure and Properties of Functional Materials Obtained by Selective Laser Melting: Marcin Karpinski¹; Aleksandra Kolano-Burian²; Przemyslaw Zackiewicz²; Adrian Radon²; Bartosz Jozwik²; ¹Lukasiewicz Research Network Imn; ²Lukasiewicz Research Network Imn

9:30 AM Break

9:40 AM Invited

On the Relevance of Nanoparticle Design for the Additive Manufacturing of Magnetoactive (Multi)Functional Materials: Ander García Díez¹; Josu Fernández Maestu¹; Carmen Rial Tubio¹; N Fernández²; Pedro Martins³; Senentxu Lanceros-Mendez⁴; ¹BCMaterials, Basque Center for Materials, Applications and Nanostructures; ²Physics Centre of Minho and Porto Universities; ³Physics Centre of Minho and Porto Universities; ⁴BCMaterials, Basque Center for Materials, Applications and Nanostructures; Physics Centre of Minho and Porto Universities; IKERBASQUE, Basque Foundation for Science

10:10 AM

Influence of Annealing on Enhancing Soft Magnetic Properties in Laser Powder Bed Fusion Processed Hiperco (Fe-49Co-2V): SaiSree Varahabhatla¹; ¹University of North Texas

Additive Manufacturing of Equiatomic Fe-Co Alloy Using Wire and Arc Based Directed Energy Process: Soumyajit Koley1; Supriyo Ganguly²; ¹Tata Steel; ²Cranfield University

10:50 AM

Mechanical and Magnetostrictive Properties of Additively Manufactured Fe₈₁Al₁₉ Rods: Nicholas Jones¹; Jin-Hyeong Yoo¹; Bryan Kessel¹; Thomas Mion²; Emily Holcombe¹; Paul Lambert³; ¹Naval Surface Warfare Center, Carderock Division; ²Naval Research Laboratory; ³John Hopkins Applied Physics Laboratory

Cracking of Fe-xSi Alloys During Selective Laser Melting: Jiwoo Park1; Cheol Kang2; Hyung Giun Kim2; Gun-Hee Kim2; Joonho Lee1; ¹Korea University; ²Korea Institute of Industrial Technology

ADDITIVE MANUFACTURING

Additive Manufacturing Fatigue and Fracture: **Towards Accurate Prediction — Process-Structure-Properties Relationships II**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; Nima Shamsaei, Auburn University; John Lewandowski, Case Western Reserve University; Mohsen Seifi, ASTM International/Case Western Reserve University

Tuesday AM | March 25, 2025 317 | MGM Grand

Session Chair: Mohsen Seifi, ASTM International/Case Western Reserve University

8:00 AM Invited

Ductile Fracture Model for Additively Manufactured Metal Alloys: Allison Beese1; 1Pennsylvania State University

8:20 AM

Influence of Pore Defects on Fatigue Crack Growth Behavior of Additively Manufactured Ti-6Al-4V: Luca Loiodice1; Krzysztof Stopka¹; Michael Sangid¹; ¹Purdue University

8:40 AM

Assessing Part-to-Coupon Porosity Equivalence for Fatigue of Powder Bed Fusion - Laser Beam Manufactured Ti-6Al-4V: Justin Miner¹; Sneha Prabha Narra¹; ¹Carnegie Mellon University

9:00 AM

High-Cycle and Very-High-Cycle Fatigue Behavior of Additively Manufactured Ti-6Al-4V Alloys and Methods for Future Rapid Qualification: Jake Scarponi¹; Anthony Spangenberger¹; Cory Cunningham²; Conner Cleek³; Diana Lados¹; ¹Worcester Polytechnic Institute; ²Boeing Additive Manufacturing; ³Boeing Research & Development

9:20 AM

Role of Volumetric Defect and Microstructure on the Fatigue Behavior of Additively Manufactured Inconel 718: An Experimental **Study**: *Indrajit Nandi*¹; Nima Shamsaei¹; Shuai Shao¹; ¹Auburn University

9:40 AM Break

10:00 AM Invited

Effects of Processed Microstructure with Defects on Fatigue Strength and Damage Tolerance of Additively Manufactured Metals: Sebastian Stammkötter¹; Mirko Teschke¹; Alexander Koch¹; Frank Walther¹; ¹TU Dortmund University

10:20 AM

Post-Processing Strategies to Improve Fatigue and Fracture Properties of Net-Shape Titanium Parts: Jake Benzing¹; Orion Kafka¹; Cassidy Allen¹; Alec Saville¹; Nik Hrabe¹; Sara Randall²; Julius Bonini²; Edwin Glaubitz³; Nicholas Derimow¹; Chad Beamer⁴; Ryan Fishel⁵; ¹National Institute of Standards and Technology; ²Lucideon; ³Colorado School of Mines; ⁴Quintus Technologies; ⁵3D Systems

10:40 AM

Tailoring the Microstructure to Improve the Fatigue Performance of Ti-6Al-4V Manufactured with Laser Powder Bed Fusion: Mo-Rigen He¹; Anchen Tong¹; Laura Dial²; Marissa Brennan²; Victor Ostroverkhov²; Christopher Immer²; Kevin Hemker¹; ¹Johns Hopkins University; 2GE Aerospace Research

11:00 AM

Optimizing Process-Structure-Performance Relationships in Inconel 718 Deposits Produced by Wire-Arc Additive Manufacturing: Ahmad Nourian¹; Jon Gager¹; Sinan Muftu¹; ¹Northeastern University

Competition Between Defects and Microstructure on Fatigue Crack Formation and Life in L-PBF IN718: Alexander Caputo1; Richard Neu¹; ¹Georgia Institute of Technology

ADDITIVE MANUFACTURING

Additive Manufacturing Materials in Energy Environments II — Additive Manufacturing in Energy: An Industry Perspective Panel

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Nuclear Materials Committee

Program Organizers: Isabella Van Rooyen, Pacific Northwest National Laboratory; Subhashish Meher, Pacific Northwest National Laboratory; Kumar Sridharan, University of Wisconsin-Madison; Xiaoyuan Lou, Purdue University; Yi Xie, Peking University; Michael Kirka, Oak Ridge National Laboratory; Mohan Sai Kiran Nartu, Pacific Northwest National Laboratory

Tuesday AM | March 25, 2025 301 | MGM Grand

Session Chairs: Isabella Van Rooyen, Pacific Northwest National Laboratory; Subhashish Meher, Pacific Northwest National Laboratory

8:00 AM Introductory Comments

An Industry Perspective: Current Innovation and Opportunities for Additive Manufacturing for Energy Systems Panel Discussion: Moderators: Isabella van Rooyen and Subhashish Meher (Pacific Northwest National Laboratory)

This panel will stimulate mutual responsiveness between industries, stakeholders, academia, and national laboratories about the current needs and future impacts of additive manufacturing innovations on energy applications. This panel discussion will create a dialogue with the potential to integrate differing values and understandings for technological advances through the full product/system's lifecycle, specifically in the following areas: process modeling and control; materials, processes, and machines; qualification and testing; and energy and sustainability. Challenges in supply chain and logistics are also discussed to identify possible similarity in needs between different energy applications.

10:05 AM Break

10:15 AM

Composite Material Development by Using Additive Manufacturing Technology to Improve the Performance of Nuclear Materials: Hyun-Gil Kim1; Jongdae Hong1; Hongryoul Oh1; 1Kaeri

10:35 AM

New Additive Manufacturing Route for Thermoelectric Materials Shaping and the Impact of the Geometry on the Conversion Energy: The Case of Silicides Compounds: Yohann Thimont¹; Alexia Mortagne Coderch¹; Geoffroy Chevalier²; Benjamin Duployer¹; Amélie Galodé³; David Berthebaud⁴; Franck Gascoin⁵; Lionel Presmanes¹; ¹CIRIMAT: ²CIRIMAT: ³CNRS Normandie Université: ⁴CNRS - Nantes Université; 5CRISMAT

10:55 AM Invited

A Convergent Approach to Fabricating 316L Stainless Steel (SS316L) Component for Nuclear Applications Using Additive Manufacturing (AM) and Hot Isostatic Pressing (HIP): Pavan Ajjarapu¹; Matthew deJong²; Fred List III¹; Jason Mayeur¹; Peeyush Nandwana¹; Soumya Nag¹; Thomas Feldhausen¹; Andrzej Nycz¹; Mithulan Paramanathan¹; David Collins¹; Kevin Hanson¹; Ryan Dehoff¹; ¹Oak Ridge National Laboratory; ²North Carolina State University

Additive Manufacturing of Oxide Dispersion Strengthened Steel: Austin Whitt¹; Christopher Kantzos¹; Aaron Thompson¹; Timothy Smith1; 1NASA GRC

ADDITIVE MANUFACTURING

Additive Manufacturing of Refractory Metallic Materials — Additive Manufacturing of Ta- and Mo-**Based Alloys**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Refractory Metals & Materials Committee

Program Organizers: Fernando Reyes Tirado, Nasa Marshall Space Flight Center; Omar Mireles, Los Alamos National Laboratory; Faramarz Zarandi, RTX Corporation; Jeffrey Sowards, NASA Marshall Space Flight Center; Antonio Ramirez, Ohio State University; Eric Brizes, NASA Glenn Research Center; Eric Lass, University of Tennessee-Knoxville; Matthew Osborne, Global Advanced Metals; Joao Oliveira, Faculdade Ciencias Tecnologias; Ian Mccue, Northwestern University; Zachary Sims, Small Business **Consulting Corporation**

Tuesday AM | March 25, 2025 316 | MGM Grand

Session Chairs: Faramarz Zarandi, RTX Corporation; Matthew Osborne, Global Advanced Metals

8:00 AM Invited

High-Throughput Refractory Alloy Design for Additive Manufacturing: Kaitlyn Mullin¹; Ella Allgor¹; Collin Holgate¹; Gareth Seward¹; Noah Philips²; Matthew Begley¹; Tresa Pollock¹; ¹University of California Santa Barbara; ²ATI Specialty Alloys and Components

8:30 AM

Process-Structure-Property Relationships Additively of Manufactured Refractory Metals: Andrew Kustas1; Erin Barrick1; Jonathan Pegues²; Hannah Sims¹; Mary Louise Gucik¹; Michael Melia¹; Frank DelRio¹; Tyler LeBrun¹; ¹Sandia National Laboratories; ²Castheon, Inc.

8:50 AM

Additive Manufacturing and High-Temperature Mechanical Behavior of High-Performance Refractory Alloys: Gianna Valentino¹; Eliott Wallace¹; Alex Lark²; Robert Mueller²; ¹University of Maryland; ²Johns Hopkins Applied Physics Laboratory

9:10 AM

Additive Manufacturing Informed Tantalum Alloy Development: Colleen Hilla¹; Guru Dinda¹; Tatiana Ayers¹; ¹Savannah River National Laboratory

9:30 AM Break

Solid State Additive Manufacturing of Refractory Alloys Using Cold Spray Technology: Christopher Roper¹; Michael Kracum¹; ¹Sandia National Laboratories

Microstructural Evolution and Mechanical Properties of Additively Manufactured W-Ta Alloys: Guru Dinda¹; Raden Gustinvil¹; ¹Savannah River National Laboratory

10:30 AM

A New Angle to View the Battle with Oxygen in Molybdenum (Mo) Laser Powder Bed Fusion (LPBF): Shiqi Ma¹; Shuaihang Pan²; Xuehui Shen¹; Bo Zhao²; ¹Shandong Jianzhu University; ²University of Utah

10:50 AM

Reactive Synthesis in Additive Manufacturing of an Ultrahigh-Temperature Mo-Si-B-Ti Alloy: Nafisul Haque¹; Behzad Rankouhi¹; Phalgun Nelaturu¹; Longfei Liu¹; Fan Zhang²; John Perepezko¹; Dan Thoma1; 1University of Wisconsin Madison; 2CompuTherm

ADDITIVE MANUFACTURING

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response — Complex and Novel **Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sezer Ozerinc, University of Illinois at Urbana-Champaign; Yu Zou, University of Toronto; Tianyi Chen, Oregon State University; Wendy Gu, Stanford University; Eda Aydogan, Pacific Northwest National Laboratory; Keivan Davami, University of Alabama

Tuesday AM | March 25, 2025 310 | MGM Grand

Session Chairs: Tianyi Chen, Oregon State University; Eda Aydogan, Pacific Northwest National Laboratory

8:00 AM Invited

Additive Manufacturing of Heterogeneous Materials with High Strength and Ductility: Wen Chen1; 1University of Massachusetts-**Amherst**

8:40 AM

Mapping Nanoscale Origin of Superior Mechanical Performance of a W-Rich Alloy Processed by Laser Powder Bed Additive Manufacturing: Abhijeet Dhal1; Eric Kusterer1; Amit Singh1; Amit Arora¹; Prithvi Awasthi¹; Fredrick N. Michael²; Rajiv Mishra¹; ¹University of North Texas; ²National Aeronautics and Space Administration

9:00 AM

Micromechanical Behavior of Additively Manufactured Multi-Layered Medium-Entropy Alloy: Zhe Gao1; Dong-Hyun Lee2; Yakai Zhao³; Pei Wang³; Hyoung Seop Kim⁴; Upadrasta Ramamurty⁵; Jae-il Jang¹; ¹Hanyang University; ²Chungnam National University; ³Institute of Materials Research Engineering; ⁴Pohang University of Science and Technology; 5Nanyang Technological University

9:20 AM

Cryogenic Tensile Behavior of Carbon-Doped CoCrFeMnNi High-Entropy Alloys Additively Manufactured by Laser Powder Bed Fusion: Haeum Park¹; Hyeonseok Kwon²; Kyung Tae Kim¹; Ji-Hun Yu¹; Jungho Choe¹; Hyokyung Sung³; Hyoung Seop Kim²; Seok Su Sohn⁴; Jung Gi Kim⁵; Jeong Min Park¹; ¹Korea Institute of Materials Science (KIMS); ²Pohang University of Science and Technology; ³Kookmin University; 4Korea University; 5Gyeongsang National University

9:40 AM Break

10:00 AM Invited

Mechanical Properties and Microstructure Evolution of a Nanoparticle Reinforced Medium Entropy CoCrFeNi Alloy Produced by LPBF: Gerhard Dehm¹; Vivek Devulapalli¹; Schulz Fiona²; Erika Soares Barreto³; Nils Ellendt³; Eric Jägle²; ¹MPI for Sustainable Materials; ²Universität der Bundeswehr München; ³Leibniz-Institute for Materials Engineering - IWT

10:40 AM

Tailoring Grain Boundaries and Precipitates in the Refractory Compositionally Complex Alloy NbMoCrTiAl Via Selective Laser Melting: Jin Wang¹; Nicolas Peter¹; Liuliu Han²; Alisson Kwiatkowski da Silva²; Fiona Schutz³; Eric Jägle³; Ruth Schwaiger¹; ¹Forschungszentrum Juelich Gmbh; ²Max Planck Institute for Sustainable Materials; ³Universität der Bundeswehr München

In-Situ Measurements and Modelling of Thermal Stress Evolution in Additively Manufactured Bulk Metallic Glasses: Samuel Gibbon¹; Marco Simonelli¹; Simon Sankare²; Adam Clare¹; Alper Evirgen²; James Rouse¹; Christopher Tuck¹; ¹University of Nottingham; ²Oerlikon

ADVANCED CHARACTERIZATION METHODS

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Synchrotron Techniques

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Wolfgang Pantleon, Technical University of Denmark; Irene Beyerlein, University of California, Santa Barbara; C. Tasan, Massachusetts Institute of Technology; M. Arul Kumar, Indian Institute of Technology Kanpur

Tuesday AM | March 25, 2025 122 | MGM Grand

Session Chairs: Grethe Winther, Technical University of Denmark; Klaus-Dieter Liss, University of Tennessee, Knoxville

8:00 AM

A Polycrystalline X-Ray Virtual Diffractometer for Direct Comparisons to Experimental Data: Sven Gustafson¹; Paul Dawson²; Matthew Miller²; Kelly Nygren¹; ¹Cornell High Energy Synchrotron Source; ²Cornell University

8:20 AM

On-Site Characterization of Single-Crystal Elastic Moduli Via High Energy X-Ray Diffraction Microscopy and Synthetic Polycrystalline Modeling: Wiley Kirks¹; Paul Dawson¹; Matthew Miller¹; Kelly Nygren¹; ¹Cornell University

8:40 AM

Texture-Dependent Hierarchical Strain Localization in Nickel-Based Alloy and Its Effect on Deformation Behaviors: Yixuan Chen¹; Weihao Wang¹; Yao Ou¹; Hai Chang¹; Zirong Zhai¹; ¹Shanghaitech University

9:00 AM

Recrystallization of Nano-Crystalline Material Enhancing Lattice Kinetics with Potential for Enhanced Plastic Deformation: Klaus-Dieter Liss¹; Megumi Kawasaki²; ¹University of Tennessee, Knoxville; ²Oregon State University

9:20 AM Break

9:40 AM

Characterization of the Impact of Hydrogen Concentration on the Plastic Behavior of Pure Nickel Using In-Situ X-Ray Diffraction Microscopy: Marco Zambolin¹; Leonidas Zisis¹; Sven Gustafson²; Amlan Das²; Zachary Harris³; Michael Sangid¹; ¹Purdue University; ²Cornell High Energy Synchrotron Source; ³University of Pittsburgh

Formation and Evolution of Dislocation Cells During Plastic Deformation: Adam Cretton1; Albert Zelenika1; Felix Frankus1; Sina Borgi¹; Can Yıldırım²; Carsten Detlefs²; Flemming Grumsen¹; Grethe Winther¹; Henning Friis Poulsen¹; ¹Technical University of Denmark; ²European Synchrotron Radiation Facility

10:20 AM

On the Inverse Problem of Recovering Admissible Intragranular Strain Fields from High-Energy X-Ray Diffraction Data: Carter Cocke¹; Andrew Akerson¹; Sara Gorske¹; Katherine Faber¹; Kaushik Bhattacharya¹; ¹California Institute of Technology

10:40 AM

Combining Dark Field X-ray Microscopy and Computational Approaches to Study Dislocation Dynamics: Felix Frankus1; Adam Cretton¹; Albert Zelenika¹; Sina Borgi¹; Anter El-Azab²; Henning Poulsen¹; Grethe Winther¹; ¹Technical University of Denmark; ²Purdue University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advanced Materials for Energy Conversion and Storage 2025 — Advanced Materials for Energy Conversion and Storage I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Energy Conversion and Storage Committee, TMS: High Temperature Alloys Committee

Program Organizers: Surojit Gupta, University of North Dakota; Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania; Cengiz Ozkan, University of California

Tuesday AM | March 25, 2025 356 | MGM Grand

Session Chairs: Scott Barnett, Northwestern University; Uday Pal, **Boston University**

8:00 AM Invited

High-Capacity, Low-Cost Calcium-Antimony Battery in Molten Salt **Electrolytes**: Sanghyeok Im¹; Kelly Varnell¹; Peyman Asghari-Rad¹; Hojong Kim1; 1Pennsylvania State University

8:25 AM Invited

Analysis of Long-Term RSOC Electrochemical Performance: Jhon-In Lee¹; Emily Ghosh¹; Soumendra Basu¹; Srikanth Gopalan¹; Uday Pal1; 1Boston University

8:50 AM

A Novel Catalyst Based on Pyrochlore Oxide to Reduce OER Overpotential for Low Temperature Alkaline Water Electrolysis: Aya Okazaki¹; Hiroto Ohta¹; Masatsugu Morimitsu¹; ¹Doshisha University

9:10 AM

Comprehensive 3D Analysis Methodology for Solid Oxide Cells: Bartlomiej Winiarski¹; Pattiya Pibulchinda²; Patrick Barthelemy¹; Chengge Jiao¹; Scott Barnett²; ¹Thermo Fisher Scientific; ²Northwestern University

9:30 AM Break

9:45 AM

Discovery of Thermodynamically Stable Disorder in High-Entropy Li-Oxides from Ab-Initio Simulation and Crystal Graph Neural Network Prediction: R. Seaton Ullberg1; John Langhout1; Megan Butala¹; Simon Phillpot¹; ¹University of Florida

A Net Zero Strategy for Battery Foils: Alexander Wimmer¹; ¹Constantia Teich

10:25 AM

Application of Electrochemical Impedance Spectroscopy in Sn as a Negative Electrode and LNMO as a Positive Electrode for Lithium Ion Battery: Understanding the State of Charge and Health of the Battery: Arghyadeep Sau¹; Rohit Anand¹; Karabi Das¹; Siddhartha Das1; 1Indian Institute of Technology Kharagpur

ADVANCED CHARACTERIZATION METHODS

Advanced Real Time Imaging — Iron, Steel, and Alloys

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: Biomaterials Committee, TMS: Thin Films and Interfaces

Program Organizers: Jinichiro Nakano, MatterGreen; David Alman, National Energy Technology Laboratory; Il Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology; Noritaka Saito, Kyushu University; Zuotai Zhang, Southern University of Science and Technology; Bryan Webler, Carnegie Mellon University; Wangzhong Mu, KTH Royal Institute of Technology; Pranjal Nautiyal, Oklahoma State University; Jiawei Mi, University of Hull

Tuesday AM | March 25, 2025 156 | MGM Grand

Session Chair: Bryan Webler, Carnegie Mellon University

8:00 AM Invited

In Situ Observations of the Interfacial Phenomenon and Non-Metallic Inclusion Behaviors in High-Entropy Materials by Second Synthesis: Liuliu Han¹; Wangzhong Mu²; Dierk Raabe¹; ¹Max Planck Institute For Iron Research; 2KTH Royal Institute of Technology

Visualizing Localized Electrochemical Corrosion on Metal Surfaces Using Scanning Electrochemical Cell Impedance Microscopy: Venkateshkumar Prabhakaran¹; Lyndi Strange¹; Rajib Kalsar¹; Sridhar Niverty¹; Olga Marina¹; Piyush Upadhyay¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

8:40 AM

Time-Resolve X-ray Imaging of Freeze-Thaw Damage in AA7075: Ankit Kumar¹; Eshan Ganju¹; Nikhilesh Chawla¹; ¹Purdue University

9:00 AM

On the Solid State Dendritic Growth of Carbide at Interfaces in a High Temperature Alloy: Yuanbo Tang¹; Anh Hoang Pham²; ¹University of Birmingham; ²Shimane University

9:20 AM Break

9:40 AM

Dissolution of Calcium Aluminate Inclusions in CaO-SiO2-Al2O3 Steelmaking Slags: An In-Situ and Modelling Study: Guang Wang¹; André Phillion¹; Muhammad Nabeel¹; Wangzhong Mu²; Neslihan Dogan³; ¹McMaster University; ²KTH Royal Institute of Technology; ³Delft University of Technology

10:00 AM

In-Situ Observation of Magnetite Dissolution into Cu2S-FeS Matte with Gas Generation: Sakiko Kawanishi¹; Seung-Hwan Shin²; Sohei Sukenaga³; Junichi Takahashi⁴; Hiroyuki Shibata³; ¹Tohoku University; Kyoto University; 2Tohoku University; Hyundai Steel Co., Ltd.; 3Tohoku University; 4Sumitomo Metal Mining Co., Ltd.

MATERIALS SYNTHESIS AND PROCESSING

Advances in Bcc-Superalloys — Alloy Design & **Mechanical Properties I**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee, TMS: Refractory Metals & Materials Committee

Program Organizers: Alexander Knowles, University of Birmingham; Christopher Zenk, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Howard Stone, University of Cambridge; Oleg Senkov, Air Force Research Laboratory; Eric Lass, University of Tennessee-Knoxville; Thomas Hammerschmidt, Ruhr University Bochum

Tuesday AM | March 25, 2025 102 | MGM Grand

Session Chair: Oleg Senkov, MRL Materials Resources LLC

8:00 AM Invited

Understanding Refractory Metal High Entropy Superalloys Through Systematic Design: Tamsin Whitfield¹; Ed Pickering²; James Miller³; Rosie Mellor³; Howard Stone³; Nick Jones³; ¹University of Oxford; ²University of Manchester; ³University of Cambridge

Mechanical Properties of an A2/B2 Refractory Superalloy (RSA) and Its Constituent Phases: Oleg Senkov1; Bryan Crossman2; Jean- $Philippe \ Couzinie^3; Daniel \ Miracle^1; \ Todd \ Butler^1; \ Vishal \ Soni^4; \ Rajarshi$ Banerjee⁴; Michael Mills²; ¹Air Force Research Laboratory; ²The Ohio State University; 3Univ Paris Est Creteil; 4University of North Texas

Design and Development of a Light-Weight and Low Neutron Cross-Section TiZrNbV High-Entropy Alloy with Room Temperature Tensile Plasticity: Muhammad Naeem¹; Pedro Ferreirós²; Alexander Knowles¹; ¹University of Birmingham; ²VTT Technical Research Centre of Finland

Development of (Relatively) Low Cost Refractory-Ruthenium Based Superalloys (RRSs): Alex Carruthers¹; Ed Pickering¹; ¹University of Manchester

9:30 AM Break

Tungsten-Based BCC Superalloys for Nuclear Fusion: Matthew Lloyd1; Jóhan Magnuessen1; Neal Parkes1; Alexander Knowles1; ¹University of Birmingham

10:10 AM

A Comparison Between Cr- and Fe-Based Superalloys Strengthened by Hierarchically Structured Precipitates: Steffen Neumeier¹; Jan Vollhüter¹; Mathias Göken¹; ¹University of Erlangen Nuernberg

10:30 AM

Room Temperature Tensile Ductility in a Cr-based Alloy: Bryan Lim¹; Rangasayee Kannan¹; Jeffrey Brookins¹; Marissa Brennan²; Steve Buresh²; Brian Gordon³; Michael Spencer³; Peeyush Nandwana¹; ¹Oak Ridge National Laboratory; ²GE Aerospace Research; ³Touchstone Research Laboratory

10:50 AM

Mechanical and Environmental Behaviour of Novel Cr(Fe)-NiAl bcc-Superalloys Tailored for High Temperature Applications: Thomas Blackburn1; Kan Ma1; Michael Kerbstadt2; Rebeca Hernandez3; Marta Navas³; Marta Serrano³; Mathias Galetz²; Alexander Knowles¹; ¹University of Birmingham; ²DECHEMA-FORSCHUNGSINSTITUT; 3CIEMAT

MATERIALS SYNTHESIS AND PROCESSING

Advances in Ceramic Materials and Processing — **Laser Fusion and Sintering of Ceramics**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, University of Alabama Birmingham; Faqin Dong, Southwest University of Science and Technology; Ruigang Wang, Michigan State University; Alexander Dupuy, University of Connecticut; Jinhong Li, China University of Geosciences; Gregory Thompson, University of Alabama; Babak Anasori, Purdue University

Tuesday AM | March 25, 2025 106 | MGM Grand

Session Chairs: Gregory Thompson, University of Alabama; Dipankar Ghosh, Old Dominion University

8:00 AM

Influence of Process Parameters on the Network Microstructure of In-Situ Synthesized TiBw/Ti6Al4V Composites Produced by Laser-Directed Energy Deposition: Bathusile Masina¹; Paul Lekoadi¹; Hosia Kgomo¹; ¹Council for Scientific and Industrial Research

LPS and PVDF Ceramic/Polymer Composite Electrolytes for Stable and High-Performance Lithium-Sulfur Battery: Ruigang Wang¹; Amirhossein Mirtaleb¹; ¹Michigan State University

8:40 AM

Achieving Heterogeneous Network Microstructure in Laser Additively Manufactured Hybrid TiB/TiC/Ti6Al4V Composite: Bathusile Masina¹; Paul Lekoadi¹; Hosia Kgomo¹; ¹Council for Scientific and Industrial Research

9:00 AM

Latest Capabilities in Hot Isostatic Pressing for Advanced Ceramics: Chad Beamer¹; Andrew Cassese¹; Anders Magnusson¹; ¹Quintus Technologies Llc

Micorstructural Study of Laser Directed Energy Deposited Zirconia Powder: Dilipkumar Choudary Ratnala¹; Fabian Hanning¹; Shrikant Joshi¹; Joel Andersson¹; ¹University West

9:40 AM Break

9:50 AM

Shape Memory Ceramics: Phase Stability in the System LaNbO,-**V₂O₅**: Olivia Graeve¹; Cesar Martinez¹; ¹University of California San Diego

10:10 AM

Progress in Combining 3D Printing and Electric Field Assisted Sintering (EFAS) for Complex Part Fabrication: Pressure Transfer Media, X-Ray Computed Tomography, and Electrothermal Modeling: Jorgen Rufner¹; William Chuirazzi¹; Arin Preston¹; Andrew Gorman¹; Stephanie Pitts¹; James Ford¹; Brennan Harris¹; ¹Idaho National Laboratory

10:30 AM

Effect of Graded Microstructure on the Modulus, Hardness, and Strength of Hot-Pressed ZrB2-B4C FGM: Ajit Kumar Naik1; Lava Kumar Pillari Pillari²; Manish Patel³; Lukas Bichler²; Tapas Laha⁴; Siddhartha Roy⁴; ¹Indian Institute of Technology Kharagpur; ²The University of British Columbia-Okanagan; ³Defence Metallurgical Research Laboratory, Hyderabad, Kanchanbagh, Telangana; ⁴Indian Institute of Technology Karagpur

10:50 AM

Elucidating the Contribution of Anion Polarizability in Anharmonic Interactions in Oxides and Sulphides: Peter Greaney¹; Cameron Chevalier¹; ¹University of California, Riverside

11:10 AM

Cation size and Mass Modulated Multi-Stabilizer Zirconia With Low Thermal Conductivity: Sairam Ramachandran¹; Ashutosh Gandhi¹; ¹Indian Institute of Technology Bombay

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances in Magnetism and Magnetic Materials — Caloric Materials, Applications and Theory

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Matthew Kramer, Ames Laboratory; Eric Theisen, Energy & Environmental Research Center; Yaroslav Mudryk, Ames National Laboratory/Iowa State University; Daniel Salazar, BCMaterials

Tuesday AM | March 25, 2025 363 | MGM Grand

Session Chairs: Yaroslav Mudryk, Ames National Laboratory/Iowa State University; Joao Horta Belo, University of Porto / Faculty of Sciences / IFIMUP

8:00 AM Invited

Experiments in Pulsed Magnetic Fields: A Powerful Tool to Study Multicaloric Materials: Catalina Salazar Mejia1; Timo Niehoff1; Marc Strassheim¹; Eduard Bykov¹; Jochen Wosnitza¹; Tino Gottschall¹; ¹Helmholtz Zentrum Dresden Rossendorf

8:25 AM Invited

First-Order Ferromagnetic Transition in MnFe(P,Si) Single Crystals: Francois Guillou¹; H. Yibole²; ¹Caen University; ²Inner Mongolia Normal University

8:50 AM

Influence of Applied Magnetic Field on the Nature of First-Order Phase Transformations in R2In Cryogenic Magnetocaloric Materials: Ajay Kumar¹; Anis Biswas¹; Yaroslav Mudryk¹; ¹Ames National Laboratory of US Department of Energy

9:10 AM Invited

Rotating Magnetocaloric Effect in Polycrystals: Fundamentals and Applications: Joao Horta Belo1; Rafael Almeida1; João Esteves de Araújo¹; João S. Amaral²; Rodrigo Kiefe²; João Ventura¹; Claudia Fernandes¹; Daniel Silva¹; ¹IFIMUP, Faculdade de Ciencias, Universidade do Porto; ²University of Aveiro

9:35 AM Break

9:55 AM Invited

Additive Manufacturing of Thin-Walled Magnetocaloric Regenerator Structures for Heat Pump Applications: Radhika Barua¹; Vaibhav Sharma¹; ¹Virginia Commonwealth University

Magnetocaloric Properties of LaFe_{11.5}Si_{1.5} Alloys with Cobalt and Nickel Substitutions: Elena Priesen Reis1; Kyle Hunady1; Brent Fultz1; ¹California Institute of Technology

MATERIALS SYNTHESIS AND PROCESSING

Advances in Materials Deposition by Cold Spray and Related Technologies — Processing, Characterization, and Properties I

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Materials Characterization Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: Ahmed Alade Tiamiyu, University of Calgary, Canada; Tanaji Paul, Florida International University; Yu Zou, University of Toronto; Maniya Aghasibeig, National Research Council Canada; Aaron Nardi, Vrc Metal Systems, Llc; Pin Lu, Solvus Global

Tuesday AM | March 25, 2025 103 | MGM Grand

Session Chairs: Yu Zou, University of Toronto; Pin Lu, Solvus Global

Breaking Through Traditional Boundaries: Cold Spray Deposition of 'Brittle' Ceramics: Arvind Agarwal1; Ambreen Nisar1; Denny John1; Anil Lama¹; ¹Florida International University

Evaluation of Additively Manufactured Nd-Fe-B and Bi-Te via Tailored-Feedstock Low Pressure Cold Spray: Thomas Keller¹; Quinn Campbell²; Sam Boese²; Yunume Fitchorova²; Jack Lesko¹; Andrew Neils1; 1The Roux Institute at Northeastern Unviersity; ²Kostas Research Institute at Northeastern University

Cold Spray Bonding Improvements of SS316 Using Copper Additions: Michael Pagan1; Styler Goring1; HuChun Yi2; Aaron Stebner¹; ¹Georgia Institute of Technology; ²Elementum3D

9:10 AM

Bonding and Microstructure of Single Particle Impacts: A 3D Investigation: Veera Panova¹; Christopher Schuh²; ¹Massachusetts Institute of Technology; 2Northwestern University, Massachusetts Institute of Technology

9:30 AM Break

9:50 AM Invited

In-Situ Heat Treatment with Laser Assisted Cold Spray: Modeling and Experiments: Salih Duran¹; Samuel Boese¹; Aidan Sevinsky¹; Ozan Ozdemir¹; Ahmad Nourian-Avval¹; Sinan Muftu¹; ¹Northeastern University

10:20 AM

Microstructure and Multi-scale Mechanical Properties of As-Deposited and Heat-Treated Cold-Sprayed Scalmalloy-Al7075 Deposits: Anil Lama¹; Denny John¹; Tanaji Paul¹; Arvind Agarwal¹; ¹Florida International University

10:40 AM

Understanding the Effect of Feedstock Microstructure on Mechanical Performance of AA7075 Cold Spray Material: Christopher Williamson¹; Ning Zhu²; Arthur Webb¹; Luke Brewer¹; ¹The University of Alabama; ²The University of Baylor

MECHANICS OF MATERIALS

Advances in Multi-Principal Element Alloys IV: Mechanical Behavior — Structures and Mechanical **Properties I**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory, Jennifer Carter, Case Western Reserve University; E-Wen Huang, National Yang Ming Chiao Tung University; T.S. Srivatsan, University of Akron; Xie Xie, Ford Motor Company; Jamieson Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Tuesday AM | March 25, 2025 368 | MGM Grand

Session Chairs: Jamieson Brechtl, Oak Ridge National Laboratory; Rui Feng, National Energy Technology Laboratory

8:00 AM Invited

Interstitial Engineering of BCC Refractory Multi-Principal Element Alloys and their Dislocation Pathways: Daniel Gianola¹; ¹University of California-Santa Barbara

8:20 AM Invited

Controllable Structure and Superior Mechanical Properties of Metallic Glasses through Atomic Manufacturing: Hang Zhao¹; Jing Zhou¹; Baoshuang Shang¹; Rongce Sun¹; Yuqiang Yan¹; Xing Tong¹; Haijie Xian¹; Yong Ding¹; Bo Zhang¹; Haibo Ke¹; Wei-Hua Wang¹; ¹Songshan Lake Materials Laboratory

8:40 AM Invited

Impact of Elemental Additions on Elastic and Plastic Behavior of Refractory Multi-Principal-Element Alloys: Rui Feng¹; George Kim²; Dunji Yu³; Yan Chen³; Yongjie Hu⁴; Wei Chen⁵; Peter Liaw⁶; Ke An3; ¹National Energy Technology Laboratory; ²Illinois Institute of Technology: ³Oak Ridge National Laboratory: ⁴Drexel University: ⁵University at Buffalo; ⁶The University of Tennessee, Knoxville

9:00 AM Invited

Fracture Resistance of Refractory High-Entropy Alloys: Punit Kumar¹; David Cook²; Madelyn Payne²; Wenqing Wang²; Pedro Borges²; Mingwei Zhang³; Li Yi⁴; Andrew Minor²; Mark Asta²; Robert Ritchie²; ¹Lawrence Berkeley National Laboratory; ²University of California, Berkeley; ³University of California, Davis; ⁴Institute of Metal Research, Chinese Academy of Sciences, Shenyang

9:20 AM Invited

Microstructure and Mechanical Property Changes in Ion Irradiated MPEAs: Steven Zinkle¹; Sydney Copp¹; Siwei Chen¹; Yajie Zhao¹; Sicilia Christadore¹; ¹University of Tennessee

9:40 AM Break

10:00 AM Invited

Direct Ink Writing and Sintering of Micro-Lattices with Multi-Principal Element Alloys with High Specific Mechanical Properties: David Dunand¹; Dingchang Zhang¹; Ming Chen¹; Ya-Chu Hsu¹; ¹Northwestern University

10:20 AM Invited

Macroscopically-Smooth Plastic Flow in an Al-Containing High-Entropy Alloy: Unveiling Multiscale Complexity in a Mesoscopic Range: Jamieson Brechtl¹; Rui Feng²; Peter Liaw³; Benoit Beausir⁴; Hafsa Jaber⁴; Tatiana Lebedkina⁴; Mikhail Lebyodkin⁴; ¹Oak Ridge National Laboratory; ²National Energy Technology Laboratory; ³University of Tennessee-Knoxville; ⁴Université de Lorraine

Fracture Toughness and Deformation Mechanisms in Cantor-Based Medium Entropy Alloys: Sheron Tavares1; David Cook2; Punit Kumar²; Robert Ritchie²; Bingfeng Wang³; Marc Meyers¹; ¹University of California, San Diego; ²University of California, Berkeley; ³Central South University

11:00 AM Invited

On the Damage Tolerance of TiZrNbHfTa Refractory High-Entropy Alloys: Bernd Gludovatz1; Michael Moschetti1; William Carpenter1; $Moses\,Paul^2; Alan\,Xu^3; Dhriti\,Bhattacharyya^3; Jean-Philippe\,Couzini\acute{e}^4;$ Anton Hohenwarter⁵; Easo George⁶; Jamie Kruzic¹; ¹UNSW Sydney; ²Nanyang Technological University; ³ANSTO; ⁴ICMPE/CNRS; ⁵Montanuniversität Leoben; ⁶University of Tennessee, Knoxville

11:20 AM Invited

Significance of Grain Refinement on the Nanomechanical Behavior of Multi-Principal Alloys: Dong-Hyun Lee1; In-Chul Choi2; Tianyi Chen³; Jae-il Jang⁴; *Megumi Kawasaki*³; ¹Chungnam National University; ²Kumoh National Institute of Technology; ³Oregon State University; 4Hanyang University

MATERIALS SYNTHESIS AND PROCESSING

Advances in Surface Engineering VII — Advances in Surface Engineering: Session III

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Bharat Jasthi, South Dakota School of Mines & Technology; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University; Ning Zhu, Baylor University

Tuesday AM | March 25, 2025 107 | MGM Grand

Session Chairs: Mohammad Umar Farooq Khan, Ohio State University; Jijo Christudasjustus, Pacific Northwest National Laboratory

8:00 AM Introductory Comments

Effect of Plasma Spraying Parameters on Corrosion Behavior of Fe-Based Amorphous/Crystalline Composite Coatings: Md Akif Faridi¹; Sapan K. Nayak¹; Shubham Halder¹; Tapas Laha¹; ¹Indian Institute of Technology Kharagpur

8:25 AM

Role of Current Density on the Tribological and Electrochemical Properties of Zn-Co Coatings Deposited from a Non-Aqueous-Based Electrolyte: Anjali Kumari¹; Bangmaya Satpathy²; Panakati Siva Prasad¹; Juan David Matallana Guerrero¹; Siddhartha Das¹; Karabi Das¹; ¹Indian Institute of Technology Kharagpur; ²IIT Bombay

8:45 AM

Plasma Spray of Micro-Co-Based Coating on 55NiCrMoV7 Steel: Ajit Pramanick¹; Bittu Topo¹; Ratnakar Das¹; Anup Keshri²; ¹National Institute of Advanced Manufacturing Technnology; ²Indian Institute of Technology

9:05 AM

A Corrosion Resistant and Mechanically Robust Superhydrophobic Coating with Self-Healing Characteristics for Biodegradable Low Alloyed Mg-Ag-Zn-Ca: Amarjeet Singh¹; ¹Punjab Engineering College

9:25 AM

Application of Self-Supporting Vermiculite Membrane in LiCl/ MgCl2 Separation: Jiaqing Zhao¹; Jinhong Li¹; Jiayang Wang¹; Yunxuan Wang¹; Shaogang Zhang¹; ¹China University of Geosciences

LIGHT METALS

Advances in Titanium Technology — Deformation **Behavior of Titanium Alloys**

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Abhishek Sharma, University of North Texas; Srinivas Aditya Mantri, Argonne National Laboratory; Zachary Kloenne, Imperial College London; Fan Sun, Centre National de la Recherche Scientifique - Paris Sciences et Lettres University; Stoichko Antonov, National Energy Technology Laboratory

Tuesday AM | March 25, 2025 108 | MGM Grand

Session Chair: Srinivas Aditya Mantri, Argonne National Laboratory

8:00 AM Invited

Recent Advances in Understanding Fracture at Basal Twist Grain **Boundary**: Thomas Yvinec¹; Florence Hamon¹; Valery Valle¹; Denis Bertheau¹; Zhihong Wu²; Fan Sun²; Frederic Prima²; Samuel Hemery¹; ¹ENSMA - Institut Pprime; ²IRCP

8:30 AM

Exploration of Superior LCF Strength in a Novel Alpha/Beta Titanium Alloy: Zachary Kloenne¹; Oscar Langdon¹; David Dye¹; ¹Imperial College London

8:50 AM

Defect Structures at Basal Twist Boundaries in Ti-6Al-4V: Nadib Akram¹; Baris Yavas¹; Christopher Collins²; Asa Frye²; Vasisht Venkatesh²; Adam Pilchak²; David Furrer²; Iuliana Cernatescu²; Mark Aindow1; 1University of Connecticut; 2Pratt & Whitney

Clarifying the Different Stages of Dwell-Fatigue in Ti-6Al-4V Using Quantitative Fractography: Lucas Prince¹; Patrick Villechaise²; Loic Dimithe Aboumou¹; Samuel Hemery²; ¹Safran Aircraft Engines; ²Institut Pprime

9:30 AM Break

9:50 AM Invited

Competing Fatigue Failures, Complex S-N Fatigue Behavior and Reciprocal Relationships in Ti-6Al-4V Titanium Alloy: K. S. Ravi Chandran1; 1The University of Utah

10:20 AM

Cross-Slips in a Bulk Near- Titanium Alloy: Yu Zou1; 1University of Toronto

10:40 AM

Nucleation of Damage Along Twin-Twin Boundaries in (+) Ti Alloys: Megan Cooper¹; Shaolou Wei¹; C. Cem Taşan¹; ¹Massachusetts Institute of Technology

11:00 AM

In-Situ TiB and TiN Reinforced Ti-35Nb-7Zr-5Ta Composite Fabricated Through Spark Plasma Sintering (SPS): Microstructure, Mechanical Characteristics, and Biocompatibility: Satyavan Digole¹; Sanoj Karki¹; Manoj Mugale¹; Amit Choudhari¹; Mayank Garg¹; Tushar Borkar¹; ¹Cleveland State University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Verification, Validation, and Uncertainty Quantification — Alloy Design

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Dehao Liu, Binghamton University; Matt Kasemer, The University of Alabama; Ashley Spear, University of Utah; Christopher Stiles, Johns Hopkins University Applied Physics Laboratory; Anh Tran, Sandia National Laboratories

Tuesday AM | March 25, 2025 320 | MGM Grand

Session Chair: Dehao Liu, Binghamton University

8:00 AM Invited

From Pure Metals to Multi-Principal Element Alloys - A Physics-Informed Data-Driven Approach for Alloy Design: Jaafar El-Awady¹; ¹Johns Hopkins University

Advancing Alloy Design: A Parameter-Free Statistical Approach to Predicting Stress Strain Curves of BCC Polycrystals: Jing Luo1; Yejun Gu²; Jaafar El-Awady¹; ¹Johns Hopkins University; ²Institute of High-Performance Computing, A*STAR

9:00 AM

Accelerating Creep-Resistant Aluminum Alloy Design Through Generative Al-Driven Computational Models and Robust Validation: Yizhi Wang1; Yuksel Asli Sari2; Mihriban Pekguleryuz1; ¹McGill University; ²Queen's University

Towards an Interpretable and Reliable Framework for Alloy Design in Thermomechanical Processing: Sushant Sinha¹; Xiaoping Ma²; Kashif Rehman²; Narges Armanfard¹; Stephen Yue¹; ¹McGill University; 2Algoma Steel Inc.

9:40 AM Break

9:50 AM

Machine-Learning Structural Stability of Complex Intermetallic **Phases**: *Mariano Forti*¹; Ralf Drautz¹; Thomas Hammerschmidt¹; 1ICAMS

10:10 AM

Physics-Based Priors for Phase Classification in Alloy Design: Brent Vela¹; Danial Khatamsaz¹; Raymundo Arróyave¹; ¹Texas A&M University

10:30 AM

Computational Design and Optimization of 2D Spinodal Metallic Metamaterials for Improved Structural Behavior: Saltuk Yildiz1; Zekeriya Ender Eger¹; Pinar Acar¹; ¹Virginia Tech

10:50 AM

Utilization of Neural Networks and Numerical Modeling for Microstructural Analysis of Aluminum 6060 Alloy Composites: Anna Wojcicka1; Krzysztof Mroczka2; Carter Hamilton3; University of Science and Technology in Krakow; ²Cracow University of Technology; 3Miami University

11:10 AM

Inverse Design of Architected Composite Materials with Desired Mechanical Behavior Based on Conditional Diffusion Model: Guangfa Li¹; Dehao Liu¹; ¹Binghamton University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Algorithms Development in Materials Science and **Engineering — Algorithms and Methods for Complex Materials and Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Process Technology and Modeling Committee, TMS: Alloy Phases

Program Organizers: Remi Dingreville, Sandia National Laboratories; Saaketh Desai, Sandia National Laboratories; Hojun Lim, Sandia National Laboratories; Jeremy Mason, University of California, Davis; Vimal Ramanuj, Oak Ridge National Laboratory; Sam Reeve, Oak Ridge National Laboratory; Douglas Spearot, University of Florida

Tuesday AM | March 25, 2025 319 | MGM Grand

Session Chairs: Jeremy Mason, University of California, Davis; Vimal Ramanuj, Oak Ridge National Laboratory

8:00 AM

A Statistical Approach to Revealing Structure-Property Relationships and "Defects" in Amorphous Metal Oxides: Peter Greaney¹; Cameron Chevalier¹; Mahesh Neupane²; ¹University of California, Riverside; ²Army Research Laboratory

8:20 AM

Comparative Study of Chemical Short Range Order Structure Construction in Multi-Principal Element Alloys: Subah Mubassira¹; Cliff Hirt¹; Shuozhi Xu¹; ¹University of Oklahoma

8:40 AM

Enumeration and First-Principles Based Parameterization of Interfaces and Transformation Pathways in Alloys Using CASM: Brian Puchala¹; Anton Van der Ven²; Sesha Sai Behara²; ¹University of Michigan; ²University of California, Santa Barbara

High Strain-Rate Microstructural Failure Modes in Refractory Alloys: Omar Eldaly¹; Mohammed Zikry¹; ¹North Carolina State University

9:20 AM

Elastic Constants from Charge Density Distribution in FCC High Entropy Alloys Using CNN and DFT: Nathan Linton¹; Ramin Soltanmohammadi²; Hossein Mirzaee²; Jacob Fischer¹; Serveh Kamrava²; Pejman Tahmasebi²; Dilpuneet Aidhy¹; ¹Clemson University; ²Colorado School of Mines

9:40 AM Break

10:00 AM

Microstructure-Sensitive Surrogate Modeling of Viscoplastic Creep in Nuclear Fuel Cladding: A Mechanism-Based, Data-Driven Approach: Andre Ruybalid1; Ryan Sweet2; Laurent Capolungo1; ¹LANL; ²Idaho National Laboratory

10:20 AM

A Transition Interface Sampling Study of Nano-Void Nucleation in Magnesium Alloys: Vicente Munizaga¹; Homero Reyes Pulido¹; Michael Falk¹; ¹Johns Hopkins University

10:40 AM

Research Data Management for Reference Data in Materials Science and Engineering Exemplified for Creep Data of Ni-Base Superalloys: Jürgen Olbricht¹; Luis Ávila Calderón¹; Yusra Shakeel²; Angelika Gedsun³; Mariano Forti⁴; Sirieam Hunke⁵; Ying Han¹; Thomas Hammerschmidt⁶; Rossella Aversa²; Miroslaw Chmielowski⁷; Rainer Stotzka²; Erik Bitzek⁷; Tilmann Hickel¹; Birgit Skrotzki¹; ¹Bundesanstalt für Materialforschung und -prüfung (BAM); ²Karlsruhe Institute of Technology (KIT); ³Albert-Ludwigs-Universität Freiburg; ⁴Ruhr-Universität Bochum; 5RWTH Aachen; 6Ruhr -Universität Bochum (RUB); ⁷Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

11:00 AM

Simulation of Twining-Detwinning in Magnesium Alloys Using Open-Source Integrated Phase-Field/Crystal-Plasticity Framework: David Montiel¹; Chaitali Patil¹; Mohammadreza Yaghoobi¹; Brian Puchala¹; Anton Van der Ven²; Katsuyo Thornton¹; Veera Sundararaghavan¹; John Allison¹; ¹University of Michigan; ²University of California, Santa Barbara

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XIII — Computational and **Experimental Advances in Thermoelectric and** Optoelectronic Materials

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Taiwan University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CNRS Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute for Materials Science; Wan-Ting Chiu, Institute of Science Tokyo; Chenguang Fu, Zhejiang University

Tuesday AM | March 25, 2025 355 | MGM Grand

Session Chairs: Chenguang Fu, Zhejiang University; Alexandra Zevalkink, Michigan State University

8:00 AM Invited

Accelerating the Search of New Photovoltaic and Opto-Electronic Materials Using High-Throughput Computational Screening: Geoffroy Hautier1; 1Dartmouth College

8:20 AM Invited

Using AI to Predict the Thermoelectric Performance of New Materials: Holger Kleinke¹; ¹University of Waterloo

8:40 AM Invited

High-Temperature Elastic Moduli: A Tool for Understanding Chemical Bonding In Thermoelectric Materials: Alexandra Zevalkink1; 1Michigan State University

9:00 AM Invited

Weak Bonding and Lattice Vibrations: Two Ingredients for Low Thermal Conductivity in Thermoelectric Sulfides, Chalcohalides and Halides: Emmanuel Guilmeau1; 1CRISMAT/CNRS

9:20 AM Invited

Visualizing Vacancy Annihilation in CZTSe Solar Cells by Hydrogen-Assisted Selenization with In Situ/Operando X-ray Nanoprobe Studies: Li-Chyong Chen¹; Chih-Yang Huang¹; Shao-Chin Tseng²; Wei-Chao Chen¹; Gung-Chian Yin²; Bo-Yi Chen²; Kuei-Hsien Chen3; Cheng-Ying Chen4; ¹National Taiwan University; ²National Synchrotron Radiation Research Center; 3Academia Sinica; 4National Taiwan Ocean University

9:40 AM Break

10:00 AM Invited

Geometric Design and 3D Printing of Thermoelectric Materials and Devices: Jae Sung Son1; 1Pohang University of Science and Technology

10:20 AM Invited

Turning Up the Heat: Designing New Zintl Phases for Thermoelectrics: Prashun Gorai¹; ¹Rensselaer Polytechnic Institute

10:40 AM

Conversion Efficiency in Silver Chalcogenide Materials Showing Enhanced Structural Stability: Yun-Han Huang Lu1, Hsin-Jay Wu1, ¹National Yang Ming Chiao Tung University

LIGHT METALS

Alumina and Bauxite — Bauxite and Alumina II

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Efthymios Balomenos, Metlen Energy and Metals; Les Edwards, Rain Carbon Inc.

Tuesday AM | March 25, 2025 111 | MGM Grand

Session Chair: Roberto Seno, Cba - Companhia Brasileira De Aluminio

8:00 AM

Operational Excellence Through Advanced Analytics at Hindalco Muri: Prasanta Bose1; Kumar Ayush1; Ravi Das1; Ashish Chopra1; Bharathesh Kumar¹; Anuj Verma¹; ¹Prasanta

Dealkalization Behavior of TiO2 Sulfuric Acid Waste on Bayer Red Mud: Chaojun Fang¹; Ruixue Lou¹; Yihong Jia¹; Lijuan Gao¹; Xueqian Qin²; Yongping Wang²; Xiaowei Deng¹; Bo Lv¹; ¹Henan Polytechnic University; ²CHALCO

8:50 AM

Metal Recovery from Waste Using Bayer Process Desilication Products: Hong Peng1; James Vaughan1; Tae Kim1; 1University of Queensland

9:15 AM Question and Answer Period

LIGHT METALS

Aluminum Alloys: Development and Manufacturing Supplier Forum — Aluminum Alloys: Development and Manufacturing Supplier Forum

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mihaiela Isac, McGill Metals Processing Centre; Les Edwards, Rain Carbon Inc.

Tuesday AM | March 25, 2025 114 | MGM Grand

Session Chairs: Mihaiela Isac, McGill Metals Processing Centre; Les Edwards, Rain Carbon Inc.; Roderick Guthrie, McGill University

8:00 AM Introductory Comments: Welcome to Supplier Forum Session

8:05 AM Keynote

A Physical Twin of a Multi-Laser Powder Bed Fusion System for Correlative Photodiode Sensing, High-Speed Optical and Synchrotron X-Ray Imaging: Chu Lun Alex Leung¹; Samy Hocine¹; Sebastian Marussi¹; Wei Li¹; Da Guo¹; Rubén Lambert-Garcia¹; Elena Ruckh¹; Marta Majkut²; Alexander Rack²; Andy Farndell³; Nick Jones³; Peter Lee¹; ¹University College London; ²ESRF - The European Synchrotron; 3Renishaw plc.

8:30 AM

Innovative Solutions for Aluminum Alloy Manufacturing via Directed Energy Deposition (DED) Technology: Jeffrey Riemann¹; Melanie Lang¹; ¹Formalloy Technologies, Inc.

8:55 AM

Rapid Characterization of the Mechanical Properties of Aluminum Alloys Using Profilometry-Based Indentation Plastometry: Philip McKeown1; James Miller1; 1Plastometrex

9:20 AM

Enhanced Aluminum Billets Heat Treatment Process in Batch Homogenizer Furnace for Energy Efficiency and Cycle Time Reduction: Mohamed Hassan Ali¹; Mostafa Abdelsamie¹; ¹Khalifa University of Science and Technology

9:45 AM Break

10:00 AM

Twin Roll Casting Process to Make High Strength Aluminum Alloy Sheets: Hyoung-Wook Kim1; Yong-Hee Jo1; Yun-Soo Lee1; Kim Won-Kyeong¹; ¹Korea Inst of Materials Science

Low-Cost Aluminum Scandium Master Alloy Technology: Tim Grbavac¹; Jim Intrater¹; Rick Salvucci¹; Brian Hunt¹; Eugene Prahin¹; ¹Fea Materials Llc

SmartBurner: Advanced Monitoring System to Enhance Gas Burner Performance: Amin Rostamian¹; Marc Bertherat²; ¹Novamet Sarl: 2Constellium

LIGHT METALS

Aluminum Cast Shop Supplier Forum — Aluminum Cast Shop Supplier Forum

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Samuel Wagstaff, Oculatus Consulting; Edward Williams, Arconic; Les Edwards, Rain Carbon Inc.

Tuesday AM | March 25, 2025 109 | MGM Grand

Session Chair: Edward Williams, Arconic

8:00 AM

Burners and Furnaces for Aluminum Recycling: Towards Zero Emissions: Jonathan Erman¹; ¹GHI Smart Furnaces

8:25 AM

Decarbonization with Hydrogen Fuel Combustion: James Checkeye¹; ¹Bloom Engineering Co. Inc.

8:50 AM

X-Series, The Next Generation of Multi-Chamber Furnaces: Terri-Ann Bethell¹; Lee Allen¹; ¹Mechatherm International Limited

New Developments in Metal Cleaning and Filter Preheating: Marion Betzing¹; Jochen Schnelle¹; ¹Drache Umwelttechnik GmbH

9:40 AM Break

9:55 AM

Dynaprime High Efficiency Filtration: Pascal Cote¹; ¹Dvnamic Concept

10:20 AM

Heated Refractory: Nicholas Tebbe1; 1Wagstaff

Hycast - Continual Improvements in Safety, Quality and Sustainability in the Casthouse: Shaun Hamer¹; Arild Hakonsen¹; Ola Furu¹; ¹Hycast As

11:10 AM

State of the Art Process Technology and Operational Examples for Single- and TwinChamber® Furnaces for Remelting and Recycling of Aluminum Scraps: Hartwig Thie¹; ¹Tenova Loi

LIGHT METALS

Aluminum Reduction Technology — Cell Design, **Modeling and Power Modulation**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Andre-Felipe Schneider, Hatch Ltd.; Les Edwards, Rain Carbon Inc.

Tuesday AM | March 25, 2025 113 | MGM Grand

Session Chairs: Nicholas Depree, Enpot Ltd; Stephan Broek, Kensington Technology Inc

8:00 AM Introductory Comments

Study on the Interface Deformation and Anode Current Distribution Variation in the Process of Anode Change in Aluminum Reduction **Cell**: Xi Cao¹; Jie Li²; Hongliang Zhang²; Qinsong zhang¹; Zhibin Zhao¹; Hongwu Hu¹; Wei Liu¹; Michael Ren³; ¹Shenyang Aluminum and Magnesium Engineering and Research Institute Co.Ltd.; ²Central South University; 3Sunlightmetal Consulting Inc.

8:30 AM

Electrical and Magnetohydrodynamic Effect of Cathode Rodding and Anode-Cathode Arrangement in Aluminium Reduction Cell: Pankaj Bohra¹; Venkannababu Thalagani¹; Amit Jha¹; ¹Aditya Birla Science and Technology Company Private Limited

8:55 AM

Modelling Aluminium Electrolysis Cell Cathode Assembly with Iron-Copper Composite Bars and Super Pastes: Marc Dupuis1; Xianan Liao²; Xiangting Ren³; ¹GeniSim Inc.; ²XLIAO Consulting, Consultant for Elken; 3Elkem Carbon China Co. Ltd

9:20 AM

Numerical Simulations of Copper Rod Insertion Effects on Current Density, Flow Field Distribution, Cathode Wear, and Electrothermal Dynamics in Aluminum Reduction Cells: Sen Zhou¹; Mouhamadou Diop¹; Zhaowen Wang¹; ¹Northeastern University (NEU)

9:45 AM Break

10:00 AM

Evolution of Power Modulation Technology in Response to Changing Market Conditions Worldwide: Nicholas Depree1; Yashuang Gao¹; Mark Taylor²; John Chen²; ¹Enpot Ltd; ²University of Auckland

10:25 AM Concluding Comments

MECHANICS OF MATERIALS

Atomistic Simulations Linked to Experiments to Understand Mechanical Behavior: A MPMD Symposium in Honor of Professor Diana Farkas — Extreme Conditions

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Andrea Hodge, University of Southern California; Arun Nair, University of Arkansas; Alejandro Strachan, Purdue University; Chelsey Hargather, Los Alamos National Laboratory; Christopher Schuh, Northwestern University

Tuesday AM | March 25, 2025 370 | MGM Grand

Session Chairs: Alejandro Strachan, Purdue University; Maryam Ghazisaeidi, Ohio State University

8:00 AM

Multiscale Models for Materials at Extreme Conditions Using Physics-Informed Machine Learning: Alejandro Strachan¹; ¹Purdue University

8:20 AM Invited

The Impact of Initial Grain Boundary Structure on the Properties of Irradiated Materials: Saryu Fensin¹; Sarah Paguaga¹; Ian Chesser¹; Calvin Lear¹; ¹Los Alamos National Laboratory

Investigating the Pressure-Temperature States During Shock Compression and Shock Release in Metals Using Molecular **Dynamics Simulations**: *Christian Sabatini*¹; Phillip Tsurkan¹; Avinash Dongare¹; ¹University of Connecticut

9:05 AM

Spall Strength of Pure Solids on the Periodic Table and Its Correlation with Known Thermomechanical Properties: Robert Swallow1; Justin Wilkerson1; 1Texas A&M University

9:25 AM Break

9:45 AM Invited

The Origin of Photo Plasticity in ZnS: Maryam Ghazisaeidi¹; ¹Ohio State University

Energy Dissipation Mechanisms and Role of Porosity in Shock Loaded Niobium: A Molecular Dynamics Study: William Zummo¹; Chunyu Li¹; Alejandro Strachan¹; ¹Purdue University

10:30 AM

Atomistic Simulations on the Dynamic Recrystallisation During High-Velocity Impact In Copper: Yifeng Wang¹; Che Zhang¹; Christian Brandl¹; ¹The University of Melbourne

10:50 AM

Unravel Failure Mode in Garnet-Type Solid Electrolytes from Atomistic Simulations: Suyue Yuan1; Kwangnam Kim1; Bo Wang1; Longsheng Feng¹; Tae Wook Heo¹; Brandon Wood¹; Liwen Wan¹; ¹Lawrence Livermore National Laboratory

BIOMATERIALS

Biological Materials Science — Biological and Bio-**Inspired Materials I**

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Yuxiao Zhou, Texas A&M University; Ling Li, University of Pennsylvania; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Grace Gu, University of California, Berkeley; Debora Lyn Porter, University of California Merced

Tuesday AM | March 25, 2025 306 | MGM Grand

Session Chairs: Grace Gu, University of California, Berkeley; Ling Li, University of Pennsylvania

8:00 AM Invited

3D Printing Bioinspired Material Systems with Autonomous and Robotic Capabilities: Ryan Truby¹; ¹Northwestern University

The Mitic System: A Morphological Analysis of Fungal Hyphae: James Gallagher¹; Jessica Redmond¹; Alex Bradshaw¹; Bryn Dentinger¹; Steven Naleway¹; ¹University of Utah

8:50 AM Invited

Engineering Biodegradable and Bioresorbable Materials for Biomedical Applications: Huinan Liu1; 1University of California, Riverside

9:20 AM Break

9:40 AM Invited

Functional and Mechanical Behaviors of Inorganic-Organic Hierarchical Structures: Rayne Zheng¹; ¹University of California, Berkeley

10:10 AM

An Investigation on the Effect of Contrast Agents in the Chitosan-Nanoclay Shear Thinning Hydrogel for Trans-Catheter Arterial Embolization: George Varghese P J1; Peng Chen1; Keren Zhao1; Mitesha Saha¹; Jingjie Hu¹; ¹North Carolina State University

10:30 AM

The Embira Bark Fiber: a Sustainable Amazon Tape: Marc Meyers1; Sheron Tavares¹; Lucas Neuba²; Sergio Monteiro²; Henry Colorado³; ¹University of California, San Diego; ²Military Institute of Technology; ³University of Antioquia

10:50 AM Invited

Crystal Defects Tailor the Properties of Biomineralized Tissue and Bio-Inspired Materials: Boaz Pokroy1; 1Technion Israel Institute of Technology

SPECIAL TOPICS

Bladesmithing 2025 — Bladesmithing 2025

Sponsored by: TMS: Bladesmithing Committee

Program Organizer: Samuel Wagstaff, Oculatus Consulting

Tuesday AM | March 25, 2025

164 | MGM Grand

Session Chairs: Tarik Saleh, Los Alamos National Laboratory;

Samuel Wagstaff, Oculatus Consulting

8:00 AM Introductory Comments

8:10 AM

Comparison of Small-scale Wootz Steel Production Methods: Stephen Gebes¹; ¹South Dakota School of Mines and Technology

Forging High Entropy Alloys: Robert Wilkins¹; ¹University of North Texas

Hammering Together a Bladesmithing Team from Basics: Brock Nowak1; Nathan Jones1; Bradley Diak1; 1Queen's University

Making a Modernized Khanda: Minhchau Do¹; Wyatt Hodges¹; Alexander Saggi¹; ¹Texas A&M

9:30 AM Break

Material Characterization and Analysis of a Seax Blade: Joseph Kallal¹; Kylie Broderick¹; River Chen¹; ¹University of Illinois at Urbana-Champaign

10:10 AM

Nickel-Plated Bronze Sword for Enhanced Durability and Corrosion Resistance: Camilo Soto¹; Justin Lebeau¹; Jacob Lowenstein¹; Henry Cabrera¹; Jonathan Seyoum¹; Jose Ortiz¹; ¹Rice University

10:30 AM

UMN MA Eire Sword: Courtney Archibald¹; ¹University of Minnesota

10:50 AM

UTEP American Foundry Society TMS Bladesmithing: Christina Pickett¹; Chase Paff¹; Ruben Martinez¹; ¹University of Texas El Paso

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Bridging Scale Gaps in Multiscale Materials Modeling in the Age of Artificial Intelligence — Modeling of Amorphous and Crystalline Materials at the Mesoscales and Microscales

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan; Katsuyo Thornton, University of Michigan; Peter Voorhees, Northwestern University; Eric Homer, Brigham Young University; Srujan Rokkam, Advanced Cooling Technologies,

Tuesday AM | March 25, 2025 353 | MGM Grand

Session Chair: Liang Qi, University of Michigan

8:00 AM Invited

Simulation-Informed Models for Amorphous Metal Mechanical Property Prediction: Michael Falk¹; Bin Xu¹; Zhao Wu²; Jiayin Lu³; Michael Shields¹; Chris Rycroft³; Franz Bamer²; ¹Johns Hopkins University; ²RWTH Aachen; ³University of Wisconsin, Madison

8:30 AM

Machine Learning-Enhanced Multiscale Modeling of Solidification: Sepideh Kavousi¹; Mohsen Asle Zaeem¹; ¹Colorado School of Mines

8:50 AM Invited

Atomistically Informed Mesoscale Modeling of Deformation Behavior of Bulk Metallic Glasses: Yuchi Wang¹; Yuchu Wang²; Jinwoo Hwang¹; Yue Fan²; Yunzhi Wang¹; ¹Ohio State University; ²University of Michigan

9:20 AM

Multiscale Modeling for Studying Corrosion-Induced Hydrogen Embrittlement in Zirconium: Shubham Pandey1; Kyle Starkey1; Volker Eyert²; Erich Wimmer²; ¹Materials Design Inc.; ²Materials Design SARL

9:40 AM Break

10:00 AM Invited

Multiscale Computation-Experiment Study of Advanced Materials with Characteristic Microstructure: Jian Wang¹; Amit Misra²; ¹University of Nebraska-Lincoln; ²University of Michigan

10:30 AM Invited

Understanding Microstructural Evolution Using Graph Attention Networks: Elizabeth Holm¹; Ryan Cohn²; ¹University of Michigan; ²Carnegie Mellon University

11:00 AM Invited

Discovering New Mechanisms of Grain Growth with a Machine Learning Model Trained on Experimental and Simulation Data: Michael Tonks¹; Amanda Krause²; Joel Harley¹; Lin Yang¹; Vishal Yadav¹; Joseph Melville¹; Bryan Conry³; ¹University of Florida; ²Carnegie-Mellon University; ³Oak Ridge National Laboratory

ADVANCED CHARACTERIZATION METHODS

Characterization of Materials through High Resolution Coherent Imaging — Advancements in Methods and AI/ML

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Xianghui Xiao, Brookhaven National Laboratory; Richard Sandberg, Brigham Young University; Ross Harder, Argonne National Laboratory; Brian Abbey, La Trobe University; Saryu Fensin, Los Alamos National Laboratory; Ana Diaz, Paul Scherrer Institute; Mathew Cherukara, Argonne National Laboratory

Tuesday AM | March 25, 2025 157 | MGM Grand

Session Chair: Mathew Cherukara, Argonne National Laboratory

AI-Driven Workflow for Autonomous High-Resolution Scanning X-Ray Microscopy: Tao Zhou1; Saugat Kandel2; Mathew Cherukara1; Charadatta Phatak¹; Martin Holt¹; ¹Argonne National Laboratory; ²Chan Zuckerberg Imaging Institute

8:30 AM

Rapid Reconstruction of the Full Strain Tensor via Coupled Phase Retrieval With Multipeak Bragg Coherent Diffraction Imaging: J. Nicholas Porter¹; Yueheng Zhang²; Ross Harder³; Barbara Frosik³; Wonsuk Cha³; Yuan Gao⁴; Garth Williams⁴; Joshua Miller¹; Nash Karrington¹; Andres Herrera¹; Stephan Hruszkewycz³; Anthony Rollett²; Richard Sandberg¹; ¹Brigham Young University; ²Carnegie Mellon University; ³Argonne National Laboratory; ⁴Brookhaven National Laboratory

ML-Guided Non-Destructive 3D Metrology of Functioning Devices With an X-Ray Laser: Oliver Hoidn1; Aashwin Mishra1; Matthew Seaberg¹; Apurva Mehta¹; ¹SLAC National Accelerator Laboratory

9:20 AM

Enhanced Mineral Characterization With 3D X-Ray CT and Al-Driven Imaging: Parisa Asadi¹; Matthew Andrew¹; Andriy Andreyev¹; Zeyu Zhou¹; ¹Zeiss

9:40 AM Break

High Bandwidth Scanning X-Ray Microscopy: David Shapiro1; ¹Lawrence Berkeley National Lab

10:30 AM

Nanoholotomography With Coded Apertures for Efficient Dynamic Imaging of Nanomaterials: Viktor Nikitin¹; Doga Gursoy¹; Marcus Carlsson²; Rajmund Mokso³; Peter Cloetens⁴; ¹Argonne National Laboratory; ²Lund University; ³Technical University of Denmark; ⁴European Synchrotron Radiation Facility

In-Situ/Operando Bragg Coherent X-Ray Diffraction Imaging for Catalysis Studies: Wonsuk Cha¹; ¹Argonne National Laboratory

Coherent x-Ray Diffraction Imaging Dedicated Beamlines at PLS-II and Korea-4GSR: Daseul Ham1; Su Yong Lee1; 1Pohang Accelerator Laboratory / PLS-II Beamline Department

ADVANCED CHARACTERIZATION METHODS

Characterization of Minerals, Metals and Materials 2025: In-Situ Characterization Techniques — Mineralogical Analysis and Process Improvement

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Zhiwei Peng, Central South University; Kelvin Xie, Texas A&M University; Mingming Zhang, Baowu Ouyeel Co. Ltd; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, AnalytiChem Group, USA; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, Devcom Arl Army Research Office; Shadia Ikhmayies, The University of Jordan

Tuesday AM | March 25, 2025 121 | MGM Grand

Session Chairs: Jian Li, CanmetMATERIALS; Andrew Brown, Devcom Arl Army Research Office

8:00 AM

Study and Characterization of an Adsorbent Material Used in the Direct Extraction of Lithium: Gabriela Pantoja Salgado¹; ¹La Paz

High Purity Arsenic Trioxide Prepared From Arsenic Sulfide Residue With Reduction Method: Ai-liang Chen1; Wen-tao Dai1; Ling-yun Huang¹; Huan-wu Zhan²; Xue-xian Jiang³; Gui-xiang He³; Bing Liu¹; ¹Central South University; ²Guangxi Nanguo copper Co., Ltd,; ³Guilin University of Technology

Estimation of Online Homogenization of a Particle Mixture With Acoustic Emission: Yeonjee Choi1; Juyeong Lee1; Ikhyeon Cho1; Joonho Lee1; 1Korea University

9:00 AM

Enhancement Recovery of Fine Kaolin Particles by Microbubble Flotation: Xingiang Li¹; Yanfang Huang¹; Hu Sun¹; Yifan Du¹; Guihong Han1; 1Zhengzhou University

9:20 AM

Process Mineralogy of a Manganese-Silver Ore in Mexico: Han Yang¹; Liulu Cai¹; Gaoyang Chen¹; Shuang Liu¹; Wei Qu¹; Qian Li¹; Hongzhi Zhang¹; ¹Youyan Resources and Environment Technology Research Institute (Beijing) Co., Ltd

9:40 AM Break

10:00 AM

Physicochemical Characterization and Alkali Dissolution of Alluvial Fe-Columbite Deposit for Feasible Formation of Soluble Niobium and Tantalum Complexes: Nnaemeka Nzeh1; Patricia Popoola1; ¹Tshwane University of Technology, Pretoria

10:20 AM

Research and Application of O2-CO2 Mixed Blowing in Converter Steelmaking: Botao Xue1; Kai Dong1; Fengya Qin1; Rong Zhu1; ¹University of Science and Technology Beijing

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Chemistry and Physics of Interfaces — Grain **Boundary Segregation and Migration**

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Timofey Frolov, Lawrence Livermore National Laboratory; Fadi Abdeljawad, Lehigh University; Kaila Birtsch, Los Alamos National Laboratory; Daniel Moore, Lehigh University; Christopher Schuh, Northwestern University

Tuesday AM | March 25, 2025 304 | MGM Grand

Session Chairs: Sergii Divinskyi, University of Muenster, Germany; Fadi Abdeljawad, Lehigh University

8:00 AM Invited

Structure, Energetics and Kinetic Properties of Crystal-Melt Interfaces in Salts: Zhao Fan¹; Piotr Zarzycki¹; Michael Whittaker¹; Mark Asta¹; ¹Lawrence Berkeley National Laboraory

8:30 AM

Triple Junction Interstitial Solute Segregation in Nanocrystalline Alloys: Nutth Tuchinda1; Malik Wagih1; Christopher Schuh2; ¹Massachusetts Institute of Technology; ²Northwestern University & Massachusetts Institute of Technology

8:50 AM Invited

Do We Need Non-Steady-State Interfacial Kinetic Models?: Shen Dillon1; 1University of California, Irvine

Dependence of 9R Interfacial Phase Formation on Boundary Inclination at Medium Angle Grain Boundaries (MAGBs) in Au: Alejandro Hinojos¹; Darcey Britton²; David Adams¹; Daniel Vizoso¹; Remi Dingreville¹; Douglas Medlin¹; ¹Sandia National Laboratories; ²Brigham Young University

9:40 AM Break

10:00 AM Invited

Metastable Defect Phase Diagrams as a Roadmap for Defect and Materials Design: Joerg Neugebauer1; Ali Tehranchi2; Prince Matthews²; TIlmann Hickel²; ¹MPI for Sustainable Materials; ²MPI for Sustainable Materia

10:30 AM

Stabilization of Polycrystalline Alloys by Solute Segregation: Omar Hussein¹; Yuri Mishin¹; ¹George Mason University

10:50 AM

Mesoscale Mechanics of Grain Boundary Disconnections and Shear Coupling: Brandon Runnels¹; Yang Hu²; Dennis Kochmann²; Abhijith Thoopul Anantharanga¹; ¹Iowa State University; ²ETH Zurich

MATERIALS SYNTHESIS AND PROCESSING

Composite Materials: Sustainable and Eco-Friendly Material Development and Applications — Sustainable and Eco-Friendly Materials: Advanced Manufacturing and Recycled Materials

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Yahya Al-Majali, Ohio University; Brian Wisner, Ohio University; Ioannis Mastorakos, Clarkson University; Simona Hunyadi Murph, Savannah River National Laboratory; Muralidharan Paramsothy, NanoWorld Innovations (NWI)

Tuesday AM | March 25, 2025 116 | MGM Grand

Session Chair: Simona Hunyadi Murph, Savannah River National Laboratory

8:00 AM

Biologically Derived and Recycled Feedstocks: Key Components of the Circular Economy for Composites: Matthew Korey1; Amber Hubbard¹; Soydan Ozcan¹; ¹Oak Ridge National Laboratory

Characterization of Natural Fibers and Steel Waste for Preparation of Polymer-Based Composite Materials: Mery Gomez Marroquin¹; Kenny Salazar-Yantas¹; Jhonathan Ocares-Hermosa¹; Victor Malaspina-Rojas¹; Percy. Mantilla-Matta¹; Fernando Huamán-Pérez¹; ¹Universidad Nacional de Ingenieria

8:40 AM

Microscale Damage Mechanism Characterization in Coal Polymer Composites: Cheosung O'Brien¹; Essa Al Amiri¹; Scott Downard¹; Brian Wisner¹; ¹Ohio University

9:00 AM

Nanoparticle Dispersion and Effective Interface in Lightweight Metal Composites: A Detailed Study: Qianqian Li¹; Zhuocheng Xu¹; Milo Shaffer¹; ¹Imperial College London

9:20 AM Break

9:40 AM

Durability of Glass Rubber Concrete Containing Magnesium **Sulphate Environment**: Olasehinde Stephen¹; ¹Ahmadu Bello University

10:00 AM

Enhancing Sustainable Composite Materials Through Thermal Analysis: Karim Elhattab1; 1TA Instruments

10:20 AM

Development of Nitrogen-Induced Self-Forming Aluminum Matrix Composites for Reduced Carbon Footprint: Konbae Lee¹; Kanhu Nayak¹; Juyeon Han¹; Seoyeon Jeon¹; Jiwon Lee¹; Hyokyung Sung¹; Hyunjoo Choi1; 1Kookmin University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Computational Thermodynamics and Kinetics — **Short-Range Order in Random Alloys**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Prashant Singh, Ames National Labratory; Rodrigo Freitas, Massachusetts Institute of Technology; Nicolas Argibay, Ames National Laboratory; Raymundo Arroyave, Texas A&M University; James Morris, Ames Laboratory

Tuesday AM | March 25, 2025 305 | MGM Grand

Session Chairs: Rodrigo Freitas, Massachusetts Institute of Technology; Jonathan McGill, Arizona State University

8:00 AM Invited

First-Principles Study of the Order-Disorder Transition in the AlCrTiV High Entropy Alloy: Michael Widom¹; ¹Carnegie Mellon University

8:30 AM Invited

Solution Thermodynamics Guided Tuning of Local Chemical Ordering in High Entropy Alloys to Achieve High Strength and Ductility: Sriswaroop Dasari¹; Abhishek Sharma¹; Chao Jiang²; Bharat Gwalani¹; Stephane Gorsse³; An-Chou Yeh⁴; Srinivasan Srivilliputhur¹; Rajarshi Banerjee¹; ¹University of North Texas; ²Idaho National Laboratory; ³University of Bordeaux; ⁴National Tsing Hua University

9:00 AM

Capturing Short-Range Order in High-Entropy Alloys With Machine-Learning Potentials: Yifan Cao1; Killian Sheriff1; Rodrigo Freitas¹; ¹Massachusetts Institute of Technology

9:20 AM

Mechanism of Ferroelastic Domain Nucleation: A Phase-Field Study: Avisor Bhattacharya¹; Mohsen Asle Zaeem¹; School of Mines

9:40 AM Break

10:00 AM

Molecular Dynamics Investigation of Short-Range Chemical Ordering in the MoTaW Refractory Complex Concentrated Alloy **Compositional Space Using Machine Learning Potential**: *Jonathan* McGill¹; Yi Yao¹; Lin Li¹; ¹Arizona State University

10:20 AM Invited

Unraveling the Combined Impact of Stress and Hydrogen on Stress Corrosion Cracking of Fe-Based Alloys: A Synergistic Experimental and Computational Study: Arun Devaraji; Semanti Mukhopadhyay¹; Venkata Vukkum¹; Zehao Li¹; Tingkun Liu¹; Dallin Barton¹; Sten Lambeets¹; Maria Sushko¹; Prashant Singh²; Matthew Olszta¹; ¹Pacific Northwest National Laboratory; ²AMES National Laboratory

10:50 AM

Stress-Driven Void Emission From Edge Dislocation Jogs in FCC Metals: Yifan Wang¹; Wu-Rong Jian¹; Wei Cai¹; ¹Stanford University

11:10 AM

Ab Initio Study of the Structure and Stability of Al10V: Hassan Albuhairan1; Michael Widom1; 1Carnegie Mellon University

MATERIALS SYNTHESIS AND PROCESSING

Drying, Roasting, Calcining and Agglomeration of Feedstocks — Iron Ore Agglomeration and Related Processes / Non Ferrous and Other Topics

Sponsored by: TMS Extraction and Processing Division, TMS: Pyrometallurgy Committee

Program Organizers: Stuart Nicol, Glencore Technology; Dean Gregurek, RHI Magnesita; Jesse White, Kanthal AB; Allie Anderson, RHI Magnesita; Elmira Moosavi, Ecole De Technolgoie Superieure; Kristian Mackowiak, Kingston Process Metallurgy Inc.

Tuesday AM | March 25, 2025 104 | MGM Grand

Session Chairs: Stuart Nicol, Glencore Technology; Kristian Mackowiak, Kingston Process Metallurgy Inc.

8:00 AM Introductory Comments

8:05 AM

Investigation of Factors Affecting Iron Oxide Pellet Properties During Production: Grant Kenny¹; Petrus Pistorius¹; ¹Carnegie Mellon University

8:25 AM

Optimization of Process Technology for Preparing Bayan Obo Pellets by Grate Rotary Kiln: Yifan Chai¹; Shuai Ma¹; Long Su²; Xiaoguang Bai²; Guoping Luo¹; Shengli An¹; Peijun Liu¹; Suqian Gu¹; ¹Inner Mongolia University of Science and Technology; ²Inner Mongolia Baogang United Steel Co., Ltd.

8:45 AM

Application Technology of High-Performance Composite Bentonite in Low Silicon Pellets: Ming Li¹; ¹Shougang Jingtang United Iron & Steel Co.

9:05 AM

Optimizing the Use of Stainless Steel Pickling Sludge in Iron Ore Sintering: Wenwen Liu1; Jing Chen2; Mingjun Rao2; Yuanhong Qi3; Haokun Li4; 1Central Iron and Steel Research Institute and Taiyuan Iron and Steel Group Co., Ltd.; ²Central South University; ³Central Iron and Steel Research Institute; 4Taiyuan Iron and Steel Group Co., Ltd.

9:25 AM Break

10:05 AM

Selective Chlorination as an Innovative Method for the Extraction of Valuable From Spent Refractories: Stefan Steinlechner¹; Kerrin Witt¹; Thomas Howard¹; ¹Montanuniversitaet Leoben

9:45 AM

New Calcining and Roasting Applications Using Oxygen and OxyFfuel Combustion: Eric Eccleston¹; ¹Technip Energies

10:25 AM

Lime Roasting Process for Copper Production From Chalcocite Without Polluting With SO₂: Rafael Padilla¹; Pablo Hernandez¹; Oscar Jerez¹; ¹University of Concepcion

LIGHT METALS

Electrode Technology for Aluminum Production Supplier Forum — Electrode Technology for **Aluminum Production Supplier Forum**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Egil Skybakmoen, SINTEF Industry; Les Edwards, Rain Carbon Inc.

Tuesday AM | March 25, 2025 112 | MGM Grand

Session Chair: Samuel Senanu, SINTEF

8:00 AM Introductory Comments

8:05 AM

Advancing Prebaked Anode Technology: Innovations. Sustainability, and Operational Excellence: Maxime Beraud¹; Alexandre Roques¹; ¹Fives

8:30 AM

Design Considerations for Anode Bake Furnace Refractories: Edwin Aalbers1; 1Gouda Refractories BV

The Pleats Bag in GTC'S Application and Development: Yan Zhou¹; Qianshuang Zhuang¹; ¹Alubase Industry Co.,Ltd

9:20 AM

Practical Use of Simulation in the Design and Debottlenecking of Rodshop Plant Operations: Paul Merlin¹; ¹REEL Aluminium Inc.

9:45 AM Break

10:00 AM

Wettable Titanium Diboride Cathode Tile Technology by VSCA: David Jarvis1; Rosanna van den Blik-Jarvis1; Rosie Mellor1; Alf Bjørseth1; 1VSCA

Integrated Cathode Assembly and Energy-Saving Technology: Yan Zhou¹; Haifei Xu¹; Xiangde Shen¹; ¹Alubase Industry Co.,Ltd

The Intelligent Measuring Ramp - A New Approach to Anode Firing in Demanding Process Conditions: Frank Appel¹; ¹Innovatherm

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Electronic Packaging and Interconnection Materials II — Sintering and Bonding Techniques

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: C. Kao, National Taiwan University; Yu-An Shen, Feng Chia University; Christopher Gourlay, Imperial College London; Fan-Yi Ouyang, National Tsing Hua University; Hiroshi Nishikawa, Osaka University; Hannah Fowler, Sandia National Laboratories; Kazuhiro Nogita, University of Queensland; Praveen Kumar, Indian Institute of Science; Tae-Kyu Lee, Cisco Systems; Yan Li, Samsung Semiconductor Inc.

Tuesday AM | March 25, 2025 360 | MGM Grand

Session Chairs: Hiroshi Nishikawa, Osaka University; Fan-Yi Ouyang, National Tsing Hua University

8:00 AM

Ag-Nodule Mediated Bonding With Ag-Si Metastable Phase: Koji Nakayama¹; Yicheng Zhang¹; Masahiko Nishijima¹; Koji Inoue²; Chuantong Chen¹; Minoru Ueshima³; Katsuaki Suganuma¹; ¹Osaka University; ²Tohoku University; ³Daicel Corporation

Electroless Plated Highly (111) Nanotwinned Cu-to-Cu Direct Bonding: I-En Chen1; P. S. Shih1; Yung-Sheng Lin2; Yun-Ching Hung2; Chun-Wei Chiang²; C. R. Kao¹; ¹National Taiwan University; ²Product Characterization, Corporate R&D, Advanced Semiconductor Engineering (ASE) Group

8:40 AM

Investigation of SiCN-SiCN Bonding With Different Wet Pretreatment Solutions for Cu Hybrid Bonding Applications: Chien-Yu Liu¹; Pin-Syuan He¹; Rou-Jun Lee¹; Yi-Chen Chung¹; Yun-Hsuan Chen¹; Chih Chen¹; ¹National Yang Ming Chiao Tung University

Investigation of Electroless Ag-Passivated Cu-to-Cu Direct Bonding and Micro Cu Pillar Bonding: Ming-Hsuan Hsieh1; Yung-Sheng Lin²; Yun-Ching Hung²; Chun-Wei Chiang²; C. Robert Kao³; ¹ National Taiwan University; ²Product Characterization, Corporate R&D, Advanced Semiconductor Engineering (ASE) Group; 3National Taiwan University

9:20 AM

Low Vacuum Bonding Using Nano-Twinned Silver and SiO2 for Heterogeneous Integration: Tang Yu¹; Chunchieh Huang¹; Fan-Yi Ouyang¹; ¹National Tsing Hua University

9:40 AM Break

10:00 AM

Thermal-Structural Coupling Analysis of Cu-Cu Hybrid Bonding in 3D Stacked Die Configurations: Yong Jie Wong¹; Mohd Sharizal Abdul Aziz¹; C.Y. Khor²; Zheng Lin Goh¹; ¹Universiti Sains Malaysia; ²Universiti Malaysia Perlis

10:20 AM

Microstructural Evolution and Shear Strength of Nano-Ag Paste Joints With Variable Sintering Temperatures and Particle Sizes: Changcheng Zheng¹; Roman Bolzowski²; Ming Liu³; Dekui Mu¹; David Yan²; ¹Huaqiao University; ²San Jose State University; ³General Motors China Science Lab

Plasma-Free Surface Modification in Fine-Pitch Cu/SiO2 Hybrid Bonding: Pin-Lin Chen¹; Chih Chen¹; ¹National Yang Ming Chiao Tung University

11:00 AM

Low Temperature Cu-Cu Direct Bonding in Air ambient by Ultrafast Surface Grain Growth: Yun-Fong Lee1; 1National Central University

NUCLEAR MATERIALS

Elucidating Microstructural Evolution Under Extreme Environments — Radiation Effects on Fuels, **Ceramics, and Moderator Systems**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Mukesh Bachhav, Idaho National Laboratory; Boopathy Kombaiah, Idaho National Laboratory; Janelle Wharry, University of Illinois; Assel Aitkaliyeva, University of Florida; Miaomiao Jin, Pennsylvania State University; Farida Selim, Arizona State University; Nathan Almirall, GE Aerospace

Tuesday AM | March 25, 2025 162 | MGM Grand

Session Chair: Assel Aitkaliyeva, University of Florida

8:00 AM Invited

Evolution of Interstitial-Type Defects in Thorium Dioxide: Yongfeng Zhang¹; Lin-Chieh Yu¹; Miaomiao Jin²; Kaustubh Bawane³; Boopathy Kombaiah⁴; Anshul Kamboj⁴; Chao Jiang⁴; Marat Khafizov⁵; David Hurley⁴; ¹University of Wisconsin; ²Penn State University; ³Idaho National Laboraotry; 4Idaho National Laboraotry; 5Ohio State University

8:30 AM

In-Situ TEM Study of Microstructural Evolution in Proton Irradiated Single Crystal UO, Under High-Temperature Annealing: Kaustubh Bawane¹; Anshul Kamboj¹; Miaomiao Jin²; Md Minaruzzaman³; Mutaz Alshannaq³; Karl Rickert⁴; J. Matthew Mann⁵; Fei Teng¹; Mason Childs¹; Lin Shao⁶; David Hurley¹; Yongfeng Zhang⁷; Marat Khafizov³; Boopathy Kombaiah¹; ¹Idaho National Laboratory; ²Pennsylvania State University; ³The Ohio State University; ⁴KBR Inc.; ⁵Air Force Research Laboratory; ⁶Texas A&M University; ⁷University of Wisconsin-Madison

8:50 AM

Machine Learning Potential Development for Advanced Oxide Fuels: Audrey Miles1; Bartomeu Monserrat2; Sarah Finkeldei3; ¹University of California, Irvine; University of Cambridge; ²University of Cambridge; 3University of California, Irvine

9:10 AM

Examining Fission Gas Diffusion at Grain Boundaries in Advanced Nuclear Fuels: Sarah Finkeldei¹; John Proctor¹; Oran Lori¹; Shen Dillon¹; Joshua White²; Yongqiang Wang²; Michael Cooper²; David Andersson²; ¹University of California-Irvine; ²Los Alamos National Laboratory

9:30 AM Break

9:45 AM

Investigation of the Mechanisms Behind Irradiation-Induced Grain **Subdivision**: Bao-Phong Nguyen¹; Assel Aitkaliyeva¹; Sadie Wicks¹; ¹University of Florida

10:05 AM Invited

Irradiation-Induced Microstructure Evolution in Graphite: Anne Campbell¹; José Arregui Mena¹; ¹Oak Ridge National Laboratory

10:35 AM

Impact of Alpha-Damage and Helium Production on Heat Capacity of Advanced Oxide Fuels: Thierry Wiss1; 1European Commission, Joint Research Centre

10:55 AM

Embrittlement and Hardening of Beryllium Under Irradiation at Low Temperatures: Viacheslav Kuksenko¹; ¹UK Atomic Energy Authority

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Energy Technologies and CO2 Management — **Energy Efficiency, Combustion, Renewable Energy**

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee, TMS: Recycling and **Environmental Technologies Committee**

Program Organizers: Onuralp Yucel, Istanbul Technical University; Chukwunwike Iloeje, Argonne National Laboratory; Shafiq Alam, University of Saskatchewan; Donna Guillen, Idaho National Laboratory; Fiseha Tesfaye, Metso Finland Oy, Åbo Akademi University; Lei Zhang, University of Alaska Fairbanks; Susanna Hockaday, Curtin University, WASM; Neale Neelameggham, IND LLC; Hong Peng, University of Queensland; Nawshad Haque, Commonwealth Scientific and Industrial Research Organization; Alafara Baba, University of Ilorin; Tuan Nguyen, University of Queensland; Adam Powell, Worcester Polytechnic Institute; Thomas Battle; Duhan Zhang, Massachusetts Institute of Technology

Tuesday AM | March 25, 2025 364 | MGM Grand

Session Chairs: Hong Peng, University of Queensland; Tuan Nguyen, University of Queensland

8:00 AM Introductory Comments

Infrared Thermal Loading on Walls and Structures: Joshua Jordan¹; Taylor Sparks¹; Howard Atkin²; Rob Atkin²; ¹University of Utah; ²Pirta

8:30 AM

Refractories for Hydrogen Use in Metal Production: A Review: Erik Koren¹; Samuel Senanu¹; ¹SINTEF Industry

SmartBurner: Enhancing Gas Burner Performance Through Advanced Monitoring: Amin Rostamian¹; Marc Bertherat²; ¹Novamet Sarl; ²Constellium

Solar Convective Furnace: System Dynamics and Operations Strategy: Vishwa Deepak Kumar¹; Laltu Chandra²; Rajiv Shekhar²; ¹Indian Institute of Technology, Jodhpur; ²IIT Kanpur

9:30 AM Break

Plasma-Enhanced Low-Temperature Dry Reforming of Methane: Ruigang Wang¹; MD Monir Hossain¹; ¹Michigan State University

10:10 AM

Effect of Open Metal Sites on Methane Adsorption in Metal-Organic Framework HKUST-1: Hyo-Sun Jang1; Byung-Hyun Kim2; Hee Jung Lee¹; Jae-Hyung Cho¹; ¹Korea Institute of Materials Science (Kims); ²Hanyang University ERICA

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmental Degradation of Additively Manufactured Materials — Corrosion and **Environmentally Assisted Cracking in Additively Manufactured Components**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Kinga Unocic, North Carolina State University; Sebastien Dryepondt, Oak Ridge National Laboratory; Michael Kirka, Oak Ridge National Laboratory; Xiaoyuan Lou, Purdue University; Emma White, DECHEMA Forschungsinstitut; Benjamin Adam, Oregon State University; Mark Stoudt, National Institute of Standards and Technology; Xiaolei Guo, Colorado School of Mines

Tuesday AM | March 25, 2025 169 | MGM Grand

Session Chairs: Emma White, DECHEMA Forschungsinstitut; Xiaoyuan Lou, Purdue University

8:00 AM Invited

Microstructural and Compositional Distribution Effects on LPBF CuNi Corrosion: Robert Kelly¹; Timothy Montoya¹; Finley Pettitt¹; ¹University of Virginia

8:30 AM

Understanding the Influence Processing on LPBF Cu-30Ni Corrosion in Flowing Chloride Environments: Timothy Montoya¹; Finley Pettitt¹; Robert Kelly¹; ¹University of Virginia

Evaluation of Environmentally Assisted Cracking on Wire Arc Additively Manufactured (WAAM) AISI 316LSi: Vishnu Ramasamy¹; Brett Ley¹; John Lewandowski¹; ¹Case Western Reserve University

Corrosion Fatigue Response of Laser Powder Bed Fused High Strength Steel: Abhi Sharda¹; Sheng Huang¹; Cemal Cem Tasan¹; ¹Massachusetts Institute of Technology

9:30 AM Break

9:50 AM

Microstructure and Corrosion Behavior of a Friction Stir Additively Manufactured Al-Cr-Mn-Co-Zr I-Phase Alloy: Sarshad Rommel¹; Mingxuan Li¹; Richard Eberheim²; Callie Benson³; Mark Aindow¹; ¹University of Connecticut; ²Solvus Global; ³Collins Aerospace

10:10 AM

Oxidation of Al/Si-Coated Additive Manufactured 699XA Alloy: Antoine Duval¹; G. Bonnet¹; Fernando Pedraza¹; ¹La Rochelle Université. LaSIE UMR 7356- CNRS

10:30 AM

Understanding the Interplay Between Dislocation Slip, Hydrogen Clustering, GB Cavitation and Cracking in Hydrogen Embrittlement Through Atomistic-to-Mesoscale Simulations: Liming Xiong¹: Thanh Phan¹; Yipeng Peng¹; ¹North Carolina State University/Iowa State University

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmentally Assisted Cracking: Theory and Practice — Innovative Techniques in Corrosion Research

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Tuesday AM | March 25, 2025 167 | MGM Grand

Session Chairs: Gary Was, University of Michigan; John Scully, University of Virginia

8:00 AM Invited

The Roles of Intrinsic Material Factors and Hydrogen-Metal Interactions in the Increased Hydrogen Environmentally Assisted Cracking Susceptibility of Additively Manufactured 17-4 PH Stainless Steel: Lauren Singer¹; Zachary Harris¹; James Burns¹; John Scully1; 1University of Virginia

8:30 AM Invited

Mechanisms and Design Strategies for Tribocorrosion Resistance in Aluminum Alloys: Wenjun Cai¹; ¹Virginia Polytechnic Institute and State University

9:00 AM Invited

Mapping and Mitigating of Oxidation Mechanism Transitions in Tungsten Driven by Scale Cracking: Samuel Humphry-Baker1; James Davidson¹; ¹Imperial College London

9:30 AM Break

9:50 AM Invited

How Irradiation Induces Intergranular Stress Corrosion Cracking in Stainless Steels: Gary Was1; 1University of Michigan

Experimental Methods for the Performance Test of EAC and Case Studies Through NSUF: Rongjie Song¹; ¹Idaho National Laboratory

10:50 AM Invited

High-Throughput Testing of Alloy Compositions in Radiation-Corrosion Environments: Franziska Schmidt¹; Ben Derby¹; Nan Li¹; Hyosim Kim¹; Peter Hosemann²; Blas Uberuaga¹; Yongqiang Wang¹; ¹Los Alamos National Laboratory; ²University of California Berkeley

MECHANICS OF MATERIALS

Fatique in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling — **Predictive Methods for Fatigue Properties**

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Orion Kafka, National Institute of Standards and Technology; J.C. Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Brian Wisner, Ohio University; Krzysztof Stopka, Purdue University; Kelly Nygren, Cornell University

Tuesday AM | March 25, 2025 318 | MGM Grand

Session Chair: Krzysztof Stopka, Purdue University

8:00 AM Invited

A Direct Physical Approach to Characterize Fatigue Crack Growth Under Large Scale Plasticity in Stress- and Strain-Controlled Fatigue: K. S. Ravi Chandran¹; ¹The University of Utah

A Fatigue Calculation Workflow Considering Effects of Microstructure and Defects: Junyan He¹; Anupam Neogi¹; Deepankar Pal¹; Ali Najafi¹; Grama Bhashyam¹; ¹Ansys Inc.

Crystal Plasticity Modeling of In-Phase/Out-of-Phase Thermo-Mechanical Loading in a High Temperature Shape Memory Alloy: Adrien Cassagne¹; Dimitris Lagoudas¹; Jean Briac Le Graverend¹; ¹Texas A&M University

9:00 AM

Investigating Fatigue Crack Nucleation in Ti Alloys Containing Micro-Texture Regions (MTR) Using Parametrically Upscaled Constitutive and Crack Nucleation Models: Kishore Appunhi Nair¹; Somnath Ghosh¹; Tawqeer Nasir Tak¹; ¹Johns Hopkins University

9:20 AM Break

Microstructure-Sensitive Fatigue Modeling for Additively Manufactured Ti, Al, and Ni Alloys: Gary Whelan¹; Hariharan Sriram¹; ¹Questek Innovations LLC

9:50 AM Invited

Predicting TMF Life of Single-Crystal Ni-Base Superalloys Using a Probabilistic Physics-Guided Neural Network: Richard Neu¹; Rohan Acharya¹; Alexander Caputo¹; ¹Georgia Institute of Technology

10:10 AM

Studying Dislocation - Prior Particle Boundary Interactions in Ni-Based Superalloy From Polycrystalline Discrete Dislocation **Dynamics**: *Divyesh Kumar Mistry*¹; Tawqeer Tak²; Amuthan Ramabathiran¹; P. J. Guruprasad¹; ¹Indian Institute of Technology-Bombay; ²CISMMS- Johns Hopkins University

10:30 AM

Synergistic Effects of Volumetric Defect and Microstructure on Fatigue Crack Initiation in Additively Manufactured Inconel 718: Insights From Crystal Plasticity Simulations: Indrajit Nandi¹; Sajith Soman¹; Nima Shamsaei¹; Shuai Shao¹; ¹Auburn University

ADVANCED CHARACTERIZATION METHODS

Heterostructured and Gradient Materials (HGM VI): Principle, Processing and Properties — Deformation **Mechanisms**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Shaping and Forming Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Tsinghua University; Ke Lu, Liaoning Academy of Materials; Hyoung Seop Kim, Pohang University of Science and Technology; Xiaolei Wu, Institute of Mechanics

Tuesday AM | March 25, 2025 155 | MGM Grand

Session Chairs: Jian Wang, University of Nebraska-Lincoln; Caizhi Zhou, University of South Carolina; Andrea Bachmaier, Austrian Academy of Sciences, Erich-Schmid Institute of Materials Science

8:00 AM Invited

Plastic Deformation Mechanisms of Rapidly Solidified Al-Si Eutectic: Jian Wang¹; Wenqian Wu¹; Arkajit Ghosh²; Amit Misra²; ¹University of Nebraska-Lincoln; ²University of Michigan

An Investigation on Synergistic Strengthening Produced by Skin Pass Rolling of Commercially Pure Titanium: Ruben Ochoa1; Adam Freund¹; Josh Edwards¹; Nicholas Derimow²; Nicholas Krienke¹; Suveen Mathaudhu¹; ¹Colorado School of Mines; ²National Institute of Standards and Technology

8:45 AM Invited

Strain-Dependent Microstructure and Magnetic Properties of Ferro- and Antiferromagnetic Composites by Severe Plastic **Deformation**: Michael Zawodzki¹; Lukas Weissitsch¹; Andrea Bachmaier¹; ¹Erich-Schmid Institute of Materials Science, Austrian Acadamy of Sciences

9:10 AM

Effects of Aging on the Deformation Behavior and Mechanical Properties of Heavily Cold-Rolled Duplex Stainless Steel: Chihiro Watanabe¹; Norimitsu Koga¹; Tomotsugu Shimokawa¹; Masakazu Kobayashi²; Hiromi Miura²; ¹Kanazawa Univeristy; ²Toyohashi University of Technology

9:30 AM

Harnessing Plastic Instability for Work Hardening in a Heterostructured Multi-Principal Element Alloy: Xiaolei Wu1; ¹Institute of Mechanics, Chinese Academy of Sciences

9:50 AM Break

10:10 AM Invited

Probing the Evolution of Dislocation Structures in Heterogeneous Lamellar Metals via Discrete Dislocation Dynamics Simulations: Caizhi Zhou1; 1University of South Carolina

10:35 AM Invited

Fatigue Behavior of Core-Shell Heterogeneous Grain Structured CoCrFeMnNi High-Entropy Alloy: Zhe Zhang1; Xu Chen1; Kei Ameyama²; ¹Tianjin University; ²Ritsumeikan University

11:00 AM

Deformation Behavior and Dislocation Patterning in TC4/Ti Heterogeneous Structures Prepared by Spark Plasma Sintering: Zongchang Guo1; 1Tsinghua University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

High Performance Steels — Steel Design I

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Benjamin Adam, Oregon State University; C. Tasan, Massachusetts Institute of Technology; Adriana Eres-Castellanos, Colorado School of Mines; Krista Limmer, DEVCOM Army Research Laboratory; Jonah Klemm-Toole, Colorado School of Mines; Pello Uranga, University of Navarra

Tuesday AM | March 25, 2025 302 | MGM Grand

Session Chairs: Pello Uranga, University of Navarra; Jonah Klemm-Toole, Colorado School of Mines

8:00 AM Invited

Impact of Copper Additions on Phase Transformations and Mechanical Properties of High-Strength Steels Alloyed With Nickel and Molybdenum: Xabier Azpeitia¹; Unai Mayo¹; Nerea Isasti¹; Pello Uranga¹; ¹CEIT and TECNUN (University of Navarra)

8:30 AM

High Temperature Nitriding Behavior of Low Carbon Low Alloy Steel: Ryota Takao¹; Goro Miyamoto²; Tadashi Furuhara²; ¹Aichi Steel Corporation; 2Tohoku University

8:50 AM

Genetic Design of Cu Nanoprecipitation Hardened Marageing Steels for Additive Manufacturing: Pedro Rivera-Diaz-Del-Castillo¹; Xinjiang Hao²; Hossein Eskandari Sabzi²; ¹University of Southampton; ²Globus Metal Powders

9:10 AM Break

9:30 AM Invited

A Model Case for Liquid-Metal Embrittlement: Early Grain-Boundary Structure Evolution in a Binary Iron-Zinc System: Yuki Ikeda¹; Reza Darvishi Kamachali¹; Robert Maass¹; ¹Federal Institute of Materials Research and Testing (BAM)

10:00 AM

Powder Metallurgy Processing of a Highly Wear Resistant Nanostructured Bainitic Steel: Rangasayee Kannan¹; Yiyu Wang¹; Tomas Grejtak¹, Bryan Lim¹; Peeyush Nandwana¹; ¹Oak Ridge **National Laboratory**

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Hume-Rothery Symposium on Thermodynamics of Microstructure Stability and Evolution — Modeling Grain Dynamics and Thermodynamic Behavior in **Materials**

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee

Program Organizers: Yunzhi Wang, Ohio State University; Wei Xiong, University of Pittsburgh; Jiamian Hu, University of Wisconsin Madison; Chuan Zhang, CompuTherm LLC

Tuesday AM | March 25, 2025 357 | MGM Grand

Session Chairs: Yu Wang, Michigan Technological University; Ye Cao, University of Texas at Arlington

8:00 AM Invited

When Grains go Wild! Tracking the Emergence and Persistence of Abnormal Grain Growth in the Commercial Aluminum Alloy 5252: André Schulz-Harder¹; Wolfgang Ludwig²; Jules Dake¹; Haixing Fang²; Pierre-Olivier Autran²; Karolína Gutbrod¹; Markus Ziehmer¹; Carl Krill¹; ¹Ulm University; ²European Synchrotron Radiation Facility

8:25 AM Invited

Understanding the Impact of Applied Magnetic Fields on the Thermodynamic and Kinetic Behavior of Heat-Treated Steels: Michael Tonks¹; Soumya Bandyopadhyay¹; Ming Li¹; Luke Wirth²; Ravi Bollineni³; Richard Hennig¹; Dallas Trinkle²; Shima Shahab³; Charlie Li⁴; ¹University of Florida; ²UIUC; ³Virginia Tech; ⁴DANTE Solutions

8:50 AM Invited

Evolving Information Complexity of Coarsening Materials Microstructures: Jeffrey Rickman¹; ¹Lehigh University

9:15 AM Invited

Understanding Mechanical Tunability in Ba1-xSrxTiO3 Membrane by Phase-Field Simulation: Laveeza Ahmad1; Yi-De Liou1; Kena Zhang¹; Ye Cao¹; ¹University of Texas at Arlington

9:40 AM Commentary from Experimental Perspective: High throughput and autonomous lab experiment for AI driven materials discovery Speaker: Chengyi Wu, MTI Corporation

9:50 AM Break

10:10 AM Invited

Microscopic Modeling of Pre-Martensitic Phenomena: Complementary Perspectives From Bottom-Up and Top-Down Approaches: Yu Wang1; Yongmei Jin1; 1Michigan Technological University

10:35 AM Invited

Predicting Domain Structure and Switching in Ferroelectrics: Physics-Informed Machine Learning and Phase-Field Modeling: Samrat Choudhury¹; Benjamin Rhoads¹; Abigail Hogue¹; Joseph Hafen¹; ¹University of Mississippi

11:00 AM Invited

Hydride Formation in Superconducting Q-Bits: Tyler Leibengood¹; Pierre-Clement A. Simon²; Peter Voorhees¹; ¹Northwestern University; ²Idaho National Laboratory

11:25 AM Invited

Critical Role of Internal Stresses in the Nucleation of Nanoscale Undercooled Melts at Solid-Solid Phase Interfaces: Kasra Momeni¹; ¹University of Alabama

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Innovations in Energy Materials: Unveiling Future Possibilities of Computational Modelling and Atomically Controlled Experiments — Batteries and Catalysis

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Energy Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Composite Materials Committee

Program Organizers: Paolo Mele, Shibaura Institute of Technology; Julio Gutierrez Moreno, Barcelona Supercomputing Center; Hussein Assadi, RIKEN (The Institute of Physical and Chemical Research); Esmail Doustkhah, Istinye University; Marco Fronzi, The University of Sydney; Donna Guillen, Idaho National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Tuan Nguyen, University of Queensland

Tuesday AM | March 25, 2025 358 | MGM Grand

Session Chairs: Yoshiaki Nakamura, Osaka University; Anming Hu, University of Tennessee

8:00 AM Invited

Nanoscale Design of 3D Anode and High Effective Catalysis for High Performance Aluminum-Air Batteries: Anming Hu¹; ¹University of Tennessee

8:25 AM

Quantum-Assisted Machine Learning Analysis of Silicon-Based Anodes for Lithium Batteries: Thermodynamics, Structural Insights, and Lithium Diffusion. Identifying Challenges and Exploring Novel Candidates: Marco Fronzi¹; Catherine Stampfl¹; Amanda Ellis²; Eirini Goudeli²; ¹The University of Sydney; ²The University of Melbourne

Exploring Ultra-Stable Green Rust Compositions for Green Energy Catalysis: Mohammad Al Assadi¹; ¹RIKEN

9:05 AM

Optimization of CO2 Reduction Reaction Using Nanoporous Copper Catalysts Through Machine Learning-Driven Process Parameter Modeling: Yu-Hung Lai¹; Jun-Yi Lok¹; Wen-Han Tsai¹; I-Chung Cheng¹; ¹National Taiwan University

9:25 AM Break

9:45 AM

Ab Initio Models for the Prediction of Corrosion-Passivation Behavior in Aqueous Media: Rachel Gorelik1; Arunima Singh1; ¹Arizona State University

10:05 AM Invited

Resonant Ultrasound Spectroscopy for Rapid Down Selection, Elastic Property Determination, and Model Validation in High-**Entropy Materials**: Christopher Mizzi¹; ¹Los Alamos National Laboratory

SPECIAL TOPICS

Looking Outside Materials Science: Lessons Learned for and from Materials Discovery - A Student-Led Symposium — Looking Outside Materials Science: Lessons Learned for and from Materials Discovery

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Katelyn Jones, NIST; Robert Moore, Lehigh University; Yasir Mahmood, NIST, UMD; Ashley Spear, University of Utah; Natasha Vermaak, Lehigh University

Tuesday AM | March 25, 2025 170 | MGM Grand

Session Chairs: Katelyn Jones, NIST; Yasir Mahmood, NIST, UMD; Daniel Moore, Lehigh University; Natasha Vermaak, Lehigh University; Ashley Spear, University of Utah

8:00 AM Invited

Can Synchrotron X-Ray Imaging Tools Developed for Materials Science Help Predict Volcanic Eruptions or Minimise Back Pain?: Peter Lee1; 1University College London

8:30 AM Invited

Bringing Ultrafast Optics to Metallurgy: Leora Dresselhaus-Marais¹; ¹Stanford University

9:00 AM Invited

Carbonate Minerals Reveal Fundamental Insights Into Nucleation and Growth: Wenhao Sun1; 1University of Michigan

9:30 AM Break

9:50 AM Invited

Microstructure Characterization and Design With Help From Video Games, Geostatistics, and Other Interdisciplinary Tools: Oliver Johnson¹; Christopher Adair¹; Jose Nino¹; Sterling Baird¹; Eric Homer¹; Gregory Thompson²; Troy Munro¹; Heng Ban³; ¹Brigham Young University; ²University of Alabama; ³University of Pittsburgh

10:20 AM Invited

Under Pressure: The Lasting Interdisciplinary Impact of Percy Bridgman on Processing in Extreme Environments: Suveen Mathaudhu1; 1Colorado School of Mines

10:50 AM Speaker Panel: Yasir Mahmood (Clemson University), Robert Daniel Moore (Lehigh University) and Katelyn Jones (Carnegie Mellon University) will moderate a Question and Answer session with the panel of invited speakers from the symposium "Looking outside materials science: lessons learned for and from materials discovery - A Student-Led Symposium".

This is a first of its kind technical symposium organized by the graduate students. The panel discussion will highlight origin stories, challenges, and advice the speakers have for others pursuing unconventional collaborations and working across disciplines.

LIGHT METALS

Magnesium Technology 2025 — Biomedical **Applications**

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Domonkos Tolnai, Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon; Aaron Palumbo, Big Blue Technologies; Aeriel Murphy-Leonard, Ohio State University; Neale Neelameggham, IND LLC

Tuesday AM | March 25, 2025 115 | MGM Grand

Session Chairs: Berit Zeller-Plumhoff, Helmholtz-Zentrum Hereon; Petra Maier, University of Applied Sciences Stralsund

8:00 AM Keynote

Magnesium in the Medical Device Industry: A Material Supplier's View: Adam Griebel¹; ¹Fort Wayne Metals

Microstructure, Mechanical Properties, Bio-Corrosion Behaviors and Cytotoxicity of Mg-Zn Alloy as Bone Fixation Implant: Kun Yu1; ¹Central South University

Material Extrusion-Based 3D Printing of Mg Scaffolds: Joung Sik Suh¹; Byeong-Chan Suh¹; Ha Sik Kim¹; Sang Eun Lee¹; Jae Seong Kim1: 1Korea Institute of Materials Science

Capabilities of Mg-Zn-Ca-Ce Alloys and Polymer Coated Mg for Biomedical Implants: Daria Humeniuc¹; Natalie Debiak¹; Dheiksha Jayasankar¹; Stephanie Kotiadis¹; Ashutosh Singh¹; Abdallah Elsayed¹; ¹University of Guelph

9:40 AM Break

10:00 AM

Investigation the Effect of Silver Addition on the Age Hardening Response of Mg-2.5Zn-0.5Ca-xAg (x=0.5, 1.5 and 2.5%) Alloy for Orthopedic Applications: Amarjeet Singh¹; ¹Punjab Engineering College

10:20 AM

Investigating the Effect of Silver on the Microstructural, Mechanical and Corrosion Behavior of Mg-Zn-Ca-xAg (x=0.5,1.5 and 2.5%) Alloy for Orthopedic Applications: Amarjeet Singh¹; ¹Punjab Engineering College

10:40 AM

Influence of Temperature on the Tensile Test Behaviour of Mg-Li-Y Alloy Wires: Kenneth MacLeod¹; ¹The University of Strathclyde

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Materials and Chemistry for Molten Salt Systems — Influence of Environmental Factors on Molten Salt Corrosion

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Yu-chen Karen Chen-Wiegart, Stony Brook University / Brookhaven National Laboratory; Nathaniel Hoyt, Argonne National Laboratory; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Weiyue Zhou, Massachusetts Institute of Technology

Tuesday AM | March 25, 2025 165 | MGM Grand

Session Chair: Kumar Sridharan, University of Wisconsin-Madison

Dealloying of Post-Irradiated Model Ni2OCr (wt.%) Alloy in Molten **FLiNaK Salts**: Ho Lun Chan¹; Sean Mills²; Matthew Chancey³; Benjamin Derby³; Harjot Singh¹; Elena Romanovskaia¹; Valentin Romanovski¹; Nathan Bieberdorf²; Yongqiang Wang³; Mark Asta²; Andrew Minor²; Peter Hosemann²; John Scully¹; ¹University of Virginia; ²University of California, Berkeley; 3Los Alamos National Laboratory

8:20 AM Invited

The Evolving Morphology of Porosities in Ni-Cr-Based Alloys Under Molten Salt Corrosion: Yang Yang¹; Andrew Minor²; Michael Short³; Weiyue Zhou³; ¹Pennsylvania State University; ²University of California, Berkeley; 3Massachusetts Institute of Technology

8:45 AM

Influence of Irradiation on Microstructure and Oxidation Behavior in Fe-8Cr Film: Jijo Christudasjustus¹; Kayla Yano¹; Tanvi Ajantiwalay¹; Minju Choi¹; Mark Bowden¹; Hyosim Kim²; Ryan Hayes³; Daniel Schreiber¹; Tiffany Kaspar¹; ¹Pacific Northwest National Laboratory; ²Los Alamos National Laboratory; ³University of California, Berkeley

9:05 AM

Corrosion of Ultrahigh Temperature Ceramics and PM-HIP Refractory Alloys In Molten Chloride Salt: Brian Carpman¹; James Kelly²; Stephen Raiman¹; ¹University of Michigan; ²Lawrence Livermore National Laboratory

9:25 AM

Simultaneous Proton Irradiation and Molten FLiNaK Corrosion of 316-SS and Ni-Based Allovs: Cole Evered1: Michael Tonks2: Kumar Sridharan¹; Adrien Couet¹; ¹University of Wisconsin Madison; ²University of Florida

9:45 AM Break

10:05 AM

The Effect of Temperature on the Dealloying Behavior of Binary Ni-20Cr Alloy in Molten FLiNaK: Harjot Singh¹; Ho Lun Chan¹; Elena Romanovskaia¹; Valentin Romanovski¹; Minh Tran¹; John Scully¹; ¹University of Virginia

10:25 AM

Introducing Damage Gradient in Stainless Steel 316H by 2 MeV Proton Irradiation and Mapping of Corrosion Susceptibility in FLiNaK: Michenna Allen1; Zhihan Hu1; Kenneth Cooper1; Kyle Williams¹; Rijul Chauhan¹; Lin Shao¹; ¹Texas A&M University

Assessing the Impact of Molten Halide Salts on Creep of Structural Alloys at 650°-750°C: Rishi Pillai¹; Bruce A. Pint¹; ¹Oak Ridge National Laboratory

11:05 AM

Corrosion Behavior of Metallic Materials in Heat Transfer Fluids and Mitigation Strategies for CSP Applications: Ceyhun Oskay¹; Christoph Grimme¹; Benjamin Grégoire²; Mathias Galetz¹; ¹DECHEMA-Forschungsinstitut; ²La Rochelle Université

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components IV — Irradiated Materials **Performance Prepared by Novel Processing Techniques**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Kayla Yano, Pacific Northwest National Laboratory; Assel Aitkaliyeva, University of Florida; Eric Lang, University of New Mexico; Eda Aydogan, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Benjamin Eftink, Los Alamos National Laboratory; Tanvi Ajantiwalay, Pacific Northwest National Laboratory

Tuesday AM | March 25, 2025 160 | MGM Grand

Session Chairs: Caleb Massey, Oak Ridge National Laboratory; Eric Lang, University of New Mexico

8:00 AM Invited

Investigating Radiation Effects on Anisotropic Properties of WAAM-Fabricated Grade 91 Steel for Nuclear Applications: T.M. Kelsy Green¹; Caleb Massey²; Niyanth Sridharan³; Kevin Field⁴; ¹Antares Industries; ²Oak Ridge National Laboratory; ³Lincoln Electric; ⁴University of Michigan

Evolution of Heterogeneous 316L Stainless Steel Microstructures Under Neutron Irradiation: Geeta Kumari¹; Tim Lach¹; Stephen Taller¹; Caleb Massey¹; ¹Oak Ridge National Laboratory

8:50 AM

Effect of Neutron Irradiation on Parent and Friction Stir Processed Ni-Based ODS MA754 Alloy: Ramprashad Prabhakaran¹; Kayla Yano¹; Stuart Maloy¹; Rajiv Mishra²; Indrajit Charit³; ¹Pacific Northwest National Laboratory; ²University of North Texas; ³University of Idaho

9:10 AM

Establishing IASCC-Microstructure Relationship for 316L Stainless Steel Made by Laser Direct Energy Deposition Additive Manufacturing: Evan Mcdermott¹; Jingfan Yang²; John Snitzer¹; Xiaoyuan Lou¹; ¹Purdue University; ²Idaho National Laboratory

9:30 AM

Hot Deformation and Processing Maps of Austenitic Stainlesss Steel, FXM19 for Nuclear Reactor Prssure Vessel: Jae Suk Jeong¹; Tae-Ho Lee²; Jae Hoon Jang²; Kwangsik Han¹; Jeon Young Song¹; Young Hwa Ma¹; ¹Doosan Enerbility; ²Korea Institute of Materials Science

9:50 AM Break

10:10 AM

Simulation of Spark Plasma Sintering of Uranium Mononitride: Finite Element and Machine Learning Approaches: Faris Sweidan¹; Amit Arpon¹; Justin Kermarrec¹; Yi Meng Chan¹; Pär Olsson¹; ¹KTH Royal Institute of Technology

10:30 AM

Effects of Radiation-Induced Segregation on the Structure-Property Relationship of RPV Steel Electron Beam Welds: Elliot Marrero¹; Grayson Nemets¹; Jasmyne Emerson¹; Yu Lu²; Maria Okuniewski¹; Janelle Wharry¹; ¹Purdue University; ²Boise State University, Center for Advanced Energy Studies

10:50 AM

Tailoring Properties of HT9 Ferritic/Martensite Steel via Magnetic Field Heat Treatment: Kirk Lemmen1; Haluk Karaca1; Osman Anderoglu²; XiaTong Yang²; Nan Li³; Stuart Maloy⁴; ¹University of Kentucky; ²University of New Mexico; ³Los Alamos National Laboratory; ⁴Pacific Northwest National Laboratory

Effects of External Magnetic Field Heat Treatment on Irradiation Resistance of Ferritic/Martensitic Steels: Xiatong Yang¹; Kirk Lemmen²; Cle' Sanchez²; Nan Li³; Haluk Karaca²; Stuart Maloy⁴; Osman Anderoglu¹; ¹University of New Mexico; ²University of Kentucky; 3Los Alamos National Laboratory; 4Pacific Northwest **National Laboratory**

MECHANICS OF MATERIALS

Mechanical Behavior Related to Interface Physics IV — Interfaces Related to Novel Materials and **Manufacturing Methods**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Nuclear Materials Committee, TMS: Surface Engineering Committee

Program Organizers: Stanislav Zak, Austrian Academy of Sciences; Nathan Mara, University of Minnesota; Barbara Putz, Empa Swiss Federal Laboratories for Materials Science and Technology; Glenn Balbus, MRL Materials Resources LLC; Kevin Schmalbach, Bruker Nano; Youxing Chen, University of North Carolina Charlotte

Tuesday AM | March 25, 2025 369 | MGM Grand

Session Chairs: Thomas Edwards, Nims; Kevin Schmalbach, Bruker

8:00 AM

Elucidating the Ballistic Impact Response of CFRP Impregnated Reinforced Concrete: Samuel Bartlett¹; Juan Escobedo-Diaz¹; Amar Khennane¹; Hongxu Wang¹; Jianshen Wang¹; ¹UNSW Canberra

8:20 AM

Evading Strength - Ductility Tradeoff in the Complex Concentrated Alloy Laminate by Combining Metastability Engineered Alloy Design and Friction Stir Welding Technique: Roopam Jain1; Ravi Haridas¹; Prithvi Awasthi¹; Abhijeet Dhal¹; Rajiv Mishra¹; ¹University of North Texas

8:40 AM Invited

The Impact of Nanoscale Additive Manufacturing on Interfaces and Their Mechanical Contributions in Nanocrystalline and Nanophase-Segregated Materials: Rebecca Gallivan¹; Nikolaus Porenta¹; Stephan Gerstl¹; Mirco Nydegger¹; Ralph Spolenak¹; ¹ETH Zurich

9:10 AM

Thermo-Mechanical Molding of High-Entropy Alloy Nanowires via Interface Diffusion: Ethen Lund¹; Joana De La Torre¹; Arindam Raj²; Yi-Xiang Yang¹; Michael Aderibigbe¹; Sungwoo Sohn¹; Jan Schroers¹; ¹Yale University; ²Northwestern University

9:30 AM Break

Local Deformation Mapping of Microstructures Using Thermo-Mechanical Nanomolding: Michael Aderibigbe¹; Arindam Raj¹; Yi-Xiang Yang¹; Jan Schroers¹; ¹Yale University

10:10 AM

Novel Interface-Engineered Nanolaminated Al-X / AlOH Thin Films for Superior Mechanical Properties and Thermal Stability: Hendrik Jansen¹; Amit Sharma¹; Barbara Putz¹; Marcus Hans²; Jochen Schneider²; Jakob Schwiedrzik¹; Thomas Edwards³; Johann Michler¹; ¹EMPA: Laboratory for Mechanics of Materials and Nanostructures; ²Materials Chemistry RWTH Aachen; ³National Institute for Materials Science (NIMS)

10:30 AM Invited

The Role of Interface Strength and Plastic Anisotropy on the Deformation Behavior of Fe-Al and Ti-Al Nanolaminates: Thomas Nizolek1; Yifan Zhang2; Emma Gordon1; Hi Vo1; Miroslav Zecevic1; Rodney McCabe¹; ¹Los Alamos National Laboratory; ²Purdue University

11:00 AM

Effect of Back-Switching on Kinetics of Ferroelastic Domain Switching: A Phase Field Study: Avisor Bhattacharya1; Mohsen Asle Zaeem¹; ¹Colorado School of Mines

MECHANICS OF MATERIALS

Mechanical Response of Materials Investigated Through Novel In-Situ Experiments and Modeling — **Advanced In-Situ Characterisation**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Minh-Son Pham, Imperial College London; Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dongchan Jang, Korea Advanced Institute of Science and Technology; Josh Kacher, Georgia Institute of Technology; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization

Tuesday AM | March 25, 2025 366 | MGM Grand

Session Chair: Minh-Son Pham, Imperial College London

8:00 AM Invited

Strength and Deformability in Nanolaminates Containing Thick 3D Interfaces: Nathan Mara¹; Mauricio De Leo¹; Nicolas Fuchs-Lynch²; Justin Cheng¹; Shuozhi Xu³; Benjamin Derby⁴; Irene Beyerlein²; ¹University of Minnesota; ²University of California-Santa Barbara; ³University of Oklahoma; ⁴Los Alamos National Laboratory

8:30 AM

Acoustic Emission Testing During In-Situ Ion Irradiation: Hayden Sutton¹; Miguel Crespillo¹; Khalid Hattar¹; ¹The University of Tennessee - Knoxville

8:50 AM

In-Situ Characterization Investigating Damage Propagation of SiC Composite Cladding: William Mcmahon¹; Sarah Oswald¹; David Frazer¹; Sean Gonderman¹; Joel Kosmatka¹; George Jacobson¹; ¹General Atomics

9:10 AM

Microstructural Impact on Brittle Fracture Path Investigated via High-Energy Synchrotron Techniques: Sara Gorske1; Mythreyi Ramesh²; Jun-Sang Park³; Peter Kenesei³; Hemant Sharma³; Jonathan Almer³; Peter Voorhees²; Katherine Faber¹; ¹California Institute of Technology; ²Northwestern University; ³Argonne **National Laboratory**

9:30 AM Break

9:50 AM

The Effect of β Phase Stability on the Cyclic Transformation Behaviour Metastable Ti Alloys: Nicole Church1; Christian Talbot1; Nicholas Jones¹; ¹University of Cambridge

Operando, Correlated Mechanical Microscopy of the Ni-Mo **System:** Jeffrey Wheeler¹; ¹Oxford Instruments

10:30 AM Invited

Interfacial Plasticity of Nano-Twinned Cu After Proton Irradiation: ¹Korea Advanced Institute of Science and Dongchan Jang¹; Technology

11:00 AM

Influence of Mechanical, Thermal, and Corrosive Impacts on the Performance of Light Metal Structures and Biomaterials: Alexander Koch1; Nils Wegner1; Frank Walther1; 1TU Dortmund University

BIOMATERIALS

Mechanics and Physiological Adaptation of Hard and Soft Biomaterials and Biological Tissues — **Biomimetics**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Bernd Gludovatz, UNSW Sydney; Elizabeth Zimmermann, McGill University; Steven Naleway, University of Utah; Sunita Ho, University of California, San Francisco

Tuesday AM | March 25, 2025 308 | MGM Grand

Session Chair: Bernd Gludovatz, UNSW Sydney

Convergent Evolution to Engineering: Blueprints for Multifunctional Advanced Materials: David Kisailus¹; ¹University of California-Irvine

8:45 AM Invited

Sustainable Innovation - Learning From Nature's Grippers and Stingers: Eduard Arzt¹; Marc Meyers¹; ¹University of California San Diego

9:15 AM

The Hierarchical Design of the Echinoid Skeletal Structure: Structural, Compositional and Crystallographic Variability in Relation to the Regional Micromechanical Function: Valentina Perricone¹; Pasquale Cesarano²; Ezra Sarmiento¹; Chao Sung¹; Derek Lublin¹; Samantha Apodaca¹; Andrew Nguyen¹; Adrian Ornelas¹; Taige Hao1; Francesco Marmo2; David Kisailus1; 1University of California Irvine; ²University of Naples Federico II

9:35 AM Break

9:55 AM Invited

Development of Novel Mechanochemically Active Hydrogels: Jamie Kruzic¹; Yuwan Huang¹; Alaa Ajam¹; Zihao Li¹; P. Bhakthi Jayathilaka¹; Md Shariful Islam¹; Chavinya Ranaweera¹; Meredith Silberstein²; Kristopher Kilian¹; ¹University of New South Wales (UNSW Sydney); 2Cornell University

NUCLEAR MATERIALS

Meeting Materials Challenges for the Future of Fusion Energy — Environmental Effects I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Tianyi Chen, Oregon State University; Amy Gandy, United Kingdom Atomic Energy Authority; Reuben Holmes, Kyoto Fusioneering; Ian Mccue, Northwestern University; Sneha Prabha Narra, Carnegie Mellon University; Jason Trelewicz, Stony Brook University; Weicheng Zhong, Oak Ridge National Laboratory

Tuesday AM | March 25, 2025 158 | MGM Grand

Session Chairs: Weicheng Zhong, Oak Ridge National Laboratory; Tianyi Chen, Oregon State University

8:00 AM Keynote

Radiation Effects Challenges in High-Performance Materials: Steven Zinkle¹; Siwei Chen¹; Yajie Zhao¹; Zehui Qi¹; Sydney Copp¹; Ethan Payne¹; ¹University of Tennessee

8:30 AM

The Role of Hydrogen Co-Injection on the Cavity Microstructure of Triple Ion Irradiated F82H-IEA: Logan Clowers1; Gary Was1; ¹University of Michigan

8:50 AM

Material Characterization of Lateral Transmutation Gas Gradients in Triple-Ion Irradiated F82H-IEA: Aaron Penders¹; Zhexian Zhang¹; Charles Hirst¹; Alexander Flick¹; Fabian Naab¹; Logan Clowers¹; Valentin Pauly¹; Lauren Garrison²; Cody Dennett²; Michael Short³; Gary Was1; 1University of Michigan; 2Commonwealth Fusion Systems; 3 Massachusetts Institute of Technology

Demystify Radiation-Enhanced Hydrogen Isotope Diffusion: Xiaowang Zhou¹; ¹Sandia National Laboratories

9:30 AM Break

9:50 AM Invited

Physics-Based Evaluation of General Fusion Facility Concepts for a Prototypical Neutron Fusion Source: Jaime Marian¹; Brian Wirth²; Steve Zinkle²; Lance Snead³; Jason Trelewicz³; Ying Yang³; Yutai Katoh4; Wahyu Setyawan5; Laurent Capolungo6; 1University of California, Los Angeles; ²University of Tennessee-Knoxville; ³Stony Brook University; 4Oak Ridge National Laboratory; 5Pacific Northwest National Laboratory; 6Los Alamos National Laboratory

10:20 AM

Microstructural Changes in Ion and Neutron Irradiated REBCO-Based Magnet Materials for Fusion: Christopher Reis¹; Kooknoh Yoon¹; Mehdi Balooch¹; Tengming Shen²; Soren Prestemon²; Masami lio³; Toru Ogitsu³; Lee Bernstein²; Peter Hosemann¹; ¹University of California, Berkeley; ²Lawrence Berkeley National Laboratory; ³KEK

10:40 AM

Synergistic Study of Neutron Irradiation and Hydrogen Exposure on Tungsten: Weicheng Zhong1; Yuji Hatano2; Takaaki Koyanagi1; Hanns Gietl³; Chase Taylor³; Josina Geringer¹; Takeshi Toyama²; Yutai Katoh¹; ¹Oak Ridge National Laboratory; ²Tohoku University; ³Idaho National Laboratory

11:00 AM

The Effect of Ion Irradiation Conditions on the Damage Morphology of a Tungsten Heavy Alloy: James Haag1, Bethany Matthews1; Matthew Olszta¹; Weilin Jiang¹; Wahyu Setyawan¹; ¹Pacific Northwest National Laboratory

11:20 AM

Scale-Up of Advanced Castable Nanostructured Alloys for Fusion First-Wall/Blanket Applications: Ying Yang¹; Weicheng Zhong¹; Yanli Wang¹; Xiang Chen¹; Wei Tang¹; Marie Romedenne¹; Kevin Field¹; Tim Graening¹; QQ Ren¹; Bruce Pint¹; Yutai Katoh¹; ¹Oak Ridge **National Laboratory**

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Microstructural Evolution and Material Properties Due to Manufacturing Processes: A Symposium in Honor of Anthony Rollett — Microstructural **Evolution and Material Properties: Session I**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Curt Bronkhorst, University of Wisconsin-Madison; Elizabeth Holm, University of Michigan; Ricardo Lebensohn, Los Alamos National Laboratory; Sukbin Lee, Ulsan National Institute Of Science And Technology; Nathan Mara, University of Minnesota

Tuesday AM | March 25, 2025 303 | MGM Grand

Session Chairs: Jonathan Zimmerman, Sandia National Laboratories; Elizabeth Holm, University of Michigan

8:00 AM Introductory Comments: A Short History of Anthony Rollett's Career

8:20 AM Invited

Advances in FFT-Based Modelling of Microstructure/Property Relationships of Polycrystalline Materials: Ricardo Lebensohn¹; Miroslav Zecevic¹; ¹Los Alamos National Laboratory

8:50 AM Invited

Predicting Spatial Variability of Mechanical Properties in Additively Manufactured Metals Using a Process-Structure-Property Modeling Framework: Ashley Spear¹; Wenda Tan²; ¹University of Utah; 2University of Michigan

9:20 AM

Grain-Resolved Reorientation and Orientation Gradient Development in Cyclic Loading of Ti-7Al Using High Energy X-Ray **Diffraction Microscopy**: Rachel Lim¹; Sven Gustafson²; Darren Pagan³; Anthony Rollett⁴; ¹Lawrence Livermore National Laboratory; ²Cornell High Energy Synchrotron Source; ³Pennsylvania State University; 4Carnegie Mellon University

9:40 AM Break

10:00 AM Invited

Quantifying Abnormal Grain Growth with Correlation Analyses and Information Theory: Jeffrey Rickman¹; ¹Lehigh University

10:30 AM Invited

The Annealing Twin Paradox: Well-Known Defects but Still not Fully Understood: Nathalie Bozzolo¹; ¹Safran

Understanding Twin Nucleation in Mg Alloys Through In Situ Synchroton Experiments and Machine Learning Models: Duncan Greeley¹; Valentín Vassilev-Galindo²; John Allison³; Javier Llorca⁴; ¹Los Alamos National Laboratory; ²IMDEA Materials Institute; ³University of Michigan; ⁴IMDEA Materials Institute & Technical University of Madrid

11:20 AM

First-Principle Investigation and Modeling of Airborne Acoustic Emission Mechanisms In Selective Laser-Metal Fusion Printing **Processes**: Haolin Liu¹; Zhongshu Ren²; Jiayun Shao³; Anthony Rollett¹; Tao Sun³; Levent Burak Kara¹; ¹Carnegie Mellon University; ²Brookhaven National Laboratory; ³Northwestern University

NUCLEAR MATERIALS

Microstructural, Mechanical, and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface II - Oxide Fuels III: High Burnup

Sponsored by: TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Xing Wang, Pennsylvania State University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Dong (Lilly) Liu, University of Oxford; Caleb Clement, Westinghouse Electric Company; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida, Yi Xie, Peking University

Tuesday AM | March 25, 2025 159 | MGM Grand

Session Chairs: Jason Harp, Oak Ridge National Laboratory; Karim Ahmed, Texas A&M University

8:00 AM Invited

Multiphysics and Multiscale Modeling of High Burnup UO2: Karim Ahmed1; 1Texas A&M University

8:30 AM

Microstructurally Informed Modeling of High Burnup Structure in **UO2 Fuel**: Walter Brinkley¹; Nathan Capps²; Brian Wirth¹; ¹Utk; ²Oak Ridge National Laboratory

8:50 AM

The Thermal Mechanical Properties and Transient Behavior of High Burn-Up Structure Pure and Cr2O3-Doped UO2 Pellets with Xe Gas Bearing Under the LOCA and RIA Thermal Shock Tests: Dong Zhao¹; Kevin Yan¹; Saurabh Sharma¹; Andre Broussard¹; Heng Ban²; Jie Lian¹; ¹Rensselaer Polytechnic Institute; ²University of Pittsburgh

9:10 AM

Effects of Charge State on Chromium Substitution and Oxygen Vacancy Segregation Energies at Grain Boundaries in Uranium **Dioxide**: Mack Cleveland¹; Ericmoore Jossou¹; ¹Massachusetts Institute of Technology

9:30 AM Break

Microstructural Impacts of Dopants in Advanced Nuclear Fuels: Maria Kosmidou¹; Adrien Terricabras¹; Meagan Wheeler¹; John Proctor²; Scarlett Widgeon Paisner¹; Sarah Finkeldei²; Joshua White¹; ¹Los Alamos National Laboratory; ²University of California Irvine

Polyepitaxial Approach to Studying Topotactic Phase Transitions in Actinides: Jacek Wasik¹; ¹University of Bristol

10:30 AM

Chemical Compatibility of UC/UO2 Composites for Accident Tolerant Fuel: Steven Cavazos1; Scarlett Widgeon Paisner1; Ian Porter²; Joshua White¹; ¹Los Alamos National Laboratory; ²General Electric - Vernova

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Nanostructured Materials in Extreme Environments III — Thermal Extreme

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Youxing Chen, University of North Carolina Charlotte; Haiming Wen, Missouri University of Science and Technology; Yue Fan, University of Michigan; Khalid Hattar, University of Tennessee Knoxville; Ashley Bucsek, University of Michigan; Jessica Krogstad, University of Illinois at Urbana-Champaign; Irene Beyerlein, University of California, Santa Barbara; Trevor Clark, Commonwealth Fusion Systems

Tuesday AM | March 25, 2025 166 | MGM Grand

Session Chair: Khalid Hattar, University of Tennessee Knoxville

8:00 AM Invited

Fingerprinting: Multi-Objective Al-Guided High-Beyond Throughput Exploration of Nanostructured Metals: Brad Boyce¹; Remi Dingreville¹; ¹Sandia National Laboratories

Heat And Force-Resistance of Nanograined Ni Depends on Grain Boundary Energy: Yuexin Chu1; Yi Li1; 1Chinese Academy of Sciences, Institute of Metal Research

8:45 AM

Enhancement of Chromium-Based Bcc-Superalloys for High-**Temperature Applications**: Kan Ma¹, *Thomas Blackburn*¹, Anke Silvia Ulrich²; Michael Kerbstadt³; Tatu Pinomaa⁴; Mathias Galetz³; Uwe Glatzel²; Alexander Knowles¹; ¹University of Birmingham; ²University of Bayreuth; 3DECHEMA-Forschungsinstitut; 4VTT

9:05 AM Invited

Property Mapping and Creep Behavior of Advanced Nuclear Reactor Alloys Via Nanoindentation: Nathan Mara¹; Minh-Tam Hoang¹; Kevin Schmalbach²; Eric Hintsala²; Douglas Stauffer²; Jobin Joy³; Laurent Capolungo³; ¹University of Minnesota; ²Bruker Nano Surfaces; 3Los Alamos National Laboratory

9:30 AM Break

Creep Behavior of an Al-Zr-Sn Alloy Dual-Strengthened by L12-Al3Zr Nanoscale Precipitates and Cold Working: Sumit Bahl¹; Ismael Ramirez²; Jie Qi²; Jovid Rakhmonov¹; David Dunand²; Amit Shyam¹; ¹Oak Ridge National Laboratory; ²Northwestern University

10:10 AM Invited

Grain Boundary Creep in Simple and High Entropy Oxides: Shen Dillon1; 1University of California, Irvine

10:35 AM Invited

Deformation Behaviors and Microstructure Evolution of Al/Ti Nano Laminates at Elevated Temperatures: Yifan Zhang¹; Ruizhe Su²; Nicholas Richter²; Tongjun Niu³; Xuanyu Sheng²; Haiyan Wang²; Xinghang Zhang²; ¹Clemson University; ²Purdue University; ³Los Alamos National Lab

BIOMATERIALS

Natural Fibers and Biocomposites: A Sustainable Solution — Sustainable Composites and **Biocomposites**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee, TMS: Composite Materials Committee

Program Organizers: Henry Colorado, Universidad de Antioquia; Sergio Monteiro, Instituto Militar de Engenharia; Marc Meyers, University of California, San Diego; Carlos Castano Londono, Virginia Commonwealth University; George Youssef, San Diego State University; Felipe Perisse Duarte Lopes, Universidade Estadual do Norte Fluminense; Daniel Salazar, BCMaterials

Tuesday AM | March 25, 2025 307 | MGM Grand

Session Chairs: Carlos Castano Londono, Virginia Commonwealth University; Felipe Perisse Duarte Lopes, Universidade Estadual do Norte Fluminense; George Youssef, San Diego State University

8:00 AM Introductory Comments

8:10 AM Invited

Towards Sustainable Construction: Characterization of Vegetable Polyurethane Composite Reinforced with Figue Fiber for Warm and Humid Environments: Luis Ricardo Arrubla Agudelo¹; Luis Fortunato de Freitas¹; Noan Tonini Simonassi¹; Carlos Mauricio Fontes Vieira¹; Henry Alonso Colorado Lopera²; Felipe Perissé Duarte Lopes¹; ¹Universidade Estadua do Norte Fluminense; ²UDEA

8:35 AM Invited

Exceptional Strength of Mycelium-Bound Composite: Sustainable Brick Alternative for Construction: Deepak Sharma¹; Hortense Le Ferrand¹; ¹Nanyang Technological University

9:00 AM Invited

The Adhesion Enhancement Effects of Nanocellulose at the Glass Fiber/Epoxy Interphase Through Molecular Dynamics Simulations: Xiawa Wu¹; ¹Penn State Behrend

Processing of Composites Incorporated with in 3D Printing as a Potential Way of Producing High-Performance Glasses: Rogério Rabello¹; Victor Gonçalves¹; Noan Simonassi¹; Carlos Maurício Vieira¹; Sergio Monteiro¹; Felipe Perisse Duarte Lopes²; ¹UENF - State University of the Northern Rio de Janeiro; ²Universidade Estadual do Norte Fluminense

9:40 AM Break

10:00 AM

Enhancing the Properties of Polyester Composites Using Unidirectional Acetylated Fibers from Luffa Cylindrica: Eduarda de Melo¹; Heliane Amaral¹; Roseméri da Silva¹; Verônica Cândido²; Felipe Lopes³; Sergio Monteiro⁴; Michel Oliveira¹; ¹UFES; ²UFPA; ³UENF; ⁴IME

10:20 AM

Hybrid Epoxy Matrix Composites Reinforced with Montmorillonite Clay and Eucaliptus Particulates: Juam Pierott Cabral¹; Rebeca Seixas Quintanilha Gomes¹; David Coverdale Rangel Velasco¹; Noan Tonini Simonassi¹; Sergio Neves Monteiro²; Felipe Perisse Duarte Lopes³; ¹UENF; ²Instituto Militar de Engenharia; ³Universidade Estadual do Norte Fluminense

10:40 AM

Development of Anticorrosive Coatings Reinforced with Eucalyptus Residue: Darcy Oliveira¹; Luís de Freitas¹; Rogério Júnior¹; David Velasco¹; Carlos Vieira¹; Felipe Lopes¹; ¹UENF

11:00 AM

Compressive Strength of Epoxydic Composite Reinforced with Coffee Ground Waste: Bruna Cobuci¹; Mayara Campos¹; Noan Simonassi¹; Sérgio Monteiro¹; Carlos Maurício Vieira¹; Felipe Perisse Duarte Lopes²; ¹UENF; ²Universidade Estadual do Norte Fluminense

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXIV — **Phase Stability of Electronic Materials**

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Yu-Chen Liu, National Cheng Kung University; Hiroshi Nishikawa, Osaka University; Shih-kang Lin, National Cheng Kung University; Yee-wen Yen, National Taiwan University of Science and Technology; Chih-Ming Chen, National Chung Hsing University; Chao-hong Wang, National Chung Chung University; Jaeho Lee, Hongik University; Zhi-Quan Liu, Shenzhen Institutes of Advanced Technology; Ming-Tzer Lin, National Chung Hsing University; A.S.Md Abdul Haseeb, Bangladesh University of Engineering and Technology (BUET); Ligang Zhang, Central South University; Sehoon Yoo, Korea Institute of Industrial Technology; Ping-Chuan Wang, Suny New Paltz; Yu-An Shen, Feng Chia University

Tuesday AM | March 25, 2025 359 | MGM Grand

Session Chairs: Chao-hong Wang, National Chung Chung University; Yee-wen Yen, National Taiwan University of Science and Technology

8:00 AM Invited

Microstructure Evolution and Phase Transformation of Ni-Sn Compounds aAfter Long-Term Storage: Yi-Wun Wang¹; Cheng-Ting Tsai1; Tzu-Yi Lin1; 1Tamkang University

8:30 AM

Liquidus and Invariant Reaction Temperatures of Sn-In-Ni-Zn Alloys: Sinn-wen Chen¹; Te-wei Lin¹; Yung-Chun Tsai¹; Cheng-hsi Ho¹; ¹National Tsing Hua University

Interfacial Reactions Between Sn-Based Solders and FeCoNiCrMn High-Entropy Alloy: Chao-hong Wang¹; Yue-han Li¹; ¹National Chung Chung University

9:10 AM

Microstructure Evolution and Growth Behavior of Intermetallic Compound Between Cu and Sn-Ag Alloys: Minho Oh1; Naru Tokunaga¹; Equo Kobayashi¹; ¹Tokyo Institute of Technology

9:30 AM Break

9:50 AM

Liquidus Projections and ilnvariant Reactions in the Bi-Cu-Sn-Te Quaternary System: Hsin-Chieh Huang¹; Cheng-Hsi Ho¹; Sinn-wen Chen¹; ¹National Tsing Hua University

Liquid-Solid Interfacial Reactions Between Lead-Free Solders and Cu-6.01wt.% Sn-0.12wt.%P Alloy (C5191): Mavindra Ramadhani¹; Hsiang Chiu1; Yee Yen1; 1National Taiwan University of Science and Technology

10:30 AM

Solid/Solid Interfacial Reactions Between Lead-Free Solders and Cu-Ni-Si-Mg (C7025) Substrate: Ting Chen1; Jing-Ting Chou1; Yee-Wen Yen¹; ¹National Taiwan University of Science and Technology

10:50 AM

Liquid/Solid Interfacial Reactions Between the Sn Solder and Cu-Fe Alloy (C194) with the Ni Plating Layer: Ssu-Chen Pan¹; Yu-Cheng Jhen¹; Yee-Wen Yen¹; ¹National Taiwan University of Science and Technology

MATERIALS SYNTHESIS AND PROCESSING

Phase Transformations and Microstructural Evolution — Non Ferrous Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State University; Ashley Paz y Puente, University of Cincinnati; Jonah Klemm-Toole, Colorado School of Mines; Sriram Vijayan, Michigan Technological University; Mohsen Asle Zaeem, Colorado School of Mines; Le Zhou, Marquette University; Adriana Eres-Castellanos, Colorado School of Mines; Sophie Primig, University of New South Wales

Tuesday AM | March 25, 2025 123 | MGM Grand

Session Chairs: Ashley Paz y Puente, University of Cincinnati; Jonah Klemm-Toole, Colorado School of Mines

8:00 AM

Quantifying the Kinetics of Defect Phase Transitions Through Ultrafast Calorimetry: William Cunningham¹; Tianjiao Lei²; Hannah Howard¹; Timothy Rupert³; Daniel Gianola¹; ¹University of California Santa Barbara; ²University of Alabama; ³Johns Hopkins University

8:20 AM

Microstructural Coarsening of Cells, Dendrites, and Fibrous Eutectic in Al-2Fe-1Ni Alloy: Jaderson Rodrigo da Silva Leal¹; Guilherme Lisboa de Gouveia¹; Jose Spinelli¹; ¹Federal University of Sao Carlos Brazil

8:40 AM

Effect of Si Impurities on the Microstructural Development of a Cast Al-Mg-Fe Alloy: Nicholas Richter¹; Sumit Bahl¹; Ying Yang¹; Alice Perrin¹; Alex Plotkowski¹; James Haynes¹; Amit Shyam¹; ¹Oak Ridge **National Laboratory**

9:00 AM

Evaluation of Phase Stability of Quasicrystals in Spark Plasma Sintered Al Alloy: Baris Yavas¹; Sarshad Rommel¹; Cain Hung²; Callie Benson²; Mark Aindow¹; ¹University of Connecticut; ²Collins Aerospace Systems

9:20 AM

Integrated Modeling of Static Recrystallization in Mg-Zn-Ca Alloy Using the PRISMS Framework: Supriyo Chakraborty¹; David Montiel¹; Tracy Berman¹; Chaitali Patil¹; Michael Pilipchuk¹; Veera Sundararaghavan¹; John Allison¹; Katsuyo Thornton¹; ¹University of Michigan

9:40 AM Break

9:55 AM

Influence of Alloy Composition on the Precipitate Evolution and Properties of 7xxx Aluminum Alloy During Magnetic Field Annealing: Damilola Alewi¹; Kirk Lemmen¹; Cle' Sanchez¹; Haluk Karaca¹; Paul Rottmann¹; ¹University of Kentucky

10:15 AM

Phase-Field Modeling of Nanotwins Evolution and Grain Boundary Interactions in Cu During Annealing: Yixi Shen1; Irene Beyerlein1; ¹University of California, Santa Barbara

10:35 AM

Controlling Intermetallic Precipitation in Cu-Ti Alloys to Tune Mechanical and Electrical Properties: Rohit Berlia1; Michael Wall1; Todd Hufnagel¹; Timothy Weihs¹; ¹Johns Hopkins University

10:55 AM

Microstructural Evolution and Phase Transformations in Al-Cu Friction Stir Welding: Michael Lastovich1; Bharat Gwalani1; 1North Carolina State University

11:15 AM

Solidification Modelling and Wetting of Al-Ce Alloys and Composites: Swaroop Behera¹; Kaustubh Rane¹; David Weiss²; Pradeep Rohatgi¹; ¹University of Wisconsin Milwaukee; ²Vision Materials

MATERIALS SYNTHESIS AND PROCESSING

Powder Materials Processing and Fundamental Understanding — Field Assisted Sintering Technology

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, University of Alabama Birmingham; Eugene Olevsky, San Diego State University; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Oak Ridge National Laboratory; Wenwu Xu, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Charles Maniere, CNRS

Tuesday AM | March 25, 2025 105 | MGM Grand

Session Chair: Natalia Daudt, Universidade Federal de Santa Maria

8:00 AM

High Intensity Electric Nano Pulsing Technology for Rapid Materials Processing and Sintering: Runjian Jiang¹; Eugene Olevsky¹; Elisa Torresani¹; Andrii Maksymenko¹; Wenwu Xu¹; ¹San Diego State University

8:20 AM

Enhancing Aluminum with Graphene: Advances in Resistance-Based Sintering for High Conductivity Composites: Olga Eliseeva¹; Srinath Kistampally²; Jerry Gould¹; ¹EWI; ²Martinrea

8:40 AM Invited

Blacklight Sintering of Ceramics: Julian Ebert¹; Dylan Jennings¹; Pascal Zahler¹; Wolfgang Rheinheimer¹; ¹University of Stuttgart

PLUFS: The Controlled Pressure-Less Ultra-Fast and Ultra-High Temperature Sintering: Thomas Grippi¹; Eugene Olevsky¹; Elisa Torresani¹; Andrii Maximenko¹; ¹San Diego State University

Integrating Molecular Dynamics and Experimental Techniques to Study Flash Sintering of Zirconia and 8% YSZ: Colin Delaney1; Sky Soltero¹; Thomas Grippi¹; Runjian Jiang¹; Eugene Olevsky¹; Wenwu Xu1; 1San Diego State University

9:50 AM Break

10:00 AM Invited

Ultrafast Sintering With Versus Without Electric Fields and Controlling Microstructures With Electric Fields: Jian Luo1; ¹University of California, San Diego

10:30 AM

Ultra-Fast High Temperature Sintering of Metal Alloys: Natalia Daudt¹; Dalton Lima¹; Sergio Noal Alves¹; Andreia Moreira da Silva¹; Luana Crozatti Rocha¹; ¹Universidade Federal de Santa Maria

10:50 AM

The Fabrication of TiAl Composited with Near -Ti Alloys using SPS and HIP: YunJo Ro1; Jishnu Bhattacharyya1; Sean R. Agnew1; Haydn N. G. Wadley1; 1University of Virginia

11:10 AM

Interface Structure and Characteristics of High Temperature Carbide Ceramics Co-Sintered with Lightweight Carbon-Carbon Composites: Jorgen Rufner¹; Arin Preston¹; Andrew Gorman¹; Cody Gibson¹; William Chuirazzi¹; Nathan Stranberg²; ¹Idaho National Laboratory; ²Continuous Composites

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Printed Electronics and Additive Manufacturing: Advanced Functional Materials, Processing Concepts, and Emerging Applications — Printed Electronics II - 3D Printing

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Yong Lin Kong, Rice University; Konstantinos Sierros, West Virginia University; Masoud Mahjouri-Samani, Auburn University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ethan Secor, Iowa State University

Tuesday AM | March 25, 2025 361 | MGM Grand

Session Chairs: Dave Estrada, Boise State University; Joseph Andrews, University Of Wisconsin Madison

8:00 AM Invited

3D Necroprinter: Justin Puma¹; Zhen Yang¹; Jianyu Li¹; *Changhong* Cao1; 1McGill University

8:25 AM Invited

Additive Manufacturing of Interconnect Structures for Microelectronics Packaging Applications: Michael Cullinan¹; ¹University of Texas at Austin

8:50 AM Invited

Direct-Write and 3D Printing of Electronic Materials Enabled by Liquid Metals: Michael Dickey1; 1NC State University

Multimaterial Aerosol Jet Printing for Patterning Material Gradients: Ethan Secor1; 1lowa State University

9:40 AM Break

10:00 AM Invited

Optimization of Aerosol Jet-Printed Nanomaterial Thin Films for Enhanced Sensor Performance: Joseph Andrews1; 1University of Wisconsin Madison

10:25 AM Invited

Aerosol Jet Printing and Optimization of PEDOT:PSS for Flexible Electronics and Soft Robots: Md Shariful Islam¹; Changyong Cao¹; ¹Case Western Reserve University

10:50 AM Invited

Hyper Devices: Using Aerosol Jet 3D Nanoprinting for Ultrahigh Performance Biomedical and Energy Storage Devices: Rahul Panat1; 1Carnegie Mellon University

MATERIALS SYNTHESIS AND PROCESSING

REWAS 2025: Sustainable End-of-Life Management and Recycling Solutions for Batteries, Wind Turbines, and Photovoltaics — Recovery and Reuse Values from EOL Products

Sponsored by: TMS Extraction and Processing Division, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Christina Meskers, SINTEF; Mertol Gokelma, Izmir Institute of Technology; Adamantia Lazou, National Technical University of Athens; Elsa Olivetti, Massachusetts Institute of Technology

Tuesday AM | March 25, 2025 117 | MGM Grand

Session Chair: Emanuele Pagone, Cranfield University

8:00 AM Introductory Comments

8:05 AM

Decommissioning, Characterization and Proposed Recycling Route of a Used Na-ZnCl, Battery Cell: Cathrine Solem¹; Thomas P. Simonsen¹; Fabrizio Vagliani²; Zhaohiu Wang¹; Stein Rørvik¹; Alberto Turconi²; Andrea Pozzi²; Camilla Sommerseth¹; Karen S. Osen¹; Kent-Robert Molvik¹; Ole S. Kjos¹; ¹SINTEF; ²FZSoNick S.A.

8:25 AM

Photovoltaic Waste Management: Technologies and Strategies to Recycle c-Si and CI(G)S PV Waste: Goril Jahrsengene¹; Ana Maria Martinez¹; Charly Lemoine²; Wolfram Palitzsch³; Ingo Röver³; Olivier Caulle⁴; Rui de Almeida⁴; Thomas Peccavet⁴; Emmanuel Billy²; Fabrice Coustier²; Claire Agraffeil²; ¹SINTEF; ²CEA; ³LuxChemtech GmbH; 4Mondragon Assembly

8:45 AM

Recycling of Solar Wafers Through Acid Leaching and Vacuum Refining: Elif Emil Kaya¹; Mona Tellebond Hassel¹; Gabriella Tranell¹; ¹Norwegian University of Science and Technology

9:05 AM Invited

Barriers and Opportunities for Recycling Wind Turbine Blades in the United States: Matthew Korey¹; Peter Wang¹; ¹Oak Ridge **National Laboratory**

9:35 AM Break

Formation and Stability of Hydrides During Hydrogenation of NdFeB Magnets: Adamantia Lazou¹; Alireza Habibzadeh²; Mertol Gökelma²; ¹National Technical University of Athens; ²Izmir Institute of Technology

10:10 AM

Evaluating the Use of Wind Blade Residue and Recycled Aggregate in Low-Strength Concrete: Marta Skaf¹; Nerea Hurtado-Alonso¹; Ana Espinosa¹; Roberto Serrano¹; Amaia Santamaria²; Juan Manso¹; ¹University of Burgos; ²University of the Basque Country UPV/EHU

10:30 AM

Recycling of Raw-Crushed Wind-Turbine Blade for Concrete Production: Mechanical and Durability Performance: Vanesa Ortega-Lopez¹; Javier Manso-Morato¹; Chaimae Mourou¹; Manuel Hernando-Revenga¹; Víctor Revilla-Cuesta¹; Flora Faleschini¹; ¹University of Burgos

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Sciences — Actinide Physics II

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Mavrik Zavarin, Lawrence Livermore National Laboratory; Rebecca Abergel, University of California Berkeley; Matthew Watrous, Idaho National Laboratory

Tuesday AM | March 25, 2025 163 | MGM Grand

Session Chair: Jason Jeffries, Lawrence Livermore National Laboratory

8:00 AM Invited

Physics and Chemistry of UTe2: Eteri Svanidze1; ¹Max Planck Institute for Chemical Physics of Solids

8:30 AM Invited

Actinide Thin Films: Recreating the Usual and Creating the Unusual: Ross Springell¹; Eleanor Lawrence Bright²; Daniel Chaney²; Lottie Harding¹; Chris Bell¹; Roger Ward³; Gerard Lander⁴; ¹University of Bristol; ²European Synchrotron Radiation Facility; ³University of Oxford; ⁴Joint Research Centre, European Commission

9:00 AM Invited

Changes in Stiffness and Internal Friction of Delta-PuGa Due to Aging and Annealing: Boris Maiorov¹; ¹Los Alamos National Laboratory

9:30 AM Break

9:50 AM Invited

Mastering the Magnetic State of Uranium-Based Thin Films: Evgenia Tereshina-Chitrova¹; ¹Institute of Physics ASCR

10:20 AM Invited

Synthesis, Structure and Physical Properties of NpIr3: Tomasz Klimczuk1; Jean-Christophe Griveau2; Zofia Stożek1; Olaf Walter2; Eric Colineau²; ¹Gdansk University of Technology; ²European Commission, Joint Research Centre

10:50 AM

Lanthanide-Based Antiperovskite Nitrides: Kevin Vallejo1; Shuxiang Zhou¹; Volodymyr Buturlim¹; Zachery Cresswell¹; Brelon May¹; Sabin Regmi¹; Krzysztof Gofryk¹; ¹Idaho National Laboratory

MECHANICS OF MATERIALS

Spatially Tailored Materials: Processing-Structure-**Properties — Gradient Microstructures and Mechanical Behavior**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Gianna Valentino, University of Maryland; Marie Charpagne, University of Illinois; Ian Mccue, Northwestern University; J.C. Stinville, University of Illinois Urbana-Champaign

Tuesday AM | March 25, 2025 351 | MGM Grand

Session Chairs: Gianna Valentino, University of Maryland; Marie Charpagne, University of Illinois

8:00 AM Invited

Combinatorial and High-Throughput Synthesis, Characterization, and Design of Metallic Alloys and Nanotwin Microstructures: Andrea Hodge¹; ¹University of Southern California

8:30 AM

Combinatorial High Throughput Study of the Interplay Between Microstructure and Mechanical Properties in Ni-Al Thin Films: Nicolas Peter¹; Peter Nellessen¹; Adie Alwen²; Andrea Hodge²; Ruth Schwaiger¹; ¹Forschungszentrum Juelich; ²University of Southern California

8:50 AM

Combinatorial High Throughput Methodology: A Twinning and Phase Formation Study in CuNiAl Alloys: Ashley Maldonado Otero¹; Adie Alwen¹; Andrea Hodge¹; Nicolas Peter²; Ruth Schwaiger²; ¹University of Southern California; ²Forschungszentrum Jülich GmbH

Phase Evolution and Mechanical Behavior of Sputtered Cu-Fe Alloys: Debargha Paul¹; Xuanyu Sheng¹; Ke Xu¹; Xinghang Zhang¹; ¹Purdue University

9:30 AM Break

9:50 AM

Mechanical Characterisation of Micro-Architected AM Lattices Using X-Ray Computed Tomography: David McArthur1; Chu Lun Alex Leung¹; PJ Tan¹; ¹University College London

Dynamic Tensile Damage and Spall Behavior of Electroplated Nickel: Gary Simpson¹; Esther Hessong²; Saryu Fensin¹; ¹Los Alamos National Laboratory; ²University of California, Irvine

10:30 AM

Microstructure and Mechanical Properties of In-Situ Alloyed Steels via Wire Arc Directed Energy Deposition: Kazi Moshiur Rahman¹; Andrzej Nycz¹; Saket Thapliyal¹; ¹Oak Ridge National Laboratory

10:50 AM

Multiscale Characterization of an Additively Manufactured Property Graded Ni-Base Alloy for Molten-SaltsSupercritical-CO2 Heat Exchangers: Qing-Qiang Ren¹; Yi-Feng Su¹; Thomas Feldhausen¹; Rebecca Kurfess¹; Kenton Fillingim¹; Soumya Nag¹; Rishi Pillai¹; ¹Oak Ridge National Laboratory

NUCLEAR MATERIALS

Spectroscopic Methods and Analysis for Nuclear Energy Related Materials — Synchrotron Based Investigations

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Scarlett Widgeon Paisner, Los Alamos National Laboratory; Arjen van Veelen, Los Alamos National Laboratory; Xiaofeng Guo, Washington State University; Farida Selim, Arizona State University; Maik Lang, University of Tennessee; Dong (Lilly) Liu, University of Oxford

Tuesday AM | March 25, 2025 161 | MGM Grand

Session Chairs: Scarlett Widgeon Paisner, Los Alamos National Laboratory; Arjen van Veelen, Los Alamos National Laboratory

8:00 AM Introductory Comments

X-Ray Diffraction-Computed Tomography (XRD-CT) Facility at NSLS-II for Studying Materials for Nuclear Applications: Mehmet Topsakal¹; Simerjeet Gill¹; ¹Brookhaven National Laboratory

Advanced Synchrotron Characterization Techniques for Fusion Materials Science: David Sprouster¹; Takaaki Koyanagi²; D Olds³; M Ouyang¹; S Fayfar⁴; E O'Quinn⁵; M Lang⁶; Y Yang²; Y Lin²; B Khaykovich⁴; Y Katoh²; Julie Tucker⁷; J Trelewicz¹; Lance Snead¹; ¹Stony Brook University; ²Oak Ridge National Laboratory; ³Brookhaven National laboratory; 4Massachusetts Institute of Technology; 5University of Tennessee Knoxville; ⁶University of Tennessee Knoxville; ⁷Oregon State University

8:45 AM

Nanostructural Characterization of Electron Beam Welded Reactor Pressure Vessel Steel via XANES and Nano-CT: Jasmyne Emerson¹; Xianghui Xiao²; Elliot Marrero¹; Grayson Nemets¹; Janelle Wharry¹; Maria Okuniewski¹; ¹Purdue University; ²Brookhaven National Laboratory

9:05 AM

Atomic-Scale Structural Analysis of Metastable Zirconia: Maik Lang¹; Alexandre Solomon¹; Eric O'Quinn¹; Gianguido Baldinozzi²; Juejing Liu³; Xiaofeng Guo⁴; Joerg Neuefeind⁵; Christina Trautmann⁶; Rodney Ewing⁷; ¹University of Tennessee; ²CNRS CentraleSupélec, Université Paris-Saclay; ³Washington State University; ⁴Washington State University; 5Oak Ridge National Laboratory; 6GSI Helmholtz Center; 7Stanfort University

9:25 AM Break

9:45 AM Invited

Correlative Multi-Modal Analysis of Nuclear Graphite Deformation Mechanisms: Thomas Zillhardt¹; ¹Diamond Light Source

Investigation of Local Defects in Ln-Doped UO2: Impact of Fabrication Condition and Lanthanide Type: Juejing Liu¹; Shinhyo Bang¹; Arjen van Veelen²; Joshua White²; Nicolas Dacheux³; Xiaofeng Guo¹; ¹Washington State University; ²Los Alamos National Laboratory; ³Institute Chemistry Séparative De Marcoule

In-situ Synchrotron Diffraction Investigations of a Scalable, Non-Equilibrium Processing Route of ODS Steels for Nuclear Power: Zongyang Lyu¹; Kevin Jacob¹; Rameshwari Naorem¹; Siddhartha Pathak¹; Andrey Yakovenko²; Nicolas Argibay³; Jordan Tiarks³; Iver Anderson³; ¹Iowa State University; ²Argonne National Laboratory; ³Ames National Laboratory

10:50 AM

Revealing the Crystal Chemistry and Dissolution Kinetics of Doped Uranium Dioxide Nuclear Fuel: Lottie Harding1; Eleanor Lawrence Bright²; Christopher Bell¹; Jude Laverock¹; Tom Scott¹; Anna Adamska³; Claire Corkhill¹; Ross Springell¹; ¹University of Bristol; ²ESRF; ³Sellafield Ltd

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Steels in Extreme Environments — Steels Under Irradiation Environments / Steels Under Cryogenic **Temperatures**

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Hyunseok Oh, University of Wisconsin -Madison; Lawrence Cho, Colorado School of Mines; Jeongho Han, Hanyang University; Motomichi Koyama, Tohoku University; Peeyush Nandwana, Oak Ridge National Laboratory; Fnu Kasturi Narasimha Sasidhar, University of Wisconsin - Madison

Tuesday AM | March 25, 2025 168 | MGM Grand

Session Chairs: Peeyush Nandwana, Oak Ridge National Laboratory; Hyunseok Oh, University of Wisconsin - Madison

8:00 AM Keynote

Steel's Gassing Problems and Ways to Solve Them: Ju Li¹; ¹Massachusetts Institute of Technology

8:30 AM Invited

Resilience of PM-HIP Steels in Extreme Irradiation Environments: Janelle Wharry¹; Arya Chatterjee¹; Soumita Mondal¹; Saquib Bin Habib¹; Grayson Nemets¹; Elliot Marrero Jackson¹; Jasmyne Emerson¹; Maria Okuniewski¹; Yu Lu²; Yaqiao Wu²; Donna Guillen³; Benjamin Sutton⁴; David Gandy⁴; ¹Purdue University; ²Boise State University; 3Idaho National Laboratory; 4Electric Power Research Institute

8:50 AM Invited

Mechanical Performance of Laser Powder Bed Fusion 316H Stainless Steel Following Low-Dose Neutron Irradiation: Caleb Massey1; 10ak Ridge National Laboratory

9:10 AM Invited

Neutron Irradiation-Induced Performance Degradation of RAFM and ODS Steels: Arunodaya Bhattacharya¹; ¹University of Birmingham

9:30 AM Invited

In situ Ion Irradiation Creep Testing of Austenitic and Ferritic-Martensitic Steels: Charles Hirst1; Mackenzie Warwick2; Wyatt Peterson²; Kevin Field²; ¹University of Wisconsin-Madison; ²University of Michigan

9:50 AM Break

10:10 AM Invited

Tensile Deformation Behavior and Thermal Conductivity of Metallic Alloys Including Stainless Steels at Deep Cryogenic Temperature as Low as 4K: Young-Sang Na1; Young-Kyun Kim1; Sang-Hun Shim1; Seung-Min Jeon¹; ¹Korea Institute of Materials Science

10:30 AM Invited

Design of Fe-xNi-yMn Martensitic Steels for Cryogenic Liquefied Gas Applications: Jeongho Han1; Hyun Wook Lee1; Hyo Joo Han1; Min-Ho Park²; Hyeong-Sub So²; ¹Hanyang University; ²Hyundai Steel

10:50 AM

A Study on the Tensile Behavior of Fcc Ferrous Alloy Accompanied by Cryogenic Serrations at 4.2 K: Seon-Keun Oh1; Jun-Ho Lee1; Ka-Ram Lim¹; Young-Kyun Kim¹; Young-Sang Na¹; ¹Korea Institute of Materials Science

MECHANICS OF MATERIALS

Structure-Property Relationships in Molecular **Crystal Deformation — Structure-Function Relationships and Hot Spots in High-Rate Deformation**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Daniel Bufford, Sandia National Laboratories; Sushmita Majumder, University of Minnesota-Twin Cities; Paul Ryan, Atomic Weapons Establishment; Judith Brown, Sandia National Laboratories; Nathan Mara, University of Minnesota; Raimundo Ho, AbbVie Inc.

Tuesday AM | March 25, 2025 365 | MGM Grand

Session Chairs: Paul Ryan, Atomic Weapons Establishment; Mitchell Wood, Sandia National Laboratories

8:00 AM Invited

From Atoms to Constituent Models for Energetic Molecular Crystals: Mitchell Wood¹; ¹Sandia National Laboratories

8:30 AM

Multi-Scale Model for Describing the Thermo-Mechanical Behavior of Polycrystalline Energetic System Subjected to Dynamic Loadings: Benoit Revil-Baudard¹; ¹University of Arizona

8:50 AM Invited

High-Fidelity Simulations of Shock to Detonation Transition: Marisol Koslowski¹; ¹Purdue University

9:20 AM Invited

Quantitative Analysis of Granular Explosives Through Examination of the Compaction Manufacturing Process: Dimitrios Samaras¹; Oliver Blackman¹; Matthew Maisey²; Paul Ryan²; Soraia Pimenta¹; Maria Charalambides1; 1Imperial College London; 2AWE

9:50 AM Break

10:05 AM Invited

Physical Aspects of Plasticity and Constitutive Modeling of Molecular Crystal HMX: Catalin Picu1; Zhaocheng Zhang1; ¹Rensselaer Polytechnic Institute

10:35 AM

Multiscale Modeling of Material Strength for the Shock-to-**Detonation Behavior in Heterogeneous PETN**: James Stewart¹; Mitchell Wood¹; David Damm¹; ¹Sandia National Laboratories

Plasticity and Heat Conversion of Energetic Materials Under Different Dynamic Loading Conditions: Chunyu Li¹; Alejandro Strachan¹; ¹Purdue University

11:15 AM Invited

Advances in Mesoscale Modelling of Highly Filled Composite Explosives: Daniel Lewis1; Paul Ryan1; David Williamson2; Maria Charalambides³; Muhammad Iqbal³; Joanna Li-Mayer³; Hari Arora³; ¹AWE; ²Cambridge University; ³Imperial College London

MECHANICS OF MATERIALS

Structure and Dynamics of Metallic Glasses — **Relaxation and Deformation**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Sebastian Kube, University of Wisconsin - Madison; Katharine Flores, Washington University in St. Louis; Daniel Sopu, Erich Schmid Institute; Yonghao Sun, The Chinese Academy of Sciences; A. Lindsay Greer, University of Cambridge; Peter Derlet, Paul Scherrer Institut

Tuesday AM | March 25, 2025 367 | MGM Grand

Session Chairs: A. Lindsay Greer, University of Cambridge; Miguel Costa, NASA JPL

8:00 AM Invited

Atomic Cluster Dynamics and Transport in Metallic Glasses: Birte Riechers¹; Zengquan Wang¹; Amlan Das²; Eric Dufresne³; Peter Derlet⁴; Robert Maass¹; ¹Federal Institute of Materials Research and Testing (BAM); ²Cornell High Energy Synchrotron Source; ³Advanced Photon Source, Argonne National Laboratory; ⁴Paul Scherrer Institute

8:25 AM Invited

Atomic Cooperativity in Metallic Glass: Takeshi Egami¹; ¹University of Tennessee

8:50 AM Invited

Complexity and Dynamics in Metallic Glasses: Linking Structure and Entropy: Florian Spieckermann¹; Sepide Hadibeik¹; Daniel Sopu²; Juergen Eckert¹; ¹University of Leoben; ²Austrian Academy of Sciences

9:15 AM Invited

Structural Dynamics of Glass-Forming Alloys: Mechanical and Microscopic Insights: Yajuan Duan¹; Mehran Nabahat¹; Guillem Eliasson¹; Maximilian Frey²; Eloi Pineda¹; ¹Universitat Politècnica de Catalunya - BarcelonaTech; ²Saarland University

9:40 AM Break

10:00 AM Invited

Stress-Strain Curves for Hard-Sphere Colloidal Glasses: Experiments and Microscopic Analysis: Frans Spaepen¹; Aidan Duncan²; J. Terdik¹; Katharine Jensen²; ¹Harvard University; ²Williams College

10:25 AM Invited

The Impact of Deformation or Relaxation on the Atomic Structure, Self-Diffusion and Atomic Mobility in Bulk Metallic Glasses: Gerhard Wilde¹; ¹University of Muenster

10:50 AM

Ultrastable Metallic Glass by Room Temperature Aging: Yong Zhao1; Bo Zhang²; Baoshuang Shang³; Xing Tong³; Haibo Ke³; Haiyang Bai¹; Wei-Hua Wang¹; ¹Songshan Lake Materials Laboratory; Institute of Physics, Chinese Academy of Sciences; ²Songshan Lake Materials Laboratory; Hefei University of Technology; ³Songshan Lake Materials Laboratory

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Thermodynamics and Kinetics of Alloys III — **Practical Application and Theoretical Investigation**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Chuan Zhang, CompuTherm LLC; Dilpuneet Aidhy, Clemson University; Bin Ouyang, Florida State University; Jicheng Zhao, University of Maryland

Tuesday AM | March 25, 2025 352 | MGM Grand

Session Chairs: Maria Ioanna Tzini, Massachusetts Institute of Technology; Hyunseok Oh, University of Wisconsin - Madison

8:00 AM Invited

Understanding the Thermodynamics and Microstructural Evolution and Resultant Mechanical Properties of Friction Stir Processed Al7xxx Alloy: Arun Devaraj¹; Zehao Li¹; Tingkun Liu¹; Rakesh Kamath²; Hrishikesh Das¹; Shivakant Shukla¹; Dileep Singh²; Mert Efe¹; Piyush Upadhyay¹; ¹Pacific Northwest National Laboratory; ²Argonne National Laboratory

8:30 AM Invited

Design of a High Strength, High Electrical Conductivity and High Thermostability Twitch Aluminum Alloy: Maria Ioanna Tzini¹; Gregory Olson¹; ¹Massachusetts Institute of Technology

9:00 AM

Effect of Sn Microalloying on the Precipitation Kinetics of L1,-Al, Zr in a Dilute Aluminum-Zirconium Alloy: Janet Meier¹; Dongwon Shin¹; Jonathan Poplawsky¹; Lawrence Allard¹; Sumit Bahl¹; James Haynes¹; Amit Shyam1; 10ak Ridge National Laboratory

Understanding Aging Behavior in 6xxx Alloys Using Advanced Characterization Techniques: XiaoXiana Yu1; Dieter Isheim2; Jeffrey Tschirhart¹; Matthew Heyen¹; John Carsley¹; ¹Novelis Inc.; ²Northwestern University

9:40 AM Break

9:50 AM Invited

Integration of Large-Language Model and CALPHAD for Alloy Design Hypothesis Generation: Quanliang Liu¹; Hyunseok Oh¹; ¹University of Wisconsin - Madison

10:20 AM Invited

Site Preferences and Ordering in Nb-Al-M (M = Ni or Cu) Ternary Laves Phases: Wei Chen1; 1University at Buffalo

10:50 AM

Effects of Chromium Addition on Microstructural Evolution of Wrought Al-Mn-Mg Alloys: Blaine Wheaeton¹; Minju Kang¹; Kyle Dasch¹; Jaeseuck Park¹; DaeHoon Kang¹; ¹Novelis

11:10 AM

Coupled **Experimental-Computational** Study of Phase Fe-Cr-Mo-Co-NiDual-Anneal Multiples: Jessica Garnett¹; Ji-Cheng Zhao¹; ¹University of Maryland

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Thermodynamics and Phase Diagrams Applied to Materials Design and Processing: An FMD/ **SMD Symposium Honoring Rainer Schmid-**Fetzer — Computational Design of Materials and Microstructure Development with CALPHAD and **Phase-Field Simulations**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shuanglin Chen, CompuTherm LLC; Ji-Cheng Zhao, University of Connecticut; Ursula Kattner, National Institute of Standards and Technology; Greta Lindwall, KTH Royal Institute of Technology; Alan Luo, Ohio State University; Arthur Pelton, Ecole Polytechnique; John Agren, Royal Institute of Technology; Sinn-wen Chen, National Tsing Hua University

Tuesday AM | March 25, 2025 350 | MGM Grand

Session Chairs: Ma Qian, Royal Melbourne Institute of Technology; Shih-kang Lin, National Cheng Kung University

8:00 AM Invited

Computational Microstructural Engineering for Multi-Phase HEAs: Shiddhartha Ramprakash¹; Shalini Roy Koneru²; Paraic O'Kelly¹; Brian Welk¹; Gopal Viswanathan¹; Hamish Fraser¹; Yunzhi Wang¹; ¹The Ohio State University; 2TCS Research

8:25 AM Invited

Compositional Screening of Secondary Aluminum Alloys by Combining CALPHAD and Phase Field Simulations: Markus Apel¹; Bernd Böttger¹; Janin Eiken¹; ¹Access e.V.

Utilizing Computational Thermodynamics to Design Phase Transformation, Strength, and Ductility of HEAs: Ying Yang¹; ¹Oak Ridge National Laboratory

9:15 AM Invited

CALPHAD-Assisted Process Optimization for Free-Cutting Steels: Shih-kang Lin¹; ¹National Cheng Kung University

9:40 AM Break

10:00 AM Invited

Inputs From Computational Thermodynamics for Grain Size Prediction and Alloy Design: Mark Easton¹; David StJohn²; Mark Gibson³; Ma Qian¹; ¹Royal Melbourne Institute of Technology; ²University of Queensland; ³CSIRO

10:25 AM Invited

Prediction of as Cast Microstructure by Solidification Model Coupled with CALPHAD Database: Conventional Casting and Additive Manufacturing Process: In-Ho Jung1; Nishant Kumar1; Minho Yun1; 1Seoul National University

10:50 AM Invited

Microstructure Design for Precipitation-Hardened Aluminium and Magnesium Alloys: Jian-Feng Nie1; 1Monash University

11:15 AM Invited

Kinetics of Solid State Transformations Involving Intermetallic Phases: Frank Stein1; 1Max-Planck-Institut Fuer Eisenforschung

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Verification, Calibration, and Validation Approaches in Modeling the Mechanical Performance of Metallic Materials — UQ & Plasticity II

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: George Weber, NASA Langley Research Center; Joshua Pribe, Analytical Mechanics Associates; Saikumar Reddy Yeratapally, Science and Technology Corporation; Kirubel Teferra, Naval Research Laboratory; Diwakar Naragani, Cornell University

Tuesday AM | March 25, 2025 354 | MGM Grand

Session Chairs: Saikumar Reddy Yeratapally, Science and Technology Corporation; George Weber, NASA Langley Research Center

8:00 AM Invited

Substructure-Sensitive Crystal Plasticity: A Consistent Approach Across Materials, Loading Conditions and Temperatures: Gustavo Castelluccio1; 1Cranfield University

8:40 AM Invited

Uncertainty-Aware Validation in Modeling of Metal Plasticity: Beyond Mean Squared Error: Aaron Tallman¹; ¹Florida International University

9:00 AM

Probabilistic Global-Local Calibration of Crystal Plasticity Parameters for Additively Manufactured Metals Using Synthetic Data: Joshua Pribe¹; George Weber²; Saikumar Yeratapally³; Patrick Leser²; Brodan Richter²; Edward Glaessgen²; ¹Analytical Mechanics Associates; ²NASA Langley Research Center; ³Science and **Technology Corporation**

9:20 AM Break

A Constitutive Framework for Modeling Dynamic Recrystallization in Pure Copper: Andrew Ruggiero1; 1University of Cassino and Southern Lazio

10:00 AM

Uncertainty Quantification of Crystal Plasticity Parameters Using ExaConstit: Venkata Sai Harshit Gaddam¹; Robert Carson²; Leonidas Zisis¹; James Belak²; Michael Sangid¹; ¹Purdue University; ²Lawrence Livermore National Laboratory

SPECIAL TOPICS

TMS2025 All-Conference Plenary — All-Conference **Plenary**

Tuesday PM | March 25, 2025 120 | MGM Grand

Session Chair: Srinivas Chada, General Dynamics Mission Systems

12:00 PM Introductory Comments

12:05 PM Plenary

From Finite to Infinite: Closing the Loop on Critical Minerals: Emily Molstad1; 1VALIS Insights

12:45 PM Question and Answer Period

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

2D Materials - Preparation, Properties, Modeling & Applications — Preparation, Properties, Modeling & Applications II

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Hesam Askari, University of Rochester; Ritesh Sachan, Oklahoma State University; Joshua Young, New Jersey Institute of Technology; Sufian Abedrabbo, Khalifa University; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Chintalapalle V Ramana, University of Texas

Tuesday PM | March 25, 2025 362 | MGM Grand

Session Chairs: Ramana Chintalapalle, University of Texas at El Paso; Sufian Abedrabbo, Khalifa University

2:30 PM Introductory Comments

2:40 PM Invited

Modeling Intercalation of 2D Metals in Epitaxial Graphene: Qian Mao1; Malgorzata Kowalik1; Nadire Nayir2; Adri van Duin1; ¹Pennsylvania State University; ²Istanbul Technical University

3:00 PM Invited

Phase-Field Modeling of 2D Materials Growth During Chemical Vapor Deposition: Yanzhou Ji¹; ¹Ohio State University

3:20 PM Keynote

Solid-State van der Waals Solids: From Pristine Crystalline-Quality Films to Quasi-Amorphous Ensembles for Optoelectronics and Sensors: Anupama Kaul¹; ¹University of North Texas

3:45 PM Invited

Scalable 2D Semiconductor-Based Field Effect Transistor Nanosensor for Emerging Contaminants Detection: Md Mohidul Alam Sabuj¹; Sufian Abedrabbo²; *Mengqiang Zhao*¹; ¹New Jersey Institute of Technology; ²Khalifa University

4:05 PM Break

4:15 PM Invited

Strain-Induced Moiré Patterns in Non-Twisted 2D Materials: Evolution Mechanism and Interface Dynamics: Hesam Askari¹; Aditya Dey1; 1University of Rochester

Atomic and Electronic Structure of Si-Ge Quantum Wells: Siba Sundar Sahoo¹; Jagdish Narayan¹; Roger Narayan¹; ¹North Carolina State University

4:55 PM Keynote

Investigating the "Stiffness of Water" in Ti3C2Tx MXenes via Modulated Nano Indentation: Remi Dingreville¹; Ryan Khan¹; Frank Delrio¹; ¹Sandia National Laboratories

5:20 PM Invited

Investigation of Layer Stacking in 2D Material Polymorphs and Heterostructures: Danielle Reifsnyder Hickey¹; ¹Pennsylvania State University

5:40 PM Invited

Matrix-Assisted Pulsed Laser Evaporation of Drug-Containing Coatings: Andrew Sachan¹; Roger Narayan¹; ¹University of North

ADDITIVE MANUFACTURING

A Career in Powder Processing and Additive Manufacturing: A MPMD Symposium Honoring David **Bourell — Sinter-Based Additive Processing**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Powder Materials Committee

Program Organizers: Paul Prichard, Oak Ridge National Laboratory; Allison Beese, Pennsylvania State University; Iver Anderson, Iowa State University Ames Laboratory

Tuesday PM | March 25, 2025 309 | MGM Grand

Session Chair: Paul Prichard, Oak Ridge National Laboratory

2:30 PM Question and Answer Period: Dave Bourell has witnessed firsthand the opportunities and challenges in the growth of the powder metallurgy and additive manufacturing processes. Brent Stucker will moderate a Q&A session to discuss past innovations and future potential developments.

Evaluation of Green State Anisotropy in Parts Produced by Binder Jetting, Via Machine Learning Enhanced Discrete Element Modelling: Thomas Grippi¹; Runjian Jiang¹; Andrii Maximenko¹; John Kang¹; Elisa Torresani¹; Eugene Olevsky¹; ¹San Diego State University

3:20 PM

From Binder Jet Printing to Sintering of Fully-Dense, Controlled-Irregular Copper Powder: Mahsa Beyk Khorasani¹; Markus Chmielus¹; John Barnes²; ¹University of Pittsburgh; ²Powder Metal Works

Fabrication of Open Porous Magnesium Scaffold Using Rapid Tooling Method for Orthopedic Applications: Abhishek Kansal¹; Akshay Dvivedi¹; Pradeep Kumar¹; ¹IIT Rookree

4:00 PM Break

4:20 PM

Dual Concentric Ring Atomization Gas Die to Improve Gas Atomization Efficiency for SFF/AM Metal Powder Feedstocks: Iver Anderson¹; Franz Hernandez¹; Tim Prost²; David Byrd¹; Trevor Riedemann¹; Jordan Tiarks¹; ¹Iowa State University Ames Laboratory; ²Kansas City National Security Campus-Honeywell

4:40 PM

Cr and Al Diffusion Coatings for Improved Corrosion Resistance of AM Surfaces: Emma White1; Ceyhun Oskay1; Michael Kerbstadt1; Clara Schlereth¹; Mathias Galetz¹; ¹DECHEMA Research Institute

Temperature Dependent Experimental and Analytical Evaluation of Thermal Conductivity for Metallic Powder for Additive Manufacturing: Leila Ladani¹; Jafar Razmi¹; ¹Arizona State University

5:20 PM

Failure Phenomena of Additively Manufactured Ni-Base Superalloys at Various Temperatures under Static and Cyclic Loadings: Shuai Shao¹; Nima Shamsaei¹; ¹Auburn University

SPECIAL TOPICS

Acta Materialia Symposium — Acta Materialia Award Session

Program Organizer: Carolyn Hansson, University of Waterloo

Tuesday PM | March 25, 2025

170 | MGM Grand

Session Chair: Carolyn Hansson, University of Waterloo

2:30 PM Introductory Comments

2:40 PM Presentation of Acta Student Awards

3:00 PM Invited

Acta Materialia Gold Medal Lecture: Journey to the Center of the Earth: Using High Power Lasers to Explore Extreme Regimes: Marc Meyers¹; Gaia Righi²; Yong-Jae Kim³; Camelia Stan³; Robert Rudd³; Bruce Remington³; Christopher Wehrenberg³; Hye-Sook Park³; Arianna Gleason⁴; Eduardo Bringa⁵; Carlos Ruestes⁶; ¹University of California, San Diego; ²University of California San Diego; ³Lawrence Livermore National Laboratory; ⁴Stanford Linear Accelerator; ⁵Conicet and University of Mendoza; ⁶Technical University of Madrid

3:20 PM Question and Answer Period

3:30 PM Invited

Acta Materialia Silver Medal Lecture: Stress State's Controlling Role in Deformation and Transformation of Rare-Earth Orthophosphate Ceramics: Corinne Packard¹; ¹Colorado School of Mines

3:50 PM Question and Answer Period

4:00 PM Invited

Acta Materialia Hollomon Award for Materials and Society: Water-Activated Polymers to Mitigate Growing Global Challenges: Richard Spontak1; 1North Carolina State University

4:20 PM Question and Answer Period

4:30 PM Brief break to prepare for reception

4:40 PM Wine and Cheese Reception with Posters Student Award Winners in Acta Materialia Symposium: Pedro Borges, "Ab Initio Study of Local Lattice Distortions and the Structural Instabilities in bcc Nb-Ta-Ti-Hf High-Entropy Alloys"; Ni Cheng,"A Tumor Microenvironment-Responsive Core-Shell Tecto Dendrimer Nanoplatform for Magnetic Resonance Imaging-Guided and Cuproptosis-Promoted Chemo-Chemodynamic Therapy"; Antje Dollmann, "Temporal Sequence of Deformation Twinning in CoCrNi Under Tribological Load"; Johanna-Maria Frenck, "Interrelationship of Stress-Induced Martensitic Transformation and Pitting Corrosion in Iron-Based Shape Memory Alloys"; Wenjiang Huang, "High-Throughput Machine Learning - Kinetic Monte Carlo Framework for Diffusion Studies in Equiatomic and Non-Equiatomic FeNiCrCoCu High-Entropy Alloys."; Rae Eon Kim, "Superior Tensile Properties and Formability Synergy of High-Entropy Alloys Through Inverse-Gradient Structures"; Janith Wanni, "Columnar Grain Morphology and Mechanical Anisotropy of Face-Centered Cubic Metals and Alloys"; Di Xie, "Identifying the Effect of Coherent Precipitates on the Deformation Mechanisms by In Situ Neutron Diffraction in an Extruded Magnesium Alloy Under Low-Cycle Fatigue Conditions"; Jingxiao (Jane) Zhong, "Functional Non-Uniformity of Periodontal Ligaments Tunes Mechanobiological Stimuli Across Soft- and Hard-Tissue Interfaces"; and Hyeonseok Kwon, "High-Density Nanoprecipitates and Phase Reversion via Maraging Enable Ultrastrong Yet Strain-Hardenable Medium-Entropy Alloy"

ADDITIVE MANUFACTURING

Additive Manufacturing and Alloy Design: Bridging Fundamental Physical Metallurgy, Advanced Characterization Techniques, and Integrated Computational Materials Engineering for Advanced Materials — From Process Modeling to Next-**Generation Structural Alloys**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Amir Farkoosh, Northwestern University; David Seidman, Northwestern University; Enrique Lavernia, Texas A&M University; Noam Eliaz, Tel-Aviv University; Lee Semiatin, MRL Materials Resources LLC

Tuesday PM | March 25, 2025 311 | MGM Grand

Session Chairs: Charles-Andre Gandin, Mines Paris | PSL University; Marie Charpagne, University of Illinois

2:30 PM Invited

Grain Structure Formation During Additive Manufacturing: Alexander F. Chadwick¹; Juan Santos Macías²; Arash Samaei¹; Manas Upadhyay²; Gregory Wagner¹; Peter Voorhees¹; ¹Northwestern University; ²Ecole Polytechnique

Modeling of L-PBF from Microstructures to Properties: Charles-Andre Gandin¹; Gildas Guillemot¹; Yancheng Zhang¹; Michel Bellet¹; ¹PSL University

3:30 PM

Atomistic Simulations of Surface Energies in Immiscible Alloys to Promote Inward Marangoni Convection: Kenyi Choy-Hernandez¹; Pascal Bellon¹; ¹University of Illinois, Urbana-Champaign

3:50 PM Break

4:05 PM

An Additively Manufactured Al-Zr-Ce-Cu Conductor Alloy with High Strength and Creep Resistance: Jovid Rakhmonov¹; Jonathan Poplawsky¹; Lawrence Allard¹; Alice Perrin¹; Sumit Bahl¹; Allen Haynes¹; Alex Plotkowski¹; Amit Shyam¹; ¹Oak Ridge National Laboratory

4:25 PM

Design of Additively Manufactured Al-Ni-Zr-Er Alloys with Enhanced Thermally Stable Strength and Ductility: Zhaoxuan Ge1; S. Mohadeseh Taheri-Mousavi¹; ¹Carnegie Mellon University

4:45 PM

Next Generation of Structural Materials Through Additive Manufacturing: Punit Kumar¹; David Cook²; Robert Ritchie²; ¹Lawrence Berkeley National Laboratory; ²University of California, Berkeley

5:05 PM Invited

Laser Powder Directed Energy Deposition (LP-DED) of Single- and Multi-Layer HfB2 Coating: Shir Andreev Batat1; Vladimir Popov1; Zlatomir Apostolov Apostolov²; Noam Eliaz¹; ¹Tel Aviv University; ²Air Force Research Laboratory

5:25 PM

In-Situ Manufacturing of SiC-Si Composites Using Laser Powder Directed Energy Deposition: Vladimir Popov¹; Shir Andreev Batat¹; Noam Eliaz¹; ¹Tel Aviv University

ADDITIVE MANUFACTURING

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials — **Lightweight Metals and Materials**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Magnetic Materials Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Henry Colorado, Universidad de Antioquia; Riccardo Casati, Politecnico Di Milano

Tuesday PM | March 25, 2025 315 | MGM Grand

Session Chair: Riccardo Casati, Politecnico Di Milano

2:30 PM Invited

Sustainable Production of 5.xxx Aluminum Alloy Powders Via Inert Gas Atomization: Federico Gobber¹; Antonio Pennacchio¹; Marco Actis Grande¹; ¹Politecnico Di Torino

3:00 PM

Elucidating Laser Processing-Property Relationship in Aluminum Nitride Towards Laser Powder Bed Fusion: Rachel McNamara¹; Ji Ma1; 1University of Virginia

3:20 PM

Fabrication and Characterization of Aluminum-Copper Functionally Graded Materials Using Wire Arc Additive Manufacturing: Marwan El-Husseiny¹; Ehab El-Danaf¹; Hanadi Salem²; ¹Cairo University; ²American University in Cairo

Sinter-Based Additive Manufacturing of Titanium: Pei Sun1; Nathan Jump¹; Cole Walker¹; Z.Zak Fang¹; Jiaqi Jin¹; ¹University of Utah

4:00 PM Break

4:15 PM

Al Alloys with Low Coefficient of Thermal Expansion Produced by Laser Powder Bed Fusion: Giorgia Lupi¹; Luca Mariotti¹; Luca Patriarca¹; Stefano Beretta¹; Antonio Pennacchio¹; Federico Gobber¹; Marco Actis Grande¹; Romano lazurlo¹; Riccardo Casati¹; ¹Politecnico Di Milano

4:35 PM

A Novel Method to Enhance The Characteristics of 3d Printed Polymer Patterns for Rapid Investment Casting Process: Thomas Mathew¹; Bethala Sujith¹; Dagarapu Karunakar¹; ¹Indian Institute of Technology Roorkee

Real-Time Pore Dynamics During Additive Manufacturing of Oxidized Powders Using Correlative X-Ray and Optical Imaging: Kwan Kim1; Samy Hocine1; Wei Li1; Shishira Bhagavath1; Anna Getley¹; Rubén Lambert-Garcia¹; Elena Ruckh¹; Maureen Fitzpatrick¹; Sebastian Marussi¹; Marta Majkut²; Alexander Rack²; Joseph Oluleke³; Peter Lee¹; Chu Lun Alex Leung¹; ¹University College London; ²European Synchrotron Radiation Facility; ³Carpenter Additive

Innovative Additive Manufacturing of MOF-Based, Bulk Metallic Hydrides for Advanced Fission Power Systems: Timothy Defranco¹; Kevin Field¹; ¹University of Michigan

ADDITIVE MANUFACTURING

Additive Manufacturing Fatigue and Fracture: Towards Accurate Prediction — Joint Session with Fatigue in Materials Symposium: Microstructure-Based Fatigue Studies on Additive-Manufactured Materials

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; Nima Shamsaei, Auburn University; John Lewandowski, Case Western Reserve University; Mohsen Seifi, ASTM International/Case Western Reserve University

Tuesday PM | March 25, 2025 317 | MGM Grand

Session Chairs: Nima Shamsaei, Auburn University; Orion Kafka, National Institute of Standards and Technology

2:30 PM Invited

Predicting Fracture Location in Additively Manufactured Metals Containing Porosity and Surface Defects: Elliott Marsden¹; Brian Phung¹; Mira Terry¹; Ashley Spear¹; ¹University of Utah

2:50 PM

Fatigue Life Prediction in Powder Bed Fusion Method Using Modified Goodman Diagram with Residual Stress and Anomalies Weighting: Incorporating Strain Hardening, Cyclic Hardening, and Bauschinger Effect: Hamed Hosseinzadeh¹; ¹Manufacturing **Technology Project**

3:10 PM

A Strong and Fracture-Resistant High-Entropy Alloy Intrinsically Toughened by 3D-Printing: Punit Kumar¹; Sheng Huang²; David Cook³; Kai Chen⁴; Upadrasta Ramamurty⁵; Xipeng Tan⁶; Robert Ritchie³; ¹Lawrence Berkeley National Laboratory; ²Massachusetts Institute of Technology; 3University of California, Berkeley; 4Xi'an Jiaotong University; 5Nanyang Technological University; 6National University of Singapore

3:30 PM

Modeling the Effects of Transient Liquid Phase Surface Smoothing on the Fatigue Performance of AM Ti-6Al-4V Microlattices: Kyle Jung¹; Kendall Yetter²; William LePage²; Michael Sangid¹; ¹Purdue University; 2University of Tulsa

3:50 PM Break

4:10 PM

As-Printed Surface Roughness Analysis for Predicting Minimum Fatigue Life of Additively Manufactured Parts: Sushant Jha1; Matthew Krug²; Patrick Golden²; Reji John²; ¹University of Dayton Research Institute; ²US Air Force Research Laboratory

4:30 PM Invited

Synergistic Effects of Defects and Microstructure on Fatigue Crack Initiation in Additively Manufactured Materials: Shuai Shao1; Nima Shamsaei¹; ¹Auburn University

4:50 PM

Refining the Fatigue and Toughness-Based Process Window and Understanding Long Crack Growth Behavior in LPBF Ti64 Specimens Fabricated Across PV Space: Brett Ley1; Austin Ngo1; Oluwatumininu Adeeko¹; Anthony Rollett²; Christian Gobert²; Jack Beuth²; John Lewandowski¹; ¹Case Western Reserve University; ²Carnegie Mellon University

5:10 PM

Fracture-Based Fatigue Life Prediction of Additively Manufactured Parts with As-Built Surface Roughness: Leland Shimizu¹; Xueyong Qu¹; Jacob Rome¹; ¹The Aerospace Corporation

5:30 PM

Framework: PRISMS-Fatique **Additive Applications** for Manufacturing: Mohammadreza Yaghoobi¹; Krzysztof S. Stopka²; John E. Allison¹; David L. McDowell³; ¹University of Michigan; ²Purdue University; 3Georgia Institute of Technology

ADDITIVE MANUFACTURING

Additive Manufacturing Materials in Energy Environments II — Accelerated Testing and Qualification

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Nuclear Materials Committee

Program Organizers: Isabella Van Rooyen, Pacific Northwest National Laboratory; Subhashish Meher, Pacific Northwest National Laboratory; Kumar Sridharan, University of Wisconsin-Madison; Xiaoyuan Lou, Purdue University; Yi Xie, Peking University; Michael Kirka, Oak Ridge National Laboratory; Mohan Sai Kiran Nartu, Pacific Northwest National Laboratory

Tuesday PM | March 25, 2025 301 | MGM Grand

Session Chairs: Xiaoyuan Lou, Purdue University; Michael Kirka, Oak Ridge National Laboratory

2:30 PM

Accelerating the Evaluation of Creep Properties in Laser Powder Bed Fusion Processed Haynes 230 and Inconel 738: Daniel McConville1; Ben Rafferty2; Stan Baldwin2; Kevin Eckes2; Jeremy Iten²; Amy Clarke¹; Jonah Klemm-Toole¹; ¹Colorado School of Mines; ²Elementum 3D

2:50 PM Invited

Combining X-Ray Computed Tomography and Microstructure Characterization to Elucidate the Creep Behavior of LPBF 282 Alloy: Sebastien Dryepondt¹; Holden Hyer¹; Amir Ziabari¹; Amanda Heimbrook¹; Franklin Rahul¹; ¹Oak Ridge National Laboratory

Characterization of Novel Friction Stir Layer Processed Al10Cr12Fe35Mn23Ni20 High Entropy Alloy for Nuclear Applications: Mohan Sai Kiran Nartu1; David Garcia1; Subhashish Meher¹; Tianhao Wang¹; Jorge F Dos Santos¹; Isabella Van Rooyen¹; ¹Pacific Northwest National Laboratory (Pnnl)

3:35 PM

Investigation on the Processing Parameter Effects on MicrostructuralEvolution of YTiO- Reinforced SS 316L Nanocomposites Via Wire-Powder Fed Directed Energy Deposition: Seongun Yang¹; Kwangtae Son¹; Zhengming Wang¹; Tyler Finch¹; Donghua Xu¹; Chih-hung Chang¹; Marc Albert²; Somayeh Pasebani¹; ¹Oregon State University; ²Electric Power Research Institute

3:55 PM

Microstructure Evolution and Mechanical Behavior of an Additively Manufactured High Strength Austenitic Stainless Steel: Srinivas Aditya Mantri¹; Xuan Zhang¹; Wei-Ying Chen¹; Lin Gao¹; ¹Argonne **National Laboratory**

4:15 PM Break

4:25 PM

An Additively Manufactured IN718 Strengthened by CSL Boundaries with High-Temperature Tensile and Short-Term Creep Resistance up to 800°C: Marcus Lam¹; Anthony Koumpias²; Amberlee Haselhuhn²; Andrew Wessman¹; Sammy Tin¹; ¹University of Arizona; ²LIFT

4:45 PM

Fabrication of Nanostructured Alumina Forming Austenitic Alloys via Conventional and Advanced Manufacturing Approaches: Caleb Massey¹; Tim Graening¹; Holden Hyer¹; David Hoelzer¹; Yukinori Yamamoto¹; ¹Oak Ridge National Laboratory

5:05 PM Invited

High Performance Computing-Enabled Laser Powder Bed Fusion (L-PBF) Manufacturing of High Gamma Prime Alloy: Jiahao Cheng¹; Ning Zhou²; Patxi Fernandez-Zelaia¹; Tao Wang²; Gian Colombo²; Austin Dicus²; Stephane Forsik²; Mario Epler²; Michael Kirka¹; ¹Oak Ridge National Laboratory; ²Carpenter Technology Corporation

5:25 PM

An Experimental Qualification Pipeline for the LPBF Fabrication of Complex Thermo-Fluidic Components for High-Temperature and High-Pressure Heat Exchange Applications: Junwon Seo1; Nicholas Lamprinakos¹; Yu-Tsen Yi¹; Anthony Rollett¹; ¹Carnegie Mellon University

ADDITIVE MANUFACTURING

Additive Manufacturing of Refractory Metallic Materials — Additive Manufacturing of Tungsten and **Tungsten-Based Alloys**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Refractory Metals & Materials Committee

Program Organizers: Fernando Reyes Tirado, Nasa Marshall Space Flight Center; Omar Mireles, Los Alamos National Laboratory; Faramarz Zarandi, RTX Corporation; Jeffrey Sowards, NASA Marshall Space Flight Center; Antonio Ramirez, Ohio State University; Eric Brizes, NASA Glenn Research Center; Eric Lass, University of Tennessee-Knoxville; Matthew Osborne, Global Advanced Metals; Joao Oliveira, Faculdade Ciencias Tecnologias; Ian Mccue, Northwestern University; Zachary Sims, Small Business **Consulting Corporation**

Tuesday PM | March 25, 2025 316 | MGM Grand

Session Chairs: Ian Mccue, Northwestern University; Zachary Sims, University of Tennessee, Knoxville

2:30 PM Invited

Impact of Ceramic Nanoparticle Additions on the Properties of Additive Manufactured Refractory Metals: Carly Romnes1; Toren Hobbs¹; Fernando Reyes Tirado¹; Jeffrey Sowards¹; Omar Mireles²; James Stubbins³; ¹NASA Marshall Space Flight Center; ²Los Alamos National Laboratory; ³University of Illinois Urbana-Champaign

3:00 PM

Enhanced Development of Tungsten Alloy Plasma Facing Materials: Hyeji Im1; Jason Trelewicz2; Ian McCue3; 1Case Western Reserve University; ²Stony Brook University; ³Northwestern University

3:20 PM

Dense and Crack-Free Pure Tungsten Manufactured by Electron Beam Powder Bed Fusion Using Chemically Reduced Powder: Arun Ramanathan Balachandramurthi¹; Ian Crawford¹; Gloria Graf²; Ulf Ackelid1; Ulric Ljungblad1; Greta Lindwall2; 1Freemelt AB; 2KTH Royal Institute of Technology

3:40 PM

Impact of Stochastic Scanning Strategies in Electron Beam Powder Bed Fusion of Tungsten Alloys: Shashank Sharma¹; Sheldon Dowden¹; Zane Hughes¹; Rohit Randhaven¹; Krishna Verma¹; Sameehan Joshi¹; Narendra Dahotre¹; ¹University of North Texas

4:00 PM Break

4:20 PM

Direct Energy Deposition of Tungsten by High Repetition High Power Femtosecond Laser: Anming Hu¹; ¹University of Tennessee

Microstructural Evolution in Laser Powder Bed Fusion Processed W and W-Re: Krishna Kamlesh Verma¹; KV Mani Krishna²; Shashank Sharma¹; M Radhakrishnan¹; Jitesh Kumar¹; Narendra Dahotre¹; ¹University of North Texas; ²Bhabha Atomic Research Center

5:00 PM

Prototype Elements Manufactured from Molybdenum and Tungsten Modified with Rhenium Using LPBF Technology: Adriana Wrona¹; Adrian Kukofka²; Anna Czech¹; Marcin Lis¹; Tomasz Palacz³; ¹Lukasiewicz Research Network - Imn; ²Progresja S.A.; ³Lifero Sp. z

5:20 PM

WC-Based Functionally Graded Materials Fabricated by Laser Powder Directed Energy Deposition: Eleonora Santecchia¹; Gabriele Grima¹; Alberto Santoni¹; Maria Laura Gatto¹; Marcello Cabibbo¹; Riccardo Luigi Di Mattia¹; Vincenzo Foti¹; Stefano Spigarelli¹; ¹Università Politecnica delle Marche

Thermo-Mechanical Testing Approach of Additive Manufactured Ultra-High Temperature Refractory Alloys: Kelly Orsborn¹; Kaue Riffel¹; Eric Brizes²; Fernando Tirado³; Omar Mireles⁴; Antonio Ramirez¹; ¹Ohio State University; ²NASA Glenn Research Center; ³Nasa Marshall Space Flight Center; ⁴Los Alamos National Laboratory

ADDITIVE MANUFACTURING

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response - Iron, Nickel, and Aluminum-Based Alloys I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sezer Ozerinc, University of Illinois at Urbana-Champaign; Yu Zou, University of Toronto; Tianyi Chen, Oregon State University; Wendy Gu, Stanford University; Eda Aydogan, Pacific Northwest National Laboratory; Keivan Davami, University of Alabama

Tuesday PM | March 25, 2025 310 | MGM Grand

Session Chairs: Wendy Gu, Stanford University; Meysam Haghshenas, University of Toledo

2:30 PM Invited

Static and Fatigue Failure Mechanisms Governed by Multi-scale Dynamic Structural Evolution in Additive Friction Stir Deposition: Hang Yu¹; ¹Virginia Polytechnic Institute And State University

3:10 PM

Influence of Additive Friction Stir Deposition Process Parameters on Enhanced Mechanical Performance of IN625: Shreyash Patil1; Madhavan Radhakrishnan¹; Shashank Sharma¹; Sameehan Joshi¹; Rajarshi Banerjee¹; Narendra Dahotre¹; ¹University Of North Texas, Denton

3:30 PM

Analyzing Hydrogen Diffusivity and Its Impact on Mechanical Behavior in Additively Manufactured FCC Alloys Using Nanoindentation: Dong-Hyun Lee1; Yun Hee An1; Yakai Zhao1; Ju Hyeok Lee¹; Hyun You Kim¹; You Sub Kim¹; Soo Yeol Lee¹; ¹Chungnam **National University**

Investigating the Impact of Part Dimensions on Microstructural Integrity and Mechanical Performances in Optimized L-PBF Process: Soung Yeoul Ahn1; Sang Guk Jeong1; Man Jae SaGong1; Gitaek Lee¹; Eun Seong Kim¹; Hyojin Park¹; Jung-Wook Cho¹; Jung Gi Kim²; Hyoung Seop Kim¹; ¹POSTECH; ²Gyeongsang National University

4:10 PM Break

4:30 PM Invited

Length-Scale Phenomena in Creep Behavior of Laser Powder Bed Fusion (LPBF) 316H Stainless Steel: Xuan Zhang¹; Lin Gao¹; Ashale Fernando²; Gareth Douglas²; Bo Chen³; Caleb Massey⁴; Mark Messner¹; ¹Argonne National Laboratory; ²University of Leicester; ³University of Southampton; ⁴Oak Ridge National Laboratory

5:10 PM

Uniaxial-Load Stitch Modalities in Multi-Laser Powder Bed Fusion: Jonathan Priedeman¹; Laura Dial¹; Tyler Borchers²; ¹GE Aerospace Research; ²GE Aerospace

5:30 PM

Hard-Facing of Worn-Out Railway Sections with High Mn-Steel Using Wire Arc Additive Repair: Hanadi Salem¹; Joanne Ishak²; Omar El Saadany¹; Hanaa Mohamed¹; Yasmin Tawfik¹; Bassel El-Garaihy¹; ¹American University in Cairo; ²Universities of Canada in Egypt

ADVANCED CHARACTERIZATION METHODS

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Crystal Plasticity and XRD

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Wolfgang Pantleon, Technical University of Denmark; Irene Beyerlein, University of California, Santa Barbara; C. Tasan, Massachusetts Institute of Technology; M. Arul Kumar, Indian Institute of Technology Kanpur

Tuesday PM | March 25, 2025 122 | MGM Grand

Session Chairs: Carlos Tome, Los Alamos National Laboratory; Thomas Kohne, Technical University of Denmark

2:30 PM

A Crystal Plasticity Model with Intragranular Heterogeneity -Application to Steel Forming: Carlos Tome¹; Anirban Patra²; ¹Los Alamos National Laboratory; ²Indian Institute of Technology Bombay

Slip System Activities in BCC Ta Revealed Via Nanoindentation and Micropillar Compression: Experiments and Crystal Plasticity Simulations: Sajjad Izadpanah¹; Muthanna Kareem¹; Olajesu Olanrewaju²; Kevin Jacob²; Siddhartha Pathak²; Curt Bronkhorst³; Marko Knezevic¹; ¹University of New Hampshire; ²lowa State University; 3University of Wisconsin-Madison

3:10 PM

Fully Coupled Thermomechanical Crystal Plasticity Framework for Analyzing Micromechanical Fields in Additive Manufacturing: Anderson Nascimento¹; James Lamb¹; Kaitlyn Mullin¹; Evan Raeker¹; Tresa Pollock¹; Irene Beyerlein¹; ¹University of California, Santa Barbara

3:30 PM

Modeling of the Thermo-Mechanical Response and Texture **Evolution of AA6016 and Uranium Using a Strain Gradient Elasto-**Plastic Self-Consistent Formulation: Zhangxi Feng¹; Rodney McCabe¹: Ricardo Lebensohn¹: Marko Knezevic²: ¹Los Alamos National Laboratory; ²University of New Hampshire

3:50 PM Break

4:10 PM

Evolution of Internal Strain During Cyclic Deformation of Aluminum Studied by High-Resolution Reciprocal Space Mapping and Large-Strain Elasto-Viscoplastic Fast Fourier Transformation Simulation: Thomas Kohne¹; Miroslav Zecevic²; Zoltan Hegedues³; Ulrich Lienert³; Ricardo Lebensohn²; Wolfgang Pantleon¹; ¹Technical University of Denmark; ²Los Alamos National Laboratory; ³Deutsches Elektronensynchrotron

4:30 PM

Assessing Intragranular Orientations and Slip Processes during Cyclic Loading Using Crystal Plasticity and High-Energy X-Ray Microscopy: Justine Schulte1; Dalton Shadle2; Jonathan Hestroffer1; Kelly Nygren²; Matthew Miller²; Tresa Pollock¹; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²Cornell University

Illuminating Ductile Failure Via X-Ray Diffraction-Based Imaging: Jose Solano¹; Sven Gustafson¹; Philip Noell²; Krzysztof Stopka¹; Jun-Sang Park³; Peter Kenesei³; Kyle Johnson²; Michael Sangid¹; ¹Purdue University; ²Sandia National Laboratories; ³Advanced Photon Source, Argonne National Laboratory

Machine Learning of Dislocation Microstructure from High-Resolution Differential-Aperture X-Ray Structural Microscopy Data: Khaled SharafEldin1; Bryan Miller2; Wenjun Liu3; Jon Tischler3; Benjamin Anglin²; Anter El-Azab¹; ¹Purdue University; ²Naval Nuclear Laboratory; ³Argonne National Laboratory

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advanced Materials for Energy Conversion and Storage 2025 — Advanced Materials for Energy **Storage**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Energy Conversion and Storage Committee, TMS: High Temperature Alloys Committee

Program Organizers: Surojit Gupta, University of North Dakota; Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania; Cengiz Ozkan, University of California

Tuesday PM | March 25, 2025 356 | MGM Grand

Session Chairs: Surojit Gupta, University of North Dakota; Sankha Banerjee, California State University, Fresno

2:30 PM Invited

Functional Liquid Alloys for Ammonia Synthesis from Nitrogen and Hydrogen: Xiaofei Guan1; 1Shanghaitech University

2:55 PM Invited

Unraveling the Conundrum of Electronic Leakage in Protonic Ceramic Cells: Operation-Specific Insights and Rational Design Strategies: Bo Guan¹; Hanchen Tian¹; Yoosuf Picard²; Jian Liu²; Harry Abernathy²; Thomas Kalapos²; Lingfeng Zhou¹; Xuemei Li¹; Wenyuan Li¹; Xingbo Liu¹; ¹West Virginia University; ²National Energy **Technology Laboratory**

3:20 PM

Development of 3D-Printed PLA-BaTiO3-MXene Composites: Advancing Multidimensional Material Systems for **Biomedical Sensing**: *Jelizaveta Chern*¹: Aidee Gonzales¹: Derek Xiong¹; Sankha Banerjee¹; ¹California State University, Fresno

3:40 PM

Fabrication and Characterization of a Novel Multimodal Water Purification Platform: Integrating Graphene, MXene, and Activated Carbon Nanocomposites for Enhanced Contaminant Removal: Parshwa Khane¹; Prakhyat Gautam¹; Armando Correa¹; Sankha Banerjee¹; ¹California State University, Fresno

4:00 PM Break

4:15 PM

3D Printed Carbon and Graphene Aerogels for Energy Storage and Conversion Applications: Swetha Chandrasekaran¹; Xinzhe Xue²; Megan Freyman¹; Jean-Baptiste Forien¹; Thomas Roy¹; Jeremy Feaster¹; Yat Li²; Bruce Dunn³; Marcus Worsley¹; ¹Lawrence Livermore National Laboratory; ²University of California, Santa Cruz; ³University of California, Los Angeles

4:35 PM

PVDF-TrFE Nanocomposites Enhanced with BaTiO3 and Ti3C2 MXene: Innovating Non-Toxic Electroactive Materials for Medical Wearables: Derek Xiong¹; Jelizaveta Chern¹; Parshwa Khane¹; Sankha Banerjee¹; ¹California State University, Fresno

4:55 PM

Study on Microswing Adsorption of Low Concentration Gas by Activated Carbon: Jun Zhao1; 1China University of Mining and Technology (CUMT)

5:15 PM

Advances In Design and Development of Broadband Energy Harvesting Devices Using Piezoelectric Effect: Vishwas Bedekar¹; ¹Middle Tennessee State University

5:35 PM

Design of Novel Materials from Biomass for Energy Intensive Applications: Surojit Gupta1; 1University of North Dakota

MATERIALS SYNTHESIS AND PROCESSING

Advances in Bcc-Superalloys — Alloy Design & Mechanical Properties II

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee, TMS: Refractory Metals & Materials

Program Organizers: Alexander Knowles, University of Birmingham: Christopher Zenk, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Howard Stone, University of Cambridge; Oleg Senkov, Air Force Research Laboratory; Eric Lass, University of Tennessee-Knoxville; Thomas Hammerschmidt, Ruhr University

Tuesday PM | March 25, 2025 102 | MGM Grand

Session Chairs: Sandy Knowles, University of Birmingham; Christopher Zenk, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

2:30 PM

Microstructure Evolution and Mechanical Properties of A2/L2,-Strengthened Ferritic Superalloys: Christopher Zenk1; Luis Morales1; Kai Eberl¹; Carolin Körner¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

2:50 PM

Development of Novel Intermetallic Dispersion Strengthened Steels: Iris Carneiro¹; Alexander Knowles¹; ¹University of Birmingham

3:10 PM

High Temperature Environmental Degradation of Novel Fe-Based BCC Superalloys: Karthikeyan Hariharan¹; Oswaldo Luengas¹; Sannakaisa Virtanen¹; Christopher Zenk¹; ¹Friedrich Alexander University, Erlangen-Nuremberg

3:30 PM

Enhanced Creep Resistance Influenced by Lattice Strain Fields and Grain Boundary Sliding of Mo-Doped Ferritic Medium Entropy Superalloys: Sang-Hun Shim1; Kanghyun Park2; Heoun-Jun Kwon1; Young-Kyun Kim¹; Young-Sang Na¹; Gian Song²; Hye Jung Chang³; Ka Ram Lim¹; ¹Korea Institutute of Materials Science; ²Kongju National University; 3Korea Institute of Science and Technology

3:50 PM Break

High Temperature Mechanical and Irradiation Response of a Eutectic Refractory Alloy: Sriswaroop Dasari¹; Boopathy Kombaiah²; Philip Petersen²; Mukesh Bachhav²; ¹University of Texas at El Paso; ²Idaho National Laboratory

4:30 PM

Mechanical Properties and Deformation Mechanism of Cast and Additively Manufactured NiAl-CrMo In-Situ Composites: Jan Vollhuter1; Katharina Titz1; Benjamin Wahlmann1; Carolin Körner1; Steffen Neumeier¹; Mathias Göken¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg

4:50 PM

Characterisation of Ion-Irradiated BCC Ferritic Superalloys for High-Temperature and Nuclear Applications: Sophia Von Tiedemann¹; Kan Ma¹; Colin Ophus²; Jóhan Pauli Magnussen¹; Muhammad Naeem¹; Pedro Ferreiros³; David Bowden⁴; Alexander Knowles1; 1University of Birmingham; 2Lawrence Berkeley National Laboratory; 3VTT Technical Research Centre of Finland Ltd.; 4United Kingdom Atomic Energy Authority

5:10 PM

AlCoCrFeNi-Based High Entropy Superalloy Coating Applied onto the Surface of Al-Alloys: Murat Alkan1; Esra Dokumaci Alkan1; Gizem Ari1: 1DFU

MATERIALS SYNTHESIS AND PROCESSING

Advances in Ceramic Materials and Processing — 2D **Ceramics**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, University of Alabama Birmingham; Faqin Dong, Southwest University of Science and Technology; Ruigang Wang, Michigan State University; Alexander Dupuy, University of Connecticut; Jinhong Li, China University of Geosciences; Gregory Thompson, University of Alabama; Babak Anasori, Purdue University

Tuesday PM | March 25, 2025 106 | MGM Grand

Session Chairs: Kathy Lu, University of Alabama Birmingham; Babak Anasori, Purdue University

2:30 PM

Flash Joining of Metal-Ceramic Multi-Layered Sandwich Structure: Raghav Mundra¹; Pulkin Gupta¹; Shikhar Krishn Jha¹; ¹IIT Kanpur

Multi-Layer Composite Armor: Experimental and Computational Study: Alberto Pagano¹; Nicola Bonora¹; Gianluca Iannitti¹; Sara Ricci¹; Andrew Ruggiero¹; Gabriel Testa¹; Andrea Ceccacci¹; ¹University of Cassino and Southern Lazio

3:10 PM

Stability and Properties of MAX Phases With Compositionally Complex M-layers: Milos Dujovic¹; Miladin Radovic¹; Ankit Srivastava¹; Zeyi Tan¹; ¹Texas A&M University

Challenges and Opportunities in Integrating MXene Into Ceramic Nanocomposites: Maxim Sokol¹; Barak Ratzker¹; Or Messer¹; ¹Tel Aviv University

3:50 PM Break

4:00 PM

Freeze-Cast Alumina for **High-Temperature** Applications: Mert Arslanoglu¹; Somnath Mandal²; Eric Bell³; Burak Ozdoganlar¹; Rahul Panat¹; ¹Carnegie Mellon University; ²Vesuvius; ³Vesuvius

Feasibility of Graphene-Enhanced Strength in Sanitary Ceramics: Ziyad Sherif¹; John Patsavellas¹; Konstantinos Salonitis¹; ¹Cranfield University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances in Magnetism and Magnetic Materials - Characterization of Magnetic Materials and **Properties**

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Matthew Kramer, Ames Laboratory; Eric Theisen, Energy & Environmental Research Center; Yaroslav Mudryk, Ames National Laboratory/Iowa State University; Daniel Salazar, BCMaterials

Tuesday PM | March 25, 2025 363 | MGM Grand

Session Chairs: Rudolf Schaefer, Ifw Dresden; Anton Bolyachkin, National Institute for Materials Science

2:30 PM Invited

Magneto-Optics, Revisited: Rudolf Schaefer¹; ¹Ifw Dresden

3:00 PM Invited

Characterization of Crystallographic and Magnetic Domain Structures in Magnetic Alloys Using Complementary TEM Techniques: Takehiro Tamaoka1; Yuto Tomita2; Yasukazu Murakami2; ¹Toray Reseach Center Inc.; ²Kyushu University

3:30 PM

Effects of Interstitial Elements on the Ordered Structure of Fe-Ni Alloys: Jeongsoo Han1; Hyunseok Oh1; 1University of Wisconsin-Madison

3:50 PM Break

4:10 PM

Magnetic and Nano-Indentation Behavior in FeNi Invar Alloys: Rahulkumar Sunil Singh¹; Subbu Venkata Satyasri Harsha Pathapati¹; Sivaraman Guruswamy¹; ¹University of Utah

4:30 PM

Magnetic Properties of Sm₂Fe₁₇N₃ at Low Temperature: Xubo Liu¹; M. Parans Paranthaman²; Ikenna Nlebedim³; ¹Ames National Laboratory; ²Oak Ridge National Laboratory; ³Ames Laboratory

4:50 PM

Internal Defect Detection and Characterization of Sm-Co Sintered Magnets by Ultrasonic Testing and Related Magnetic Properties: Baozhi Cui¹; Jun Cui²; Daniel Barnard²; Leonard Bond²; National Laboratory; 2 lowa State University

5:10 PM

Influence of Spinodal Decomposition on the Magnetic Properties of Additively Manufactured Alnico: Saikumar Dussa¹; Sameehan Joshi¹; Krishna Verma¹; Chaitanya Kumar KN¹; Madhavan Radhakrishnan¹; Rajarshi Banerjee¹; Narendra Dahotre¹; ¹University of North Texas

MATERIALS SYNTHESIS AND PROCESSING

Advances in Materials Deposition by Cold Spray and Related Technologies — Processing, Characterization, and Properties II

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Materials Characterization Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Additive Manufacturing Committee

Program Organizers: Ahmed Alade Tiamiyu, University of Calgary, Canada; Tanaji Paul, Florida International University; Yu Zou, University of Toronto; Maniya Aghasibeig, National Research Council Canada; Aaron Nardi, Vrc Metal Systems, Llc; Pin Lu, Solvus Global

Tuesday PM | March 25, 2025 103 | MGM Grand

Session Chairs: Tanaji Paul, Florida International University; Ahmed Alade Tiamiyu, University of Calgary, Canada

2:30 PM Invited

Powder Surface Conditions in Cold Spray: What Single Particle Impact Studies Teach Us: Christopher Schuh¹; ¹Northwestern University

3:00 PM

Fatigue Resistance of Aluminum Alloy Components Repaired Using Cold Spray: Patrick Morrison¹; Krzysztof Stopka¹; John Ferguson¹; Michael Sangid¹; ¹Purdue University

3:20 PM

Comparison of Recycled Battlefield Titanium Scrap vs. Virgin Titanium Feedstock Powder for Cold Spray Consolidation: Kiran Judd¹; Kyle Tsaknopoulos¹; Danielle Cote¹; ¹Worcester Polytechnic Institute

3:40 PM

The Accumulation of Single-Particle Impacts: Statistical Connections Between Impact Parameters, Coating Flaws and Microstructure Evolution in Cold Spray: Alain Reiser¹; Christopher ¹KTH Royal Institute of Technology; ²Northwestern University

4:00 PM Break

4:20 PM

Correlative Microstructure and Mechanical Property Investigation of Aluminum Cold Sprayed Coating on Magnesium Substrate: Tanvi Ajantiwalay¹; Sridhar Niverty¹; James Haag¹; Rajib Kalsar¹; Arun Devaraj¹; Vineet V. Joshi¹; ¹Pacific Northwest National Laboratory

4:40 PM Invited

Cold Spray, HVOF, and Plasma Spray of Eutectic High Entropy Alloys: Yu Zou1; 1University of Toronto

MECHANICS OF MATERIALS

Advances in Multi-Principal Element Alloys IV: Mechanical Behavior — Structures and Mechanical **Properties II**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Jennifer Carter, Case Western Reserve University; E-Wen Huang, National Yang Ming Chiao Tung University; T.S. Srivatsan, University of Akron; Xie Xie, Ford Motor Company; Jamieson Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Tuesday PM | March 25, 2025 368 | MGM Grand

Session Chairs: Koichi Tsuchiya, National Institute For Materials Science; Wenjun Cai, Virginia Polytechnic Institute and State University

2:30 PM Invited

Effect of SFE on Mechanical Properties in Co-Cr-Mo-Ni Medium Entopy Alloys: Koichi Tsuchiya1; Elango Chandiran1; Bikash Tripathy1; Wataru Tasaki¹: ¹National Institute for Materials Science

2:50 PM Invited

High Entropy Alloys- The Intrique: Husevin Sehitoglu¹; O Celebi¹; Daegun You¹; ASK Mohammed¹; ¹University of Illinois at Urbana-Champaign

3:10 PM Invited

High Temperature Wear and Deformation Behavior of Compositionally Complex Oxide Formed on Metal Surfaces: Zhengyu Zhang¹; Wenjun Cai¹; ¹Virginia Polytechnic Institute and State University

3:30 PM Invited

Martensitic Phase Transformation and Anomalous Hardening in CrMnFeCoNi High-Entropy Alloy: Robert Chulist¹; Aurimas Pukenas²; Anton Hohenwarter³; Reinhard Pippan³; Werner Skrotzki²; ¹Polish Academy of Sciences, Krakow; ²Technische Universität Dresden; ³Montanuniversität Leoben

3:50 PM Invited

Microstructure and Mechanical Properties of New Compositionally-Complex Fe-Cr-Mn-Al Ferritic Stainless Steels Free of σ-Phase, χ-Phase and 475 °C Embrittlement: Kevin Laws¹; Stephanie Blankley²; Douglas Raigosa²; Natalie Krieger²; Jackson Baker²; Joel Abraham¹; Kaitlyn Paulsen²; Alexandra Loumidis²; Fadlin Natsition¹; Karen Privat¹; Patrick Conway¹; Lori Bassman²; ¹UNSW; ²Harvey Mudd College

4:10 PM Break

4:30 PM Invited

Ultrahigh Strength Triggered by BCC and B2 Eutectic-Phase Interfaces in a Novel Fe30Cr15V15Ni2OAl2O High Entropy Alloy: M.Z. Wang¹; Yongfeng Shen¹; N. Jia¹; ¹Northeastern University

4:50 PM

Ramifications of Introducing Local Chemical Ordering in FCC-Based High Entropy Alloys and Its Manifestations on the Bulk Mechanical Properties via Slip Planarity: Abhishek Sharma¹; Sriswaroop Dasari¹; Tirthesh Ingale¹; Chao Jiang²; Bharat Gwalani¹; Stephane Gorsse³; An-Chou Yeh⁴; Srinivasan Srivilliputhur¹; Rajarshi Banerjee¹; ¹University of North Texas; ²Idaho National Laboratory; 3University of Bordeaux; 4National Tsing Hua University

5:10 PM

Kink Bands Promote Exceptional Fracture Resistance in a NbTaTiHf Refractory High-Entropy Alloy: David Cook¹; Punit Kumar¹; Madelyn Payne¹; Calvin Belcher²; Pedro Borges¹; Wenqing Wang¹; Flynn Walsh¹; Zehao Li³; Arun Devaraj³; Mingwei Zhang⁴; Mark Asta¹; Andrew Minor¹; Enrique Lavernia⁵; Diran Apelian²; Robert Ritchie¹; ¹University of California, Berkeley; ²University of California, Irvine; ³Pacific Northwest National Labs; ⁴University of California, Davis; 5Texas A&M University

LIGHT METALS

Advances in Titanium Technology — Conventional and Advanced Processing of Titanium Alloys

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Abhishek Sharma, University of North Texas; Srinivas Aditya Mantri, Argonne National Laboratory; Zachary Kloenne, Imperial College London; Fan Sun, Centre National de la Recherche Scientifique - Paris Sciences et Lettres University; Stoichko Antonov, National Energy Technology Laboratory

Tuesday PM | March 25, 2025 108 | MGM Grand

Session Chair: Fan Sun, Cnrs Ircp 8247 - Chimie Paristech Psl

2:30 PM Invited

Impact of Ultrafine Microstructures on Mechanical Properties in Various Kinds of Titanium Alloys: Nobuhiro Tsuji¹; Yan Chong¹; ¹Kyoto University

3:00 PM Invited

Interface Sliding in an <α/β> Titanium Alloy: G. Babu Viswanathan¹; Zachary Kloenne²; Pariac O'Kelly¹; Yukthesh Surisetti¹; Brian Welk¹; Hamish Fraser¹; ¹Ohio State University; ²Imperial College

3:30 PM

Multiscale Model for Site-Specific Texture Evolution During Thermomechanical Processing of * Ti Alloys: Benjamin Begley1; Megan Hurley¹; Victoria Miller¹; ¹University of Florida

3:50 PM Break

4:00 PM Invited

The Effect of Aluminium in Titanium on Deformation Mechanisms: Michael Preuss¹; Yunkun Xu²; Joao Quinta da Fonseca²; ¹Monash University; ²University of Manchester

4:30 PM

The Anisotropy of Deformation Twinning in bcc Materials Mechanical Loading, Temperature Effect, and Twin-Twin Interaction: Mehrab Lotfpour¹; Lei Cao¹; Amir Hassan Zahiri¹; Jamie Ombogo¹; ¹University of Nevada, Reno

High-Temperature Oxidation Resistance of Ti-6Al-4V Alloy Fabricated by Wire Arc Additive Manufacturing: Soobin Kim1; Dong-Hyuck Kam²; Kee-Ahn Lee¹; ¹Inha University; ²Korea Institute of Industrial Technology

5:10 PM

Anisotropic Plasticity of Pure Titanium Grade 1 Sheet Predicted by Crystal Plasticity Model: Jehyun You¹; Hyukjong Bong²; Myounggyu Lee¹; ¹Seoul National University; ²Korea Institute of Materials Science

5:30 PM

Upscaling of Recycling of Ti64 Powder by HDH Process -Challenges and Results: Jacek Mazur¹; Adriana Wrona¹; Marcin Lis¹; Adrian Kukofka²; Klaudia Pepłowska¹; ¹Lukasiewicz Research Network - Institute of Non-Ferrous Metals; ²PROGRESJA New Materials Sp. z o.o.

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Verification, Validation, and **Uncertainty Quantification — Atomistics**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Dehao Liu, Binghamton University; Matt Kasemer, The University of Alabama; Ashley Spear, University of Utah; Christopher Stiles, Johns Hopkins University Applied Physics Laboratory; Anh Tran, Sandia National Laboratories

Tuesday PM | March 25, 2025 320 | MGM Grand

Session Chair: Saaketh Desai, Sandia National Laboratories

2:30 PM Invited

Structural Causal Learning with Atomistic Simulations for Advanced Materials: Ayana Ghosh1; 1Oak Ridge National Laboratory

Multi-Fidelity Deep Learning Approach for Designing Single-Phase BCC Refractory Multi-Principal Element Alloys (RMPEA) Across Various Temperatures: Ali Shargh1; Christopher Stiles2; Jaafar El-Awady¹; ¹Johns Hopkins University; ²Johns Hopkins University **Applied Physics Laboratory**

3:30 PM

AI-Powered Interface: Fully Automated Tool for LAMMPS Simulation and Analysis: Ethan Holbrook1; Juan Verduzco Gastelum1; Kat Nykiel1; William Zummo¹; Alejandro Strachan¹; ¹Purdue University

3:50 PM

Charting the Large Chemical Space of Zintl Phases Using Graph Neural Networks: Rinkumoni Chaliha¹; Manish Kothakonda²; Cheng-Wei Lee²; Qian Yang³; Jeff N. Law⁴; Svilen Bobev⁵; Prashun Gorai⁶; ¹Colorado School of Mines; Rensselaer Polytechnic Institute; ²Colorado School of Mines: ³University of Connecticut: ⁴National Renewable Energy Laboratory; 5University of Delaware; 6Rensselaer Polytechnic Institute

4:10 PM Break

4:20 PM

AtomGPT: Atomistic Generative Pre-Trained Transformer for Forward and Inverse Materials Design: Kamal Choudhary¹; ¹National Institute of Standards and Technology

4:40 PM

A Generative Deep Learning Initialization Strategy to Accelerate Genetic Algorithms for Crystal Structure Prediction: Sam Dong¹; Ajinkya Hire¹; Jason Gibson¹; Richard Hennig¹; ¹University of Florida

5:00 PM

Self-Supervised Learning (SSL) for Crystal Property Prediction via Structure Denoising: Alexander New1; Nam Le1; Michael Pekala1; Christopher Stiles¹; ¹Johns Hopkins University Applied Physics Laboratory

Structural Constraint Integration in Generative Model for Discovery of Quantum Material Candidates: Ryotaro Okabe1; Mouyang Cheng1; Abhijatmedhi Chotrattanapituk¹; Mingda Li¹; ¹Massachusetts Institute of Technology

5:40 PM

Rapid Crystal Structure Prediction with the Aid of AI Generative Model and Descriptor Based Optimization: Qiang Zhu1; Osman Goni Ridwan1; 1UNC Charlotte

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Algorithms Development in Materials Science and Engineering — Algorithm Developments for **Materials Science Applications**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Process Technology and Modeling Committee, TMS: Alloy Phases Committee

Program Organizers: Remi Dingreville, Sandia National Laboratories; Saaketh Desai, Sandia National Laboratories; Hojun Lim, Sandia National Laboratories; Jeremy Mason, University of California, Davis; Vimal Ramanuj, Oak Ridge National Laboratory; Sam Reeve, Oak Ridge National Laboratory; Douglas Spearot, University of Florida

Tuesday PM | March 25, 2025 319 | MGM Grand

Session Chairs: Hojun Lim, Sandia National Laboratories; Douglas Spearot, University of Florida

2:30 PM

10-Fold Faster Molecular Dynamics: 100 µs of Grain Boundary **Evolution**: *Tomas Oppelstrup*¹; Timofey Frolov¹; ¹Lawrence Livermore **National Laboratory**

2:50 PM

Computational Multiphysics Problems in Materials Science with Alamo: Brandon Runnels¹; Abhijith Thoopul Anantharanga¹; ¹Iowa State University

Developing an Algorithm to Obtain Spatially Registered Orientation and Elastic Stiffness Tensor Data from Spatially Resolved Acoustic **Spectroscopy Maps**: Peter Collins¹; Jonathan Zaugg¹; Thomas Ales¹; ¹Iowa State University

3:30 PM

Enhancing the Performance of Constrained Minimization Algorithm: Sunyong Kwon¹; Benjamin Stump¹; Ying Yang¹; Alex Plotkowski¹; ¹Oak Ridge National Laboratory

FFT-Based Micromechanical Modeling of Stress Fields at Tip of an Elliptical Crack by Using Composite Voxels: Vahid Tari¹; Christopher Kantzos²; Anthony D. Rollett³; Daniel Diaz³; ¹ATI - Allegheny Technologies Incorporated; ²NASA Glenn Research Center; 3Carnegie Mellon University

4:10 PM Break

4:30 PM

Lattice to Continuum: Gorkem Gengor¹; Orcun Celebi¹; Huseyin Sehitoglu¹; ¹University of Illinois Urbana Champaign

4:50 PM

Performant Parallel Contact Mechanics: Sam Reeve1; Pablo Seleson¹; ¹Oak Ridge National Laboratory

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XIII — Data-Driven and Material Engineering Approaches for Thermoelectric **Performance Enhancement**

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Taiwan University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CNRS Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute for Materials Science; Wan-Ting Chiu, Institute of Science Tokyo; Chenguang Fu, Zhejiang University

Tuesday PM | March 25, 2025 355 | MGM Grand

Session Chairs: Albert T. Wu, National Central University; Bo-Chia Chen, National Taiwan University

2:30 PM

Developing Data-Driven Design Rules for Thermoelectric Performance of Zintl Phases: Rinkumoni Chaliha¹; Michael Toriyama²; Prashun Gorai³; ¹Colorado School of Mines; Rensselaer Polytechnic Institute; 2Northwestern University; 3Rensselaer Polytechnic Institute

2:50 PM Invited

Exploring Structures and Dynamics of Materials with Mobile Atoms Using Machine-Learning Interatomic Potentials: Ching-Ming Wei¹; ¹Institute of Atomic and Molecular Sciences, Academia Sinica

3:10 PM Invited

Disordered Thermoelectric Materials, the Examples of Misfit Layered Sulfides and Zinc-Blende Phosphides: David Berthebaud¹; ¹CNRS - Nantes Université

3:30 PM Invited

Enhancing Stability and Performance of GeTe Thermoelectric Materials: Albert T. Wu1; Cheng-Hao Kung1; Jyun-Yong Huang1; Chun-Han Ku1; 1National Central University

Enhancing Room-Temperature Thermoelectric Performance of SnSe through Multi-Cation Doping: Bo-Chia Chen1; Hsin-Jay Wu1; ¹National Yang-Ming Chiao Tung University

4:10 PM Break

4:25 PM Invited

Exploring the Pseudo-Hollandite Family of Compounds for High Temperature Thermoelectric Applications: Hugo Bouteiller¹; Bruno Fontaine²; Yoshitaka Matsushita³; Sylvie Hébert⁴; Takao Mori³; Franck Gascoin⁴; Jean-François Halet²; David Berthebaud⁵; ¹Oak Ridge National Laboratory, University of Tennessee-Oak Ridge Innovation Institute; ²Institut des Sciences Chimiques de Rennes (ISCR) UMR 6226, Universite de Rennes, ENSCR; ³National Institute for Materials Science (NIMS); ⁴Laboratory of Crystallography and Materials Science (CRISMAT), CNRS Normandie Univ., ENSICAEN, UNICAEN; ⁵Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN

4:45 PM Invited

Leveraging Machine Learning to Enhance the Performance of Filled Skutterudites Through Composition Optimization: Yifan Sun¹; Sora-at Tanusilp²; Masaya Kumagai¹; Hirofumi Tsuruta³; Yuji Ohishi4; Hiroaki Muta4; Ken Kurosaki1; 1Kyoto University; 2Khon Kaen University; 3SAKURA Internet Inc.; 4Osaka University

5:05 PM

Stoichiometric Effect of SnTe on Thermoelectric Property: Chun-Han Ku1; Alber T. Wu1; 1National Central University

Development of Ag-to-Ag Bonding Technique for Middle-High Thermoelectric Module: Yu-En Tsai¹; Chien-Neng Liao¹; ¹National Tsing Hua University

5:45 PM

Binder Jetting as an Alternative Method of Advanced Manufacturing for Bulk Thermoelectric Materials For Radioisotope Power Systems: Luke Hansen¹; Steven Zinkle²; Hugo Bouteiller²; Hsin Wang²; Brad Johnson²; Trevor Aguirre²; ¹University of Tennessee; ²Oak Ridge National Laboratory

LIGHT METALS

Aluminum Alloys: Development and Manufacturing Defect Detection and Process Control

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mihaiela Isac, McGill Metals Processing Centre; Les Edwards, Rain Carbon Inc.

Tuesday PM | March 25, 2025 114 | MGM Grand

Session Chairs: Roderick Guthrie, McGill University; Dmitry Eskin, **Brunel University**

2:30 PM Keynote

Revealing New Insights into Aluminum Alloys Using Synchrotron X-Ray Imaging and Tomography: Peter Lee1; Chu Lun Alex Leung1; Alexander Rack²; Robert C. Atwood³; Samuel J. Clark⁴; ¹University College London; ²ESRF - The European Synchrotron; ³Diamond Light Source; ⁴Advanced Photon Source

Evaluation of Hydrogen-Induced Pores in Ni-P-Plated Al-Zn-Mg Alloys Using Synchrotron X-Ray Computed Tomography and Hydrogen Analysis: Keitaro Horikawa¹; Makoto Hino²; Masato Hoshino³; Kentaro Uesugi³; ¹Osaka University; ²Hiroshima Institute of Technology; ³ Japan Synchrotron Radiation Research Institute

Two-Chamber Hollow Profiles with Single-Sided Variations in Wall Thickness: Janne Max Heydrich-Bodensieck1; Maik Negendank1; Soeren Mueller¹; ¹Extrusion Research and Development Center

Evolution of Microstructure Near Crack Tips in High-Strength Aluminum Alloy AA7075-T6 Sheet at 200 °C: Daniel Nikolai¹; Eric Taleff¹; ¹University of Texas Austin

4:10 PM Break

4:25 PM

Development of LiMCA (Liquid Metal Cleanliness Analyzer) Sensor: A Comprehensive Review: Rohit Tiwari1; Mihaiela Isac1; Roderick Guthrie¹; ¹McGill University

4:50 PM

Effect of Post-Annealing on Mechanical Properties and Microstructural Evolution of Ultrafine Grained Hypoeutectic Al-Si Conductor Wires: Mohammad Khoshghadam Pireyousefan¹; Mousa Javidani¹; Alexandre Maltais²; Julie Lévesque³; X.-Grant Chen¹; ¹University of Québec at Chicoutimi; ²Arvida Research and Development Center; 3Québec Metallurgy Centre

5:15 PM

Towards Digital Twin Creation Workflow for Secondary Aluminum Alloy for Automotive Components: Eugen Gazenbiller¹; Qiqi Li¹; Lukas Jarren¹; Markus Apel²; Alexandre Viardin²; Daniel Höche¹; Mikhail Zheludkevich¹; ¹Helmholtz-Zentrum Hereon; ²Access e.V.

5:40 PM

Investigation on Generation Mechanism of White Stripe Defects in Battery Aluminum Foils: Wei Tang¹; Yang Sun²; Ju Wenbin²; Zhu Zizong¹; Wang Hongpo¹; Wang Yu¹; ¹ChongQing University; ²Shangqiu Sunshine Aluminum Co., Ltd

LIGHT METALS

Aluminum Reduction Technology — Major Faults in Aluminum Smelting Process: Causes, Consequences, and Solutions: Joint Session with **Electrode Technology**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Andre-Felipe Schneider, Hatch Ltd.; Les Edwards, Rain Carbon Inc.

Tuesday PM | March 25, 2025 113 | MGM Grand

Session Chair: Pascal Lavoie, Alcoa

2:30 PM Introductory Comments

Potential Significance of Baking Furnace Indicators to Potroom **Business Performance**: Robert Higginson¹; ¹SCCR Group

The (In)Evitable Link Between Carbon Dust and Anode Quality: Matthias Dechent1; 1Trimet Aluminium SE

3:30 PM

Experiences and Learnings from Two Major Power Outages at the Hydro Årdal Smelter: Trond Eirik Jentoftsen¹; ¹Hydro Aluminium

3:50 PM Panel Discussion

4:10 PM Break

4:30 PM

Impact of Operational Practices, Housekeeping and Maintenance in the Reliability of Pot-to-pot Busbar Circuits: Daniel Champagne¹; ¹Hatch I td.

4:50 PM

Basement Thermite Events in Smelting Operations: Brian Zukas¹; ¹Alcoa Corp.

5:10 PM Panel Discussion

5:50 PM Concluding Comments

MECHANICS OF MATERIALS

Atomistic Simulations Linked to Experiments to Understand Mechanical Behavior: A MPMD Symposium in Honor of Professor Diana Farkas — **Dislocations Studies**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Andrea Hodge, University of Southern California; Arun Nair, University of Arkansas; Alejandro Strachan, Purdue University; Chelsey Hargather, Los Alamos National Laboratory; Christopher Schuh, Northwestern University

Tuesday PM | March 25, 2025 370 | MGM Grand

Session Chairs: Irene Beyerlein, University of California, Santa Barbara; Tamás Ungár, Eotvos University

2:30 PM Invited

Diffusivity and Mechanical Response of Phase Boundaries: Raj Koju¹; Omar Hussein¹; Yuri Mishin¹; ¹George Mason University

3:00 PM

Controlling Dislocation Motion and Nanoscale Plasticity in Semiconductors Using Electric Fields and Illumination: Yu Zou1; ¹University of Toronto

3:20 PM

Dislocation Slip in bcc Nb from Large-Scale Molecular Dynamics Simulations: Pedro Borges¹; Nicolas Bertin¹; Vasily Bulatov¹; ¹Lawrence Livermore National Laboratory

3:40 PM Invited

A Revised Elastic Field of an Edge Dislocation: Peter Anderson¹; John Hirth¹; ¹Ohio State University

4:10 PM Break

4:30 PM

Computational Alloy Design Based on Dislocation Plasticity: Gyu Jang Sim¹; Kyeongmi Yeon¹; Ill Ryu¹; ¹Seoul National University

Mobile Dislocation Mediated Hall-Petch and Inverse Hall-Petch Behaviors in Nanocrystalline Al-Doped Boron Carbide: Jun Li¹; Kun Luo1; Qi An1; 1 lowa State University

LIGHT METALS

Bauxite Residue Valorization and Best Practices — Technologies for Valorization as Binder, Cement and Geopolymers

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Tobias Hertel, Ku Leuven; Christina Meskers, SINTEF; Efthymios Balomenos, Metlen Energy and Metals; Casper Van Der Eijk, SINTEF; Brajendra Mishra, Worcester Polytechnic Institute; Yiannis Pontikes, Ku Leuven R&D

Tuesday PM | March 25, 2025 111 | MGM Grand

Session Chair: Christina Meskers, SINTEF

2:30 PM

Processing Routes of Bauxite Residue And Its Valorisation Potential: Various Case Studies Demonstrated at Pilot Scale: Glenn Beersaerts¹; Ganesh Pilla¹; Michiel Giels¹; Tobias Hertel¹; Yiannis Pontikes1; 1KU Leuven

2:50 PM Question and Answer Period

2:55 PM

Towards Scalable Autoclaved Masonry Units: How Bauxite Residue Feedstock Characteristics Impact Performance: Tobias Hertel¹; Yakinthi Avtzi¹; Nikolaos Athanasakis¹; Fábio Oliveira¹; Glenn Beersaerts¹; Yiannis Pontikes¹; ¹KU Leuven

3:15 PM Question and Answer Period

3:20 PM

Assessment of High Temperature Valorisation Routes for Bauxite Residue towards Cementitious Binders: A Case Study on Vitrification: Michiel Giels¹; Tobias Hertel¹; Glenn Beersaerts¹; Yiannis Pontikes¹; ¹KU Leuven Materials Engineering

3:40 PM Question and Answer Period

3:45 PM

Impact of Chemical Admixtures on the Setting Time and Freeze-Thaw Resistance of Bauxite Residue-Based Geopolymer: Andrie Harmaji¹; Reza Jafari¹; Guy Simard¹; ¹Université du Québec à Chicoutimi

4:05 PM Question and Answer Period

4:10 PM Break

4:25 PM

Assessing the Carbonation Potential of De-alkalized Bauxite Residue Using Different Carbonation Methods: Fabio Cabral De Oliveira¹; Tobias Hertel¹; Yiannis Pontikes¹; ¹KU Leuven

4:45 PM Question and Answer Period

4:50 PM

Mineralogy Prediction for Iron-Rich Sulfo-Aluminate Cements Made from Elevated Contents of Bauxite Residue: Rahul Roy1; Debadri Som¹; Tobias Hertel¹; Yiannis Pontikes¹; ¹KU Leuven

5:10 PM Question and Answer Period

A Linear Programming-Based Approach for Creating Cements from Bauxite Residue: Debadri Som1; Rahul Roy1; Tobias Hertel1; Panagiotis Patrinos¹; Yiannis Pontikes¹; ¹KU Leuven

5:35 PM Question and Answer Period

5:40 PM Concluding Comments

BIOMATERIALS

Biological Materials Science — Biological and Bio-Inspired Materials II

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Yuxiao Zhou, Texas A&M University; Ling Li, University of Pennsylvania; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Grace Gu, University of California, Berkeley; Debora Lyn Porter, University of California Merced

Tuesday PM | March 25, 2025 306 | MGM Grand

Session Chairs: Ning Zhang, Baylor University; Debora Lyn Porter, University of California Merced

2:30 PM Invited

Eco-Voxels: Building Blocks for Sustainable Terrestrial and Extraterrestrial Lattice Structures: Christos Athanasiou¹; ¹Georgia

3:00 PM

Durable Enzymatic Structural Materials with High Strength (ESM) Materials (ECM): Shuai Wang¹; Nima Rahbar¹; Suzanne Scarlate¹; ¹Worcester Polytechnic Institute

3:20 PM

Understanding the Micro-Mechanical **Properties** Biomechanical Behavior of Wasatch Range Bracket Polypore Fungi: Ihsan Elnunu¹; Jessica Redmond¹; Steven Naleway¹; ¹University of Utah

3:40 PM Invited

Sequence and Process Design for Silk-Inspired Protein-Based Materials: Sinan Keten¹; ¹Northwestern University

4:10 PM Break

4:25 PM

Filamentous Fungi as a Source for Bioinpired Filamentous Network Models: Debora Lyn Porter1; Mohamed El Hachimi2; Akbar Solhtalab2; Mir Jalil Razavi²; ¹University of California Merced; ²Binghamton University

4:45 PM

The Role of Calcium Phosphate Nanoparticles in Dental Materials: Properties, Applications, and Future Prospects: Omowunmi Aworinde¹; Chimezie Onukwuli²; Kolawole Adesina³; Stella Obuba⁴; Peter Agyemang¹; Osasere Osayawe⁴; Lovelyn Odo⁵; *Ikechukunonso* Okeke⁶; ¹Michigan Technological University; ²Eastern New Mexico, University Portales NM; ³Purdue University; ⁴Montclair State University; ⁵University of Nigeria; ⁶University of Benin

5:05 PM Invited

Sensitivity Analyses of Biomechanical Systems to Estimated Properties of Biological Materials: Douglas Cook1; 1Brigham Young University

5:35 PM

Quantitative Percussion Diagnostics for Detecting Microgap Defects in Teeth: Correlation Between In Vivo, FEA, and 3D-Printed Replica Studies: Jie Shen1; Cherilyn Sheets2; James Earthman1; ¹University of California Irvine; ²Newport Coast Oral Facial Institute

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Bridging Scale Gaps in Multiscale Materials Modeling in the Age of Artificial Intelligence — Theories, Models, and Algorithms of Multiscale Modeling

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan; Katsuyo Thornton, University of Michigan; Peter Voorhees, Northwestern University; Eric Homer, Brigham Young University; Srujan Rokkam, Advanced Cooling Technologies,

Tuesday PM | March 25, 2025 353 | MGM Grand

Session Chair: Subhendu Chakraborty, University of Michigan

2:30 PM Invited

Rethinking Materials Simulations; Blending Direct Numerical Simulations with Machine-Learning Strategies: Remi Dingreville¹; ¹Sandia National Laboratories

3:00 PM

AtomAgents: Alloy Design and Discovery Through Physics-Aware Multi-Modal Multi-Agent Artificial Intelligence: Alireza Ghafarollahi¹; Markus Buehler¹; ¹Massachusetts Institute of Technology

3:20 PM Invited

Integrating AI for High-Dimensional Saddle Point Sampling: Haixuan Xu1; 1University of Tennessee

Multiscale Computational Tools and AI Integration Using Chocolate as a Frugal Model System in Self-Driving Lab: Kinston Ackölf¹; Taylor Sparks¹; ¹University of Utah

4:10 PM Break

4:30 PM Invited

Bridging Scales in Metal Plasticity: The Roles of Theory, Data Science, and Computing: Anter El-Azab1; Khaled SharafEldin1; ¹Purdue University

Coarse-Graining Atomistic Simulation Data with Physics-Guided Gaussian Process Regression: Ryan Sills1; Yating Fang1; Qian Qian Zhao¹; Ahmed Aziz Ezzat¹; ¹Rutgers University

ADVANCED CHARACTERIZATION METHODS

Characterization of Minerals, Metals and Materials 2025: In-Situ Characterization Techniques Metallurgical Processing Analysis and Characterization

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Zhiwei Peng, Central South University; Kelvin Xie, Texas A&M University; Mingming Zhang, Baowu Ouyeel Co. Ltd; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, AnalytiChem Group, USA; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, Devcom Arl Army Research Office; Shadia Ikhmayies, The University of Jordan

Tuesday PM | March 25, 2025 121 | MGM Grand

Session Chair: Bowen Li, Michigan Technological University

2:30 PM

Thermodynamic Study of Waste Circuit Board Chlorination Treatment: Yan Ma¹; Yuen Wu¹; Linfeng Hu¹; Ailiang Chen¹; Fenglong Sun¹; Xijun Zhang²; ¹Central South University; ²Jinchuan Group Co. LTD

2:50 PM

Thermophysical Property Measurement of Rare Earth Titanates With Aerodynamic Levitation and Laser Heating: Sean Drewry1; Katharine Page¹; Dante Quirinale²; ¹University of Tennessee Knoxville; 2Oak Ridge National Laboratory

3:10 PM

Study on the Influence of Utilization Ratio of Carbonaceous Particles Injection in BOF Steelmaking: Xin Ren1; Kai Dong1; Rong Zhu¹; ¹University of Science and Technology Beijing

3:30 PM

Slag Characterization Techniques - Necessary Tool for Simulation of Refractory Corrosion: Dean Gregurek1; 1RHI Magnesita

Simulation of Temperature Field of Water Cooling System in Nickel Flash Furnace Melting Process: Wentao Dai¹; ¹Central South University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Chemistry and Physics of Interfaces — Grain **Boundary Dynamics**

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Timofey Frolov, Lawrence Livermore National Laboratory; Fadi Abdeljawad, Lehigh University; Kaila Birtsch, Los Alamos National Laboratory; Daniel Moore, Lehigh University; Christopher Schuh, Northwestern University

Tuesday PM | March 25, 2025 304 | MGM Grand

Session Chairs: Gregory Rohrer, Carnegie Mellon University; Timothy Rupert, Johns Hopkins University

2:30 PM Invited

The Driving Force for Grain Boundary Migration in Polycrystals: Gregory Rohrer¹; ¹Carnegie Mellon University

3:00 PM

Mechanisms of Non-Arrhenius Grain Boundary Motion: A Study of Activation Energy Distributions and Atomic Processes: Eric Bridenstine¹; Darcey Britton¹; Gregory Thompson²; Eric Homer¹; Oliver Johnson¹; ¹Brigham Young University; ²University of Alabama

Atomistic Modeling of Diffusivity and Shearing of Al-Si Phase Boundaries: Yang Li¹; Yuri Mishin¹; ¹George Mason University

3:40 PM Invited

Associating GB Characteristics With its Mobility and Sink Efficiency in Absorbing Frank Loops via Molecular Dynamics Simulations: Saryu Fensin¹; Jie Chen¹; Ian Chesser¹; Khanh Dang¹; ¹Los Alamos National Laboratory

4:10 PM Break

4:30 PM Invited

Complex Concentrated Grain Boundaries and the Stabilization of **Unexpected Interfacial Structures**: *Timothy Rupert*¹; ¹Johns Hopkins University

Grain Boundary Segregation and Solute Drag in Multicomponent Alloys: Milad Taghizadeh1; Fadi Abdeljawad1; 1Lehigh University

Tailoring the Microstate Thresholds of Grain Boundaries Using Compositional Complexity: Annie Barnett¹; Emily Mang¹; Wei-Ying Chen²; Jaime Marian³; Michael Falk¹; Mitra Taheri¹; ¹Johns Hopkins University; ²Argonne National Laboratory; ³University of California Los Angeles

5:40 PM

Grain Boundary Property Distributions Resulting From Coarsening of an Al-Cu Alloy: Zipeng Xu1; Jun Sun2; Jette Oddershede2; Harpreet Kaur¹; Kiana Naghibzadeh³; Kaushik Dayal¹; Jules Dake⁴; Carl Krill⁴; Gregory Rohrer¹; ¹Carnegie Mellon University; ²Xnovo Technology; 3Massachusetts Institute of Technology; 4Ulm University

MATERIALS SYNTHESIS AND PROCESSING

Composite Materials: Sustainable and Eco-**Friendly Material Development and Applications** — Sustainable and Eco-Friendly Materials: Biodegradable and Carbon-Based Materials

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Yahya Al-Majali, Ohio University; Brian Wisner, Ohio University; Ioannis Mastorakos, Clarkson University; Simona Hunyadi Murph, Savannah River National Laboratory; Muralidharan Paramsothy, NanoWorld Innovations (NWI)

Tuesday PM | March 25, 2025 116 | MGM Grand

Session Chair: Yahya Al-Majali, Ohio University

2:30 PM

Shape Memory Alloy Reinforced Self-Healing Aluminum Composites for Energy Conservation: Masum Bellah1; Vaibhav Srivastava¹; Michael Nosonovsky¹; Benjamin Church¹; Pradeep Rohatgi¹; ¹University of Wisconsin Milwaukee

2:50 PM

Study on Photocatalytic Degradation of Azo Dye Wastewater by Thermal Stripping of g-C3N4: Renwen Li¹; Yifan Du¹; Chunke Tang¹; Guihong Han¹; Yanfang Huang¹; ¹Zhengzhou University

3:10 PM Invited

Waste Coal-Thermoset Composites for Additive Manufacturing of Amorphous Carbon Structures: Natasha Smith1; Rudolph Olson1; Grace Baranack²; Landon Gudac¹; Daniel Parker¹; Yahya Al-Majali²; ¹CONSOL Innovations; ²Ohio University

3:40 PM

Polymer Matrix Composites Incorporating Plant-Based Fibers for Reduced Embodied Energy: Swaroop Behera¹; Satyanarayana Kestur Gundapa²; Pradeep Rohatgi¹; ¹University of Wisconsin Milwaukee; ²Poornaprajna Institute of Scientific Research

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Computational Thermodynamics and Kinetics — Materials for Extreme and Phase Transformation

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Prashant Singh, Ames National Labratory; Rodrigo Freitas, Massachusetts Institute of Technology; Nicolas Argibay, Ames National Laboratory; Raymundo Arroyave, Texas A&M University; James Morris, Ames Laboratory

Tuesday PM | March 25, 2025 305 | MGM Grand

Session Chairs: Arun Devaraj, Pacific Northwest National Laboratory; Brandon Bocklund, Lawrence Livermore National Laboratory

2:30 PM Invited

On the Competition Between Solute and Precipitate Strengthening: Effects on Creep Strength: Laurent Capolungo¹; Jobin Joy¹; Anjana Talapatra¹; andrea Rovinelli¹; Ricardo Lebensohn¹; ¹Los Alamos National Laboratory

3:00 PM

Dislocation-Assisted Carbon Migration Theory: Application to Fatigue, Drawing, and Wear: Pedro Rivera-Diaz-Del-Castillo1; Wei Xu²; Yong Li¹; ¹University of Southampton; ²Northeastern University

3:20 PM

Implementation of an Extensible Property Modeling Framework in ESPEI: Brandon Bocklund¹; Aurélien Perron¹; Kaila Bertsch¹; ¹Lawrence Livermore National Laboratory

3:40 PM

A Dual-Solute Model for Grain Boundary Segregation Prediction in Nanocrystalline Metals: Zuoyong Zhang¹; Chuang Deng¹; ¹University

4:00 PM Break

4:20 PM Invited

Topology of a Phase Transition: Jeremy Mason¹; Ozan Ericok¹; ¹University of California, Davis

4:50 PM

First-Principles Investigations of Martensitic Phase Transitions in NiTi-Based and Ru-Based Shape Memory Alloys: Zhigang Wu¹; Hessam Malmir¹; John Lawson¹; Othmane Benefan²; ¹NASA Ames Research Center; ²NASA Glenn Research Center

SPECIAL TOPICS

DMMM5: A Decade of Creating Inclusion and Belonging for Diversity in the Minerals, Metals, and Materials Professions — A Decade of DMMM Impact

Sponsored by: TMS: Membership Diversity & Development Committee, TMS: Diversity, Equity, and Inclusion Committee

Program Organizers: Ben Britton, University of British Columbia; Lauren Garrison, Commonwealth Fusion Systems; Keith Bowman, University of Maryland Baltimore County; Katelyn Jones; Suveen Mathaudhu, Colorado School of Mines; Ashley Paz y Puente, University of Cincinnati; Soumya Varma, KLA Corporation; Eva Zarkadoula; Danielle White, University of Southern California

Tuesday PM | March 25, 2025 150 | MGM Grand

Session Chair: Ashley Paz y Puente, University of Cincinnati

2:30 PM

A Decade of DMMM Impact: Ashley Paz y Puente¹; ¹University of Cincinnati

2:50 PM Keynote

Which Faculty Diversity Programs Work? Evidence From 600 Colleges and Universities: Frank Dobbin¹; ¹Harvard University

3:50 PM Interactive Activity - Cultivating Belonging: We will lead an activity in small groups aimed at helping everyone relate to the feeling of being an outsider, and how that impacts our experiences in the world and at work. We will also explore how the experience shifts if you feel a sense of belonging, and how to create spaces that cultivate belonging and inclusion.

4:10 PM Break

4:30 PM Interactive Activity - Strength Through Diversity: This activity will be led through small groups, and aimed at relating our collective approach to diversity and its impact. We will explore what symbols resonate with our individual experiences and outlooks, and leverage that to have dialogue about coming together to find

strength through diversity in STEM.

4:50 PM Panel Discussion - Shaping the Future of STEM: Insights from Previous DMMM Leaders: Panelists include Liz Holm, University of Michigan (DMMM1); Keith Bowman, University of Maryland, Baltimore County (DMMM2); Michael Rawlings, TMS (DMMM3); Aeriel Leonard, The Ohio State University (DMMM4)

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Electronic Packaging and Interconnection Materials II — Advanced Electronic Packaging Materials/ **Process I**

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: C. Kao, National Taiwan University; Yu-An Shen, Feng Chia University; Christopher Gourlay, Imperial College London; Fan-Yi Ouyang, National Tsing Hua University; Hiroshi Nishikawa, Osaka University; Hannah Fowler, Sandia National Laboratories; Kazuhiro Nogita, University of Queensland; Praveen Kumar, Indian Institute of Science; Tae-Kyu Lee, Cisco Systems; Yan Li, Samsung Semiconductor Inc.

Tuesday PM | March 25, 2025 360 | MGM Grand

Session Chairs: Christopher Gourlay, Imperial College London; Mohd Arif Anuar Salleh, Universiti Malaysia Perlis

2:30 PM

Crystallographic Aspects of Phase Transformations in Sn-58Bi Low **Temperature Solder**: *Christopher Gourlay*¹; Xiaomei Shen¹; Chen-Lin Hsieh¹; ¹Imperial College London

2:50 PM

Unveiling the Influence of Interfacial Microstructures on the Evolutions of Interfacial Strength and Electric Resistance of Lamellar Cu/Al/Cu Composites Fabricated by Ultrasonic Welding: Jheyu Lin¹; Zi-Yuan Liu¹; ¹National Taipei University of Technology

3:10 PM

Inspection, Estimation, and Design of Hybrid Bonding Processes Using In-Situ Heating Atomic Force Microscopy: Huai En Lin¹; Pin Lin Chen¹; Chih Chen¹; Wei Lan Chiu²; Hsiang Hung Chang²; ¹National Yang Ming Chiao Tung University; ²Industrial Technology Research Institute

3:30 PM

The Effect of Grain Size on the Chemical-Mechanical-Planarization Removal Rate of Cu Films: Yi-Chen Chung¹; Chih Chen¹; ¹National Yang Ming Chiao Tung University

3:50 PM Break

4:10 PM

The Effect of Ag Addition on the Performance of In-Rich Binary **Solder**: Mohd Arif Anuar Salleh¹; Tan Yi Pei¹; Flora Somidin¹; Kazuhiro Nogita²; ¹Universiti Malaysia Perlis (Unimap); ²The University of Queensland

4:30 PM

Surface Precipitation and Growth Mechanisms of Bismuth Particles in Sn-Bi and Sn-Ag-Cu (SAC)-Bi Solder Alloys: John Wu¹; Amey Luktuke²; Eshan Ganju¹; Nikhilesh Chawla¹; ¹Purdue University; ²Argonne National Lab

4:50 PM

Characterization of FCQFN Solder Interconnects Incorporating Ni Metallization for Advanced High-Power Automobile Applications: An Electromigration Study: Yu-Chun Liu1; Min-Yan Tsai2; Meng-Chun Chiu1; Shan-Bo Wang2; Yung-Sheng Lin2; Chien-Lung Liang1; ¹National Taiwan University of Science and Technology; ²Corporate Research and Development (CRD), Advanced Semiconductor Engineering (ASE) Group

Electrical Current-Induced Phase Transformation and Enhanced Mechanical Properties in n'-Cu6Sn5 for Electronic Solder Joints: Shubhayan Mukherjee¹; Shih-kang Lin¹; ¹National Cheng Kung University

NUCLEAR MATERIALS

Elucidating Microstructural Evolution Under Extreme Environments — Advanced Techniques for **Elucidating Radiation Effects in Structural Materials I**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Mukesh Bachhav, Idaho National Laboratory; Boopathy Kombaiah, Idaho National Laboratory; Janelle Wharry, University of Illinois; Assel Aitkaliyeva, University of Florida; Miaomiao Jin, Pennsylvania State University; Farida Selim, Arizona State University; Nathan Almirall, GE Aerospace

Tuesday PM | March 25, 2025 162 | MGM Grand

Session Chair: Boopathy Kombaiah, Idaho National Laboratory

2:30 PM Invited

Investigating Radiation Induced Segregation Near Nanosized Cavities by Combining Rate Theory Calculation and Atom Probe Tomography: Xing Wang¹; Xingyu Liu¹; Xinyuan Xu¹; ¹Pennsylvania State University

3:00 PM

Correlative STEM-APT Analysis of Solute-Defect Interaction: Siwei Chen1; Jonathan Poplawsky2; Steven Zinkle1; 1University of Tennessee; ²Oak Ridge National Laboratory

3:20 PM

Effect of Irradiation on the Microstructure of Oxide Dispersion Strengthened HT-9 Alloy: Sohail Shah¹; Xinchang Zhang¹; Lin Shao²; Andrew Gorman¹; Cheng Sun³; Mukesh Bachhav¹; ¹Idaho National Laboratory; ²Texas A&M University; ³Clemson University

Determining the Safety Analysis Zones Unaffected by the Injected Interstitial Effect for Both Heavy Ion and Proton Ion Irradiation: Yinyin Hong¹; Zhihan Hu¹; Yongchang Li¹; Frank Garner¹; Lin Shao¹; ¹Texas A&M University

4:00 PM Break

4:15 PM

Application of Autonomous STEM Acquisition for High-Throughput 3D Characterization of Irradiated Materials: Hangyu Li¹; Wei-Ying Chen2; Matthew Olszta3; Benjamin Eftink4; Logan Ward2; Zhi-Gang Mei²; Kevin Fiedler³; James Haag³; Derek Hopkins³; Kevin Field¹; ¹University of Michigan Ann Arbor; ²Argonne National Laboratory; ³Pacific Northwest National Laboratory; ⁴Los Alamos National Laboratory

4:35 PM

Advanced Statistical Techniques for 4D-STEM: Characterizing Defect Populations in Post-Irradiation Au and Cr. Dongye Liu¹; Sean Mills¹; Dana Byrne¹; Benjamin Derby²; Matthew Chancey²; Yongqiang Wang²; Andrew Minor³; ¹University of California, Berkeley; ²Los Alamos National Laboratory; ³Lawrence Berkeley National Laboratory

4:55 PM

In Situ TEM Observation of Complex Irradiation-Driven Interface Amorphization and Amorphization-Driven Grain Reorientation at Immiscible Cu - Ta Interfaces: Soumita Mondal¹: Privam Patki²: Arva Chatterjee¹; Wei-Ying Chen³; Janelle Wharry¹; ¹Purdue University; ²Intel Corporation; ³Argonne National Laboratory

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Energy Technologies and CO2 Management — Energy Saving Approach and Material Advances

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee, TMS: Recycling and **Environmental Technologies Committee**

Program Organizers: Onuralp Yucel, Istanbul Technical University; Chukwunwike Iloeje, Argonne National Laboratory; Shafiq Alam, University of Saskatchewan; Donna Guillen, Idaho National Laboratory; Fiseha Tesfaye, Metso Finland Oy, Åbo Akademi University; Lei Zhang, University of Alaska Fairbanks; Susanna Hockaday, Curtin University, WASM; Neale Neelameggham, IND LLC; Hong Peng, University of Queensland; Nawshad Haque, Commonwealth Scientific and Industrial Research Organization; Alafara Baba, University of Ilorin; Tuan Nguyen, University of Queensland; Adam Powell, Worcester Polytechnic Institute; Thomas Battle; Duhan Zhang, Massachusetts Institute of Technology

Tuesday PM | March 25, 2025 364 | MGM Grand

Session Chairs: Duhan Zhang, Massachusetts Institute of Technology; Alexander Wimmer, Constantia Teich Gmbh

2:30 PM Introductory Comments

2:35 PM

Antibiotic Removal From Wastewater Using SrAl2O4 Composites Synthesized by Energy-Saving Volumetric Combustion Method: Pelin Demircivi¹; Kağan Benzesik²; Mehmet Bugdayci¹; University; 2Istanbul Technical University

2:55 PM

Processing and Characterization of CoCrFeNiAl High Entropy Alloy by Mechanical Alloying and Spark Plasma Sintering: Yusuf Cicek1; Ipek Karadayi¹; Gultekin Goller¹; ¹Istanbul Technical University

3:15 PM

FeMn Production via SHS Method From Mill Scale and Magnetite Ironoxide Sources: Mehmet Bugdayci¹; Pelin Demircivi¹; Kagan Benzesik²; ¹Yalova University; ²Istanbul Technical University

3:35 PM

Production of Light-Weight Metals Containing High-Entropy Alloys via SHS Process: Murat Alkan¹; Esra Dokumaci Alkan¹; Aslihan Karakanat¹; ¹Dokuz Eylül University

3:55 PM Break

4:15 PM

Fast Fabrication of MgO Added AlON Ceramics by Reactive Spark Plasma Sintering: Demet Aydogmus¹; Filiz Cinar Sahin¹; ¹Istanbul **Technical University**

4:35 PM

Eco-feasible Energy Approach for Industrial Uranium Compound Preparation Using Uranyl Pregnant Leach Solution (UPLS): Alafara Baba¹; Mustapha Raji²; Christianah Adeyemi³; Kuranga Ayinla¹; Jude Majasan⁴; Rasheed Agava⁵; ¹University of Ilorin; ²Ahman Pategi University; ³Federal Polytechnic Offa; ⁴Electrochemical Innovation Laboratory; 5National Agency for Science and Engineering Infrastructure (NASENI)

Effect of Water Flow Rate on the Heat Exchange Between Water Curtain and Iron Powder: Wenchao He¹; Yin Deng¹; Jian Chen¹; ¹Chongging University of Science and Technology

5:15 PM Concluding Comments

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmentally Assisted Cracking: Theory and Practice — Corrosion Fatigue and Cracking

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska Lincoln: Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Tuesday PM | March 25, 2025 167 | MGM Grand

Session Chairs: Ting Zhu, Georgia Institute of Technology; Stephen Raiman, University of Michigan

2:30 PM Invited

Multiscale Modeling of Fatigue Crack Growth and Environmental Effects: Ting Zhu1; 1Georgia Institute of Technology

Experimental Investigation of the Environmentally Assisted Fatigue Crack Initiation Mechanisms in Austenitic Stainless Steel 304L: Lucie Borowiack¹; Loic Signor²; Patrick Villechaise²; Frederic Delabrouille¹; Gaelle Leopold Jean-Marie¹; François Curtit¹; Gilbert Henaff²; Florence Hamon²; Luc Doremus³; Laurent De Baglion³; ¹EDF R&D; ²Institut Pprime; ³Framatome

3:20 PM Invited

Environmentally Assisted Cracking in Light Water Reactors and Molten Salt Reactors: Lessons From the Former Applied to the Latter: Stephen Raiman¹; ¹University of Michigan

3:50 PM Break

4:10 PM

Effect of Strain Rate and Grain Size on the Oxidation-Assisted Intergranular Cracking of the Alloy 718 at 650 °C: Malo Jullien1; Damien Texier¹; Repayah Black²; Jean-Charles Stinville²; Marc Legros³; ¹Institut Clement Ader - Umr Cnrs 5312; ²UIUC; ³CEMES

The Role of pH in Corrosion Fatigue: Understanding how Alkaline and Acidic Environments Affect Corrosion Fatigue Crack Growth Rates in Aerospace Aluminum Alloys: Gabby Montiel¹; Jenifer Locke¹; ¹The Ohio State University

MATERIALS SYNTHESIS AND PROCESSING

Friction Stir Welding and Processing XIII — Friction Stir Welding I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Nilesh Kumar, University of Alabama, Tuscaloosa; Anton Naumov, Peter The Great St. Petersburg Polytechnic University

Tuesday PM | March 25, 2025 124 | MGM Grand

Session Chairs: Arnold Wright, Bond Technologies; Kenneth Ross, Pacific Northwest National Laboratory

2:30 PM

Friction Stir Welding of Haynes 282 Ni-Based Super Alloy by Using a Novel Hemispherical Tool: Abhishek Sharma¹; Yoshiaki Morisada¹; Kohsaku Ushioda¹; Hidetoshi Fujii¹; ¹JWRI, Osaka University

The Simultaneous Double-Sided Friction Stir Welding (SDS-FSW) of Steel: Branislav Dzepina¹; Santonu Ghosh¹; Richard Townsend¹; Matthew Hackett¹; Stephen Cater²; Muneo Matsushita³; Nicolaas Troost⁴; ¹Element Six; ²TWI Ltd.; ³JFE Steel Corporation; ⁴Delft University of Technology

3:10 PM

Development of High-Speed Double-Sided Friction Stir Welding Technology With Optimized Pre-Heating Process for Automotive Advanced High Strength Steels: Muneo Matsushita1; Daiki Yamagishi¹; Koichi Taniguchi¹; Rinsei Ikeda²; Hidetoshi Fujii²; ¹JFE Steel Corporation; 2Osaka University

Residual Stress in Friction Stir Welded Armor Steel: Jhoan Guzman¹; Kaue Riffel¹; Martin McDonnell²; Owen Repp²; Matthew Rogers²; Michael Eff³; Jeffrey Rodelas⁴; Andrew Payzant⁵; Jeffrey Bunn⁵; Antonio Ramirez¹; ¹Ohio State University; ²Ground Vehicle Systems Center - US Army; 3EWI; 4Sandia National Laboratories; 5Oak Ridge **National Laboratory**

3:50 PM Break

4:10 PM

Advancements for Thick Titanium FSW: Johnathon (John) Hunt1; ¹Concurrent Technology Corporation (CTC)

Mitigating Solidification Cracking in Dissimilar Metal Welds (Mild Steel to Dual Phase Stainless Steel): Sojib Hossain¹; Jason Provines²; Stephen Sharp²; James Fitz-Gerald¹; Sean R. Agnew¹; ¹University of Virginia; ²Virginia Transportation Research Council

4:50 PM

Effect of Tool Geometry on Process Forces for FSW in Stainless Steel: Jared Jackson¹; Joel Gibb¹; Samuel Merritt¹; Kenneth Ross²; Yuri Hovanski¹; ¹BYU; ²PNNL

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Functional Nanomaterials — Functional Nanomaterials I: Synthesis, Process, and Device Integration

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Wenzhuo Wu, Purdue University; Keerti Kappagantula, Pacific Northwest National Laboratory; Bishnu Khanal, Sandia National Laboratories; Ying Zhong, Harbin Institute of Technology (Shenzhen); Mostafa Bedewy, University of Pittsburgh; Michael Cai Wang, University of South Florida

Tuesday PM | March 25, 2025 365 | MGM Grand

Session Chair: Wenzhuo Wu, Purdue University

2:30 PM Keynote

Semiconductor Nanomaterials for Neural Interfaces: John Rogers¹; ¹Northwestern University

3:10 PM Invited

Skin-Interfaced Wearable Nanobiosensors: Wei Gao1; 1California Institute of Technology

3:40 PM Invited

Addressing Unmet Needs With 3D Printed Electronics: Yong Lin Kong1; 1Rice University

4:10 PM Break

4:30 PM Keynote

The Utility of Liquid Metal Nanoparticles: Michael Dickey1; 1NC State University

5:10 PM Invited

Acoustophoresis and Additive Manufacturing for Lithium-Ion Batteries: Corie Cobb¹; ¹University of Washington

ADVANCED CHARACTERIZATION METHODS

Heterostructured and Gradient Materials (HGM VI): Principle, Processing and Properties — Processing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Shaping and Forming Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Tsinghua University; Ke Lu, Liaoning Academy of Materials; Hyoung Seop Kim, Pohang University of Science and Technology; Xiaolei Wu, Institute of Mechanics

Tuesday PM | March 25, 2025 155 | MGM Grand

Session Chairs: Peter Anderson, Ohio State University; Xinghang Zhang, Purdue University; Suveen Mathaudhu, Colorado School of Mines; Hang Yu, Virginia Polytechnic Institute and State University

2:30 PM Invited

Extreme Processing of Binary NiTi Shape Memory Alloys: Peter Anderson¹; Noah Kohlhorst¹; Daniel Hong¹; Sriran Vijayan²; Nan Li³; Tomas Greitak⁴; Daniel Huber¹; Brian Thurston¹; George Gray³; Jay Tiley⁴; Glenn Daehn¹; Boyd Panton¹; ¹Ohio State University; ²Michigan Technological University; ³Los Alamos National Laboratory; ⁴Oak Ridge National Laboratory

2:55 PM

Extreme Strengthening of Ausformed M54® Through Ambient Temperature Rolling: Joshua Edwards¹; Nicholas Derimow²; Jake Benzing²; Thomas Kozmel³; Jeffrey Lin³; Suveen Mathaudhu¹; ¹Colorado School of Mines; ²National Institute of Standards and Technology; 3QuesTek Innovations LLC

3:15 PM Invited

Additive Manufacturing of a Heterogeneous Al Alloy: Xinghang Zhang¹; Anyu Shang¹; Kenyi Hernandez²; Pascal Bellon²; Haiyan Wang¹; ¹Purdue University; ²University of Illinois, Urbana Champaign

Controlling the Formation of Gradient Structures in Pure Cobalt: Nathan Brown¹; Dave Field¹; ¹Washington State University

4:00 PM Break

4:15 PM

Customized Surface Heterostructuring: Hyoung Seop Kim1; Rae Eon Kim¹; ¹Pohang University of Science and Technology

4:35 PM Invited

Heterostructured and Gradient Materials Through Skin-Pass Rolling: Joshua Edwards¹; Ruben Ochoa¹; Adam Freund¹; Nicholas Krienke¹; Nicholas Derimow²; Jake Benzing²; Thomas Kozmel³; Jeffrey Lin³; Suveen Mathaudhu¹; ¹Colorado School of Mines; ²National Institute of Standards and Technology; 3Questek Innovations LLC

5:00 PM Invited

Solid-State Additive Manufacturing of 3D Heterostructured and Mesostructured Materials: Hang Yu¹, ¹Virginia Polytechnic Institute and State University

5:25 PM Invited

Heterostructured Materials Synthesized by Liquid Metal Dealloying: Soo-Hyun Joo1; 1Dankook University

5:50 PM

Steel-Titanium Heterostructured Material Produced by Severe Plastic Deformation: Bartlomiej Pabich¹; Janusz Majta¹; Marcin Kwiecien¹; Kamil Cichocki¹; Lukasz Madej¹; Krzysztof Muszka¹; ¹AGH University of Krakow

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

High Performance Steels — Steel Design II

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Benjamin Adam, Oregon State University; C. Tasan, Massachusetts Institute of Technology; Adriana Eres-Castellanos, Colorado School of Mines; Krista Limmer, DEVCOM Army Research Laboratory; Jonah Klemm-Toole, Colorado School of Mines; Pello Uranga, University of Navarra

Tuesday PM | March 25, 2025 302 | MGM Grand

Session Chairs: Jonah Klemm-Toole, Colorado School of Mines; Adriana Eres-Castellanos, Colorado School of Mines

2:30 PM Invited

Comparison of Cold-Forming 1500 MPa Ultra-High-Strength Steels for Automotive Applications: Jun Hu¹; Tobi Oriola¹; Yeting Sun¹; Eliseo Hernandez Duran¹; Grant Thomas¹; ¹Cleveland-Cliffs Inc.

3:00 PM

Designing Interlath Austenite as Hydrogen Traps in PH17-4 Stainless Steel: Parth Khandelwal¹; Michela Geri¹; Hyunsoek Oh¹; Cemal Cem Tasan¹; ¹Massachusetts Institute of Technology

3:20 PM

Retained Austenite Stability in Bearing Steels: Mina Amiri¹; Annika Borgenstam¹; Per-Lennart Larsson¹; Peter Hedström¹; Junbiao Lai²; ¹KTH Royal Institute of Technology; ²SKF Research & Technology Development (RTD)

3:40 PM

The Effect of Prior Austenite Grain Size on Rate of Temper Embrittlement in Nickel-Chromium-Molybdenum Steels: Aphrodite Strifas¹; Matthew Draper¹; Sreeramamurthy Ankem²; ¹Naval Surface Warfare Center, Carderock Division; ²University of Maryland

4:00 PM Break

4:20 PM Invited

Improving Strength and Ductility Combination of Laser Powder Bed Fused TRIP-Assisted Steels: Amelia How1; Sheng Huang1; Cemal Cem Tasan¹; ¹Massachusetts Institute of Technology

Austenite Grain Growth in As-Cast Line Pipe Steels: Min-Yu Tseng¹; Joshua Swan¹; Sabyasachi Roy¹; Ruth Birch¹; Warren Poole¹; Matthias Militzer¹; ¹The University of British Columbia

5:10 PM

Dynamic Interplay of Sub-Grain Coarsening and M23C6 Precipitate Growth: Implications on Creep Behavior in Ferritic Martensitic Steels: Amey Parnaik1; Pavan A. H. V.2; Lakshmi Narayan Ramasubramanian¹; ¹Indian Institute of Technology Delhi; ²Bharat Heavy Electricals Limited

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Hume-Rothery Symposium on Thermodynamics of Microstructure Stability and Evolution — Data-**Driven Modeling and Theory in Alloy Design**

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee

Program Organizers: Yunzhi Wang, Ohio State University; Wei Xiong, University of Pittsburgh; Jiamian Hu, University of Wisconsin Madison; Chuan Zhang, CompuTherm LLC

Tuesday PM | March 25, 2025 357 | MGM Grand

Session Chairs: Lei Chen, University of Michigan-Dearborn; Yanzhou Ji, Ohio State University

2:30 PM Invited

Phase-Field Models, Multiscale Models and Machine Learning: Kaushik Bhattacharya¹; ¹California Institute of Technology

2:55 PM Invited

Microstructure-Aware Bayesian Alloy Design: Raymundo Arroyave¹; ¹Texas A&M University

3:20 PM Invited

Grain Selection Growth of Alkali Metals in Electrochemical Processes: Thermodynamics and Phase-Field Model: Lei Chen1; ¹University of Michigan-Dearborn

3:45 PM Invited

Zentropy: Zi-Kui Liu1; 1Pennsylvania State University

4:10 PM Break

4:20 PM Invited

High-Throughput and Systematic Study of Phase Transformations and Microstructure Evolution Using Dual-Anneal Diffusion Multiples: Jess Garnett¹; Ji-Cheng Zhao²; ¹University of Maryland; ²University of Connecticut

4:45 PM Invited

Advanced Phase-Field Models of Solution Phases in CALPHAD Databases: Yanzhou Ji¹; Long-Qing Chen²; ¹Ohio State University; ²Penn State University

5:10 PM Invited

Machine Learning Enhanced ICME Design for Alloy Development in Additive Manufacturing: Wei Xiong1; 1University of Pittsburgh

5:35 PM Invited

Guiding the Design of Microstructure and Mechanical Properties of Alloys Using Integrated Phase-Field Simulation: Yuhong Zhao1; ¹North University of China

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Innovations in Energy Materials: Unveiling Future Possibilities of Computational Modelling and Atomically Controlled Experiments — Superconductivity, Magnetism and Ferroelectricity

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Energy Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Composite Materials Committee

Program Organizers: Paolo Mele, Shibaura Institute of Technology; Julio Gutierrez Moreno, Barcelona Supercomputing Center; Hussein Assadi, RIKEN (The Institute of Physical and Chemical Research); Esmail Doustkhah, Istinye University; Marco Fronzi, The University of Sydney; Donna Guillen, Idaho National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Tuan Nguyen, University of Queensland

Tuesday PM | March 25, 2025 358 | MGM Grand

Session Chair: Paolo Mele, Shibaura Institute of Technology

2:30 PM Invited

Magnetic Metasurfaces for Sustainable Information and Communication Technologies: Anna Palau¹; ¹ICMAB-CSIC

Reaching New Frontiers to for Superconductors Using Pulsed High Magnetic Fields: Boris Maiorov¹; ¹Los Alamos National Laboratory

3:20 PM

The Exploration of FeNiMoW-Based Alloys for High Value Magnetic Materials: Sarah O'Brien1; Matthew Beck1; 1University of Kentucky

From Prediction to Experimental Realization of Ferroelectric Wurtzite AlN-Based Alloys: Cheng-Wei Lee1; Keisuke Yazawa2; Thi Nguyen¹; Nate Bernstein¹; Victoria Bradford³; Geoff Brennecka¹; Prashun Gorai⁴; ¹Colorado School of Mines; ²National Renewal Energy Laboratory; ³University of Connecticut; ⁴Rensselaer Polytechnic Institute

4:00 PM

Unraveling the Effects of Dislocations on Ferroelectric Behavior by Molecular Dynamics Simulations: Sepideh Kavousi¹; Mohsen Asle Zaeem1: 1Colorado School of Mines

4:20 PM Concluding Comments

LIGHT METALS

Light Elements Technology — Light Elements -Sodium, Li, Boron

Sponsored by: TMS Light Metals Division, TMS: Light Elements **Technology Committee**

Program Organizers: Alafara Baba, University of Ilorin; Neale Neelameggham, IND LLC; Onuralp Yucel, Istanbul Technical University; Kiran Solanki, Arizona State University

Tuesday PM | March 25, 2025 110 | MGM Grand

Session Chairs: Kagan Benzesik, Istanbul Technical University; Alafara Baba, University of Ilorin

2:30 PM Introductory Comments

2:35 PM

Sodium Resistance of Ceramic and Glass Materials - Na Thermo-Gravimetric Analysis and Liquid Na Exposure Test: Ole Kjos1; Zhaohui Wang¹; Kent-Robert Molvik¹; Stein Rørvik¹; Cathrine Solem¹; Camilla Sommerseth¹; ¹SINTEF Industry

Development of Optimal Extraction Conditions of Indigenous Lepidolite Ore as Raw Material for Lithium-Ion Batteries: Alafara Baba¹; Daud Olaoluwa²; Aishat Abdulkareem³; Jude Majasan⁴; Adeniyi Aremu¹; Rasheed Agava⁵; ¹University of Ilorin; ²The Federal Polytechnic, P.M.B. 231; ³National Mathematical Centre; ⁴Electrochemical Innovation Laboratory; ⁵National Agency for Science and Engineering Infrastructure (NASENI)

Spark Plasma Sintering of Combustion Synthesis Derived Lithium Orthosilicate Powders: Kagan Benzesik¹; Filiz Çınar Şahin¹; Onuralp Yücel¹; ¹Istanbul Technical University

3:35 PM

Effect of Boron Addition to Steel on Mechanical Properties: Levent Özmen¹; Mehmet Çakıcı²; *Onuralp Yücel*³; ¹KARDEMR Karabuk Iron Steel Ind. Co.; ²ÇE_DAM Company; ³Istanbul Technical University

3:55 PM Break

4:10 PM

Production and Characterization of (B4C-TiB2)-GNP Composites by Spark Plasma Sintering Method: Berkay Uygun¹; Leyla Yanmaz¹; Filiz Sahin¹; ¹Istanbul Technical University

4:30 PM

Spark Plasma Sintering and Characterization of B4C-ZrB2-GNP Composites: Behrad Mokhtari¹; Leyla Yanmaz¹; Berkay Uygun¹; Filiz Sahin¹; ¹Istanbul Technical University

4:50 PM

Research and Application of Direct Welding Technology on Super Large Section Conductor: Xudong Wang¹; Yingwu Li²; Zhongyuan Li²; ¹Zhengzhou Jingwei Technology Industry Co., Ltd; ²Zhengzhou Jingwei Technology Industrial Co., Ltd.

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Local Chemical Ordering and Its Impact on Mechanical Behaviors, Radiation Damage, and Corrosion — Characterization

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Rodrigo Freitas, Massachusetts Institute of Technology; Sriswaroop Dasari, University of Texas at El Paso; Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Mitra Taheri, Johns Hopkins University; Megan McCarthy, Sandia National Laboratories; Irene Beyerlein, University of California, Santa Barbara; Rajarshi Banerjee, University of North Texas; Srinivasan Srivilliputhur, University of North Texas

Tuesday PM | March 25, 2025 352 | MGM Grand

Session Chairs: Irene Beyerlein, University of California, Santa Barbara; Mitra Taheri, Johns Hopkins University

2:30 PM Invited

Frontiers in Short Range Order-Measurement Phenomenological Implications: Simon Ringer¹; ¹University of

3:00 PM Invited

Total Scattering: A Powerful Technique for the Characterisation of Local Structure: Helen Playford¹; ¹ISIS Neutron and Muon Source

Probing Short Range Order of in Ni4Mo Through Total Scattering: Niels Schreiner¹; Philip Chater²; Lewis Owen¹; ¹University of Sheffield; ²Diamond Light Source

3:50 PM Break

4:10 PM Invited

Assessing and Quantifying Local Structure in Alloys Using Total Scattering: Lewis Owen1; 1University of Sheffield

4:40 PM

Configurational Analysis of Local Order in CrFeCoNi to Elevated Temperatures: A Total Scattering Investigation: Benjamin Jolly¹; Chris Race¹; Nick Jones²; Lewis Owen¹; ¹University of Sheffield; ²University of Cambridge

Thermodynamical and Kinetical Aspects of Stacking Fault Segregation: Andreas Bezold¹; Nicolas Karpstein²; Jan Vollhüter²; Erdmann Spiecker²; Michael Mills¹; Steffen Neumeier²; ¹The Ohio State University; ²Friedrich-Alexander-Universität Erlangen-Nürnberg

How Far Away is the Quenched Multi-Principal Element Alloy From a Random Solid Solution?: Yongwen Sun¹; Ying Han¹; Hangman Chen²; Judith Yang³; Wen Chen⁴; Penghui Cao²; Yang Yang¹; ¹Pennsylvania State University; ²University of California, Irvine; ³Brookhaven National Laboratory; 4University of Massachusetts, Amherst

LIGHT METALS

Magnesium Technology 2025 — Deformation Mechanisms

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Domonkos Tolnai, Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon; Aaron Palumbo, Big Blue Technologies; Aeriel Murphy-Leonard, Ohio State University; Neale Neelameggham, IND LLC

Tuesday PM | March 25, 2025 115 | MGM Grand

Session Chairs: Kristian Mathis, Charles University; Dietmar Letzig, Helmholtz-Zentrum Hereon

2:30 PM Keynote

Combination of In-Situ Synchrotron Diffraction and Acoustic Emission Experiments to Understand Plastic Deformation of Magnesium Alloys: Gerardo Garces1; Pablo Pérez Zubiaur1; Judit Medina1; Kristian Mathis2; Andreas Stark3; Norbert Schell3; Paloma Adeva¹; ¹CENIM-CSIC; ²Charles University; ³HEREON

3:10 PM

Deformation Behavior, Microstructure Evolution and Phase Transformation of Dual-Phase Mg-Li-Zn-Sr-Ca Alloy Under Isothermal Compression: Guobing Wei¹; ¹Chongqing University

3:30 PM

Correlation of r-Value With Texture and Formability in Magnesium Alloy Sheets: Seoungyooun Yu1; Ying Ma1; Young Min Kim1; Sung Hyuk Park²; Byeong-Chan Suh¹; ¹Korea Institute of Materials Science; ²Kyungpook National University

Dilute Mg Alloys Comprised of Earth-Abundant Elements With High Strength Imparted by Thermomechanical Processing: Sean Agnew1; Seth Faberman1; Jishnu Bhattacharyya1; Taisuke Sasaki2; ¹University of Virginia; ²National Institute of Materials Science

4:10 PM Break

4:30 PM

Mechanical Properties and Deformation Mechanism of Mg Indented by Tips of Different Angles: Reza Motallebi¹; Kelvin Xie¹; ¹Texas A&M University

4:50 PM

Understanding the Role of Crystallographic Grain Orientation and Interfaces on Cyclic Stress Strain Behavior and Crack Initiation in Weakly Textured Magnesium Alloys: Arianna Mena1; Justin Smith1; Aeriel Murphy-Leonard¹; ¹The Ohio State University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Materials Aging and Compatibility: Experimental and Computational Approaches to Enable Lifetime Predictions — Aging and Compatibility of Polymers

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Corrosion and **Environmental Effects Committee**

Program Organizers: Bishnu Khanal, Sandia National Laboratories; Michael Melia, Sandia National Laboratories; Coby Davis, Sandia National Laboratories; Kerri Blobaum, Lawrence Livermore National Laboratory; Anthony Van Buuren, Lawrence Livermore National Laboratory; Nan Butler, Sandia National Laboratories

Tuesday PM | March 25, 2025 308 | MGM Grand

Session Chairs: Nicholas Wyatt, Sandia National Laboratories; Michael Melia, Sandia National Laboratories

2:30 PM Invited

Towards High-Throughput Materials Advancement: Thinking About Database Management in Our Studying-Polymers-On-A-Chip (SPOC) Platform: Johanna Schwartz¹; ¹Lawrence Livermore **National Laboratory**

3:10 PM

Accelerated Oxidation of Epoxy Thermosets With Increased O2 Pressure: Mathew Celina¹; Carl Linde²; Matija Barrett²; Lisa Ko²; ¹Los Alamos National Lab (visiting); 2Sandia National Laboratories

3:30 PM

Predicting Photo-Oxidative Embrittlement of a Semicrystalline Thermoplastic From Micromechanical Damage: Kenneth Cundiff¹; Amine Benzerga²; ¹Sandia National Laboratories; ²Texas A&M University

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Materials and Chemistry for Molten Salt Systems — **Molten Salt Electrochemistry and Redox Control**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Yu-chen Karen Chen-Wiegart, Stony Brook University / Brookhaven National Laboratory; Nathaniel Hoyt, Argonne National Laboratory; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Weiyue Zhou, Massachusetts Institute of Technology

Tuesday PM | March 25, 2025 165 | MGM Grand

Session Chair: Amanda Leong, Virginia Polytechnic Institute

2:30 PM

Electrochemical Analysis and Corrosion Behavior of Ni-Cr Alloy in Molten LiCl-KCl: Peyman Asghari-Rad¹; Nathan D. Smith¹; Sanghyeok Im1; Hojong Kim1; 1Pennsylvania State University

2:50 PM

Electrochemical Characterization of Molten Salt Fuel Systems With Boron-Doped Diamond: Hannah Patenaude¹; Nastasija Damjanovic²; Jarom Chamberlain¹; Charles Lhermitte¹; Kenneth Czerwinski²; Marisa Monreal¹; ¹Los Alamos National Laboratory; ²University of Nevada, Las Vegas

3:10 PM

Redox Control Measurement in Sodium, Beryllium, Uranium Bearing Salt: Nagihan Karakaya¹; Amanda Leong¹; Jinsuo Zhang¹; ¹Virginia Tech

3:30 PM

In-situ Monitoring of Molten Chloride Salt Chemistry and Corrosion Using Microelectrode: Changkyu Kim1; Adrien Couet1; 1University of Wisconsin-Madison

3:50 PM

Thermochemical Measurements of FeCl₂ in Molten LiCl **Environment**: Jarrod Gesualdi¹; Timothy Lichtenstein1; Schneiderlochner¹; Krista Hawthorne¹; ¹Argonne National Laboratory

4:10 PM Break

4:30 PM

Utilizing Multi-Modal Approach to Investigate Local Structure and Speciation of Metal Solutes in Molten Salt Systems: Nirmalendu Patra¹; Alejandro Ballesteros²; Santanu Roy³; Ruchi Gakhar²; Vyacheslav Bryantsev³; Anatoly Frenkel¹; James Wishart¹; Simerjeet Gill¹; ¹Brookhaven National Laboratory; ²Idaho National Laboratory; 3Oak Ridge National Laboratory

4:50 PM

Metal Redox Control in Molten NaF-BeF2-UF4-ZrF4 Salt for Corrosion Mitigation: Woohyuk Lee1; Amanda Leong1; Jaewoo Park1; Jinsuo Zhang¹; ¹Virginia Tech

5:10 PM

Enhanced Electrochemical Method for Detecting Dissolved Non-Metallic Contaminants in Molten Salts: Nathan Bradshaw¹; Antoine Allanore¹; ¹Massachusetts Institute of Technology

Thermochemical Measurements of Electroactive Species in Molten Salts Using Cathodic Decomposition Electrodes: Timothy Lichtenstein¹; Jarrod Gesualdi¹; Eva Schneiderlochner¹; Krista Hawthorne¹; ¹Argonne National Laboratory

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Materials for Sustainable Hydrogen Energy — Hydrogen Embrittlement and Hydrogen Diffusion I

Sponsored by: TMS Structural Materials Division, TMS: Energy Committee

Program Organizers: Wenwen Song, University of Kassel; Enrique Galindo-Nava, University College London; Jinwoo Kim, Korea Institute of Science and Technology (KIST); Binhan Sun, Max-Planck Institute

Tuesday PM | March 25, 2025 169 | MGM Grand

Session Chairs: Wenwen Song, University of Kassel; Binhan Sun, East China University of Science and Technology; Jinwoo Kim, Korea Institute Of Science And Technology (Kist); Enrique Galindo-Nava, University College London

2:30 PM Introductory Comments

2:35 PM Invited

New Characterisation Methods for High Pressure Hydrogen Facing Materials: Peter Felfer¹; ¹Fau Erlangen-Nurnberg

3:05 PM

Hydrogen Embrittlement Mechanisms and Mitigation Strategy in a High-Mn and High-Al Two-Phase Lightweight Steel: Xizhen Dong¹; Ali Tehranchi¹; Dirk Ponge¹; Binhan Sun²; Dierk Raabe¹; ¹Max-Planck-Institut für Sustainable Materials GmbH; 2Key Laboratory of Pressure Systems and Safety, East China University of Science and Technology

3:25 PM

Effect on Hydrogen Trapping in Laser Welded Advanced High Strength Steels: Madyson Canulette1; Gregory Thompson2; Luke Brewer²; ¹University of Alabama Birmingham; ²University of Alabama

3:45 PM Invited

Microscopic Characterization of Hydrogen Distribution and Hydrogen Embrittlement in Steels: Eason Yi-Sheng Chen¹; ¹Nanyang Technological University

4:05 PM Break

4:20 PM

Investigation of Hydrogen Embrittlement Effect Using Ex-Situ Impact and In-Situ Slow Rate Charpy Tests on an X65 Steel and Weld: Xin Pang1; Su Xu1; Daichi Izumi2; Nobuyuki Ishikawa2; ¹Canmetmaterials; ²JFE Steel Corporation

4:40 PM

Role of Cyclic Predeformation on Hydrogen Embrittlement in an Austenitic Stainless Steel: Vishnu Anilkumar¹; Frans Palmert²; Lars Nyborg¹; Johan Ahlström¹; Yu Cao¹; ¹Chalmers University of Technology; ²Siemens Energy AB, Finspång, Sweden

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components IV — Performance of Ceramics and Other Materials in Nuclear Systems

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Kayla Yano, Pacific Northwest National Laboratory; Assel Aitkaliyeva, University of Florida; Eric Lang, University of New Mexico; Eda Aydogan, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Benjamin Eftink, Los Alamos National Laboratory; Tanvi Ajantiwalay, Pacific Northwest National Laboratory

Tuesday PM | March 25, 2025 160 | MGM Grand

Session Chair: Assel Aitkaliyeva, University of Florida

2:30 PM Invited

Radiation Effects in High-Entropy Ceramics: Izabela Szlufarska1; Wagas Qureshi¹; Shuguang Wei¹; ¹University of Wisconsin-Madison

3:00 PM

Shear and Delamination Behaviour of Basal Planes in Zr3AlC2 MAX Phase Studied by Micromechanical Testing: Siyang Wang¹; Oriol Gavalda-Diaz¹; Jack Lyons¹; Finn Giuliani¹; ¹Imperial College London

3:20 PM

Studying the Localized Deformation Behavior of Hydride Containing Zircaloy-4 Getter Tubes for TPBAR Applications: Tanvi Ajantiwalay¹; Semanti Mukhopadhyay¹; Mayur Pole¹; Joshua Silverstein¹; Ewa Ronnebro¹; Arun Devaraj¹; ¹Pacific Northwest **National Laboratory**

3:40 PM

Size Effect Investigation of Nuclear Grade ET-10 Graphite: Spencer Doran¹; Jacob Whisler¹; Ian Ferguson¹; Johnathan Gonyaw¹; Pierre Alexandre Juan²; Brandon Haugh²; Tianyi Chen¹; ¹Oregon State University; ²Kairos Power

4:00 PM Break

4:20 PM

Microstructural Related Mechanical Properties and Fracture Behavior in Nuclear Graphite: Gongyuan Liu1; Aman Haque1; Jing Du¹; William Windes²; Arvin Cunningham²; ¹Pennsylvania State University; 2Idaho National Laboratory

4:40 PM

Mapping the Swelling Behavior of Pure Chromium as a Function of Stress & Damage Through a Combination of Four-Point Bending, Finite Element Analysis, and Ion Irradiation: Rijul Chauhan1; Yinyin Hong1; Kenneth Cooper1; Yongchang Li1; Artur Santos Paixao1; Lin Shao1; 1Texas A&M University

MECHANICS OF MATERIALS

Mechanical Behavior Related to Interface Physics IV Grain Boundaries I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Nuclear Materials Committee, TMS: Surface Engineering Committee

Program Organizers: Stanislav Zak, Austrian Academy of Sciences; Nathan Mara, University of Minnesota; Barbara Putz, Empa Swiss Federal Laboratories for Materials Science and Technology; Glenn Balbus, MRL Materials Resources LLC; Kevin Schmalbach, Bruker Nano; Youxing Chen, University of North Carolina Charlotte

Tuesday PM | March 25, 2025 369 | MGM Grand

Session Chairs: Subin Lee, Karlsruhe Institute of Technology; Nathan Mara, University of Minnesota

2:30 PM

Simulating Plastic Flow in Bicrystals With a Discrete Dislocation Dynamics Framework: Mujan Seif¹; ¹University of Oxford

Partially Active Grain-Boundary Segregation and Maximum Tensile Strengths in Nanocrystalline Silver-Copper Alloys: Pavel Nikitin¹; Frederic Sansoz¹; ¹University of Vermont

Phase Field Dislocation Dynamics Formulation Coupled With Fourier-Based Micromechanics Solver: Application to Grain Boundary-Dislocation Interactions: Brayan Murgas Portilla¹; Janel Chua¹; Nithin Mathew¹; Abigail Hunter¹; ¹Los Alamos National Laboratory

3:30 PM Invited

On the Impact of Individual Grain Boundaries in Cu on Electrical Conductivity and Strength: Gerhard Dehm1; 1MPI for Sustainable **Materials**

4:00 PM Break

4:20 PM

Grain Boundary Segregation and Its Effect on the Mechanical Performance of NbMoW Studied Using Atomistic Simulations: Samuel Wagers¹; Adib Samin¹; ¹Air Force Institute of Technology

Understanding Grain Boundary-Dislocation Interactions in MoNbTi and Their Role Mediating

Low Temperature Ductility: Glenn Balbus¹; Byron McArthur²; Oleg Senkov¹; Samuel Kuhr²; Todd Butler²; ¹MRL Materials Resources LLC; ²Air Force Research Laboratory

5:00 PM Invited

Scale Bridging Characterization of Grain Boundary Engineered Thermoelectric Materials: Christina Scheu¹; Ruben Bueno Villoro¹; Chanwon Jung¹; Dominique Mattlat¹; Duncan Zavanelli²; Jeff Snyder²; ¹Max-Planck-Institut Fuer Eisenforschung Gmbh; ²Northwestern University

MECHANICS OF MATERIALS

Mechanical Response of Materials Investigated Through Novel In-Situ Experiments and Modeling — **Manufacturing-Related Characterisation**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Minh-Son Pham, Imperial College London; Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dongchan Jang, Korea Advanced Institute of Science and Technology; Josh Kacher, Georgia Institute of Technology; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization

Tuesday PM | March 25, 2025 366 | MGM Grand

Session Chair: Josh Kacher, Georgia Institute of Technology

2:30 PM Invited

Data Acquisition and Modeling to Enable Microstructure Tailorability in Wire Arc Additive Manufacturing: Mikhail Khrenov¹; Lauren Fitzwater¹; Moon Tan¹; Michelle Hobdari¹; P. Chris Pistorius¹; Sneha Narra¹; ¹Carnegie Mellon University

3:00 PM

Exploring Unusual Lüders Deformation in UFG high-Mn Austenitic Steel: Sukyoung Hwang¹; Hirokazu Kato¹; Kazuho Okada²; Myeong-Heom Park¹; Nobuhiro Tsuji¹; ¹Kyoto University; ²Research Center for Structural Materials, National Institute for Materials Science (NIMS)

Influence of Non-Uniaxial Bending on Twinning and Phase Transformation in Molybdenum Nanowires: Sicheng Qian¹; Afnan Mostafa¹; Feitao Li²; Eugen Rabkin²; Niaz Abdolrahim¹; ¹University of Rochester; ²Technion - Israel Institute of Technology

3:40 PM

Investigation of Dislocation-Grain Boundary Interactions Through In-Situ Direct Tensile Testing With High-Resolution Electron Backscatter Diffraction: Dongyue Xie1; Muh-Jang Chen1; Saryu Fensin¹; Mohammed Zikry¹; Nan Li¹; ¹Los Alamos National Laboratory

4:00 PM Break

4:20 PM Invited

Spatial and Temporal Deformation Behaviour of Hybrid Wrought -Additively Manufactured Inconel 718: Jalal Al-Lami¹; Abdalrhaman Koko²; Shreya Mistry¹; Minh-Son Pham¹; ¹Imperial College London; ²National Physical Laboratory

4:50 PM

Laboratory-Scale Simulation and Combined Modelling of Hot Multi-Directional Open-Die Forging and Cogging: David Connolly¹; Mathieu Fabris²; Giribaskar Sivaswamy²; Salaheddin Rahimi²; Vassili Vorontsov¹; ¹University of Strathclyde; ²Advanced Forming Research Centre

5:10 PM

The Influence of Concurrent Structural Mechanics and Fluid Flow in Microstructure Solidification Modelling: Peter Soar¹; Andrew Kao¹; Koulis Pericleous¹; ¹University of Greenwich

NUCLEAR MATERIALS

Meeting Materials Challenges for the Future of Fusion Energy — Environmental Effects II

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Tianyi Chen, Oregon State University; Amy Gandy, United Kingdom Atomic Energy Authority; Reuben Holmes, Kyoto Fusioneering; Ian Mccue, Northwestern University; Sneha Prabha Narra, Carnegie Mellon University; Jason Trelewicz, Stony Brook University; Weicheng Zhong, Oak Ridge National Laboratory

Tuesday PM | March 25, 2025 158 | MGM Grand

Session Chairs: James Haag, Pacific Northwest National Laboratory; Weicheng Zhong, Oak Ridge National Laboratory

2:30 PM Keynote

Irradiation Experiments for Fusion Blanket Materials: Chase Taylor¹; Thomas Fuerst¹; Hanns Gietl¹; Masashi Shimada¹; Pattrick Calderoni¹; ¹Idaho National Laboratory

3:00 PM

Simulating Plasma-Surface Interactions with Deuterium Beams Experiments: Effect of Tungsten Oxidation: Aleksandr Afonin¹; Axel Dunand¹; Florin Ghiorghiu¹; Mykola Ialovega²; Matthieu Latournerie¹; Eric Salomon¹; Marco Minissale³; Céline Martin¹; Thierry Angot¹; Etienne Hodille⁴; Régis Bisson¹; ¹Aix-Marseille University; ²University of Wisconsin-Madison; 3CNRS; 4CEA IRFM

3:20 PM

Annealing of Neutron Irradiated Tungsten to Assess the Stability of Irradiation Induced Transmutant Solute Clusters: Kieran Rivers1; Andrew London²; Michael Moody¹; Paul Bagot¹; David Armstrong¹; ¹University of Oxford; ²UK Atomic Energy Authority

3:40 PM

Responses of Dispersion-Strengthened Tungsten to High Heat Flux and High Fluence Helium Irradiation: Xing Wang1; Ashrakat Saefan¹; Chase Hargrove¹; ¹Pennsylvania State University

4:00 PM Break

4:20 PM

Defect Phase Diagrams and Structure-Property Relationships for Screw Dislocations of Tungsten in the Presence of Hydrogen Studied by Atomistic Simulations: Benjamin Helman1; Adib Samin1; ¹Air Force Institute of Technology

High Throughput Self-Ion Irradiation and Characterization of Pure Tungsten: Nicholas Crnkovich¹; Nathan Curtis¹; Zilong Hua²; Adrien Couet¹; ¹University of Wisconsin Madison; ²Idaho National Laboratory

5:00 PM

Impact Dynamics of High-Velocity Tungsten Dust in Fusion Reactors: A Molecular Dynamics Study: Prashant Dwivedi¹; Alberto Fraile²; Tomáš Polcar¹; ¹Ceske Vysoke Uceni Technicke V Praze; ²Material Physics Center (MPC) / Centro de Física de Materiales (CFM) CSIC-UPV/EHU

LIGHT METALS

Melt Processing, Casting and Recycling — Furnace Operation and Recycling & Continuous Casting and Safety

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Arild Hakonsen, Hycast As; Les Edwards, Rain Carbon Inc.

Tuesday PM | March 25, 2025 109 | MGM Grand

Session Chairs: Ray Peterson, Real Alloy; Samuel Wagstaff, **Oculatus Consulting**

2:30 PM Introductory Comments

2:35 PM

Removal of Zn and Other Volatile Elements from Molten Al by Vacuum Refining: Sarina Bao1; Martin Syvertsen2; Anne Kvithyld2; Kai Tang²; Zala Qazi³; Signe Ljungquist³; Sunniva Walle³; ¹SINTEF Materials & Chemistry; ²SINTEF; ³Norwegian University of Science and Technology

3:00 PM

ThermaSiC Coating for Applications in Contact with Molten Aluminum: Nicholas Smith-Hanssen¹; Stian Sannes¹; Ali Ebrahimi²; Jeremy Rydberg³; Hunter Boroff³; Sarina Bao²; ¹Seram Coatings AS; ²SINTEF; ³Atlas Machine and Supply Inc.

3:25 PM

Optimizing Solid and Liquid Loading Times in Aluminium Melting Furnaces: Enhancing Efficiency and Process Control with SmartMelt Technology: Amin Rostamian1; Marc Bertherat2; ¹Novamet Sarl; ²Constellium

Modeling and Simulation of Cold Hearth Continuous Casting of Titanium Alloys: Arul Mozhi Varman Jayaraman Palanivel¹; Tharmalingam Sivarupan¹; Georgarakis Konstantinos¹; Konstantinos Salonitis¹; Mark Jolly¹; ¹Cranfield University

4:15 PM Break

4:30 PM

Review of Recent Catastrophic Molten Metal Explosions and Their Causes: Alex Lowery1; 1Wise Chem Llc

Development of Numerical Model of Plasma Burner for Primary Aluminium Casthouses: Akash Pakanati¹: Knut Tveito¹: Eirik Manger²: Martin Lorentzon³; ¹Hydro Research and Development Center; ²Hydro Aluminium, Technology and Operational Support; ³Hydro Aluminium, Projects

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Microstructural Evolution and Material Properties **Due to Manufacturing Processes: A Symposium** in Honor of Anthony Rollett — Microstructural **Evolution and Material Properties: Session II**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Curt Bronkhorst, University of Wisconsin-Madison; Elizabeth Holm, University of Michigan; Ricardo Lebensohn, Los Alamos National Laboratory; Sukbin Lee, Ulsan National Institute Of Science And Technology; Nathan Mara, University of Minnesota

Tuesday PM | March 25, 2025 303 | MGM Grand

Session Chairs: Nathan Mara, University of Minnesota; Curt Bronkhorst, University of Wisconsin-Madison

2:30 PM Invited

Enabling 3D Multiscale Materials Characterization Using Machine Learning: Reeju Pokharel¹; ¹Los Alamos National Laboratory

An Overview of Synchrotron X-ray Microscopies: From Macro to Nano: Robert Suter: 1

3:30 PM Invited

Experimental and Numerical Studies on Melt Pools in Metal Additive Manufacturing: Yoon Suk Choi1; Seulbi Lee2; Jaewoong Kim²; ¹Pusan National University; ²LG Energy Solution, Ltd.

4:00 PM Break

4:20 PM

From Synthetic Microstructures to SERVES for Manufacturing and Engineering Design: Dennis Dimiduk1; Mike Jackson1; Steve Niezgoda²; ¹BlueQuartz Software LLC; ²The Ohio State University

4:40 PM

Explicit Cracking in Microstructure-based Simulations of Failure Mechanisms: Benjamin Anglin¹; ¹Naval Nuclear Laboratory

NUCLEAR MATERIALS

Microstructural, Mechanical, and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface II — Thermal Properties and Performance of Nuclear **Fuels**

Sponsored by: TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Xing Wang, Pennsylvania State University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Dong (Lilly) Liu, University of Oxford; Caleb Clement, Westinghouse Electric Company; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida; Yi Xie, Peking University

Tuesday PM | March 25, 2025 159 | MGM Grand

Session Chair: Miaomiao Jin, Pennsylvania State University

2:30 PM Invited

Understanding the Impact That the UO, Radial Microstructural Evolution has on Temperature Transient Performance in LWR Pellets: Casey McKinney1; Jesse Werden1; Chad Parish1; Lauryn Reyes¹; Matthew Jones¹; Tyler Gerczak¹; Jason Harp¹; Nathan Capps¹; ¹Oak Ridge National Laboratory

3:00 PM

Implications of Accurate Point Defects Estimation on UO2 Thermal Conductivity and Fission Gas Release for Accelerated Fuel Irradiation: Mutaz Alshannag¹; Charlie Owen²; Joshua Ferrigno¹; Marat Khafizov¹; Hany S. Abdel-Khalik²; ¹The Ohio State University; ²Purdue University

3:20 PM

An Irreducible Derivatives Approach to Improve Empirical Interatomic Potentials for Thermophysical Property Predictions: the Case of ThO2 and UO2: Shuxiang Zhou1; Chao Jiang1; Enda Xiao2; Sasaank Bandi²; Michael Cooper³; Miaomiao Jin⁴; David Hurley¹; Marat Khafizov⁵; Chris Marianetti²; ¹Idaho National Laboratory; ²Columbia University; ³Los Alamos National Laboratory; ⁴Pennsylvania State University; 5The Ohio State University

3:40 PM

First Principle Based Modeling of the Impact of Dislocation Loops on the Thermal Transport of Nuclear Fuels: Sageeb Adnan1; Erika Nosal¹; Marat Khafizov¹; ¹Ohio State University

4:00 PM Break

4:20 PM

Investigating Microstructural and Local Thermal Conductivity Changes in Irradiated U-Zr Annular Fuel: Mary Sevart1; Daniele Salvato²; Mitchell Mika¹; Fei Xu²; Tiankai Yao²; Luca Capriotti²; Assel Aitkaliyeva¹; ¹University of Florida; ²Idaho National Laboratory

4:40 PM

In-Situ Thermal Conductivity of Uranium Nitride (UN) and SIMFUEL Composites Under Irradiation: Elina Charatsidou¹; Maria Giamouridou¹; Robert Frost²; Michael Short³; Pär Olsson¹; ¹KTH Royal Institute of Technology; ²Uppsala University; ³Massachusetts Institute of Technology

5:00 PM

Thermal Properties Degradation in Proton Irradiated Cr-Doped UO2: Adrien Terricabras1; Rijul Chauhan2; John Proctor3; Oran Lori3; Lin Shao²; Sarah Finkeldei³; Joshua White¹; ¹Los Alamos National Laboratory; ²Texas A&M University; ³University of California Irvine

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Nanostructured Materials in Extreme Environments III - Novel Structure for Extremes

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Youxing Chen, University of North Carolina Charlotte, Haiming Wen, Missouri University of Science and Technology; Yue Fan, University of Michigan; Khalid Hattar, University of Tennessee Knoxville; Ashley Bucsek, University of Michigan; Jessica Krogstad, University of Illinois at Urbana-Champaign; Irene Beyerlein, University of California, Santa Barbara; Trevor Clark, Commonwealth Fusion Systems

Tuesday PM | March 25, 2025 166 | MGM Grand

Session Chair: Douglas Stauffer, Bruker Nano Surfaces & Metrology

2:30 PM Invited

Thermal Stability of Nanocrystalline Metallic Materials: Xinghang Zhang¹; Yifan Zhang²; Nicholas Richter¹; Haiyan Wang¹; ¹Purdue University; ²Clemson University

2:55 PM Invited

Dislocation Defect Phases as a Pathway for the Manipulation of Higher Order Mechanical Properties: Timothy Rupert¹; ¹Johns Hopkins University

3:20 PM Invited

Synergistic Grain Boundary Segregation and Nanodispersoid Induced Stabilization of Ultrafine Grained Tungsten Microstructures: Jason Trelewicz¹; ¹Stony Brook University

3:45 PM Break

4:05 PM Introductory Comments: Young Leaders International Scholar - KIM Lecture

4:10 PM Invited

Young Leaders International Scholars- KIM Lecture: Aluminum-Carbon Thin Films with High Strength and Ductility: Gi-Dong Sim¹;

4:40 PM Invited

Ultra-Strong and Corrosion-Resistant Crystalline-Amorphous Nanostructured Metals: Xusheng Yang¹; ¹Hong Kong Polytechnic University

5:00 PM

Investigating the Carbon Effect on the Tensile Strength in 6061 Aluminum Alloy-C Thin Films: Zion Lee¹; Hojang Kim¹; Sunkun Choi¹; Injong Oh¹; Jaehong Park²; Gi-Dong Sim¹; ¹Korea Advanced Institute of Science and Technology; ²Hyundai Motors

Microstructural Stability in Fe-W Nanomultilayers with Crystalline and Amorphous Interfaces: Ariel Capote Sanchez1; Kyle Russell1; Jason Trelewicz²; Andrea Hodge¹; ¹University of Southern California; ²Stony Brook University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXIV — Emerging Technology

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Yu-Chen Liu, National Cheng Kung University; Hiroshi Nishikawa, Osaka University; Shih-kang Lin, National Cheng Kung University; Yee-wen Yen, National Taiwan University of Science and Technology; Chih-Ming Chen, National Chung Hsing University; Chao-hong Wang, National Chung Chung University; Jaeho Lee, Hongik University; Zhi-Quan Liu, Shenzhen Institutes of Advanced Technology; Ming-Tzer Lin, National Chung Hsing University; A.S.Md Abdul Haseeb, Bangladesh University of Engineering and Technology (BUET); Ligang Zhang, Central South University; Sehoon Yoo, Korea Institute of Industrial Technology; Ping-Chuan Wang, Suny New Paltz; Yu-An Shen, Feng Chia University

Tuesday PM | March 25, 2025 359 | MGM Grand

Session Chairs: Chih-Ming Chen, National Chung Hsing University; Ping-Chuan Wang, Suny New Paltz

2:30 PM Keynote

Electrochemical Evaluation of Plating Parameters in Anomalous Codeposition Behavior of Invar Electroplating: Na-Young Kang¹; Jaeho Lee1; 1Hongik University

3:05 PM Invited

Li and Na Interaction in Intercalation Materials: Chong Liu1; ¹University of Chicago

3:35 PM Invited

Effect of Interfacial Microstructure on Mechanical and Electrical Properties in Ultrasonically-Welded Ni/Al/Ni Lamellar Structure: Jheyu Lin¹; Kuan-Chieh Hu¹; ¹National Taipei University of Technology

4:05 PM Break

4:25 PM

Striped Strain-Induced Coherency Loss Leading to Metastable Nanoprecipitate Phase Transformation in Al-Zn-Mg Alloys: Yu-ning Chiu1; Tsai-fu Chung2; Chung-yi Yu3; Shih-kang Lin1; 1National Cheng Kung University; ²National Yang Ming Chiao Tung University; ³China Steel Corporation (CSC)

Synergistic Inhibition Effect of Nitrides and Metal Ions on Corrosion of Copper: Yen-Ju Chu1; Po-Cheng Chou1; Chih-Ming Chen1; Tsung-Hao Yang²; Kai-Hui Tsai²; ¹National Chung Hsing University; ²Char May Advance Chemical Corporation (CMAC)

MATERIALS SYNTHESIS AND PROCESSING

Phase Transformations and Microstructural Evolution — Steels II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State University; Ashley Paz y Puente, University of Cincinnati; Jonah Klemm-Toole, Colorado School of Mines; Sriram Vijayan, Michigan Technological University; Mohsen Asle Zaeem, Colorado School of Mines; Le Zhou, Marquette University; Adriana Eres-Castellanos, Colorado School of Mines; Sophie Primig, University of New South

Tuesday PM | March 25, 2025 123 | MGM Grand

Session Chairs: Vitor Vieira Rielli, UNSW Sydney; Sriswaroop Dasari, University of Texas at El Paso

2:30 PM

Mechanism Behind the Creation of Ultrafine Grains at Machined Surface of 0.45% Carbon Steel During High-Speed Turning Process: Hyung-Won Park1; Masaki Matsuda1; Kanji Ishitaka1; Shinichi Funase¹; Atsushi Tomizawa¹; Akira Hosokawa¹; Jun Yanagimoto²; Takashi Ueda¹; ¹Komatsu University; ²University of Tokyo

2:55 PM

Effects of Cooling Rate and Nitrogen Content on Morphologies and Precipitation of Widmanstätten Austenite in Welds of Duplex Stainless Steels: Yunxing Xia¹; Fumikazu Miyasaka²; Hisashi Serizawa³; Hiroaki Mori²; ¹Hisaka Works, Ltd.; ²Osaka University; ³Joining and Welding Research Institute, Osaka University

ε-Carbide Induced Fresh Martensite to Produce Dual Phase Microstructure in Low Carbon Steel: Jo Won Hui1; Cho Hyeon Lee¹; Seonghyeon Yang²; Muhammad Ishtiaq¹; Tiwari Saurabh¹; Taehyeong Kim³; Junseok Lee³; Seong-Tak Oh⁴; Yong-Min Hyun⁴; Jae Wung Bae³; Jae Bok Seol¹; ¹Kookmin University; ²Gyeongsang National University; ³Pukyong National University; ⁴Hyundai-steel

3:35 PM

Warm Rolling for Enhanced Strength-Ductility and Yielding Behavior in Low-Density, Medium-Mn Steels: Tomas Scuseria1; Dean Pierce²; Kelcey Garza³; Amy Clarke⁴; Kester Clarke⁴; ¹Colorado School of Mines; ²Oak Ridge National Laboratory; ³Cleveland-Cliffs; ⁴Los Alamos National Laboratory

3:55 PM

Magnetic Field-Assisted Processing of Martensitic Steels: Megan Hurley1; Ramon Padin-Monroig1; Alex Donald1; James Hamlin1; Michael Kesler²; Michele Manuel¹; Mark Meisel¹; Victoria Miller¹; ¹University of Florida; ²Oak Ridge National Laboratory

4:15 PM Break

4:30 PM

Correlative Microscopic Analysis of B-Alloyed Fe-Mn-Al-Ni-C High-Specific Strength Steels: Rajdeep Banik¹; K G Pradeep¹; ¹Indian Institute of Technology Madras

4:50 PM

Alloy Design of Low Carbon Low Alloy Carbide Free Bainitic-Ferrite Steel: B Mohan Rao; Shiv Brat Singh1; 1IIT Kharagpur

MATERIALS SYNTHESIS AND PROCESSING

Powder Materials Processing and Fundamental Understanding — Additive Manufacturing I: High Energy-Based

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, University of Alabama Birmingham; Eugene Olevsky, San Diego State University; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Oak Ridge National Laboratory; Wenwu Xu, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Charles Maniere, CNRS

Tuesday PM | March 25, 2025 105 | MGM Grand

Session Chairs: Charles Maniere, CNRS; Michael Titus, Purdue University

2:30 PM

A Novel Method for Reconditioning Reused Laser Powder Bed Fusion Alloy Powder: Xiaoling Shen¹; Ching-Chien Chen¹; Dina Wael Samir Khattab¹; Paul Mort¹; Jeffrey Youngblood¹; Michael Titus¹; ¹Purdue University

2:50 PM

A Multiscale Thermomechanical Model for Simulating Sintering Distortions in 3D Printed Parts with Internal Lattice Structures: Charles Maniere¹; Joseph Sambasen Diatta²; Sylvain Marinel¹; ¹CNRS - Laboratoire Crismat; ²2Assane Seck University

Parametric Study of Additive Manufacturing using Martian Regolith Metals Recovered with Ionic Liquids: Blake Stewart¹; Mary Mederos¹; Shiraz Mujahid¹; Dawn Van Iderstine¹; Jennifer Edmunson²; Jeffrey Mehan³; Kagen Crawford²; Paul Hintze²; Chris Henry²; Eric Fox²; Jennifer Jones²; Curtis Hill⁴; Steven Burlingame²; Morgan Abney²; Hongjoo Rhee¹; ¹Mississippi State University; ²National Aeronautics and Space Administration; ³Aerodyne Industries; ⁴Jacobs Space Exploration

3:30 PM

Direct Vat Photopolymerisation of Hierarchically Porous SiC Loaded With Co/Ni Based Catalysts by Utilising Pickering Emulsions: Terence Ho1; Kah Sheng Pung1; Daniel Wen Hao Lock1; Zehui Du¹; Chee Lip Gan¹; ¹Nanyang Technological University

Characterization of Surface Integrity in Post-Processed Ti-5Al-5Mo-5V-3Cr Parts Fabricated via Laser Bed Fusion: David Yan1; Roman Bolzowski¹; ¹San Jose State University

4:10 PM Break

4:20 PM

Powder Flowability of Elemental Niobium, C103, and Other Structural Materials for Powder Bed Fusion: Dina Wael Samir Khattab¹; Xiaoling Shen¹; Jake Kim¹; Ching-Chien Chen¹; Paul Mort¹; Jeffrey Youngblood¹; Michael Titus¹; ¹Purdue University

4:40 PM

Development and Optimization of a Nanoscale ZrO2 Suspension for Ceramic Stereolithography: Investigating Rheological Properties and Printing Parameters.: Aymeric Jugan¹; Sylvain Marinel¹; Loic Lepluart²; Romuald Herbinet²; Charles Maniere¹; ¹CRISMAT; ²LCMT

5:00 PM

Fabrication of Ti6Al4V Spherical Powders for Additive Manufacturing from Recycled Shavings: Zeynep Ege Uysal¹; Sertaç Altınok²; Yunus Eren Kalay¹; Tayfur Öztürk¹; ¹Middle East Technical University; ²Turkish Aerospace Industries

5:20 PM

Comparison of DED Nozzles' Performance via In Situ Synchrotron Radiography: Imogen Cowley¹; Harry Chapman¹; Sebastian Marussi¹; Kai Zhang¹; Robert Atwood²; Martyn Jones³; Chu Lun Alex Leung¹; Peter Lee¹; ¹University College London; ²Diamond Light Source; ³Rolls-Royce plc.

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Printed Electronics and Additive Manufacturing: Advanced Functional Materials, Processing Concepts, and Emerging Applications — Printed Electronics III - 1D/2D Materials & Dry Printing

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Yong Lin Kong, Rice University; Konstantinos Sierros, West Virginia University; Masoud Mahjouri-Samani, Auburn University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ethan Secor, Iowa State University

Tuesday PM | March 25, 2025 361 | MGM Grand

Session Chairs: Harrison Loh, West Virginia University; Changyong Cao, Case Western Reserve University

2:30 PM Invited

Laser Ablation and Sintering Enabled (LASED) Dry Printing **Electronics and Functional Devices**: Aarsh Patel¹; Adib Taba¹; Suman Jaiswal¹; Sharouz Zamani Khalajabadi¹; Masoud Mahjouri-Samani¹; ¹Auburn University

2:55 PM Invited

Beyond Solution-Based Printing: Unveiling Innovations and Advancements in Solvent-Free Printing Technologies: V. Vinay K. Doddapaneni¹; Chuankai Song¹; Ningmo Cheng¹; Isaac Camp¹; Jeffrey Dhas¹; Alvin Chang¹; Changging Pan¹; Brian Paul¹; Somayeh Pasebani¹; Zhenxing Feng¹; Konstantinos Sierros²; *Chih-Hung Chang*¹; ¹Oregon State University; ²West Virginia University

3:20 PM Invited

Metal-MXene Composites: Enhancing Conductivity Mechanical Properties via Advanced Processing: Zachary Hood¹; ¹Argonne National Laboratory

3:45 PM Break

4:05 PM Invited

Ultraconductive Copper-Carbon Nanotube Composite for Advanced Conductors: Kai Li1; Michael McGuire1; Huixin Jiang1; Andrew Lupini¹; Fred List¹; James Haynes¹; Kashif Nawaz¹; Tolga Aytug¹; ¹Oak Ridge National Laboratory

4:30 PM Invited

Probing Inter- and Intra-Flake Contributions to Reduced Electrical Properties in Percolated Flake Networks: Harrison Loh1; Alan Bristow¹; Konstantinos Sierros¹; ¹West Virginia University

Enhancing Electrical Conductivity of Laser-Induced Graphene Electrodes by Relasing and Dual-Wavelength Control: Soumalya Ghosh¹; Moataz Abdulhafez¹; Thomas Kisiel¹; Mostafa Bedewy¹; ¹University of Pittsburgh

MATERIALS SYNTHESIS AND PROCESSING

REWAS 2025: Sustainable Practices in Strategic and Critical Raw Materials: Exploring Supply Chain Resilience and Recycling Innovations — Towards Resource Potential, Upcycling Industrial and Urban **Byproducts**

Sponsored by: TMS Extraction and Processing Division, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Mertol Gokelma, Izmir Institute of Technology; Adamantia Lazou, National Technical University of Athens; Christina Meskers, SINTEF; Elsa Olivetti, Massachusetts Institute of Technology

Tuesday PM | March 25, 2025 117 | MGM Grand

Session Chair: Mertol Gokelma, Izmir Institute of Technology

2:30 PM Introductory Comments

2:35 PM Invited

Mycomining: Using Fungi to Forge the Future of Critical Materials: Andrew Hoffman¹; ¹Catalyst Science Solutions

3:05 PM Invited

Remanufacturing as a Tactic to Increase the Resilience of Raw Materials' Availability: Christina Meskers1; 1SINTEF

Comparative Life Cycle Assessment of Novel Steel Section Design with Wire Arc Additive Manufacturing: Lidiana Arrè¹; Emanuele Pagone²; Vittoria Laghi¹; Filomeno Martina³; Michele Palermo¹; ¹University of Bologna; ²Cranfield University; ³WAAM3D Ltd.

3:55 PM

Metso eScrap Solutions: Unlocking the Value of a Critical Resource: Stephen Hughes¹; ¹Metso Australia Limited

4:15 PM Break

Comparative Study of Different Acid Reagents for Metal Recovery from Municipal Solid Waste Incineration Fly Ash: Edzhe Soylu1; Linus Meistad¹; Elif Emil Kaya¹; Kai Erik Ekstrøm²; Inge Johansson²; Gabriella Tranell¹; ¹Norwegian University of Science and Technology; ²NOAH AS

Recovery Potential of Spent Magnesia-Chrome Refractories from Copper and Nickel Industries: Kerrin Witt¹; Stefan Steinlechner¹; Thomas Howard¹; ¹Montanuniversitaet Leoben

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Sciences — Actinide Chemistry

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Mavrik Zavarin, Lawrence Livermore National Laboratory; Rebecca Abergel, University of California Berkeley; Matthew Watrous, Idaho National Laboratory

Tuesday PM | March 25, 2025 163 | MGM Grand

Session Chair: Rebecca Abergel, University of California Berkeley

2:30 PM Invited

Investigating Radiation-Induced Actinide Species in Solution: Amy Kynman¹; Travis Grimes¹; Stephen Mezyk²; Jacy Conrad¹; Simon Pimblott¹; Bobby Layne³; Andrew Cook³; Brian Rotermund⁴; Gregory Holmbeck¹; ¹Idaho National Laboratory; ²California State University, Long Beach; ³Brookhaven National Laboratory; ⁴Colorado School of Mines

3:00 PM Invited

Transplutonium Compounds Isolated from Aqueous Solutions: Jennifer Wacker¹; ¹Lawrence Berkeley National Laboratory

3:30 PM

A Rare Bird: U+5 and U+6 in Uranium Sulfides: Anna Berseneva¹; Hanno-Conrad Zur Loye²; ¹NREL; ²University of South Carolina

3:50 PM Break

4:10 PM

Microstructural Characterization of U/Pu Particulates: John Mayer1; Matthew Wellons2; Bryan Foley2; Michael Bronikowski2; Spencer Scott²; Lorianne Shultz-Johnson²; Christopher Barrett²; Assel Aitkaliyeva¹; ¹University of Florida; ²Savannah River National Laboratory

Impact of Neodymium Ions on the Chemical Kinetic Behavior of Radiolytic Transients in Molten LiCl-KCl-NdCl, Salt Mixtures: Stephanie Castro Baldivieso1; Gregory Holmbeck1; Ruchi Gakhar1; ¹Idaho National Laboratory

4:50 PM

Understand Behavior of Tungsten and Tantalum Components During Actinide Pyroprocessing: Elise Shauf¹; Adam Burak¹; Stephen Raiman¹; ¹University of Michigan

Corrosion Testing of Chemically Modified Tantalum Coupons in a Molten Salt Environment with Chlorine and Oxygen Gases: Gregory Dan Chipman¹; Tatiana Ayers¹; ¹Savannah River National Laboratory

MECHANICS OF MATERIALS

Spatially Tailored Materials: Processing-Structure-Properties — Thermal Evolution of Gradient Microstructures

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Gianna Valentino, University of Maryland; Marie Charpagne, University of Illinois; Ian Mccue, Northwestern University; J.C. Stinville, University of Illinois Urbana-Champaign

Tuesday PM | March 25, 2025 351 | MGM Grand

Session Chairs: J.C. Stinville, University of Illinois Urbana-Champaign; lan Mccue, Northwestern University

2:30 PM

Measurement of the Temperature Dependence of Plastic Deformation Localization for Rapid Microstructure-Property Relationships Identification Across Temperatures: M. Calvat¹; C. Bean¹; R.L. Black¹; D. Anjaria¹; J.C. Stinville¹; ¹University of Illinois Urbana-Champaign

2:50 PM

Oxygen-Induced Elemental Segregation as a Pathway for Evolving New Microstructures in IV-Based BCC Refractory Alloys: Ravit Silverstein¹; Florent Mignerot¹; Nicoló della Ventura¹; Jeremiah Thomas¹; Julia Pürstl¹; Anton Van Der Ven¹; Carlos Levi¹; Tresa Pollock¹; Daniel Gianola¹; ¹University of California Santa Barbara

Oxygen-Induced Hierarchical Heterogeneities and Enhanced Hardness in RMPEAs: David Beaudry¹; Michael Waters²; Gianna Valentino³; Daniel Foley¹; Elaf Anber¹; Nathan Smith²; Jean-Philippe Couzinie⁴; Loic Perriere⁴; Keith Knipling⁵; Patrick Callahan⁵; Toshihiro Aoki⁶; Benjamin Redemann¹; Tyrel McQueen¹; Christopher Wolverton²; James Rondinelli²; Mitra Taheri¹; ¹Johns Hopkins University; ²Northwestern University; ³University of Maryland; ⁴University Paris Est Creteil; ⁵U.S. Naval Research Laboratory; ⁶University of California, Irvine

3:30 PM

Impact of Heat Treatments on the Microstructure and Mechanical Properties of /' Ni-Based Superalloys Produced by DED Processes: Guillaume Burlot¹; Abel Rapetti¹; Jonathan Cormier¹; Alice Cervellon²; Sophie Gillet²; ¹Institut Pprime; ²Safran Aircraft Engines

3:50 PM Break

4:10 PM

Dissolution Zone Model of the Oxide Structure in Additively Manufactured Dispersion-Strengthened Alloys: Wenyuan Hou1; Zachary Cordero¹; ¹Massachusetts Institute of Technology

4:30 PM

Effect of Zr and Sc Additions on Coarsening- and Creep Resistance of Laser-Melted AlSi10Mg: Ismael Coello Ramirez1; Jennifer Glerum1; Clement Ekaputra¹; David Dunand¹; ¹Northwestern University

4:50 PM

Solute Redistribution in Functionally Graded Materials: An Operando Study of Cu-Al Alloys: Steve Gaudez¹; Zhilang Zhang²; Andaç Özsoy¹; William Hearn¹; Yunhui Chen³; Alexander Rack⁴; Mohamadreza Afrasiabi²; Markus Bambach²; Steven Van Petegem¹; ¹Paul Scherrer Institute; ²ETH Zurich; ³RMIT; ⁴ESRF

The Role of Heterogeneous Microstructure on the Corrosion Resistance of Wire-Arc Directed Energy Deposited Iron-Based High Entropy Alloys: Tanaji Paul¹; Tyler Dolmetsch¹; Blanca Palacios¹; Sohail Mohammed¹; Arvind Agarwal¹; ¹Florida International University

NUCLEAR MATERIALS

Spectroscopic Methods and Analysis for Nuclear Energy Related Materials — Spectroscopy Methods and Irradiation Damage of Materials for Nuclear Energy

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Scarlett Widgeon Paisner, Los Alamos National Laboratory; Arjen van Veelen, Los Alamos National Laboratory; Xiaofeng Guo, Washington State University; Farida Selim, Arizona State University; Maik Lang, University of Tennessee; Dong (Lilly) Liu, University of Oxford

Tuesday PM | March 25, 2025 161 | MGM Grand

Session Chairs: Xiaofeng Guo, Washington State University; Dong (Lilly) Liu, University of Oxford

2:30 PM Invited

Complementarity of Neutrons and Positrons in Assessing Material Damage for Nuclear Applications: Joe Kelleher1; 1|SIS Pulsed Neutron & Muon Source

The Surprising Beneficial Effect of Low-Dose Proton Radiation on Suppressing the Corrosion Reactivity of Thermally Oxidized Iron: Ho Lun Chan¹; Aaron Kohnert²; Shivani Srivastava³; Yujun Xie³; Maciej Liedke⁴; Rasheed Auguste³; Elena Romanovskaia¹; Franziska Schmidt²; Maik Butterling⁴; Valentin Romanovski¹; Yongqiang Wang²; Farida Selim⁵; Eric Hirschmann⁴; Andreas Wagner⁴; Blas Uberuaga²; Mark Asta³; Peter Hosemann³; John Scully¹; ¹University of Virginia; ²Los Alamos National Laboratory; ³University of California, Berkeley; ⁴Helmholtz-Zentrum Dresden-Rossendorf; ⁵Arizona State University

Observing Radiation Enhanced Diffusion in Model Fe-Cr Alloys and Their Oxides Using Atom Probe Tomography: Kayla Yano1; Aaron Kohnert²; Tiffany Kaspar¹; Jijo Christudasjustus¹; Hyosim Kim²; Yongqiang Wang²; Sandra Taylor¹; Daniel Schreiber¹; ¹Pacific Northwest National Laboratory; ²Los Alamos National Laboratory

In Situ Helium Implantation and Rutherford Backscattering Analysis of Helium Retention in Amorphous SiOC: Benjamin Mejia Diaz1; Zhihan Hu1; Lin Shao1; 1Texas A&M University

3:55 PM Break

4:15 PM Invited

Investigating Nuclear Materials via Laser Based and Positron Annihilation Spectroscopy Techniques to Understand Their Performance: Peter Hosemann¹; Chai Peddeti¹; Sebastian Lam¹; Farida Selim¹; Oskar Liedke¹; Scarlett Widgeon Paisner¹; ¹University of California, Berkeley

Quantification of Total Irradiation Damage in Nuclear Graphite Using Raman Spectroscopy: Ming Jiang¹; Chris Densham²; Kavin Ammigan³; George Lolov³; Frederique Pellemoine³; Dong (Lilly) Liu¹; ¹University of Oxford; ²Science and Technology Facilities Council;

³Fermi National Accelerator Laboratory

ToF-SIMS Analysis of Irradiated U-Zr Using Spectra Cluster Analysis: Mitchell Mika1; Arnold Pradhan2; Mario Mattos2; Tanner Mauseth²; Luca Capriotti²; Tiankai Yao²; Assel Aitkaliyeva¹; ¹University of Florida; 2Idaho National Laboratory

Vapor Analysis by Combination Spectroscopy in a Novel Optical **Cell**: Robin Roper¹; Ruchi Gakhar¹; Ammon Williams¹; ¹Idaho National

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Steels in Extreme Environments — Steels Under Corrosive/Oxidative/Fatigue Conditions / Unique **Steel Structures**

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Hyunseok Oh, University of Wisconsin -Madison; Lawrence Cho, Colorado School of Mines; Jeongho Han, Hanyang University; Motomichi Koyama, Tohoku University; Peeyush Nandwana, Oak Ridge National Laboratory; Fnu Kasturi Narasimha Sasidhar, University of Wisconsin - Madison

Tuesday PM | March 25, 2025 168 | MGM Grand

Session Chairs: May Martin, National Institute of Standards and Technology; Lawrence Cho, Colorado School of Mines

2:30 PM Invited

Steel Corrosion in Supercritical CO2-Saturated Aqueous Environments: Jing Liu1; 1University of Alberta

Corrosion Behaviour of ODS Austenitic Steels with Y2O3 Addition: Anna Dobkowska¹; Kalyan Das¹; Irena Paulin²; Crtomir Donik²; Jiri Kubasek³; David Necas³; Matjaz Godec²; ¹Warsaw University of Technology; ²Institute of Metals and Technology; ³University of Chemistry and Technology (VSCHT)

High Temperature Oxidation of 304 SS at 630°C in Combustion Atmospheres: Alexander Donchev¹; Fang Cao²; Mathias Galetz¹; ¹DECHEMA-Forschungsinstitut; ²Exxon Mobil

3:30 PM

CO2 Oxidation and Carburisation Evolution in Fe9Cr1Mo Steels for Advanced Gas-Cooled Reactors: Peter Thomas¹; Mariia Zimina¹; Lawrence Coghlan¹; Aya Shin²; Jonathan Pearson²; Peter Flewitt¹; Tomas Martin¹; ¹University of Bristol; ²EDF UK

3:50 PM Break

4:10 PM

Novel Steel Composite Metal Foam in Extreme Environment of Heat and Load: Afsaneh Rabiei¹; ¹North Carolina State University

4:30 PM Invited

Ultrafine-Grained and Nanocrystalline Steels in Extreme **Environments**: Haiming Wen¹; Joshua Rittenhouse¹; University of Science and Technology

4:50 PM

Doubling Fatigue Limit by Eliminating Crack Embryo in 1.6 GPa-Grade As-Quenched Martensitic Steel: Kazuho Okada1; Eri Nakagawa¹; Kaneaki Tsuzaki¹; Akinobu Shibata¹; ¹National Institute for Materials Science (NIMS)

5:10 PM

The Dynamic Behavior of Rebar Corrosion: Coupled Point Defect Theory, Machine Learning and Experimental Validation: Yakun Zhu1; Digby Macdonald2; 1University of Science and Technology Beijing; ²University of California, Berkeley

MECHANICS OF MATERIALS

Structure and Dynamics of Metallic Glasses — Technological and Industrial Use

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Sebastian Kube, University of Wisconsin - Madison; Katharine Flores, Washington University in St. Louis; Daniel Sopu, Erich Schmid Institute; Yonghao Sun, The Chinese Academy of Sciences; A. Lindsay Greer, University of Cambridge; Peter Derlet, Paul Scherrer Institut

Tuesday PM | March 25, 2025 367 | MGM Grand

Session Chair: Jan Schroers, Yale University

2:30 PM Introductory Comments

2:35 PM Invited

Pushing the Limits of High-Performance Components with Thermoplastic Forming of Bulk Metallic Glasses: Evgenia Pekarskaya¹; Jan Schroers²; ¹Supercool Metals; ²Yale University

3:05 PM Invited

Bulk Metallic Glasses: Applications and Challenges: Atakan Peker¹; ¹Washington State University

3:35 PM Invited

Metallic Glass: Poised for Prevalence: Marios Demetriou¹; ¹Glassimetal Technology

4:05 PM Question and Answer Period: Community Discussion on Opportunities to Promote the Technological and Industrial **Potential of Metallic Glasses**

4:20 PM Break

4:40 PM Invited

Commercial Considerations for the Manufacturing of Bulk Metallic Glasses for Spacecraft Applications: Douglas Hofmann¹; ¹NASA Jet **Propulsion Laboratory**

5:05 PM

The Key to High-Quality Metallic Glass Casting: Influence of Mold Temperature and Interfacial Reactions: Jurgen Eckert¹; Zhishuai Jin²; Chaojun Zhang²; Parthiban Ramasamy¹; Devinder Singh¹; ¹Erich Schmid Institute of Materials Science; ²Harbin Institute of Technology

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Thermodynamics and Phase Diagrams Applied to Materials Design and Processing: An FMD/SMD Symposium Honoring Rainer Schmid-Fetzer — Advanced Experimental Methods as Cornerstones of Thermodynamic and Kinetic Databases

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee

Program Organizers: Shuanglin Chen, CompuTherm LLC; Ji-Cheng Zhao, University of Connecticut; Ursula Kattner, National Institute of Standards and Technology; Greta Lindwall, KTH Royal Institute of Technology; Alan Luo, Ohio State University; Arthur Pelton, Ecole Polytechnique; John Agren, Royal Institute of Technology; Sinn-wen Chen, National Tsing Hua University

Tuesday PM | March 25, 2025 350 | MGM Grand

Session Chairs: Shuanglin Chen, CompuTherm LLC; Sinn-wen Chen, National Tsing Hua University

2:30 PM Invited

Essentiality of Impurity (Dilute) Diffusion Coefficients in Establishing Reliable Diffusion and Atomic Mobility Databases: Ji-Cheng Zhao1; ¹University of Connecticut

2:55 PM Invited

Utilizing Synchrotron Radiation for Phase Identification in Mg Alloys: Domonkos Tolnai¹; Gabor Szakacs¹; Björn Wiese¹; Norbert Hort1: 1Helmholtz-Zentrum Hereon

3:20 PM Invited

Miscibility Gaps in Multicomponent Systems: Sinn-wen Chen¹; Yung-Chun Tsai¹; Yung-Jen Chuang¹; Hsin-Chieh Huang¹; ¹National Tsing Hua University

3:45 PM Invited

A Thermodynamic Evaluation of the U-Zr-N System: Yulia Mishchenko¹; Denise Adorno Lopes²; Malin Selleby¹; ¹KTH Royal Institute of Technology; ²Oak Ridge National Laboratory

4:10 PM Break

4:30 PM Invited

Phase Diagram and Barycentric Coordinate System: Shuanglin Chen1; 1CompuTherm LLC

MATERIALS SYNTHESIS AND PROCESSING

Thin Films and Coatings: Properties, Processing and Applications — Thin Films and Coatings for **Tribological Applications**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tomas Grejtak, Oak Ridge National Laboratory; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Tomas Babuska, Sandia National Laboratories; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, Is2m; Brandon Krick, Florida A&M University-Florida State University

Tuesday PM | March 25, 2025 101 | MGM Grand

Session Chairs: Tomas Grejtak, Oak Ridge National Laboratory; Tomas Babuska, Sandia National Laboratories

2:30 PM Invited

Linking Pt-Au Alloy Composition and Surface Mechanocatalytic Activity: Filippo Mangolini¹; Camille Edwards¹; Tomas Babuska²; John Curry²; Frank DelRio²; Jason Killgore³; Hsu-Ming Lien¹; Brad Boyce²; Michael Dugger²; ¹University of Texas at Austin; ²Sandia National Laboratories; 3 National Institute of Standards and Technology

3:00 PM

Exploring the Mechano-Chemical Response of Pt-based Thin Films using Automated High Throughput Testing: Tomas Babuska¹; Justin Hall¹; Joyce Custer¹; Sadhvikas Addamane¹; David Adams¹; Brad Boyce¹; Frank DelRio¹; John Curry¹; ¹Sandia National Laboratories

3:20 PM Invited

Carbon Nanotube Coating for Tribological and Thermal Applications: Chanaka Kumara¹; Michael Lance¹; Hsin Wang¹; Jun Qu¹; ¹Oak Ridge National Laboratory

Tribosintering of Nanocrystals - Manufacturing Wear-resistant TiO, Coatings at Ambient Temperature: Pranjal Nautiyal¹; Michael Moriarty²; Parker LaMascus²; Andrew Jackson²; Robert Wiacek³; Robert Carpick²; ¹Oklahoma State University; ²University of Pennsylvania; ³Pixelligent Technologies LLC

4:10 PM Break

4:30 PM Invited

Developing Functional Metrics to Predict Performance & Aging Properties of MoS2 Thin Films: John Curry¹; Tomas Babuska¹; Alex Mings¹; Steven Larson¹; Donald Robinson¹; Michael Leveille¹; Debasis Banerjee¹; Frank DelRio¹; Michael Dugger¹; ¹Sandia National Laboratories

5:00 PM

A Plasma Diagnostic Based Approach to Accelerate the Process **Development of High Performance MoS2**: Alex Mings¹; Steven Larson¹; Tomas Babuska¹; Michael Dugger¹; Frank DelRio¹; Mark Rodriguez¹; Robert Kolasinski¹; John Curry¹; ¹Sandia National Laboratories

5:20 PM

Effects of Environmental Species on Tribological Properties of MoS2: Using Simulations to Interpret Experimental Observations: Scott Bobbitt¹; John Curry¹; Tomas Babuska¹; Michael Chandross¹; ¹Sandia National Laboratories

5:40 PM

Influence of HFCVD Diamond Coatings on the Friction and Adhesion in Aluminum and Magnesium Extrusion: Stefan Lechner¹; Sören Müller¹; ¹Technische Universität Berlin, Extrusion Research and Development Center FZS

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Verification, Calibration, and Validation Approaches in Modeling the Mechanical Performance of Metallic Materials — ML & Data-Driven Methods

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: George Weber, NASA Langley Research Center; Joshua Pribe, Analytical Mechanics Associates; Saikumar Reddy Yeratapally, Science and Technology Corporation; Kirubel Teferra, Naval Research Laboratory; Diwakar Naragani, Cornell University

Tuesday PM | March 25, 2025 354 | MGM Grand

Session Chairs: Joshua Pribe, Analytical Mechanics Associates; Diwakar Naragani, Cornell University

2:30 PM Invited

An Open-Source Framework for Data Augmentation and Emulation: Application to Process Optimization in AM: Amin Yousefpour¹; Sanaz Zanjani Foumani¹; Ramin Bostanabad¹; ¹University of California, Irvine

3:00 PM Invited

Quantifying Error in Machine Learning Predictions of Macroscopic Yield Surfaces of Polycrystalline Materials: Matt Kasemer¹; Lloyd van Wees¹; Karthik Shankar¹; Mark Obstalecki²; Paul Shade²; ¹University of Alabama; ²Air Force Research Laboratory

3:30 PM Invited

Predicting Mechanical Properties of Ti-6Al-4V Alloy Using a Physics-Informed Neural Network (PINN) for Crystal Plasticity Modeling: Mohamed Elleithy¹; Zekeriya Eger¹; Pinar Acar¹; ¹Virginia Tech

4:00 PM

Physics-Informed Neural Networks with LuGre Model for Friction Force Analysis in Tribological Systems: Huajing Song¹; Andrew Boyne¹; ¹Pratt & Whitney, RTX

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

2D Materials - Preparation, Properties, Modeling & **Applications — Preparation, Properties, Modeling &** Applications III

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Hesam Askari, University of Rochester; Ritesh Sachan, Oklahoma State University; Joshua Young, New Jersey Institute of Technology; Sufian Abedrabbo, Khalifa University; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Chintalapalle V Ramana, University of Texas

Wednesday AM | March 26, 2025 362 | MGM Grand

Session Chairs: Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Mengqiang Zhao, New Jersey Institute Of Technology

8:30 AM Introductory Comments

8:40 AM

Next Generation Supercapacitors Using MXene-Infiltrated Porous Silica Electrodes: Mert Arslanoglu¹; Bin Yuan¹; Burak Ozdoganlar¹; Rahul Panat¹; ¹Carnegie Mellon University

9:00 AM Invited

Synthesis and Properties of Semiconducting Tellurium Nano-Wire and 2D Plates: Choong-un Kim1; 1University of Texas at Arlington

9:20 AM Keynote

The Shape Effect: Influence of 1D and 2D Boron Nitride Nanostructures on the Radiation Shielding, Thermal, and Damping Properties of High-Temperature Epoxy Composites: Arvind Agarwal¹; Kazue Orikasa¹; ¹Florida International University

9:45 AM Invited

Synthesis of Novel and Chemically Complex 2D Carbide MXenes: Brian Wyatt¹; Anupma Thakur¹; Babak Anasori¹; ¹Purdue University

10:05 AM Break

10:15 AM Invited

Theory of the Electronic Structure of Buckled MoS2: Meshal Alawein¹; Joel Ager¹; Ali Javey¹; Daryl Chrzan¹; ¹Lawrence Berkeley National Laboratory

10:35 AM Keynote

Laser Processing of Novel 2D Materials: Jagdish Narayan¹; ¹North Carolina State University

11:00 AM Invited

Tuning the Properties of TMDCs Through Alloying and Doping: Stephen Mcdonnell¹; Tinsae Alem¹; Lee Kendall¹; Daniel Stokes¹; Abir Hasan¹; Gabrielle Abad¹; Yaw Obeng²; Giovanni Zangari¹; Nikhil Shukla¹; Kory Burns¹; ¹University of Virginia; ²National Institute of Standards and Technology

11:20 AM Invited

Ultrafast Laser Based Synthesis of Nanoparticles Doped 2 Dimensional Materials: Nirmala Kandadai¹; ¹Oregon State University

11:40 AM Invited

Understanding and Reducing Point Defects in 2D Transition Metal Dichalcogenides: Daniel Rhodes1; 1University of Wisconsin -Madison

ADDITIVE MANUFACTURING

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials — Niand Cu-Based Alloys

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Magnetic Materials Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Henry Colorado, Universidad de Antioquia; Riccardo Casati, Politecnico Di Milano

Wednesday AM | March 26, 2025 315 | MGM Grand

Session Chair: Pierangeli Rodriguez De Vecchis, University of Pittsburgh

8:30 AM Invited

Small-Scale Multi-Material Additive Manufacturing Using Micron-Sized Wire-Fed Electron Beam Deposition: Christian Leinenbach¹; Marc Leparoux¹; Fahrizal Nanda¹; Patrik Hoffmann¹; ¹Empa, Swiss Federal Laboratories for Materials Science and Technology

Production and Characterization of Cu-Ti-Ni Alloy Powders: Federico Gobber¹; Antonio Pennacchio¹; Marco Actis Grande¹; ¹Politecnico Di Torino

Physics-Based Approach to Optimize Powder Bed Fusion (PBF) Additive Manufacturing of Cu and Cu-CNT: Leila Ladani¹; Nguyen Chi Ho¹; Jonathan Schaefer¹; ¹Arizona State University

Microstructure of Pure Copper Using Material Extrusion Additive Manufacturing (MEX) Process and Its Mechanical and Electrical Conductivity Properties: Na Yoon Yee1; So-Yeon Park1; Michelle Baek²; Kee-Ahn Lee¹; ¹Inha University; ²Markforged (J&Tek)

10:00 AM Break

10:15 AM

Optimizing DED Printing of Nickel-Silicon-Based Alloys Using Functionally Graded Inconel 625 Base Layers: Ibrahim Mohammad¹; Geir Grasmo¹; Ragnhild Aune²; ¹University of Agder; ²Norwegian University of Science and Technology

10:35 AM

Composition Tailoring for Avoidance of Crack-Inducing Liquid Miscibility Gap in Inconel 718 and GRCop-42 Joints: Jakub Preis1; Stephanie Lawson¹; Somayeh Pasebani¹; ¹Oregon State University

10:55 AM

Characterizing Flowability and Printability of Water Atomized Powders for Laser Powder Bed Fusion Additive Manufacturing: Sarah Birchall¹; Junwon Seo¹; Srujana Yarasi²; Bryan Webler¹; Anthony Rollett¹; ¹Carnegie Mellon University; ²General Electric Aerospace Research

ADDITIVE MANUFACTURING

Additive Manufacturing Modeling, Simulation and Machine Learning — AM Modeling with AI/ML I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Jing Zhang, Purdue University; Li Ma, Johns Hopkins University Applied Physics Laboratory; Charles Fisher, Naval Surface Warfare Center - Carderock; Brandon McWilliams, US Army Research Laboratory; Yeon-Gil Jung, Changwon National University

Wednesday AM | March 26, 2025 311 | MGM Grand

Session Chairs: Charles Fisher, Naval Surface Warfare Center -Carderock; Jing Zhang, Purdue University; Li Ma, Johns Hopkins University Applied Physics Laboratory; Brandon McWilliams, US Army Research Laboratory; Yeon-Gil Jung, Korea Institute of Ceramic Engineering & Technology

8:30 AM

Anomaly Detection Via In-Situ Monitoring and Machine Learning: Annika Bauman¹; Michael Heiden¹; Dan Bolintineanu¹; Anthony Garland¹; ¹Sandia National Laboratory

8:50 AM

Additive Manufacturing Digital Twin (AMDT): Part Level Process Map Characterization Using Physics Based Simulation and Machine Learning: Peter Pak1; Francis Ogoke1; Amir Barati Farimani1; ¹Carnegie Mellon University

9:10 AM

Additive Manufacturing Process Modeling with Multi-Output Gaussian Processes: Sudipta Biswas1; Som Dhulipala1; Peter German¹; Andrea Jokisaari¹; ¹Idaho National Laboratory

9:30 AM

AlloyGPT: An Agent-Based LLM Framework for the Design of Additively Manufactured Structural Alloys in Extreme Environments: S. Mohadeseh Taheri-Mousavi¹; ¹Carnegie Mellon University

9:50 AM

Application of Multi-Physics Simulations and Machine Learning to Predict Spatter in Laser Powder Bed Fusion: Olabode Ajenifujah¹; Francis Ogoke¹; Jack Beuth¹; Amir Barati Farimani¹; ¹Carnegie Mellon University

10:10 AM Break

10:30 AM

Generative Property Optimization of Stochastic Microstructures: Patxi Fernandez-Zelaia¹; Jason Mayeur¹; Jiahao Cheng¹; Guannan Zhang¹; Neil Zhang¹; Amir Ziabari¹; ¹Oak Ridge National Laboratory

10:50 AM Invited

Interpretable Machine Learning Approach for Exploring Process-Structure-Property Relationships in Metal Additive Manufacturing: Xiaopena Li¹; ¹University of New South Wales

11:10 AM

Physics-Based and Data-Driven ICME for Metal Additive Manufacturing: from Feedstock to Process Optimization: Jinhui Yan¹; Jim Lua²; Nam Phan³; ¹University of Illinois at Urbana-Champaign; ²Global Engineering Material, Inc; ³ Naval Air Systems Command

11:30 AM

Real-Time Detection of Keyhole Pore Generation in Laser Powder Bed Fusion Via a Multi-Sensor System and Physics-Informed Machine Learning: Jiayun Shao1; Zhongshu Ren2; Tao Sun1; ¹Northwestern University; ²Brookhaven National Laboratory

11:50 AM

Quantification of Defects in Additively Manufactured Steel Using Unsupervised Machine Learning: Hariharan Saravanan¹; Pooja Maurya¹; Alex Gaudio¹; Asim Smailagic¹; P. Chris Pistorius¹; ¹Carnegie Mellon University

ADDITIVE MANUFACTURING

Additive Manufacturing of Refractory Metallic Materials — Additive Manufacturing of High-Entropy Alloys, Functionally Graded Materials and Use of Computational Tools for Refractory Metal AM

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Refractory Metals & Materials Committee

Program Organizers: Fernando Reyes Tirado, Nasa Marshall Space Flight Center; Omar Mireles, Los Alamos National Laboratory; Faramarz Zarandi, RTX Corporation; Jeffrey Sowards, NASA Marshall Space Flight Center; Antonio Ramirez, Ohio State University; Eric Brizes, NASA Glenn Research Center; Eric Lass, University of Tennessee-Knoxville; Matthew Osborne, Global Advanced Metals; Joao Oliveira, Faculdade Ciencias Tecnologias; Ian Mccue, Northwestern University; Zachary Sims, Small Business **Consulting Corporation**

Wednesday AM | March 26, 2025 316 | MGM Grand

Session Chairs: Eric Brizes, NASA Glenn Research Center; Antonio Ramirez, Ohio State University

8:30 AM Invited

Computational Design of Graded Refractory Metal Structures: Bernard Gaskey¹; Omar Mireles¹; ¹Los Alamos National Laboratory

Joining Niobium Refractory Alloy with Titanium Alloy in Direct Energy Deposition Additive Manufacturing Process: Olexandr *Grydin*¹; Yevgen Karakash¹; Olena Karpovych¹; Sven Gründer²; Mirko Schaper²; Florian Hengsbach²; ¹SKYRORA Ltd; ²Paderborn University

9:20 AM

Thermomechanical Model Based Approach to Mitigate Crack Susceptibility in Additive Manufactured Refractory Material: Rohit Randhavan¹; Shashank Sharma¹; Narendra Dahotre¹; ¹University of North Texas

9:40 AM

Atomistic and Phase Field Simulations of Rapid Solidification Towards Refractory High Entropy Alloys: Joni Kaipainen¹; Tatu Pinomaa¹; Kate Elder²; Scott Peters²; Joseph McKeown²; Anssi Laukkanen¹; ¹VTT Technical Research Centre of Finland; ²Lawrence Livermore National Laboratory

10:00 AM Break

Design and Development of a Refractory Complex Concentrated Alloy for Additive Manufacturing of Advancing Space Propulsion Components: Fuyao Yan1; John Aristeidakis1; Savya Sachi1; David Linder¹; Ida Berglund¹; ¹Questek Europe AB

10:40 AM

Hafnium-Based Refractory High Entropy Alloy Structures Produced Via Additive Manufacturing for Extreme Temperature Applications: Thomas Berfield¹; Justin Gillham¹; Suyash Niraula¹; Brendon Dodge¹; ¹University of Louisville

ADDITIVE MANUFACTURING

Additive Manufacturing: Incorporating Breakthrough **Functionalities for Building Large Scale** Components — Advances in Processing, Control, and Feedstock I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee

Program Organizers: Jonah Klemm-Toole, Colorado School of Mines; Soumya Nag, Oak Ridge National Laboratory; John Carpenter, Los Alamos National Laboratory; Sougata Roy, Iowa State University; Peeyush Nandwana, Oak Ridge National Laboratory; Sneha Prabha Narra, Carnegie Mellon University; Lang Yuan, University of South Carolina; Andrzej Nycz, Oak Ridge National Laboratory; Yousub Lee, Oak Ridge National Laboratory; Alex Kitt, Edison Welding Institute; Albert To, University of Pittsburgh; Yashwanth Kumar Bandari, FasTech LLC

Wednesday AM | March 26, 2025 301 | MGM Grand

Session Chairs: Jonah Klemm-Toole, Colorado School of Mines; Sneha Prabha Narra, Carnegie Mellon University

8:30 AM Invited

Material and Process Control Development for Enhancing Wire-**DED Printing Capability**: Nicholas Bagshaw¹; Chris Jasien¹; Arrianna Matthews¹; ¹Fortius Metals Inc.

Integrated Deposition and Thermal Processing: a Pathway for Controlled As-Printed Performance: Daniel Codd1; Joseph McCrink2; Stephen Taller³; ¹University of San Diego; ²KVA Technologies; ³ORNL

Enabling Multi-Resolution Droplet-On-Demand Metal Jetting Through Tailored Pulsing: Viktor Sukhotskiy¹; Andrew Pascall¹; Jason Jeffries¹; ¹Lawrence Livermore National Laboratory

Atomic Layer Deposition (ALD) for Nanoscale SiC AM Feedstock Improvement: Chris Gump¹; Dane Lindblad¹; Guillermo Rojas¹; Casey Christopher¹; Joseph Gauspohl¹; Arrelaine Dameron¹; ¹Forge Nano

10:10 AM Break

10:30 AM

Evaluation of Process Performance and Mechanical Properties in Convergent Electroslag Additive Manufacturing (ESAM): Adam Stevens¹; Paritosh Mhatre¹; Vanshika Singh¹; Charles Savage¹; Luke Pinion¹; Rangasayee Kannan¹; Alex Roschli¹; Dave Hebble²; Peeyush Nandwana¹; Soumya Nag¹; Sarah Graham¹; Sudarsanam Babu³; Brian Post¹; ¹Oak Ridge National Laboratory; ²Arc Specialties; ³University of Tennessee. Knoxville

Haynes 282 Wire Directed Energy Deposition Hot and Cold Wire Microstructure Analysis: Dennis Gilbert¹; Andrew Wessman¹; Mohammed Shafae¹; Mohammed Ibrahim¹; Ethan Valentine¹; ¹University of Arizona

11:10 AM

Fundamental Study of High-Throughput Refining Electroslag Additive Manufacturing (RESAM): Adam Stevens1; Vanshika Singh1; Rangasayee Kannan¹; Yiyu Wang¹; Brian Hicks¹; Bryan Lim¹; Peeyush Nandwana¹; Sarah Graham¹; Soumya Nag¹; Brian Post¹; Sudarsanam Babu²; ¹Oak Ridge National Laboratory; ²University of Tennessee, Knoxville

BIOMATERIALS

Advanced Biomaterials for Biomedical Implants — **Bio-Response to Medical Implants**

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Fariborz Tavangarian, Penn State; Vinoy Thomas, University of Alabama at Birmingham

Wednesday AM | March 26, 2025 308 | MGM Grand

Session Chair: Fariborz Tavangarian, Penn State

8:30 AM

A Plasma-3D Print Duo Platform for Reliable Materio-Biological Screening In Vitro: Vinoy Thomas¹; ¹University of Alabama at Birmingham

9:00 AM

Biocompatibility and Biocorrosion Behavior of Resoloy for Absorbable Vascular Implants: Roger Guillory II1; Petra Maier2; Berit Zeller-Plumhoff³; Huu Trinh⁴; Roman Menze⁴; ¹Medical College of Wisconsin; ²Stralsund University of Applied Sciences; ³Helmholtz-Zentrum Hereon; 4MeKo Manufacturing

9:20 AM

Biofunctionalization of the Ti-25Ta-xNb Alloy System: Carlos Grandini¹; Fernanda Quadros¹; Celio Fernandes²; Pedro Kuroda³; Diego Correa¹; ¹UNESP/Bauru; ²UNESP/Botucatu; ³UNILA

9:40 AM

Biomimetic Collagen-Based 3D Printed Poly (Glycerol Sebacate) Composite Scaffold to Enhance Cartilage Defect Repair: Yuyao Liu¹; Claudio Intini²; Marko Dobricic²; Fergal O'Brien²; Mónica Echeverry-Rendón³; Javier Llorca¹; ¹IMDEA Materials Institute & Technical University of Madrid; 2RCSI; 3IMDEA Materials Institute

10:00 AM Break

10:20 AM

Mechanical Testing of Implantable Neuromodulation Components and the Open Source Community: Jerry Yang¹; Juan Garcia¹; Janet Gbur1; 1Case Western Reserve University

10:40 AM

In-Vitro Comparative Study of Composite Coatings for Magnesium-Based Bone Implants: Hamdy Ibrahim¹; Bryce Williams²; Abdelrahman Amin¹; Mostafa Elsaadany²; ¹University of Tennessee Chattanooga; ²University of Arkansas

11:00 AM

An Overview of the Microstructural, Physical, Mechanical, and Tribological Performance of Beta-Type Titanium Alloys for Total Hip Replacement: Marwa Dahmani¹; Naouel Hezil²; Mamoun Fellah²; Mohamed Cherif Benoudia¹; Hasan Kotan³; Alejandro Perez Larios⁴; Gamal A. El-Hiti⁵; ¹National Higher School of Technology and Engineering; ²Abbes Laghrour-University, Khenchela; ³Bursa Technical University; 4University of Guadalajara; 5King Saud University

11:20 AM

Influence of Forging Temperature on Microstructure and Texture Evolution and Its Implication on Mechanical, Corrosion, Antibacterial and In Vivo Biocompatibility of Mg-Zr-Sr-Ce Alloy: Satyabrata Sahoo¹; ¹Indian Institute of Technology, Kharagpur

ADVANCED CHARACTERIZATION METHODS

Advanced Characterization Techniques for Quantifying and Modeling Deformation — **Mechanical Testing**

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Wolfgang Pantleon, Technical University of Denmark; Irene Beyerlein, University of California, Santa Barbara; C. Tasan, Massachusetts Institute of Technology; M. Arul Kumar, Indian Institute of Technology Kanpur

Wednesday AM | March 26, 2025 122 | MGM Grand

Session Chairs: C. Tasan, Massachusetts Institute of Technology; Edoardo Rossi, Roma Tre University

8:30 AM

Deformation Micromechanisms in Different Generation Ni-Based Single Crystal Superalloys During Tensile Testing: Benoit Mansoz1; Pierre Caron²; Jonathan Cormier³; Florence Pettinari-Sturmel¹; ¹CEMES - Université de Toulouse; ²Retired; ³Institut PPrime, ISAE-**ENSMA**

8:50 AM

Predicting Strength in Steel Wire Welds Using Three-Dimensional Pore Porosity Measurements: Daniel Sinclair1; Nikhilesh Chawla2; W. Brendan Goodwin³; Adam Tomkins²; Rebecca Jennings²; Max Berman²; Jacob Stegmann²; ¹Carnegie Mellon University; ²Purdue University; 3Chick-Fil-A Engineering Center

9:10 AM

Validation of Damage Mechanisms in Carbon Foam Using Finite Element Analysis for Tensile Loading: William Downs1; Cheosung O'Brien¹; Jason Trembly¹; Yahya Al-Majali¹; Muhammed Ali¹; ¹Ohio University

9:30 AM

A Novel Multi-Scale Characterization Approach for the Development of Advanced Nanocomposite Ceramics with Improved Toughness: Edoardo Rossi¹; Marco Sebastiani¹; Bartolomeo Coppola²; Paola Palmero²; Laura Montanaro²; ¹Roma Tre University; ²Politecnic of Turin

9:50 AM Break

The Impact of Ultrafine Grain Size on ZnAlAg Alloy on Hall-Petch Effect Under Severe Compression Process: Juan Prado-Lázaro¹: Israel Aguilera-Navarrete²; Jorge Verduzco-Martínez³; ¹Michoacana University of San Nicolás de Hidalgo; ²Consejo Nacional de Humanidades, Ciencias y Tecnologías; ³Michoacana University of San Nicolás de Hidalgo

10:30 AM

Screening for Tensile Ductility and Other Bulk Mechanical Properties Via Scratch Analysis: Erik DeMeyere1; Rameshwari Naorem¹; Hailong Huang¹; Maria Wagner¹; Kevin Jacob²; Ryan Ott¹; Emrah Simsek¹; Iver Anderson¹; Nicolas Argibay¹; ¹Ames National Labratory; 2lowa State University

10:50 AM

Investigating Texture Effects on Wear Resistance in Cu Alloys: A Multi-Scale Analysis: Minho Yun1; C. Cem Tasan1; 1Massachusetts Institute of Technology

11:10 AM

Quantifying and Differentiating Metal Nanoparticle Deformation Mechanisms in Molecular Dynamics Simulation: Claire Zhang¹; Ting Liu¹; Ruikang Ding²; Amit Prasad²; Tevis Jacobs²; Ashlie Martini¹; ¹University of California, Merced; ²University of Pittsburgh

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advanced Materials for Energy Conversion and Storage 2025 — Advanced Materials for Energy **Conversion and Storage II**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Energy Conversion and Storage Committee, TMS: High Temperature Alloys Committee

Program Organizers: Surojit Gupta, University of North Dakota; Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania; Cengiz Ozkan, University of California

Wednesday AM | March 26, 2025 356 | MGM Grand

Session Chairs: Srikanth Gopalan, Boston University; Yu Zhong, Worcester Polytechnic Institute

8:30 AM Invited

High-Throughput DFT Simulations of Doped LaCoO3 Using Neural Network Potential: Guangchen Liu1; Songge Yang1; Yu Zhong1; ¹Worcester Polytechnic Institute

Solution-Processed Sb2(S,Se)3 Nanoseeds on CdS Buffer Layer for High-Efficiency Superstrated Sb2Se3 Thin Film Solar Cell: Al Amin¹; Feng Yan1; 1Arizona State University

9:20 AM

The Effects of Current Density on Mechanical Stresses During Electrodeposition of Lithium Metal Anodes: Matt Pharr¹; ¹Texas A&M University

9:40 AM

Influence of Oxidant and Dopant on the Electrochemical Performance of Polyaniline: Okechukwu Okafor¹; Abimbola Popoola¹; Olawale Popoola¹; Samson Adeosun¹; Mercy Ogbonnaya²; Oluwashina Gbenebor³; ¹Tshwane University of Technology: ²Tshwane University of Technology, Pretoria, South Africa.; 3University of Lagos

10:00 AM Break

10:15 AM

Multiscale Modeling of Quasi-1D Transition Metal Oxide Nanoscrolls for Photocatalysis and H, storage: Adway Gupta1; Arunima Singh1; 1Arizona State University

Multi-Oxide Thermite Impregnated Thermoplastic: Benjamin Firestone¹; Zachary Stutsman¹; Alvin Strauss¹; ¹Vanderbilt University

10:55 AM

The Performance of Sr_{2-x}VMoO₆₋ in SOFC Application: Evaluating MIEC Fuel Electrodes for Enhanced Stability, Conductivity, and Electrocatalysis: Stephen Heywood¹; Julia Esakoff¹; David Driscoll¹; Stephen Sofie¹; ¹Montana State University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances and Discoveries in Non-Equilibrium Driven Nanomaterials and Thin Films — Quantum and Photonic Nanoscale Materials

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Ritesh Sachan, Oklahoma State University; Ashutosh Tiwari, University of Utah; Santosh Kc, San Jose State University; Shikhar Jha, Indian Institute of Technology Kanpur

Wednesday AM | March 26, 2025 354 | MGM Grand

Session Chairs: Ashutosh Tiwari, University of Utah; Santosh Kc, San Jose State University

8:30 AM Introductory Comments

8:35 AM Keynote

Discovery of Novel Q-Phases of Materials and Impact on Technology: Jagdish Narayan¹; ¹North Carolina State University

9:00 AM Invited

Perspective on Diamond for Quantum Applications (Invited): Lakshmi Ramasubramanian¹; Raj Singh¹; ¹Oklahoma State University

9:20 AM Invited

Tensile-Strained Self-Assembly for Novel Quantum and Photonic Nanomaterials: Paul Simmonds¹; ¹Tufts University

Characterization of High Quality Epitaxially Grown Diamond Thin Films: Pranay Kalakonda¹; Ratnakar Vispute²; Naveen Narasimhachar Joshi¹; Jagdish Narayan¹; Roger Narayan¹; ¹North Carolina State University; ²Blue Wave Semiconductors Inc

10:00 AM Break

10:20 AM Invited

Aggregation Dynamics in Nanoceria Under Polymerization of Ce lons: Sudipta Seal¹; Yifei Fu¹; Craig Neal¹; Elayaraja Kolanthai¹; Joanna Wojewoda-Budka²; Natalia Sobczak²; Lidia Litynska-Dobrzynska²; Ishaan Patel1; 1University of Central Florida; 2Polish Academy of Sciences

10:40 AM Invited

Exploring Equilibrium and Non-Equilibrium Bi-Metallic Materials with Unique Magneto-Optical Properties: Philip Rack¹; ¹University of Tennessee

11:00 AM Invited

Hybrid Organic-Inorganic Thin Film Deposition by Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Adrienne Stiff-Roberts1; 1Duke University

11:20 AM

Electron Beam Holography and Characterization of Defects in Multilayered Semiconductor Thin Films: Ramasis Goswami¹; Margo Strauch¹; Syed Qadri¹; ¹Naval Research Laboratory

MATERIALS SYNTHESIS AND PROCESSING

Advances in Ceramic Materials and Processing — **Ceramic-Matrix Composite Materials and Processes**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, University of Alabama Birmingham; Faqin Dong, Southwest University of Science and Technology; Ruigang Wang, Michigan State University; Alexander Dupuy, University of Connecticut; Jinhong Li, China University of Geosciences; Gregory Thompson, University of Alabama; Babak Anasori, Purdue University

Wednesday AM | March 26, 2025 106 | MGM Grand

Session Chairs: Ruigang Wang, Michigan State University; Chen Ailiang, Central South University

8:30 AM

Friction and Wear Characteristics of Polymer-Derived SiOC Ceramics: Kathy Lu1; Mubina Shaik1; William Bennett2; Min Zou2; ¹University of Alabama Birmingham; ²University of Arkansas

Transformation-Induced Strains in Glass-Ceramics Through Complex Thermo-Mechanical Histories: Kenneth Cundiff¹; Kevin Strong¹; Thomas Diebold¹; Brian Lester¹; Kevin Long¹; National Laboratories

9:10 AM

Deep Removal of Arsenic From NiSO4 Solution Using Tungstate-Loaded D301 Resin: Bing Liu1; Meng-Xi Chen1; Xi-Jun Zhang2; Xingyu Chen¹; Ai-liang Chen¹; Feng-long Sun¹; ¹Central South University; ²State Key Laboratory of Nickel and Cobalt

9:30 AM

Volume Stability of Gypsum-Cement Based Composite Cementitious Material and the Preparation of High-Performance Mortar: Li Wang¹; ¹Beijing New Building Material PCL

9:50 AM

Behavior of Chlorine-Containing CaO-SiO2-CaCl2 Slag System at High Temperatures: Hanxing Ren¹; Sohn Il¹; ¹Yonsei University

10:10 AM Break

10:20 AM

The Fracture Behavior and Morphology of Transition Metal Carbides: Christopher Weinberger¹; Sajjad Hossain¹; Alyssa Stubbers²; Gregory Thompson²; ¹Colorado State University; ²University of Alabama

10:40 AM

Double-Tough Ceramics: Diletta Giuntini¹; ¹Eindhoven University of Technology

Xenotime-Based Minerals as Environmental Barrier Coatings: Elizabeth Opila¹; Imoen Stack¹; ¹University of Virginia

11:20 AM

Eco-Friendly Additive Manufacturing of SiN Aqueous Suspensions via Robocasting: Flavie Lebas¹; Elisa Jaumouille¹; Sylvain Marinel¹; Romuald Herbinet¹; Loïc Le Pluart¹; Charles Manière¹; ¹CRISMAT

A Facile and Versatile Process for Creating Bioinspired Ceramic-Metal Hierarchical Structures: Sourabh Kumar¹; Rohit Pratyush Behera¹; Hortense Le Ferrand¹; ¹Nanyang Technological University, Singapore

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances in Magnetism and Magnetic Materials Grain Boundary Engineering and Particle Size Control

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Matthew Kramer, Ames Laboratory; Eric Theisen, Energy & Environmental Research Center; Yaroslav Mudryk, Ames National Laboratory/Iowa State University; Daniel Salazar, BCMaterials

Wednesday AM | March 26, 2025 363 | MGM Grand

Session Chairs: Ikenna Nlebedim, Ames Laboratory; Alexander Ruediger, Extrusion Research and Development Center Fzs, Tu Berlin

8:30 AM

Correlative Microscopic Analysis of Grain Boundary Engineered Nd-Fe-B Permanent Magnets: Pradeep Konda Gokuldoss¹; ¹Indian Institute of Technology Madras

8:50 AM

Grain Size Optimization for Sm₂Fe₁₇N₃: Rambabu Kuchi¹; Ihor Hlova¹; Xubo Liu¹; Olena Palasyuk¹; Jordan Schlagel¹; Devo Schlagel¹; Andrew Piersol¹; Matthew Kramer¹; ¹Ames Laboratory

9:10 AM

Studies of Sintered Nb-Doped MM-(FeCo)-B-Based Magnets with the Addition of RE-Cu Grain Boundary Modification Alloys: Wei Tang¹; Jing Wang¹; Chaochao Pan¹; Yatin Varma¹; Ryan Ott¹; Jun Cui¹; ¹Ames Laboratory

Protecting Ultrafine Grained Dy-Free Nd-Fe-B Sintered Magnets with Varied Passivation Techniques: Belle Finney¹; Baozhi Cui¹; Wei Tang¹; Matthew Kramer¹; Iver Anderson¹; ¹Ames Laboratory

9:50 AM

Influence of Synthetic and Washing Protocols on Phase Purity and Magnetic Properties of Nd2Fe14B Powders Prepared by Calciothermic Reduction: Rambabu Kuchi¹; Ihor Hlova¹; Jordan Schlagel¹; Yaroslav Mudryk¹; ¹Ames National Laboratory of US DOE

10:10 AM Break

10:30 AM

Microstructure-Property Relationship for Hot Deformed Fine-Grained NdFeB Magnet with High Magnetic Properties Through Two-Step Spark Plasma Sintering: Ziyi Wu1; Dong Zhao1; Baozhi Cui²; Lian Jie¹; ¹Rensselaer Polytechnic Institute; ²Ames National Laboratory

10:50 AM

Processing and Magnetic Properties of Nd/PrFeB Ring Magnets Produced by Extrusion: Alexander Ruediger¹; Sören Müller¹; ¹Extrusion Research And Development Center Fzs, Tu Berlin

11:10 AM

Effect of Dy Substitution at Nd Sites in Melt-Spun Nd-Fe-B Permanent Magnet Ribbons: A Magnetic System for Electric Vehicles: Shrantik Dey1; Shampa Aich1; 1Indian Institute of Technology Kharagpur

11:30 AM

Magnetic Iron Disilicide Nanostructures: Computational Studies: Matthew Sisson¹; Alyssa Horne¹; Liwei Geng¹; Sahil Dhoka¹; Ranjit Pati¹; Yongmei Jin¹; ¹Michigan Technological University

MECHANICS OF MATERIALS

Advances in Multi-Principal Element Alloys IV: Mechanical Behavior — Structures and Characterization

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Jennifer Carter, Case Western Reserve University; E-Wen Huang, National Yang Ming Chiao Tung University; T.S. Srivatsan, University of Akron; Xie Xie, Ford Motor Company; Jamieson Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Wednesday AM | March 26, 2025 368 | MGM Grand

Session Chairs: E-Wen Huang, National Yang Ming Chiao Tung University; Klaus-Dieter Liss, University of Tennessee, Knoxville

8:30 AM Invited

Short Range Chemical Ordering in HEA Investigated by X-Ray Diffuse and Resonant Scattering: Wojciech Dmowski1; Takeshi Egami¹; Chae Woo Ryu²; Hyunseok Oh³; Cemal Tasan⁴; ¹University of Tennessee; ²Hongik University; ³University Wisconsin at Madison; 4MIT

8:50 AM Invited

Stoichiometry and Microstructure-Dependent Hardness-Mapping Prediction and Verification for High-Entropy Alloys: E-Wen Huang¹; Tu-Ngoc Lam²; Fu-Shiang Yang¹; Wen-Jay Lee³; ¹National Yang Ming Chiao Tung University; ²Can Tho University; ³National Center for **High-Performance Computing**

9:10 AM

Nanoindentation and AFM-Based Evaluation of Cold-Sprayed Stable Nanocrystalline High-Entropy Alloy Coatings: Kasimuthumaniyan Subramanian¹; Moses Adaan-Nyiak¹; Philip Egberts¹; Ahmed Tiamiyu¹; ¹University of Calgary

9:30 AM Invited

Formation of Local Chemical Ordering in FCC HEAs and Its Effect on the Deformation Behaviors: Kooknoh Yoon¹; Hyunseok Oh²; Juhyun Oh¹; Miyoung Kim¹; Batiste Gault³; Dierk Raabe³; Eun Soo Park¹; ¹Seoul National University; ²University of Wisconsin-Madison; 3Max-Planck-Institut für Eisenforschung

9:50 AM Invited

Short Range Order and the Evolution of Deformation Mechanisms in the CrCoNi Medium Entropy Alloy: Andrew Minor¹; ¹University of California Berkeley

10:10 AM Break

10:30 AM Invited

Exploring Innovative Nanoscale Structures and Phases in High-Entropy Alloy Nanoparticles Through Femtosecond Laser Ablation: Anming Hu1; K. Yin2; D. Fieser1; S. Hugh1; J. Zuo2; Peter Liaw1; ¹University of Tennessee Knoxville; ²University of Illinois, Urbana-Champaign

10:50 AM Invited

Neutron and Synchrotron Diffraction Methods for Unveiling Structural Evolution in Complex and Off-Equilibrium Alloys: Klaus-Dieter Liss¹; Megumi Kawasaki²; ¹University of Tennessee, Knoxville; ²Oregon State University

11:10 AM Invited

Strong and Ductile High Temperature Multicomponent Soft Magnet Through Widmanstätten Precipitates: Liuliu Han1; Fernando Maccari²; Ivan Soldatov³; Rudolf Schäfer³; Nicolas Peter¹; Oliver Gutfleisch²; Dierk Raabe¹; ¹Max Planck Institute For Iron Research; ²Technical University of Darmstadt; ³IFW Dresden

11:30 AM Invited

Scanning Tunneling Microscopy for High Entropy Materials: Teyu Chien1; 1Unviersity of Wyoming

11:50 AM Invited

CMT-Associated Superior Mechanical Properties in Multi-Principal Element Alloys: Yandong Wang1; 1University of Science and **Technology Beijing**

LIGHT METALS

Advances in Titanium Technology — Advanced **Manufacturing of Titanium-Based Alloys**

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Abhishek Sharma, University of North Texas: Srinivas Aditya Mantri, Argonne National Laboratory; Zachary Kloenne, Imperial College London; Fan Sun, Centre National de la Recherche Scientifique - Paris Sciences et Lettres University; Stoichko Antonov, National Energy Technology Laboratory

Wednesday AM | March 26, 2025 108 | MGM Grand

Session Chair: Stoichko Antonov, National Energy Technology Laboratory

8:30 AM Invited

Gradient Ti-Based Alloys: Their Modeling, Manufacturing, and Design: Matt Dolde¹; Fatih Sikan¹; Nicholas Oldham¹; Thomas Ales¹; Brian Martin¹; Maria Jose Quintana¹; Peter Collins¹; ¹Iowa State University

9:00 AM

Gradient Approach to Characterizing Deformation Mechanisms in Titanium Alloys: Mathew Cohen1; Brian Welk1; Gopal Viswanathan1; Paraic O'Kelly¹; Hamish Fraser¹; ¹The Ohio State University

9:20 AM

Processing of Sputter Deposited Compositionally Graded Ti-Based Binary Systems: Rayna Mehta1; Jackson Goedjen1; Rohit Berlia¹; Thomas Voisin²; Timothy Weihs¹; ¹Johns Hopkins University; ²Lawrence Livermore National Laboratory

9:40 AM

Understanding the Processing-Composition-Microstructure-Properties Relation of the Ti-xCo-yB System Created via Powder Bed Additive Manufacturing: Jonathan Zaugg¹; Maria Quintana¹; Peter Collins¹; ¹Iowa State University

10:00 AM Break

10:10 AM

Influence of Oxygen and Zirconium Additions on Oxidation Resistance and Mechanical Properties of Ti-Al and Ti-Al-Zr Alloys: Michal Kuris¹; Maria Tsoutsouva¹; Thomas Vaubois²; Zhao Huvelin¹; Agnes Locq¹; Catherine Riot¹; Nicolas Horezan¹; Pierre Sallot²; Marc Thomas¹; Jean-Philippe Monchoux³; Frédéric Habiyaremye³; ¹The French Aerospace Lab - ONERA; ²Safran Tech; ³CEMES-Center for Materials Elaboration and Structural Studies

10:30 AM

The Oxidation Behavior of Near α-Ti Alloy-γ-TiAl Composites Processed via Powder Metallurgy Routes: Jishnu Bhattacharyya¹; YunJo Ro¹; William Moffat¹; Sean Agnew¹; Haydn Wadley¹; ¹University of Virginia

10:50 AM

Development of TiAl Alloys for High Temperature Applications: Seong-Woong Kim¹; ¹Korea Institute of Materials Science

11:10 AM

Activation Energy Estimations of Titanium-Copper Core-Shells in High-Rate Heating Conditions: Camilo Bedova Lopez¹; Santiago Vargas Giraldo¹; Carlos Castano¹; ¹Virginia Commonwealth University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Verification, Validation, and **Uncertainty Quantification — Experimental Data Processing**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Dehao Liu, Binghamton University; Matt Kasemer, The University of Alabama; Ashley Spear, University of Utah; Christopher Stiles, Johns Hopkins University Applied Physics Laboratory; Anh Tran, Sandia National Laboratories

Wednesday AM | March 26, 2025 320 | MGM Grand

Session Chair: Ashley Spear, University of Utah

8:30 AM Invited

Adaptive Latent Space Tuning to Enable Characterizing Materials Dynamics Using Bragg Coherent Diffraction Imaging: Alexander Scheinker¹; Reeju Pokharel¹; ¹Los Alamos National Laboratory

9:10 AM

Deep Learning-Based Image Denoising for Enhanced CT Image **Reconstruction**: Parisa Asadi¹; Zeyu Zhou¹; Andriy Andreyev¹; Matthew Andrew¹; ¹Zeiss

Implications of X-CT Reliability to Determine Anomaly Distribution for Fatigue Assessment: Stefano Beretta¹; Behnam Salehnasab¹; Shaharyar Baiq¹; Shuai Shao¹; Nima Shamsaei¹; ¹Auburn University

9:50 AM Break

10:00 AM

Boosting Recyclable Plastic Sorting with Al-Generated Images and Vision Technology: Kanishka Tyaqi¹; Isha Maun¹; Nalin Kumar¹; ¹UHV Technologies

Quantifying Error and Uncertainty in Transmission Electron Microscopy Images of Irradiation Defects: Gabriella Bruno¹; Matthew Lynch¹; Ryan Jacobs²; Dane Morgan²; Kevin Field¹; ¹University of Michigan; ²University of Wisconsin

10:40 AM

Quantifying Uncertainty of Object Detection Models in Electron Microscopy: Ni Li¹; Ryan Jacobs¹; Matthew Lynch²; Vidit Agrawal¹; Kevin Field²; Dane Morgan¹; ¹University of WIsconsin-Madison; ²University of Michigan

11:20 AM

Prediction of Nitrogen Content in Converter Based on an LLE-RF Model: Xianwu Zhang1; Mingmei Zhu1; Chenghong Li1; Zhengjiang Yang¹; ¹Chongqing University

11:00 AM

Advancing Automated Classification of Crystallographic Structures Using Synthetic Two-Dimensional X-Ray Diffraction Patterns and Deep Learning: Ayoub Shahnazari¹; Zeliang Zhang¹; Sachith Dissanayake¹; Chenliang Xu¹; Niaz Abdolrahim¹; ¹University of Rochester

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Algorithms Development in Materials Science and **Engineering — Microstructure Simulations Across Scales**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Process Technology and Modeling Committee, TMS: Alloy Phases Committee

Program Organizers: Remi Dingreville, Sandia National Laboratories; Saaketh Desai, Sandia National Laboratories; Hojun Lim, Sandia National Laboratories; Jeremy Mason, University of California, Davis; Vimal Ramanuj, Oak Ridge National Laboratory; Sam Reeve, Oak Ridge National Laboratory; Douglas Spearot, University of Florida

Wednesday AM | March 26, 2025 319 | MGM Grand

Session Chairs: Sam Reeve, Oak Ridge National Laboratory; Jeremy Mason, University of California, Davis

8:30 AM

Non-Schmid Continuum Slip Crystal Plasticity with Implications for Dissipation Rate: Ankit Srivastava¹; Alan Needleman¹; ¹Texas A&M University

Developing a Stress-Sensitive Nucleation Model Beyond Classical Nucleation Theory: Khanh Dang¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

Dislocation Dynamics During Deformation of Metals: Direct Coupling Between 3D Experimental and 3D Simulated Movies: Sina Borgi; Henning Poulsen¹; Grethe Winther¹; ¹Technical University of Denmark

9:30 AM

Generating a Database of Dislocation Predictions from Classical Interatomic Potentials: Lucas Hale¹; ¹National Institute of Standards and Technology

9:50 AM

Implementation of a Stress Corrosion Cracking Model in the Large-Strain Elasto-Viscoplastic Fast Fourier Transform Modeling Framework: Ryan Beishline1; Benjamin Anglin2; Miroslav Zecevic3; ¹University of New Ricardo Lebensohnc³; Marko Knezevic¹; Hampshire; ²Naval Nuclear Laboratory; ³Los Alamos National Laboratory

10:10 AM Break

10:30 AM

Thermally Activated Dislocation Ensembles: Maximum Dissipation and Scaling Relations: David McDowell1; 1Georgia Institute of Technology

10:50 AM

Thermodynamic Integration for Dynamically Unstable Systems Using Interatomic Force Constants Without Molecular Dynamics: Junsoo Park¹; Zhigang Wu¹; John Lawson¹; ¹NASA Ames Research Center

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XIII — Advanced Fabrication, Modeling, and Material Design

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Taiwan University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CNRS Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute for Materials Science; Wan-Ting Chiu, Institute of Science Tokyo; Chenguang Fu, Zhejiang University

Wednesday AM | March 26, 2025 355 | MGM Grand

Session Chairs: Wan-Ting Chiu, Institute of Science Tokyo; I-Lun Jen, National Yang Ming Chiao Tung University

8:30 AM Invited

Exploration of Novel Thermoelectric Materials and Devices via Informatics Approaches: Isao Ohkubo¹; ¹National Institute for Materials Science

8:50 AM Invited

Investigation of Martensite Variant Reorientation Behaviors of the Ni-Mn-Ga Particles Composite Materials: Wan-Ting Chiu1; Pimpet Sratong-On²; DongKeun Han¹; Masaki Tahara¹; Volodymyr Chernenko³; Hideki Hosoda¹; ¹Tokyo Institute of Technology; ²Thai-Nichi Institute of Technology; 3BCMaterials

9:10 AM Invited

Monte Carlo Simulation of Transient and Steady-State Electron Gas Thermodynamic Cycle: Mona Zebarjadi¹; Farjana Tonni¹; Kazuaki Yazawa²; Ali Shakouri²; ¹University of Virginia; ²Purdue University

9:30 AM Invited

Resonant Scattering in Metallic and Semiconducting Thermoelectrics: Similarities and Differences: Kacper Pryga1; Bartlomiej Wiendlocha¹; ¹AGH University of Krakow

9:50 AM Invited

Off-Stoichiometry: A Tool to Enhance the Thermoelectric Performance of Heusler Compounds: Fabian Garmroudi¹, Takao Mori¹; Ernst Bauer¹; Alexander Riss¹; Michael Parzer¹; University of Technology-Retired

10:10 AM Break

10:25 AM

Modulation of Crystal Structure and Thermoelectric Properties of Medium-Entropy GeTe-Based Compounds with Sb and Se Alloying: Cheng-Ruei Wu¹; Chien-Neng Liao¹; ¹National Tsing Hua University

10:45 AM

A Study of Interfacial Reaction of Ni(P)/SnS Couples: Wei Ching Lai¹; Chien-Neng Liao¹; ¹National Tsing Hua University

Optimizing ZT and Conversion Efficiency of p-Type Bi, Te, via Light-Doping and Defect Engineering: Cheng-Yu Tsai¹; Hsin-Jay Wu¹; ¹National Yang Ming Chiao Tung University

11:25 AM

Miscibility Gaps in the Ag-Cu-Se-Te Quaternary System: Yung-Chun Tsai¹; Yung-Jen Chuang¹; Sinn-wen Chen¹; ¹National Tsing Hua University

LIGHT METALS

Aluminum Alloys: Development and Manufacturing Materials and Process Modelling

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mihaiela Isac, McGill Metals Processing Centre; Les Edwards, Rain Carbon Inc.

Wednesday AM | March 26, 2025 114 | MGM Grand

Session Chairs: Peter Lee, University College London; Abdallah Elsayed, University of Guelph

8:30 AM Keynote

Two-Phase Flow Simulation for Distinguishing Deformable Particles with a LiMCA System: Xiaodong Wang1; Xiaokang Guo1; Fuhai Wang¹; Mihaiela Isac²; Roderick Guthrie²; ¹University of Chinese Academy of Science; 2McGill University

Three-Dimensional Mathematical Modelling of Casting Thin Strips of Aluminum Alloys (AA6111, AA2024, AA5182, And AA7069) Using the Horizontal Single Belt Casting (HSBC Process): Daniel Ricardo Gonzalez Morales¹; Mihaiela Isac¹; Roderick Guthrie¹; ¹McGill University

9:20 AM

Investigation of Fe-Rich Intermetallics, Solidification Porosities, and Cooling Dynamics in 6061 Aluminum Alloy by Multiscale Characterization, Synchrotron X-ray Tomography, and ICME Approaches: Kai-Yu Liang1; Hao-Chuan Huang1; Ching-Yao Tseng1; Chun-Yeh Chen¹; Ying-Shuo Tseng²; Yen-Fang Song²; Gung-Chian Yin2; Te-Cheng Su1; 1National Taiwan University; 2National Synchrotron Radiation Research Center

Predicting Yield Strength of Aluminum Alloys Based on Composition: Clinton Waite1; Luca Montanelli2; Elsa Olivetti2; Eric Homer¹; ¹Brigham Young University; ²Massachusetts Institute of Technology

10:10 AM Break

10:25 AM Keynote

Advances in Al-Mg-Si Extrusions for Automotive Applications: Warren Poole¹; Andrew Zang¹; Mojtaba Mansouri Arani¹; Paul Rometsch²; Nick Parson²; ¹University of British Columbia; ²Rio Tinto

10:50 AM

Optimization of RFI Performances in Large Furnaces Through Mathematical Simulations: Bruno Blais1; Sylvain Tremblay2; ¹Polytechnique Montreal; ²STAS

Development of Process Control for Ultrasonic Metal Welding of Aluminum Automotive Wires Based on Machine Learning: Andreas Gester¹; Guntram Wagner¹; Tom Kühne¹; Peter Gluchowski¹; ¹Chemnitz University of Technology

LIGHT METALS

Aluminum Reduction Technology — Environmental, Alumina Dissolution and Industry 4.0 Applied to **Aluminium Smelters I**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Andre-Felipe Schneider, Hatch Ltd.; Les Edwards, Rain Carbon Inc.

Wednesday AM | March 26, 2025 113 | MGM Grand

Session Chair: Ole Kjos, SINTEF AS

8:30 AM Introductory Comments

8:35 AM

Sørhuus²; Håvard Olsen²; Ellen Bromstad Myrvold³; Isak Fossan³; Helene Eng Granlund³; Kim Elstad³; Asbjørn Solheim¹; Egil Skybakmoen¹; ¹SINTEF Industry; ²REEL Norway AS; ³Alcoa Norway **ANS**

9:00 AM

Hybrid Digital Twin for Stable Fluoride Content in Potroom Alumina Feed: Sudi Jawahery¹; Are Dyrøy²; Filippo Remonato³; Jan Gunnar Dyrset¹; Stein O. Wasbø¹; ¹Cybernetica AS; ²Hydro Aluminium Metal; 3SINTEF Digital

9:25 AM

Optimization of Alumina Feeding in Electrolysis Cells using Multi-Physics Modeling and Deep Learning Surrogate: Kevin Patouillet¹; Nadia Chailly¹; Bertrand Allano¹; Alan Clark²; John Perry²; Matias Vasquez²; ¹Rio Tinto / Aluminium Technology Solutions; ²PhysicsX

9:50 AM Break

10:05 AM

Industry Case Study: Optimisation of Alumina Feed Cycle According to Anode Process Operation: Andre Van Haaren¹; Hanno Vogel¹; Nicholas Hahn¹; Roman Düssel¹; ¹TRIMET Aluminium SE

10:30 AM

Ultrafine Droplet Horizontal Desulfurization Technology for **Aluminum Reduction Flue Gas and Its Demonstration Application:** Xuejiao Li; Haichen Song¹; Ze Yuan²; Michael Ren³; ¹Shenyang Aluminum and Magnesium Engineering and Research Institute Co., Ltd.; ²Footecarbon (Beijing) Technology Co., Ltd.; ³Sunlightmetal Consulting Inc.

10:55 AM

Numerical Simulation and Analysis of Pot Tightness, Heat Transfer, and Airflow in Aluminum Reduction Cells: Mouhamadou Diop1; Zhaowen Wang¹; Nan Zou¹; Zhongning Shi¹; ¹Northeastern University (NEU)

11:20 AM Concluding Comments

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Artificial Intelligence Applications in Integrated Computational Materials Engineering — AI-Driven **Materials Design and Optimization**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wenwu Xu, San Diego State University; Ram Devanathan, Pacific Northwest National Laboratory; Vikas Tomar, Purdue University; Qiaofu Zhang, University of Alabama; Eshan Ganju, Purdue University; Avanish Mishra, Los Alamos National Laboratory; Victoria Miller, University of Florida; Ghanshyam Pilania, General Electric (GE Aerospace Research)

Wednesday AM | March 26, 2025 351 | MGM Grand

Session Chairs: Ram Devanathan, Pacific Northwest National Laboratory; Vikas Tomar, Purdue University

8:30 AM Invited

Developing Machine Learning Interatomic Potential for Fe-Cr-Ni Alloys: Shiqiang Hao¹; Saro San¹; Yi Wang¹; Michael Gao¹; ¹National **Energy Technology Laboratory**

9:00 AM Invited

Sustainable Aluminum Alloy Design via Computer Vision: Fatih Sen¹; Saikrishna Sanniboina¹; Aaditya Lakshmanan¹; Heath Murphy¹; Paul Nolan¹; Sazol Das¹; ¹Novelis

9:30 AM

A Bayesian Approach for Constitutive Model Selection and Calibration Using Diverse Material Responses: Bekassyl Battalgazy¹; Danial Khatamsaz¹; Zahra Ghasemi¹; Raymundo Arroyave¹; Ankit Srivastava1; 1Texas A&M University

Conditional Diffusion Models for Interlocking Metasurface Design: Nathan Brown¹; Ben Young¹; Brad Boyce¹; Philip Noell¹; ¹Sandia National Laboratories

10:10 AM Break

10:30 AM

Design of High-Strength Steel Using Machine Learning Techniques: Rajani Jaiswal¹; Shiv Singh¹; Saurabh Kundu²; Itishree Mohanty²; ¹IIT Kharagpur; 2Tata Steel

Towards Automatic Alloy Design via Large Language Model Powered Multi-Agent Collaborations: Bo Ni¹; S. Mohadeseh Taheri-Mousavi¹; ¹Carnegie Mellon University

Tuning Fracture Characteristics for Chiral Aperiodic Monotile Based Composites by Employing Multi-Objective Bayesian Optimization: Jiyoung Jung1; Kundo Park1; Grace Gu1; 1University of California, Berkeley

11:30 AM

Machine Learning and High-Throughput Computations Guided Development of High Temperature Oxidation-Resisting Ni-Co-Cr-Al-Fe High-Entropy Alloys: Xingru Tan¹; William Trehern²; Aditya Sundar²; Yi Wang²; Saro San²; Tianwei Lu¹; Fan Zhou¹; Ting Sun¹; Youyuan Zhang¹; Yuying Wen¹; Zhichao Liu¹; Michael Gao²; Shanshan Hu¹; ¹West Virginia University; ²National Energy Technology Laboratory

MECHANICS OF MATERIALS

Atomistic Simulations Linked to Experiments to Understand Mechanical Behavior: A MPMD Symposium in Honor of Professor Diana Farkas — Fundamentals III

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Andrea Hodge, University of Southern California; Arun Nair, University of Arkansas; Alejandro Strachan, Purdue University; Chelsey Hargather, Los Alamos National Laboratory; Christopher Schuh, Northwestern University

Wednesday AM | March 26, 2025 370 | MGM Grand

Session Chair: Jason Trelewicz, Stony Brook University

8:30 AM

Stability of High Energy Faults in Ni-Based Superalloys: Valery Borovikov¹; Mikhail Mendelev¹; Timothy Smith¹; John Lawson¹; ¹NASA

Mechanistic Transitions Governing Strength and Stability in Grain **Boundary Segregation Strengthened Nanocrystalline Aluminum** Alloys: Jason Trelewicz1; 1Stony Brook University

9:20 AM Invited

Universal Interatomic Potential and Simulation of Kinetics: Ju Li¹; ¹Massachusetts Institute of Technology

9:50 AM

Twin Boundary Engineering in Ni-Based Superalloy Thin Films: Aoyan Liang¹; Mohammad Hadi Yazdani¹; Diana Farkas²; Andrea Hodge¹; Paulo Branicio¹; ¹University of Southern California; ²Virginia Tech

10:10 AM Break

10:30 AM Invited

Integrating **Atomistic Simulations** with **Experimental** Characterization to Understand Dislocation Mechanisms in Nanoscale Dual-Phase Alloys: Amit Misra¹; ¹University of Michigan

11:00 AM

Solid State Dewetting of Co-Sputtered Thin Mo-Cu Films Accompanied by Phase Separation: Feitao Li¹; Afnan Mostafa²; Niaz Abdolrahim²; Jonathan Zimmerman¹; Zhao Liang¹; Leonid Klinger¹; Jeyun Yeom³; Jolanta Janczak-Rusch³; Eugen Rabkin¹; ¹Technion; ²University of Rochester; ³Empa, Swiss Federal Laboratories for Materials Science and Technology

11:20 AM

CRSS for Slip in Titanium: Theoretical Predictions and In-Situ Experimental Measurements: Orcun Koray Celebi¹, Tolga Berkay Celebi²; Daegun You²; Ashley Bucsek³; Huseyin Sehitoglu²; ¹Bilkent University; ²University of Illinois Urbana-Champaign; ³University of Michigan

11:40 AM

Evaluation of Stacking Fault Energies and Microstructure Formation in Ni-Cr-Fe Alloys Using Molecular Statics and Dynamics: Mohammad Hadi Yazdani¹; Aoyan Liang¹; Diana Farkas²; Andrea Hodge¹; Paulo Branicio¹; ¹University of Southern California; ²Virginia Tech

LIGHT METALS

Bauxite Residue Valorization and Best Practices - Valorization from Policy, Zero-Emission and **Systemic Perspectives**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Tobias Hertel, Ku Leuven; Christina Meskers, SINTEF; Efthymios Balomenos, Metlen Energy and Metals; Casper Van Der Eijk, SINTEF; Brajendra Mishra, Worcester Polytechnic Institute; Yiannis Pontikes, Ku Leuven R&D

Wednesday AM | March 26, 2025 111 | MGM Grand

Session Chair: Tobias Hertel, Ku Leuven

8:30 AM

Developments in EGA's Bauxite Residue Roadmap: Steven Rosenberg¹; Markus Graefe¹; ¹Emirates Global Aluminium

8:50 AM Question and Answer Period

8:55 AM

Bauxite Residue Valorisation in a Zero Emission, Zero Waste and Sustainability Policy Context: Christina Meskers1; Casper Van der Eijk1; 1SINTEF

9:15 AM Question and Answer Period

9:20 AM

BR Valorisation: Can We See It Differently?: Yiannis Pontikes¹; ¹Ku Leuven

9:40 AM Question and Answer Period

Optimising Bauxite Residue for Use as a Soil Component: Markus Graefe¹; Lucky Zaman¹; Virender Kumar¹; Steven Rosenberg¹; ¹Emirates Global Aluminium

10:05 AM Question and Answer Period

10:10 AM Break

10:20 AM

Pelletization and Hydrogen Reduction of Bauxite Residue in Pilot Scale: Casper Van Der Eijk1; Arijit Biswas2; Frida Vollan1; 1SINTEF; ²Tata Steel

10:40 AM Question and Answer Period

Innovative Hydrometallurgical Methods for Extracting Metallic Oxides from Bauxite Residue: Himanshu Tanvar¹; Brajendra Mishra¹; ¹Worcester Polytechnic Institute

11:05 AM Question and Answer Period

11:10 AM

Hydrogen-Driven Sustainable Multi-Metal Recovery Approaches for Bauxite Residue: A Comparative Analysis: Ganesh Pilla1; Tobias Hertel¹; Yiannis Pontikes¹; ¹Ku Leuven

11:30 AM Question and Answer Period

11:35 AM

Activated Bauxite Residue Application in Wastewater Treatment: Scott Berggren¹; Brajendra Mishra²; Himanshu Tanvar²; Metallic Group, Inc.; 2Worcester Polytechnic Institute

11:55 AM Question and Answer Period

BIOMATERIALS

Bio-Nano Interfaces and Engineering Applications — **Bio-Nano Interfaces I**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Kalpana Katti, North Dakota State University; Hannes Schniepp, William & Mary; Terry Lowe, Colorado School of Mines; Po-Yu Chen, National Tsing Hua University; David Kisailus, University of California-Irvine

Wednesday AM | March 26, 2025 307 | MGM Grand

Session Chairs: Hannes Schniepp, William & Mary; Candan Tamerler, University of Kansas

8:30 AM

The Strength and Toughness of Spider Silk Nanofibrils: Origin of the Outstanding Performance of One of the Most Impressive Biogenic Structural Materials: Hannes Schniepp¹; ¹William & Mary

8:55 AM Invited

Fabrication of Low Density Polyethylene Polymer Films Reinforced with Modified Fish Scale Powder: Matthew Bonzu Ackah¹; Vijaya Rangari¹; ¹Tuskegee University

9:25 AM Invited

Biocompatibility and Cell Response to Microstructured Bioinspired Ceramic Composites: Hortense Le Ferrand¹; ¹Nanyang Technological University

9:45 AM Break

10:00 AM Keynote

Natural Medicine Nanocarriers in 3D-Printed Scaffolds for Bone Regeneration: Susmita Bose1; 1Washington State University

10:40 AM Invited

Synthesis of Ternary Quantum Dots for Selective Sensing of Chromium (iii) Ion and Its Conjugation to Porphyrin for Improved Photodynamic Therapy Application: Samuel Oluwafemi¹, ¹University of Johannesburg

Biomimetic Design of Antibacterial Chimeric Peptides: Engineered Peptides for Next-Generation Dental Restorations: Nur Ceren Kabakci¹; Aya Cloyd¹; Kyle Boone¹; Paulette Spencer¹; Candan Tamerler¹; ¹University of Kansas

BIOMATERIALS

Biological Materials Science — Multi-Scale **Characterization of Biomaterials**

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Yuxiao Zhou, Texas A&M University; Ling Li, University of Pennsylvania; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Grace Gu, University of California, Berkeley; Debora Lyn Porter, University of California Merced

Wednesday AM | March 26, 2025 306 | MGM Grand

Session Chairs: Grace Gu, University of California, Berkeley; Ning Zhang, Baylor University

8:30 AM Invited

Dynamics of Topological Defects and Structural Synchronization in Forming Nacre: *Igor Zlotnikov*¹; ¹Technische Universität Dresden

Study of the Relationship Between Microstructural Alterations and Elastic Properties in Teeth with Dentinogenesis Imperfecta: Shangaya Touraivane¹; Nicolas Roubier¹; Thomas Reiss¹; Elsa Vennat¹; Claire Acevedo²; ¹Laboratoire de Mécanique Paris-Saclay (LMPS), CentraleSupélec, ENS Paris-Saclay, Université Paris-Saclay, CNRS; ²University of California San Diego

9:20 AM

Harnessing Natural Materials for Tailored Bone Graft: Yu Jun Tan¹; ¹National University of Singapore

9:40 AM Invited

Atomistic Investigation of Interfacial Interactions in Wood Coated with Layered Double Hydroxides-Induced Stearic Acid: Yugi Feng1; Denvid Lau¹; ¹City University of Hong Kong

10:10 AM Break

10:30 AM

Accelerating Bioinspired Cellulose Nanocomposite Design Through the Development of a Coarse-Grained Molecular **Dynamics Approach**: Sharmi Mazumder¹; *Ning Zhang*¹; ¹Baylor University

10:50 AM

Retrieval-Augmented Generation Platform to Enable Machine Learning Predictive Models of Biomedical Alloys: Victor Villapun Puzas¹; Hasan Sayeed²; Sophie Cox¹; Taylor Sparks²; ¹University of Birmingham; ²University of Utah

11:10 AM

Novel Characterization of Zeta Potential and Electrochemical Interactions between Cells and Microplastics: Jeffrey Bates1; ¹University of Utah

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Bridging Scale Gaps in Multiscale Materials Modeling in the Age of Artificial Intelligence — Multiscale Modeling of Dislocations and Mechanical Behavior

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan; Katsuyo Thornton, University of Michigan; Peter Voorhees, Northwestern University; Eric Homer, Brigham Young University; Srujan Rokkam, Advanced Cooling Technologies,

Wednesday AM | March 26, 2025 353 | MGM Grand

Session Chair: Liang Qi, University of Michigan

8:30 AM Invited

Peierls-Nabarro Modeling of Dislocations in High Entropy Alloys: X. Liu¹; T. Moran¹; B. Aymon¹; William Curtin²; ¹École Polytechnique Fédérale de Lausanne; ²École Polytechnique Fédérale de Lausanne; **Brown University**

9:00 AM

Molecular Dynamic Studies of Strain Rate Effects on Screw Dislocation Mobility In BCC Metals: Subhendu Chakraborty¹; Liang Qi1; 1University of Michigan

9:20 AM Invited

Mechanism-Based Data-Driven Exploration of Complex Concentrated Alloys with Enhanced Mechanical Performance: Yi Yao¹; Jonathan Cappola¹; Zhengyu Zhang²; Wenjun Cai²; Lin Li¹; ¹Arizona State University; ²Virginia Polytechnic Institute and State University

9:50 AM

Computational Studies on Statistical Features of Dislocation Glide Energetics in Refractory Complex Concentrated Alloys: Jierui Zhao¹; Yang Chen¹; Liang Qi¹; ¹University of Michigan, Ann Arbor

10:10 AM Break

10:30 AM Invited

Atomistically-Informed Discrete Dislocation Dynamics Simulations of Shock in Aluminum: Andre Archer¹; Cameron Frampton¹; Douglas Spearot¹; ¹University of Florida

Developing Data-Driven Dislocation Mobility Laws for BCC Metals: Nicole Aragon¹; David Montes de Oca Zapiain¹; Eric Rothchild¹; Hojun Lim¹; ¹Sandia National Laboratories

A Dislocation Density-Based Crystal Plasticity Finite Element Model for Predicting Creep Behavior in Lamellar Titanium-Aluminum Alloys: Karel Ziminsky¹; Cheng Sun¹; ¹Clemson University

ADVANCED CHARACTERIZATION METHODS

Characterization of Minerals, Metals and Materials 2025: In-Situ Characterization Techniques — Materials Processing Analysis and Characterization

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Zhiwei Peng, Central South University; Kelvin Xie, Texas A&M University; Mingming Zhang, Baowu Ouyeel Co. Ltd; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, AnalytiChem Group, USA; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, Devcom Arl Army Research Office; Shadia Ikhmayies, The University of Jordan

Wednesday AM | March 26, 2025 121 | MGM Grand

Session Chairs: Kelvin Xie, Texas A&M University; Yunus Kalay, Middle East Technical University

8:30 AM

Novel In-Situ Characterization of Uranium Diboride via Thermal Imaging: Jordan Stone1; Mira Khair1; Jennifer Stansby2; Natasha Engel¹; Elizabeth Sooby¹; ¹University of Texas San Antonio; ²University of New South Whales

Chemo-Mechanical Characterization of V2O5 Single Crystals Via Nanoindentation and In Situ Lithiation: Victor Balcorta¹; Rachel Lee¹; Raj Pattel¹; Samantha Kotze¹; Arnab Maji¹; John Ponis¹; Christopher Walker¹; Kelvin Xie¹; George Pharr¹; Sarbajit Banerjee¹; Matt Pharr¹; ¹Texas A&M University

9:10 AM

Novel Acoustic Characterization Techniques for Lithium-Ion Battery Materials: Antanas Daugela¹; Jurgis Daugela²; Maria Daugela¹; ¹Nanometronix LLC; ²Johns Hopkins University

Shock Compression Impact on Covalently-Bonded Materials: Boya Li¹; Alex Li¹; Shiteng Zhao²; Marc Meyers¹; ¹University of California San Diego; ²Beihang University

9:50 AM

Uncovering Fast Thermal Effects in Metals by In-Situ MEMS Heating in SEM: Christina Koenig¹; Alice Bastos da Silva¹; Joerg Jinschek¹; ¹Technical University of Denmark - DTU Nanolab

10:10 AM Break

10:20 AM

Coal-Based Colloidal Composite Binder: Characterization of a New Efficient Binder for Iron Ore Agglomeration: Jin Zhang¹; Xin Zhang¹; Chengzhi Wei¹; Rui Song¹; Yesheng Cheng¹; Canglong Li¹; Guanghui Li¹; Tao Jiang¹; ¹Central South University

10:40 AM

Influence of Functional-Gradation on the Energy Absorption Performance of Triply Periodic Minimal Surface (TPMS) Lattice Structures: Yehan Rajapakse¹; Juan Escobedo-Diaz¹; Jianshen Wang¹; Damith Mohotti¹; Hongxu Wang¹; Paul Hazell¹; ¹University of **New South Wales**

11:00 AM

In-Situ Grain Growth Analysis With Quenching Dilatometry and Non-Destructive Laser Ultrasound: Heng Wang¹; Florian Linseis¹; ¹Linseis Inc.

11:20 AM

Characterizing Microstructural Texture of Polycrystalline Materials Using Ultrasonic Scattering: Showmic Islam¹; Joseph Turner¹; Nathanial Matz¹; ¹University of Nebraska-Lincoln

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Chemistry and Physics of Interfaces — Grain Boundary Chemistry and Dynamics

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Timofey Frolov, Lawrence Livermore National Laboratory; Fadi Abdeljawad, Lehigh University; Kaila Birtsch, Los Alamos National Laboratory; Daniel Moore, Lehigh University; Christopher Schuh, Northwestern University

Wednesday AM | March 26, 2025 304 | MGM Grand

Session Chairs: Flynn Walsh, Lawrence Livermore National Laboratory; Daniel Moore, Lehigh University

8:30 AM Invited

Atomic Cluster Expansion for Accurate Simulations of Interfaces: Ralf Drautz¹; ¹Icams / Ruhr-University Bochum

9:00 AM

Realistic Interface Thermodynamics With Grand Canonical Monte Carlo: Flynn Walsh¹; Timofey Frolov¹; ¹Lawrence Livermore National Laboratory

9:20 AM

Dislocation Pattern and Motion Mechanisms of Twist Grain Boundaries in High-Entropy Alloys: Wanjuan Zou1; Diran Apelian1; Timothy Rupert¹; Xiaoqing Pan¹; Penghui Cao¹; ¹University of California. Irvine

9:40 AM Invited

Influence of Irradiation Damage on the Mechanical Properties and Stability of Grain Boundaries in Ultrafine-Grained Gold Thin Films: Josh Kacher¹; ¹Georgia Institute of Technology

10:10 AM Break

10:30 AM

Atomistic Simulations for Grain Boundary Migration and Texture Evolution in Mg Alloys: Vaidehi Menon1; Liang Qi1; 1University of Michigan

10:50 AM

Interplay Between Dislocation Type and Local Structure in Dislocation-Twin Boundary Reactions in Cu: Khanh Dang¹; Avanish Mishra¹; Sumit Suresh¹; Nithin Mathew¹; Edward Kober¹; Saryu Fensin¹; ¹Los Alamos National Laboratory

Grain Boundaries in NiTi Shape Memory Alloys as Host Sites for Martensite Nuclei: Gabriel Plummer¹: Mikhail Mendelev¹: Othmane Benafan²; John Lawson¹; ¹Nasa Ames Research Center; ²NASA Glenn Research Center

NUCLEAR MATERIALS

Composite Materials for Nuclear Applications III Composites for Fusion Applications: Tungsten, Metals, and Shielding

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Composite Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Anne Campbell, Oak Ridge National Laboratory; Dong (Lilly) Liu, University of Oxford; Rick Ubic, Boise State University; Lauren Garrison, Commonwealth Fusion Systems; Peng Xu, Idaho National Laboratory; Johann Riesch, Max Planck Insitute For Plasma Physics; James Wade-Zhu, UKAEA

Wednesday AM | March 26, 2025 164 | MGM Grand

Session Chairs: Johann Riesch, Max Planck Insitute For Plasma Physics; Lauren Garrison, Commonwealth Fusion Systems

8:30 AM Invited

Development of Tungsten Fiber-Reinforced Tungsten Composites for Fusion Application: Yiran Mao1; Jan Coenen1; Johann Riesch2; Xiaoyue Tan³; Rudolf Neu²; Christoph Broeckmann⁴; Juan Du⁵; Wolfgang Pantleon⁶; Yucheng Wu³; Bernhard Unterberg¹; Christian Linsmeier¹; ¹Forschungszentrum Juelich GmbH; ²Max-Planck-Institut für Plasmaphysik; 3School of Mechanical Engineering, Hefei University of Technology; 4Institut für Werkstoffanwendungen im Maschinenbau (IWM), RWTH Aachen University; 5Southwest Institute of Physics; ⁶Technical University of Denmark

8:55 AM Invited

Thermal Stability of Powder Metallurgically Manufactured Tungsten Fiber-Reinforced Tungsten Composites at 1450 °C: Svitlana Rudchenko¹; Yiran Mao²; Wolfgang Pantleon¹; ¹Technical University of Denmark; ²Forschungszentrum Jülich GmbH

9:20 AM

Determination of Interface Properties of W/EUROFER Coating on Steel Substrate by Phased Array Ultrasonic and Fracture Mechanical Testing: Ashwini Kumar Mishra¹; Jarir Aktaa¹; ¹Karlsruhe Institute of Technology (KIT), Institute for Applied Materials

9:40 AM Invited

Additively Manufactured Transition Layer Design for Fusion Reactor Components: Tim Graening1; Ibrahim Karaman2; Deniz Ebeperi2; Alberico Talignani³; Morris Wang³; Philip DePond⁴; Jianchao Ye⁴; Ishtiaque Robin⁵; Ying Yang¹; Christopher Ledford¹; Michael Kirka¹; Yutai Kato¹; ¹ORNL; ²Texas A&M; ³UCLA; ⁴LLNL; ⁵UTK

10:05 AM Break

10:25 AM

Radiation Resistance of Nanostructured Ferritic Alloys Produced via Various Methods: Eda Aydogan¹; Dalong Zhang¹; Xiang Wang¹; Jens Darsell¹; Xiao Li¹; Osman El-Atwani¹; Kurt Lavender¹; Mark Rhodes¹; Justin Olson¹; Kayla Yano¹; Tingkun Liu¹; Ramprashad Prabhakaran¹; Iver Anderson¹; Stuart Maloy¹; ¹Pacific Northwest National Laboratory

10:45 AM

Tritium Breeder Composites for Fusion Applications: Michael Moorehead¹; Priyanshi Agrawal¹; Stephanie Pitts¹; Larry Aagesen¹; Pierre-Clément Simon¹; Chase Taylor¹; Jorgen Rufner¹; Timothy Yoder1; Danny Hermawan2; Edwin García2; ¹Idaho National Laboratory; ²Purdue University

11:05 AM

Analyzing Advanced Composite Shield Materials for Fusion and Space Reactor Applications: Mediha Merve Karatas¹; Steven John Zinkle¹; ¹University of Tennessee, Knoxville

11:25 AM

Microstructural Evolution of Tungsten Boride Neutron Shielding Materials Under Radiation: Tamas Zagyva¹; Mashu Harada¹; Samuel Humphry-Baker¹; ¹Imperial College London

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Computational Thermodynamics and Kinetics — **Methods for Accelerated Simulations, and Defect Thermodynamics & Kinetics**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Prashant Singh, Ames National Labratory; Rodrigo Freitas, Massachusetts Institute of Technology; Nicolas Argibay, Ames National Laboratory; Raymundo Arroyave, Texas A&M University; James Morris, Ames Laboratory

Wednesday AM | March 26, 2025 305 | MGM Grand

Session Chairs: Anirudh Raju Natarajan, École Polytechnique Fédérale de Lausanne; Mohammad Younes Araghi, University of

8:30 AM Invited

Super-Cell Random APproximates (SCRAPs) - Improved Tool to Rapidly Generate Models of High-Entropy Alloys and Intermetallics for Materials Design: Duane D Johnson¹; Dhruv Raturi¹; Prashant Singh¹; Andrey Smirnov¹; William A Shelton²; Kirill Kovnir³; ¹Ames National Labratory; ²Louisiana State University; ³Iowa State University

9:00 AM Invited

The Strength of Refractory High Entropy Alloys and Its Connection to Atomic Size Imperfections: Jaime Marian¹; ¹University of California, Los Angeles

9:30 AM

Unraveling the Thermodynamics of Precipitation Hardenable Multi-Component Refractory Alloys: Anirudh Raju Natarajan¹; ¹École Polytechnique Fédérale de Lausanne

9:50 AM

GPR-Assisted Ab-Initio Approach for Identifying Transition States in Dynamically Stabilized, Structurally Unstable Phases: Seyyedfaridoddin Fattahpour¹; Sara Kadkhodaei¹; ¹University of Illinois at Chicago

10:10 AM Break

10:30 AM Invited

Mechanistic Understanding of Vacancy Formation Energies in FCC HEAs From DFT Calculations: Nathan Linton¹; Dilpuneet Aidhy¹; ¹Clemson University

11:00 AM Invited

Vacancy Diffusion Barrier Spectrum and Diffusion Correlation in Multicomponent Alloys: Penghui Cao1; 1University of California,

11:30 AM

Investigating Temperature-Dependent Crack Susceptibility in Nickel-Based Superalloys Using Thermo-Calc and Machine Learning: Mohammad Younes Araghi¹; Shuozhi Xu¹; ¹University of Oklahoma

ADDITIVE MANUFACTURING

Designing Complex Microstructures through Additive Manufacturing — Processing I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Matteo Seita, University Of Cambridge; Hang Yu, Virginia Polytechnic Institute and State University; Alain Reiser, KTH Royal Institute of Technology; Yuntian Zhu, City University of Hong Kong; Xiaozhou Liao, University of Sydney

Wednesday AM | March 26, 2025 317 | MGM Grand

Session Chairs: Christopher Hutchinson, Monash University; Dorte Juul Jensen, Technical University of Denmark

8:30 AM Invited

Microstructural Engineering of Additively Manufactured Metals: Dorte Juul Jensen¹; ¹Technical University of Denmark

9:00 AM

Effect of Wire Melting State on Solidification Microstructures of Alloys in Wire-Laser Directed Energy Deposition: Lin Gao1; Tao Sun²; ¹University of Virginia; ²Northwestern University

9:20 AM

Site Specific Control of Microstructure in Electron Beam Powder Bed Fusion via Power-Field Optimization: Mikhail Khrenov¹; Lauren Fitzwater¹; Moon Tan¹; Michelle Hobdari¹; P. Chris Pistorius¹; Sneha Narra¹; ¹Carnegie Mellon University

9:40 AM Invited

Printing Architectured Materials Through Spatial Control of Mesostructure in Laser Powder Bed Fusion (LPBF): Christopher Hutchinson¹; ¹Monash University

10:10 AM Break

10:30 AM

Site-Specific Microstructural Control of High Manganese Steel Processed by Laser Powder Bed Fusion: Miroslav Smid1; Michal Jambor¹; Helena Van Swygenhoven¹; Filip Grygar²; Daniel Koutny²; ¹Institute of Physics of Materials, CAS; ²Brno University of Technology

10:50 AM

Laser Powder Bed Fusion Processing of Oxide Dispersion-Strengthened (ODS) Pure Copper for High-Resolution and High-Strength Complex-Geometry 3D Components: Shuo Qu¹; Xu Song²; ¹Chinese University of Hong Kong; ²The Chinese Unviersity of Hong Kong

11:10 AM

New Insights Into the Microstructural Evolution and Mechanical Properties of 17-4PH SS Developed During Laser Powder Bed Fusion: Mahsa Amiri¹; Zahra Zanjani Foumani¹; Penghui Cao¹; Ramin Bostanabad¹; Lorenzo Valdevit¹; ¹University of California, Irvine

Powder-Size Driven Facile Microstructure Control for Enhanced Mechanical Performance of 3D-Printed Stainless Steel: Xipeng Tan1; 1National University of Singapore

11:50 AM

Engineering Gradient Microstructure via Laser-Directed Energy Deposition for Superior Dynamic Mechanical Properties: Shanmukha Guraja¹; Ravi Sankar Haridas¹; Rajiv S. Mishra¹; Rajarshi Banerjee¹; ¹University of North Texas

SPECIAL TOPICS

DMMM5: A Decade of Creating Inclusion and Belonging for Diversity in the Minerals, Metals, and Materials Professions — Physical & Cognitive **Diversity**

Sponsored by: TMS: Membership Diversity & Development Committee, TMS: Diversity, Equity, and Inclusion Committee

Program Organizers: Ben Britton, University of British Columbia; Lauren Garrison, Commonwealth Fusion Systems; Keith Bowman, University of Maryland Baltimore County; Katelyn Jones; Suveen Mathaudhu, Colorado School of Mines; Ashley Paz y Puente, University of Cincinnati; Soumya Varma, KLA Corporation; Eva Zarkadoula; Danielle White, University of Southern California

Wednesday AM | March 26, 2025 150 | MGM Grand

Session Chair: Ben Britton, University of British Columbia

9:20 AM Introductory Comments: Introduction to Celebrating and Accommodating Physical and Cognitive Disabilities in Materials Science

9:30 AM Panel Discussion: Perspectives on Physical and Cognitive Disability Needs in the Workplace - Panelist include Jennifer Carter, Case Western Reserve University, and Gee Abraham, Gee Abraham **Edits**

10:10 AM Break

Creating a Trauma Informed Environment: A Survivors Perspective: Andrew Hoffman¹; ¹Catalyst Science Solutions

11:00 AM Interactive Session with Andrew Hoffman

11:30 AM Concluding Comments and Group Discussion

LIGHT METALS

Electrode Technology for Aluminum Production — Anode Performance

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Egil Skybakmoen, SINTEF Industry; Les Edwards, Rain Carbon Inc.

Wednesday AM | March 26, 2025 112 | MGM Grand

Session Chairs: Edouard Mofor, Emirates Global Aluminium; Egil Skybakmoen, SINTEF Industry

8:30 AM Introductory Comments

8:35 AM

Electrochemical Characterization of Bubble Behaviour on Pilot Anodes With Varying Porosity and Coke Quality: Goril Jahrsengene¹; Arne Petter Ratvik1; Lorentz Petter Lossius2; Ann Mari Svensson3; ¹SINTEF; ²Hydro Aluminium AS; ³NTNU Norwegian University of Science and Technology

9:00 AM

Novel 3D X-Ray Microscopy Technique to Unlock the Detail of Internal Coke Structures: Howard Childs1; Sara Enstrom1; Barbara Cramer¹; Barry Sadler²; ¹Bp Coke; ²Net Carbon Consulting Pty Ltd

9:25 AM

The Anode Baking Level Measurement Scale - Ensuring Harmonization When Using the ISO 17499 Method With Different Green Cokes: Lorentz Petter Lossius¹; Viktorija Tomkute¹; Kirsti Gulbrandsen¹; Odd Einar Frosta¹; Maia Hunt²; Les Edwards²; ¹Hydro Aluminium Metal; 2Rain Carbon Inc.

Screening Pyrolysis Bio-Oil for Bio-Binder Synthesis in Aluminum Production: Yazhe Wang¹; Sirui Liu¹; Hanmin Yang¹; Nora Eriksen²; Viktorija Tomkute²; Sophia Peter²; Martin Walderhaug²; Aekjuthon Phounglamcheik³; Weihong Yang¹; ¹KTH Royal Institute of Technology; ²Norsk Hydro; ³Envigas

10:15 AM Break

10:30 AM

The Impact of Chamfered Anode Sides on Cost and Carbon Consumption: Edouard Mofor¹; ¹Emirates Global Aluminium

10:55 AM

TeqMapping: A Test Developed to Map the Impact of Baking Temperatures on Calcined Petroleum Cokes (CPC): Viktorija Tomkute1; Lorentz Petter Lossius1; Kirsti Gulbrandsen1; Odd Einar Frosta¹; ¹Hydro Aluminium AS

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Electronic Packaging and Interconnection Materials II — Reliability in Electronic Packaging

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: C. Kao, National Taiwan University; Yu-An Shen, Feng Chia University; Christopher Gourlay, Imperial College London; Fan-Yi Ouyang, National Tsing Hua University; Hiroshi Nishikawa, Osaka University; Hannah Fowler, Sandia National Laboratories; Kazuhiro Nogita, University of Queensland; Praveen Kumar, Indian Institute of Science; Tae-Kyu Lee, Cisco Systems; Yan Li, Samsung Semiconductor Inc.

Wednesday AM | March 26, 2025 360 | MGM Grand

Session Chairs: Praveen Kumar, Indian Institute of Science; Hannah Fowler, Sandia National Laboratories

8:30 AM

Reliability of Solder Joints Under Extreme Conditions of Elevated and Cryo Temperatures for In-Space Applications: Manish Kumar¹; Sid Pathak¹; Ralph Napolitano¹; ¹Iowa State University

Comparative Research on Reliability Characteristics of Combined Pb-Free Solder Joints With Sn-Ag-Cu and Sn-Bi-Ag: Jahyeon Kim1; Taeyoon Im¹; Won Bin Im²; Yong-Ho Ko¹; ¹Korea Institute of Industrial Technology (KITECH); 2Hanyang University

9:10 AM

Study of Electromigration-Induced Voids Formation in Solder Microbumps by Using 3D X-Ray Microscopy: Shih-Chi Yang¹; Chih Chen¹; ¹National Yang Ming Chiao Tung University

Assessment of Solder Alloy for High Reliability Device: Wei-Ting Lin1; Kelvin Li2; Watson Tseng2; Chang-Meng Wang2; Albert T. Wu1; ¹National Central University; ²Shenmao Technology INC.

9:50 AM

Electromigration Behavior of Direct-Bonded Nano-Twinned Ag-Cu Bumps: Yung-Pei Lin¹; Peng Hsiang Hsu¹; Fan-Yi Ouyang¹; ¹National Tsing Hua University

10:10 AM Break

Reliability and Lifetime Predictions of Fine Pitch Ball Grid Arrays in Thermal Cycling: Hannah Fowler¹; Ryan Smith¹; Robert Buarque de Macedo¹; Joshua Minster¹; Deborah Hagen¹; Jessica Buckner¹; ¹Sandia National Laboratories

10:50 AM

Impact of Cryogenic Thermal Cycling on Solder Interconnect Mechanical Stability: Ande Kitamura¹; Yujin Park²; Gnyaneshwar Ramakrishna²; Tae-Kyu Lee²; ¹Portland State University; ²Cisco Systems

11:10 AM

Investigation of Electromigration Lifetime for Cu-Cu Joints With Various Microstructures: Hsin-Yu Tsai¹; Chih Chen¹; ¹National Yang Ming Chiao Tung University

11:30 AM

Electrochemical Migration Behavior and Its Improvement of Fine-Pitch Ag Interconnects: Hung-Lin Chen¹; Fan-Yi Ouyang¹; ¹National Tsing Hua University

NUCLEAR MATERIALS

Elucidating Microstructural Evolution Under Extreme Environments — Advanced Techniques for **Elucidating Radiation Effects in Structural Materials**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Mukesh Bachhav, Idaho National Laboratory; Boopathy Kombaiah, Idaho National Laboratory; Janelle Wharry, University of Illinois; Assel Aitkaliyeva, University of Florida; Miaomiao Jin, Pennsylvania State University; Farida Selim, Arizona State University; Nathan Almirall, GE Aerospace

Wednesday AM | March 26, 2025 162 | MGM Grand

Session Chair: Mukesh Bachhav, Idaho National Laboratory

8:30 AM Invited

A Multi-Technique Approach to Understand the Materials Under Extreme Environments: Deodatta Shinde¹; Sudip Kumar Sarkar¹; Sarita Ahlawat¹; Vishwanadh Bathula¹; Kamlesh Chandra¹; Debasis Sen¹; Priya Maheshwari¹; Aniruddha Biswas¹; Raghavendra Tewari¹; ¹Bhabha Atomic Research Centre

9:00 AM Invited

Irradiation Damage in Advanced Pressure Vessel Steels: Elaine West¹; Nathan Almirall²; Alexander Chang¹; Raymond Stofanak¹; ¹NNL; ²GE Aerospace

Cavity and Dislocation Loop Evolution in Neutron Irradiated 800H Alloy: Antoine Waegaert¹; Xingyu Liu¹; Xing Wang¹; Arthur Motta¹; ¹Pennsylvania State University

An Irradiation Microstructure Challenge Problem for Accelerated Irradiation Effects Qualification: Stephen Taller¹; Wei-Ying Chen²; Timothy Lach¹; Andrea Jokisaari³; ¹Oak Ridge National Laboratory; ²Argonne National Laboratory; ³Idaho National Laboratory

10:10 AM Break

10:25 AM

Microstructural Investigation of Grade 92 Steel After Fast Neutron Irradiation to 16 - 87 dpa at 380 - 530°C: Emily Proehl¹; Weicheng Zhong²; Steven Zinkle¹; Stephen Taller²; ¹University of Tennessee-Knoxville; ²Oak Ridge National Laboratory

10:45 AM

Predictions of Precipitate Morphologies at Dislocations and Grain Boundaries Under Irradiation: Nicholas Saunders1; Robert Averback¹; Pascal Bellon¹; ¹University of Illinois Urbana-Champaign

11:05 AM

Effect of Processing-Induced Precipitates on Nanoprecipitation and Radiation-Induced Segregation in Electron Beam Welded PM-HIP Low-Alloy Steel: Grayson Nemets¹; Elliot Marrero¹; Jasmyne Emerson¹; Janelle Wharry¹; Maria Okuniewski¹; Zhongxia Shang¹; Yu Lu²; ¹Purdue University; ²Center for Advanced Energy Studies

11:25 AM

Heterogeneous Void Formation in Irradiated AM 316L and AM316H Stainless Steels: Wei-Ying Chen1; Sanjoy Mazumder2; Stephen Taller³; Andrea Jokissari²; Rongjie Song²; Yiren Chen¹; ¹Argonne National Laboratory; ²Idaho National National Laboratory; ³Oak Ridge National Laboratory

11:45 AM

Real-Time Neutron Diffraction to Support Interpretation of DSC Results on Zr-2.5Nb for Reactor Pressure Tubes: Sven Vogel1; Amy I. Fluke²; Daniel J. Savage¹; Toshiro Tomida³; ¹Los Alamos National Laboratory; ²Canadian Nuclear Laboratories; ³Frontier Research Center for Applied Atomic Sciences, Ibaraki University

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmental Degradation of Multiple Principal Component Materials — Aqueous Corrosion and **Embrittlement**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Wenjun Cai, Virginia Polytechnic Institute and State University; XiaoXiang Yu, Novelis Inc.; Vilupanur Ravi, California State Polytechnic University Pomona; Christopher Weinberger, Colorado State University; Elizabeth Opila, University of Virginia; Bai Cui, University of Nebraska Lincoln; Mark Weaver, University of Alabama; Bronislava Gorr, Kit; Gerald Frankel, Ohio State University; ShinYoung Kang, Lawrence Livermore National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Wednesday AM | March 26, 2025 169 | MGM Grand

Session Chairs: Wenbo Wang, Oak Ridge National Laboratory; Dennis Boakye, University of Manitoba

8:30 AM Invited

Corrosion and Passivation of Multi-Principal Element Alloys in Aqueous Solutions: John Scully1; Samuel Inman1; Debashish Sur1; Peter Connors¹; Catherine Lynch¹; Katie Anderson¹; ¹University of Virginia

8:50 AM

Hydrogen Interaction With Stacking Faults in CoCrNiW Alloy: Insights From In-Situ ECCI During Tensile Testing: Parth Khandelwal¹; Cemal Cem Tasan¹; ¹Massachusetts Institute of Technology

9:10 AM

Hydrogen Solution in a TiNbZr Medium-Entropy Alloy: Chengguang Wu1; Yilun Gong1; Yan Ma1; Dierk Raabe1; 1Max-Planck Institute for Sustainable Materials

9:30 AM

Optimizing Strength-Corrosion Properties in Sulphuric Acid Environment via Tailoring V-Cr Composition in Medium-Entropy VCrCoNi Alloys: Hyun Chung1; Gukhyun Lim2; Seungjin Nam1; Hoon-Hwe Cho³; Jihyun Hong²; Seok Su Sohn¹; ¹Korea University; ²Korea Institute of Science and Technology (KIST); ³Hanbat National University

9:50 AM Invited

Coincident Design and Processing of Alloy and "Coating" in Multiprincipal Element Alloys: Mitra Taheri1; David Beaudry1; Elaf Anber¹; Emily Holcombe²; Tyrel McQueen¹; Ben Redemann¹; Loic Perriere³; Jean-Philippe Couzinie³; Debashish Sur⁴; John Scully⁴; Charlie Brandenburg⁴; Elizabeth Opila⁴; Michael Waters⁵; James Rondinelli⁵; Nathan Smith⁵; Christopher Wolverton⁵; Karl Sieradzki⁶; ¹Johns Hopkins University; ²Johns Hopkins University; Naval Surface Warfare Center Carderock; 3CNRS & Universite Paris Est Creteil; ⁴University of Virginia; ⁵Northwestern University; ⁶Arizona State University

10:10 AM Break

Investigating the Synergistic Effects of Al on Aqueous Passivation of Cr Containing [FeCoNi]-CrxAly Compositionally Complex Alloys (CCAs): Debashish Sur¹; William Blades²; Ben Redemann³; Nathan Smith⁴; Emily Holcombe³; Mitra Taheri³; Chris Wolverton⁴; Tyrel McQueen³; Karl Sieradzki⁵; John Scully¹; ¹University of Virginia; ²Juniata College; ³Johns Hopkins University; ⁴Northwestern University; ⁵Arizona State University

10:50 AM Invited

Recent Updates on Corrosion Behaviors of High Entropy Alloys: Peter Liaw1; Lia Amalia1; Rui Feng2; 1University of Tennessee; ²National Energy Technology Laboratory

Investigation of Corrosion Behavior of FeCoNiCuZn High Entropy Alloy in H2SO4, NaCl, and KOH Electrolyte Solution: Mo Rizwan Ahmad Qureshi¹; Gobinda Chandra Mohanty²; Chandra Sekhar Tiwary²; Amit Arora¹; ¹Indian Institute of Technology Gandhinagar; ²Indian Institute of Technology Kharagpur

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmentally Assisted Cracking: Theory and Practice — Corrosion and Degradation in Harsh **Environments**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee

Program Organizers: Bai Cui, University of Nebraska Lincoln; Raul Rebak, GE Global Research; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Jenifer Locke, Ohio State University

Wednesday AM | March 26, 2025 167 | MGM Grand

Session Chairs: Xiaolei Guo, Colorado School of Mines; Srujan Rokkam, Advanced Cooling Technologies, Inc.

8:30 AM Invited

Pitting Corrosion of Stainless Steel 304 in Concentrated MgCl2 Solution: Xiaolei Guo1; Yuxuan Shui2; Irem Efe2; Jenifer Locke2; Gerald Frankel²; ¹Colorado School of Mines; ²The Ohio State University

9:00 AM

Corrosion Behavior and Basic Microstructure of As-Cast Al-Mg-Ce Alloys in 0.6 M NaCl: Adam Thompson¹; Khaing Khaing Aye¹; William Musinski²; Zachary Harris¹; ¹University of Pittsburgh; ²University of Wisconsin-Milwaukee

9:20 AM

Competition Between Atmospheric Oxidation Embrittlement of Aluminum in Gallium-Based Liquid Metal Environments: Michael Mizak¹, Victoria Miller¹, ¹University of Florida

9:40 AM Break

10:00 AM Invited

Corrosion Cracking and Fracture Modeling via a Meshless Peridynamics Framework: Srujan Rokkam¹; Masoud Behzadinasab²; Max Gunzburger³; Sachin Shanbhag³; Nam Phan⁴; ¹Advanced Cooling Technologies, Inc.; 2PTC; 3Florida State University; 4Naval Air Systems Command

10:30 AM

Influence of Void Position and Density on Fracture Initiation From Phase-Field Simulation: An Ta1; Yixi Shen1; R. Seaton Ullberg1; Michael Tonks¹; Simon Phillpot¹; Douglas Spearot¹; ¹University of Florida

10:50 AM

How Solute Atoms Control Aqueous Corrosion of Al-Alloys: Huan Zhao1; 1Xi'an Jiaotong University

Efficacy of Laser Surface Treatment on Corrosion-Induced Fatigue of AA5456-H116 Alloys in Humid Air Environment: Rajaguru Jeyamohan¹; Mohammed Shabana¹; Ji Ma¹; James Burns¹; ¹University of Virginia

MECHANICS OF MATERIALS

Fatigue in Materials: Fundamentals, Multiscale **Characterizations and Computational Modeling** Advanced Experimental Characterization of Microstructurally Driven Fatigue Behavior

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Orion Kafka, National Institute of Standards and Technology; J.C. Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Brian Wisner, Ohio University; Krzysztof Stopka, Purdue University; Kelly Nygren, Cornell University

Wednesday AM | March 26, 2025 318 | MGM Grand

Session Chair: Brian Wisner, Ohio University

8:30 AM

Deformation Mechanisms and Crack Initiation Sites in Haynes 244® Under Low-Cycle Fatigue: Ignacio Escobar-Moreno¹; Zheng Ye²; Eugenia Nieto-Valeiras¹; Biaobiao Yang¹; Victoria A. Tucker³; Michael Titus³; Javier Llorca¹; ¹IMDEA Materials Institute & Technical University of Madrid; ²University of Science and Technology Beijing and IMDEA Materials Institute; 3Purdue University

8:50 AM

Fatigue Assessment of Metals - Bridging Production and Performance to Ensure Component Longevity: Simon Strodick¹; Kai Donnerbauer¹; Johannes Otto¹; Hanigah Kanagarajah¹; Lars Lingnau¹; Lukas Sauer¹; Julian Rozo Vasquez¹; Matthias von Pavel²; Alexander Koch¹; Frank Walther¹; ¹TU Dortmund University; ²TU Dortmund University and Institute for Research and Transfer (RIF)

9:10 AM

Fatigue Crack Growth of Welded Steel Gusset Plate Joints by X-Ray Microtomography: Poonchezhian Vishnu Prakash¹; Eshan Ganju¹; Nikhilesh Chawla¹; Koji Kinoshita²; Yuki Banno²; Shohei Yamada³; Mototaka Saeki³; Yoshihiro Watanabe⁴; Mark Gruninger¹; ¹Purdue University; ²Gifu University; ³Yamada Infra Technos Co. Ltd.; ⁴TOYO SEIKO Co., Ltd

9:30 AM

Mesoscale Cantilever Testing of High Cycle Fatigue Crack Initiation and Short Crack Growth in Ti-6Al-4V: Lazuardi Suryolaksono *Pujilaksono*¹; Jicheng Gong²; Angus Wilkinson¹; ¹University of Oxford; ²King's College London

9:50 AM Break

10:10 AM

Strain Localization Near Grain and Twin Boundaries During Fatigue Studied Using In-Situ ECCI and HR-EBSD in Stainless Steel 316L: Yang Su¹; Josh Kacher¹; ¹Georgia Institute of Technology

10:30 AM

Synchrotron In Situ Characterization of Fatigue Crack Initiation Influenced by Intentionally Seeded Porosity in an Additively Manufactured Superalloy: Krzysztof Stopka¹; Jose Solano¹; Peter Kenesei²; Jun-Sang Park²; Hemant Sharma²; Michael Sangid¹; ¹Purdue University; ²Advanced Photon Source

10:50 AM

Unsupervised Learning to Cluster Fatigue Life Based on Fatigue Fracture Surfaces: Katelyn Jones¹; Paul Shade²; Reji John²; Patrick Golden²; Elizabeth Holm³; Anthony Rollett¹; ¹Carnegie Mellon University; ²Air Force Research Laboratory; ³University of Michigan, Ann Arbor

11:10 AM

Probing Fatigue Crack Growth and Initiation Using Microscale **Specimens**: M. H. Shahini¹; A. Kaveh¹; B. Zhang¹; X. Zhang¹; Wen Meng1; 1Louisiana State University

MATERIALS SYNTHESIS AND PROCESSING

Friction Stir Welding and Processing XIII — Friction Stir Welding II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Nilesh Kumar, University of Alabama, Tuscaloosa; Anton Naumov, Peter The Great St. Petersburg Polytechnic University

Wednesday AM | March 26, 2025 124 | MGM Grand

Session Chairs: Muneo Matsushita, Jfe Steel Corporation; Johnathon (John) Hunt, Concurrent Technology Corporation (CTC)

8:30 AM

Industrial Production of Thick-Walled and Highly Loaded Auminium Structures for Railroad Applications With FSW: Axel Meyer1; 1RIFTEC GmbH

8:50 AM

Friction Stir Lap Welding for High-Strength Aluminum Automotive Components: Piyush Upadhyay1; Hrishikesh Das1; Mitch Blocher1; Shivakant Shukla¹; Jorge Dos Santos¹; ¹Pacific Northwest National Laboratory

9:10 AM

Characterizing Welds and Parameters of Ultra High-Speed Friction Stir Welding in the Lap Welding Configuration: Todd Lainhart¹; Josh Schefield¹; Dallin Gariety¹; Kate Namola²; Russell Steel³; Jeremy Coyne²; Yuri Hovanski¹; ¹Brigham Young University; ²Toyota; ³Mazak/ MegaStir

9:30 AM

The improvement of Corner Stationary Shoulder FSW: Hideki Okada1; 1Kawasaki Heavy Industries.ltd

9:50 AM Break

10:10 AM

Effect of Welding Speed on Tensile Shear Strength of Friction Stir Lap Weld of Wrought AA5052 to Die-Cast A383: Yutaka Sato1; Asaki Tamura¹; Shun Tokita¹; Kengo Yamamoto²; Koji Murakami²; Ryoga Shiotsu²; Kazuo Shiramizu²; ¹Tohoku University; ²Yamamoto Metal Technos Co., Ltd.

10:30 AM

Two-Layer Build-Up Friction Stir Welding of 6061 Aluminum Alloy Using Externally Supplied Bulk Material: Kohei Hamana¹; Masakatsu Maeda1; 1Nihon University

10:50 AM

Influence of Friction Stir Welding on the Corrosion Resistance of Al6061: Ahmed Ali1; Ahmad Bawagnih1; Filmon Surafiel1; Fadi El-Badour¹; Rami Suleiman¹; Necar Merah¹; ¹King Fahd University of Petroleum and Minerals (KFUPM)

11:10 AM

A Novel Approach to Friction Stir Welding (FSW): Repairing Cracks in AA6061-T6 Aluminium Alloy Using Aluminium Filler Rod and SiC Nanoparticles: Ahmed Ali¹; Ahmad Bawagnih¹; Filmon Surafiel¹; Fadi El-Badour¹; Rami Suleiman¹; Necar Merah¹; ¹King Fahd University of Petroleum and Minerals (KFUPM)

SPECIAL TOPICS

Frontiers of Materials Award Symposium: Manufacturing Structural and Functional Materials with Complexity: Lessons from Nature — Frontiers of Materials Award Symposium: Manufacturing Structural and Functional Materials with Complexity: **Lessons from Nature**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizer: Ling Li, University of Pennsylvania

Wednesday AM | March 26, 2025 116 | MGM Grand

Session Chair: Ling Li, University of Pennsylvania

8:30 AM Invited

Biomineralized Structures With Porosity: Structure, Mechanics, Multifunctionality, and Formation Mechanisms: Ling Li¹; ¹University of Pennsylvania

8:55 AM Invited

From Biological Crystal Growth to Functional Bio-Inspired Crystals: Boaz Pokroy¹; ¹Technion Israel Institute of Technology

9:20 AM Invited

Make It With Minerals! Self-Organizing Complex Functional Materials: Willem Noorduin¹; ¹AMOLF / University of Amsterdam

9:45 AM Invited

Recruiting Unicellular Algae for the Mass Production of Nanostructured Perovskites: Igor Zlotnikov¹; ¹Technische Universität Dresden

10:10 AM Break

10:30 AM Invited

Butterfly Cells Employ Mechanics to Form Wing Scales: Anthony McDougal¹; Jan Totz¹; Peter So¹; Jörn Dunkel¹; Bodo Wilts²; Mathias ¹Massachusetts Institute of Technology; ²University of Salzburg

10:55 AM Invited

Synthesis of Architected Biological Materials With Nanoscale Precision and Translation to Bio-Inspired Structures: David Kisailus¹; ¹University of California-Irvine

11:20 AM Invited

Structural Materials Design: Perspectives From Bioinspiration and **Artificial Intelligence**: *Grace Gu*¹; ¹University of California, Berkeley

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Functional Nanomaterials — Functional Nanomaterials II: 2D Materials

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Wenzhuo Wu, Purdue University; Keerti Kappagantula, Pacific Northwest National Laboratory; Bishnu Khanal, Sandia National Laboratories; Ying Zhong, Harbin Institute of Technology (Shenzhen); Mostafa Bedewy, University of Pittsburgh; Michael Cai Wang, University of South Florida

Wednesday AM | March 26, 2025 365 | MGM Grand

Session Chair: Michael Cai Wang, University of South Florida

8:30 AM Keynote

Van der Waals Superlattices: The Bo(u)ndless Frontier: Xiangfeng Duan1; 1University of California, Los Angeles

III-Nitrides and 2D Chacogenides for Next Generation Electronics: Deep Jariwala¹; ¹University of Pennsylvania

9:40 AM Invited

Solution-Processable 2D Materials Based In-Memory Optical Sensing and Computing: Nazek El-Atab1; Bashayr Alqahtani1; 1King Abdullah University of Science and Technology

10:10 AM Break

10:30 AM Keynote

Synthesis and Assembly of MXene-Based Materials With a Multitude of Functionalities: Yury Gogotsi¹; ¹Drexel University

11:10 AM Invited

Novel Properties of Two-Dimensional Weyl Semimetal States Achieved by Thickness-Dependent Topological Phase Transition in BiO.96SbO.04 Thin Films and Applications: Suk-Ho Choi¹; ¹Kyung Hee University

11:40 AM Introductory Comments: JIMM Young Leader International

Scholar

11:45 AM Invited

Young Leaders International Scholars - JIMM Lecture: Spin Current Generation Driven by Altermagnetism and Its Spintronic Applications: Shutaro Karube¹; ¹Kyoto University

ADVANCED CHARACTERIZATION METHODS

Heterostructured and Gradient Materials (HGM VI): Principle, Processing and Properties — Structure and Properties I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Shaping and Forming Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Tsinghua University; Ke Lu, Liaoning Academy of Materials; Hyoung Seop Kim, Pohang University of Science and Technology; Xiaolei Wu, Institute of Mechanics

Wednesday AM | March 26, 2025 155 | MGM Grand

Session Chairs: Amit Misra, University of Michigan; Liliana Romero Resendiz, Bournemouth University; Xiaozhou Liao, University of Sydney; Zengbao Jiao, The Hong Kong Polytechnic University

8:30 AM Invited

Microstructures and Mechanical Behavior of Additively Manufactured Fe-Cr-Ni Alloys

: Amit Misra1; 1University of Michigan

8:55 AM

Strong and Ductile High-Entropy Alloys With Coherent Nanolamellar Structures: Zengbao Jiao¹; ¹The Hong Kong Polytechnic University

9:15 AM

Effect of Surface Roughness on the Mechanical Properties in Gradient Structured Pure Copper: Xinkun Zhu¹; ¹Kunming University of Science and Technology

9:35 AM Invited

Strengthening of Refractory High-Entropy Alloy Over a Broad Temperature Range via the Formation of Heterostructures: Aomin Huang¹; Enrique Lavernia¹; Calvin Belcher²; ¹Texas A&M University; ²University of California, Irvine

10:00 AM Break

10:15 AM Invited

Improved Cryogenic Mechanical Properties of Heterostructured CrCoNi Multicomponent Alloy: Liliana Romero Resendiz¹; Muhammad Naeem²; Xun-Li Wang³; Yuntian Zhu³; ¹Bournemouth University; ²University of Birmingham; ³City University of Hong Kong

10:40 AM Invited

Improving Mechanical Properties Through Heterogeneous Structures Fabricated by Additive Manufacturing: Xiaozhou Liao1; ¹University of Sydney

11:05 AM Invited

Recrystallized Hard Zone and Resultant Tri-Modal Microstructure Produces Superior Mechanical Properties in a Single-Phase Heterostructured High-Entropy Alloy: Shu-Yi Tung1; Ting-En Hsu1; Yuntian Zhu2; Ming-Hung Tsai1; 1National Chung Hsing University; ²City University of Hong Kong

11:30 AM Invited

Twist Proximity Endowed Quantum Phenomena in van der Waals Heterostructures: Pritam Deb1; 1Tezpur University (Central University)

11:55 AM

Ultrahigh Strength and Good Ductility Induced by Heterostructure in TC21 Alloy: Z.H. Jiang¹; Yongfeng Shen¹; W.Y. Xue¹; N. Jia¹; ¹Northeastern University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

High Performance Steels — Modeling

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Benjamin Adam, Oregon State University; C. Tasan, Massachusetts Institute of Technology; Adriana Eres-Castellanos, Colorado School of Mines; Krista Limmer, DEVCOM Army Research Laboratory; Jonah Klemm-Toole, Colorado School of Mines; Pello Uranga, University of Navarra

Wednesday AM | March 26, 2025 302 | MGM Grand

Session Chairs: Krista Limmer, DEVCOM Army Research Laboratory; C. Tasan, Massachusetts Institute of Technology

8:30 AM Invited

Data-Driven Prediction Model for Surface Hardness Distribution in Nitrided Steel: Goro Miyamoto¹; Sayaka Sekida¹; Tadashi Furuhara¹; ¹Tohoku University

9:00 AM

Influence of Microalloyed Steel Slab Reheating Conditions on the Evolution of Austenite Structure: Andrei Chastukhin¹; Hongjoo Rhee¹; Shiraz Mujahid¹; Dawn Van Iderstine¹; Tim Shaw¹; ¹Mississippi State University

9:20 AM

Physics-Coupled Data-Driven Design of Advanced Alumina-Forming Austenitic Stainless Steel: Dongwon Shin¹; Sun Yong Kwon¹; Peng Jian¹; Yukinori Yamamoto¹; Michael Brady¹; James Haynes¹; ¹Oak Ridge National Laboratory

9:40 AM

A Phase-Field Modeling on API X60 Steel for Characterizing Pearlitic Phase Transformation With Experimental Validation: Mohammad Younes Araghi¹; Xu¹; ¹University of Oklahoma

Multi-Phase Field Modelling for Austenite Conditioning and Bainite Transformation: Ashish Dhole¹; Ali Khajezade¹; Matthias Militzer1; 1The University of British Columbia, Vancouver

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Hume-Rothery Symposium on Thermodynamics of Microstructure Stability and Evolution — Modeling Degradation and Evolution in Energy Materials

Sponsored by: TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee

Program Organizers: Yunzhi Wang, Ohio State University; Wei Xiong, University of Pittsburgh; Jiamian Hu, University of Wisconsin Madison; Chuan Zhang, CompuTherm LLC

Wednesday AM | March 26, 2025 357 | MGM Grand

Session Chairs: Shenyang Hu, Pacific Northwest National Laboratory; You-Hai Wen, Us Doe - Netl

8:30 AM Invited

High-Temperature Dealloying in Molten Environments: Insights on Grain Boundary Effects From Phase-Field Modeling: Nathan Bieberdorf¹; Xueyang Bognarova²; Laurent Capolungo²; *Mark Asta*¹; ¹University of California, Berkeley; ²Los Alamos National Laboratory

8:55 AM Invited

Microstructural Mechanisms of Performance and Degradation of Materials for Hydrogen Storage and Production - Mesoscale Modeling: Tae Wook Heo1; 1Lawrence Livermore National Laboratory

9:20 AM Invited

Phase-Field Modeling of Damage Evolution in Environmental Barrier Coating - Ceramic Matrix Composite Systems: Tianle Cheng1; Fei Xue1; You-Hai Wen1; 1US DOE - NETL

Dynamical Phase-Field Simulation of the THz Light-Matter Interaction in Ferroelectrics: Jiamian Hu1; Yujie Zhu1; Taorui Chen1; Shihao Zhuang¹; Bo Wang²; Aiden Ross³; Xiangwei Guo¹; Venkatraman Gopalan3; Long-Qing Chen3; ¹University of Wisconsin Madison; ²Lawrence Livermore National Laboratory; ³The Pennsylvania State University

10:10 AM Break

10:20 AM Invited

Phase-Field Modeling of Hydride Behavior in the Vicinity of Grain Boundary of Zr Matrix: Wooseob Shin¹; Kunok Chang¹; ¹Kyung Hee University

10:45 AM Invited

Stress-Induced Reaction Heterogeneity in Battery Electrodes: Ming Tang¹; ¹Rice University

11:10 AM Invited

Accounting for the Alloying Effect in Electrochemical Equilibrium: Yue Qi1; 1Brown University

11:35 AM Invited

A Mesoscale Integrated Model of Microstructure Evolution and Property Degradation in Nuclear Fuels: Shenyang Hu¹; Zirui Mao¹; Benjamion Beeler²; ¹Pacific Northwest National Laboratory; ²North Carolina State University

12:00 PM Concluding Comments

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Local Chemical Ordering and Its Impact on Mechanical Behaviors, Radiation Damage, and Corrosion — Characterization and Modeling

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Rodrigo Freitas, Massachusetts Institute of Technology; Sriswaroop Dasari, University of Texas at El Paso; Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Mitra Taheri, Johns Hopkins University; Megan McCarthy, Sandia National Laboratories; Irene Beyerlein, University of California, Santa Barbara; Rajarshi Banerjee, University of North Texas; Srinivasan Srivilliputhur, University of North Texas

Wednesday AM | March 26, 2025 352 | MGM Grand

Session Chairs: Rodrigo Freitas, Massachusetts Institute of Technology; Megan McCarthy, Sandia National Laboratories

8:30 AM Invited

Imaging of Short Range Order With Electron Microscopy: From High Performance Alloys to Semiconductor Thin Films: Andrew Minor¹; ¹University of California Berkeley

9:00 AM Invited

Characterization of Ordering and Metastability in Multi-Principal Element Alloys: Michael Kaufman¹; Nelson Delfino De Campos Neto¹; Robert Field¹; Cody Miller²; Pedro Oliveira³; Franciscso Coury³; ¹Colorado School of Mines; ²Los Alamos National Laboratory; ³Federal University of São Carlos

9:30 AM

Influence of Irradiation-Induced Ordering on Defect Evolution in BCC MPEAs: Annie Barnett¹; Emily Mang¹; Wei-Ying Chen²; Jaime Marian³; Patrick Callahan⁴; Michael Falk¹; Mitra Taheri¹; ¹Johns Hopkins University; ²Argonne National Laboratory; ³University of California Los Angeles; ⁴Naval Research Laboratory

9:50 AM Break

10:10 AM Invited

Formation of the B2 Phase Among Refractory Metals: Junxin Wang¹; Ali Barooni¹; Bryan Crossman¹; Jean-Philippe Couzinie²; Michael Mills¹; Maryam Ghazisaeidi¹; ¹Ohio State University; ² University Paris-Est Creteil

10:40 AM

On the Formation of Interstitial Solute Ordered Complexes in bcc High-Entropy Alloys From First-Principles: Pedro Borges¹; Robert Ritchie¹; Mark Asta¹; ¹University of California, Berkeley

Statistical Analysis of the Yield Strength of Random Alloys: Xing Liu1; Ting Zhu2; 1New Jersey Institute of Technology; 2Georgia Institute of Technology

The Effects of Short-Range Order on Defect Energy Statistics in Concentrated Solid Solutions: Matthew Daly¹; Ritesh Jagatramka¹; Akash Baski¹; Novin Rasooli¹; ¹University of Illinois-Chicago

LIGHT METALS

Magnesium Technology 2025 — Primary Production, **Corrosion and Recycling**

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Domonkos Tolnai, Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon; Aaron Palumbo, Big Blue Technologies; Aeriel Murphy-Leonard, Ohio State University; Neale Neelameggham, IND LLC

Wednesday AM | March 26, 2025 115 | MGM Grand

Session Chairs: Norbert Hort, Helmholtz-Zentrum Hereon; Adam Griebel, Fort Wayne Metals

8:30 AM Keynote

Domestic Magnesium Production and Research: Christopher Schooler¹; ¹Department of Energy/EERE

Primary Magnesium Production for an Era of Localization and Decarbonization: Melissa Zirps1; 1Magrathea

9:30 AM

An Energy-Efficient and Environmentally Friendly Reductant in Magnesium Metal Production: AlDross: Onuralp Yucel1; Umut Satılmış¹; Mehmet Buğdaycı²; Ahmet Turan³; ¹Istanbul Technical University; 2Yalova University; 3Yeditepe University

9:50 AM

Research Progress of Magnesium Extraction and Purification: Dong Liang¹; Tingzhuang Ma¹; Rong Yu¹; Yang Tian¹; Bin Yang¹; Baoqiang Xu¹; Wenlong Jiang¹; ¹Kunming University of Science and Technology

10:10 AM Break

10:30 AM

Development of Low-Density Floating Flux for Magnesium Recycling Process: Jun Ho Bae1; Byeong Gi Moon1; Young Hoon Moon¹; ¹Korea Institute of Materials Science

Study on Recycling of Magnesium Alloy Scrap by Vacuum Method: Lipeng Wang¹; Yang Tian¹; Dong Liang¹; Tingzhuang Ma¹; Rong Yu¹; Bin Yang¹; Baogiang Xu¹; Wenlong Jiang¹; ¹Kunming University of Science and Technology

11:10 AM

Continuous Aluminothermic Reduction of MgO With Molten Aluminum Recycled From Post-Consumed Scrap: Varuzan Kevorkijan¹; ¹Impol R in R d.o.o.

Efficient Recycling of Magnesium Alloys via Partial Distillation Using Gravity-Multiple Effect Thermal System (G-METS): Daniel Mc Arthur Sehar¹; Kenichi Saito²; Armaghan Telgerafchi¹; Maya Gallego¹; Meera Sridhar¹; Artem Iurkovskyi¹; Adam Powell¹; Polytechnic Institute; ²Shibaura Institute of Technology

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Materials and Chemistry for Molten Salt Systems — **Applications of Molten Salts**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials

Program Organizers: Stephen Raiman, University of Michigan; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Yu-chen Karen Chen-Wiegart, Stony Brook University / Brookhaven National Laboratory; Nathaniel Hoyt, Argonne National Laboratory; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Weiyue Zhou, Massachusetts Institute of Technology

Wednesday AM | March 26, 2025 165 | MGM Grand

Session Chair: Weiyue Zhou, Massachusetts Institute of Technology

8:30 AM Invited

Chemistry Control for Fluoride Salt-Cooled High-Temperature Reactors: Ryan Gallagher¹; Francesco Carotti¹; Sam Mossadeghian¹; Tristan Johnson¹; Jacob McMurray¹; Jake Quincey¹; Gus Merwin¹; Alan Kruizenga¹; ¹Kairos Power

8:55 AM Invited

Research Progress of the FLiBe Liquid Blanket at the Commonwealth Fusion System: Guiqiu Zheng¹; ¹Commonwealth **Fusion Systems**

9:20 AM

Controlling Tritium Speciation in Molten Salts: Insights From the Liquid Immersion Blanket Robust Accountancy (LIBRA) Experiment: Nikola Goles¹; Weiyue Zhou¹; Remi Delaporte-Mathurin¹; Kevin Woller¹; ¹Plasma Science and Fusion Center, MIT

9:40 AM

Gaseous Fission Product Scrubbing Using Eutectic NaOH-KOH Molten Salts: Lukas Metzger¹; Jinsuo Zhang¹; ¹Virginia Tech, Nuclear Materials and Fuel Cycle Center

10:00 AM Break

10:20 AM Invited

Magnesium Chloride Salt/Graphite Foam Composites for Thermal Energy Storage: Dileep Singh1; 1Argonne National Lab

Influence of Moisture on the Thermo-Mechanical Performance of the Thermal Energy Storage Systems: Abhishek Bhesania¹; Mark Messner¹; Dileep Singh¹; Emin Varghese²; Santanu Chaudhuri²; ¹Argonne National Laboratory; ²Univesity of Illinois Chicago

11:05 AM

Performance and Characterization of Precious Metal Alloys and Coatings as Anodes for Pyroprocessing: Craig Moore¹; Thomas Selmi¹; Dev Chidambaram¹; ¹University of Nevada, Reno

11:25 AM

Electrolytic Reduction of Nuclear Oxide Fuels Using Precious Group Metal Anodes: Md Ikram Khan1; Stephanie Baldivieso2; Hojong Kim¹; ¹Pennsylvania State University; ²Idaho National Laboratory

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Materials for Sustainable Hydrogen Energy — Hydrogen Embrittlement and Hydrogen Diffusion II

Sponsored by: TMS Structural Materials Division, TMS: Energy Committee

Program Organizers: Wenwen Song, University of Kassel; Enrique Galindo-Nava, University College London; Jinwoo Kim, Korea Institute of Science and Technology (KIST); Binhan Sun, Max-Planck Institute

Wednesday AM | March 26, 2025 359 | MGM Grand

Session Chairs: Binhan Sun, East China University of Science and Technology; Jinwoo Kim, Korea Institute Of Science And Technology (Kist); Enrique Galindo-Nava, University College London; Wenwen Song, University of Kassel

8:30 AM Invited

Leveraging Macroscale Experiments to Elucidate Microscale Insights Into Hydrogen Concentration Effects on Plastic **Deformation in Structural Metals**: Mohammad Alam¹; Alfredo Zafra²; Emilio Martinez-Paneda²; Zachary Harris¹; ¹University of Pittsburgh; ²University of Oxford

A Coupled Crystal Plasticity-Hydrogen Adsorption-Diffusion-Desorption Model for Investigating Hydrogen Retention in Austenitic Steel: Jiahao Cheng1; Saket Thapliyal1; Weicheng Zhong1; Yukinori Yamamoto¹; ¹Oak Ridge National Laboratory

9:20 AM

The Less Known Impact of High Temperature (> 400 °C) Hydrogen Induced Degradation of Steels and Ni-Based Alloys: Rishi Pillai¹; Brandon Johnston¹; Marie Romedenne¹; Dean Pierce¹; J.A. Haynes¹; ¹Oak Ridge National Laboratory

9:40 AM

Modeling Hydrogen Influence on Ni201 Plastic Behavior and Calibration Using Coupon-Based and In-Situ X-Ray Diffraction Microscopy Experimental Data: Leonidas Zisis¹; Krzysztof Stopka¹; Marco Zambolin¹; Mohammad Alam²; Zachary Harris²; Michael Sangid¹; ¹Purdue University; ²University of Pittsburgh

10:00 AM Break

10:15 AM Invited

Manipulating the Location of Hydride in / Titanium Alloy: Sheng Huang¹; Amelia How¹; Cemal Cem Tasan¹; ¹Massachusetts Institute of Technology

10:45 AM

Fundamental Atomistic Study of H-Defect Interactions to Predict H Segregation Energy Spectra: Matthew Melfi¹; S. Mohadeseh Taheri-Mousavi¹; ¹Carnegie Mellon University

MATERIALS SYNTHESIS AND PROCESSING

Materials Processing Fundamentals: Thermodynamics and Rate Phenomena — Thermodynamic and Kinetic Considerations in **Metallurgical Processing**

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Phase Transformations Committee

Program Organizers: Allie Anderson, RHI Magnesita; Adrian Sabau, Oak Ridge National Laboratory; Chukwunwike Iloeje, Argonne National Laboratory; Adamantia Lazou, National Technical University of Athens; Kayla Molnar, Los Alamos National Laboratory

Wednesday AM | March 26, 2025 103 | MGM Grand

Session Chairs: Chukwunwike Iloeje, Argonne National Laboratory; Allie Anderson, RHI Magnesita

8:30 AM Introductory Comments

8:35 AM

SnOx Solubility in CaO-FeOx-Cu2O Slag Under Copper Saturation: Naoyuki Hashimoto¹; Shigeru Ishikawa¹; Fumito Tanaka¹; ¹Mitsubishi **Materials Corporation**

8:55 AM

Novel Approach to Measure the Thermodynamic Property of Tri-Calcium Phosphate Using the Phase Relation in the CaO-SiO2-P2O5 Ternary System: Keijiro Saito¹; Kazuki Morita¹; Masakatsu Hasegawa²; ¹The University of Tokyo; ²Kyoto University

A Study of the Time Dependence of Secondary Phase Formation: Rahul Basu¹; Shubhayan Mukherjee²; ¹UGC, JNTU; ²National Cheng **Kung University**

Non-Metallic Inclusions in a High Manganese Steel Rail: Zi Ye1; Jujin Wang¹; Weijian Wang¹; Lifeng Zhang¹; ¹North China University of Technology

9:55 AM Concluding Comments

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components IV — Weld Materials and Creep **Performance**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Kayla Yano, Pacific Northwest National Laboratory; Assel Aitkaliyeva, University of Florida; Eric Lang, University of New Mexico; Eda Aydogan, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Benjamin Eftink, Los Alamos National Laboratory; Tanvi Ajantiwalay, Pacific Northwest National Laboratory

Wednesday AM | March 26, 2025 160 | MGM Grand

Session Chairs: Tanvi Ajantiwalay, Pacific Northwest National Laboratory; Kayla Yano, Pacific Northwest National Laboratory

8:30 AM Invited

Mechanical Behavior and Microstructure of Stainless Steel/ Titanium Dissimilar Metal Welds Utilizing Vanadium Interlayers: Erin Barrick¹; Brett Roper¹; Jack Herrmann¹; Austin Pisani¹; Andrew Kustas¹; Don Susan¹; Pat Carrion¹; Amanda Jones¹; ¹Sandia National Labs

9:00 AM

Creep Rupture and Microstructural Analysis of Dissimilar Welded Joints of P92 Steel and Alloy 617: Amit Kumar1; Chandan Pandey1; Kalpana Gupta¹; ¹Indian Institute of Technology Jodhpur

High-Temperature Tensile Testing of Electron Beam Welded Dissimilar Metals P91 Steel and Incoloy 800HT: Vishwa Bhanu¹; Shailesh Pandey²; Ankur Gupta¹; Chandan Pandey¹; ¹IIT Jodhpur; ²NIT Patna

9:40 AM

A Solid Mechanics Evaluation of Distortion in Laser Arc Hybrid Welding for Thick Walled Pressure Vessels: Process Validation and Metallurgical Characteristics: Dominic Piccone¹; Elizabeth Smith¹; Edmundo Corona¹; Jeffrey Rodelas¹; Christopher Finfrock¹; ¹Sandia National Laboratories

10:00 AM Break

10:20 AM

Accelerated Evaluation of Creep Behavior in Nuclear Reactor Structural Alloys: Minh-Tam Hoang¹; Eric Hintsala²; Kevin Schmalbach²; Douglas Stauffer²; Jobin Joy³; Anjana Talapatra³; Laurent Capolungo³; John Carpenter³; Benjamin Eftink³; Nathan Mara¹; ¹University of Minnesota-Twin Cities; ²Bruker Nano Surfaces; ³Los Alamos National Laboratory

10:40 AM

Creep Testing of Uranium Mononitride: Andre Broussard¹; Kevin Yan¹; Nathaniel Cavanaugh¹; Erofili Kardoulaki²; Jie Lian¹; ¹Rensselaer Polytechnic Institute; ²Los Alamos National Laboratory

Mechanisms-Based Creep-Fatigue Analysis and Alloy Design for Advanced High-Temperature Nuclear Applications: Mahmud Hasan Ovi¹; Tamim Hossain¹; Intisher Al-Tahmid Omi¹; Hoon Lee¹; James Stubbins¹, ¹University of Illinois Urbana-Champaign

11:20 AM

Predicting Irradiation Creep Behavior of T91 Steel Using a Physics-Based Crystal Plasticity Model: Vignesh Vivekanandan¹; Aaron Kohnert¹; Andrea Rovinelli¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

MECHANICS OF MATERIALS

Mechanical Behavior Related to Interface Physics IV Grain Boundaries II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Nuclear Materials Committee, TMS: Surface Engineering Committee

Program Organizers: Stanislav Zak, Austrian Academy of Sciences; Nathan Mara, University of Minnesota; Barbara Putz, Émpa Swiss Federal Laboratories for Materials Science and Technology; Glenn Balbus, MRL Materials Resources LLC; Kevin Schmalbach, Bruker Nano; Youxing Chen, University of North Carolina Charlotte

Wednesday AM | March 26, 2025 369 | MGM Grand

Session Chairs: Ralph Spolenak, Eth Zurich; Glenn Balbus, MRL Materials Resources LLC

8:30 AM

Modeling Grain Boundary Mediated Plasticity With Massively Parallel Atomistic Simulations: Timofey Frolov¹; Flynn Walsh¹; Nicolas Bertin¹; A. Chernov¹; Ian Winter²; Tomas Oppelstrup¹; ¹Lawrence Livermore National Laboratory; ²Sandia National Laboratories

8:50 AM

Examining the Role of Grain Boundaries on the Influence of Screw Dislocation Mobility in Bcc Metals: Xiochuan Tang¹; Gregory Thompson²; Christopher Weinberger¹; ¹Colorado State University; ²University of Alabama

Understanding Deformation Mechanisms in the Grain Boundary Weakening Regime of Nanocrystalline Ni-W Alloys: Keerti Pandey¹; Atul Chokshi²; ¹Indian Institute of Science, Bombay; ²Indian Institute of Science, Bangalore

9:30 AM Invited

Insights Into the Grain Boundary Sliding Behavior of a Ni Bicrystal: Subin Lee¹; Divya Bandla¹; Christoph Kirchlechner¹; ¹Karlsruhe Institute of Technology

10:00 AM Break

10:20 AM

Creep-Induced Segregation at Grain Boundaries of Alloys -A Compelling Experimental Evidence for Diffusional Creep: Sriswaroop Dasari¹; Chaitanya Bhave¹; Shehab Shousha²; Jana Howard³; Advika Chesetti⁴; Ninad Mohale¹; Benjamin Beeler²; Sourabh Kadambi¹; *Boopathy Kombaiah*¹; ¹Idaho National Laboratory; ²North Carolina State University; ³Boise State University; ⁴University of North Texas

10:40 AM

Studying Grain Boundary Regions in Polycrystalline Tantalum Using Spherical Nano-Indentation: Olajesu Olanrewaju¹; Kevin Jacob1; Curt Bronkhorst2; Nan Chen2; Marko Knezevic3; Sid Pathak1; ¹Iowa State Univeristy; ²University of Wisconsin; ³University of New Hampshire

11:00 AM Invited

Understanding the Relationship Between Grain-Boundary Segregation and Mechanical Properties Using Interfacial Phase Diagrams: Chongze Hu¹; ¹University of Alabama

MECHANICS OF MATERIALS

Mechanical Response of Materials Investigated Through Novel In-Situ Experiments and Modeling — **Small Scale Characterisation**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Minh-Son Pham, Imperial College London; Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dongchan Jang, Korea Advanced Institute of Science and Technology; Josh Kacher, Georgia Institute of Technology; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization

Wednesday AM | March 26, 2025 366 | MGM Grand

Session Chair: Jagannathan Rajagopalan, Arizona State University

8:30 AM Invited

Characterizing Phenomena in Metals and Alloys at the Single Defect Level: Daniel Gianola¹; ¹University of California-Santa Barbara

9:00 AM

CRSS Determination in α-Ti: Modelling and In-Situ TEM study: Tolga Berkay Celebi¹; Orcun Koray Celebi¹; Sidharth Ravi¹; Ashley Bucsek²; Huseyin Sehitoglu¹; ¹University of Illinois at Urbana Champaign; ²University of Michigan

In Situ MicroCT Radiograph Corrections for Sub-Micron Scale Digital Volume Correlation: Alex Arzoumanidis¹; Brian Bay²; André Phillion³; ¹Psylotech Inc; ²Oregon State University; ³McMaster University

9:40 AM

In Situ Nanomechanical Testing at Cryogenic Temperatures: Kevin Schmalbach¹; Eric Hintsala¹; Douglas Stauffer¹; Sanjit Bhowmick¹; ¹Bruker Nano

10:00 AM

Investigation of Size Effect in the Elastic Regime Through Micro-Scale Cantilever Bending Experiments: Jae-Hoon Choi¹; Hyemin Ryu1; Kwang-Hyeok Lim1; Ji-Young Kim1; Hojang Kim1; Gi-Dong Sim1; ¹Korea Advanced Institute of Science and Technology

10:20 AM Break

10:40 AM

Mapping Strain, Stress and Orientation in Metals in 3D: Nils Henningsson¹; Mustafacan Kutsal¹; Jonathan Wright²; Wolfgang Ludwig²; Henning Osholm³; Stephen Hall⁴; Grethe Winther¹; Henning Poulsen¹; ¹Technical University of Denmark - DTU; ²European Synchrotron Radiation Facility; 3Xnovo Technology ApS; 4Lund University

11:00 AM

Wear Mechanisms in Vacuum and Air: An In-Situ Comparative Study: Berk Soykan1; Cemal Tasan1; 1Massachusetts Institute of Technology

11:20 AM Invited

In-Situ Scanning Electron Microscopy Testing of Metallic Materials: New Methods & Insights: C. Tasan1; 1Massachusetts Institute of Technology

NUCLEAR MATERIALS

Meeting Materials Challenges for the Future of **Fusion Energy — Modeling and Simulation**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Tianyi Chen, Oregon State University; Amy Gandy, United Kingdom Atomic Energy Authority; Reuben Holmes, Kyoto Fusioneering; Ian Mccue, Northwestern University; Sneha Prabha Narra, Carnegie Mellon University; Jason Trelewicz, Stony Brook University; Weicheng Zhong, Oak Ridge National Laboratory

Wednesday AM | March 26, 2025 158 | MGM Grand

Session Chairs: Tianyi Chen, Oregon State University; Krishna Pitike, Pacific Northwest National Laboratory

8:30 AM Keynote

Hierarchical Multiscale Modeling Framework to Predict Surface Morphology of Plasma Facing Components: Brian Wirth¹; ¹University of Tennessee

9:00 AM Invited

Impact of Soret Effect on Hydrogen and Helium Retention in PFC Tungsten Under ELM-Like Conditions: Enrique Martinez Saez¹; Sanad Alturk¹; Jacob Jeffries¹; Muhammed Kose¹; ¹Clemson University

9:30 AM

Effect of Transmutation Products on Point Defect Energies in Tungsten From First-Principles and Machine Learning: Anus Manzoor¹; Spencer Thomas¹; Jason Trelewicz¹; ¹Stony Brook University

9:50 AM Break

10:10 AM

Development of Machine Learned Interatomic Potentials for Modeling Transmutation Products in Fusion First Wall Materials: Mary Alice Cusentino¹; Anus Manzoor²; Yusheng Jin²; Thomas Spencer²; Krishna Pitike³; Wahyu Setyawan³; Rafi Ullah⁴; Izabela Szlufarska⁴; Jason Trelewicz²; Jaime Marian⁵; ¹Sandia National Laboratories; ²Stony Brook University; ³Pacific Northwest National Laboratory; 4University of Wisconsin; 5University of California Los **Angeles**

10:30 AM

A Machine Learned Potential for H Behavior in Dispersion-Strengthened W: Ember Salas¹; Mary Alice Cusentino¹; Charles Rackley²; Meg McCarthy¹; James Goff¹; Aidan Thompson¹; Mitch Wood¹; ¹Sandia National Laboratories; ²Florida A&M University

10:50 AM

Development of Machine Learning Potential to Study Tritium Behavior in V-Alloy Blanket with Liquid Lithium Breeder: Krishna Pitike1; Prashanth Srinivasan2; Duc Nguyen2; Mark Gilbert2; Wahyu ¹Pacific Northwest National Laboratory; ²United Kingdom Atomic Energy Authority

LIGHT METALS

Melt Processing, Casting and Recycling — Molten **Metal Cleanliness**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Arild Hakonsen, Hycast As; Les Edwards, Rain Carbon Inc.

Wednesday AM | March 26, 2025 109 | MGM Grand

Session Chair: Mark Badowski, Hydro Aluminium Deutschland Gmbh

8:30 AM Introductory Comments

Dynamics of Hydrogen in Aluminium in Contact with Humid **Atmosphere**: *Martin Syvertsen*¹; Halvor Dalaker¹; ¹SINTEF Industry

On the Influence of Oxide Layer Formation and Alloying in the Mg Vapor Pressure for Ternary Dilute Al-Mg Alloys: Antonio Vazquez Prudencio¹; Mehdi Maghsoudi²; Qing Chen³; Anne Kvithyld⁴; Snorri Ingvarsson¹; Kristjan Leosson²; ¹University of Iceland; ²DTE ehf.; 3Thermo-Calc Software AB; 4SINTEF

Oxidation of Aluminium Melts in Dry and Moist Atmospheres: Halvor Dalaker1; Martin Syvertsen1; 1Sintef

9:50 AM

Removal of Metallic Impurities from Aluminum Alloy Using Gravity Sedimentation Technique: Manish Sinha1; Brajendra Mishra1; Subodh Das²; ¹Worcester Polytechnic Institute; ²Phinix LLC

10:15 AM Break

10:30 AM

Sedimentation of Inclusions In Melts of Aerospace Structural Aluminium Alloy Castings: A Sustainable Approach: Tharmalingam (Siva) Sivarupan¹; Arul Mozhi Varman Jayaraman Palanivel¹; Konstantinos Georgarakis¹; John Forde²; Joseph Rawding³; Ben Shaw³; Konstantinos Salonitis¹; Mark Jolly¹; ¹Cranfield University; ²JF Advanced Technology Solutions Ltd; 3Sylatech Ltd

Removal Efficiencies of Hydrogen and Inclusions in a Combined Filter with De-Gassing and CFF: Terje Haugen¹; Arild Hakonsen¹; ¹Hycast As

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Microstructural Evolution and Material Properties **Due to Manufacturing Processes: A Symposium** in Honor of Anthony Rollett — Microstructural **Evolution and Material Properties: Session III**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Curt Bronkhorst, University of Wisconsin-Madison; Elizabeth Holm, University of Michigan; Ricardo Lebensohn, Los Alamos National Laboratory; Sukbin Lee, Ulsan National Institute Of Science And Technology; Nathan Mara, University of Minnesota

Wednesday AM | March 26, 2025 303 | MGM Grand

Session Chairs: Sukbin Lee, Ulsan National Institute Of Science And Technology; Ricardo Lebensohn, Los Alamos National Laboratory

8:30 AM Invited

Adventures Exploring Five-Dimensional Space with Tony Rollett: Gregory Rohrer¹; ¹Carnegie Mellon University

9:00 AM Invited

Connecting Structure and Processing Through Simulation: Statistics, Machine Learning, and Future Directions in Inverse Materials Design: Sean Donegan¹; ¹Air Force Research Laboratory

9:30 AM

Development of Coherent X-Ray Imaging for Nanometer Scale Strain Dynamics at Grain Boundaries: Richard Sandberg¹; Stephan Hruszkewycz²; Ross Harder²; ¹Brigham Young University; ²Argonne **National Laboratory**

Finite-Element Predictions of Forming of Single Crystal and Polycrystalline Aluminum Alloy Sheets Based on a Recent Crystal Model: Oana Cazacu¹; Benoit Revil-Baudard¹; ¹University of Arizona

10:10 AM Break

10:30 AM

Building Microstructural Digital Twins and Their Applications to Materials Properties: Jaehyung Cho1; Veerendra Chitturi1; Geon Yeong Lee¹; Hyo-Sun Jang¹; Shi-Hoon Choi²; ¹Korea Institute of Materials Science; ²Sunchon National University

10:50 AM Invited

Practical Benefits from Spherical Indexing of EBSD Patterns for Microstructure Characterization: Stuart Wright¹; William Lenthe¹; Matthew Nowell¹; René de Kloe¹; ¹EDAX

11:20 AM Invited

Toward Microstructure-Aware Processing at Scale: Mitra Taheri¹; ¹Johns Hopkins Uniiversity

11:50 AM

Integration of Phase-Field Model and Fast Fourier Transform-Based Crystal Plasticity With Geometrically Necessary Dislocations to Simulate Microstructure Evolution During the Manufacturing of Gradient Grained Metals: Lei Chen1; Xinxin Yao1; 1University of Michigan-Dearborn

NUCLEAR MATERIALS

Microstructural, Mechanical, and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface II Next-Generation Fuels I: Nitride, Carbide, Boride, and Others

Sponsored by: TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Xing Wang, Pennsylvania State University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Dong (Lilly) Liu, University of Oxford; Caleb Clement, Westinghouse Electric Company; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida; Yi Xie, Peking University

Wednesday AM | March 26, 2025 159 | MGM Grand

Session Chair: Jennifer Watkins, Idaho National Laboratory

8:30 AM Invited

Westinghouse Perspective on Accelerated Fuel Qualification: Antoine Claisse¹; Edward Lahoda²; Jorge Carvajal²; Kathryn Metzger²; Anthony Schoedel²; ¹Westinghouse Electric Sweden; ²Westinghouse Electric Corporation

Direct Modeling of Irradiation Driven Microstructure Evolution and Swelling in Uranium Nitride: Par Olsson1; Qiuguo Yang1; Ida Andersson Neretnieks¹; Jonas Planck¹; Aymeric Le Harivel de Gonneville²; Ebrahim Mansouri¹; ¹KTH Royal Institute of Technology; ²Ecole Polytechnique

9:20 AM

UN-UB2 Fuel Material: A Path to UN Use in LWRs: Joel Turner1; ¹University of Manchester

Bayesian Calibration of Ab-Initio Based Self- and Fission Gas Diffusivity in UN Nuclear Fuel: Anton Schneider¹; Pieterjan Robbe²; David Andersson¹; Christopher Matthews¹; Michael Cooper¹; ¹Los Alamos National Laboratory; ²Sandia National Laboratories

10:00 AM Break

10:20 AM

Fission Product Migration and Speciation in Uranium Mononitride SIMFUEL: Patrick Warren¹; Mira Khair¹; Elizabeth Sooby¹; ¹University of Texas at San Antonio

10:40 AM

Synthesis of Uranium Dinitride by Ammonolysis of Uranium Tetrafluoride: Scarlett Widgeon Paisner¹; Hannah Patenaude¹; Scott Parker¹; Edward Lahoda²; Antoine Claisse³; Joshua White¹; ¹Los Alamos National Laboratory; ²Westinghouse Electric Company LLC; ³Westinghouse Electric Sweden

11:00 AM

Arc-Melt Synthesis of Uranium Borides: A New Approach to Volatilization: Jennifer Stansby¹; Mira Khair¹; Pio Bragado¹; Melody Ranger²; Vanessa Peterson³; Edward Obbard²; Elizabeth Sooby¹; ¹UTSA; ²UNSW Nuclear Innovation Centre; ³ANSTO

11:20 AM

Room Temperature Oxidation Mechanisms of Uranium Monocarbide: Adrian Wagner¹; Jennifer Watkins¹; Boone Beausoleil¹; Tiankai Yao¹; Seongtae Kwon¹; ¹Idaho National Laboratory

ADDITIVE MANUFACTURING

Nano and Micro Additive Manufacturing - Joint Session with "Additive Manufacturing: Length Scale Phenomena in Mechanical Response"

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Electronic Packaging and Interconnection Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Alain Reiser, KTH Royal Institute of Technology; Wendy Gu, Stanford University; Yu Zou, University of Toronto; Mostafa Hassani, Cornell University; Ming Chen, University of Nevada, Reno

Wednesday AM | March 26, 2025 310 | MGM Grand

Session Chairs: Xuan Zhang, Argonne National Laboratory; Ming Chen, University of Nevada, Reno

8:30 AM Introductory Comments

8:35 AM

Multi-Scale Using Mechanical Microscopy **High-speed** Nanoindentation: Jeffrey Wheeler¹; ¹Oxford Instruments

9:05 AM

Nanoscratch Testing: A Tool for Evaluating the Bonding Strength of Laser Cladding Coatings: Keivan Davami¹; Alireza Doroudi¹; Sadie Beck¹; Ali Beheshti²; ¹University of Alabama; ²George Mason University

9:25 AM

Strength of Microparticle Impact-Induced Metallic Bonds: Qi Tang¹; David Veysset²; Hamid Assadi³; Yuji Ichikawa⁴; Mostafa Hassani¹; ¹Cornell University,; ²Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital; ³Brunel Centre for Advanced Solidification Technology, Brunel University London; ⁴Fracture and Reliability Research Institute, Tohoku University

9:45 AM

Ultrafast Bubble Dynamics in Metal Additive Manufacturing with Operando Nanoscale Transmission X-Ray Microscopy: Lichao Fang¹; Zane Taylor¹; Tharun Reddy¹; Matt Seaberg²; Matthieu Chollet²; Tim Driel²; Adrian Lew¹; Leora Dresselhaus-Marais¹; ¹Stanford University; ²SLAC National Accelerator Laboratory

10:05 AM Break

10:25 AM Invited

Room Temperature Micro Cold Spray of Ceramic Thick Films: Desi Kovar¹; ¹University of Texas at Austin

10:55 AM

Microstructural and Micro-Mechanical Characterization of Isothermally Heat-Treated Al6O61 Cold Spray Deposits: Kyle Wade¹; Tyler Flanagan¹; Benjamin Bedard¹; Victor Champagne²; Avinash Dongare¹; Seok-Woo Lee¹; Mark Aindow¹; ¹University of Connecticut; ²DEVCOM, Army Research Lab

11:15 AM

On the Ductility of Highly Pure Cold-Sprayed Copper: An Investigation of the Interplay Between Hierarchical Defects and Their Heterogeneous Spatial Arrangements and Morphology: Bosco Yu1; Jason Tam2; Liyang Zheng3; Dominique Poirier4; Jason Giallonardo⁵; Yu Zou³; Jane Howe³; Uwe Erb³; ¹University of Victoria; ²University of Tokyo; ³University of Toronto; ⁴National Research Council Canada (NRC); 5The Nuclear Waste Management Organization (NWMO)

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Nanostructured Materials in Extreme Environments III — Mechanical Extreme

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Youxing Chen, University of North Carolina Charlotte; Haiming Wen, Missouri University of Science and Technology; Yue Fan, University of Michigan; Khalid Hattar, University of Tennessee Knoxville; Ashley Bucsek, University of Michigan; Jessica Krogstad, University of Illinois at Urbana-Champaign; Irene Beyerlein, University of California, Santa Barbara; Trevor Clark, Commonwealth Fusion Systems

Wednesday AM | March 26, 2025 166 | MGM Grand

Session Chair: Haiming Wen, Missouri University of Science and Technology

8:30 AM Invited

Dynamic Nano and Microscale Processes in Hydrogen Charged Metals and Alloys: Wendy Gu1; Andrew Lee1; Adam Barsotti1; Jiyun Kang¹; ¹Stanford University

8:55 AM Invited

New Rules of Coupled Severe Plastic Deformations, Phase Transformations, and Microstructure Evolution Under High Pressure: In-Situ Experiments and Four-Scale Theory: Valery Levitas1; 1 lowa State University

9:20 AM

Nanoscale Compositional Homogenization by Severe Plastic Deformation-Induced Twinning for Achieving Desensitization in Stainless Steel: Kasturi Sasidhar1; Robert Ulfig2; Kumar Sridharan1; ¹University of Wisconsin; ²CAMECA Instruments, Inc.

9:40 AM Invited

Role of Interfaces in Phase Decomposition of CoCrNi Alloy: Sakshi Bajpai¹; Xin Wang²; Bijun Xie¹; Calvin Belcher¹; Benjamin MacDonald¹; Julia Ivanisenko³; Yu Zhong⁴; Penghui Cao¹; Enrique Lavernia⁵; Diran Apelian¹; ¹University of California Irvine; ²University of Alabama, Tuscaloosa; ³Karlsruhe Institute for Technology; ⁴Worcester Polytechnic Institute; 5Texas A&M University

10:05 AM Break

10:25 AM Invited

Nanocrystalline Structures in HEAs by Extreme Deformation: Carlos Ruestes¹; Marc Meyers²; Aomin Huang³; Enrique Lavernia³; ¹Universidad Politecnica de Madrid; ²University of California, San Diego; 3Texas A&M University

10:50 AM

Progress Toward High Strain Rate Nanoindentation: Benoit Merle¹; Mohammed Tahir Abba¹; ¹Kassel University

11:10 AM

Shock Response of an Additively Manufactured Eutectic High Entropy Alloy Under Compression and Release: Anirudh Hari¹; Kento Katagiri¹; Paul Specht²; Tharun Reddy¹; Sara Irvine¹; Laura Madril¹; Sophie Parsons¹; Jie Ren³; Wuxian Yang³; Suzanne Ali⁴; Alexis Amouretti⁵; Yuichi Inubushi⁶; Ryosuke Kodama⁵; Alex Li⁷; Boya Li⁷; Kohei Miyanishi⁸; Hirotaka Nakamura⁵; Yusuke Nakanishi⁵; Yusuke Seto⁹; Masato Ota¹⁰; Sota Takagi¹¹; Yuhei Umeda; Yuhei Umeda¹²; Takuo Okuchi¹²; Norimasa Ozaki⁵; Gaia Righi⁴; Tadashi Togashi⁶; Makina Yabashi⁸; Toshinori Yabuuchi⁸; Yogesh Vohra¹³; Wen Chen³; Leora Dresselhaus-Marais¹; ¹Stanford University; ²Sandia National Laboratories; ³University of Massachusetts Amherst; ⁴Lawrence Livermore National Laboratory; 5Osaka University; 6Japan Synchrotron Radiation Research Institute; 7University of California San Diego; *RIKEN SPring-8 Center; *Osaka Metropolitan University; ¹⁰National Institute for Fusion Science; ¹¹Carnegie Institution for Science; 12Kyoto University; 13University of Alabama Birmingham

ADVANCED CHARACTERIZATION METHODS

Neutron and X-Ray Scattering in Materials Science and Engineering — Lattice and Spin Dynamics in **Materials**

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Hillary Smith, Swarthmore College; Jennifer Niedziela, Oak Ridge National Laboratory

Wednesday AM | March 26, 2025 156 | MGM Grand

Session Chair: George Yumnam, Oakridge National Laboratory

8:30 AM Invited

The Invar Effect Explained by Nuclear Resonant X-Ray Scattering from Phonons and Spins: Brent Fultz1; Stefan Lohaus1; Pedro Guzman¹; ¹California Institute of Technology

9:00 AM Invited

Scattering Study of Spin-Lattice Interactions in Chromia: Chen Li¹; Qiyang Su¹; Yaokun Su¹; Douglas Abernathy²; António Dos Santos²; Bianca Haberl²; ¹University of California-Riverside; ²Oak Ridge National Laboratory

9:30 AM

The Role of Vibrational Entropy Across Magnetostructural **Transition in Heusler Alloys**: Sageeb Adnan¹; Ibrahim Karaman²; Daniel Mula²; Raymundo Arroyave²; Raphael Hermann³; Douglas Abernathy³; Michael Manley³; ¹Ohio State University; ²Texas A&M University; 3Oak Ridge National Laboratory

9:50 AM Invited

Vibrational Thermodynamics of the Giant Elastocaloric Effect in NiCoMnTi Alloys: Michael Manley¹; Raymundo Arroyave²; Ibrahim Karaman²; Douglas Abernathy¹; Raphael Hermann¹; ¹Oak Ridge National Laboratory; ²Texas A&M University

10:20 AM Break

Phonon Dynamics and Thermal Transport in Tl₃VSe₄: Yoel Lencina Wendt¹; Qingan Cai¹; Brian Sales²; Ayman Said³; Chen Li¹; ¹UCR; ²Oak Ridge National Lab; 3Argonne National Lab

Impact of Electric Fields on Local Structure, Phonons, and Thermal Transport in a Relaxor Ferroelectric: Puspa Upreti¹; Douglas Abernathy¹; Raffi Sahul²; Raphael Hermann¹; Michael Manley¹; ¹Oak Ridge National Laboratory; ²Amphenol Corporation

11:10 AM

Investigating Thermal Transport in Nuclear Materials Using Neutron Scattering: Shaofei Wang¹; Zilong Hua¹; Hao Ma¹; Adam Aczel¹; Michael E. Manley¹; ¹Oak Ridge National Laboratory

11:30 AM Invited

Operando Inelastic Neutron Scattering Measurements of Glass Dynamics: Hillary Smith1; Wuqian Zhang1; Yiyang Jin1; Grady Savage1; ¹Swarthmore College

SPECIAL TOPICS

Nix Award and Lecture Symposium VI: Recent **Developments in Investigating the Flow** Mechanisms of Crystalline Solids — Recent **Developments in Investigating the Flow Mechanisms of Crystalline Solids**

Sponsored by: No Sponsors Found!

Program Organizers: Seung Min Han, KAIST; Daniel Gianola, University of California, Santa Barbara

Wednesday AM | March 26, 2025 170 | MGM Grand

Session Chairs: Daniel Gianola, University of California, Santa Barbara; Seung Min Han, KAIST

8:30 AM Keynote

Investigations of Flow Mechanisms in Crystalline Solids with an Emphasis on the Role of Grain Size: Terence Langdon¹; ¹University of Southampton

9:30 AM Invited

Flow Mechanisms of Heterostructured Materials: Yuntian Zhu1; ¹City University of Hong Kong

10:00 AM Break

10:20 AM Invited

Metastable Formation and Thermal Stability of Bulk Nanostructured Metals: Insights From Diffraction Methods: Megumi Kawasaki1; 1Oregon State University

10:50 AM Invited

Sample Length Scale Effects on Power Law Creep: Implications for Creep Rate Measurements: Praveen Kumar¹; ¹Indian Institute of Science

11:20 AM Invited

Crucial Role of Nanoindentation in Novel Structural Materials Research: Jae-il Jang1; 1Hanyang University

ADVANCED CHARACTERIZATION METHODS

Novel Strategies for Rapid Acquisition and Processing of Large Datasets from Advanced Characterization Techniques — FAIR Data

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Sriram Vijayan, Michigan Technological University; Rakesh Kamath, Argonne National Laboratory; Austin Mcdannald, National Institute of Standards and Technology; Fan Zhang, National Institute of Standards and Technology; Sarshad Rommel, University of Connecticut

Wednesday AM | March 26, 2025 157 | MGM Grand

Session Chairs: Sriram Vijayan, Michigan Technological University; Austin Mcdannald, National Institute of Standards and Technology

8:30 AM Invited

Advanced Computational and Data Management Approaches at the Advanced Photon Source: Nicholas Schwarz¹; ¹Argonne **National Laboratory**

8:55 AM Invited

Characterization within an Automated Lab for Solid State Synthesis - Challenges and Solutions for Data Handling and Interpretation: Anubhav Jain¹; ¹Lawrence Berkeley National Laboratory

9:20 AM Invited

Directing Flow: Pipelines for 3D Data: Andrew Polonsky¹; Paul Chao¹; Chad Hovey¹; Alexandre Bordas¹; Rhianna Oakley¹; Julia Deitz¹; John Emery¹; ¹Sandia National Laboratories

9:45 AM Invited

Strategies for Accelerated Collection, and Data Curation of Multi-Modal Serial-Sectioning Experiments: David Rowenhorst¹; Naval Research Laboratory

10:10 AM Break

10:30 AM Panel Discussion FAIR Data

MATERIALS SYNTHESIS AND PROCESSING

Phase Transformations and Microstructural Evolution — Shape Memory and Super Alloys

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State University; Ashley Paz y Puente, University of Cincinnati; Jonah Klemm-Toole, Colorado School of Mines; Sriram Vijayan, Michigan Technological University; Mohsen Asle Zaeem, Colorado School of Mines; Le Zhou, Marquette University; Adriana Eres-Castellanos, Colorado School of Mines; Sophie Primig, University of New South Wales

Wednesday AM | March 26, 2025 123 | MGM Grand

Session Chairs: Sriswaroop Dasari, University of Texas at El Paso; Hui-Chia Yu, Michigan State University

8:30 AM

Effects of Chemistry, Precipitation, and Microcleanliness on The Structural Degradation of NiTiHf High-Temperature Shape Memory Alloys: Roberto Orrostieta¹; Ibrahim Karaman¹; ¹Texas A&M University

8:50 AM

In-Phase/Out-Of-Phase Thermo-Mechanical Loading in High Temperature Shape Memory Alloys: Adrien Cassagne¹; Dimitris Lagoudas¹; Jean Briac Le Graverend¹; ¹Texas A&M University

9:10 AM

On the Effects of Micro-Scale Concentration Gradients on Martensitic Transformations in NiTi Shape Memory Alloys: Jan Frenzel¹; Oluwaseyi Oluwabi¹; Gunther Eggeler¹; ¹Ruhr University **Bochum**

9:30 AM

Tailoring the Shape-Memory and Superelastic Behaviors in NiTi with Nb Inclusion with Coherent and Semi-Coherent Interfaces Using MD Simulations: Adiba Sumaiya Khan1; Xiang Chen1; Sakib Al Razi Khan¹; ¹University of North Carolina Charlotte

Shape Memory Effect in the CrFeCo and CrMnFeCoNi Multi-Component System: Jinsurang Lim¹; Hwi Yun Jeong¹; Hyunseok Oh²; Je In Lee¹; ¹Pusan National University; ²University of Wisconsin-Madison

10:10 AM Break

10:25 AM

Diffusional-Displacive Mixed-Mode Transformation from Ferrite Parent Phase to Form an Intermetallic Nanocomposite in a Fe-Mo Alloy: Rama Srinivas Varanasi¹; Srikakulapu Kiranbabu²; Reina Utsumi³; Hiroyuki Saitoh³; Ronald Schnitzer²; Eiji Akiyama¹; Motomichi Koyama¹; ¹Institute for Materials Research, Tohoku University; ²Montanuniversität Leoben; ³National Institutes for Quantum Science and Technology

10:45 AM

Microstructural Evolution in a New Low-Cost Polycrystalline Ni-Base Superalloy for Elevated Temperature Structural Applications: George Wise1; Paul Mignanelli2; Mark Hardy2; Nicholas Jones1; Howard Stone¹; ¹University of Cambridge; ²Rolls-Royce plc.

11:05 AM

Novel Co-Based Superalloys Strengthened via Local Phase Transformation at Microtwins and Stacking Faults: Ashton Egan¹; Andreas Bezold²; Longsheng Feng³; Christopher Zenk¹; Yunzhi Wang²; Michael Mills²; Steffen Neumeier¹; Erdmann Spiecker¹; Mathias Göken¹; ¹Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; 2The Ohio State University; 3Lawrence Livermore National Laboratory

11:25 AM

Strengthening Superalloys via an Extreme Density of Locally Transformed Stacking Fault Phases: Andreas Bezold1; Nicolas Karpstein²; Lukas Amon²; Jan Vollhüter²; Erdmann Spiecker²; Michael Mills¹; Steffen Neumeier²; ¹The Ohio State University; ²Friedrich-Alexander-Universität Erlangen-Nürnberg

11:45 AM

The Effect of Ti:Ta Ratio on the Microstructure and Elemental Phase Partitioning in High Co-Containing Powder-Processed Polycrystalline Ni-Based Superalloys for Turbine Disc Applications: Frances Synnott¹; Paraskevas Kontis²; Lewis Owen¹; Nick Jones³; Howard Stone³; Mark Hardy⁴; Katerina Christofidou¹; ¹University of Sheffield; ²NTNU Norwegian University of Science and Technology; ³University of Cambridge; ⁴Rolls-Royce plc.

MATERIALS SYNTHESIS AND PROCESSING

Powder Materials Processing and Fundamental Understanding — Additive Manufacturing II: Sintering-Based

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, University of Alabama Birmingham; Eugene Olevsky, San Diego State University; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Oak Ridge National Laboratory; Wenwu Xu, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Charles Maniere, CNRS

Wednesday AM | March 26, 2025 105 | MGM Grand

Session Chairs: Elisa Torresani, San Diego State University; Monica Campos, University Carlos Iii De Madrid

8:30 AM

Sustainable Reconditioning of Stainless-Steel Powder via Disk Milling: Zachary Lyon¹; Gerardo Gamboa²; Narendra Dahotre¹; Marcus Young¹; Sameehan Joshi¹; ¹University of North Texas; ²Emerson Electric Co.

8:50 AM

Effects of Powder Morphology and Capillary Phenomena in Liquid Phase Sintering of Binder Jet Additively Fabricated WC-Co Composite: Karnakanti Chaithanya Kumar¹; Mohan Sai Ramalingam¹; Sameehan Joshi¹; Shashank Sharma¹; Narendra Dahotre¹; ¹University of North Texas

9:10 AM

Dimensional and Geometrical Changes During Sintering of Binder Jetted Components: *Elisa Torresani*¹; Thomas Grippi¹; Alberto Cabo Rios²; Marco Zago³; Ilaria Cristofolini³; Alberto Molinari³; Eugene Olevsky¹; ¹San Diego State University; ²Chalmers University of Technology; 3University of Trento

9:30 AM

Microstructural and Mechanical Properties of 6061 Aluminum Alloy Produced Through the Bound-Metal FFF Additive Manufacturing Process: Eric Faierson¹; Benjamin Nelson¹; ¹Iowa State University

9:50 AM Break

10:10 AM

Net Shape Hydroxyapatite Components via 3D-Printing and Sintering: Maryam Ghorbani¹; Elisa Torresani¹; Thomas Grippi¹; Eugene Olevsky¹; ¹San Diego State University

10:30 AM

Powder Alloys for Green Body Printing and Sintering: Yannick Naunheim¹; Christopher A. Schuh²; ¹Massachusetts Institute of Technology; ²Northwestern University

10:50 AM

Sustainable Fe/FexOy for SMCs: Effects of Fe Powder Feedstock, Morphology and Particle Size: Lucia Garcia de la Cruz¹; Paula Alvaredo¹; Monica Campos¹; ¹Universidad Carlos III de Madrid

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Printed Electronics and Additive Manufacturing: Advanced Functional Materials, Processing Concepts, and Emerging Applications — Printed **Electronics IV - Printed Sensors and Devices**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tolga Aytug, Oak Ridge National Laboratory; Pooran Joshi, Elbit Systems of America; Yong Lin Kong, Rice University; Konstantinos Sierros, West Virginia University; Masoud Mahjouri-Samani, Auburn University; Changyong Cao, Case Western Reserve University; Dave Estrada, Boise State University; Ethan Secor, Iowa State University

Wednesday AM | March 26, 2025 361 | MGM Grand

Session Chairs: Masoud Mahjouri-Samani, Auburn University; Yong Lin Kong, Rice University

8:30 AM Invited

Printed Sensors for Extreme Environments: Kiyo Fujimoto¹; Malwina Wilding¹; Michael Mcmurtrey¹; Amey Khanolkar¹; Brian Jagues²; Dave Estrada²; Zhangxian Deng²; ¹Idaho National Laboratory; ²Boise State University

8:55 AM Invited

3D Electronics Fabricated by Synergized Multimaterial Printing and Freeform Laser Induction: Jian Lin1; 1University of Missouri, Columbia

9:20 AM Invited

High-Throughput and Hybrid Printing of Multifunctional Materials and Devices: Yanliang Zhang¹; ¹University of Notre Dame

9:45 AM Break

10:05 AM Invited

Micro Additive Manufacturing of Functional Hydrogels: Xiangfan Chen1; 1Arizona State University

10:30 AM Invited

Printing Multifunctional Hydrogel Devices with Tunable Adhesion and Stretchability for Human-Machine Interfaces: Yifan Wang¹; ¹Nanyang Technological University

MATERIALS SYNTHESIS AND PROCESSING

Rare Metal Extraction & Processing — Rare Earth **Elements and Other Rare Metals Extraction**

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Kerstin Forsberg, KTH Royal Institute of Technology; Athanasios Karamalidis, Pennsylvania State University; Takanari Ouchi, University of Tokyo; Gisele Azimi, University of Toronto; Shafiq Alam, University of Saskatchewan; Neale Neelameggham, IND LLC; Alafara Baba, University of Ilorin; Hong Peng, University of Queensland; Hojong Kim, Pennsylvania State

Wednesday AM | March 26, 2025 104 | MGM Grand

Session Chairs: Kerstin Forsberg, KTH Royal Institute of Technology; Athanasios Karamalidis, Pennsylvania State University; Takanari Ouchi, University of Tokyo

8:30 AM Keynote

Challenges in Recycling of Rare Earth Elements Containing Permanent Magnets: Bengi Yagmurlu¹; ¹Technical University of Clausthal

8:50 AM

Microstructural Observation on NdFeB Magnets Pretreatments: Kwangsuk Park¹; Bosung Seo¹; Eun Bin Cha¹; ¹Korea Institute of Industrial Technology

9:10 AM

A Novel Oxidative Leaching of NdCeFeB Magnets for Selective Recovery of Rare Earth Elements: Venkata Lakshmi Borra¹; Thupakula Ghana Visarada²; Prakash Venkatesan³; Mehmet Ali Recai Onal⁴; Chenna Rao Borra¹; ¹Indian Institute of Technology Kharagpur; ²TATA Steel Ltd.; ³Universite libre de Bruxelles; ⁴Genomines

9:30 AM

Sustainable Hydrometallurgical Rare Earth Eements Recovery from Waste NdFeB Magnet: Huseyin Eren Obuz1; Bengi Yagmurlu1; ¹TU Clausthal

9:50 AM

Recycling Rare Earth Permanent Magnets via Liquid Magnesium **Leaching and Distillation**: Emmanuel Opoku¹; Chinenye Chinwego¹; Adam Powell¹; Brajendra Mishra¹; ¹Worcester Polytechnic Institute

10:10 AM Break

10:30 AM

Sustainable Supercritical Fluid Extraction of Rare Earth Elements from Canadian Ores: A Cleaner Technology for Resource Recovery: Gisele Azimi¹; Maziar Sauber²; Sicheng Li¹; Maxwell Etherington-Rivas¹; ¹University of Toronto; ²NRCan, Canmeet MINING

Extraction of Rare Earth Elements from Bastnasite Ore, and Separation of Heavy REEs and Light REEs by Solvent Extraction: Sevki Samet Kaplan¹; Mehmet Seref Sonmez¹; Martina Petranikova²; ¹Istanbul Technical University; ²Chalmers University of Technology

11:10 AM

Preparation of High-Grade Sodium Tungstate from a Wolframite Ore for Catalytic Applications by Hydrometallurgical Process: Alafara Baba¹; Sadisu Girigisu²; Abdullah Ibrahim³; Fausat Akanji⁴; Folahan Adekola¹; ¹University of Ilorin; ²Federal Polytechnic, Offa; ³Federal Polytechnic, Aiyede; ⁴SHEDA Science and Technology Complex

11:30 AM

Design of a Process Route to Recover Antimony Ore Concentrate from the Sand Residue of Nigeria Ondo Tar Sand: Samson Adegbola¹; Ayodele Daniyan¹; Abraham Adeleke¹; Rukayat Akande¹; Simeon Ibitoye¹; Kunle Oluwasegun¹; ¹Obafemi Awolowo University

MATERIALS SYNTHESIS AND PROCESSING

Recent Advances in Titanium Science and Technology: MPMD/SMD Symposium Honoring Professor Dipankar Banerjee — Dwell Fatigue in **Titanium Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of North Texas; Abhishek Sharma, University of North Texas; Adam Pilchak, Pratt & Whitney; Rajarshi Banerjee, University of North Texas; Yunzhi Wang, Ohio State University

Wednesday AM | March 26, 2025 107 | MGM Grand

Session Chairs: Tresa Pollock, University of California - Santa Barbara; Hamish Fraser, Ohio State University

8:30 AM Invited

Opening Remarks to the MPMD/SMD Symposium Honoring Dipankar Banerjee: James Williams¹; ¹The Ohio State University

9:00 AM Invited

Insights on Dwell Fatigue from In-Situ and 3D Microstructural Investigations: Joe Wendorf¹; Madeline Vailhe¹; McLean Echlin¹; Jean Charles Stinville²; Samuel Hemery³; *Tresa Pollock*¹; ¹University of California - Santa Barbara; ²University of Illinois; ³Institute P'Prime Ecole Nationale Supérieure de Mécanique et d'Aérotechnique

9:30 AM Invited

Advances in Understanding Cold Dwell Fatigue in Titanium Alloys: Vasisht Venkatesh1; Adam Pilchak1; David Furrer1; Sergei Burlatsky2; ¹Pratt & Whitney; ²RTX Technology Research Center

10:00 AM Break

10:20 AM Invited

Dwell Fatigue Deformation Studies in Ti-6246 Alloy: Yukthesh Venkat Surisetti¹; Vasisht Venkatesh²; Michael Mills¹; G. Babu Viswanathan1; 1Ohio State University; 2Pratt & Whitney

10:50 AM Invited

Microstructural Dependence of Dwell Fatigue in Titanium Alloys: Satyam Suwas¹; S. Tejanath Reddy¹; ¹Indian Institute of Science

A Mechanism-Based Model for Fatigue Life Prediction of Titanium Alloys: Adam Pilchak1; Michael Schiavone1; 1Pratt & Whitney

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Refractory Metals 2025 — RHEA and Molybdenum

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Matthew Osborne, Global Advanced Metals; Paul Rottmann, University of Kentucky; Gianna Valentino, University of Maryland

Wednesday AM | March 26, 2025 168 | MGM Grand

Session Chair: Matthew Osborne, Global Advanced Metals

8:30 AM Invited

Refractory Alloy Microstructure Development with Processing Variations: Amy Clarke1; 1Los Alamos National Laboratory

9:10 AM

High-Throughput Design, Synthesis, and Characterization of Refractory Multi-Principal Element Alloys (MPEAs): Cafer Melik Ensar Acemi¹; Eli Norris¹; Brent Vela¹; Raymundo Arroyave¹; Ibrahim Karaman¹; ¹Texas A&M University

New Microscopic Insights on the High Temperature Deformation Mechanisms in Refractory Metals and Alloys: Mo-Rigen He¹; Sharon Park¹; Michael Patullo¹; Kevin Hemker¹; ¹Johns Hopkins University

9:50 AM Break

10:10 AM Invited

Creep Resistant Refractory Multiple-Principal-Element Alloy: Gaoyuan Ouyang¹; Prashant Singh¹; Hailong Huang¹; Nicolas Argibay¹; Matthew Kramer¹; Duane Johnson²; Jun Cui²; ¹Ames Laboratory; ²lowa State University

10:40 AM

The Development of New Thermodynamic Databases for Niobium and Molybdenum Alloys: Liangyan Hao1; Weiwei Zhang1; Paul Mason¹; ¹Thermo-Calc Software Inc.

11:00 AM

Microstructure and Mechanical Properties of a Mo-Si-B-Ti Alloy Manufactured by Laser Powder Bed Fusion: Longfei Liu1; Liam Wood¹; Phalgun Nelaturu¹; Dan Thoma¹; John Perepezko¹; ¹University of Wisconsin-Madison

MATERIALS SYNTHESIS AND PROCESSING

REWAS 2025: Sustainable Practices in Strategic and Critical Raw Materials: Exploring Supply Chain Resilience and Recycling Innovations — Uncovering the Circular Supply of Strategic and Critical Metals

Sponsored by: TMS Extraction and Processing Division, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Mertol Gokelma, Izmir Institute of Technology; Adamantia Lazou, National Technical University of Athens; Christina Meskers, SINTEF; Elsa Olivetti, Massachusetts Institute of Technology

Wednesday AM | March 26, 2025 117 | MGM Grand

Session Chair: Edzhe Soylu, Norwegian University of Science and Technology

8:30 AM Introductory Comments

8:35 AM Invited

Low-Cost High Throughput Solution for Creating a Supply Chain of CMMs from E-Waste Using Artificial Intelligence: Isha Maun¹; Nalin Kumar¹; Kanishka Tyagi¹; ¹UHV Technologies Inc

From Waste to High-Purity Silicon: Refining of Silicon by Directional Solidification and Crystal Pulling Method: Katarina Jakovljevic1; Eivind Johannes Øvrelid²; Nagarajan Somi Ganesan²; Pål Tetlie²; Casper Van der Eijk²; Maria Wallin¹; Gabriella Tranell¹; ¹Norwegian University Of Science And Technology; 2SINTEF Industry

Opportunities for Cerium Valorization in the Rare Earth Supply Chain: Alfred Amon1; Scott McCall1; 1Lawrence Livermore National Laboratory

9:45 AM

Rare Earth Metals Production Through Metallothermic Reduction: Preparation of Anhydrous Salt and Reduction Using Sodium Metal: Himanshu Tanvar¹; Diana Aksenova²; Jared Gordon²; Richard VanLieshout²; Philip Keller³; Brock O'Kelley⁴; Andrew Matheson⁵; Jon Siddall⁵; Brajendra Mishra¹; ¹Worcester Polytechnic Institute; ²Creative Engineers, Inc.; ³Energy Fuels Resources Inc.; ⁴Fiftyseven71 rare earth consulting; 5Nanoscale Powders

10:05 AM Break

10:25 AM

Investigating Niobium Coating Removal Techniques from Tool Steel Substrates: Akanksha Gupta1; Brajendra Mishra2; 1Worcester Polytechnic Institute; ²Worcester Polytechnic Institute

10:45 AM

Screening Alternative Sources of Critical Metals via Alkaline Fusion: The Effect of Flux on Digestion Efficiency: Vikram Kumar¹; John Scott¹; Linduo Zhao¹; Margarita Bargon¹; Aniruddha Baral¹; Jeffery Roesler¹; Brajendra Sharma²; Nishant Garg¹; ¹University of Illinois Urbana-Champaign; ²US Department of Agriculture

LIGHT METALS

Scandium Extraction and Use in Aluminum Alloys — **Aluminum Scandium Alloys I**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Timothy Langan, Sunrise Energy Metals; Les Edwards, Rain Carbon Inc.

Wednesday AM | March 26, 2025 110 | MGM Grand

Session Chair: Timothy Langan, Sunrise Energy Metals

8:30 AM Introductory Comments

8:35 AM Invited

L12-Strengthened Aluminum Alloys for Conventional and Additive Manufacturing: Amir Farkoosh¹; David Dunand¹; David Seidman²; ¹Northwestern University; ²Northwestern University; Northwestern University Center for Atom-Probe Tomography (NUCAPT)

9:25 AM

Precipitation Behaviour in Al-Cu-Li Alloys Containing Sc And Zr: Lu Jiang¹; Katrin Mester¹; Timothy Langan²; Matthew Barnett¹; Thomas Dorin¹; ¹Deakin University; ²Sunrise Energy Metals

Effect of Sc/Zr and Thermomechanical Processing on the Microstructure and Properties of AA5083 Rolled Products: Ahmed Algendy¹; Paul Rometsch²; X. Grant Chen¹; ¹University of Quebec at Chicoutimi; 2Rio Tinto Aluminum

10:15 AM Break

10:30 AM

The Effect of Sc and Zr Dispersoids on the Final Properties of a 6xxx Series Extrusion Alloy: Eli Harma¹; Paul Sanders¹; ¹Michigan **Technological University**

Study of Precipitates Formed During Solidification and Post-Solidification Stage in Low-Sc Al-Mg-Sc Alloys: Anderson Thadeu Nunes¹; Conrado Ramos Moreira Afonso¹; Jose Spinelli¹; ¹Federal University of Sao Carlos Brazil

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Sciences — Actinide Material Sciences

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Mavrik Zavarin, Lawrence Livermore National Laboratory; Rebecca Abergel, University of California Berkeley; Matthew Watrous, Idaho National Laboratory

Wednesday AM | March 26, 2025 163 | MGM Grand

Session Chair: Assel Aitkaliyeva, University of Florida

8:30 AM

Understanding Irradiation Effect on Thermal Conductivity of UO2, ThO2, U-ThO2: Ella Pek1; Zilong Hua1; Amey Khanolkar1; Saqeeb Adnan²; Shuxiang Zhou¹; Kaustubh Bawane¹; Marat Khafizov²; David Hurley¹; ¹Idaho National Laboratory; ²Ohio State University

9:00 AM

Diffusion in the Uranium-Technetium Binary System: Josephine Libero-Cruzado¹; Rebecca Manns¹; Daniel Koury¹; ¹University of Nevada Las Vegas

9:20 AM

Understanding Radiation Effects on the Thermodynamic Behavior of Aged Pu Alloys: Najeb Abdul-Jabbar¹; Shane Mann¹; Kristen Pace¹; Sarah Hernandez¹; David Wayne¹; Jeremy Mitchell¹; ¹Los Alamos **National Laboratory**

9:40 AM Break

10:00 AM

Probing Phonon Anharmonicity Effects at Elevated Temperatures in Actinide Oxides and Surrogates Using Raman Spectroscopy: Amey Khanolkar¹; Saqeeb Adnan²; Md Minaruzzaman²; Linu Malakkal¹; David Hurley¹; Marat Khafizov²; ¹Idaho National Laboratory; ²The Ohio State University

10:20 AM

Thermal Stability of Aged Plutonium Alloys: Jeremy Mitchell¹; Shane Mann¹; Sarah Hernandez¹; Kristen Pace¹; Najeb Abdul-Jabbar¹; ¹Los Alamos National Laboratory

10:40 AM

Interplay Between Phonon and Magnetic Excitations & its Impact on Low-temperature Thermal Transport in Thorium-uranium Mixed Oxides: Sageeb Adnan¹; Zilong Hua²; Puspa Upreti³; Michael Manley³; David Hurley²; Marat Khafizov¹; ¹Ohio State University; ²Idaho National Laboratory; ³Oak Ridge National Laboratory

Superconductivity in the High Entropy Alloy (NbTa)_{0.67}(MoWTh)_{0.33}. Piotr Sobota¹; Rafal Topolnicki¹; Tomasz Ossowski¹; Tomasz Pikula²; Daniel Gnida³; Rafal Idczak¹; Adam Pikul³; ¹Institute of Experimental Physics, University of Wrocaw; ²Institute of Electronics and Information Technology, Lublin University of Technology; 3Institute of Low Temperature and Structure Research, Polish Academy of Sciences

NUCLEAR MATERIALS

Special Topics in Nuclear Materials: Lessons Learned; Non-Energy Systems; and Coupled Extremes — Lessons Learned in Nuclear Materials **Science**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Charles Hirst, University of Wisconsin-Madison; Timothy Lach, Oak Ridge National Laboratory; Caleb Clement, Westinghouse Electric Company; Stephen Taller, Oak Ridge National Laboratory; Janelle Wharry, University of Illinois; Jason Trelewicz, Stony Brook University

Wednesday AM | March 26, 2025 161 | MGM Grand

Session Chairs: Stephen Taller, Oak Ridge National Laboratory; Janelle Wharry, University of Illinois

8:30 AM Invited

Best Practices for Irradiation Experiment Design For Nuclear Fuels and Materials Research: Richard Howard¹; ¹Oak Ridge National Laboratory

9:00 AM

Energy Dispersive X-Ray Spectroscopy (EDS) Induced Defects and Implantation Induced Impurities in Uranium Nitride (UN) and SIMFUEL Pellets: Elina Charatsidou¹; Maria Giamouridou¹; Nils Wikström²; Robert Frost²; Gyula Nagy²; Petter Ström²; Daniel Primetzhofer²; Pär Olsson¹; ¹KTH Royal Institute of Technology; ²Uppsala University

9:20 AM Invited

Developing a High-Performance Cluster Dynamics Code: Challenges and Lessons Learned: Sophie Blondel¹; Philip Fackler²; Philip Roth²; David Bernholdt²; Brian Wirth¹; ¹University of Tennessee; ²Oak Ridge National Laboratory

9:50 AM Break

10:10 AM

Comparison of Hardening and Microstructures of Structural Alloys Irradiated with Fast Neutrons and Dual Ions: July Reyes-Zacarias1; Stephen Taller²; Steven Zinkle¹; ¹University of Tennessee Knoxville/ Oak Ridge National Laboratory; ²Oak Ridge National Laboratory

10:30 AM

Small Scale Tests, Big Lessons Learned: Eric Lang¹; Brad Boyce²; Khalid Hattar³; ¹University of New Mexico; ²Sandia National Labs; ³University of Tennessee - Knoxville

MECHANICS OF MATERIALS

Structure and Dynamics of Metallic Glasses — **Brittle Versus Plastic Behavior**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Sebastian Kube, University of Wisconsin - Madison; Katharine Flores, Washington University in St. Louis; Daniel Sopu, Erich Schmid Institute; Yonghao Sun, The Chinese Academy of Sciences; A. Lindsay Greer, University of Cambridge; Peter Derlet, Paul Scherrer Institut

Wednesday AM | March 26, 2025 367 | MGM Grand

Session Chair: Daniel Sopu, Erich Schmid Institute

8:30 AM Invited

Are Metallic Glasses Brittle or Ductile?: Jan Schroers1; Sungwoo Sohn1; Ethen Lund1; 1Yale University

Avoiding Annealing-Induced Embrittlement of Metallic Glasses: A. Lindsay Greer¹; ¹University of Cambridge

9:15 AM Invited

Improvement of Brittleness by Tailoring a Glassy State Distribution in a Monolithic Metallic Glass Through Thermal Process: Rui Yamada¹; Wookha Ryu²; Haruka Isano¹; Tomohiro Yoshikawa¹; Keisuke Tabaru¹; Junji Saida¹; ¹Tohoku University; ²Seoul National University

9:40 AM

Mitigating Relaxation-Induced Embrittlement in Metallic Glasses with Multi-Component Microalloying: Miguel Costa¹; Owain Houghton¹; A. Lindsay Greer¹; ¹University of Cambridge

10:00 AM Break

10:20 AM Invited

Reaching the Yield Point of a Glass During X-Ray Irradiation: Giulio Monaco1; 1University of Padova

10:45 AM Invited

Heterogeneity and Its Roles in Hardening and Toughening of Metallic Glasses: Mo Li¹; ¹Georgia Institute of Technology

11:10 AM Invited

Rejuvenation of Metallic Glass Through Memory Effect in the Relaxed Fe Based Amorphous Alloys: Yi Li1; 1Shenyang National Laboratory For Materials Science

MATERIALS SYNTHESIS AND PROCESSING

Sustainability of High Temperature Alloys — Rethink

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Mark Hardy, Rolls-Royce Plc; Caspar Schwalbe, MTU Aero Engines AG; Jeremy Rame, Naarea; Benjamin Adam, Oregon State University; Jonah Klemm-Toole, Colorado School of Mines; Martin Detrois, National Energy Technology Laboratory; Katerina Christofidou, University of Sheffield

Wednesday AM | March 26, 2025 102 | MGM Grand

Session Chairs: Mark Hardy, Rolls-Royce Plc; Jeremy Rame, Naarea; Katerina Christofidou, University of Sheffield; Jonah Klemm-Toole, Colorado School of Mines

9:00 AM Introductory Comments

9:05 AM

Effects of Fe Substitution on CoNi-Based Superalloys: Steffen Neumeier¹; Andreas Bezold²; Mathias Göken¹; ¹University of Erlangen Nuernberg; ²The Ohio State University

9:30 AM

Simulation of the Mechanical Behavior During Solidification and Possible Recrystallization During Heat Treatment Stages of a Nickel-Based Single-Crystal Superalloys: Louise Grau¹; Jonathan Cormier²; Patrick Villechaise²; Besnik Sadriji³; Florent Mauget²; ¹Safran Aircraft Engines - Institut Pprime; ²Institut Pprime; ³Safran Aircraft Engines

9:50 AM

Relationship Between Manufacturing Parameters and Creep Performance of Inconnel718 Fasteners: Cyril Lavogiez1; Josselin Paturaud¹; Gildas Boleis²; ¹R&D LISI Aerospace; ²BAT - LISI Aerospace

10:10 AM Break

Frequency and Directionality of the Onset of Heteroepitaxial Recrystallization: Yonguk Lee¹; Victoria Miller¹; ¹University of Florida

10:50 AM

Temperature and Size Dependent Mechanical Properties of Additively Manufactured GRX-810: Mehrdad Pourjam1; Gabriel Demeneghi²; Danial Salehi¹; Paul Gradl²; Kavan Hazeli¹; ¹University of Arizona; 2National Aeronautics and Space Administration

11:10 AM

Novel Environmentally Friendly Cr-Si Slurry Coatings for Turbine Applications: Michael Kerbstadt1; Emma Marie White1; Kan Ma2; Alexander Knowles²; Mathias Christian Galetz¹; ¹Dechema-Forschungsinstitut; ²University of Birmingham

MATERIALS SYNTHESIS AND PROCESSING

Thin Films and Coatings: Properties, Processing and Applications — Thin Films for Nanotechnology and **Electronics I**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tomas Grejtak, Oak Ridge National Laboratory; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Tomas Babuska, Sandia National Laboratories; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, Is2m; Brandon Krick, Florida A&M University-Florida State University

Wednesday AM | March 26, 2025 101 | MGM Grand

Session Chairs: Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Karine Mougin, CNRS, Is2m; Tomas Grejtak, Oak Ridge National Laboratory

8:30 AM Invited

Spectro-Microscopy of the Local Chemistry and Structure of Thin Films: Jerzy Sadowski¹; ¹Brookhaven National Laboratory

9:00 AM

Effect of Sol-Gel-Based Dielectric Coatings on Silicon Radiative Properties: Sufian Abedrabbo¹; Ali Abdullah¹; Anthony Fiory²; Nuggehalli Rvindra³; ¹Khalifa University; ²Integron Solutions LLC.; ³New Jersey Institute of Technology

9:20 AM

A New Electrochemical Sensor for Lithium Hexafluorophosphate **Detection**: Karine Mougin¹; Wejden Gongi¹; ¹Cnrs, Is2m

Low-Cost Chemical Deposition Techniques of Various Thin Films onto Various Substrates with Enhanced Properties: Nicole Ray1; Alexander Rouhani²; ¹Arizona State University; ²Rayn Innovations

10:00 AM Break

10:20 AM

2D Simulation of Silicon Solar Cells: Allyson Tarifa1; Nuggehalli Ravindra¹; ¹New Jersey Institute of Technology

10:40 AM

Charge Redistribution Around Threading Dislocations in III-Nitride Epilayers: Roman Groger¹; Jan Fikar¹; ¹Institute of Physics of Materials, Czech Academy of Sciences

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

2D Materials - Preparation, Properties, Modeling & Applications — Preparation, Properties, Modeling & Simulation IV

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Hesam Askari, University of Rochester; Ritesh Sachan, Oklahoma State University; Joshua Young, New Jersey Institute of Technology; Sufian Abedrabbo, Khalifa University; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Chintalapalle V Ramana, University of Texas

Wednesday PM | March 26, 2025 362 | MGM Grand

Session Chairs: Nuggehalli Ravindra, New Jersey Institute of Technology; Hesam Askari, University of Rochester

2:00 PM Introductory Comments

2:10 PM Invited

Ultrafast Synchrotron X-Ray Imaging and Multiphysics Modelling of Ultrasound Assisted Liquid Phase Exfoliation in Viscous Fluids: Ling Qin1; Jiawei Mi2; 1University of Wyoming; 2University of Hull

2:30 PM Invited

Understanding Defects and Dopants in 2D Materialsy Coupling Ab-Initio Calculations with Experiments: Richard Hennig¹; Preston Vargas¹; Luke Holtzman²; Anne Marie Tan³; Biswas Rijal¹; Christoph Freysoldt⁴; Bruno Schuler⁵; Joshua Robinson⁶; Katayun Barmak²; ¹University of Florida; ²Columbia University; ³Institute of High Performance Computing; 4Max Planck Institute for Sustainable Materials; 5Swiss Federal Laboratories for Materials Science and Technology; ⁶Pennsylvania State University

2:50 PM Invited

Wafer-Scale Epitaxial MoS2 Monolayers Grown by Metalorganic Chemical Vapor Deposition: Effects of Growth Temperature and Pre-Growth Annealing: Chen Chen1; Nicholas Trainor1; Shalini Kumari¹; Henrik Myja²; Tilmar Kümmell²; Zhiyu Zhang¹; Yuxi Zhang¹; Anuj Bisht³; MuhtasimUl Sadaf¹; Najam Sakib¹; Ying Han¹; Thomas McKnight¹; Andrew Graves¹; Meghan Leger¹; Nicholas Redwing¹; Myeongok Kim⁴; Dorota Kowalczyk⁵; Gerd Bacher²; Nasim Alem¹; Yang Yang¹; Saptarshi Das¹; Joan Redwing¹; ¹Penn State University; ²University of Duisburg-Essen; ³Indian Institute of Technology Kharagpur; ⁴The University of Tokyo; ⁵University of Lodz

Wafer-Scale Integration and Extraordinary Functional Properties of Q-Carbon Thin Films: Naveen Narasimhachar Joshi¹; Pranay Kalakonda¹; Roger Narayan¹; Jagdish Narayan¹; ¹North Carolina State University

3:30 PM Break

3:40 PM

CO2 Capture Using Zeolitic Imidazolate Frameworks: Jamal Oyegoke¹; Obembe Oluwafunke²; Ikhazuagbe Ifijen³; Gregory Onaiwu4; Bala Anegbe5; Joshua Onaifo6; Akinola Olugbemide7; Danjuma Ibrahim³; ¹Sam Houston State University; ²Universite Paris-Cite; ³Rubber Research Institute of Nigeria; ⁴Benson Idahosa University; 5Western Delta University; 6Ambrose Ali University; 7Auchi Polytechnic

4:00 PM Invited

Toward Industrial Production of Linde Type A Zeolite for Various Applications from Nigerian Kaolin Deposit: A First Attempt at Investigation of Process Variables: Abdulsalami Kovo1; Raheed Agava²; Memunat Yusuf²; ¹Federal University of Technology; ²National Agency for Science and Engineering Infrastructure

MECHANICS OF MATERIALS

Accelerated Discovery and Insertion of Next Generation Structural Materials — Accelerated Discovery of High Temperature Alloys

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Soumya Nag, Oak Ridge National Laboratory; Andrew Bobel, General Motors Corporation; Bharat Gwalani, North Carolina State University; Jonah Klemm-Toole, Colorado School of Mines; Antonio Ramirez, Ohio State University; Matthew Steiner, University of Cincinnati; Janelle Wharry, University of Illinois

Wednesday PM | March 26, 2025 364 | MGM Grand

Session Chairs: Soumya Nag, Oak Ridge National Laboratory; Jonah Klemm-Toole, Colorado School of Mines

2:00 PM Invited

Accelerated Development of Co-Based Superalloys for High Temperature Applications: Whitney Tso1; Carelyn Campbell2; David Seidman¹; ¹Northwestern University; ²National Institute of Standards and Technology

High Entropy Alloys to High Entropy Conventional Alloys: Saurabh Nene¹; A. Dutta¹; A. Balpande¹; D. Mishra¹; ¹Indian Institute of Technology Jodhpur

2:50 PM

Modeling of Microstructural Effects on Mechanical Properties of High Entropy Alloys at Mesoscale: Thomas Ralph¹; Manish Vasoya²; Vahid Attari¹; Dimitris Lagoudas¹; ¹Texas A&M University; ²Rutgers University

3:10 PM

Structural, Mechanical and Electronic Properties of BCC Refractory Binary Alloys: Surya Bijjala¹; Susan Atlas¹; Pankaj Kumar¹; ¹University of New Mexico

ADDITIVE MANUFACTURING

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials - Innovative Materials, Processing and Characterization

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Magnetic Materials Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Henry Colorado, Universidad de Antioquia; Riccardo Casati, Politecnico Di Milano

Wednesday PM | March 26, 2025 350 | MGM Grand

Session Chair: Henry Colorado, Universidad de Antioquia

2:00 PM Invited

Melt Mixing and Element Vaporization During Laser Powder **Directed Energy Deposition**: Joerg Volpp¹; ¹University West

Mechanistic Insights into Ultrasonic Atomization and Grain Refinement Via Cavitation-Induced Shock Waves: Abhinav Priyadarshi¹; Lukasz Zrodowski²; James Broughton¹; Dmitry Eskin³; lakovos Tzanakis¹; ¹Oxford Brookes University; ²Amazemet Sp. z o.o.; ³Brunel University London

2:50 PM

Tailoring the Transition Microstructure of Bimetallic Builds Via Additive Manufacturing with High-Intensity Ultrasound: Xianqiang Fan1; Harry Chapman1; Catherine Tonry2; Ivars Krastins2; Kai Zhang1; Sebastian Marussi¹; Samuel Clark³; Alexandar Rack⁴; Chu Lun Alex Leung¹; Andrew Kao²; Peter Lee¹; ¹University College London; ²University of Greenwich; ³X-ray Science Division, Argonne National Laboratory; 4ESRF-The European Synchrotron

Unravelling Particle-Melt Pool Impact Dynamics and In-Flight Laser-Powder Stream Interaction in Laser Directed Energy Deposition Process: Akash Aggarwal¹; Roland Richter¹; Jian Yang¹; Karol Kuglarz¹; Marc Leparoux¹; Otto Lippmann²; G. Abreu-Faria²; Chrisitian Leinenbach¹; ¹Empa - Swiss Federal Laboratories for Materials Science and Technology; ²Helmholtz Centre Hereon, Institute of Materials Physics

3:30 PM Break

3:45 PM

Powder Flow Characterization with the Powder Spreading Testbed (PST): Aniruddha Das1; Jesse Redford1; Eric Whitenton1; 1NIST

Damage Tolerance in Heterogeneous Carbide Ceramics Produced via Multi-Material Additive Manufacturing: Marc Meyers¹; Joshua Pelz²; Nicholas Ku³; Jeffrey Swab³; Matthew Guziewski³; Lionel Gonzalez3; Samuel Figueroa1; Taylor Shoulders3; 1University of California, San Diego; ²Limber Prosthetics; ³US Army Research Laboratory

Modeling Electrospray of Water and Liquid Metals: Amanda Smith¹; Robert Hyers²; ¹Worcester Polytechnic Institute; ²Worecester Polytechnic Institute

4:45 PM

Directed Energy Deposition of Heterostructed Steels for Optimal Mechanical Properties: Xiao Shang1; Soumya Dash1; Tianyi Lyu1; Haitao Wen¹; Evelyn Li¹; Yu Zou¹; ¹University Of Toronto

Additive Manufacturing Modeling, Simulation and Machine Learning — Modeling of AM Properties and Microstructures I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Jing Zhang, Purdue University; Li Ma, Johns Hopkins University Applied Physics Laboratory; Charles Fisher, Naval Surface Warfare Center - Carderock; Brandon McWilliams, US Army Research Laboratory; Yeon-Gil Jung, Changwon National University

Wednesday PM | March 26, 2025 311 | MGM Grand

Session Chairs: Li Ma, Johns Hopkins University Applied Physics Laboratory; Charles Fisher, Naval Surface Warfare Center -Carderock, Jing Zhang, Purdue University

2:00 PM

Accelerating Crystal Plasticity Fatigue Simulations of Additively Manufactured Metals Using the "Materialize" Framework: George Weber¹; Joshua Pribe²; Brodan Richter¹; Saikumar Yeratapally³; Patrick Leser¹; Andrew Kitahara²; Somnath Ghosh⁴; Edward Glaessgen¹; ¹NASA Langley Research Center; ²Analytical Mechanics Associates; ³Science and Technology Corporation; ⁴Johns Hopkins University

2:20 PM

Modeling Fatigue Crack Initiation and Propagation Life in Additively Manufactured Alloys Across Fatigue Regimes: Krzysztof Stopka¹; Michael Sangid¹; ¹Purdue University

2:40 PM

Revisiting the Stefan Problem for Accurate AM Modeling: Dilip Banerjee¹; ¹National Institute of Standards and Technology

Thermo-Mechanical Modeling and Validation of Residual Stress During Metal Laser Powder Bed Fusion and Post-Build Stress Relief Heat Treatment Processes: Prataprao Patil¹; Alon Mazor¹; Bartlomiej Pielacha²; Yan Gao¹; ¹GE Aerospace Research; ²GE Aerospace

3:20 PM

Preventing Substrate Distortion Using Hybrid Additive and Subtractive Approach: Wen Dong¹; Blane Fillingim¹; Bhagya Prabhune¹; Lauren Heinrich¹; Thomas Feldhausen¹; Srdjan Simunovic¹; Yousub Lee¹; ¹Oak Ridge National Laboratory

3:40 PM Break

4:00 PM

Modeling and Simulation of the Shock Response of Additively Manufactured High-Performance Steel: Benoit Revil-Baudard1; Oana Cazacu¹; Peter Sable²; Sujeily Soto-Medina³; ¹University of Arizona; ²Sandia National Lab; ³Air Force Research Laboratory

4:20 PM

Microstructure Evolution and the Influence on Material Properties in Additive Manufacturing: Wei Huang1; 1Georgia Institute of Technology

ADDITIVE MANUFACTURING

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response — Iron, Nickel, and Aluminum-Based Alloys II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sezer Ozerinc, University of Illinois at Urbana-Champaign; Yu Zou, University of Toronto; Tianyi Chen, Oregon State University; Wendy Gu, Stanford University; Eda Aydogan, Pacific Northwest National Laboratory; Keivan Davami, University of Alabama

Wednesday PM | March 26, 2025 310 | MGM Grand

Session Chairs: Keivan Davami, University of Alabama; Eda Aydogan, Pacific Northwest National Laboratory

2:00 PM Invited

High-Throughput Nanomechanical Evaluation of Fe-Ni-Cr Alloys at Cryogenic Temperatures: Samantha Manness¹; Jeff Wheeler²; Joerg Loeffler³; David Dunand¹; ¹Northwestern University; ²FemtoTools AG; 3ETH

2:40 PM

In Situ HRDIC-EBSD Analysis of the Deformation Mechanisms of a Zn-1wt%Mg Alloy Manufactured by Laser Power Bed Fusion: Nafiseh Mollaei¹; Alireza Rezaei²; Mónica Echeverry-Rendón²; Federico Sket²; Jon Molina-Aldareguía¹; Javier Llorca¹; ¹IMDEA Materials Institute & Technical University of Madrid; ²IMDEA Materials Institute

3:00 PM

Analytical Additive Manufacturing for Microstructure Evolution and the Influence on Mechanical Behavior: Wei Huang¹; ¹Georgia Institute of Technology

3:20 PM

Enhanced High-Temperature Performance of LPBF-Produced Inconel 718 Alloy through δ -phase control: Hyokyung Sung¹; Sangyeol Ha²; Won-Seok Ko³; Jae Bok Seol¹; ¹Kookmin University; ²Myongji University; ³Inha University

3:40 PM Break

4:00 PM Invited

High-Temperature Behavior, Ductility Loss, and Deformation Mechanisms Transition in Additively Manufactured Haynes 214: Kavan Hazeli1; 1University of Arizona

Comparative Study of Mechanical Properties and Deformation Mechanisms in Additively Manufactured Ti-6Al-4V and Ti-5Al-5V-5Mo-3Cr Alloys in Lattice Structure Topologies: Mehrdad Pourjam¹; Danial Salehi¹; Thomas Voisin²; Kavan Hazeli¹; ¹University of Arizona; ²Lawrence Livermore National Laboratory

Understanding and Predicting the Deformation Behavior and Failure Modes in Micro-Architected Materials with Gyroid **Topologies**: Holly Carlton¹; James Bellino¹; Jonathan Lind¹; Brandon Zimmerman¹; Mukul Kumar¹; ¹Lawrence Livermore National Laboratory

Additive Manufacturing: Marine Materials and Structures — Adoption of Additive Manufacturing in the Marine Sector / Challenges of Additive Manufacturing in the Marine Industry

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Mohsen Mohammadi, University Of New Brunswick; Meysam Haghshenas, University Of Toledo; Charles Fisher, Naval Surface Warfare Center - Carderock

Wednesday PM | March 26, 2025 315 | MGM Grand

Session Chairs: Mohsen Mohammadi, University Of New Brunswick; Meysam Haghshenas, University of Toledo

2:00 PM Keynote

Delivering on the Promise of Large-Scale Metal AM: D. Mark Douglass¹; Ben Schaeffer¹; ¹Lincoln Electric

Additive Friction Stir Deposition: A Novel Approach for Marine Alloys Fabrication: Mandana Meisami Azad¹; Edward Colvin¹; John Beatty¹; ¹MELD Manufacturing

Dislocation--Precipitate Interactions in Wire-Arc Additive Manufactured Nickel Aluminum Bronze Alloy Through Micro-Pillar **Deformation**: Faizan Hijazi¹; Mostafa Omar¹; Justin Norkett²; Charles Fisher²; David Rowenhorst³; Jaafar El Awady¹; ¹Johns Hopkins University; ²Naval Surface Warfare Center, Carderock Division; ³U.S. Naval Research Laboratory

3:40 PM Break

4:00 PM

Additive Manufacturing For Maritiem Industry: Dipak Banerjee1; Ashok Kumar¹; ¹Welspun Tubular INc

Influence of Build Direction and Part Size on the Microstructure and Mechanical Properties of 3D Printed 316 Stainless Steel: Chase Gesteland¹; Andrew Lewis²; Randall Doles²; David Boch²; Donald Tezbir²; Jonathan Ruffley²; Grace Gu¹; Peter Hosemann¹; ¹University of California, Berkeley; ²Naval Nuclear Laboratory

High-Temperature Mechanical Properties of Wire Directed Energy Deposited Commercially Pure Titanium: Blanca Palacios¹; Sohail M.A.K. Mohammed¹; Tanaji Paul¹; Aleksander Aleman¹; Sean Langan²; Arvind Agarwal¹; ¹Florida International University; ²Solvus Global LLC

Microstructure-Property Relationships of Wire-Arc Additively Manufactured 2205 Duplex Stainless Steels: Grant Johnson¹; Moon Tan²; Mikhail Khrenov²; Michelle Hobdari²; Maria Quintana¹; Sougata Roy¹; Sneha Narra²; Peter Collins¹; ¹Iowa State University; ²Carnegie Mellon University

ADDITIVE MANUFACTURING

Additive Manufacturing: Microstructural and Mechanical Long-Term Stability of AM Materials — Effects of Postprocessing: HIP

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee

Program Organizers: Benjamin Adam, Oregon State University; Jonah Klemm-Toole, Colorado School of Mines; Sneha Prabha Narra, Carnegie Mellon University; John Carpenter, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Emma White, DECHEMA Forschungsinstitut; Sudarsanam Babu, University of Maryland; Markus Chmielus, University of Pittsburgh

Wednesday PM | March 26, 2025 302 | MGM Grand

Session Chairs: Benjamin Adam, Oregon State University; Jonah Klemm-Toole, Colorado School of Mines; Markus Chmielus, University of Pittsburgh

2:00 PM

Microstructure Evolution and Creep Property of Laser Powder Bed Fused Hypereutectic Al-16Ce-1Mg Alloy: Haijian Yang¹; Thinh Huynh²; Yongho Sohn²; David Weiss³; Le Zhou¹; ¹Marquette University; ²University of Central Florida; ³Vision Materials

Electroplated Laser-Powder Bed Fusion and Bound Powder Extrusion Additive Manufactured 17-4 Stainless Steel: Natalia Saiz1; Benjamin White¹; Tylan Watkins¹; ¹Sandia National Laboratories

2:40 PM

Effect of In-Situ Laser Remelting on Microstructural Evolution and Anisotropy in SS316L from Laser Directed Energy Deposition: Rajendra Hodgir¹; Ramesh Singh¹; Soham Mujumdar¹; ¹IIT Bombay

3:00 PM

Directed Energy Deposition of Modified PH 13-8 Mo Powder: Microstructure and Tensile Properties: Gokce Aydin¹; Fabian Hanning¹; Joel Andersson¹; Maria Asuncion Valiente Bermejo¹; ¹University West

3:20 PM Break

3:40 PM

Characterization of Build Parameters and Microstructure in Low Heat Input WA-DED of Ni-Based Superalloy Haynes 282: Benjamin Adam¹; Luis Pizano²; Rui Feng³; Robert Turpin¹; Graham Tewksbury¹; Chantal Sudbrack³; Wei Xiong²; ¹Oregon State University; ²University of Pittsburgh; 3National Energy Technology Lab

4:00 PM

Effect of Hot Isostatic Pressing and Solution Treatment on Recrystallisation of Haynes 282 Built with Laser Powder Bed Fusion: Kameshwaran Swaminathan¹; Joel Andersson¹; ¹University

4:20 PM

Hot Deformation Behavior of Additively Manufactured Ti-6Al-4V: Hanna Czarise Regidor, Jubert Pasco¹, Kudakwashe Nyamuchiwa¹, Candy Mercado²; Clodualdo Aranas¹; ¹University of New Brunswick; ²University of the Philippines

Ti-6Al-4V L-PBF Lattices Compression Testing: Shahrooz Nafisi¹; John Arputharaj¹; Reza Ghomashchi¹; ¹University of Adelaide

Additive Manufacturing: Incorporating **Breakthrough Functionalities for Building Large** Scale Components — Functionally Graded and **Multimaterials**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee

Program Organizers: Jonah Klemm-Toole, Colorado School of Mines; Soumya Nag, Oak Ridge National Laboratory; John Carpenter, Los Alamos National Laboratory; Sougata Roy, Iowa State University; Peeyush Nandwana, Oak Ridge National Laboratory; Sneha Prabha Narra, Carnegie Mellon University; Lang Yuan, University of South Carolina, Andrzej Nycz, Oak Ridge National Laboratory, Yousub Lee, Oak Ridge National Laboratory, Alex Kitt, Edison Welding Institute; Albert To, University of Pittsburgh; Yashwanth Kumar Bandari, FasTech LLC

Wednesday PM | March 26, 2025 301 | MGM Grand

Session Chairs: Jonah Klemm-Toole, Colorado School of Mines; Sougata Roy, Iowa State University

2:00 PM Invited

Melt Pool Monitoring in Functionally Gradient Materials Using Directed Energy Deposition: Clayton Perbix1; Ariel Gluck1; Joy Gockel¹; ¹Colorado School of Mines

2:40 PM

Testing of Multi-Material Interfaces Produced by Laser Powder Bed Fusion Using a Powder Binning Approach: Suyash Niraula1; Justin Gillham¹; Naiyer Shokri¹; Thomas Berfield¹; ¹University of Louisville

3:00 PM

Multi-Material Fabrication and Part Repair with Powder Directed **Energy Deposition Additive Manufacturing**: *Justin Gillham*¹; Thomas Berfield¹; ¹University of Louisville AMIST

3:20 PM

Notch Strengthening of Powder-DED Processed 316L Stainless Steel with Inconel 718: Kenneth DeGarmo¹; Dwight Smith²; Calvin Stewart¹; ¹The Ohio State University; ²Nidec Machine Tool America

3:40 PM Break

4:00 PM Invited

Large-Scale Additive Manufacturing of Alternating Dissimilar Aluminum Alloys via Additive Friction Stir Deposition: Hang Yu1; ¹Virginia Polytechnic Institute And State University

4:40 PM

From Material Research to Industrial Application: Advanced Fabrication of FGM/Bimetallic Using DED Method with C103 and Ti-6Al-4V for Rocket Nozzle Extension: Jihyun Jang¹; Seokjin Shin¹; Minseong Kim¹; Jihun Kim¹; Seunghwan Lim¹; Hanzu Haller¹; ¹InssTek

BIOMATERIALS

Advanced Biomaterials for Biomedical Implants — Advanced Hard-Tissue Alloy Implants

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Fariborz Tavangarian, Penn State; Vinoy Thomas, University of Alabama at Birmingham

Wednesday PM | March 26, 2025 308 | MGM Grand

Session Chair: Fariborz Tavangarian, Penn State

2:00 PM

Enhancing Structural Efficiency Through Design Tactics for Biomimetic Nested Cylindrical Frameworks: Niloofar Fani¹; Armaghan Hashemi Monfared¹; Sorour Sadeghzade²; Fariborz Tavangarian³; ¹Penn State Harrisburg; ²Westlake University; ³Penn State

2:20 PM

Machine Learning-Driven Magnesium Alloy Design for Biomedical Implants Through Process Optimization: Sreenivas Raguraman¹; Maitreyee Priyadharshini¹; Adam Griebel²; Paulette Clancy¹; *Timothy* Weihs1; 1Johns Hopkins University; 2Fort Wayne Metals

Advancing Dental Implant Technologies: Characterizing Ti-Cu Alloys Using Core/Shell Structures for Enhanced Mechanical Properties and Corrosion Resistance: Carlos Blank1; Camilo Bedoya¹; Carlos Castano¹; ¹Virginia Commonwealth University

3:00 PM

From Corrosion to Mechanics: Evaluating Novel Magnesium Alloys for Biodegradable Wire Applications: Beril Ulugun¹; Sreenivas Raguraman¹; Nana Osei-Owusu¹; Sneha Raj¹; Shivam Dixit¹; Adam Griebel²; Timothy Weihs¹; ¹Johns Hopkins University; ²Fort Wayne Metals

3:20 PM

High Throughput Exploration of Mo-Ag Alloys for Antibacterial Coatings on Medical Implants: Maria Watroba¹; Peter Denninger¹; Killang Pratama¹; Caroline Hain¹; Hendrik Jansen¹; Clara Guarch Perez¹; Qun Ren Zulian¹; Jakob Schwiedrzik¹; Johann Michler¹; ¹Empa Swiss Federal Laboratories for Materials Science and Technology

3:40 PM Break

3:55 PM

Influence of Laser Power and Scanning Speed on Performances of LPBF Fe-16Mn-0.7C for Bioabsorbable Stent Applications: Maria Laura Gatto¹; Paolo Mengucci¹; Marcello Cabibbo¹; Diego Mantovani²; Carlo Paternoster²; ¹Università Politecnica delle Marche; ²Laval University

4:15 PM

Innovative Biodegradable Zn Alloys Produced by Rapid Solidification: Wiktor Bednarczyk1; Piotr Bała1; 1AGH University of Science and Technology

4:35 PM

Novel Surface Treatment of Ti-Containing Multiprincipal Element Alloys for Orthopedic Implants: David Beaudry¹; Nicholas Gigliotti¹; Mitra Taheri¹; ¹Johns Hopkins University

4:55 PM

Enhancing IoMT with Biocompatible Triboelectric Nanogenerators for Sustainable Medical Device Powering: Andreia Pereira1; 1i3S

5:15 PM

Low-Percentage Copper Doping To Optimize The Antimicrobial Properties Of Fluorapatite For Bone Scaffold Applications: Pooya Elahi1; 1University of Utah

ADVANCED CHARACTERIZATION METHODS

Advanced Characterization Techniques for Quantifying and Modeling Deformation — High Strain Rates

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization

Program Organizers: Wolfgang Pantleon, Technical University of Denmark; Irene Beyerlein, University of California, Santa Barbara; C. Tasan, Massachusetts Institute of Technology; M. Arul Kumar, Indian Institute of Technology Kanpur

Wednesday PM | March 26, 2025 170 | MGM Grand

Session Chairs: Curt Bronkhorst, University of Wisconsin-Madison; Philip Eisenlohr, Michigan State University

2:00 PM

Dislocation Drag at Ultra-High Strain Rates Up to 109 s-1: Qi Tang¹; Jianxiong Li¹; Mostafa Hassani¹; ¹Cornell University

2:20 PM

Microstructure Evolution in Quenched and Tempered (Q&T) Low Carbon Steel Under High Strain Rate Shear Deformation: Janith Wanni¹; Curt Bronkhorst¹; Dan Thoma¹; ¹Universiy of Wisconsin Madison

Crystal Plasticity Modeling of BCC Metals with Novel Treatment for **Dislocation Mobility and Cross-Slip**: Cathy Bing¹; Philip Eisenlohr¹; ¹Michigan State University

Dynamic Behavior of Materials Using Modified RMI Test: Gabriel Testa¹; Nicola Bonora¹; Andrew Ruggiero¹; Gianluca Iannitti¹; Sara Ricci¹; Alberto Pagano¹; Andrea Ceccacci¹; ¹University of Cassino and Southern Lazio

3:20 PM

On the Role of Geometrically Necessary Dislocations in Void Formation and Growth in Response to Shock Loading Conditions in Wrought and Additively Manufactured Ta: James Lamb¹; Kaitlyn Mullin¹; Paul Christodoulou¹; Wyatt Witzen¹; McLean Echlin¹; Irene Beyerlein¹; Tresa Pollock¹; ¹University of California Santa Barbara

3:40 PM Break

4:00 PM

Damage Nucleation at High Temperatures in OFHC Cu Under Impacts: Nicola Bonora¹; Andrew Ruggiero¹; Gabriel Testa¹; Gianluca lannitti¹; Sara Ricci¹; Saryu Fensin²; George Gray²; ¹University of Cassino; ²LANL

4:20 PM

Microstructural Evolution in OFHC Copper During Dynamic Tensile Extrusion: The Role of Temperature: Sara Ricci¹; Nicola Bonora¹; Gabriel Testa¹; Gianluca Iannitti¹; Andrea Ceccacci¹; Alberto Pagano¹; Andrew Ruggiero¹; ¹University of Cassino

4:40 PM

Modeling the Physical Process of Adiabatic Shear Banding: Curt Bronkhorst1; Jack Rees1; Janith Wanni1; Dan Thoma1; 1University of Wisconsin-Madison

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advanced Materials for Energy Conversion and Storage 2025 — Advanced Materials for Energy **Conversion and Storage III**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Energy Conversion and Storage Committee, TMS: High Temperature Alloys Committee

Program Organizers: Surojit Gupta, University of North Dakota; Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania; Cengiz Ozkan, University of California

Wednesday PM | March 26, 2025 356 | MGM Grand

Session Chairs: Maher Alghalayini, Lawrence Berkeley National Laboratory; Yaron Amouyal, Technion - Israel Institute of Technology; Regina Garcia-Mendez, Johns Hopkins University

2:00 PM Invited

Dimensionality Control of Li Transport by MOFs Based Quasi-Solid to Solid Electrolyte (Q-SSEs): Manuel Salado¹; R. Fernández de Luis¹; T. H. Smith¹; Senentxu Lanceros Mendez¹; M. Forsyth¹; ¹BC Materials

Fabrication and Characterization of Advanced Flexible and Wearable Thermoelectric Cooling Devices: Cuilei Li1; Lian Li1; Boyang Xiang¹; Edward Fratto¹; Jayant Kumar¹; Ramaswamy Nagarajan¹; Zhiyong Gu¹; ¹University of Massachusetts Lowell

2:45 PM

Fabrication and Characterization of Si-TiO2-P3HT-MXene Photodetectors for High-Sensitivity Near-Infrared Biomarker Detection: Armando Correa¹; Spencer Norvell¹; Saquib Ahmed²; Sankha Banerjee¹; ¹California State University, Fresno; ²SUNY, **Buffalo State**

3:05 PM

Thermoelectric Energy Conversion at Elevated Temperatures by Applying Calcium-Manganate Oxides: Yaron Amouyal¹; ¹Technion -Israel Institute of Technology

3:25 PM Break

3:40 PM

Optimizing the Chemistry of Hetero-Interfaces in Photovoltaics: A Combination of Electronic Structure Calculations and Machine Learning Approach: Yizhou Lu1; Samrat Choudhury1; 1University of Mississippi

4:00 PM

Characterization of the Mercury Electrode - NaSICON Electrolyte Interface Towards the Development of a Low-Temperature Na - Hg Liquid Metal Battery: Jake Kattelman¹; Jeremy Moon¹; Dev Chidambaram¹; ¹University of Nevada, Reno

High Throughput Development of Cu-Al-Mn-Ni Based Elastocaloric Materials: Maria Lebedeva¹; ¹Iowa State University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances and Discoveries in Non-Equilibrium Driven Nanomaterials and Thin Films — Functional Oxide Thin Films

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Ritesh Sachan, Oklahoma State University; Ashutosh Tiwari, University of Utah; Santosh Kc, San Jose State University; Shikhar Jha, Indian Institute of Technology Kanpur

Wednesday PM | March 26, 2025 354 | MGM Grand

Session Chairs: Ritesh Sachan, Oklahoma State University; Shikhar Jha, Indian Institute of Technology Kanpur

2:00 PM Invited

From Oxide Epitaxy to Membranes: Opportunities and Challenges: Bharat Jalan¹; ¹University of Minnesota

2:20 PM Invited

Design of Oxide Thin Films Towards Memristive Switching and Neuromorphic Computing: Aiping Chen1; Sundar Kunwar1; 1Los Alamos National Laboratory

2:40 PM Invited

Integration of BaTiO3 on Si: from Ferroelectricity to Giant Electrostriction: Pavan Nukala¹; ¹Indian Institute of Science

3:00 PM Invited

Interfacial Coupling at Bismuthate-Titanate Heterointerfaces: Divine Kumah¹; Merve Baksi²; ¹Duke University; ²North Carolina State University

3:20 PM Invited

Thin Film Growth on Mica: Challenges, Opportunities, and Applications for Micatronics: Ashutosh Tiwari¹; ¹University of Utah

3:40 PM Break

4:00 PM Invited

Process Dependent Work Function of Carbide Forming Refractory Metals: Stephen Mcdonnell¹; Adrian Kam¹; Daniel Stokes¹; Alyana Carrell²; Ariana Guzman²; Michael Groves²; ¹University of Virginia; ²California State University Fullerton

Hydrogen Induced Resistive Switching in Perovskite Nickelate Thin Films: Sundar Kunwar¹; Nicholas Cucciniello¹; Alessandro Mazza¹; Aiping Chen¹; ¹Los Alamos National Laboratory

Light Assisted Resistive Switching Behaviour of PLD Grown VO2/ TiO2 Thin Films: Chhotrai Soren1; Rajesh Jha1; Ankur Goswami1; ¹Indian Institute of Technology Delhi

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances in Magnetism and Magnetic Materials — **Advanced Materials and Sensing**

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Matthew Kramer, Ames Laboratory; Eric Theisen, Energy & Environmental Research Center; Yaroslav Mudryk, Ames National Laboratory/Iowa State University; Daniel Salazar, BCMaterials

Wednesday PM | March 26, 2025 363 | MGM Grand

Session Chairs: Alexander Baker, LLNL; Yongmei Jin, Michigan **Technological University**

2:00 PM Invited

Harnessing Interfacial Interactions in Perovskite Oxide Heterostructures: Yayoi Takamura¹; ¹University of California, Davis

Soft Magnetic Materials for Motor Applications: Przemyslaw Zackiewicz¹; Marcin Karpinski¹; Aleksandra Kolano-Burian¹; ¹Lukasiewicz Research Network - IMN

Development and Crystallography of fcc-bcc and bcc-fcc Precipitation in Soft Magnetic HEAs: Robert Chulist1; Wojciech Maziarz¹; Anna Wojcik¹; Arkadiusz Szewczyk¹; Maciej Kowalczyk²; Norbert Schell³; Lukasz Hawelek⁴; ¹IMMS PAS; ²Warsaw University of Technology; ³Helmholtz-Zentrum Hereon; ⁴Lukasiewicz Research Network - Institute of Non-Ferrous Metals

3:10 PM Break

3:30 PM

Enhanced Mass Sensitivity of Self-Biased Magnetoelastic Sensors by Annealing-Induced Nanocrystallization: Andoni Lasheras¹; J.S. Garitaonandia¹; iban Quintana²; Jose Luis Vilas¹; Ana Catarina Lopes¹; ¹University of the Basque Country; ²Tekniker

Smart Microactuators Based on Shape Memory Heusler Microwires: Rastislav Varga¹; ¹RVmagnetics

MECHANICS OF MATERIALS

Advances in Multi-Principal Element Alloys IV: Mechanical Behavior — Characterization and **Mechanical Properties**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Jennifer Carter, Case Western Reserve University; E-Wen Huang, National Yang Ming Chiao Tung University; T.S. Srivatsan, University of Akron; Xie Xie, Ford Motor Company; Jamieson Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Wednesday PM | March 26, 2025 368 | MGM Grand

Session Chairs: Jennifer Carter, Case Western Reserve University; Mingwei Zhang, University of California, Davis

2:00 PM

Short-Range Ordering and Local Elastic Properties in MoNbTaW: Andrea Fantin¹; Anna Maria Manzoni¹; Reza Darvishi Kamachali¹; Varalakshmi Somarouthu¹; Julian Rosalie¹; Robert Maass¹; ¹Federal Institute of Materials Research and Testing (BAM), Berlin, Germany

2:20 PM Invited

Characteristic Dislocation Slips in Polycrystalline HfNbTiZr Equi-Atomic Alloy: Qiang He¹; Shuhei Yoshida²; Shinji Okajyo³; Masaki Tanaka3; Nobuhiro Tsuji2; 1Southern University of Science and Technology; 2Kyoto University; 3Kyushu University

2:40 PM Invited

Multiple Origins of Extra Electron Diffractions in FCC Multiple Principal Element Alloys: Mingwei Zhang¹; Flynn Walsh²; Robert Ritchie³; Mark Asta³; Andrew Minor³; ¹University of California, Davis; ²Lawrence Livermore National Laboratory; ³University of California, Berkelev

3:00 PM Invited

Single-Crystal Mechanical Properties of FCC High-Entropy Alloys: Haruyuki Inui¹; Kyosuke Kishida¹; Le Li¹; Zhenghao Chen¹; ¹Kyoto University

3:20 PM Invited

Stability of the B2 Phase in Al-Nb-Ta-Ti-Zr Refractory High-Entropy Superalloys: Resolving Identification Conflicts and Offering Practical Solutions: An-Chen Fan1; Yun-Syuan Chen1; Chong-Chi Chi²; Daniel Miracle³; Jessie Shiue⁴; Pai-Chia Kuo⁴; Chih-Hao Hsu¹; Kai-Cheng Yang¹; Ming-Yen Lu²; Ming-Hung Tsai⁵; ¹National Chung Hsing University; ²National Tsing Hua University; ³Air Force Research Laboratory; 4Institute of Atomic and Molecular Sciences, Academia Sinica; 5 National Chung Hsing University; National Tsing **Hua University**

3:40 PM Break

4:00 PM

Quantification of Lattice Distortions in Complex Concentrated Alloys by X-Ray Diffuse Scattering: Alexander deJong¹, Suchismita Sarker²; Hyun sang Park¹; Todd Hufnagel¹; ¹Johns Hopkins University; ²Cornell University

4:20 PM Invited

Effects of Cerium Addition and Post-Annealing on Microstructures and Mechanical Properties of CoCrNi Medium Entropy Alloy Films: Chun-Hway Hsueh1; Yvonne Lin1; 1National Taiwan University

4:40 PM

Ductile and Plastic HfTaTiNbZr Refractory High Entropy Alloys Studied with In Situ Neutron Diffraction: Lia Amalia1; John Whitlow1; Xuesong Fan¹; Nathan Grain¹; Eric Lass¹; Yanfei Gao¹; Ke An²; Yan Chen²; Dunji Yu²; Peter Liaw¹; ¹University of Tennessee; ²Oak Ridge **National Laboratory**

5:00 PM

Ultrahigh Temperature Tensile Deformation Mechanisms of Multi-Principal Element Alloys: Michael Patullo¹; Syed I. A. Jalali¹; Sharon Park¹; Leah Mills²; David Beaudry¹; Mitra Taheri¹; Tresa Pollock²; Kevin Hemker¹; ¹Johns Hopkins University; ²University of California, Santa Barbara

LIGHT METALS

Advances in Titanium Technology — Near-Alpha and Alpha Titanium-Based Alloys

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Abhishek Sharma, University of North Texas; Srinivas Aditya Mantri, Argonne National Laboratory; Zachary Kloenne, Imperial College London; Fan Sun, Centre National de la Recherche Scientifique - Paris Sciences et Lettres University; Stoichko Antonov, National Energy Technology Laboratory

Wednesday PM | March 26, 2025 108 | MGM Grand

Session Chair: Paraic O'Kelly, The Ohio State University

2:00 PM

Post Weld Heat Treatment For Enhancing Mechanical Properties of Ti-6Al-4V: Seongji Seo1; Kyung Il Kim2; Jeongho Han3; Jiyong Park⁴; ¹Korea Institute of Industrial Technology, Hanyang University; ²Korea Institute of Industrial Technology; ³Hanyang University; ⁴Korea Institute of Industrial Technology, Korea National University of Science and Technology (UST)

2:20 PM

Influence of Cooling Rate on Ti-6Al-4V Parts Fabricated by Wire Arc Additive Manufacturing: Annalena Meermeier¹; Sascha Berbalk²; Thomas Meyer²; Heinz Werner Höppel¹; ¹Friedrich-Alexander-Universität Erlangen-Nürnberg; ²HEGGEMANN AG

2:40 PM

Characterization and Optimization of Ti-6Al-4V Alloy Obtained by Additive Manufacturing Using Direct Wire Deposition: Elise Labruyère1; Florence Pettinari-Sturmel2; Joel Douin3; Claude Archambeau¹; Philippe Emile¹; ¹AIRBUS; ²CEMES - Univ. Toulouse; 3CEMES-CNRS

3:00 PM

Microalloying Strategy: How Small Additions of Alloying Elements Can Significantly Boost the Strength of Titanium Alloys: Stephanie Delannoy¹; Piotr Kwasniak²; Fan Sun¹; Philippe Vermaut¹; Frédéric Prima¹; ¹Chimie ParisTech, CNRS, Institut de Recherche de Chimie Paris, PSL Research University; ²Multidisciplinary Research Center, Cardinal Stefan Wyszynski University in Warsaw

3:20 PM

Compositional Effects on the Formation and Thermal Evolution of Oxygen-Ordered Precipitates in Ti-Zr-O Alloys: An In-Situ Synchrotron X-Ray Diffraction Study: Raphaelle Guillou¹; Fabienne Amann²; Régis Poulain³; Stéphanie Delannoy²; Jean Philippe Couzinié³; Ivan Guillot³; Emmanuel Clouet⁴; Jean Luc Béchade⁴; Dominique Thiaudière⁵; Frédéric Prima²; ¹Université Paris-Saclay, CEA, Service de Recherche en Matériaux et procédés Avancés; ²Université PSL, Chimie ParisTech-CNRS, Institut de recherche de Chimie Paris (UMR 8247); 3Université Paris Est Creteil, Institut de Chimie et des Matériaux Paris-Est (UMR 7182) CNRS-UPEC; ⁴Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP; 5Synchrotron SOLEIL

3:40 PM Break

4:00 PM

High-Performance Powders via Powder2Powder Ultrasonic Atomization: Lukasz Zrodowski¹; ¹AMAZEMET

An Exploration of Powder Processing Methods for Novel Titanium Alloy Compositions: Rosie Mellor1; David Jarvis1; 1VSCA

4:40 PM

Low-Energy Production of High-Quality Titanium Alloy Powders via Innovative DRA Process: MD Emran Hossain¹; Pei Sun¹; Zhigang Zak Fang¹; ¹University of Utah

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Verification, Validation, and **Uncertainty Quantification — Predictive Mechanism** Model Development

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Dehao Liu, Binghamton University; Matt Kasemer, The University of Alabama; Ashley Spear, University of Utah; Christopher Stiles, Johns Hopkins University Applied Physics Laboratory; Anh Tran, Sandia National Laboratories

Wednesday PM | March 26, 2025 320 | MGM Grand

Session Chair: Matt Kasemer, The University of Alabama

2:00 PM

Uncertainty Quantification In Crystal Plasticity Simulations Using Multimodal High-Energy Synchrotron X-Ray Experiments: Diwakar Naragani¹; Paul Shade²; Armand Beaudoin³; Donald Boyce⁴; ¹University of Dayton; ²Air Force Research Lab; ³University of Illinois at Urbana-Champaign; 4Cornell University

A Novel Physics Informed Neural Network Framework for Solid State Phase Transformations: Asfandyar Khan¹; Mahmood Mamivand¹; ¹Boise State University

3:00 PM

Advanced Prediction of Crystalline Material Behavior Using Physics-Informed Neural Networks and Object-Oriented Crystal Plasticity Finite Element: Shahriyar Keshavarz¹; Andrew Reid¹; Yuwei Mao²; Ankit Agrawal²; ¹NIST; ²Northwestern University

3:20 PM

Comparison of Phenomenological and Machine Learning Approaches to Model Inconel 718 Recrystallization Mechanisms: Romain Bordas¹; Yann Jansen¹; Antoine Gomond²; Eric Georges¹; ¹Aubert&Duval; ²PhiMeca

3:40 PM Break

3:50 PM

High-Throughput Bayesian Calibration of Elastic-Plastic-Damage Model Parameters Using a Small Punch Test: Raj Mahat1; Surya Kalidindi¹; ¹Georgia Institute of Technology

4:10 PM

Physics-Informed Machine Learning of Thermal Stress Evolution in Laser Metal Deposition: Rahul Sharma¹; Yuebin Guo¹; ¹Rutgers University

4:30 PM

Machine Learning-Based Constitutive Model Parameter Estimation: Abhishek Bhesania¹; Mark Messner¹; ¹Argonne National Laboratory

4:50 PM

Determination of Phase-Field Model Parameters Using Machine Learning Approach: Benjamin Rhoads¹; Shailee Yagnik¹; Samrat Choudhury¹; ¹University of Mississippi

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Algorithms Development in Materials Science and **Engineering — Machine Learning Applications to Materials Simulations**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Process Technology and Modeling Committee, TMS: Alloy Phases Committee

Program Organizers: Remi Dingreville, Sandia National Laboratories; Saaketh Desai, Sandia National Laboratories; Hojun Lim, Sandia National Laboratories; Jeremy Mason, University of California, Davis, Vimal Ramanuj, Oak Ridge National Laboratory, Sam Reeve, Oak Ridge National Laboratory; Douglas Spearot, University of Florida

Wednesday PM | March 26, 2025 319 | MGM Grand

Session Chairs: Hojun Lim, Sandia National Laboratories; Remi Dingreville, Sandia National Laboratories

2:00 PM

Strongly Physics Constrained Neural Networks: Applications in Solid Mechanics: Andreas Robertson¹; Vivek Oommen²; Remi Dingreville¹; ¹Sandia National Laboratory; ²Brown University

2:20 PM

Multi-Fidelity Models for Time-Dependent Full-Field Predictions: Aditya Venkatraman¹; Ryan Katona¹; David Montes de Oca Zapiain¹; Philip Noell¹; ¹Sandia National Laboratories

2:40 PM

Recognizing and Characterizing Continuous Regions of Materials Design Spaces Through Stochastic Microstructure Representations: Simon Mason¹; Megna Shah²; Jeff Simmons²; Dennis Dimiduk³; Stephen Niezgoda¹; ¹Ohio State University; ²Air Force Research Laboratory; 3Blue Quartz Software, LLC

3:00 PM

Distances in the Microstructure State Space: Dylan Miley¹; Jeremy Mason¹; Benjamin Schweinhart²; ¹University of California Davis; ²George Mason University

3:20 PM

Accelerating Large Multiscale Composite Simulations with a GNN/LSTM Microscale Surrogate: Joshua Stuckner¹; Trenton Ricks¹; Brandon Hearley¹; Steven Arnold¹; ¹NASA Glenn Research Center

3:40 PM Break

4:00 PM

Advanced Computational Techniques and Deep Learning Algorithms for the Automated Modeling and Design of Materials: Soheil Soghrati¹; Balavignesh Vemparala¹; Pengfei Zhang¹; Kartik Kashyap¹; ¹The Ohio State University

4:20 PM

Working Towards a Buildable and Transferable Deep Learning Model Simulating Full-Field Micromechanical Evolution of Polycrystalline Materials: Ashley Lenau¹; Reeju Pokharel¹; Alexander Scheinker¹; Stephen Niezgoda²; ¹Los Alamos National Lab; ²The Ohio State University

4:40 PM

Computer-Vision Based Characterization of Shock-Induced Plasticity in Atomistic Simulations: Andre Archer¹; Douglas Spearot¹; ¹University of Florida

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XIII — Investigation and Development in Thermoelectric Materials and **Applications**

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases

Program Organizers: Hsin-Jay Wu, National Taiwan University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CNRS Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute for Materials Science; Wan-Ting Chiu, Institute of Science Tokyo; Chenguang Fu, Zhejiang University

Wednesday PM | March 26, 2025 355 | MGM Grand

Session Chairs: Bo-Chia Chen, National Taiwan University; I-Lun Jen, National Yang Ming Chiao Tung University

2:00 PM Invited

Investigation of Instability Mechanism in Mg3(Sb, Bi)2-Based Materials for Thermoelectric Applications: Sahiba Bano1; Takao Mori¹; ¹National institute for Materials Science

2:20 PM Invited

Thermoelectric Properties of Melt-Spun Assisted Microstructural Engineering of Higher Manganese Silicide: Suresh Perumal1; Madhuvathani G S²; Ravi Renganayagalu³; Subburayalu S³; ¹Indian Institute of Technology Hyderabad; ²SRM Institute of Science and Technology, Kattankulathur; 3Indian Institute of Technology (IIT)

2:40 PM Invited

Size-Dependent Magnon Thermal Transport in a Nanostructured Quantum Magnet: Xi Chen1; 1University of California, Riverside

Development of Medium and High-Entropy Diffusion Barrier for GeTe-Based Thermoelectric Module: Yi-Hsuan Lai¹; Yun-Han Huang Lu¹; Hsin-jay Wu¹; ¹National Yang Ming Chiao Tung University

3:20 PM Break

3:40 PM Invited

New Angles to Thermoelectric Applications?: Ady Suwardi¹; ¹The Chinese University of Hong Kong

4:00 PM

Advanced Inorganic-Organic Hybrid Thermoelectric Device: Jen-Hsun Weng¹; Wan-ting Yen¹; Hsin-jay Wu¹; ¹National Yang Ming Chiao **Tung University**

4:20 PM

Enhanced Thermoelectric Performance and Joint Stability of n-Type PbTe Through Mn and Cu Codoping: Ming-Yu Cheng¹; Wen-Ching Wu¹; Hsin-jay Wu¹; ¹National Yang Ming Chiao Tung University

LIGHT METALS

Aluminum Alloys: Development and Manufacturing - Processing Innovation

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mihaiela Isac, McGill Metals Processing Centre; Les Edwards, Rain Carbon Inc.

Wednesday PM | March 26, 2025 114 | MGM Grand

Session Chairs: Warren Poole, University of British Columbia; Dimitry Sediako, University of British Columbia; Xiaodong Wang, University of Chinese Academy of Scienceas

2:00 PM Keynote

Aluminum Alloy Development and Manufacturing Processes for Sustainable Transportation Applications: Alan Luo1; 10hio State University

2:25 PM

Rapid Investment Casting of Nano-Treated Aluminum Alloy 7075 Turbines: Guan-Cheng Chen¹; Till Reufsteck²; Yitian Chi¹; Xiaochun Li¹; ¹University of California Los Angeles; ²RWTH Aachen University

Simultaneously Improving Process Efficiency and Mechanical Properties in Aluminum Alloys with Applied Magnetic Fields: Michael Kesler¹; Michael Thompson¹; Lisa Debeer-Schmitt¹; Kangcheng Lin²; Yang Yang³; David Weiss⁴; Harrison Kim²; Michele Manuel³; ¹Oak Ridge National Laboratory; ²UI-UC; ³University of Florida; ⁴Loukus Technologies

3:15 PM

Banded Microstructures: Development of Novel Structures Under Directional Solidification of Aluminum-Indium: Jaime Perez Coronado¹; Aramanda Shanmukha Kiran¹; Zach Croft¹; Lingxia Shi¹; Jason Landini¹; Katsuyo Thornton¹; Ashwin Shahani¹; Alan Taub¹; ¹University of Michigan

3:40 PM Break

3:55 PM Keynote

Processing of In Situ Al-TiC Nanocomposites for Improved Mechanical Properties: Alan Taub¹; Caleb Reese²; Aaron Gladstein³; Jonathan Goettsch1; Jaime Perez Coronado1; Katsuyo Thornton1; Ashwin Shahani¹; ¹University of Michigan; ²General Motors; ³Pratt & Whitney

4:20 PM

Effect of Fe on Al-Mn-Fe-Si Alloys Made by Laser Additive Manufacturing: Qingyu Pan¹; Monica Kapoor²; Xiaoyuan Lou¹; John Carsley²; ¹Purdue University; ²Novelis Global Research and **Technology Center**

4:45 PM

Applying Object Detection for In-Situ Predicition of the Internal Temperature Distribution of Inductively Heated Semi-Solid Metal Billets: Marco Speth¹; Mathias Liewald¹; Kim Rouven Riedmüller¹; ¹Institute For Metal Forming Technology

5:10 PM

Development of Cold Cladding Process Technology for Aluminum Clad in Automotive Applications: Shreyas Khot1; Gautam Wagle1; Akshay Deshpande¹; Dhurandas Fulzele¹; ¹Hindalco Industries Limited

LIGHT METALS

Aluminum Primary Processing - Decarbonization and Sustainability in Aluminum Primary Processing: Joint Session of Aluminum Reduction, Electrode Technology, and REWAS 2025 — Decarbonization and Sustainability in Aluminum Primary Processing: Joint Session of Aluminum Reduction, Electrode Technology, and REWAS 2025

Sponsored by: TMS Extraction and Processing Division, TMS: Recycling and Environmental Technologies Committee, TMS: **Aluminum Committee**

Program Organizers: Mertol Gokelma, Izmir Institute of Technology; Stephan Broek, Kensington Technology Inc; Les Edwards, Rain Carbon Inc.; Andre-Felipe Schneider, Hatch Ltd.; Arild Hakonsen, Hycast As

Wednesday PM | March 26, 2025 112 | MGM Grand

Session Chairs: Camilla Sommerseth, SINTEF Industry; Brian Zukas, Alcoa Corp

2:00 PM Introductory Comments

2:05 PM Invited

Inert Anode Aluminum Cells - Present Status and Future Prospects: Halvor Kvande¹; ¹Retired from Norsk Hydro / Norwegian University of Science & Technology

2:30 PM

Development of the Carbon Footprint of Primary Aluminum **Production**: Gudrun Saevarsdottir¹; Halvor Kvande²; ¹Reykjavik University; ²Formerly Norwegian University of Science & Technology

Progress of Carbon Capture Efforts in Primary Aluminum Smelting: Stephan Broek¹; Geert Versteeg²; ¹Kensington Technology Inc; ²University of Groningen

Opportunities to Reduce Calciner CO2 Emissions: Maia Hunt1; Matthew Childers¹; Les Edwards¹; ¹Rain Carbon Inc.

3:45 PM Break

4:00 PM

Carbochlorination of Alumina: An Assessment Based on Single Particle Model: Parindra Kusriantoko¹; Kristian Einarsrud¹; Camilla Sommerseth²; ¹Norwegian University of Science and Technology; ²SINTEF Industry

4:25 PM

On the Alloy Development of Ni - Fe - Cu Inert Anodes for Sustainable, CO₂-Free Aluminum Electrolysis: Tom Jamieson¹; Peer Decker²; Andrey Yasinskiy³; Roman Düssel²; Gudmundur Gunnarson⁴; Jon Magnusson⁵; Bastian Adam⁶; Ralf Busch⁶; Isabella Gallino¹; ¹Technical University Berlin; ²TRIMET; ³RWTH Aachen; 4IceTec Ltd; 5Arctus Aluminium Ltd; 6University Saarland

LIGHT METALS

Aluminum Reduction Technology — Sensors, **Process Control and Industry 4.0 Applied to** Aluminium Smelters II

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Andre-Felipe Schneider, Hatch Ltd.; Les Edwards, Rain Carbon Inc.

Wednesday PM | March 26, 2025 113 | MGM Grand

Session Chair: Sebastien Guerard, Rio Tinto

2:00 PM Introductory Comments

A New Concept for Measuring Heat Fluxes from Electrolysis Cells: Eirik Manger1; 1Hydro Aluminium As

MHD Model Validation Through 3D Scanning and Big Data Analytics: levgen Necheporenko¹; Alexander Arkhipov¹; Pablo Navarro¹; Abdalla Alzarouni¹; Marcos Dominguez¹; Marwan Alustad¹; ¹Emirates Global Aluminium

2:55 PM

Optimizing Anode Change in Aluminum Cells - A Digital Twin **Approach**: Sebastien Guerard¹; Pierre-Luc Voyer¹; ¹Rio Tinto

3:20 PM

The Application of Anode Current in Current Efficiency Improvement in Reduction Cells: Qinsong Zhang¹; Hongwu Hu¹; Wei Liu¹; Zhibin Zhao¹; Yafeng Liu¹; Michael Ren¹; ¹Shenyang Aluminium & Magnesium Engineering & Research Institute

3:45 PM Break

4:00 PM

AlF3 Shots Prediction for Optimal Temperature Control and Process Efficiency in Aluminium Smelter: Manish Jaiswal¹; Himan Kundu²; Shanmukh Rajgire³; Anish Das²; Amit Jha⁴; ¹Hindalco Industries Ltd.-Smelter, Sambalpur; ²Hindalco Industries Ltd. Aditya Aluminium; 3Aditya Birla Science and Technology Company (P) Ltd, Navi Mumbai; ⁴Aditya Birla Science & Technology Company, Ltd

4:25 PM

Industrial Implementation of Digital Monitoring and Intelligent Control in Aluminum Reduction Cells: Zhibin Zhao¹; Xi Cao¹; Junfeng Qi¹; Shaohu Tao²; Qinsong Zhang¹; Hongwu Hu¹; Michael Ren³; Wei Liu¹; ¹Shenyang Aluminium & Magnesium Engineering & Research Institute Co., Ltd.; ²Shenyang Ligong University; ³Sunlightmetal Consulting Inc.

4:50 PM

ML-Powered Pot Performance Prediction in Aluminium Smelter: Manish Jaiswal¹; Shanmukh Rajgire²; Atanu Maity¹; Kishor Pattnaik¹; Philip Hansda¹; Pramod Shukla¹; Kazi Arshad Ansari¹; Pratap Sahu¹; Debasish Mallik¹; Amit Jha³; ¹Hindalco Industries Ltd. Hirakud Smelter, Sambalpur; ²Aditya Birla Science and Technology Company (P) Ltd; 3Aditya Birla Science & Technology Company, Ltd

Research and Application on Big-Data Breaker Jam Identification and Intelligent Control Technology Basing on Single-Point Feeding: Hong Bo1; 1Guiyang Aluminium Magnesium Design & Research Institute (GAMI)

5:40 PM Concluding Comments

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Artificial Intelligence Applications in Integrated Computational Materials Engineering — Machine Learning for Materials Characterization and Process Control

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering

Program Organizers: Wenwu Xu, San Diego State University; Ram Devanathan, Pacific Northwest National Laboratory; Vikas Tomar, Purdue University; Qiaofu Zhang, University of Alabama; Eshan Ganju, Purdue University; Avanish Mishra, Los Alamos National Laboratory; Victoria Miller, University of Florida; Ghanshyam Pilania, General Electric (GE Aerospace Research)

Wednesday PM | March 26, 2025 351 | MGM Grand

Session Chairs: Qiaofu Zhang, University of Alabama; Eshan Ganju, **Purdue University**

2:00 PM Invited

Digital Twins for Accelerated Materials Innovation: Surya Kalidindi¹; ¹Georgia Institute of Technology

2:30 PM

ANNA: An Open-Source Platform for Developing Artificial Neural **Networks Assistant Potential Enabling High Accurate and Efficient** Molecular Dynamics Simulation: Meng Zhang¹; Junya Inoue¹; ¹University of Tokyo

2:50 PM

Automation of the ICME Workflow Incorporating Material Digital Twins at Different Length Scales Within a Robust Information Management System: Brandon Hearley¹; Steven Arnold¹; ¹NASA Glenn Research Center

3:10 PM

Al in ICME: Methodologies for Al Alignment and Explainability in **Self-Driving Labs**: *Kinston Ackölf*¹; Taylor Sparks¹; ¹University of Utah

3:30 PM Break

3:50 PM

Rapid Microstructural Determination from Nano-indentation of High Entropy Alloys Using Machine Learning and Genetic Algorithms: Amit Arora¹; Abhijeet Dhal¹; Rajiv Mishra¹; ¹University of North Texas

4:10 PM

Data and Decision Science-Driven Assessment and Selection of Mg Alloys for Fracturing Applications: Tanjore Jayaraman¹; ¹United States Air Force Academy

4:30 PM

Data Modelling of Through-Life Structural Integrity Assessment of Dissimilar Metal Welds for Nuclear Application: Samuel Eka1; ¹University of Manchester

4:50 PM

High-Throughput and Robust Materials Design Hypothesis Generation via a RAG-Enhanced Large Language Model: Quantiang Liu1; Maciej Polak1; So yeon Kim2; MD Al Amin Shuvo1; Hrishikesh Shridhar Deodhar¹; Jeongsoo Han¹; Dane Morgan¹; Hyunseok Oh¹; ¹University of Wisconsin-Madison; ²Massachusetts Institute of Technology

5:10 PM

A Multiscale Simulation Framework for Incremental Deformation Processing Using a Recurrent Neural Network Surrogate Model for Crystal Plasticity: John Weeks¹; Aaron Stebner¹; ¹Georgia Institute of Technology

MECHANICS OF MATERIALS

Atomistic Simulations Linked to Experiments to Understand Mechanical Behavior: A MPMD Symposium in Honor of Professor Diana Farkas — **Properties and Mechanical Behavior**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Andrea Hodge, University of Southern California; Arun Nair, University of Arkansas; Alejandro Strachan, Purdue University; Chelsey Hargather, Los Alamos National Laboratory; Christopher Schuh, Northwestern University

Wednesday PM | March 26, 2025 370 | MGM Grand

Session Chair: Frederic Sansoz, The University of Vermont

2:00 PM Invited

Short-Range Order Hardening and Enhanced Tensile Ductility in Nanocrystalline Ag by Intercalation of Amorphous Ni-Rich Nanolayers: Frederic Sansoz¹; ¹University of Vermont

2:30 PM

Development of Semi-Empirical Interatomic Potential to Simulate Plastic Deformation in Ni-Co-Cr-Y-O System: Mikhail Mendelev1; Gabriel Plummer¹; Jacob Tavenner¹; Zhigang Wu¹; John Lawson¹; Timothy Smith1; 1NASA ARC

Transformation-Assisted Twin Nucleation in Metals: Lei Cao1; Mehrab Lotfpour¹; Amir Hassan Zahiri¹; Jamie Ombogo¹; ¹University of Nevada

Self-Healing by Amorphous Shear-Band Recovery in Crystalline Al-Sm Materials: Xuanxin Hu1; Nuohao Liu1; Izabela Szlufarska1; ¹University of Wisconsin-Madison

3:30 PM Break

3:50 PM

Molecular Dynamics Simulation of Fatigue Crack Propagation in Aluminum and Steel Dissimilar Joints: Rohit Singh¹; Jignesh Nakrani¹; Amber Shrivastava¹; ¹Indian Institute of Technology Bombay

Simulation of Grain Growth with Molecular Dynamics Using Converted Experimental Data: Meizhong Lyu¹; Zipeng Xu²; Elizabeth Holm¹; Gregory Rohrer²; ¹University of Michigan; ²Carnegie Mellon University

4:30 PM

Finely Tunable Thermal Expansion of NiTi by Stress-Induced Martensitic Transformation and Thermomechanical Training: Won-Seok Ko1; Won Seok Choi2; Edward Pang3; Yejun Park2; Jong-Hoon Park¹; Hye-Hyun Ahn¹; Yuji Ikeda⁴; Pyuck-Pa Choi²; Blazej Grabowski⁴; ¹Inha University; ²Korea Advanced Institute of Science and Technology; 3 Massachusetts Institute of Technology; 4 University of Stuttgart

4:50 PM

Atomistic Insights on Orientation-Dependent Deformation Mechanisms in Molybdenum: Single-Crystal Nanowires and Polycrystals: Afnan Mostafa¹; Linh Vu¹; Feitao Li²; Aditya Dey¹; Eugen Rabkin²; Hesam Askari¹; Niaz Abdolrahim¹; ¹University of Rochester; ²Technion - Israel Institute of Technology

5:10 PM

Atomistic Simulation of Dislocation-Obstacle Interactions in AlO.3CoCrFeNi Multi-Principal Element Alloys: Anshu Raj¹; Subah Mubassira¹; Peter Liaw²; Shuozhi Xu¹; ¹University of Oklahoma; ²University of Tennessee

LIGHT METALS

Bauxite Residue Valorization and Best Practices — Recovery of Steel, Titania and Rare Earths

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Tobias Hertel, Ku Leuven; Christina Meskers, SINTEF; Efthymios Balomenos, Metlen Energy and Metals; Casper Van Der Eijk, SINTEF; Brajendra Mishra, Worcester Polytechnic Institute; Yiannis Pontikes, Ku Leuven R&D

Wednesday PM | March 26, 2025 111 | MGM Grand

Session Chair: Yiannis Pontikes. Ku Leuven R&D

2:00 PM

Recovery of Alumina and Soda from High Tatania Containing Bauxite Residue: Gautam Behera¹; Chenna Borra¹; Manish Kar²; Mehmet Ali Onal³; ¹IIT Kharagpur; ²NTNU; ³Genomines

2:20 PM Question and Answer Period

2:25 PM Invited

Recovery of Titanium from Production Residues via Physical and Chemical Processing: Sharon Djinigou¹; Bengi Yagmurlu¹; ¹Technical University Clausthal

2:45 PM Question and Answer Period

2:50 PM

Red Mud to Produce Sustainable Iron and Steel - A Thermodynamic Analysis: Rangasayee Kannan¹; Adam Stevens¹; Peeyush Nandwana¹; ¹Oak Ridge National Laboratory

3:10 PM Question and Answer Period

3:15 PM

Synergistic Pyrolysis with Refuse-Derived Fuel (RDF) Can Neutralize Bauxite Residue (BR): Roberto Seno¹; Rodrigo Moreno¹; Fabio Yamaji²; Maria Veloso²; ¹CBA; ²UFSCar

3:35 PM Question and Answer Period

3:40 PM Break

3:55 PM

Utilizing Mining Tailings for Sustainable Steel and Rare Earth Element Recovery: Duhan Zhang1; 1Massachusetts Institute of Technology

4:15 PM Question and Answer Period

4:20 PM Panel Discussion

4:50 PM Concluding Comments

BIOMATERIALS

Bio-Nano Interfaces and Engineering Applications — **Bio-Nano Interfaces II**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Kalpana Katti, North Dakota State University; Hannes Schniepp, William & Mary; Terry Lowe, Colorado School of Mines; Po-Yu Chen, National Tsing Hua University; David Kisailus, University of California-Irvine

Wednesday PM | March 26, 2025 307 | MGM Grand

Session Chairs: Terry Lowe, Colorado School of Mines; Kalpana Katti, North Dakota State University

2:00 PM Invited

Mechanobiology of Cellular Adhesion Proteins and Their Role in Cancer Progression: Dinesh Katti¹; Kalpana Katti¹; Hanmant Gaikwad¹; Sharad Jaswandkar¹; Preetham Ravi¹; ¹North Dakota State University

Hybrid Nanoparticles Loaded with a Combination of Aloe Vera and Moringa Oleifera Extracts for Improved Modulation of the Expression of Profibrotic and Proinflammatory Markers in Human Hepatic Stellate Cells and Hepatocytes: Gabriela Carballo-López1; Jhordan Ojeda-González¹; Kevin Martínez-García¹; Karla Cervantes-Luevano¹; Aldo Moreno-Ulloa¹; Ana Castro-Ceseña¹; ¹CICESE

2:50 PM Invited

Facile Green Synthesis of Dual Stabilized Near-Infrared CuInSe/ ZnS Quantum Dots as Fluorescent Probes for Cancer-Bacteria Imaging: Samuel Oluwafemi¹; ¹University of Johannesburg

3:20 PM

Hierarchical Surface Restructuring of Ultra-Thin Electrodes and Microelectrode Arrays for Neural Interfacing with Peripheral and Central Nervous Systems: Shahram Amini¹; Sina Shahbazmohamadi²; Alexander Blagojevic³; Terry Lowe⁴; Skyler Davis⁴; ¹Pulse Technologies Inc.; ²University of Connecticut ; ³University of Connecticut; ⁴Colorado School of Mines

3:40 PM Break

3:55 PM Invited

Analysis of Direct Electron Transfer of Glucose Oxidase on Graphene-CNT Composite Surfaces via Molecular Dynamics and Electrochemical Experiments: Taeyoung Yoon¹; ¹Changwon National University

4:25 PM

Flavoprotein Oxidases Engineered with a Metal-Binding Peptide Tag as a Potential Diagnostic Enzyme: Taylor Bader¹; Gabby LeDou¹; Candan Tamerler¹; ¹University of Kansas

4:45 PM

Carbon or Carbonate? Distinguishing Carbon Sources in Biominerals by Atom Probe Tomography: Jack Grimm¹; Cameron Renteria¹; Katherine Tang¹; Sandra Taylor²; Arun Devaraj²; Dwayne Arola¹; ¹University of Washington; ²Pacific Northwest National Laboratory

5:05 PM

3D Printing of Multimaterial Nanocomposite Contact Lenses for Ocular Health Management: Haider Butt1; 1Khalifa University

BIOMATERIALS

Biological Materials Science — Advances in **Biomimetic Materials**

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Yuxiao Zhou, Texas A&M University; Ling Li, University of Pennsylvania; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Grace Gu, University of California, Berkeley; Debora Lyn Porter, University of California Merced

Wednesday PM | March 26, 2025 306 | MGM Grand

Session Chair: Steven Naleway, University of Utah

Biologically Inspired Mechanical Reinforcement of Plastic Bonded **Explosives**: Matthew Herman¹; John Yeager²; Erik Watkins³; ¹Los Alamos National Laboratory; ²University of Dayton Eglin Airforce Base; 3Oak Ridge National Laboratory

2:20 PM

Bird Humerus Bone-Inspired 3D Voronoi Frameworks: Optimization of Compressive Mechanical Performance by Genetic Algorithms: Chien-Chih Lin1; Po-Yu Chen1; 1National Tsing Hua University

2:40 PM

Revealing the Full Brood Structure of the Stingless Bee Tetragonula Carbonaria: Nicole Balog¹; Eshan Ganju¹; Rosalyn Gloag²; Brock Harpur¹; Nikhilesh Chawla¹; ¹Purdue University; ²University of Sydney

Impact of Hyphal Differentiation on the Scattering Properties of Fungal Mycelium: Judith Gómez Cuyàs¹; Moritz Garger¹; Markus Künzler¹; Ralph Spolenak¹; Henning Galinski¹; ¹ETH Zürich

3:20 PM Break

3:40 PM

Long and Short Carbon Nanotube Induced Cytocompatibility and Mechanical Behavior of Ultra High Molecular Weight Polyethylene: Pooja Rani¹; Deepak Khare¹; Kantesh Balani¹; ¹IIT Kanpur

4:00 PM

Shape Memory Alloys in Medical Implants-Mechanical Properties and Application: Muhammad Farzik Ijaz1; 1King Saud University, KSA

4:20 PM

Structural Adaptations in Nature: Investigating Functional Morphotypes and Mechanical Properties of Shark Denticles and Bone Microstructures for Advanced Structures: Ashish Ghimire1; Rikke Beckmann Dahl²; Zheng-Shun Su¹; Sheng-Feng Shen²; Shu-Wei Chang¹; Po-Yu Chen³; ¹National Taiwan University; ²Academia Sinica; 3National Tsing Hua University, Taiwan

Challenges and Future Prospects in the Development of Biomimetic Materials for Tissue Engineering and Regenerative Medicine: Raymond Awoyemi¹; Edward Acheampong²; Awoyemi Christopher³; Peter Agyemang⁴; Danjuma Ibrahim⁵; *Sonia Edionweme*⁵; ¹Mississippi State University; ²Mississippi State University; ³Covenant University, Medical Centre, Canaanland; ⁴ Michigan Technological University; ⁵Rubber Research Institute of Nigeria

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Bridging Scale Gaps in Multiscale Materials Modeling in the Age of Artificial Intelligence — **Multiscale Modeling of Complex Structures and Defects**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan; Katsuyo Thornton, University of Michigan; Peter Voorhees, Northwestern University; Eric Homer, Brigham Young University; Srujan Rokkam, Advanced Cooling Technologies,

Wednesday PM | March 26, 2025 353 | MGM Grand

Session Chair: Yue Fan, University of Michigan

2:00 PM Invited

Mesoscale Investigation of Dislocation-Grain Boundary Interactions in Metals and Alloys: Abigail Hunter¹; ¹Los Alamos **National Laboratory**

2:30 PM

Engineering the Crack-Tip Material Composition to Enhance the Microplasticity in Refractory Complex Concentrated Alloys: Subhendu Chakraborty¹; Liang Qi¹; ¹University of Michigan

2:50 PM Invited

The Connection Between Atomistic Defect Clusters and Geometrically Necessary Dislocations in Irradiated Nanocrystals: Sicong He¹; Emily Mang²; Osman El Atwani³; James Nathaniel⁴; Xinran Zhou⁵; Asher Leff⁶; Mitra Taheri²; Jaime Marian¹; ¹University of California, Los Angeles; ²Johns-Hopkins University; ³Pacific Northwest National Laboratory; 4Sandia National Laboratories; ⁵Argonne National Laboratory; ⁶TauMat

3:20 PM

Quantifying Chemical Short-Range Order in Metallic Alloys: Killian Sheriff¹; Yifan Cao¹; Tess Smidt¹; Rodrigo Freitas¹; ¹Massachusetts Institute of Technology

3:40 PM Break

4:00 PM Invited

Neural Network Kinetics: Exploring Diffusion Multiplicity and Chemical Ordering in Compositionally Complex Materials: Penghui Cao1; 1University of California, Irvine

4:30 PM Invited

Complex Structure of Liquid and Machine-Learning: Takeshi Egami¹; ¹University of Tennessee

Machine Learning - Kinetic Monte Carlo Investigation on Sluggish Interstitial Diffusion in Fe-Ni-Cr-Cu-Co High Entropy Alloys: Wenjiang Huang¹; Xianming Bai¹; ¹Virginia Polytechnic Institute

ADVANCED CHARACTERIZATION METHODS

Characterization of Minerals, Metals and Materials 2025: In-Situ Characterization Techniques — **Characterization of Metals**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Zhiwei Peng, Central South University; Kelvin Xie, Texas A&M University; Mingming Zhang, Baowu Ouyeel Co. Ltd; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, AnalytiChem Group, USA; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, Devcom Arl Army Research Office; Shadia Ikhmayies, The University of Jordan

Wednesday PM | March 26, 2025 109 | MGM Grand

Session Chair: Mingming Zhang, Baowu Ouyeel Co. Ltd

2:00 PM

Anodization Behavior of Additive Manufactured Aluminum Alloys: Lydia Daum¹; Stefan Ostendorp¹; Martin Peterlechner²; Gerhard Wilde¹; ¹University of Münster; ²Karlsruhe Institute of Technology

Unraveling the Mystery of Helium as Environment Gas in 3D Printing of Metals: Zhongshu Ren¹; Tao Sun²; ¹Brookhaven National Laboratory; 2Northwestern University

Cu-Sn Anode Failure: Understanding the Mechanism From the Optical Approach: Gladys Duran Duran¹; Amy Prieto¹; Rhys Otten¹; ¹Colorado State University

3:00 PM

Development and Characterization of an Ultrastrong Single-Phase High Entropy Alloy With Enhanced Ductility: Emre Güneş¹; Yunus Kalay²; ¹Middle East Technical University / Additive Manufacturing Technology Application and Research Center (EKTAM), Gazi University; 2Middle East Technical University

3:20 PM

Effect of Sulfur on the Surface Tension of Low-Sulfur Manganese-Boron Steel: Matheus BellÉ¹; Olena Volkova¹; ¹Technische Universität Bergakademie Freiberg

3:40 PM Break

3:50 PM

Local Electrical Characterization of Grain and Phase Boundaries in Alloys: Hanna Bishara¹; ¹Tel Aviv University

Micromechanical Investigation of Defects in Single Crystal Ni-Based Superalloys: Felicitas Werner¹; Janine Pfetzing-Micklich¹; Aleksander Kostka¹; Jan Frenzel¹; Gunther Eggeler¹; ¹Ruhr-University **Bochum**

4:30 PM

Quantitative Analysis of Corrosion Products, Pores and Carbides on Uncoated Single Crystal RenéN5 Superalloy: Roger Maddalena¹; ¹Thermo Fisher Scientific

4:50 PM

Correlative Transmission Electron Microscopy For In Situ Grain Growth Studies in Metallic Thin Films: Matthew Patrick1; Jeffrey Rickman²; Katayun Barmak¹; ¹Columbia University; ²Lehigh University

5:10 PM

Lattice Parameter Evolution During the -to- and -to-Transformations of Iron and Aluminum Modified Ti-11Cr(at.%): Joann Ballor¹; Jonathan Poplawsky²; Arun Devaraj³; Scott Misture⁴; Carl Boehlert¹; ¹Michigan State University; ²Oak Ridge National Laboratory; ³Pacific Northwest National Laboratory; ⁴Alfred University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Chemistry and Physics of Interfaces — Al and ML **Methods for Grain Boundary Phenomona**

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Timofey Frolov, Lawrence Livermore National Laboratory; Fadi Abdeljawad, Lehigh University; Kaila Birtsch, Los Alamos National Laboratory; Daniel Moore, Lehigh University; Christopher Schuh, Northwestern University

Wednesday PM | March 26, 2025 304 | MGM Grand

Session Chairs: Fei Zhou, Lawrence Livermore National Laboratory: Daniel Moore, Lehigh University

2:00 PM Invited

Grand Canonical Diffusion Model for Crystalline Phases and Grain Boundaries: Fei Zhou¹; ¹Lawrence Livermore National Laboratory

2:30 PM

Machine Learning Guided Prediction of Solute Segregation at Metal/Oxide

Interfaces: Yizhou Lu¹; Blas Uberuaga²; Samrat Choudhury¹; ¹University of Mississippi; ²Los Alamos National Laboratory

2:50 PM

A Machine Learning Approach for Extracting Grain Boundary Mobilities From Time-Resolved Grain Maps: Jules Dake¹; Leonard Lauber¹; Thomas Wilhelm¹; Lukas Petrich¹; Orkun Furat¹; Volker Schmidt¹; Carl Krill¹; ¹Ulm University

Examining the Interactions of Crack Tips With Disconnections in Copper Twin Boundaries: Ethan Cluff¹; Remi Dingreville²; Eric Homer¹; ¹Brigham Young University; ²Sandia National Laboratory

3:30 PM Break

3:50 PM

The Influence of Lattice Distortions From Applied Stresses on Functional Properties of Shape Memory Materials: Eliana Feygin¹; Christopher Schuh²; ¹Massachusetts Institute of Technology: ²Northwestern University

4:10 PM

Tracking the Microstructure Evolution of Ni Polycrystals: Yi Wang¹; Zipeng Xu¹; Vivekanand Muralikrishnan¹; Hao Zhu¹; Gregory Rohrer¹; Amanda Krause¹; ¹Carnegie Mellon University

4:30 PM

Localized Corrosion of Ni-Cr-Fe-Cu Alloys Caused by Cu Segregation-Induced Cr Depletion of Grain Boundaries: Theoretical and Experimental Study: Karthikeyan Hariharan¹; Longsheng Feng²; Kamalnath Kadirvel³; Vignesh Karunakaran¹; Koushik Kosanam¹; Narasi Sridhar¹; Yunzhi Wang¹; Gerald Frankel¹; Eric Schindelholz¹; ¹The Ohio State University; ²Lawrence Livermore National Laboratory; ³CompuTherm LLC

4:50 PM

Using Bernal Hole Analysis to Understand the Experimentally Observed Grain Boundaries of Aluminum: Elizabeth Heon¹; Matthew Chisholm¹; Gerd Duscher¹; ¹University of Tennessee Knoxville

NUCLEAR MATERIALS

Composite Materials for Nuclear Applications III — Graphite, TRISO, and Novel Moderators

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Composite Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Anne Campbell, Oak Ridge National Laboratory; Dong (Lilly) Liu, University of Oxford; Rick Ubic, Boise State University; Lauren Garrison, Commonwealth Fusion Systems; Peng Xu, Idaho National Laboratory; Johann Riesch, Max Planck Insitute For Plasma Physics; James Wade-Zhu, UKAEA

Wednesday PM | March 26, 2025 164 | MGM Grand

Session Chairs: Rick Ubic, Boise State University; Anne Campbell, Oak Ridge National Laboratory; Dong (Lilly) Liu, University of Oxford

2:00 PM Invited

Perspectives on Raman Spectroscopy for Carbon-Based Nuclear Materials: David Arregui-Mena¹; Jisue Braatz¹; Takaaki Koyanagi¹; Yan-Ru Lin¹; Abdurahim Oguz¹; Phillip Edmondson²; Yutai Katoh¹; Nidia Gallego¹; ¹Oak Ridge National Laboratory; ²University of Manchester

2:25 PM Invited

Understanding Fission Product Behaviour in Ion-Implanted Graphite: *Alex Theodosiou*¹; Philippe Ouzilleau²; Ben Spencer¹; Abbie Jones¹; ¹University of Manchester; ²McGill University

2:50 PM

Developing Methods to Predict Failure and Crack Growth Using Small Angle Scattering Techniques: Sean Fayfar¹; Boris Khaykovich¹; David Sprouster²; ¹Massachusetts Institute of Technology; ²Stony Brook University

3:10 PM

Effects of Neutron Irradiation on the Three-Parameter Weibull Analysis of Graphite: $Anne\ Campbell^1;$ $^1Oak\ Ridge\ National\ Laboratory$

3:30 PM Break

3:50 PM

On the Reduced Damage Tolerance of Fine-Grained Nuclear Graphite at Elevated Temperatures Using In Situ 4D Tomographic Imaging: Ming Jiang¹; Houzheng Wu²; Robert Ritchie³; Martin Kuball⁴; Dong (Lilly) Liu¹; ¹University of Oxford; ²Loughborough University; ³Lawrence Berkeley National Laboratory; ⁴University of Bristol

4:10 PM

Mechanical and Irradiation Behaviors in Low-Textured Pyrolytic Carbon: Raphaelle David¹; Yongfeng Zhang¹; ¹UW-Madison

4:30 PM

TRISO Coating Layer Failure Analysis: Wen Jiang¹; ¹North Carolina State University

4:50 PM

Irradiation Tolerance and Molten Salt Compatibility of Beryllium Carbide – A Candidate High Temperature Moderator Material: Diego Muzquiz¹; Stephen Raiman¹; ¹University of Michigan Nuclear Engineering

5:10 PM

Alloying Yttrium Hydride via Powder Metallurgy: Darrell Cheu¹; Aditya Shivprasad¹; Caitlin Kohnert¹; ¹Los Alamos National Laboratory

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Computational Thermodynamics and Kinetics — Thermodynamics & Kinetics of Alloys

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Prashant Singh, Ames National Labratory; Rodrigo Freitas, Massachusetts Institute of Technology; Nicolas Argibay, Ames National Laboratory; Raymundo Arroyave, Texas A&M University; James Morris, Ames Laboratory

Wednesday PM | March 26, 2025 305 | MGM Grand

Session Chairs: Jorge Munoz, University of Texas at El Paso; Javier Llorca, IMDEA Materials Institute & Technical University of Madrid

2:00 PM Invited

Investigations of Solute Clustering Kinetics During Quenching and Aging in Al-Zn-Mg-Based Alloys: Zhucong Xi¹; Louis Hector Jr.²; Amit Misra¹; *Liang Qi*¹; ¹University of Michigan; ²General Motors Company

2:30 PM

Computing Ternary Liquid Phase Diagrams: Fe-Cu-Ni: Dallas Trinkle¹; ¹University of Illinois at Urbana-Champaign

3:00 PM

The Impact of Segregation, Ordering and Solvent Effects on the Surface Phase Diagrams of Mg-Alloys With Ca: Mira Todorova¹; Jing Yang¹; Joerg Neugebauer¹; ¹Max-Planck-Institute for Sustainable Materia

3:20 PM

First-Principles Prediction of the Co-Al Phase Diagram Including Configurational, Vibrational and Magnetic Contributions: Wei Shao¹; Sha Liu²; Javier Llorca¹; ¹IMDEA Materials Institute & Technical University of Madrid; ²Yanshan University

3:40 PM Break

4:00 PM Invited

Lattice Dynamical Stability of the Body-Centered Cubic (BCC) Structure in Born-Von Karman (BvK) Force Constant Parameter Space: Amir Husen¹; Jorge Munoz¹; ¹University of Texas at El Paso

4:30 PM

DFTTK and PyZentropy: High-Throughput Tools for Free Energy Calculations of Individual Configurations and Systems From First-Principles: Nigel Hew¹; Luke Myers¹; Shun-Li Shang¹; Zi-Kui Liu¹; ¹Penn State University

4:50 PM

Understanding Guinier-Preston (GP) Zones in Mg Alloys From First-Principles Thermodynamics: Yuan-Chen Gao¹; Du Cheng¹; Kang Wang¹; Bi-Cheng Zhou¹; ¹University of Virginia

5:10 PM

Calculation of Thermodynamic Properties of Mixed Oxides Using Modified Polyhedron Model: Jesus Arias Hernandez¹; Sun Kwon²; Elmira Moosavi-Khoonsari¹; ¹École de Technologie Supeiure; ²Oak Ridge National Laboratory

ADDITIVE MANUFACTURING

Designing Complex Microstructures through Additive Manufacturing — Processing II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Matteo Seita, University Of Cambridge; Hang Yu, Virginia Polytechnic Institute and State University; Alain Reiser, KTH Royal Institute of Technology; Yuntian Zhu, City University of Hong Kong; Xiaozhou Liao, University of Sydney

Wednesday PM | March 26, 2025 317 | MGM Grand

Session Chairs: Marie Charpagne, University of Illinois; Sophie Primig, University of New South Wales

2:00 PM Invited

Opportunities for Grain Boundary Engineering via Laser Powder Bed Fusion of 316L Stainless Steel: Sophie Primig¹; Ming Luo¹; Nima Haghdadi¹; ¹University of New South Wales

2:30 PM

From Complex Geometries to Complex Microstructures: New Opportunities for Materials Design: Matteo Seita¹; ¹University of Cambridge

2:50 PM

A Corroborative In-Situ, Ex-Situ and 3D Study of Recrystallisation in ABD-900AM: Yuanbo Tang1; Anh Hoang Pham2; 1University of Birmingham; ²Shimane University

3:10 PM

Microstructure Evolution and Kinetics in Post Heat-Treatment of 316H Stainless Steel Fabricated by Laser Powder Bed Fusion: Lin Gao¹; Srinivas Mantri¹; Xuan Zhang¹; ¹Argonne National Laboratory

3:30 PM Break

3:50 PM Invited

Pathways to Grain Boundary Engineering in Additive Manufactured Alloys: Marie Charpagne¹; Yuheng Nie¹; ¹University of Illinois

4:20 PM

Silicon Mediated Twin Formation in Additively Manufactured 316L Stainless Steel: Kewei Chen¹; Juan Guillermo Santos Macías¹; Nathalie Isac¹; Maxime Vallet²; Louis Cornet²; Manas Upadhyay¹; ¹LMS, CNRS, Ecole Polytechnique, IP Paris; ²LMPS, CNRS, CentraleSupélec, ENS Paris-Saclay

4:40 PM

Remelting-Informed Grain Engineering in Laser Powder Bed Fusion: Tianyi Lyu¹; Yu Zou¹; ¹University of Toronto

5:00 PM

Enabling Microstructure Manipulation in Laser Powder Blown Directed Energy Deposition Through Multi-Mode Laser Beam Shaping: Samantha Webster¹; James Zuback¹; Annabel Shim¹; Carelyn Campbell¹; ¹National Institute of Standards and Technology

Microstructural Control of Additively Manufactured Ti-6Al-4V via In-Situ Laser Annealing: Connor Rietema¹; Kaila Bertsch¹; John Roehling¹; William Smith¹; Chase Gesteland²; ¹Lawrence Livermore National Laboratory; ²University of California, Berkeley

SPECIAL TOPICS

DMMM5: A Decade of Creating Inclusion and Belonging for Diversity in the Minerals, Metals, and Materials Professions — Taking Actions to Continue **Progress**

Sponsored by: TMS: Membership Diversity & Development Committee, TMS: Diversity, Equity, and Inclusion Committee

Program Organizers: Ben Britton, University of British Columbia; Lauren Garrison, Commonwealth Fusion Systems; Keith Bowman, University of Maryland Baltimore County; Katelyn Jones; Suveen Mathaudhu, Colorado School of Mines; Ashley Paz y Puente, University of Cincinnati; Soumya Varma, KLA Corporation; Eva Zarkadoula; Danielle White, University of Southern California

Wednesday PM | March 26, 2025 150 | MGM Grand

Session Chair: Keith Bowman, University of Maryland Baltimore County

2:00 PM Panel Discussion - Inclusive Professional Environments TMS has long worked to promote equity, diversity, and inclusion (EDI) within our profession, including through the DMMM conference series. This is a panel-based discussion to explore the journey of change and the path forward in fostering an inclusive professional environment. The panel will explore inclusive training experiences, recognizing its critical role in preparing early-career individuals for the workforce. The panel and attendees will discuss how employers can sustain an inclusive workforce, foster belonging, and address cultural competencies necessary for impactful work, particularly amid shifting social and political landscapes. We will engage the audience in a wider reflection and collaborative dialogue to develop materials that can guide our community's EDI efforts. We invite all participants at TMS and DMMM5 to join this conversation, find inspiration, and contribute to building a more inclusive professional community.

Speakers for this session include Keith Bowman, University of Maryland, Baltimore County College of Engineering and Information Technology; Olivia Graeve, University of California San Diego; Elizabeth Opila, University of Virginia; Izabela Szlufarska, University of Wisconsin Madison; and Ricardo Castro, Lehigh University.

3:20 PM Discussions with the Panelists

3:40 PM Break

4:00 PM

Breaking Barriers and Materials: Uncovering Constance Tipper's Impact on Metallurgy and Inclusion: Mengying Liu1; 1Washington and Lee University

4:20 PM Panel Discussion: Materials Engineering at Apple Materials have helped enable Apple products to achieve their iconic performance and industrial design. Materials engineers from a range of backgrounds have come together to form the Apple Materials team, known for their leading work in developing alloys, polymers, glass and ceramics, and engineered surfaces. In this session, Jim Yurko, a Senior Distinguished Engineer and Materials team leader, will facilitate a discussion between members of his team to learn more about their career journeys.

Moderator: Jim Yurko; Panelists include Laura Madril, Dana Frankel, and Art Counts.

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Electronic Packaging and Interconnection Materials II — Advanced Electronic Packaging Materials/ Process II

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: C. Kao, National Taiwan University; Yu-An Shen, Feng Chia University; Christopher Gourlay, Imperial College London; Fan-Yi Ouyang, National Tsing Hua University; Hiroshi Nishikawa, Osaka University; Hannah Fowler, Sandia National Laboratories; Kazuhiro Nogita, University of Queensland; Praveen Kumar, Indian Institute of Science; Tae-Kyu Lee, Cisco Systems; Yan Li, Samsung Semiconductor Inc.

Wednesday PM | March 26, 2025 360 | MGM Grand

Session Chairs: Tae-Kyu Lee, Cisco Systems; Yan Li, Samsung Semiconductor Inc.

2:00 PM

Comparison Between Current Induced Joule Heat Variation on Near Eutectic and Off Eutectic Sn-Bi Solder Joint Stability: Tae-Kyu Lee¹; Pushkar Gothe²; Yujin Park¹; Gnyaneshwar Ramakrishna¹; Young-Woo Lee3; Hui-Joong Kim3; Seul-Gi Lee3; Choong-Un Kim2; ¹Cisco Systems; ²University of Texas, Arlington; ³MK Electron

Silver and Copper Sinter Joint Properties for 1200 V 60A Silicone Carbide MOSFET Power Modules: Won Sik Hong¹; So-Hee Hyun¹; Mi Song Kim¹; Joo Young Bae¹; ¹Korea Electronics Technology Institute

2:40 PM

Wear Behavior of Cyanide-Free Silver Nanotwin Films Co-**Deposited With Graphene**: Kuan Lin Fu¹; ¹National Central University

Microstructural Fingerprints for Secure Microelectronic Packaging: Min Cho1; Eshan Ganju1; Nikhilesh Chawla1; 1Purdue University

3:20 PM Break

3:40 PM

Transparent Bonding of Flexible Substrates Without an Absorber by Using Laser Heating: Eunhye Lee¹; Jeehoo Na²; Sang-Eun Han²; Taeyoon Im²; So Jeong Lee²; Byeong-Kwon Ju³; Tae-Ik Lee²; ¹Korea Institute of Industrial Technology, Korea University; ²Korea Institute of Industrial Technology; 3Korea University

4:00 PM

Oxygen-Free Cu Sinter Joining in the Air on Cold-Rolled Cu Substrates: YehRi Kim1; Ha-Young Yu2; Dongjin Kim2; 1Korea Insititue of Industrial Technology, Korea University; ²Korea Insititue of Industrial Technology

Blind Hole Filling With Nano-Twinned Copper in Bulid Up Pcbs: Jui-Sheng Chang1; 1National Central University

4:40 PM Concluding Comments

NUCLEAR MATERIALS

Elucidating Microstructural Evolution Under Extreme Environments — Advanced Techniques for Elucidating Radiation Effects and Corrosion in Structural Materials

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Mukesh Bachhav, Idaho National Laboratory; Boopathy Kombaiah, Idaho National Laboratory; Janelle Wharry, University of Illinois; Assel Aitkaliyeva, University of Florida; Miaomiao Jin, Pennsylvania State University; Farida Selim, Arizona State University; Nathan Almirall, GE Aerospace

Wednesday PM | March 26, 2025 162 | MGM Grand

Session Chairs: Nathan Almirall, GE Aerospace; Farida Selim, **Bowling Green State University**

2:00 PM Invited

Unraveling Mass Transport Mechanisms During Corrosion and Irradiation in Iron-Based Materials at the Nanoscale: Sandra Taylor¹; Bethany Matthews¹; Aaron Kohnert²; Sten Lambeets¹; Matthew Olszta¹; Kayla Yano¹; Daniel Schreiber¹; Blas Uberuaga²; Tiffany Kaspar¹; ¹Pacific Northwest National Laboratory; ²Los Alamos National Laboratory

2:30 PM Invited

Utilizing Multi-Modal Approaches to Study Metal Solutes and Corrosion in Molten Salt Environments: Simerjeet Gill1; Nirmalendu Patra¹; Ruchi Gakhar²; Mehmet Topsakal¹; Insung Han¹; Trishelle Copeland Johnson²; Alejandro Ramos Ballesteros²; ¹Brookhaven National Laboratory; ²Idaho National Lab

3:00 PM

Influence of Temperature and Ion Radiation on Dealloying of Fe-Ni Alloy in Liquid Lead: Wande Cairang¹; Weiyue Zhou¹; Xing Gong²; Kevin Woller¹; Michael Short¹; ¹Massachusetts Institute of Technology; ²Shenzhen University

Influence of Pre-Deformation on Grain Boundary Oxidation of a Model Fe-Cr-Ni Alloy in High-Temperature Hydrogenated Water Environments: Semanti Mukhopadhyay¹; Dallin Barton¹; Tingkun Liu¹; Pauline Simonnin¹; Hyoju Park¹; Cheng-Han Li¹; Ziqing Zhai¹; Ferdinan Colon¹; Mychailo Toloczko¹; Arun Devaraj¹; ¹Pacific Northwest **National Laboratory**

3:40 PM Break

3:55 PM

Correlative Microscopy of Creep Cavitation in Ferritic, Martensitic and Austenitic Steels: Tomas Martin1; Eirini Galliopoulou1; Siqi He1; Michael Salvini¹; Nicolo Grilli¹; Alan Cocks²; Peter Flewitt¹; ¹University of Bristol; 2University of Oxford

Deep-Learning Driven Pt Particle Analysis for BWR Corrosion Insights: Txai Sibley1; Kevin Field1; Elizabeth Holm1; 1University of Michigan

High-Dose Evolution of Radiation-Induced Segregation in an Austenitic Fe-Ni-Cr Alloy: Daniele Fatto Offidani¹; Emmanuelle Marquis¹; ¹University of Michigan - Ann Arbor

High Temperature Mechanical and Irradiation Response of a Refractory Alloy With a Isostructural Eutectic Microstructure: Sriswaroop Dasari¹; Boopathy Kombaiah²; Philip Petersen²; Mukesh Bachhav²; ¹University of Texas at El Paso; ²Idaho National Laboratory

5:15 PM

Thermomechanical Effects on Grain Structure Evolution in Ni-8Cr Alloy Using X-Ray Diffraction Contrast Tomography: Swapnil Morankar¹; Boopathy Kombaiah¹; William Chuirazzi¹; ¹Idaho National Laboratory

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmental Degradation of Multiple Principal Component Materials — Design, Modeling, Simulation, and Machine Learning

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Wenjun Cai, Virginia Polytechnic Institute and State University; XiaoXiang Yu, Novelis Inc.; Vilupanur Ravi, California State Polytechnic University Pomona; Christopher Weinberger, Colorado State University; Elizabeth Opila, University of Virginia; Bai Cui, University of Nebraska Lincoln; Mark Weaver, University of Alabama; Bronislava Gorr, Kit; Gerald Frankel, Ohio State University; ShinYoung Kang, Lawrence Livermore National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Wednesday PM | March 26, 2025 169 | MGM Grand

Session Chairs: Yanqing Su, Utah State University; XiaoXiang Yu, Novelis Inc.

2:00 PM

A High Throughput CALPHAD Development Method Designing Single Phase Alloy Platform For the Exploration of Light-Weighting Elements' as Passivators in Co-Free FCC Alloys: Peter Connors1; John Scully¹; ¹University of Virginia

2:20 PM Invited

Predicting Alloy Oxidation Resistance Using Physics Informed Machine Learning: Richard Oleksak¹; William Trehern¹; Aditya Sundar¹; Leebyn Chong¹; Madison Wenzlick¹; Kyle Rozman¹; Martin Detrois¹; Paul Jablonski¹; Michael Gao¹; ¹National Energy Technology Laboratory

2:40 PM

Discovery Oxidation-Resistant Refractory Concentrated Alloys Through High-Throughput Calculations and Experiments: Akhil Bejjipurapu¹; Sharmila Karumuri¹; Saswat Mishra¹; Joseph Flanagan¹; Ilias Bilionis¹; Alejandro Strachan¹; Kenneth H. Sandhage¹; Michael Titus¹; ¹Purdue University

3:00 PM

Development of NiCoFeCrAl Based High Entropy Alloys for Hydrogen Fueled Turbine System: Shanshan Hu1; Xingru Tan1; Tianwei Lu¹; Aditya Sundar²; Yi Wang²; Saro San²; Michael Gao²; ¹West Virginia University; ²National Energy Technology Laboratory

3:20 PM

Design and Evaluation of Multicomponent Rare Earth Disilicate Environmental Barrier Coatings: Richard Oleksak¹, Shiqiang Hao¹; Michael Gao¹; Casey Carney¹; Mohammad Hossain¹; Ömer Doğan¹; ¹National Energy Technology Laboratory

3:40 PM Break

3:50 PM

Probing Irradiation Response in CrFeMnNi Compositionally Complex Alloys Using High-Throughput Methodology: Nathan Curtis1; Michael Moorehead2; Mukesh Bachhav2; Benoit Queylat1; Phalgun Nelaturu¹; Daniel Murray²; Bao-Phong Nguyen¹; Nate Eklof¹; Zack Rielley¹; Dan Thoma¹; Dane Morgan¹; Adrien Couet¹; ¹University of Wisconsin Madison; 2Idaho National Laboratory

4:10 PM

Alumina-Forming Nb-Mo-Ti-Al Bond Coat Alloys: Melina Endsley¹; Collin Holgate¹; Chiyo McMullin¹; Michael Worku²; Carlos Levi¹; Tresa Pollock¹; ¹University of California Santa Barbara; ²GE Vernova

4:30 PM

First-Principles Study of Oxide Formation and Stability in the Equiatomic CoCrFeNi High-Entropy Alloy: Dennis Boakye1; Chuang Deng¹; ¹University of Manitoba

4:50 PM

Development of Novel Light Refractory Compositionally Complex Alloys for High Energy Accelerator Windows: Nicholas Crnkovich1; Abe Burleigh2; Kavin Ammigan2; Frederique Pellemoine2; Izabela Szlufarska¹; Adrien Couet¹; ¹University of Wisconsin Madison; ²Fermi National Accelerator Laboratory

MECHANICS OF MATERIALS

Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling Fatigue Studies and Design Under the Process-(Micro)Structure-Properties-Performance Paradigm

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Orion Kafka, National Institute of Standards and Technology; J.C. Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Brian Wisner, Ohio University; Krzysztof Stopka, Purdue University; Kelly Nygren, Cornell University

Wednesday PM | March 26, 2025 318 | MGM Grand

Session Chair: Garrett Pataky, Clemson University

2:00 PM

Cyclic Deformation Behavior of Laser Powder Bed Fused Stainless Steel 316L: Luis Avila¹; Tiago Werner¹; Birgit Rehmer¹; Mauro Madia¹; Leonardo Agudo Jácome¹; Birgit Skrotzki¹; Alexander Evans¹; ¹Federal Institute for Materials Research and Testing (BAM)

2:20 PM

Improved Properties of Additively Prepared Inconel 718 Alloy Post-Processed With a New Heat Treatment: Sumit Choudhary¹; Vidit Gaur¹; ¹Indian Institute of Technology Roorkee

2:40 PM

Insights on Dwell Debit in a Ti6Al4V Alloy: A Mesoscale Correlational Study: Hanging Liu1; Angus Wilkinson2; Jicheng Gong1; ¹King's College London; ²University of Oxfrod

Investigating the Effect of Deformation Twins on Fatigue Crack Growth Rate: Ali Asli¹; Garrett Pataky¹; ¹Clemson University

3:20 PM

High and Very High Cycle Fatigue Characteristics of Wire Arc Additive Manufactured and Cast Nickel Aluminum Bronze: Meysam Haghshenas¹; ¹University of Toledo

MATERIALS SYNTHESIS AND PROCESSING

Friction Stir Welding and Processing XIII — Friction **Stir Processing**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Nilesh Kumar, University of Alabama, Tuscaloosa; Anton Naumov, Peter The Great St. Petersburg Polytechnic University

Wednesday PM | March 26, 2025 123 | MGM Grand

Session Chairs: Amit Arora, Indian Institute of Technology Gandhinagar; Nilesh Kumar, University of Alabama, Tuscaloosa

2:00 PM

Advanced Strengthening of Austenitic Manganese Steel via Friction Stir Processing and Subsequent Work Hardening: Toni Sprigode¹; Guntram Wagner¹; ¹Chemnitz University of Technology

Friction Stir Processing of 316L Stainless Steel for Improvements in Biomedical Application: Kaleb Bates1; Isaac Andorful1; Robert Hovanski¹; Sophie Wartenta¹; Quentin Allen¹; ¹Brigham Young University

2:40 PM

Heat Treatment of Multitrack Friction Stir Processing of Precipitation-Hardenable Aluminum Alloy: Amlan Kar¹; Hudson Wagner¹; Todd Curtis¹; Bharat Jasthi¹; Wade Lein²; Zackery McClelland²; Grant Crawford¹; ¹South Dakota School of Mines and Technology; ²U.S. Army Engineer Research and Development Center (ERDC)

3:00 PM

Metal Matrix Composites of Al/Al2O3 Obtained via Friction Stir Processing: Marta Lipinska1; Florian Pixner2; Andreas Hütter2; Norbert Enzinger²; Magorzata Lewandowska¹; ¹Warsaw University of Technology; ²Graz University of Technology

3:20 PM Break

3:40 PM

Vibration Diagnostics Regulated Automatic Friction Stir Processing: Shikhar Krishn Jha1; Anurag Gumaste1; Rajiv Mishra1; ¹Univeristy of North Texas

4:00 PM

A Discontinuous Dynamic Recrystallization Model for Predicting Grain Features During Friction Stir Processing: Prachi Sharma¹; Deepak Dhariwal²; Amit Arora¹; ¹Indian Institute of Technology Gandhinagar; ²Virginia Tech

Effect of Multiple-Pass Friction Stir Processing on Microstructural and Mechanical Properties of Stir Cast AA5083-2wt.%SiC Nanocomposite: Gaurav Rajan¹; Suhrit Mula¹; ¹Indian Institute of Technology, Roorkee

4.40 PM

Friction Stir Polymer Bonding of AA6061 and Beech Wood: Hayden Jenkins1; Alvin Strauss1; 1Vanderbilt University

MATERIALS SYNTHESIS AND PROCESSING

Friction Stir Welding and Processing XIII — Friction Stir Technologies

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Nilesh Kumar, University of Alabama, Tuscaloosa; Anton Naumov, Peter The Great St. Petersburg Polytechnic University

Wednesday PM | March 26, 2025 124 | MGM Grand

Session Chairs: Piyush Upadhyay, Pacific Northwest National Laboratory; Troy Munro, Brigham Young University

2:00 PM

Achieving Uniform Extrudate and Homogeneous Microstructure in Friction Extrusion: Xiao Li¹; Julian Escobar¹; Lei Li¹; Akash Mukhopadhyay¹; Jorge Dos Santos¹; ¹Pacific Northwest National Laboratory

2:20 PM

Lightweight Bimetallic Tubular Components Via Friction Stir Backward Extrusion: Fabrication and Process Outcome Analysis: Rishabh Swarnkar¹; Surjya Pal¹; ¹Indian Institute of Technology Kharagpur

2:40 PM

Effect of Processing Parameters on the Microstructure and Mechanical Properties in Friction Stir Consolidated ODS-14YWT Powders: Shubhrodev Bhowmik¹; Kumar Kandasamy²; Nilesh Kumar¹; ¹University of Alabama Tuscaloosa; ²Enabled Engineering

3:00 PM

Sustainable Metal Upcycling Using Solid Stir Extrusion: Anurag Gumaste1; Austin Killam1; Kameron Hightower1; Ravi Sankar Haridas¹; Sandeep Patil²; Takuro Iwata²; Nanzhu Zhao²; Rajiv Mishra¹; ¹University of North Texas; ²Nissan Technical Center North America

3:20 PM Break

3:40 PM

Development of Copper CoreFlow® Friction Stir Channelling for Fusion Energy Applications: Sam Holdsworth¹; ¹TWI Ltd.

4:00 PM

Development of Novel Friction Surfacing Method: Fuyuki Ishida¹; Takayuki Yamashita¹; Masayoshi Kamai¹; Yoshiaki Morisada¹; Hidetoshi Fujii1; 1Osaka University

4:20 PM

Flexible Ultrasonic-Enhanced Friction Stir Welding: Marat Rebrin¹; Guntram Wagner¹; Martin Mädlow²; Welf-Guntram Drossel²; ¹Technische Universität Chemnitz; ²Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU

Hybrid Repair Techniques for Heat-Treatable Aluminum Alloys: Amlan Kar1; Landon Zentz1; Todd Curtis1; Grant Crawford1; 1South Dakota School of Mines and Technology

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Functional Nanomaterials — Functional Nanomaterials III: 1D & 2D Nanostructures

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Wenzhuo Wu, Purdue University; Keerti Kappagantula, Pacific Northwest National Laboratory; Bishnu Khanal, Sandia National Laboratories; Ying Zhong, Harbin Institute of Technology (Shenzhen); Mostafa Bedewy, University of Pittsburgh; Michael Cai Wang, University of South Florida

Wednesday PM | March 26, 2025 365 | MGM Grand

Session Chair: Wenzhuo Wu, Purdue University

2:00 PM Invited

Precision Near-Field Electrospinning: Transforming Micro/Nano Manufacturing With Advanced Nanofiber Fabrication: Jiyoung Chang¹; Tae-Gon Kim²; Min Jae Seo³; Young Hun Jeong³; Seung Han Yang³; ¹University of Utah; ²Korea Institute of Industrial Technology; ³Kyungpook National University

2:30 PM Keynote

Molecular Engineering of Field-Effect Transistor Water Sensors Based on 2D Nanomaterials: Junhong Chen¹; ¹University of Chicago; Argonne National Laboratory

3:10 PM Invited

Effect of Graphene Heterostructures on Electrical Performance of Ultra-Conductors: Keerti Kappagantula¹; Md. Reza-E-Rabby¹; Aditya Nittala¹; Pedro Ottoni Negrao¹; Tej Poudel¹; Julian Escobar Atehortua¹; Bharat Gwalani¹; Kashi Subedi¹; Kishor Nepal¹; David Drabold¹; ¹Pacific Northwest National Laboratory

3:40 PM Break

4:00 PM Invited

Growth Kinetics of CsPbBr3 Nanocrystals Under Stirring: Fugian Yang¹; ¹University of Kentucky

4:30 PM Keynote

Medical Applications of Nanostructured Diamond Coatings: Roger Narayan¹; ¹University of North Carolina

5:10 PM Invited

Ion Transport With Convective Flow in Graphene Nanochannels of Flow Cell Battery Electrodes: Seungha Shin1; Yu-Kai Weng1; Md Abdullah Al Hasan¹; Daniel Lee¹; Kenneth Kihm¹; ¹University of Tennessee

ADVANCED CHARACTERIZATION METHODS

Heterostructured and Gradient Materials (HGM VI): Principle, Processing and Properties — Structure and Properties II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Shaping and Forming Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Tsinghua University; Ke Lu, Liaoning Academy of Materials; Hyoung Seop Kim, Pohang University of Science and Technology; Xiaolei Wu, Institute of Mechanics

Wednesday PM | March 26, 2025 155 | MGM Grand

Session Chairs: Mathias Goken, University Erlangen-Nurnberg; Megumi Kawasaki, Oregon State University; Rodney McCabe, Los Alamos National Laboratory; Tianlong Zhang, The Hong Kong University of Science and Technology

2:00 PM Invited

Mechanical and Functional Properties of Ultrathin Heterogeneous Lamellar Metallic Composites: Mathias Goken¹; Moritz Kuglstatter¹; Heinz Werner Höppel¹; ¹University Erlangen-Nürnberg

2:25 PM

Characterization of Heterostructure in Bulk Nanostructured Metals Processed by High-Pressure Torsion: Megumi Kawasaki¹; Roberto Figueiredo²; Klaus-Dieter Liss³; ¹Oregon State University; ²Universidade Federal de Minas Gerais; ³University of Tennessee -Oak Ridge Innovation Institute

2:45 PM

Effects of Strong Interfaces and Intermetallic Layers on Strength Properties of ARB Processed Reactive Metals: Rodney McCabe1; Yifan Zhang²; Miroslav Zecevic¹; Emma Gordon¹; Hi Vo¹; Tom Nizolek¹; ¹Los Alamos National Laboratory; ²Clemson University

Mechanical Studies of Heterogeneous Nanostructured Inconel 725: Ikponmwosa Iyinbor¹; Jin Wang²; Ruth Schwaiger²; Andrea Hodge¹; ¹University of Southern California; ²Institute of Energy and Climate Research - Microstructure and Properties of Materials (IEK-

3:25 PM Invited

Exploring Heterostructured Materials With Synchrotron X-Ray and Neutron: Yang Ren1; 1City University of Hong Kong

3:50 PM Break

4:05 PM

High-Energy Synchrotron X-Ray Diffraction to Characterize Gradient Nanocrystalline Structure in High-Pressure Torsion Processed Inconel 718: Laxman Bhatta1; Isshu Lee1; Klaus-Dieter Liss²; Megumi Kawasaki¹; ¹Oregon State University; ²University of Tenesse

4:25 PM

Strong Yet Ductile Titanium Alloy Design by Concentration Modulation: Tianlong Zhang¹; ¹The Hong Kong University of Science and Technology

4:45 PM

Tuning the Mechanical Behavior of Heterostructured Nanotwinned-Nanocrystalline Ni Films: Rohit Berlia¹; Jagannathan Rajagopalan¹; ¹Arizona State University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Local Chemical Ordering and Its Impact on Mechanical Behaviors, Radiation Damage, and Corrosion — Mechanical Properties

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Rodrigo Freitas, Massachusetts Institute of Technology; Sriswaroop Dasari, University of Texas at El Paso; Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Mitra Taheri, Johns Hopkins University; Megan McCarthy, Sandia National Laboratories; Irene Beyerlein, University of California, Santa Barbara; Rajarshi Banerjee, University of North Texas; Srinivasan Srivilliputhur, University of North Texas

Wednesday PM | March 26, 2025 352 | MGM Grand

Session Chairs: Penghui Cao, University of California, Irvine; Srinivasan Srivilliputhur, University of North Texas

2:00 PM Invited

Impacts on Microstructure and Mechanical Properties Due to Chemical Short-Range Order in CoCrNi and CrNi2 Alloys: Vinicius Bacurau¹; Pedro Moreira¹; Daniel Miracle²; Angelo Andreoli¹; Eric Mazzer¹; Michael Widom³; Michael Kaufman⁴; Yifan Cao⁵; Rodrigo Freitas⁵; Francisco Coury¹; ¹Universidade Federal de Sao Carlos; ²AF Research Laboratory, Materials and Manufacturing Directorate; 3 Carnegie Mellon University; 4 Colorado School of Mines; 5 Massachusetts Institute of Technology

2:30 PM Invited

Role of Local Chemical Ordering on the Strengthening Properties of Structural Alloys: Edwin Antillon¹; ¹Naval Research Laboratory

3:00 PM

Abnormal Hardness in MEA and HEA After Thermomechanical Processing: Guilherme Sato¹; Guilherme Stumpf¹; Caroline Gonçalves2; Vinicius Bacurau1; Francisco Coury1; Eric Mazzer1; ¹Universidade Federal de Sao Carlos (UFSCar); ²Universidade Federal de Minas Gerais (UFMG)

3:20 PM Break

3:40 PM Invited

Short Range Order and Effects on Mechanical Properties of Medium-Entropy CrCoNi: Easo George¹; ¹University of Tennessee

Investigation of Chemical Short-Range Order Impact on Melting Point and Generalized Stacking Fault Energy in Multi-Principal Element Alloys: Subah Mubassira¹; Mahshad Fani¹; Anshu Raj¹; Shuozhi Xu1; 1University of Oklahoma

LIGHT METALS

Magnesium Technology 2025 — Microstructure **Evolution and Phase Transformations**

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Domonkos Tolnai, Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon; Aaron Palumbo, Big Blue Technologies; Aeriel Murphy-Leonard, Ohio State University; Neale Neelameggham, IND LLC

Wednesday PM | March 26, 2025 115 | MGM Grand

Session Chairs: Wilhelmus Sillekens, European Space Agency; Aeriel Leonard, Ohio State University

2:00 PM Invited

Microstructure-Oriented Fatigue Crack Propagation in Two Cast Mg-Al-Ba-Ca Alloys: Petra Maier1; Benjamin Wolfram1; Jens Roggelin¹; Norbert Hort²; ¹University of Applied Sciences Stralsund; ²Helmholtz-Zentrum Hereon

2:30 PM

Effect of Erbium Addition to Magnesium on Texture, Recrystallization, and Mechanical Behaviour: Rashi Rajanna¹; Jayant Jain¹; ¹Indian Institute of Technology, Delhi

Effect of Cooling Rate on the Solidification Behavior of AMZ211-Y/ Ca Alloys: Jianyue Zhang¹; Jiashi Miao¹; Alan Luo¹; Hongyi Zhan²; Jianfeng Wang²; ¹The Ohio State University; ²General Motors

Considering the Possibility of Significant Strain Accomodation via Dislocation Climb Using Dislocation Density Measurements: Michael Ritzo¹; Jishnu Bhattacharyya¹; Kristian Mathis²; Sean Agnew¹; ¹University of Virginia; ²Charles University

3:30 PM Break

3:50 PM

Guinier-Preston (GP) Zone Strengthening of Dilute Magnesium Alloys Comprised of Earth-Abundant Elements: Bhattacharyya¹; Seth Faberman¹; Aaron Sullivan¹; Du Cheng¹; Yuan-Chen Gao¹; Bi-Cheng Zhou¹; Zehao Li²; Taisuke Sasaki²; Sean Agnew¹; ¹University of Virginia; ²National Institute of Materials Science

4:10 PM

Vacancy-Induced Solute Clustering in Binary Magnesium Alloys: Sreenivas Raguraman¹; Zehao Li²; Homero Pulido¹; Michael Falk¹; Arun Devaraj²; Timothy Weihs¹; ¹Johns Hopkins University; ²Pacific Northwest National Laboratory

Precipitation Hardening in the Magnesium-Zinc-Calcium Alloy **System**: *Marcel Braun*¹; Mirko Schaper¹; Kay-Peter Hoyer¹; Olexandr Grydin¹; ¹University Paderborn

4:50 PM

Effect of Zn or Ca Addition on Microstructure and Mechanical Properties of Mg-Ti Composites Fabricated Through Liquid Metal Dealloying: Jee Eun Jang¹; Soo-Hyun Joo²; Ho-Sang Sohn¹; Sung Hyuk Park¹; ¹Kyungpook National University; ²Dankook University

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Materials and Chemistry for Molten Salt Systems — Impurities in Molten Salts: Measurements, Effects, and Control

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Yu-chen Karen Chen-Wiegart, Stony Brook University / Brookhaven National Laboratory; Nathaniel Hoyt, Argonne National Laboratory; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Weiyue Zhou, Massachusetts Institute of Technology

Wednesday PM | March 26, 2025 165 | MGM Grand

Session Chairs: Weiyue Zhou, Massachusetts Institute of Technology; Amanda Leong, Virginia Polytechnic Institute

2:00 PM

Effect of Impurities on Molten Salt Corrosion of 316H Stainless Steel in FLiNaK Medium: Bhagwat Ghule¹; Kailee Buttice¹; Adrien Couet1; 1University of Wisconsin-Madison

2:20 PM

Evolution of Molten Salt Chemistry During Oxygen and Moisture Ingressions: Nathaniel Hoyt¹; Jicheng Guo¹; Nora Shaheen¹; ¹Argonne **National Laboratory**

2:40 PM

Effects of Transition Metal Impurities on the Corrosion of Ni-Based Alloy in Molten Fluoride Salt: Nayoung Kim1; Weiyue Zhou1; Michael Short1; 1Massachusetts Institute of Technology

Confirmation of Impurity Detection in Molten Salts: Logan Mcilwain¹; Amanda Leong¹; Jamie Bahn¹; Xander Hromiak¹; Trevor Bradshaw¹; Jinsuo Zhang¹; ¹Virginia Polytechnic Institute

Impurity and Corrosion Assessment in Purified Molten Fuel NaF-**BeF-UF-ZrF Salts**: Amanda Leong¹; Matthew Si¹; Jaewoo Park¹; Trevor Bradshaw¹; Xander Hromiak¹; Jinsuo Zhang¹; ¹Virginia Polytechnic Institute

3:40 PM Break

4:00 PM Invited

Impact of Molten Salt Exposure on Characteristics of Metal Nanoparticles: Phillip Halstenberg¹; Ellie Kim¹; Dmitry Maltsev¹; Sheng Dai¹; ¹Oak Ridge National Laboratory

4:25 PM

Introducing and Monitoring Moisture Content in MgCl2-NaCl Salt Systems to Evaluate its Impact on Corrosion of NiCr Alloys: Matteo Kozlowski¹; Yongfeng Zhang¹; Kumar Sridharan¹; Adrien Couet¹; Cody Falconer²; ¹University of Wisconsin-Madision; ²TerraPower, LLC

Spectroelectrochemical Detection of Moisture Related Impurities in Molten Salts: Thomas Selmi1; Dev Chidambaram1; 1University of Nevada

5:05 PM

Investigating the Effects of Helium-Ion Irradiation on the Corrosivity of FLiNaK Molten Salt: Adria Peterkin¹; Weiyue Zhou¹; Mike Short¹; ¹Massachusetts Institute of Technology

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Materials for Sustainable Hydrogen Energy — **Hydrogen Production & Catalysts**

Sponsored by: TMS Structural Materials Division, TMS: Energy Committee

Program Organizers: Wenwen Song, University of Kassel; Enrique Galindo-Nava, University College London; Jinwoo Kim, Korea Institute of Science and Technology (KIST); Binhan Sun, Max-Planck Institute

Wednesday PM | March 26, 2025 359 | MGM Grand

Session Chairs: Enrique Galindo-Nava, University College London; Binhan Sun, East China University of Science and Technology; Jinwoo Kim, Korea Institute Of Science And Technology (Kist); Wenwen Song, University of Kassel

2:00 PM Introductory Comments

Plasma-Treated Transition Metal Dichalcogenide Nanoparticles for Efficient Hydrogen Evolution Reaction: Alex Laikhtman1; Arie Borenstein²; Alla Zak¹; ¹Holon Institute of Technology (HIT); ²University of Ariel

2:25 PM

Highly Durable and Efficient Anion Exchange Membrane Water Electrolyzer Using One-Step Fabrication of the Integrated Electrode by the Hot-Press Process: Shin-Woo Myeong1; Sung Choi²; ¹Korea Institute of Materials Science (KIMS); ²Korea Institute of Materials Science (KIMS); University of Science and Technology (UST)

2:45 PM

Size and Shape Dependence of Hydrogen-Induced Phase Transformation and Sorption Hysteresis in Nanoparticles: Xingsheng Sun¹; ¹University of Kentucky

Non-PGM Based Binder Free Electrode for Anion Exchange Membrane Water Electrolyzer: Seunghun Lee¹; Yoosei Park; Yangdo Kim¹; ¹Pusan National University

MATERIALS SYNTHESIS AND PROCESSING

Materials Processing Fundamentals: Thermodynamics and Rate Phenomena — Process Optimization and Material Behavior in Metallurgical **Applications**

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Phase Transformations Committee

Program Organizers: Allie Anderson, RHI Magnesita; Adrian Sabau, Oak Ridge National Laboratory; Chukwunwike Iloeje, Argonne National Laboratory; Adamantia Lazou, National Technical University of Athens; Kayla Molnar, Los Alamos National Laboratory

Wednesday PM | March 26, 2025 103 | MGM Grand

Session Chairs: Adrian Sabau, Oak Ridge National Laboratory; Adamantia Lazou, National Technical University of Athens

2:00 PM Introductory Comments

2:05 PM

Optimization of Rotary Kiln in Molybdenite Concentrate Oxidation for Molybdic Trioxide Production: Jungho Heo1; Seongsoo Han1; Hyunsik Park¹; Joobeom Seo¹; ¹Korea Institute of Geoscience and Mineral Resources

2:25 PM

Mold Simulator Study of Heat Transfer Behavior of Medium Carbon Steel Slag Film Inside Continuous Casting Mold: Zichao Wang¹; Wanlin Wang¹; Haihui Zhang²; Jie Zeng¹; Lejun Zhou¹; ¹Central South University; ²Jiangxi University of Science and Technology

2:45 PM

The Oscillating Drop's Sensitivity to Thermophysical Properties of the Melt and Flow Conditions in Electromagnetic Levitation Experiments: Gwendolyn Bracker¹; Robert Hyers²; ¹DLR Institute of Materials Physics in Space; ²Worcester Polytechnic Institute

Correlation of Bond Structures and Viscosity of Submerged Arc Welding Fluxes Towards Shipbuilding Steels: Hang Yuan¹, Yanyun Zhang¹; Cong Wang¹; ¹Northeastern University

3:25 PM Break

Experimental and Computational Studies on Solid-State Dewetting of Single Crystal Nickel and Copper Thin Films: Misong Ju1; Maxwell L'Etoile1; Yoon Ah Shin1; Baoming Wang1; Carl Thompson¹; ¹Massachusetts Institute of Technology

4:05 PM Concluding Comments

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components IV — Cladding Materials

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Kayla Yano, Pacific Northwest National Laboratory; Assel Aitkaliyeva, University of Florida; Eric Lang, University of New Mexico; Eda Aydogan, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Benjamin Eftink, Los Alamos National Laboratory; Tanvi Ajantiwalay, Pacific Northwest National Laboratory

Wednesday PM | March 26, 2025 160 | MGM Grand

Session Chairs: Benjamin Eftink, Los Alamos National Laboratory; Caleb Massey, Oak Ridge National Laboratory

2:00 PM Invited

Development of a Plasticity Model for Non-Hydrided and Hydrided Beta-Treated Zircaloy-4 Based on the Results From Notched Tensile, Torsion and Compression Testing: Brian Cockeram¹; James Sobotka²; ¹Nnl Fluor Marine Propulsion; ²Southwest Research Institute

Assessment of Ring and Axial Tension Tests for Determining Cladding Mechanical Properties: Robert Hansen¹; Philip Petersen¹; Prasenjit Dewanjee²; Aaron Colldeweih¹; Jake Stockwell¹; David Kamerman¹; Fabiola Cappia¹; ¹Idaho National Laboratory; ²Utah State University

2:50 PM

Enhanced Properties of CrAl Coated ATF Cladding: Sung Eun Kim¹; Jong Dae Hong²; Hong Ryoul Oh²; Hyun-gil Kim²; ¹Inha University; ²Korea Atomic Energy Research Institute

3:10 PM

Finite Element Analysis of Stress Evolution of Cr-Coated and FeCrAl-Coated Zircaloy Fuel Cladding Tubes: Artur Santos Paixao1; Rijul Chauhan¹; Zhihan Hu¹; Frank Garner¹; Michael Nastasi¹; Lin Shao1; ¹Texas A&M University

3:30 PM Break

In-Situ Loading and Corrosion of Coated Zircaloy With Scratch Defects: Zhenyu Fei¹; Peng Wang¹; Connor Shamberger¹; Gary Was¹; Stephen Raiman¹; ¹University of Michigan

Influence of Temperature on Slip Properties and Strain Rate Sensitivity in Zircaloy-4 by Micro-Cantilever Tests: Jicheng Gong¹; Ed Darnbrough²; Angus Wilkinson²; ¹King's College London; ²Oxford University

4:30 PM

Mechanical Anisotropy of Textured Nb-Modified Zircaloy-4 Cladding Tubes: Mahmoud Hawary¹; K.L. Murty¹; ¹North Carolina State University

4:50 PM

Digital Image Correlation Analysis of Modified Burst Tests to Support BISON Validation of Reactivity-Initiated Accident **Separate-Effects Tests**: *Jennifer Espersen*¹; Nathan Capps²; Nicholas Brown¹; ¹University of Tennessee-Knoxville; ²Oak Ridge National Laboratory

MECHANICS OF MATERIALS

Mechanical Behavior Related to Interface Physics IV — Fracture, Adhesion, and Nanoparticle Strengthening

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Nuclear Materials Committee, TMS: Surface Engineering Committee

Program Organizers: Stanislav Zak, Austrian Academy of Sciences; Nathan Mara, University of Minnesota; Barbara Putz, Empa Swiss Federal Laboratories for Materials Science and Technology; Glenn Balbus, MRL Materials Resources LLC; Kevin Schmalbach, Bruker Nano; Youxing Chen, University of North Carolina Charlotte

Wednesday PM | March 26, 2025 369 | MGM Grand

Session Chairs: Rebecca Gallivan, Dartmouth College; Barbara Putz, Empa Swiss Federal Laboratories for Materials Science and Technology

2:00 PM

Distinguishing Competing Mechanisms in the Deformation of Ultra-Small Nanoparticles: Tevis Jacobs¹; Ruikang Ding¹; Amit Prasad¹; Douglas Zhang¹; Ting Liu¹; Ashlie Martini¹; ¹University of Pittsburgh

2:20 PM

Unveiling Size-Dependent Strength in Noble Metal Nanoparticles: A Comparative Study of Pt, Au, and Ag.: Amit Prasad¹; Ruikang Ding¹; Ashlie Martini²; Tevis Jacobs¹; Douglas Zhang²; Ting Liu²; ¹University of Pittsburgh; ²University of California

2:40 PM

Ductility and Brittle Fracture of Tungsten: The Role of Twin Boundaries and Pre-Existing Dislocations: Omar Hussein¹; Nicolas Bertin²; Tomas Oppelstrup²; Fadi Abdeljawad³; Timofey Frolov²; ¹George Mason University; ²Lawrence Livermore National Laboratory; 3Lehigh University

3:00 PM Invited

The Interplay Between Interfaces and Plastic Deformation in Nanoscale Materials: Ralph Spolenak¹; ¹Eth Zurich

3:30 PM Break

3:50 PM

Analyzing Plastic Flow in Polycrystalline Alloys From Atomistic to Microscale Perspectives: Thanh Phan1; Liming Xiong1; 1North Carolina State University

4:10 PM

Interface Design for Flexible Thin Film Systems: Electromechanical Properties and Adhesion: Johanna Byloff¹; Pierre-Olivier Renault²; Damien Faurie³; Soheil Husain²; Thomas Edwards¹; Daniele Casari¹; Claus Trost⁴; Megan Cordill⁴; Barbara Putz¹; ¹Empa - Swiss Laboratories for Materials Science; ²Universite de Poitiers; ³LSPM -CNRS; 4Erich Schmid Institute of Materials Science

4:30 PM

Interface Modification to Tailor Adhesion of Mo-Based Alloy Thin Films to Polyimide: Megan Cordill1; 1Erich Schmid Institute of Materials Science

4:50 PM Invited

Exploring Interface Fracture in Thin Film Structures Using **Diffraction-Based Techniques**: Alice Lassnig¹; Christoph Gammer¹; Michael Meindlhumer²; Megan Cordill¹; Andrew Minor³; Schmid Institut; ²Montanuniversität Leoben; ³University of California, Berkeley

MECHANICS OF MATERIALS

Mechanical Response of Materials Investigated Through Novel In-Situ Experiments and Modeling — **Modelling and Data-Centred Studies**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Minh-Son Pham, Imperial College London; Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dongchan Jang, Korea Advanced Institute of Science and Technology; Josh Kacher, Georgia Institute of Technology; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization

Wednesday PM | March 26, 2025 366 | MGM Grand

Session Chair: Robert Wheeler, Microtesting Solutions LLC

2:00 PM Invited

Crystal Plasticity Experiments With Microstructure Clones: Jay Carroll¹; Kaitlynn Fitzgerald²; Tim Ruggles¹; William Gilliland¹; Hojun Lim¹; ¹Sandia National Laboratories; ²United States Naval Academy

Evaluating Phase-Field Simulations of Brittle Fracture in Polycrystalline Materials: Mythrevi Ramesh¹; Sara Gorske²; Blaise Bourdin³; Kaushik Bhattacharya²; Katherine Faber²; Peter Voorhees¹; ¹Northwestern University; ²California Institute of Technology; ³McMaster University

Programming the Crack Propagation and Toughness in Mechanical Metamaterials: Hsing Lin Wu¹; Minh-Son Pham¹; ¹Imperial College London

3:10 PM

Phase Field Microelasticity Theory and Modeling of Dislocation Dynamics in an Elastically and Structurally Inhomogeneous Solid: Song Ling Janel Chua¹; Brayan Murgas Portilla¹; Abigail Hunter¹; Nithin Mathew¹; ¹Los Alamos National Lab

3:30 PM Break

3:50 PM

In-Situ Tribological Analysis of UHMWPE Ski Bases and Advanced Wax Formulations for Enhanced Glide Performance: Jeffrey Bates1; ¹University of Utah

4:10 PM

Discrete Dislocation Dynamic Simulation of Shock-Induced Plasticity in Aluminum Motivated by Atomistic Data: Cameron Frampton¹; Douglas Spearot¹; ¹University of Florida

Evaluation of the ΔT Creep Test as a Parallelized Test Method: Artur Leonel Machado Ulsenheimer¹; Christo Boudreault¹; Calvin Stewart¹; ¹MATX at The Ohio State University

A Mesoscale Modeling Approach to Predict Microstructural Evolution During Hypervelocity Impact of Aluminum: Roshan Sebastian¹; Ching Chen¹; Avinash Dongare¹; ¹University of Connecticut

5:10 PM

Phase Field Modeling of Slip Transfer in Thick Biphase Interfaces in HCP/BCC Nanolaminates: Nicolas Fuchs-Lynch¹; Shuozhi Xu²; Mauricio De Leo³; Pulkit Garg¹; Nathan Mara³; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²University of Oklahoma; ³University of Minnesota, Twin Cities

NUCLEAR MATERIALS

Meeting Materials Challenges for the Future of Fusion Energy — Metallic Alloys I

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Tianyi Chen, Oregon State University; Amy Gandy, United Kingdom Atomic Energy Authority; Reuben Holmes, Kyoto Fusioneering; Ian Mccue, Northwestern University; Sneha Prabha Narra, Carnegie Mellon University; Jason Trelewicz, Stony Brook University; Weicheng Zhong, Oak Ridge National Laboratory

Wednesday PM | March 26, 2025 158 | MGM Grand

Session Chairs: Ian Mccue, Northwestern University; Xing Wang, Pennsylvania State University

2:00 PM Keynote

Emerging Alloy Materials for Fusion Power: Osman El-Atwani¹; Matheus Tunes²; Saryu Fensin³; Dan Thoma⁴; Enrique Martinez Saez⁴; Bochuan Sun⁴; Caleb Hatler⁵; Matthew Vigil⁵; James Haag¹; Dan Schreiber¹; Eda Aydogan¹; Duc Nguyen⁶; ¹Pacific Northwest National Laboratory; ²Montanuniversität Leoben; ³Los Alamos National Laboratory; ⁴Clemson University; ⁵University of Wisconsin Madison; ⁶UKAEA

2:30 PM

Benchmark Study of Three-Element Medium Entropy Alloy WTaV for Fusion Reactors Plasma-Facing Applications: Ishtiaque Karim Robin¹; Eda Aydogan¹; Osman El Atwani¹; ¹Pacific Northwest National Laboratory

2:50 PM

Additive Manufacturing via Directed Energy Deposition of WTaCrV and WTaHfCrV Refractory High Entropy Alloys for Plasma Facing Components: Caleb Hatler¹; Matthew Vigil¹; Bochuan Sun²; Enrique Martinez²; Saryu Fensin³; Osman El-Atwani⁴; Dan Thoma¹; ¹University Of Wisconsin Madison; ²Clemson University; ³Los Alamos National Laboratory; ⁴Pacific Northwest National Laboratory

3:10 PM

Understanding the Role of Short-Range Order on Defect Thermodynamics in Tungsten Alloys: Maheshwari Meesa¹; Prashant Singh²; Nicolas Argibay²; Vijay Vasudevan¹; Srinivasan Srivilliputhur¹; ¹University of North Texas; ²Ames National Laboratory

3:30 PM Break

3:50 PM

Refractory Alloy Processing Challenges for Next-Generation Energy Systems: Nicolas Argibay¹; Hailong Huang¹; Ryan Ott¹; Gaoyuan Ouyang¹; Jordan Tiarks¹; Rameshwari Naorem¹; Zongyang Lyu¹; Luke Gaydos¹; Erik DeMeyere¹; Prashant Singh¹; Duane Johnson¹; ¹Ames National Laboratory

4:10 PM

Spark Plasma Sintering of Dispersion-Strengthened Tungsten for Fusion Applications: Cristian Urias¹; Rameshwari Naorem²; Jonathan Rodriguez¹; Hailong Huang²; Nicolas Argibay²; Vijay Vasudevan¹; Thomas Scharf¹; ¹University of North Texas; ²Ames National Laboratory

4:30 PM

Thermomechanical Processing of Tungsten and its Alloys for Fusion Energy Applications: Siva Shankar Alla¹; Blake Emad¹; Carson Hester¹; Saumyadeep Jana²; Xiao-Ying Yu³; Yutai Kato³; Vijay Vasudevan¹; Sundeep Mukherjee¹; ¹University Of North Texas; ²Pacific Northwest National Laboratory; ³Oak Ridge National Laboratory

4:50 PM

Microstructure Modification of Tungsten by Alloying, Dispersion Strengthening, and Thermomechanical Processing for Fusion Energy Applications: Blake Emad¹; Siva Shankar Alla¹; Carson Hester¹; Xiao-Ying Yu²; Yutai Kato²; Sundeep Mukherjee¹; Vijay Vasudevan¹; ¹University of North Texas; ²Oak Ridge National Laboratory

5:10 PM

W-Cr Composite with Improved Fracture Toughness for Plasma-Facing Material: Fabrication and Mechanical Properties Characterization: Sungmin Lee; Jeongseok Kim¹; Nojun Kwak¹; Heung Nam Han¹; ¹Seoul National University

5:30 PM

Identification of Transmutation Products in Irradiated Tungsten: *Xiao-Ying Yu*¹; Gabriel Parker¹; Yan-Ru Lin¹; Weicheng Zhong¹; Yutai Katoh¹; ¹Oak Ridge National Laboratory

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Microstructural Evolution and Material Properties Due to Manufacturing Processes: A Symposium in Honor of Anthony Rollett — Microstructural Evolution and Material Properties: Session IV

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Curt Bronkhorst, University of Wisconsin-Madison; Elizabeth Holm, University of Michigan; Ricardo Lebensohn, Los Alamos National Laboratory; Sukbin Lee, Ulsan National Institute Of Science And Technology; Nathan Mara, University of Minnesota

Wednesday PM | March 26, 2025 303 | MGM Grand

Session Chairs: Sukbin Lee, Ulsan National Institute Of Science And Technology; Curt Bronkhorst, University of Wisconsin-Madison

2:00 PM Invited

Modeling Microstructure Fatigue Indicator Parameters Using Symbolic Regression with Graph Neural Networks: Jacob Hochhalter¹; Jonas Merrell¹; Krzysztof Stopka²; Michael Sangid²; ¹University of Utah; ²Purdue University

2:30 PM Invited

The Analysis of Grain Boundary Networks by 3D Serial Sectioning: David Rowenhorst¹; ¹US Naval Research Laboratory

3:00 PM

Phase Transformation and Plasticity Enhanced by Electric Current or Charge: Heung Nam Han¹; ¹Seoul National University

3:20 PM

Field Fluctuations Elasto-Plastic Self-Consistent Crystal Plasticity: Applications to Predicting Texture Evolution During Rolling, Recrystallization, and Drawing Processes: Marko Knezevic¹; ¹University of New Hampshire

3:40 PM Break

4:00 PM Invited

Advanced Coupling of an FFT-Based Mesoscale Modeling Method to a Macroscale Finite Element Method: Evan Lieberman¹; Miroslav Zecevic¹; Caleb Yenusah²; Nathaniel Morgan¹; Ricardo Lebensohn¹; ¹Los Alamos National Laboratory; ²SLB

4:30 PM

Predictions of the Mechanical Behavior Scaling of Beam and Sheet Structures: Jonathan Lind1; Brandon Zimmerman1; James Bellino1; Holly Carlton¹; Mukul Kumar¹; ¹Lawrence Livermore National Laboratory

4:50 PM

Nano-Scale Analysis of Mechanically and Thermally Induced White Layers in Hard Turned AISI 52100 Bearing Steel: Sahith Kokkirala¹; Seyed Hosseini²; Uta Klement¹; ¹Chalmers University of Technology; ²Research Institutes of Sweden AB

5:10 PM

Recovery and Recrystallization of Deformed Metal Nanoparticles: Jonathan Zimmerman¹; Eugen Rabkin¹; ¹Technion - Israel Institute of Technology

NUCLEAR MATERIALS

Microstructural, Mechanical, and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface II - Next-Generation Fuels II: TRISO

Sponsored by: TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Xing Wang, Pennsylvania State University Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Dong (Lilly) Liu, University of Oxford; Caleb Clement, Westinghouse Electric Company; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida; Yi Xie, Peking University

Wednesday PM | March 26, 2025 159 | MGM Grand

Session Chairs: Caleb Clement, Westinghouse Electric Company; Dong (Lilly) Liu, University of Oxford

2:00 PM Invited

Assessing Thermochemical Stability and Fission Product Mobility in Advanced Nuclear Fuels: Elizabeth Sooby¹; Steven Cavazos¹; Mira Khair¹; Patrick Warren¹; ¹University of Texas at San Antonio

2:30 PM

A Phase-Field Model for Studying Palladium Attack of SiC In TRISO: Chaitanya Bhave¹; Jacob Hirschhorn¹; Matthew Swisher¹; Larry Aagesen¹; Pierre-Clement Simon¹; ¹Idaho National Laboratory

2:50 PM

3D X-Ray Micro-Tomography Imaging-Based Study of PYCASSO TRISO Fuel Particles: Haigi Huang¹; Steven Knol²; Mark Davies³; Arjan Vreeling²; Matthew Jordan⁴; Nassia Tzelepi⁴; David Goddard⁴; Dong (Lilly) Liu⁵; ¹University of Bristol; ²NRG; ³USNC; ⁴UK National Nuclear Laboratory; 5University of Oxford

Development of Coated Particle Fuels with New Architectures for an Expanded Service Envelope: Eddie Lopez Honorato¹; Ryan Heldt¹; Bryan Conry¹; Tyler Gerczak¹; Flavio Dal Forno Chuahy¹; Angel Diaz Abreu¹; Katherine Montoya¹; ¹Oak Ridge National Laboratory

3:30 PM Break

3:50 PM Invited

Pebble Integrity in Action: Robust Testing for Safe Refueling: Assel Aitkaliyeva1; Mitchell Mika1; Anne Campbell2; 1University of Florida; ²Oak Ridge National Laboratory

Kernel Composition and Variability Influence on TRISO Fuel Behavior: Tyler Gerczak¹; Grant Helmreich¹; Will Cureton¹; Ridge National Laboratory

In-situ Irradiation of Uranium Carbide and Zirconium Carbide: Rashed Almasri¹; Lingfeng He¹; Jian Gan²; Adrian Wagner²; Laura Hawkins²; Wei-Ying Chen³; Yuhan Li⁴; ¹North Carolina State University; ²Idaho National Laboratory; ³Argonne National Laboratory; 4University of Michigan

ADDITIVE MANUFACTURING

Nano and Micro Additive Manufacturing — Direct **Laser Writing and its Applications**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Electronic Packaging and Interconnection Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Alain Reiser, KTH Royal Institute of Technology; Wendy Gu, Stanford University; Yu Zou, University of Toronto; Mostafa Hassani, Cornell University; Ming Chen, University of Nevada, Reno

Wednesday PM | March 26, 2025 316 | MGM Grand

Session Chairs: Wendy Gu, Stanford University; Yu Zou, University of Toronto

2:00 PM Introductory Comments

2:05 PM Invited

Spatial Polymer-Free 3D Nanoprinting of Advanced Materials Using Optical Force Brush and Two-Photon Decomposition Methods: Gary Chengi; Chenggi Yi2; Yaoyu Wang2; 1Purdue University; 2Wuhan University

2:35 PM

Nanoscale Additively Manufactured Oxides/Metal Nanocomposites with Composition-Dependent Microstructure and Strengths: Wenxin Zhang1; Julia Greer1; 1California Institute of Technology

2:55 PM

Femtosecond Laser Direct Writing of High Entropy Alloying Nanoparticles for Catalysis: Anming Hu¹; ¹University of Tennessee

3:15 PM

Assessing Local Deformation, Fracture and Adhesion Properties by Multi-Photon Lithography Test Structures: Daniel Kiener¹; Alexander Jelinek¹; Felix Ferk¹; Markus Alfreider¹; ¹University of Leoben

3:35 PM Break

3:55 PM Invited

Ultrahigh Specific Strength by Bayesian Optimization of Lightweight Carbon Nanolattices: Peter Serles¹; Jinwook Yeo²; Michel Hache¹; Pedro Guerra Demingos¹; Jonathan Kong¹; Pascal Kiefer³; Somayajulu Dhulipala⁴; Boran Kumral¹; Katherine Jia¹; Shuo Yang¹; Tianjie Feng¹; Charles Jia¹; Carlos Portela⁴; Martin Wegener³; Pulickel Ajayan⁵; Jane Howe¹; Chandra Veer Singh¹; Yu Zou¹; Seunghwa Ryu²; Tobin Filleter¹; ¹University of Toronto; ²Korea Advanced Institute of Science and Technology (KAIST); ³Karlsruhe Institute of Technology; 4Massachusetts Institute of Technology; 5Rice University

4:25 PM

Micro-Architected Mechanical Metamaterials Tuning Controlling Structural Disorder: Alexander Groetsch1; Kate Ainger2; Lorenzo Valdevit²; ¹KTH Royal Institute of Technology; ²University of California, Irvine

4:45 PM

Elucidating the Structure and Energy Absorption of Holographically Produced 3D Nanoarchitected Materials: Matias Kagias¹; Thomas Tran²; Ruoqi Dang³; Zhi Li³; Nicholas Phillips⁴; Julia Greer²; ¹Lund University; ²California Institute of Technology; ³Institute of High Performance Computing, A*STAR; 4Paul Scherrer Institute

Cellular Fluidics: Directing Flow of Liquids and Gases Using Microarchitected Materials: Nikola Dudukovic¹; ¹Lawrence Livermore National Laboratory

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Nanostructured Materials in Extreme Environments **III — Corrosive Environment**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee. TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Youxing Chen, University of North Carolina Charlotte; Haiming Wen, Missouri University of Science and Technology; Yue Fan, University of Michigan; Khalid Hattar, University of Tennessee Knoxville, Ashley Bucsek, University of Michigan; Jessica Krogstad, University of Illinois at Urbana-Champaign; Irene Beyerlein, University of California, Santa Barbara; Trevor Clark, Commonwealth Fusion Systems

Wednesday PM | March 26, 2025 166 | MGM Grand

Session Chair: Trevor Clark, Commonwealth Fusion Systems

2:00 PM Invited

Orientation-Dependent Oxidation of Fusion Plasma-Facing Tungsten: Rajat Sainju¹; Manisha De Alwis Goonatilleke¹; Yuanyuan Zhu¹; ¹University of Connecticut

2:25 PM

Effects of Microstructure on Hydrogen Retention in Metal Hydride Moderators: Jianqi Xi¹; Nicholas Dailey¹; ¹University of Illinois Urbana-Champaign

2:45 PM

Electrical and Thermal Conductivity of 14YWT NFA: Jared Justice1; Filip Ronning²; Stuart Maloy³; Osman Anderoglu¹; ¹University of New Mexico; ²Los Alamos National Laboratory; ³Pacific Northwest National Lab

3:05 PM

Behavior of UHTCs Through Improving the Oxidation Nanostructuring: Catherine Ott¹; lan McCue¹; University

3:25 PM Break

Predicting Internal Oxidation in High-Temperature Ni-Cr Alloys Using a CALPHAD-Informed Phase-Field Model: Ziming Zhong¹; Peichen Wu¹; Kumar Ankit¹; ¹Arizona State University

Influence of Annealing Atmosphere on Microstructural **Evolution and Variations in Mechanical Properties and Electrical** Conductivity During Isochronal Annealing in a Nanocrystalline Cu-Zr Alloy: Takahiro Kunimine¹; Takeshi Inamura¹; Shuhei Yamaguchi¹; Naoya Nishikawa¹; Reza Gholizadeh²; Nobuhiro Tsuji²; ¹Kanazawa University; 2Kyoto University

4:25 PM

Nanoscale Characterization of the Effect of the High Magnetic Field on a 15-5 PH Steel: Sonia Guehairia¹; ¹KTH

A Phonon-Unfolding Based Method for Quantitative Assessment of Thermal Conductivity of High Entropy Ceramics: Jun Song¹; Yuxuan Wong¹; Guoqiang Lan¹; ¹McGill University

ADVANCED CHARACTERIZATION METHODS

Neutron and X-Ray Scattering in Materials Science and Engineering — Local Structure and Materials **Properties**

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Hillary Smith, Swarthmore College; Jennifer Niedziela, Oak Ridge National Laboratory

Wednesday PM | March 26, 2025 156 | MGM Grand

Session Chair: Puspa Upreti, Oak Ridge National Laboratory

2:00 PM Invited

Probing Ionic Diffusion with Single Crystal Diffuse and Quasielastic Neutron Scattering: Stephan Rosenkranz¹; Jared Coles¹; Raymond Osborn¹; Matthew Krogstad²; Daniel Pajerowski³; ¹Materials Science Division, Argonne National Laboratory; 2X-ray Science Division, Argonne National Laboratory; ³Neutron Scattering Division, Oak Ridge National Laboratory

2:30 PM Invited

Characterization of Radiation Effects in Ceramics with Neutron Total **Scattering**: Maik Lang¹; Eric O'Quinn¹; Cale Overstreet¹; Gianguido Baldinozzi²; ¹University of Tennessee; ²CNRS CentraleSupélec, Université Paris-Saclay

Enhanced Magnetic-Disorder Driven Magnon Softening of TbSb via Y-Doping: George Yumnam¹; David Dahlbom¹; Duncan Moseley¹; Hasitha Arachige²; Barry Winn¹; Allen Scheie³; Wei Tian¹; Michael Manley¹; David Mandrus²; Raphael Hermann¹; ¹Oak Ridge National Laboratory; ²University of Tennessee Knoxville; ³Los Alamos **National Laboratory**

3:20 PM

Planar Thermal Transport Mapping of the GaN Flm with Spatial-Temporal-Resolved X-Ray Diffraction: Thanh Nguyen¹; Chuliang Fu¹; Buxuan Li¹; Tyra Espedal¹; Zhantao Chen²; Haidan Wen³; Mingda Li¹; ¹Massachusetts Institute of Technology; ²SLAC National Accelerator Laboratory; ³Argonne National Laboratory

3:40 PM Break

3:50 PM

Rationalization of Non-Uniform Radial Hardness Distribution in Friction Self-Piercing Riveted Al-7075 Using X-Ray Scattering and Advanced Microscopy Techniques: Rakesh Kamath¹; Yuan Li²; Jan Ilavsky¹; Yi-Feng Su²; Yiyu Wang²; Jiheon Jun²; Yong Chae Lim²; Zhili Feng²; Dileep Singh¹; ¹Argonne National Laboratory; ²Oak Ridge National Laboratory

4:10 PM

Elucidating the Phase Evolution of a Spinodal Au-Pt-Pd Alloy Using In Situ Synchrotron X-Ray Diffraction: James Hogg¹; Jan Vollhüter²; Ming En Pek¹; Hannah Cole¹; George Wise¹; Catherine Dejoie³; Nicholas Jones¹; Steffen Neumeier²; David Collins¹; Howard Stone¹; ¹University of Cambridge; ²Friedrich-Alexander-Universität Erlangen-Nürnberg; ³European Synchrotron Radiation Facility

4:30 PM

In Situ X-Ray Diffraction Reveals the Early Stages of Solid Phase Alloying in the 7XXX Al Alloy System: Julian Escobar1; Xiao Li1; Akash Mukhopadhyay¹; Chang Chan²; Harikrishnasinh Rana³; Elizabeth Mathew²; Lars Rath²; Peter Staron²; Emad Maawad²; Uceu Suhuddin²; Lei Li²; Ayoub Soulami²; Benjamin Klusemann³; Cynthia Powell¹; Jorge dos Santos²; ¹Pacific Northwest National Laboratory; ²Helmholtz-Zentrum Hereon; ³Leuphana University Luneburg

ADVANCED CHARACTERIZATION METHODS

Novel Strategies for Rapid Acquisition and Processing of Large Datasets from Advanced Characterization Techniques — Materials Informatics & AI/ML Supplemented Characterization Workflows

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Sriram Vijayan, Michigan Technological University; Rakesh Kamath, Argonne National Laboratory; Austin Mcdannald, National Institute of Standards and Technology; Fan Zhang, National Institute of Standards and Technology; Sarshad Rommel, University of Connecticut

Wednesday PM | March 26, 2025 157 | MGM Grand

Session Chairs: Fan Zhang, National Institute of Standards and Technology; Sriram Vijayan, Michigan Technological University

2:00 PM

AI-Driven Microstructural Data Correlation Using In-Situ Raman Spectroscopy in Self-Driving Lab by Using Chocolate as Frugal Twin: Kinston Ackölf¹; Taylor Sparks¹; ¹University of Utah

2:20 PM Invited

From Chaos to Clarity: Managing the Materials Data Surge: Taylor Sparks¹; Ramsey Issa¹; Layla Purdy¹; Federico Ottomano²; ¹University of Utah; ²University of Liverpool

2:45 PM Invited

Microstructure Informatics: **Automated** Microstructure Characterization and Neural Network Based Modeling of **Processing-Structure-Property Relations**: Pascal Thome¹; Luis Arciniaga¹; Michael Madigan¹; Sammy Tin¹; ¹University of Arizona

3:10 PM

A Retrieval-Augmented Generation Application in the Dental Composites Space: Wade Smallwood¹; Ramsey Issa¹; Hasan Sayeed¹; Taylor Sparks¹; ¹University of Utah

3:30 PM Break

Accelerating Acquisition and Analysis of Nanoscale Microstructural Changes and Secondary Phases Using TEM: New Approaches for Smart Data Collection and On-the-Fly Quantification: Lee Casalena1; 1Thermo Fisher Scientific

4:10 PM

Automated Real-Time 3D Stereo-Reconstructions Through Machine-Learning Based Tracking: Hangyu Li¹; Benjamin Eftink²; Kevin Field¹; ¹University of Michigan Ann Arbor; ²Los Alamos National Laboratory

Deep Learning Conditional Diffusion Models to Recreate Scanning Electron Microscopy Using Light Optical Microscopy Priors: Nicholas Amano¹; Bo Lei²; Martin Müller³; Dominik Britz³; Elizabeth Holm¹; ¹University of Michigan; ²Lawrence Livermore National Laboratory; ³Steinbeis-Forschungzentrum Material Engineering Center Saarland

4:50 PM

Comparing Performance of U-Net Based Neural Networks for Automated Detection of Defects in TEM Images of Nuclear Materials: Aiden Ochoa¹; Xinyuan Xu¹; Xing Wang¹; ¹Penn State University

5:10 PM

Al-Driven Kikuchi Pattern Enhancement for Efficient and Robust EBSD Analysis of Highly Deformed Metals: Ayoub Dergaoui¹; Siyu Tu¹; Noureddine Barka²; ¹National Research Council; ²University of Quebec at Rimouski

5:30 PM

Three-Dimensional Laue-Diffraction Microscopy with a Coded Aperture: Principles and High-Performance-Computing Workflow: Matthew Diamond¹; Michael Prince¹; Hannah Parraga¹; Doga Gursoy¹; Michael Wojcik¹; Wenjun Liu¹; Ross Harder¹; Jonathan Tischler¹; Dina Sheyfer¹; ¹Argonne National Laboratory

MATERIALS SYNTHESIS AND PROCESSING

Phase Transformations and Microstructural **Evolution — Beyond Metals and Alloys**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State University; Ashley Paz y Puente, University of Cincinnati; Jonah Klemm-Toole, Colorado School of Mines; Sriram Vijayan, Michigan Technological University; Mohsen Asle Zaeem, Colorado School of Mines; Le Zhou, Marquette University; Adriana Eres-Castellanos, Colorado School of Mines; Sophie Primig, University of New South Wales

Wednesday PM | March 26, 2025 167 | MGM Grand

Session Chairs: Eric Payton, University of Cincinnati; Bharat Gwalani, North Carolina State University

2:00 PM

Domain Size Control by Spinodal Decomposition in Ferroelectrics: Catherine Bishop¹; ¹University of Canterbury

2:25 PM

Crystal Structure Engineering of Mn/Co-Rich Spinel in Mn-Doped (Co,Cu,Mg,Ni,Zn)O: Jacob Norman1; Alexander Dupuy2; Julie Schoenung¹; ¹Texas A&M; ²University of Connecticut

2:45 PM

Complex Antiphase Boundaries as a Means to Two-Phase Coexistence in Ordered Fe-Pd Alloys: Adrian Savovici¹; Yongmei Jin²; William Soffa¹; Jerrold Floro¹; ¹University of Virginia; ²Michigan **Technological University**

3:05 PM

Perturbation Solutions of the Cahn-Hilliard Equations: Rahul Basu¹; Shubhayan Mukherjee²; ¹UGC, JNTU; ²National Cheng Kung University

3:25 PM

Microgravity Studies of Peritectic Coupled Growth by Usinga Transparent Model Alloy Aboard the International Space Station: Johann Mogeritsch¹; Andreas Ludwig¹; ¹Montanuniversitaet Leoben

3:45 PM Break

4:00 PM

Phase Equilibrium and New Solid Solutions in the Sc2O3-TiO2-Fe2O3 System at 13O0 °C: Victor Emmanuel Alvarez Montano1; Francisco Brown¹; Subhash Sharma²; Miguel Olivas Martínez¹; Alejandro Durán²; ¹Universidad de Sonora; ²Universidad Nacional Autonoma de México

4:20 PM

Pressure-Induced Amorphous-Amorphous Transitions Crystallization in Silicon Studied by a Machine-Learned Potential: Zhao Fan¹; Hajime Tanaka²; ¹Lawrence Berkeley National Laboratory; ²University of Tokyo

4:40 PM

The Influence of Stoichiometry on the Reaction Behavior of Ni/ Al Reactive Multilayers: Nensi Toncich1; Rebecca Gallivan1; Fabian Schwarz¹; Jemma Gillon¹; Tina Curtins¹; Ralph Spolenak¹; ¹ETH Zürich

5:00 PM

Pressure-Induced Phase Transformations of CdTe via Metadynamics Simulation: Jonathan Cappola¹; Kun Luo²; Qi An²; Lin Li¹; ¹Arizona State University; ²Iowa State University

MATERIALS SYNTHESIS AND PROCESSING

Powder Materials Processing and Fundamental Understanding — Synthesis I: Powders and Particles

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, University of Alabama Birmingham; Eugene Olevsky, San Diego State University; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Oak Ridge National Laboratory; Wenwu Xu, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Charles Maniere, CNRS

Wednesday PM | March 26, 2025 105 | MGM Grand

Session Chairs: Diletta Giuntini, Eindhoven University of Technology; Chee Lip Gan, Nanyang Technological University

2:00 PM

Tunable High-Energy Milling Toolsets for Refractory Nanocrystalline Alloys: Colton Gilleland¹; B. Chad Hornbuckle²; Kris Darling²; Gregory Thompson¹; ¹University of Alabama; ²Army Research Laboratories

2:20 PM

Characterization of Titanium Hydride Powders: Laser-Induced Breakdown Spectroscopy (LIBS) and Quartz-Crystal Microbalance (QCM) Methods for In-Situ Hydrogen Quantification: Stewart Youngblood¹; Joseph Quarshie¹; Doinita Neiner¹; Ronald Goeke¹; Russell Jarek¹; Danielle Hartstein¹; Daniel Bufford¹; ¹Sandia National Laboratories

2:40 PM Invited

Processing of Micro/Nano-Sized Zirconia Particles with Enhanced Shape Memory and Superelastic Properties: Chee Lip Gan1; Zehui Du¹; Xiaomei Zeng¹; ¹Nanyang Technological University

3:10 PM

Microstructural Evolution of Aluminum Alloy Powders Through In-Situ TEM and DICTRA Simulations: Kyle Tsaknopoulos¹; Matthew Gleason¹; Stephen Price¹; Danielle Cote¹; ¹Worcester Polytechnic

3:30 PM

Exploring Sintering Behavior of High-Entropy Alloy Nanoparticles (HEA-NPs): Daniela Fonseca1; Ricardo Castro1; Martin Harmer1; ¹Lehigh University

3:50 PM Break

4:00 PM

Fabrication of Iron Powder and Adjustment of Particle Size by Rotary Cup Atomizer-Water Curtain Process: Wenchao He1; ¹Chongging University of Science and Technology

4:20 PM

Multi-Step Mechanical Milling of Metal Swarf into Additive Manufacturing Feedstock Powder: Andrew Neils1; Mitchell Libby1; Jack Lesko¹; Thomas Keller¹; David Hayrikyan²; ¹The Roux Institute at Northeastern Unviersity; 2bluShift Aerospace

4:40 PM

Ultrasonic Atomization for Spherical Powder Production of Reactive Materials: Tomasz Choma¹; Bartosz Morończyk¹; Jakub Ciftci¹; ukasz rodowski¹; ¹AMAZEMET Sp. z o.o.

PowderJet: An Agile System for High Quality Metal Powder Production via Droplet-on-Demand Metal Jetting: Viktor Sukhotskiy¹; Alexander Baker¹; Jesse Ahlquist¹; Eric Elton¹; Alexandre Reikher¹; Hunter Henderson¹; Shahryar Mooraj¹; Jesus Rivera¹; Andrew Pascall¹; ¹Lawrence Livermore National Laboratory

MATERIALS SYNTHESIS AND PROCESSING

Rare Metal Extraction & Processing — Process **Development in Mining and Metallurgy**

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Kerstin Forsberg, KTH Royal Institute of Technology; Athanasios Karamalidis, Pennsylvania State University; Takanari Ouchi, University of Tokyo; Gisele Azimi, University of Toronto; Shafiq Alam, University of Saskatchewan; Neale Neelameggham, IND LLC; Alafara Baba, University of Ilorin; Hong Peng, University of Queensland; Hojong Kim, Pennsylvania State University

Wednesday PM | March 26, 2025 104 | MGM Grand

Session Chairs: Gisele Azimi, University of Toronto; Shafiq Alam, University of Saskatchewan, Hong Peng, University of Queensland

2:00 PM Keynote

Generation of Green Hydrogen from Mining Tailings and Minerals: Ziqi Sun1; 1Queensland University of Technology

2:20 PM

Efficient Extraction of Vanadium from Calcification Roasted High-Calcium Vanadium Slag by Sulfuric Acid Leaching: Jie Cheng1; Hong-Yi Li¹; Zi-Jie Cai¹; Xin-Mian Chen¹; Jiang Diao¹; Bing Xie¹; ¹Chongqing University

2:40 PM

Vaporization of Vanadium Pentoxide from Iron and Steel Making Slags: Lukas Neubert¹; Olena Volkova¹; ¹Institut für Eisen- und Stahltechnologie

3:00 PM

Molten Oxide Electrolysis for Production of Technology-Critical Metals: Catherine Bishop¹; Kathryn Ford¹; Ashkan Takaloo¹; Aaron Marshall¹; Matthew Watson¹; ¹University of Canterbury

MATERIALS SYNTHESIS AND PROCESSING

Recent Advances in Titanium Science and Technology: MPMD/SMD Symposium Honoring Professor Dipankar Banerjee — Fatigue and Phase **Transformations**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of North Texas; Abhishek Sharma, University of North Texas; Adam Pilchak, Pratt & Whitney; Rajarshi Banerjee, University of North Texas; Yunzhi Wang, Ohio State University

Wednesday PM | March 26, 2025 107 | MGM Grand

Session Chairs: Samuel Hemery, Ensma - Institut Pprime; Yunzhi Wang, Ohio State University

2:00 PM Invited

High Cycle Fatigue, Notches, R-Ratio and Macrozones in Ti-6Al-4V: David Dye1; Yan Gao1; 1Imperial College

2:30 PM Invited

Microstructural Control of Prior-Beta Grain Orientation Dramatically Increases the Fatigue Resistance of DMLM Ti-6Al-4V: Anchen Tong¹; Mo-Rigen He¹; Laura Dial²; Marissa Brennan²; Victor Ostroverkhov²; Christopher Immer²; Kevin Hemker¹; ¹Johns Hopkins University; ²GE Aerospace Research

3:00 PM Invited

New Insights into the Transition from Microplasticity to Fatigue Crack Nucleation in (+) Ti Alloys: Cyril Lavogiez¹; Patrick Villechaise¹; Azdine Nait-Ali¹; Christophe Tromas¹; Florence Hamon¹; Valery Valle¹; Biaobiao Yang²; Miguel Monclus²; Javier Llorca²; Djafar Iabadden³; Julien Guenole³; Samuel Hemery⁴; ¹Institut Pprime; ²IMDEA; ³LEM3; ⁴Ensma - Institute Pprime

3:30 PM Break

3:50 PM Invited

Internal Friction of Steel: The Microstructural Origin: Sanjay Manda¹; Ajay Panwar¹; *Indradev Samajdar*¹; ¹Indian Institute of Technology

4:20 PM Invited

Nanoscale Shuffle Transformation in Metastable Beta Titanium Alloys: Yufeng Zheng1; Deepak Pillai1; Dong Wang2; Rajarshi Banerjee1; Yunzhi Wang³; Dipankar Banerjee⁴; Hamish Fraser³; ¹University of North Texas; ²Xi'an Jiaotong University; ³The Ohio State University; ⁴Indian Institute of Science

4:50 PM Invited

Convergence of Computationally Designed Alloys and Processes: Rajiv Mishra¹; ¹University of North Texas

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Refractory Metals 2025 — Molybdenum, Tungsten, and Tantalum

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Matthew Osborne, Global Advanced Metals; Paul Rottmann, University of Kentucky; Gianna Valentino, University of Maryland

Wednesday PM | March 26, 2025 168 | MGM Grand

Session Chair: Matthew Osborne, Global Advanced Metals

2:00 PM Invited

High-Temperature Deformation in Nb-Based Alloy C103 (Nb-10Hf-1Ti): Eric Taleff¹; Thomas Bennett¹; ¹University of Texas at Austin

Heat Treatment Optimization of Laser Powder Bed Fusion Additive Manufacture C103: Toren Hobbs1; Brandon Colon2; Chad Beamer3; Fernando Reyes¹; Carly Romnes⁴; Omar Mireles⁵; ¹Nasa Marshall Space Flight Center; ²University of Puerto Rico at Mayaguez; ³Quintus Technologies; ⁴NASA Marshall Space Flight Center; ⁵Los **Alamos National Laboratory**

3:00 PM

Characterizing Recrystallization in Type 2 and Type 5 Nb: Thomas Bennett¹; Eric Taleff¹; ¹University of Texas at Austin

3:20 PM

Low Temperature Oxidation Behavior of Pure Niobium and C103 Niobium Alloy: Ching-Chien Chen1; Xiaoling Shen1; Dina Khattab1; Paul Mort¹; Jeffrey Youngblood¹; Michael Titus¹; ¹Purdue University

3:40 PM Break

4:00 PM Invited

Combinatorial Approaches to Design and Processing of Refractory High Entropy Alloys: Mitra Taheri¹; Sebastian Lech¹; Anna Rawlings²; Elaf Anber¹; David Beaudry¹; Emily Holcombe³; Howard Joress⁴; Brian DeCost⁴; Jason Hattrick Simpers⁵; Tyrel McQueen¹; Ben Redemann¹; Loic Perriere⁶; Jean-Philippe Couzinie⁶; Debashish Sur⁷; John Scully⁷; Charlie Brandenburg⁷; Elizabeth Opila⁷; Michael Waters⁸; James Rondinelli⁸; Nathan Smith⁸; Christopher Wolverton⁸; ¹Johns Hopkins University; ²Johns Hopkins University; U.S. Naval Research Laboratory; ³Johns Hopkins University; Naval Surface Warfare Center Carderock; 4National Institute of Standards and Technology; 5University of Toronto; 6CNRS & Universite Paris Est Creteil; ⁷University of Virginia; ⁸Northwestern University

4:30 PM

Application of High Temperature Profilometry-Based Indentation Plastometry (HT-PIP) to Refractory Metals: Philip McKeown¹; James Miller¹; Chizhou Fang¹; Bill Clyne¹; ¹Plastometrex

4:50 PM

Mechanical Behavior of Neutron Irradiated Ta-W Alloy: Zahra Ghanbari¹; Bonnie Antoun¹; Micah Tillman¹; Josh Sugar¹; Kimberly Bassett¹; Martha Gross¹; ¹Sandia National Laboratories

MATERIALS SYNTHESIS AND PROCESSING

REWAS 2025: Automation and Digitalization in Recycling Processes — Automation and Digitalization in Recycling Processes

Sponsored by: TMS Extraction and Processing Division, TMS: Recycling and Environmental Technologies Committee, TMS: Process Technology and Modeling Committee

Program Organizers: Adamantia Lazou, National Technical University of Athens; Mertol Gokelma, Izmir Institute of Technology; Christina Meskers, SINTEF; Elsa Olivetti, Massachusetts Institute of Technology; Fabian Diaz, SMS Group

Wednesday PM | March 26, 2025 117 | MGM Grand

Session Chair: Fabian Diaz, SMS Group

2:00 PM Invited

Thermodynamic-Based Process Simulation Coupled to Life Cycle Analysis: Exploring Pyrometallurgical Processes to Recycle Endof-Life Products: Jean-Philippe Harvey¹; ¹Polytechnique Montréal

2:30 PM Invited

Controlling Minor Element Phosphorus in Green Electric Steelmaking Using Neural Networks: Elmira Moosavi¹; Riadh Azzaz¹; Valentin Hurel²; Mohammad Jahazi¹; Samira Ebrahimi Kahou³; ¹Ecole De Technolgoie Superieure; ²Finkl steel Sorel; ³University of Calgary

3:00 PM Invited

Optimizing Secondary Steel Production by Copper Contaminant Removal Using Artificial Intelligence: Nalin Kumar¹; Isha Maun¹; Kanishka Tyagi¹; ¹UHV Technologies Inc

3:30 PM Break

3:50 PM

Insights to Rare Earth Element Separation and Recovery Through Molecular Dynamics Modeling: John Howarter¹; Kaustubh Bawankule¹; Cassidy Holdeman¹; ¹Purdue University

4:10 PM

Metal Extraction Informatics: A Conceptual Framework for Sustainable Metals Extraction: Avijit Khanra¹; Arunabh Meshram¹; Yogesh Katariya¹; Siddhant Shikhar Gupta¹; Kali Sanjay²; Rajiv Shekhar¹; ¹IIT Kanpur; ²CSIR - Institute of Minerals and Materials Technology, Bhubaneswar

4:30 PM

Al Assistance to Global Mineral Resource Analysis and Visualization: Trupti Mohanty¹; Hasan M Sayeed¹; Chitrasen Mohanty²; Taylor D. Sparks¹; ¹University of Utah; ²University of Wisconsin, Madison

LIGHT METALS

Scandium Extraction and Use in Aluminum Alloys — **Aluminum Scandium Alloys II**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Timothy Langan, Sunrise Energy Metals; Les Edwards, Rain Carbon Inc.

Wednesday PM | March 26, 2025 110 | MGM Grand

Session Chair: Timothy Langan, Sunrise Energy Metals

2:00 PM Introductory Comments

2:05 PM Invited

Optimizing Al-Mg-Sc-Zr Alloys for Additive Friction Stir Deposition: Maureen Puybras¹; Véronique Massardier²; Matthew Barnett³; Michel Perez²; Thomas Dorin³; ¹Deakin University; University Lyon; ²University Lyon; ³Deakin University

2:55 PM

Scandium in the Additive Manufacturing of In-Situ TiB2 and TiC Particle Reinforced Aluminum Alloy Composites for Improved Mechanical Properties: Huan Li¹; Xiaoming Wang¹; Xinghang Zhang¹; Tao Wang²; Jerome Fourmann²; Paul Rometsch²; ¹Purdue University; ²Rio Tinto

3:20 PM

Examination of Intermetallic Phases in Al-Fe-Ni Alloys with Scandium: Abdallah Elsayed¹; Thomas Dorin²; Stephanie Kotiadis¹; Lu Jiang²; ¹University of Guelph; ²Deakin University

3:45 PM Break

4:00 PM Panel Discussion

NUCLEAR MATERIALS

Seaborg Institutes: Emerging Topics in Actinide Sciences — Spectroscopy and Microscopy

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Krzysztof Gofryk, Idaho National Laboratory; Assel Aitkaliyeva, University of Florida; Mavrik Zavarin, Lawrence Livermore National Laboratory; Rebecca Abergel, University of California Berkeley; Matthew Watrous, Idaho National Laboratory

Wednesday PM | March 26, 2025 163 | MGM Grand

Session Chair: Mavrik Zavarin, Lawrence Livermore National Laboratory

2:00 PM Invited

Luminescence and Circularly Polarized Luminescence from Molecular Trans-Uranic Complexes: GaËL Ung¹; ¹University of Connecticut

2:30 PM

Electronic Structure Study of Uranium-Based Material Using Angle-Resolved Photoemission Spectroscopy: Sabin Regmi¹; Volodymyr Buturlim¹; Alexei Fedorov²; Ladislav Havela³; Tomasz Durakiewicz¹; Krzysztof Gofryk¹; ¹Idaho National Laboratory; ²Lawrence Berkeley National Laboratory; ³Charles University

2:50 PM

Understanding Nanoscale Inclusions in Pu Metal Using Atom Probe Tomography: Dallin Barton1; Dallas Reilly1; Daniel Perea1; Matthew Athon¹; ¹Pacific Northwest National Laboratory

3:10 PM Invited

Transmission Electron Microscopy Characterization of the Chemical Interaction Between Minor Actinide Bearing Metallic Fuel and Steel Claddings: Tiankai Yao¹; Di Chen¹; Daniele Salvato¹; Luca Capriotti¹; ¹Idaho National Laboratory

3:40 PM Break

4:00 PM

Optical Response of Charged Defects in Wide-Bandgap ThO, with GW Correction: Himani Mishra¹; Shuxiang Zhou¹; Linu Malakkal¹; Amey Khanolkar¹; David Hurley¹; Marat Khafizov²; ¹Idaho National Laboratory; ²Ohio State University

Synchrotron-Based Plutonium X-Ray Fluorescence Spectroscopy: Rachel Lim¹; Alexander Baker¹; S. Olivia Gunther²; Alexander Ditter²; David Shuh²; Scott Donald¹; Brandon Chung¹; ¹Lawrence Livermore National Laboratory; ²Lawrence Berkeley National Laboratory

NUCLEAR MATERIALS

Special Topics in Nuclear Materials: Lessons Learned; Non-Energy Systems; and Coupled Extremes — Coupled Irradiation-Mechanical **Extremes**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Charles Hirst, University of Wisconsin-Madison; Timothy Lach, Oak Ridge National Laboratory; Caleb Clement, Westinghouse Electric Company; Stephen Taller, Oak Ridge National Laboratory; Janelle Wharry, University of Illinois; Jason Trelewicz, Stony Brook University

Wednesday PM | March 26, 2025 161 | MGM Grand

Session Chairs: Charles Hirst, University of Wisconsin-Madison; Jason Trelewicz, Stony Brook University

2:00 PM Invited

GIRAFFE - In Situ Material TestsUnder Fusion-Relevant Conditions: Johann Riesch¹; Alexander Feichtmayer¹; Marcel Appel¹; Max Boleininger²; Sebastian Estermann¹; Till Höschen¹; Thomas Schwarz-Selinger¹; Sergei Dudarev²; Rudolf Neu¹; ¹Max Planck Insitute for Plasma Physics; ²UK Atomic Energy Authority

2:30 PM

Effect of Applied Stress on Radiation-Induced Loop and Raft Formation in a BCC Metal: Hi Vo1; Wei-Ying Chen1; Matthew Schneider¹; Aaron Kohnert¹; ¹Los Alamos National Laboratory

Effect of Tensile Stress Gradients on the Multi-Length-Scale Microstructure in Thermal and Irradiation Creep of 316L Stainless Steel: Mackenzie Warwick¹; Wyatt Peterson¹; Ben Arms¹; Charles Hirst¹; Kevin Field¹; ¹University of Michigan

3:10 PM

Atomistic Simulation of Thermal and Irradiation Creep Mechanisms in BCC-Fe and FCC-Ni using Defect Rate-Based Long-time Dynamics: Angel Chavira1; Charles Hirst2; Fei Gao1; Kevin Field1; ¹University of Michigan; ²University of Wisconsin - Madison

3:30 PM Question and Answer Period

3:40 PM Break

4:00 PM

Influence of Radiation Swelling on Residual Stresses and Measurement of Micromechanical Properties: Alexander Leide1; ¹United Kingdom Atomic Energy Authority

4:20 PM

Phase Field Modeling of Irradiation-Induced Amorphous-to-Crystalline (A-C) Transformations in Structural Ceramics: Md Ali Muntaha¹; Janelle Wharry¹; Claire Xiong²; Nicole Keninger¹; Tristan Olsen²; Cyrus Koroni²; Sarah Pooley²; ¹Purdue University; ²Boise State University

4:40 PM

In-situ Electron Microscopy Characterization of Deformation Mechanisms of Inconel 718 Irradiated with Simultaneous High Energy Protons and Spallation Neutrons: Timothy Lach1; Maxim Gussev¹; Soyoung Kang¹; Nan Li²; Joshua Kacher³; David McClintock¹; ¹Oak Ridge National Laboratory; ²Los Alamos National Laboratory; ³Georgia Institute of Technology

MECHANICS OF MATERIALS

Structure and Dynamics of Metallic Glasses — Glass Formation and Crystallization

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Sebastian Kube, University of Wisconsin - Madison, Katharine Flores, Washington University in St. Louis, Daniel Sopu, Erich Schmid Institute; Yonghao Sun, The Chinese Academy of Sciences; A. Lindsay Greer, University of Cambridge; Peter Derlet, Paul Scherrer Institut

Wednesday PM | March 26, 2025 367 | MGM Grand

Session Chair: Daniel Sopu, Erich Schmid Institute

2:00 PM

Structure of Metallic Glasses and Their Untypical Crystallization Below the Glass-Transition Temperature: Dmitri Louzguine¹; ¹WPI-AIMR, Tohoku University

2:20 PM

Nucleation Behavior of Primary FCC-Al in a Al86Ni10MM4 Metallic Glass: Wan Kim1; John Perepezko1; Tianrui Duan1; Eun-Soo Park2; ¹University of Wisconsin-Madison; ²Seoul National University

Analysis of Multi-Nucleation and Growth Behavior in Fe-Co Amorphous Matrix with Varied Immiscible Elements: Subin An1; Wook Ha Ryu²; Eun Soo Park¹; ¹Seoul National University; ²Kumoh National Institute of Technology

3:00 PM

An Analytical Approach to Understanding Glass-Formation via Different Processing Routes: Casting, Thermoplastic Forming and Additive Manufacturing: Owain Houghton1; A. Lindsay Greer2; Miguel Costa²; ¹Massachusetts Institute of Technology; ²University of Cambridge

MATERIALS SYNTHESIS AND PROCESSING

Sustainability of High Temperature Alloys — Reuse

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Mark Hardy, Rolls-Royce Plc; Caspar Schwalbe, MTU Aero Engines AG; Jeremy Rame, Naarea; Benjamin Adam, Oregon State University; Jonah Klemm-Toole, Colorado School of Mines, Martin Detrois, National Energy Technology Laboratory; Katerina Christofidou, University of Sheffield

Wednesday PM | March 26, 2025 102 | MGM Grand

Session Chairs: Martin Detrois, National Energy Technology Laboratory; Caspar Schwalbe, MTU Aero Engines AG; Jeremy Rame, Naarea

2:00 PM

Extending Service Life through Location Specific Lifing of Components: Michael Sangid¹; Saikiran Gopalakrishnan¹; Ritwik Bandyopadhyay¹; ¹Purdue University

2:30 PM

Characterising the Effect of Environment and Salt Concentration on the Fatigue Life of a Nickel Disc Alloy: Mark Hardy¹; Yong Li¹; Simon Gray¹; Catherine Jackson¹; Mary Taylor¹; Ben Grant¹; ¹Rolls-Royce Plc

3:00 PM

Effects of an Oxidising Environment on the Dwell Fatigue of Single Crystal Ni-Based Superalloys at Intermediate Service Temperature: Joseph Doyle¹; Edward Saunders²; Jane Woolrich²; Nong Gao¹; Philippa Reed¹; ¹University of Southampton; ²Rolls-Royce plc.

3:20 PM

Very High Cycle Fatigue Life of Ni-Based SX Superalloy Subjected to Hot Corrosion: Luciana Maria Bortoluci Ormastroni¹; Fernando Pedraza²; Jonathan Cormier³; ¹Safran Aircraft Engines; ²Université de La Rochelle; ³Institut Pprime

3:40 PM Break

4:00 PM

Phase-Field-Informed Micromechanical Approach to Creep Behavior in Ni-Based Single-Crystal Superalloys at the Dendritic Scale: Jose Dominic¹; Jean-Briac le Graverend¹; ¹Texas A&M University

4:20 PM

Microstructural Characterization of René N4 After Rejuvenation Heat Treatment: Cristina Motta¹; Francesco Mastromatteo²; Elisabetta Gariboldi³; Filippo Cappuccini²; ¹Baker Hughes, Nuovo Pignone Tecnologie S.r.l., Politecnico di Milano; ²Baker Hughes, Nuovo Pignone Tecnologie S.r.l.; ³Politecnico di Milano

MATERIALS SYNTHESIS AND PROCESSING

Thin Films and Coatings: Properties, Processing and Applications — Thin Films and Coatings: Advances in Characterization, Processing and Applications

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tomas Grejtak, Oak Ridge National Laboratory; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Tomas Babuska, Sandia National Laboratories; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, Is2m; Brandon Krick, Florida A&M University-Florida State University

Wednesday PM | March 26, 2025 101 | MGM Grand

Session Chairs: Karine Mougin, CNRS, Is2m; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Tomas Grejtak, Oak Ridge National Laboratory

2:00 PM Invited

Improving the Bonding Conditions Between Metal and Polymer for Sandwich Sheet Materials: Heinz Palkowski¹; Adele Carradó²; ¹Clausthal University of Technology; ²Univerity of Strasbourg, CNRS

2:30 PM Invited

Exploring Thin Films for Promising Biomedical Applications: An Overview: Adele Carradò¹; Heinz Palkowski²; of Strasbourg; ²Institute of Metallurgy, Clausthal University of Technology

3:00 PM

Active Learning and Transfer Learning for Rapid Targeted Synthesis of Compositionally Complex Thin Film Alloys: Nathan Johnson¹; Apurva Mehta²; Aashwin Mishra²; ¹Carl Zeiss Research Microscopy Solutions; 2SLAC National Accelerator Facility

Recent Progress of Antifogging Coating on Glasses/Lenses: A Short Review: Omotayo Sanni¹; Jianwei Ren¹; Tien-Chien Jen¹; ¹University of Johannesburg

3:40 PM Break

4:00 PM Invited

Role of Surface Chemistry on the Growth of Plasma Polymers Thin Films: Paul Covin¹; Aissam Airoudj¹; Cuong Minh Quoc Le¹; Florence Bally-Le Gall¹; Vincent Roucoules¹; Jamerson Carneiro De Oliveira¹; ¹Université de Haute-Alsace, Université de Strasbourg, CNRS, IS2M

4:30 PM Invited

Laser-Induced Oxidation Phase Diagrams: Opportunities for High Throughput Thin Film Optimization: Nicholas Glavin¹; Brian Everhart1; 1Air Force Research Laboratory

4:50 PM

Strain Effects on Adatom Diffusion, Island Nucleation and Monolayer Growth on Metal and Oxide Surfaces: Ahmad Ahmad¹; Anter El-Azab1; 1Purdue University West Lafayatte

Ultra-Fast Synthesis of Superhard Borides of W, Re, and WRe (20%Re) Alloys Using Electrochemical Boriding: Merve Uysal Komurlu¹; Cafer Melik Ensar Acemi¹; Bibhu Sahu¹; Ali Erdemir¹; Ibrahim Karaman¹; ¹Texas A&M University

MECHANICS OF MATERIALS

Accelerated Discovery and Insertion of Next Generation Structural Materials — Accelerated Alloy **Development Strategies**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Soumya Nag, Oak Ridge National Laboratory; Andrew Bobel, General Motors Corporation; Bharat Gwalani, North Carolina State University; Jonah Klemm-Toole, Colorado School of Mines; Antonio Ramirez, Ohio State University; Matthew Steiner, University of Cincinnati; Janelle Wharry, University of Illinois

Thursday AM | March 27, 2025 364 | MGM Grand

Session Chair: Soumya Nag, Oak Ridge National Laboratory

8:30 AM Invited

Boeing Baseline Delta Qualification Program: Mohammadreza Nematollahi¹; Paul Wilson¹; ¹Boeing Research & Technology

9:00 AM Invited

Integrating Experimental Data into Dynamic Artificial Intelligence/ Machine (AI/ML) Learning Workflows: Elizabeth Pogue¹; Ann Choi¹; Denise Yin¹; Michael Pekala¹; Nam Le¹; Alexander New¹; Eddie Gienger¹; Christian Sanjurjo-Rodriguez¹; Bianca Pilosino¹; Douglas Trigg¹; Anna Langham¹; Georgia Leigh¹; Sebastian Lech¹; Gregory Bassen¹; Elizabeth Hedrick²; Brandon Wilfong¹; Steven Storck¹; Mitra Taheri¹; Tyrel McQueen¹; Christopher Stiles¹; ¹Johns Hopkins University; ²Princeton University

Characterization of Low-Cost, High-Strength, Printable Al-Alloys for Room and High-Temperature Applications: Benjamin Glaser¹; S. Mohadeseh Taheri-Mousavi¹; ¹Carnegie Mellon University

Tuning Chemistry for Precipitation Strengthening of Al Alloys: Rayna Mehta¹; Timothy Weihs¹; ¹Johns Hopkins University

10:10 AM Break

10:30 AM

Combinatorial Investigation of Amorphous/Nanocrystalline Stability in Ferritic Alloys: Kyle Russell¹; Andrea Hodge¹; Jason Trelewicz2: ¹University of Southern California; ²Stony Brook University

10:50 AM

High Throughput Quantification of Recrystallization Parameters for Alloy Development: Finn Birchall¹; Catherine Bishop¹; ¹University of Canterbury

11:10 AM

Analysis and Optimization of New Composition Standards for High-Strength Conductive Cu-Ni-Co-Si Alloys: Cunlei Zou1; Shuang Zhang¹; Wanyu Ding¹; Chuang Dong¹; ¹Dalian Jiaotong University

11:30 AM

Combinatorial Synthesis and High Throughput, High Temperature Mechanical Characterization of Refractory Alloys: Salahudin Nimer¹; Alex Lark¹; Christian Sanjurjo-Rodriguez¹; Caroline Tang¹; Jasmine Chin¹; Kevin Lehr¹; Gianna Valentino²; Li Ma¹; Henry Phalen¹; Victor Leon¹; ¹Johns Hopkins University; ²University of Maryland

ADDITIVE MANUFACTURING

Additive Manufacturing Modeling, Simulation and Machine Learning — AM Modeling with AI/ML II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Jing Zhang, Purdue University; Li Ma, Johns Hopkins University Applied Physics Laboratory; Charles Fisher, Naval Surface Warfare Center - Carderock; Brandon McWilliams, US Army Research Laboratory; Yeon-Gil Jung, Changwon National University

Thursday AM | March 27, 2025 311 | MGM Grand

Session Chairs: Charles Fisher, Naval Surface Warfare Center - Carderock; Li Ma, Johns Hopkins University Applied Physics Laboratory; Jing Zhang, Purdue University

8:30 AM

Self-Supervised Vision Transformers for Anomaly Detection in 3D Printing: Bowen Zheng1; Xingquan Wang1; Zeqing Jin1; Grace Gu1; ¹University of California Berkeley

8:50 AM

Additive Manufacturing User Interface (AMUI): An Intuitive Software Suite for Part Level Process Parameter Selection: Peter Pak1; Francis Ogoke1; Achuth Chandrasekhar1; Olabode Ajenifujah1; Amir Barati Farimani¹; ¹Carnegie Mellon University

9:10 AM

Machine Learning Enabled Process Optimization During 3D Printing of Tablets: Yizhou Lu1; Kshitij Chitnis1; Jaidev Chakka1; Samrat Choudhury¹; Mo Maniruzzaman¹; ¹University of Mississippi

9:30 AM

Machine Learning-Driven Predictions of Material Printability in Laser Powder Bed Fusion: Sofia Sheikh1; Brent Vela1; Raymundo Arroyave1; 1Texas A&M University

9:50 AM

Efficient Laser Powder Bed Fusion Microstructure and Texture **Modeling**: Gregory Wong¹; Gregory Rohrer¹; Anthony Rollett¹; ¹Carnegie Mellon University

10:10 AM Break

10:30 AM

AiDED: Accurate Machine Learning Inference Framework for Process Parameter Optimization in Laser Directed Energy **Deposition**: Xiao Shang¹; Evelyn Li¹; Ajay Talbot¹; Haitao Wen¹; Tianyi Lyu¹; Jiahui Zhang¹; Yu Zou¹; ¹University of Toronto

Effect of Interpass Temperature on the Residual Stress Evolution in a Nickel-Aluminum Bronze Wire-Arc Additive Manufacturing Build: Matthew Dantin¹; Charles Fisher¹; ¹Naval Surface Warfare Center Carderock Division

11:10 AM

Comprehensive Analysis of 316L Samples Fabricated via Directed Energy Deposition: Integrating Simulation With Microstructural and Mechanical Evaluations: Alberto Santoni¹; Marcello Cabibbo¹; Maria Laura Gatto¹; Gabriele Grima¹; Marco Mandolini¹; Eleonora Santecchia¹; Anna Maria Schiavone¹; Kamal Sleem¹; Stefano Spigarelli¹; ¹Università Politecnica delle Marche

11:30 AM

Melt Pool Width Prediction with Machine Learning In Selective Laser Melting: Umut Can Gulletutan¹; Sertaç Altınok²; Irmak Sargın¹; ¹Middle East Technical University; ²Turkish Aerospace Industries

Additive Manufacturing: Marine Materials and **Structures — Marine Additive Manufacturing:** Industry Perspectives / Frontiers of Marine Additive Manufacturing

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Mohsen Mohammadi, University Of New Brunswick; Meysam Haghshenas, University Of Toledo; Charles Fisher, Naval Surface Warfare Center - Carderock

Thursday AM | March 27, 2025 315 | MGM Grand

Session Chairs: Charles Fisher, Naval Surface Warfare Center -Carderock; Somayeh Pasebani, Oregon State University

8:30 AM Panel Discussion

9:30 AM

Exploring Advanced Manufacturing Methods for Defense Applications: Soumya Nag1; Jesse Heinemann1; Brian Gibson1; Lisa Smith¹; John Potter¹; Calen Kimmell¹; Jennifer Gaies²; Jennifer Semple²; Brian Post¹; Craig Blue¹; ¹Oak Ridge National Laboratory; ²NSWC Carderock Division

Additive Friction Surfacing of High-Strength Low-Alloy Steel: Tianhao Wang¹; David Garcia¹; Zehao Li¹; Mayur Pole¹; Tingkun Liu¹; Uchechi Okeke²; Mackenzie Perry²; Christopher Smith¹; Kenneth Ross¹; ¹Pacific Northwest National Laboratory; ²Naval Surface Warfare Center Carderock Division

10:10 AM Break

10:30 AM

Process and Heat Treatment Effects on the Microstructure and Mechanical Properties of Nickel Aluminum Bronze (NAB) Fabricated by W-LDED: Nahal Ghanadi¹; Jakub Preis¹; Kwangtae Son¹; Seongun Yang¹; Somayeh Pasebani¹; ¹Oregon State University

10:50 AM

Study of Nb-Rich Precipitate Evolution During Post-Build Heat Treatment of Additively Manufactured Cu-30Ni and Its Influence on Mechanical Properties: Debasis Rath¹; Markus Chmielus¹; Zachary Harris¹; ¹University of Pittsburgh

Understanding the Influence of Precipitation on Fatigue Crack Growth and Cyclic Stress Strain Behavior in an Additively Manufactured Cu-Based Alloy: Nathan Heniken¹; Jiashi Miao¹; Veronika Mazanova²; Aeriel Murphy-Leonard¹; ¹Ohio State University; ²Czech Academy of Sciences

ADDITIVE MANUFACTURING

Additive Manufacturing: Microstructural and Mechanical Long-Term Stability of AM Materials — **Degradation: Creep and Aging**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee

Program Organizers: Benjamin Adam, Oregon State University; Jonah Klemm-Toole, Colorado School of Mines; Sneha Prabha Narra, Carnegie Mellon University; John Carpenter, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Emma White, DECHEMA Forschungsinstitut; Sudarsanam Babu, University of Maryland; Markus Chmielus, University of Pittsburgh

Thursday AM | March 27, 2025 302 | MGM Grand

Session Chairs: Jonah Klemm-Toole, Colorado School of Mines; Eric Payton, University of Cincinnati; John Carpenter, Los Alamos National Laboratory; Emma White, DECHEMA Forschungsinstitut

8:30 AM

Enhancing Creep Resistance of AM Superalloys Through Inter-Layer Mechanical Working: William James¹; James German¹; Supriyo Ganguly¹; Goncalo Pardal¹; ¹Cranfield University

8:50 AM

Nonlinear Grading Approach for Ferritic P91 and Austenitic 347H Steels Joints Produced with Laser-Directed Energy Deposition Method: Selda Nayir¹; Rangasaaye Kannan¹; Sebastien Dryepondt¹; Peeyush Nandwana¹; ¹Oak Ridge National Laboratory

9:10 AM

Evaluation of Localized Creep Deformation and Interface Characteristics of Innovative P91&304H Graded Composite Transition Joint: Yuying Wen¹; Ting Sun¹; Youyuan Zhang¹; Shanshan Hu¹; Zhili Feng²; Haiyang Qian³; Xingbo Liu¹; ¹West Virginia University; ²Oak Ridge National Laboratory; ³GE Steam Power

9:30 AM

Creep Behavior of Stainless Steel 316L Manufactured by Laser Powder Bed Fusion: Luis Avila1; Birgit Rehmer1; Sina Schriever1; Alexander Ulbricht¹; Leonardo Agudo Jácome¹; Gunther Mohr¹; Birgit Skrotzki¹; Alexander Evans¹; ¹Federal Institute for Materials Research and Testing (BAM)

9:50 AM

Investigation of Creep Performance of Additively Manufactured Type 316 Stainless Steels: Olivia Denonno¹; Juan Gonzales¹; Stephen Tate²; Jonah Klemm-Toole¹; ¹Colorado School Of Mines; ²Electrical Power Research Institute

10:10 AM Break

10:20 AM

The Effects of Secondary Elements on the Creep and Fracture Behavior of Additively Manufactured Nickel-Based Superalloys: Theophil Oros¹; Michael Kassner¹; Andrea Hodge¹; ¹University of Southern California

10:40 AM

Printability and Mechanical Response of High-Strength Electrically Conductive Al-Ni-Zr Alloys Fabricated Via Laser Powder Bed Fusion: Nicholas Richter¹; Sumit Bahl¹; Jovid Rakhmonov¹; Jonathan Poplawsky¹; Lawrence Allard¹; Alex Plotkowski¹; James Haynes¹; Amit Shyam¹; ¹Oak Ridge National Laboratory

11:00 AM

Mechanical Property Retention of Additively Manufactured Al-Ce-Mo Alloy After High Temperature Exposure: Kevin Graydon¹; Tanner Olson²; Amberlee Haselhuhn²; Yongho Sohn¹; ¹University of Central Florida; ²LIFT

11:20 AM

Enhancement of Tensile Properties and Isotropy of Wire Arc Additive Manufactured Alloy 625 via Thermomechanical Process: Junghoon Lee¹; Seung Hwan Lee²; Namhyun Kang³; ¹RIST; ²Hanyang University; 3Pusan National University

11:40 AM Invited

Performance Assessment of YTiO-Enhanced 316L Stainless Steel Nanocomposites Fabricated by Laser Directed Energy Deposition: Seongun Yang¹; Kwangtae Son¹; Zhengming Wang¹; Nahal Ghanadi¹; Donghua Xu¹; Chih-hung Chang¹; Marc Albert²; Somayeh Pasebani¹; ¹Oregon State University; ²Electric Power Research Institute

ADDITIVE MANUFACTURING

Additive Manufacturing: Incorporating Breakthrough Functionalities for Building Large Scale Components — Production of Structures and Components

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee

Program Organizers: Jonah Klemm-Toole, Colorado School of Mines; Soumya Nag, Oak Ridge National Laboratory; John Carpenter, Los Álamos National Laboratory, Sougata Roy, Iowa State University; Peeyush Nandwana, Oak Ridge National Laboratory; Sneha Prabha Narra, Carnegie Mellon University; Lang Yuan, University of South Carolina; Andrzej Nycz, Oak Ridge National Laboratory; Yousub Lee, Oak Ridge National Laboratory; Alex Kitt, Edison Welding Institute; Albert To, University of Pittsburgh; Yashwanth Kumar Bandari, FasTech LLC

Thursday AM | March 27, 2025 301 | MGM Grand

Session Chairs: Andrzej Nycz, Oak Ridge National Laboratory; Albert To, University of Pittsburgh

8:30 AM

Additive Manufacturing (AM) of Supercritical CO, Heat Exchangers Using Laser Directed Energy Deposition (L-DED): Nathan Young¹; Jessica Garnett¹; Amir Shooshtari¹; Ji-Cheng Zhao²; ¹University of Maryland, College Park; 2University of Connecticut

8:50 AM

Wave Springs: Design, Optimization, Simulation, Additive Manufacturing, and Application: Aamer Nazir1; 1King Fahd University of Petroleum and Minerals

9:10 AM

High Entropy Metamaterials: Influence of Lattice Architecture Mixing for Improved Mechanical Properties: Isaac Toda-Caraballo¹; Souvik Sahoo²; Dan Mordehai³; Zhi Chen³; Maria Teresa Pérez Prado²; ¹CENIM-CSIC; ²IMDEA Materials Institute; ³Technion – Israel Institute of Technology

Combining the Best of Both Wire DED and LPBF: Benjmain White1; Hannah Sims¹; Levi Van Bastian¹; Dale Cillessen¹; ¹Sandia National Labs

9:50 AM Break

10:10 AM

Influencing Melt Pool Dynamics in Laser Manufacturing with Ultrasound: Harry Chapman¹; Xianqiang Fan¹; Catherine Tonry²; Ivars Krastins²; Kai Zhang¹; Sebastian Marussi¹; Martyn Jones³; Chu Lun Leung¹; Andrew Kao²; Peter Lee¹; ¹University College London; ²University of Greenwich; ³Rolls-Royce plc.

10:30 AM

Thermomechanical Processing of Additive Manufactured Nickel Superalloys for Cracking Prevention and Improved Performance: James German¹; William James¹; Supriyo Ganguly¹; Goncalo Pardal¹; ¹Cranfield University

10:50 AM

Mechanical Behavior of AlSi10Mg Plate-Lattice Structures in Uniaxial Compression: Joseph Berthel¹; Jack Beuth¹; Rahul Panat¹; ¹Carnegie Mellon University

BIOMATERIALS

Advanced Biomaterials for Biomedical Implants Biomimetic, Bioactive, and High-Entropy Alloy **Implants**

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Fariborz Tavangarian, Penn State; Vinoy Thomas, University of Alabama at Birmingham

Thursday AM | March 27, 2025 308 | MGM Grand

Session Chair: Vinoy Thomas, University of Alabama at Birmingham

8:30 AM

Unraveling Fracture Growth in 3D Printed Structures Mimicking Spicules via Computer Tomography (CT) Examination: Fariborz Tavangarian¹; Niloofar Fani²; Armaghan Hashemi Monfared²; ¹Penn State; ²Penn State Harrisburg

9:00 AM

Looking Beneath the Surface: An Ex Vivo Study of Dental Composite Resin Performance in Extracted Human Teeth: Wade Smallwood¹; Ramsey Issa¹; Mark Juchau¹; Michael Bingham¹; Mary Anne Karren¹; Dmitry Bedrov¹; ¹University of Utah

Design of Bio-High Entropy Alloys with Suppressed Elemental Segregation for Laser Powder Bed Fusion Process: Ozkan Gokcekaya¹; Yong Seong Kim¹; Takayoshi Nakano¹; ¹Osaka University

9:40 AM

Functionally Gradient Nitinol Structure with Pure Titanium Layers and Hydroxyapatite Over-Coating for Orthopedic Implant Applications: Jeongwoo Lee¹; S Akin¹; Julia Walsh¹; Martin Jun¹; Hyowon Lee1; Yung Shin1; 1Purdue University

10:00 AM Break

10:15 AM

In-Vitro Response to Bioinspired Helically Coiled Electrospun Fibers for Cardiac Patch Application: Alexi Switz¹; Darryl Dickerson¹; Anamika Prasad¹; ¹Florida International University

10:35 AM

Novel Bio-TWIP Ti and Zr Alloys for Implants: Alloy Design Strategy, Mechanical Properties and Deformation Mechanisms: Fan Sun¹; Bingnan Qian¹; Junhui Tang¹; Philippe Vermaut¹; Frédéric Prima¹; Sucharita Banerjee²; Rajarshi Banerjee³; Hongtao Yang⁴; Yufeng Zheng⁵; Ju Li⁶; ¹Chimie-Paristech, ENSCP, PSL Univ.; ²University of Texas, Austin; 3University of North Texas Denton; 4Beihang University; ⁵Pekin University; ⁶Massachusetts Institute of Technology

Production of Tantalum Nitride by Reactive Powder Bed Fusion for Bone Tissue Engineering Applications: Maria Laura Gatto¹; Marcello Cabibbo¹; Andrea Gatto²; Paolo Mengucci¹; ¹Università Politecnica delle Marche; ²Università di Modena e Reggio Emilia

11:15 AM

Process Optimization and Biocompatibility of PEEK-HA-Carbon Composites: Leila Ladani¹; Amir Azimi¹; David Lott²; Brent Chang²; ¹Arizona State University; ²Mayo Clinic

ADVANCED CHARACTERIZATION METHODS

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Twinning

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Wolfgang Pantleon, Technical University of Denmark; Irene Beyerlein, University of California, Santa Barbara; C. Tasan, Massachusetts Institute of Technology; M. Arul Kumar, Indian Institute of Technology Kanpur

Thursday AM | March 27, 2025 170 | MGM Grand

Session Chairs: Laurent Capolungo, Los Alamos National Laboratory; Hi Vo, Los Alamos National Laboratory

8:30 AM

Twin Nucleation at Grain Boundaries in Mg Analyzed Through In Situ Electron Back-Scattered Diffraction and High-Resolution Digital Image Correlation: Maral Sarebanzadeh¹; Alberto Orozco-Caballero²; Eugenia Nieto-Valeiras¹; *Javier Llorca*¹; ¹IMDEA Materials Institute & Technical University of Madrid; 2Technical University of Madrid

8:50 AM

Role of Slip-Twin Interactions on the Evolution of Deformation Twinning Microstructures in Hexagonal Close-Packed Metals: Darshan Bamney¹; Andrea Rovinelli¹; Laurent Capolungo¹; Alamos National Laboratory

9:10 AM

Deformation Mechanisms of Dual-Textured Mg-6.5Zn Alloy with Low Tension-Compression Asymmetry: Experiments and Simulations: Biaobiao Yang¹; Eugenia Nieto-Valeiras¹; Meijuan Zhang¹; Javier Llorca¹; ¹IMDEA Materials Institute; Technical University of Madrid

9:30 AM

Nanomechanical Responses and Deformation Mechanisms of Pure Magnesium Via Nanoindentation: Kelvin Xie1; Yi-Cheng Lai1; Reza Motallebi¹; Jiaqi Dong¹; Raj Patel¹; ¹Texas A&M University

Transformation-Assisted Twin Nucleation in Metals: Lei Cao1; Mehrab Lotfpour¹; Amir Hassan Zahiri¹; Jamie Ombogo¹; ¹University of Nevada

10:10 AM Break

10:30 AM

The Role of 3D-Deformation Twin Networks on the Plastic **Deformation Behaviors of Titanium**: Hi Vo¹; Rodney Mccabe¹; Rose Bloom¹; Laurent Capolungo¹; ¹Los Alamos National Laboratory

Investigating and Validating the Persistence of Deformation Twinning in Haynes * 244 *: Victoria Tucker1; Thomas Mann2; Andrew Roginski¹; Ignacio Escobar³; Biaobiao Yang³; Zheng Ye³; Michael Fahrmann²; Ilchat Sabirov³; Javier Llorca³; Michael Titus¹; ¹Purdue University; ²Haynes International; ³IMDEA Materials

Investigating Twinnability in BCC Metals Using Molecular Dynamics, Virtual Texture, and Virtual Diffraction: Phillip Tsurkan¹; Christian Sabatini¹; Evan Byers¹; Avinash Dongare¹; ¹University of Connecticut

11:30 AM

Effect of Temperature and Composition on Plastic Deformation Localization in Solid Solution-Strengthened FCC Alloys: Dhruv Anjaria1; Aditya Srinivasan Tirunilai2; Guillaume Laplanche2; Jean-Charles Stinville¹; ¹University of Illinois Urbana Champaign; ²Institut für Werkstoffe, Ruhr-Universität Bochum

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances and Discoveries in Non-Equilibrium Driven Nanomaterials and Thin Films — High Entropy Oxide Thin Films (Part I), Multimetallic/High Entropy Alloy Nanoparticles (Part II)

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Ritesh Sachan, Oklahoma State University; Ashutosh Tiwari, University of Utah; Santosh Kc, San Jose State University; Shikhar Jha, Indian Institute of Technology Kanpur

Thursday AM | March 27, 2025 354 | MGM Grand

Session Chairs: Santosh Kc, San Jose State University; Ritesh Sachan, Oklahoma State University

8:30 AM Invited

Harnessing Compositional Complexity with Non-Equilibrium Synthesis: Zac Ward1; 1Oak Ridge National Laboratory

8:50 AM Invited

Exsolution-Self-Assembly in Entropy Designed Oxide Thin Films: William Bowman¹; ¹University of California, Irvine

9:10 AM Invited

Macro-Equimolar High Entropy Spinel Thin Films by Pulsed Laser **Deposition**: Anu Mohan¹; Adityanarayan Pandey¹; Ashutosh Gandhi¹; ¹Indian Institute of Technology Bombay

9:30 AM

Enthalpy-Driven Self-Healing in Thin Metallic Films on Flexible Substrates: Claus Trost¹; Alice Lassnig¹; Patrice Kreiml¹; Christian Mitterer²; Megan Cordill¹; ¹Erich Schmid Institute of Materials Science of the Austrian Academy of Sciences; ²Montanuniversität Leoben

9:50 AM Break

10:10 AM Invited

Hyperdoping: Doping TiO2 Beyond Thermodynamic Limits Using Flash Sintering: Anupam Raj¹; Shikhar Krishn Jha¹; ¹IIT Kanpur

10:30 AM Invited

Creation of Multi-Principal Element Alloy Nanoparticles Via Nanosecond Laser-Induced Dewetting: Ritesh Sachan¹; Soumya Mandal¹; Ashish Gupta¹; Jordan Hachtel²; Nozomi Shirato³; ¹Oklahoma State University; ²Oak Ridge National Laboratory; ³Argonne National Laboratory

10:50 AM Invited

Exploring Multi Element Nanoparticles for Sustainable Catalysts: Nozomi Shirato¹; ¹Argonne National Laboratory

Functional Trimethylsilane Plasma Nanocoatings for Surface Modification of Cardiovascular Stents and Silver Nanowires: ThiThuHa Phan¹; Yixuan Liao¹; *Qingsong Yu¹*; ¹University of Missouri

MECHANICS OF MATERIALS

Advances in Multi-Principal Element Alloys IV: Mechanical Behavior — Structures and Modeling

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Jennifer Carter, Case Western Reserve University; E-Wen Huang, National Yang Ming Chiao Tung University; T.S. Srivatsan, University of Akron; Xie Xie, Ford Motor Company; Jamieson Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Thursday AM | March 27, 2025 368 | MGM Grand

Session Chairs: Chelsey Hargather, Los Alamos National Laboratory; Shuozhi Xu, University of Oklahoma

8:30 AM Invited

Factors Affecting Calculated Properties of High-Entropy Alloys (HEAs) Using Density Functional Theory: Chelsey Hargather¹; Danielsen Moreno²; Christopher Lafferty²; Joshua Strother²; Peter Liaw³; ¹Los Alamos National Laboratory; ²New Mexico Institute of Mining and Technology; 3University of Tennessee, Knoxville

8:50 AM Invited

Ubiquitous Short-Range Order in Multi-Principal Element Alloys and Its Impact on the Mechanical Behaviors: Yang Yang¹; Penghui Cao²; Andrew Minor³; Mark Asta³; Wen Chen⁴; ¹Pennsylvania State University; ²University of California, Irvine; ³University of California, Berkeley; 4University of Massachusetts, Amherst

9:10 AM

Electronic Descriptors for Dislocation Deformation Behavior and Intrinsic Ductility in bcc High-Entropy Alloys: Pedro Borges¹; Robert Ritchie¹; Mark Asta¹; ¹University of California, Berkeley

9:30 AM Invited

High-Throughput Multiscale Modeling of Solidification of Refractory High Entropy Alloys: Victoria Tucker¹; Shardul Kamat²; Gregory Wagner²; *Michael Titus*¹; ¹Purdue University; ²Northwestern University

9:50 AM Invited

Investigation of Short-Range Order and Its Impact on Mechanical Properties of AlCoCrFeNi High-Entropy Alloys Using Atomistic Simulations and Data Analytics: Seungha Shin¹; Md Abdullah Al Hasan¹; Peter Liaw¹; ¹University of Tennessee

10:10 AM Break

10:30 AM Invited

A Molecular Dynamics Multi-Particle Model for Modeling Hot-Press Sintering Process of HEAs Combined with Phase-Field Simulation: Yuhong Zhao1; 1University of Science and Technology Beijing, North University of China

10:50 AM

Bidirectional Transformation in a Low Energy Interface Engineered Metastable High Entropy Alloy Under Dynamic Loading: Shreya Mukherjee¹; Ravi Haridas¹; Priyanka Agrawal¹; Aishani Sharma¹; Prithvi Awasthi¹; Rajiv Mishra¹; ¹University of North Texas

Investigating the Exceptional Creep Behavior of AlO.3CoCrFeNi Multi-Principal Element Alloys Through Crystal Plasticity Finite Element Method: Anshu Raj¹; Namit Pai²; Anirban Patra²; Peter Liaw³; Shuozhi Xu¹; ¹University of Oklahoma; ²Indian Institute of Technology Bombay; ³University of Tennessee

Temperature Dependent Screw Dislocation Dynamics in MoNbTi and TaNbTi Multi-Principal Element Alloys: Pulkit Garg1; Daniel Magnuson²; Kevin Hemker²; Irene Beyerlein¹; ¹University of California, Santa Barbara; ²Johns Hopkins University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Verification, Validation, and **Uncertainty Quantification — Methods I**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Dehao Liu, Binghamton University; Matt Kasemer, The University of Alabama; Ashley Spear, University of Utah; Christopher Stiles, Johns Hopkins University Applied Physics Laboratory; Anh Tran, Sandia National Laboratories

Thursday AM | March 27, 2025 320 | MGM Grand

Session Chair: Christopher Stiles, Johns Hopkins University Applied Physics Laboratory

8:30 AM

Enhancing Materials Discovery in Complex Composition Spaces: FUSE Meets Generative ML: Hasan Muhammad Sayeed¹; Christopher Collins²; Taylor Sparks¹; Matthew Rosseinsky²; ¹University of Utah; ²University of Liverpool

8:50 AM

Navigating High-Dimensional Formulation Spaces with GP-Latent Variable Models for Dental Composites: Ramsey Issa1; Taylor Sparks¹; ¹University of Utah

9:10 AM

Closed-Loop Discovery of Lunar In Situ Resource Utilization (ISRU) Constrained Manufacturable Materials: Christopher Stiles1; Michael Pekala¹; Nam Le¹; Alexander New¹; Greg Canal¹; Karun Kumar Rao¹; Milena Graziano¹; Eddie Gienger¹; Christian Sanjurjo-Rodriguez¹; Steven Storck¹; Elizabeth Pogue¹; Mary Daffron¹; Bobby Mueller¹; Gregory Bassen²; Ann Choi¹; Aaron Baumgarten²; Brandon Wilfong²; Denise Yin2; Samuel Barham1; Mark Foster2; Wyatt Bunstine2; Tyrel McQueen²; ¹Johns Hopkins University Applied Physics Laboratory; ²Johns Hopkins University

9:30 AM

Verification, Validation, and Uncertainty Quantification for Self-Driving Labs - Proof of Concept with Chocolate as Frugal Twin: Kinston Ackölf¹; Taylor Sparks¹; ¹University of Utah

9:50 AM Break

Student's T Process for Optimizing Material Properties: Stanley Wessman¹; Taylor Sparks¹; Andrew Falkowski¹; ¹University of Utah

10:20 AM

Developing an Oxidation Materials Ontology for Data-Driven Materials Design: Madison Wenzlick¹; William Trehern¹; Leebyn Chong²; Michael Gao¹; Richard Oleksak¹; Wissam Saidi¹; ¹National Energy Technology Laboratory; ²National Energy Technology Laboratory/NETL Support Contractor

10:40 AM

Deep Gaussian Process Based Bayesian Optimization for Materials Discovery in High Entropy Alloy Space: Sk Md Ahnaf Akif Alvi1; Jan Janssen²; Danial Khatamsaz¹; Douglas Allaire¹; Danny Perez³; Raymundo Arroyave¹; ¹Texas A&M University; ²MPIE; ³Los Alamos National Laboratory

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Algorithms Development in Materials Science and **Engineering — Machine Learning Application for** Materials Characterization and Materials Discovery

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Process Technology and Modeling Committee, TMS: Alloy Phases Committee

Program Organizers: Remi Dingreville, Sandia National Laboratories; Saaketh Desai, Sandia National Laboratories; Hojun Lim, Sandia National Laboratories; Jeremy Mason, University of California, Davis; Vimal Ramanuj, Oak Ridge National Laboratory; Sam Reeve, Oak Ridge National Laboratory; Douglas Spearot, University of Florida

Thursday AM | March 27, 2025 319 | MGM Grand

Session Chairs: Saaketh Desai, Sandia National Laboratories; Vimal Ramanuj, Oak Ridge National Laboratory

8:30 AM

Deep Learning for Quantitative Dynamic Fragmentation Analysis: Erwin Cazares¹; Brian Schuster¹; ¹University of Texas at El Paso

DiSCoVeR 2.0: Incorporating Structural Similarity as a Search Criteria for New Materials: Taylor Sparks1; Andrew Falkowski1; Sterling Baird²; ¹University of Utah; ²University of Toronto

Discovering High-Performance High Entropy Alloys: A Combined Genetic Algorithm and Machine Learning Approach: Caroline Binde Stoco1; Guillaume Deffrennes2; Yannick Champion2; Francisco Gil Coury¹; ¹PPGCEM/DEMA-UFSCar; ²Université Grenoble Alpes, CNRS, Grenoble INP, SIMaP

Efficient Non-Recyclable Plastics Sorting Through Advanced Sensor Fusion and Artificial Intelligence: Kanishka Tyagi¹; Isha Maun¹; Lorenzo Vega-Montoto²; Nalin Kumar¹; ¹UHV Technologies; ²Idaho National Lab

9:50 AM

An Edgeworth Cross Mutual Information Function for Multimodal Pattern Matching: Zachary Varley1; Megna Shah1; Jeff Simmons1; 1Air Force Research Laboratory

10:10 AM Break

Explainable Deep Learning Model for Defect Detection During Autoclave Composite Manufacturing: Deepak Kumar¹; Pragathi Agraharam Chan¹; Yongxin Liu¹; Sirish Namilae¹; ¹Embry Riddle Aeronautical University

10:50 AM

Machine Learning Based Classification of Optical Materials: Sheldon Fereira1; Nuggehalli Ravindra2; 1New Jersey Institute of Technology; Materium Technologies; ²New Jersey Institute of Technology

11:10 AM

Machine Learning, Simulation and Constraint Algorithms for Interpreting 2D X-Ray Diffraction Patterns of Dynamic Compression Experiments: Nathan Brown¹; David Montes de Oca Zapiain¹; Samantha Brozak¹; Brendan Donohoe¹; Tommy Ao¹; Mark A Rodriguez¹; Marcus Knudson¹; J. Matthew Lane¹; ¹Sandia National Labs

11:30 AM

Material Characterization for Sheet Metal Forming Processes Using Deep Learning Methods for Time Series Processing: Papdo Tchasse¹; Kim Riedmüller¹; Mathias Liewald¹; ¹University of Stuttgart

LIGHT METALS

Aluminum Alloys: Development and Manufacturing - Microstructure Evolution and Characterization

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mihaiela Isac, McGill Metals Processing Centre; Les Edwards, Rain Carbon Inc.

Thursday AM | March 27, 2025 114 | MGM Grand

Session Chairs: Mohsen Mohammadi, University of New Brunswick; Alan Taub, University of Michigan

8:30 AM Keynote

Challenging the Hydrogen Embrittlement in Powertrain Aluminum Alloys: Dimitry Sediako1; Rashiga Walallawita1; Jordan Kozakevich1; Matthew Hinchliff¹; Anna Paradowska²; Mark Reid³; ¹University of British Columbia; ²The University of Sydney; ³Australia's Nuclear Science and Technology Organisation

8:55 AM

Mischmetal Composition Effects on Microstructural and Mechanical Properties of Al-(Ce, La, Nd) Eutectic Alloys: Jie Qi1; David Dunand¹; ¹Northwestern University

Solidification Processing by Low-Power Electric Current: Towards Phase Control In Aluminum Alloys: Jonathan Goettsch1; Pulkit Gupta¹; Shanmukha Aramanda¹; David Weiss²; Xianghui Xiao³; Katsuyo Thornton¹; Ashwin Shahani¹; Alan Taub¹; ¹University of Michigan; ²Vision Materials; ³Brookhaven National Laboratory

In Situ DSC Investigation of Homogenization Conditions in EN AW-7075 Aluminum Alloy: Aleyna Gumussoy¹; Isik Kaya¹; Aybars Guven¹; Emrah Ozdogru¹; ¹TRI Metalurji A.S.

10:10 AM Break

10:25 AM Keynote

In Situ Thermite Reactions: A Pathway to Enhanced Alumina Wettability in Aluminum Composites: David Weiss1; Jordan Kozakevich²; Dimitry Sediako²; ¹Loukus Technologies, Inc.; ²University of British Columbia

Influence of Thermal-Rate Treatment on Precipitation Evolution and Mechanical Properties of Al-10Si-0.35Mg Alloy: Sang-Ik Lee¹; Saif Kayani¹; Yun-Ho Lee¹; Je-In Lee²; Kwangjun Euh¹; Young-Hee Cho1; 1Korea Institute of Materials Science; 2Pusan National University

11:15 AM

Microstructure and Texture Evolution of Continuous Casting 8021 Aluminum Alloy Sheets: Jiacheng Zhang¹; Chao Wu¹; Dongwei Wei¹; Hongpo Wang¹; Zizong Zhu¹; ¹Chongging University

11:40 AM

Effect of Mg Content in a Flat-Rolled EN AW-AlSiMg(A) Aluminum Alloy Cast via Twin Roll Casting: Cemil Isiksacan1; Mert Gülver1; Hikmet Kayaçetin¹; Pelin Bölükbaşı¹; Sertu Bahat¹; ¹Assan Aluminyum

LIGHT METALS

Aluminum Reduction Technology — Productivity Increase and Modernization of Aluminium Smelters

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Andre-Felipe Schneider, Hatch Ltd.; Les Edwards, Rain Carbon Inc.

Thursday AM | March 27, 2025 113 | MGM Grand

Session Chair: Maria Daviou, Aluar Aluminio Argentino Saic

8:30 AM Introductory Comments

8:35 AM

Advancements of INAFeed Tech for Enhanced Efficiency and Reliability in Reduction Cell Operations at INALUM: Aghnia Pangeran Siregar¹; Ivan Ermisyam¹; Ismadi Jenal¹; Ade Buandra¹; Ari Purwanto¹; Zulfiqar Baihaqi¹; Yan Hasibuan¹; Rahmadhana Andri¹; ¹PT **INALUM**

9:00 AM

INALUM Pilot Pots Upgrade - Successful Completion of the Performance Test: Sajid Hussain¹; Nadia Ahli¹; Abdalla Alzarooni¹; Abdulaziz Sarhan¹; Maitha Faraj¹; Hassan Alhayas¹; Ade Buandra²; Ferdy Rahadian²; Recky Suharmon²; Fathur Rahman²; ¹Emirates Global Aluminium; ²PT Indonesia Asahan Aluminium

9:25 AM

Anode Clamp Reliability Improvements in EGA DX Reduction Potlines: Mohamed Aldhanhani¹; Balakrishnan Palanisamy¹; Satish Rajput¹; Ravindra Shinde¹; Arogyanathan Sigamani¹; Mohammed Al Jaziri¹; ¹Emirates Global Aluminium

9:50 AM

Cell Superstructure Tap Door Improvements for EGA DX **Technology**: Mohamed Aldhanhani¹; Balakrishnan Palanisamy¹; Satish Rajput¹; Ravindra Shinde¹; Arogyanathan Sigamani¹; Talal Albalushi¹; Nasser Hussein¹; ¹Emirates Global Aluminium

10:15 AM Break

10:30 AM

Pot Shell Demolition Facility Reliability Improvement For EGA Smelter: Mohamed Aldhanhani¹; Balakrishnan Palanisamy¹; Amit Dubey¹; Syam Sudabattula¹; Hashim Alhammadi¹; Velmurugan Sankaranarayanan¹; Mohammad Shahid¹; Vishnu Sankar¹; Basavarai Basavanagowda¹; Seikh Sikander¹; ¹Emirates Global Aluminium

10:55 AM Concluding Comments

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Artificial Intelligence Applications in Integrated Computational Materials Engineering — Computational Modeling and Simulation in **Materials Engineering**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wenwu Xu, San Diego State University; Ram Devanathan, Pacific Northwest National Laboratory; Vikas Tomar, Purdue University; Qiaofu Zhang, University of Alabama; Eshan Ganju, Purdue University, Avanish Mishra, Los Alamos National Laboratory; Victoria Miller, University of Florida; Ghanshyam Pilania, General Electric (GE Aerospace Research)

Thursday AM | March 27, 2025 351 | MGM Grand

Session Chairs: Victoria Miller, University of Florida; Wenwu Xu, San Diego State University

8:30 AM Invited

Machine Learning Potentials and Other Tools in LAMMPS for Materials Engineering: James Goff¹; ¹Sandia National Laboratories

Developing a Foundational Inter-Atomic Potential for Transitional Metal Alloys Using Active Learning: Brenden Hamilton¹; Benjamin Nebgen¹; Avanish Mishra¹; Mashroor Nitol¹; Nithin Mathew¹; Saryu Fensin¹; Timothy Germann¹; ¹Los Alamos National Laboratory

Developing Reduced Order Models for Phase Field Modeling of Irradiation Damage Using Koopman Operator Theory: John Eggemeyer¹; Umesh Vaidya¹; Cheng Sun¹; ¹Clemson University

Magnetic RANN Interatomic Potential for Iron: Hala Ben Messaoud¹; Mashroor Nitol²; Doyl Dickel¹; ¹Mississippi State University; ²Los Alamos National Laboratory

10:00 AM Break

10:20 AM

Prediction of Fatigue Indicator Parameter by Graph Neural Network: Gyu-Jang Sim¹; Myoung-Gyu Lee¹; Marat Latypov²; ¹Seoul National University Materials Mechanics Laboratory; ²University of Arizona

10:40 AM

Effect of the Microstructure on Intergranular Fracture in FCC and HCP Polycrystals: A Machine Learning Approach: Javier Llorca1; ¹IMDEA Materials Institute & Technical University of Madrid

11:00 AM

Pushing the Limits of Fine Feature Detection in Deep-Learning Assisted 3D X-Ray Microscopy: Characterization of Hierarchical Microstructures in TiC Reinforced Nickel Matrix Composites: Kaushik Yanamandra¹; Hrishikesh Bale¹; Nathan Johnson¹; Raj Banerjee²; ¹Carl Zeiss Microscopy; ²University of North Texas

A Machine Learning Informed Phase Field Damage Model to Simulate Void Nucleation and Growth in Metal Microstructures: Abhijith Thoopul Anantharanga¹; Jackson Plummer¹; Saryu Fensin²; Brandon Runnels¹; ¹Iowa State University; ²Los Alamos National Laboratory

11:40 AM

Combined THz-TDS and Raman Spectroscopy for In-Situ Material Identification via a Machine Learning Algorithm: Marco Herbsommer¹; Sushrut Karmarkar¹; Mahavir Singh¹; Meghana Sudarshan¹; Vikas Tomar¹; ¹Purdue University

MECHANICS OF MATERIALS

Atomistic Simulations Linked to Experiments to Understand Mechanical Behavior: A MPMD Symposium in Honor of Professor Diana Farkas — From Foams to Graphene

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Andrea Hodge, University of Southern California; Arun Nair, University of Arkansas; Alejandro Strachan, Purdue University; Chelsey Hargather, Los Alamos National Laboratory; Christopher Schuh, Northwestern University

Thursday AM | March 27, 2025 370 | MGM Grand

Session Chair: Andrea Hodge, University of Southern California

8:30 AM Introductory Comments

8:40 AM

A Combined Experimental-Computational Study of the Compression of Nanoporous Gold Nanoparticles: Ben Engelman¹; Santhosh Mathesan¹; Tatyana Fedyaev¹; Eugen Rabkin¹; Dan Mordehai1; 1Israel Institute of Technology

9:00 AM

Molecular Dynamics Simulation Study on the Phase Transformation Behaviors of Additively Manufactured Shape-Memory Alloys: Jong-Hoon Park1; Won-Seok Ko1; 1Inha University

9:20 AM

Role of Ripplocations and Ripplocation Boundaries on the **Deformation of Graphite**: Kaustubh Sudhakar¹; ¹Drexel University

9:40 AM

Influence of Single- and Multiphase Zinc-Blende and Wurtzite Structures on Thermal Properties of Semiconductors During Ultrafast Melt-Quenching and Deformation: Mehrab Lotfpour¹; Lei Cao1; 1University of Nevada, Reno

BIOMATERIALS

Bio-Nano Interfaces and Engineering Applications — **Bio-Nano Interfaces III**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Kalpana Katti, North Dakota State University; Hannes Schniepp, William & Mary; Terry Lowe, Colorado School of Mines; Po-Yu Chen, National Tsing Hua University; David Kisailus, University of California-Irvine

Thursday AM | March 27, 2025 307 | MGM Grand

Session Chairs: David Kisailus, University of California-Irvine; Hannes Schniepp, William & Mary

8:30 AM Keynote

Alloy Design via Additive Manufacturing of Metallic Implants: Amit Bandyopadhyay¹; ¹Washington State University

9:10 AM

Fluid Flow Enabled Metastasis Testbed of Breast and Prostate Cancer Metastasis to Bone: Kalpana Katti¹; Sharad Jaswandkar¹; Preetham Ravi¹; Shrinwanti Ghosh¹; Jiha Kim¹; Dinesh Katti¹; ¹North Dakota State University

9:40 AM Break

9:55 AM Invited

A Durable, High Strength Enzymatic Structural Material: Nima Rahbar¹; ¹Worcester Polytechnic Institute

10:25 AM

Iron Acquisition and Mineral Transformation by Cyanobacteria Living in Extreme Environments: David Kisailus¹; ¹University of California-Irvine

10:50 AM

Machine Learning Guided Biomimetic Peptide Design for Heterogenous Interfaces: Candan Tamerler¹; ¹University of Kansas

ADVANCED CHARACTERIZATION METHODS

Characterization of Minerals, Metals and Materials 2025: In-Situ Characterization Techniques — Characterization of Polymers, Composites, Coatings, and Ceramics

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Zhiwei Peng, Central South University; Kelvin Xie, Texas A&M University; Mingming Zhang, Baowu Ouyeel Co. Ltd; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, AnalytiChem Group, USA; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, Devcom Arl Army Research Office; Shadia Ikhmayies, The University of Jordan

Thursday AM | March 27, 2025 109 | MGM Grand

Session Chairs: Zhiwei Peng, Central South University; Rajiv Soman, AnalytiChem Group, USA

8:30 AM

A Comprehensive Review on Dynamic Mechanical Thermal Analysis of Polyester Reinforced Composites: Kator Jomboh1; ¹University of Maiduguri, Borno State

Recent Progress in Microwave-Assisted Synthesis of Composites Based on Titanium Alloy and Hydroxyapatite at Central South **University**: Shangyong Zuo¹; *Qian Peng*¹; Tong Zhang¹; Yihong Chen¹; Hengrong Xiong¹; Zhiwei Peng¹; ¹Central South University

9:10 AM

Characterization of Polymer Resin Composite With Fiberglass and Polycarbonate Microfibers for Applications in Small-Scale Boat **Models**: Clarissa Dias¹; Bruno da Cunha¹; Sergio Monteiro¹; Ricardo Weber¹; ¹Military Institute of Engineering

9:30 AM

Preparation of Glass-Ceramics From Ferronickel Slag and Iron Ore Tailings: Effects of Crystallization Temperature and Time: Zhiwei Peng¹; Chaojun Xiang¹; Huimin Tang¹; Xin Zhang¹; Qiang Zhong¹; Mingjun Rao¹; ¹Central South University

9:50 AM

Multiscale Characterization and Experimentation to Analyze the Role of Ceramic Inoculants in the Failure Behavior of Aluminum Metal Matrix Composites: Alex Butler¹; Jamila Khanfri¹; Aaron Stebner¹; Josh Kacher¹; Brad Boyce²; ¹Georgia Institute of Technology; 2Sandia National Laboratories

10:10 AM Break

10:20 AM

Structural Characterization of Tio2, Wo3, Zno and Sno2 for Modified Zinc - Titanium Dioxide Nanocomposites Smart Coatings: Ayodele Daniyan¹; ¹Obafemi Awolowo University

10:40 AM

Modeling the Thermal Frequency Response of Printed Silver on Glass, Alumina, and Polyamide Substrates for Modulated Photothermal Radiometry: Javier Corona¹; Nirmala Kandadai¹; ¹Oregon State University

NUCLEAR MATERIALS

Composite Materials for Nuclear Applications III — SiC Composites for Fission and Fusion

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Composite Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Anne Campbell, Oak Ridge National Laboratory; Dong (Lilly) Liu, University of Oxford; Rick Ubic, Boise State University; Lauren Garrison, Commonwealth Fusion Systems; Peng Xu, Idaho National Laboratory; Johann Riesch, Max Planck Insitute For Plasma Physics; James Wade-Zhu, UKAEA

Thursday AM | March 27, 2025 164 | MGM Grand

Session Chairs: Peng Xu, Idaho National Laboratory; James Wade-Zhu. UKAEA

8:30 AM Invited

Advancing SiC-SiC Cladding Technology to Support Nuclear Power Generation: David Frazer1; Sean Gonderman1; Lucas Borowski1; Rolf Haefelfinger¹; Mohammad Alavi¹; Christian Deck¹; Jack Gazza¹; ¹General Atomics

8:55 AM Invited

Developing and Testing Silicon Carbide Composites for Fusion-Relevant Conditions: Alexander Leide¹; Douglas Andrews¹; James Wade-Zhu1; 1United Kingdom Atomic Energy Authority

9:20 AM Invited

Silicon Carbide Composites for Fusion Applications: Paul Barron¹; Colin Baus¹; Tatsuya Hinoki²; Reuben Holmes¹; Satoshi Ogawa¹; Taishi Sugiyama1; Satoshi Konishi1; 1Kyoto Fusioneering; 2Kyoto University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Computational Thermodynamics and Kinetics — **Additive Manufacturing & Synthesis**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Prashant Singh, Ames National Labratory; Rodrigo Freitas, Massachusetts Institute of Technology; Nicolas Argibay, Ames National Laboratory; Raymundo Arroyave, Texas A&M University; James Morris, Ames Laboratory

Thursday AM | March 27, 2025 305 | MGM Grand

Session Chairs: Nicolas Argibay, Ames National Laboratory; Jacob Jeffries, Clemson University

8:30 AM Invited

Network Formation in Dual-Cure Resins for Direct Ink Write Carbon Fiber Composites: Michael Chandross¹; Eric Rothchild¹; Phillip Taylor¹; Joel Clemmer¹; EJ Broker²; James Batteas²; Hsu-Ming Lien³; Filippo Mangolini³; Kyle Nogales¹; Nekoda van de Werken¹; Gary Grest¹; Adam Cook¹; Leah Appelhans¹; ¹Sandia National Laboratories; ²Texas A&M University; ³University of Texas at Austin

9:00 AM

Phase Diagrams and Crystallization of Molten Salts Studied by Machine-Learned Potentials: Zhao Fan1; Michael Whittaker1; Piotr Zarzycki¹; Mark Asta¹; ¹Lawrence Berkeley National Laboratory

9:20 AM Invited

Atomistic Modeling Insights in Low Energy Implantation for High Quality Synthesis: Eva Zarkadoula¹; Sumner Harris¹; ¹Oak Ridge **National Laboratory**

9:50 AM

Prediction of Defect Properties in Concentrated Solid Solutions Using a Langmuir-Like Model: Jacob Jeffries¹; Enrique Martinez¹; ¹Clemson University

10:10 AM Break

10:30 AM Invited

Computational Simulations of Rapid Solidification During Additive Manufacturing of a Magnesium Alloy: Damien Tourret1; Rouhollah Tavakoli¹; Adrian Boccardo¹; Ahmed Boukellal²; Muzi Li¹; Jon Molina³; Javier LLorca³; ¹IMDEA Materials Institute; ²IMDEA Materials & Université de Lorraine; 3IMDEA Materials & Universidad Politecnica de Madrid

11:00 AM

CALPHAD-Enabled Design of a Compact Morphology Cobalt-Based Superalloy for Additive Manufacturing: Krista Biggs1; Brandon Snow¹; Julio Cesar Pereira dos Santos²; Gregory Olson¹; ¹Massachusetts Institute of Technology; ²National Institute of Standards and Technology

11:20 AM

Atomistic Simulations of Active Brazing: Eric Rothchild¹; Ian Winter¹; Michael Chandross¹; Jeffrey Horner¹; Jaideep Ray¹; Edward Arata¹; Ping Lu¹; Scott Roberts¹; David Kemmenoe¹; Anthony McMaster¹; Anne Grillet1: 1Sandia National Laboratories

ADDITIVE MANUFACTURING

Designing Complex Microstructures through Additive Manufacturing — Design

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Matteo Seita, University Of Cambridge; Hang Yu, Virginia Polytechnic Institute and State University; Alain Reiser, KTH Royal Institute of Technology; Yuntian Zhu, City University of Hong Kong; Xiaozhou Liao, University of Sydney

Thursday AM | March 27, 2025 317 | MGM Grand

Session Chairs: Yuntian Zhu, City University of Hong Kong; Hyoung Seop Kim, Pohang University of Science and Technology

8:30 AM Invited

Additive Manufacturing of High-Strength Al-Ti Composites: Yu Zou¹; ¹University of Toronto

9:00 AM

Direct Design of Microstructures for Ti-Nb-Ta Biomedical Alloys by Additive Manufacturing: Thomas Niendorf¹; Christian Lauhoff¹; Jan Johannsen²; Melanie Stenzel³; Markus Weinmann³; ¹Universitaet Kassel; ²Fraunhofer Research Institution for Additive Manufacturing Technologies IAPT; 3TANIOBIS GmbH

9:20 AM

Understanding Chemical Homogeneity and Elemental Mixing in Al-Zn Multi-Material Systems Through Process Parameter Control of Laser Powder Bed Fusion: Fanyue Kong1; Ji Ma1; James Burns1; John Scully¹; ¹University of Virginia

9:40 AM

Design of Graded Microstructures Between Vanadium and Stainless Steel: Bernard Gaskey1; Cheryl Hawk1; John Carpenter1; ¹Los Alamos National Laboratory

10:00 AM Break

10:20 AM

Computational-Experimental Integrated Framework Production of Additively Manufactured Functionally Graded Materials From Structural to Refractory Alloys: Kaila Bertsch1; Brandon Bocklund¹; Benjamin Ellyson¹; Jennifer Glerum¹; Michael Juhasz¹; Scott Peters¹; Raiyan Seede¹; Nicholas Ury¹; Aurelien Perron¹; ¹Lawrence Livermore National Laboratory

10:40 AM

Laser Powder Bed Fusion of CuCrZr - In625 Multi-Materials: Andaç Özsoy¹; Steve Gaudez¹; Antonios Baganis²; William Hearn¹; Zoltán Hegedüs³; Yunhui Chen⁴; Alexander Rack⁵; Steven Van Petegem¹; ¹Paul Scherrer Institute; ²EMPA; ³DESY; ⁴RMIT; ⁵ESRF

Characterizing a Functionally Graded Ti-6Al-4V - Ti-6Al-4V-xW System Using Directed Energy Deposition AM: Matthew Dolde1; Fatih Sikan¹; Maria Quintana¹; Peter Collins¹; ¹Iowa State University

11:20 AM

Parameter Selection and Micro/Meso-Material Response: Understanding the Cause-Effect Relationship: Alexander Sloane¹; Minh Phan¹; Henry Saunders¹; Alex Leung²; David McArthur²; Partha Paul³; Joseph Brunet³; Iain Todd¹; Katerina Christofidou¹; ¹University of Sheffield; ²University College London; ³European Synchrotron Radiation Facility

11:40 AM

Additive Manufacturing Based Design Approach For Biomedical Implant Applications: Sarang Saji¹; Tirthesh Ingale¹; Adebowale Odumuwagun²; Allison Beese²; Peter Collins³; Narendra Dahotre¹; Rajarshi Banerjee¹; ¹University of North Texas; ²Pennsylvania State University; 3 lowa State University

SPECIAL TOPICS

DMMM5: A Decade of Creating Inclusion and Belonging for Diversity in the Minerals, Metals, and Materials Professions — Personal & Professional Development

Sponsored by: TMS: Membership Diversity & Development Committee, TMS: Diversity, Equity, and Inclusion Committee

Program Organizers: Ben Britton, University of British Columbia; Lauren Garrison, Commonwealth Fusion Systems; Keith Bowman, University of Maryland Baltimore County; Katelyn Jones; Suveen Mathaudhu, Colorado School of Mines; Ashley Paz y Puente, University of Cincinnati; Soumya Varma, KLA Corporation; Eva Zarkadoula; Danielle White, University of Southern California

Thursday AM | March 27, 2025 150 | MGM Grand

Session Chair: Lauren Garrison, Commonwealth Fusion Systems

8:30 AM Introductory Comments: Career Development and Transitions: Discover how identity and cultural influences impact career choices and decision making. In this panel session, we will discuss how the dynamics of diversity contribute to personal and career growth and leadership roles. Our speakers will first take turns to share their experiences in career changes from R&D to government management, how to make the switch from national lab to academia or Industry, and how diversity evolves in leadership roles. This session will conclude with a panel of speakers for an engaging Q&A with the audience.

8:35 AM

Going International: Megan Cordill1; 1Erich Schmid Institute of Materials Science

8:45 AM

Professional Development as a Structural Materials Researcher: Amit Misra¹; ¹University of Michigan

Materials Research in Industry: Trevor Clark¹; ¹Commonwealth **Fusion Systems**

9:05 AM Panel Discussion: Q &A with Audience

10:10 AM Break

10:30 AM

Black Sheep—The Choice is Yours (Revisited): Suveen Mathaudhu¹; ¹Colorado School of Mines

Best Practices for Resume Review and Hiring Panels-Hands on Activity: Lauren Garrison¹; ¹Commonwealth Fusion Systems

LIGHT METALS

Electrode Technology for Aluminum Production — Anode Performance, Anode Baking Furnaces, SPL

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Egil Skybakmoen, SINTEF Industry; Les Edwards, Rain Carbon Inc.

Thursday AM | March 27, 2025 112 | MGM Grand

Session Chair: Ketil Rye, Alcoa

8:30 AM Introductory Comments

8:35 AM

Experimental Study of the Green Anode Cooling: Mohammadhossein Dabaghi¹; Duygu Kocaefe¹; Yasar Kocaefe¹; ¹University of Quebec at Chicoutimi

9:00 AM

Impact of Increasing the Height of Carbon Anodes for Aluminum **Production**: Emmily Fonseca¹; Marcus Brasiliense¹; Paulo Nogueira¹; Felipe Biolchini¹; Nayáry Monteiro¹; Camila da Silva¹; Benigno Junior¹; ¹Albras

9:25 AM

Mitigating Fire Risk at EGA Paste Plants by Improving the Performance and Reliability of Regenerative Thermal Oxidizer (RTO) and Heat Transfer Medium (HTM) Systems: Bienvenu Ndjom1; Abdalla Saeed Al Sharji1; Sunith Warrier1; Rizwan Waghu1; Mohammed Ali¹; Abdulla Alshaikh¹; Amer Almarzooqi¹; ¹Emirates Global Aluminium

Managing Bake Furnace Relines to Optimize Fire Startup: Daniel Reichelson¹; Jonathan Reichelson¹; ¹Hatch

10:15 AM Break

10:30 AM

End-of-Life Treatment of Spent Potlining by Low Pressure and Heat: Camilla Sommerseth¹; Pål Tetlie¹; Samuel Senanu¹; Egil Skybakmoen¹; Per Anders Eidem²; Pavel Stransky²; Heiko Gaertner¹; Ellen Myrvold³; Eirik Hagen⁴; Lorentz Petter Lossius⁴; Anders Sørhuus⁵; ¹SINTEF Industry; ²SINTEF Helgeland; ³Alcoa Norway; ⁴Hydro Aluminium AS; 5REEL Norway AS

10:55 AM

Separation and Recovery of Fluoride, Carbon, Alkali Metal Oxides and Refractories With Vacuum Distillation Process From Aluminum Electrolytic Cell Spent Pot Lining: Naixiang Feng¹; Yuezhong Di¹; Yaowu Wang¹; Jianping Peng¹; Wenxiong Dong¹; Buju Guo¹; Jianbin Huang²; Zhibiao Hu²; ¹Northeastern University; ²GuangXi LaiBin GIG YinHai Aluminum CO.,LTD.

NUCLEAR MATERIALS

Elucidating Microstructural Evolution Under Extreme Environments — Advanced Techniques for **Elucidating Radiation Effects in Structural Materials**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Mukesh Bachhav, Idaho National Laboratory; Boopathy Kombaiah, Idaho National Laboratory; Janelle Wharry, University of Illinois; Assel Aitkaliyeva, University of Florida; Miaomiao Jin, Pennsylvania State University; Farida Selim, Arizona State University; Nathan Almirall, GE Aerospace

Thursday AM | March 27, 2025 162 | MGM Grand

Session Chairs: Mukesh Bachhav, Idaho National Laboratory; Boopathy Kombaiah, Idaho National Laboratory

8:30 AM

Methods for Characterization of Voids and Bubbles in S/TEM: Witold Chrominski¹; Mikhail Zibrov²; Piotr Bazarnik¹; Łukasz Ciupiński¹; ¹Warsaw University of Technology; ²Max Planck Institute for Plasma **Physics**

8:50 AM

Defect Evolution in Nanocrystalline SiC at High Irradiation Temperature: Nabil Daghbouj¹; Tomas Polcar¹; ¹Czech Technical University in Prague

9:10 AM

Effect of Mn and Co on Radiation-Induced Segregation in Austenitic Fe-Ni-Cr Alloys: Daniele Fatto Offidani1; Emmanuelle Marquis¹; ¹University of Michigan - Ann Arbor

9:30 AM

Microstructural Evolution of Ion Irradiated Commercially Pure Titanium: Aida Amroussia1; Carl Boehlert2; F. Pellemoine3; W. Mittig⁴; M. Li⁵; W.-Y. Chen⁵; ¹Saint-Gobain Research Paris; Michigan State University; ²Michigan State University; ³Fermilab; ⁴National Superconducting Cyclotron Laboratory; ⁵Argonne National Laboratory

9:50 AM

Effects of Grain Size on Microstructural Evolution of a FeCrAl System After Neutron Irradiation: Joshua Rittenhouse¹; Mukesh Bachhav¹; Laura Hawkins¹; Sohail Shah¹; Cameron Howard¹; David Frazer²; Nedim Cinbiz³; Haiming Wen⁴; Tiankai Yao¹; ¹Idaho National Laboratory; ²General Atomics; ³Oak Ridge National Laboratory; ⁴Missouri University of Science and Technology

10:10 AM Break

10:30 AM

Irradiation Damage in Compositionally Complex Carbide Ceramics: Bai Cui¹; Lanh Trinh¹; Fei Wang¹; Luke Wadle¹; Yongfeng Lu¹; Kaustubh Bawane²; Khalid Hattar³; Zilong Hua²; Linu Malakkal²; Lingfeng He4; ¹University of Nebraska-Lincoln; ²Idaho National Laboratory; ³University of Tennessee, Knoxville; ⁴North Carolina State University

10:50 AM

X-Ray Evaluation of Ion Irradiation-Induced Defects in Austenitic Steels: Comparison With an Analytical Model Based on TEM Observations: Raphaelle Guillou1; Thomas Jourdan2; Marie Loyer Prost²; Dominique Thiaudière³; Joël Malaplate¹; ¹Université Paris-Saclay, CEA, Service de Recherche en Matériaux et procédés Avancés; ²Université Paris-Saclay, CEA, Service de recherche en Corrosion et du Comportement des Matériaux, SRMP; 3Synchrotron **SOLEIL**

11:10 AM

Influence of Composition and Ion Species on Radiation Damage Evolution in Refractory High Entropy Alloys: Emily Mang¹; Annie Barnett¹; Daniel Foley¹; Wei-Ying Chen²; Michael Falk¹; Jaime Marian³; Mitra Taheri¹; ¹Johns Hopkins University; ²Argonne National Laboratory; 3University of California - Los Angeles

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmental Degradation of Multiple Principal Component Materials — High Temperature Corrosion

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Wenjun Cai, Virginia Polytechnic Institute and State University; XiaoXiang Yu, Novelis Inc.; Vilupanur Ravi, California State Polytechnic University Pomona; Christopher Weinberger, Colorado State University; Elizabeth Opila, University of Virginia; Bai Cui, University of Nebraska Lincoln; Mark Weaver, University of Alabama; Bronislava Gorr, Kit; Gerald Frankel, Ohio State University; ShinYoung Kang, Lawrence Livermore National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Thursday AM | March 27, 2025 169 | MGM Grand

Session Chairs: Elizabeth Opila, University of Virginia; Bronislava Gorr, Kit

8:30 AM

Cyclic Oxidation of NiCoCr Alloys in Air and Air-Steam Environments: Elmer Prenzlow¹; Benjamin Church¹; William Musinski¹; Timothy Smith²; Christopher Kantzos²; ¹University of Wisconsin Milwaukee; ²NASA Glenn Research Center

8:50 AM Invited

Phase Stability and Magnetic Thermodynamics in Rocksalt High-Entropy Oxides: Raphael Hermann¹; ¹Oak Ridge National Laboratory

Hot Corrosion Behavior of Nickel-Based Superalloys in Molten Na2SO4-MgSO4 Salts: Youyuan Zhang¹; Shanshan Hu¹; Yuying Wen¹; Ting Sun¹; Xingru Tan¹; Xingbo Liu¹; Michael Teka²; ¹West Virginia Univerisity; ²Pratt & Whitney

9:30 AM

Improvement of Complex Oxide Properties by Doping: Bronislava Gorr¹; Bjoern Schaefer¹; Steven Schellert²; Hans Christ²; Alexander Kauffmann¹; Martin Heilmaier¹; ¹Karlsruhe Institute of Technology (KIT); 2University of Siegen

Influence of the Presence of Ti or Ta on the Oxidation Behavior at 1200°C of Cast MPEAs Derived From an Equimolar CoNiFeCr Basis: Siouare Hammi¹; Yasmina El Hadad¹; Lyna Amrouche¹; Romin Chevalme¹; Lionel Aranda¹; Patrice Berthod¹; ¹University of Lorraine

10:10 AM Break

10:20 AM

Oxidation Behavior of High Entropy Materials: Rahul Agrawal¹; Sean O'Brien¹; Rajeev Gupta¹; ¹North Carolina State University

10:40 AM

Oxidation Mechanisms and Kinetics of As-Cast Versus Homogenized Refractory-Based High Entropy Alloys: Kavin Ram¹; Jibril Shittu¹; Connor Rietema¹; Joseph Mckeown¹; Peter Hosemann²; ¹Lawrence Livermore National Laboratory; ²University of California, Berkeley

11:00 AM Invited

Cyclic Oxidation of Oxide Dispersion Strengthened Multi-Principal Element Alloys: Timothy Smith1; Bryan Harder1; Christopher Kantzos1; Paul Gradl¹; Aaron Thompson¹; Austin Whitt¹; Timothy Gabb¹; ¹NASA Glenn Research Center

11:20 AM

Investigation of Protective Potential of Al & Cr in Intermediate Temperature Oxidation of MoNbTaW Thin Film: Md Imran Noor1; Zahidur Rahman¹; Paul F. Rottmann¹; ¹University of Kentucky

11:40 AM Invited

Strategies for Improved Oxidation Resistance of Refractory Multiple Principal Element Alloys: Elizabeth Opila1; Charlie Brandenburg¹; Mitra Taheri²; ¹University of Virginia; ²Johns Hopkins University

MECHANICS OF MATERIALS

Fatigue in Materials: Fundamentals, Multiscale Characterizations and Computational Modeling — **Fatigue Deformation and Detection**

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Orion Kafka, National Institute of Standards and Technology; J.C. Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Brian Wisner, Ohio University; Krzysztof Stopka, Purdue University; Kelly Nygren, Cornell University

Thursday AM | March 27, 2025 318 | MGM Grand

Session Chairs: J.C. Stinville, University of Illinois Urbana-Champaign; Orion Kafka, National Institute of Standards and Technology

8:30 AM

Beyond Crack Detection: Non-Destructive Methods for Early-Stage Fatigue Damage Detection: Maryam Izadi Najafabadi¹; Ebad Bagherpour¹; ¹Brunel University

Finding a Fatigue Crack in a Swiss Watch: Fatigue Cracking Kinetics, Detectability, and Defect Criticality in Miniaturized PH13-**8Mo Shafts**: Christopher Finfrock¹; Donald Susan¹; Jeffrey Rodelas¹; Brian Choragwicki¹; Hannah Sims¹; John Laing¹; ¹Sandia National Laboratories

9:10 AM

High-Throughput Characterization of Small Crack Growth Behavior in Ti-6-4: Michelle Harr1; Bradley Rucker1; Devin Blankenship1; Nathan Levkulich²; Glenn Balbus¹; Ayman Salem¹; Adam Pilchak³; Thomas Broderick⁴; Samuel Kuhr²; ¹Materials Resources LLC; ²Air Force Research Laboratory; ³Pratt & Whitney; ⁴Federal Aviation Administration

9:30 AM Invited

The Temperature Sensitivity of Titanium Dwell Fatigue: In-Situ Characterisation, Crystal Plasticity Modelling and Mechanistic Analysis: Fionn Dunne¹; Yu Cao¹; Yilun Xu²; Yang Liu³; Zebang Zheng⁴; ¹Imperial College; ²A*STAR; ³Leicester University; ⁴Northwestern Polytechnical University

9:50 AM Break

10:10 AM

Very High Cycle Fatigue Behavior of BCC Refractory Alloy C103: Madeline Vailhe1; Leah Mills1; Jean-Charles Stinville2; Chris Torbet1; Tresa Pollock¹; ¹University of California, Santa Barbara; ²University of Illinois, Urbana-Champaign

Transformation Induced Fatigue in Shape Memory Alloys: Nicole Stoetzel1; Jan Frenzel1; Marcus Young2; Tamas Ungar3; Gunther Eggeler¹; ¹Ruhr-University Bochum; ²University of North Texas; 3Eötvös Loránd University

10:50 AM

Cyclic Plastic Deformation and Hardening in Additively Manufactured Ti6Al4V Materials: Venkateshwaran Ravi Narayanan¹; Leila Ladani¹; ¹Arizona State University

11:10 AM

The Impact of Microstructure on Slip Band Intensification: Rembert White¹; Behnam Ahmadikia¹; Irene Beyerlein¹; ¹University of California, Santa Barbara

MATERIALS SYNTHESIS AND PROCESSING

Friction Stir Welding and Processing XIII — Additive **Friction Stir Deposition I**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Nilesh Kumar, University of Alabama, Tuscaloosa; Anton Naumov, Peter The Great St. Petersburg Polytechnic University

Thursday AM | March 27, 2025 123 | MGM Grand

Session Chair: Paul Allison, Baylor University

8:30 AM

Developing AFSD Processes for Critical Aviation and Defense Applications: Noah Barnhill¹; ¹ASTRO America, Contractor under Army GVSC

8:50 AM

Force Feedback and Bonding Characteristics of Graphite Free Aluminum 7075 Using Additive Friction Stir Deposition: Jacob Hansen¹; Luk Dean¹; Yuri Hovanski¹; Michael Merrell¹; ¹Brigham Young University

9:10 AM

Assessing the Effects of Heat Input on Bonding Strength of Lubricant Free Twin Rod Additive Friction Stir Deposition Repair of Aluminum Alloy 7050: Victor Rojas¹; Brian Jordon¹; Rachel Swinney¹; Paul Allison¹; ¹Baylor University

9:30 AM

Designing Tools for Graphite Free Additive Friction Stir Deposition of 7xxx Aluminum: Jacob Hansen1; Lukas Dean1; Scott Rose2; Max Hossfeld³; Yuri Hovanski¹; ¹Brigham Young University; ²BOEING; ³University of Stuttgart

9:50 AM

Advancements in Lubrication-Free Additive Friction Stir Deposition and Post-Processing Heat Treatments for Aluminum Alloys: J. Brian Jordon¹; Paul Jordon¹; ¹Baylor University

10:10 AM Break

10:30 AM

Improving Build Direction Heat Treated Tensile Properties of Additive Friction Stir Deposition AA7050: Isaac Liu1; Jacob Hoarston¹; Paul Allison¹; Brian Jordon¹; ¹Baylor University

10:50 AM

Simulation of the Additive Friction Stir Deposition Process Using a Directs Energy Deposition Approach: Joseph Broadhead¹; Michael Miles¹; Yuri Hovanski¹; ¹Brigham Young University

Effect of Layer Thickness on Resulting Microstructures and Mechanical Properties of Aluminum Alloys Using Additive Friction Stir Deposition: Rachel Swinney1; Cole Ritter1; John Cary1; Caleb Miller¹; James Jordon¹; Paul Allison¹; ¹Baylor University

11:30 AM

Deposition Parameters & Property Correlations in Novel Al-Ce Alloys: Roberto Menchaca1; Nagaraja Naveen Kumar1; Vishal Soni1; Adam Loukus²; David Weiss²; Rajiv Mishra¹; Vijay Vasudevan¹; ¹University of North Texas; ²Loukus Technologies

MATERIALS SYNTHESIS AND PROCESSING

Friction Stir Welding and Processing XIII — **Advanced Controls**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Nilesh Kumar, University of Alabama, Tuscaloosa; Anton Naumov, Peter The Great St. Petersburg Polytechnic University

Thursday AM | March 27, 2025 124 | MGM Grand

Session Chairs: Kevin Colligan, Concurrent Technologies Corporation; Lars Cederqvist, SKB

A New Method of Tool Depth Control in Friction Stir Welding: Arnold Wright1; John Bosker1; 1Bond Technologies

8:50 AM

Temperature Control in Aluminum Friction Stir Applications: Joel Gibb1; Jared Jackson1; Scott Yadon1; Yuri Hovanski1; 1Brigham Young University

9:10 AM

A Review of Friction Stir Welding Focused Path Planning: Joshua Sheffield¹; ¹CFSP Brigham Young University

9:30 AM

Production of 5 cm Thick Copper Canisters Containing Sweden's Nuclear Waste Using Friction Stir Welding: Lars Cederqvist¹; ¹Swedish Nuclear Fuel and Waste Management Company (SKB)

9:50 AM Break

10:10 AM

Optimizing Hardness in the Heat Affected Zone of AA7075-T6 Aluminum Alloy via Machine Learning-Guided Friction Stir Welding: Yizhou Lu1; Shubhrodev Bhowmik2; Nilesh Kumar2; Samrat Choudhury¹; ¹University of Mississippi; ²University of Alabama

Machine Learning Implementations for Predicting Weld Strengths on Aluminum 7075: $Danny \ Langan^1$; Michael Hall 1 ; Sasha Schrand t^1 ; Jason Grafft¹; Ryan Schuette¹; Ryan Tedjasukmana¹; ¹PAR Systems

10:50 AM

Visual Temperature Estimation and Flash Detection of Aluminum 7075 Welds Using Neural Networks: Danny Langan¹; Michael Hall¹; Sasha Schrandt¹; Jason Grafft¹; Ryan Schuette¹; Ryan Tedjasukmana¹; ¹PAR Systems

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Functional Nanomaterials — Functional Nanomaterials IV: Energy and Medical Applications

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Wenzhuo Wu, Purdue University; Keerti Kappagantula, Pacific Northwest National Laboratory; Bishnu Khanal, Sandia National Laboratories; Ying Zhong, Harbin Institute of Technology (Shenzhen); Mostafa Bedewy, University of Pittsburgh; Michael Cai Wang, University of South Florida

Thursday AM | March 27, 2025 365 | MGM Grand

Session Chair: Aditya Nittala, Pacific Northwest National Laboratory

8:30 AM Keynote

Unlocking the Potential of Metamaterials: Advancing Terahertz Communication, Noise Reduction, and MRI Imaging: Xin Zhang1; ¹Boston University

9:10 AM Invited

High-Endurance Zinc Ion Supercapacitors With Wide Temperature Tolerance: Tse Nga Ng1; 1University of California San Diego

9:40 AM Invited

Vapor-Phase Infiltration (VPI) for Advanced Patterning, Device, and Microelectronics Applications: Chang-Yong Nam¹; National Laboratory

10:10 AM Break

10:30 AM Invited

Heterogeneous Nanostructure Array Integration for Sustainable CO2 Conversion and H2 Production: Pu-Xian Gao1; 1University of Connecticut

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Local Chemical Ordering and Its Impact on Mechanical Behaviors, Radiation Damage, and Corrosion — Characterization and Modeling II

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Rodrigo Freitas, Massachusetts Institute of Technology; Sriswaroop Dasari, University of Texas at El Paso; Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Mitra Taheri, Johns Hopkins University; Megan McCarthy, Sandia National Laboratories; Irene Beyerlein, University of California, Santa Barbara; Rajarshi Banerjee, University of North Texas; Srinivasan Srivilliputhur, University of North Texas

Thursday AM | March 27, 2025 352 | MGM Grand

Session Chairs: Sriswaroop Dasari, University of Texas at El Paso; Rajarshi Banerjee, University of North Texas

8:30 AM Invited

Recent Advances in Short-Range Ordering in Multicomponent Materials: Peter Liaw¹; Jian-Min Zuo²; Lia Amalia¹; Rui Feng³; Ke An⁴; Jonathan Poplawsky⁴; ¹University of Tennessee; ²University of Illinois Urbana-Champaign; 3National Energy Technology Laboratory; 4Oak Ridge National Laboratory

9:00 AM Invited

Predicting Short-Range Order in Complex Concentrated Alloys - A Tale of DFT and Data-Driven Approaches: Prashant Singh1; Duane D. Johnson²; Hailong Huang¹; Gaoyuan Ouyang¹; Nicolas Argibay¹; Rameshwari Naorem¹; Ryan Ott¹; Rajarshi Banerjee³; Soni Vishal³; Pratik Ray⁴; Dishant Beniwal⁴; ¹Ames National Labratory; ²Iowa State University; 3University of North Texas; 4Indian Institute of Technology Ropar

9:30 AM

Predicting Diffusion Kinetics and its Resulting Local Chemical Ordering in Compositionally Complex Materials: Bin Xing¹; Timothy Rupert¹; Xiaoqing Pan¹; Penghui Cao¹; ¹University of California, Irvine

9:50 AM Break

10:10 AM Invited

Developing Super Plastic Bulk Metallic Glasses via Manipulation of Icosahedral Ordering: Geun Hee Yoo1; Wook Ha Ryu1; Chae Woo Ryu²; Byeong Chan Lee³; Jia-Lun Gu⁴; Ke-Fu Yao⁴; Eun Soo Park¹; ¹Seoul National University; ²Hongik University; ³Kyung Hee University; 4Tsinghua University

10:40 AM

First-Principles Investigation of Short-Range Order in Binary Alloys and Its Effect on Percolation and Passivation: Abhinav Roy1; Karl Sieradzki¹; James Rondinelli¹; Ian McCue¹; ¹Northwestern University

11:00 AM

Role of Locally Ordered Noble Metallic Inclusions on Charged Species Transport and Oxide Growth: Adrien Couet1; Junliang Liu1; Ximeng Wang¹; Alex Kvit¹; Andrew Tong¹; Maryam Zahedian¹; Ricardo Vidrio¹; Jennifer Choy¹; Yongfeng Zhang¹; ¹University of Wisconsin-Madison

LIGHT METALS

Magnesium Technology 2025 — Advanced **Processing**

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Domonkos Tolnai, Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon; Aaron Palumbo, Big Blue Technologies; Aeriel Murphy-Leonard, Ohio State University; Neale Neelameggham, IND LLC

Thursday AM | March 27, 2025 115 | MGM Grand

Session Chairs: Jitka Straska, Charles University; Tracy Berman, University of Michigan

8:30 AM Invited

Development of Magnesium Flat Products: Dietmar Letzig1; Jose Victoria Hernandez¹; ¹Helmholtz-Zentrum Hereon

Microstructure and Alloy Design to Achieve Excellent Formability, Strength and Mechanical Anisotropy in Bake-Hardenable Magnesium Alloy Sheets: Xuan Luo1; Isao Nakatsugawa2; Taisuke Sasaki¹; Zehao Li¹; Taiki Nakata³; Ming-Zhe Bian²; Yasumasa Chino²; Shigeharu Kamado³; Kazuhiro Hono¹; ¹National Institute for Materials Science; ²National Institute of Advanced Industrial Science and Technology; 3Nagaoka University of Technology

Improvement of Room Temperature Formability in Mg-Zn-Zr Alloy Sheet by Thermo-Mechanical Treatment: Seoungyooun Yu1; Ying Ma¹; Young Min Kim¹; Sung Hyuk Park²; Byeong-Chan Suh¹; ¹Korea Institute of Materials Science; 2Kyungpook National University

9:40 AM Break

10:00 AM Invited

Feasibility of a Circular Process to Manufacture High-Performance Mg Alloy Profiles by Extruding Recycled Chips From Machining Processes: Judit Medina¹; Gerardo Garces¹; Pablo Pérez¹; Paloma Adeva1; 1CENIM-CSIC

Precipitate Strengthening Design Strategy for Mg-RE Alloy Manufactured by LPBF: Chengwei Zang¹; Dikai Guan¹; ¹University of Southampton

10:50 AM

WE43 Surface Composite With Oxide Particles by Friction Stir Processing: Hamza Faisal Ghauri¹; Vasanth Shunmugasamy²; Bilal Mansoor¹; ¹Texas A&M University; ²Texas A&M University at Qatar

11:10 AM

Spark Plasma Sintering of Mg and Mg Alloy Powders: Steven Johnson¹; Anita Ghodsi¹; ¹Central Connecticut State University

11:30 AM Concluding Comments

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Materials and Chemistry for Molten Salt Systems — Molten Salt Chemistry and Advanced Structural/ Chemical Measurement

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Yu-chen Karen Chen-Wiegart, Stony Brook University / Brookhaven National Laboratory; Nathaniel Hoyt, Argonne National Laboratory; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Weiyue Zhou, Massachusetts Institute of Technology

Thursday AM | March 27, 2025 165 | MGM Grand

Session Chairs: Weiyue Zhou, Massachusetts Institute of Technology; Stephen Raiman, University of Michigan

8:30 AM

Methods for Online Quantification of U and Ln Fission Product Species Using UV-Vis-NIR Optical Spectroscopy: Thomas Selmi¹; Dev Chidambaram¹; Jeremy Moon¹; ¹University of Nevada, Reno

8:50 AM

Optical Basicity Determination in Molten Chloride Salts: Kailee Buttice1; Qiufeng Yang2; Ruchi Gakhar2; Adrien Couet1; 1University of Wisconsin - Madison; 2Idaho National Laboratory

9:10 AM

Thermal Decomposition of Hydroxide Salts: Logan Mcilwain¹; Amanda Leong¹; Jinsuo Zhang¹; ¹Virginia Polytechnic Institute

9:30 AM

Tracking Chemical Evolution of Cr Ions in Molten LiCl-KCl Salts via In Situ X-Ray Absorption Spectroscopy: Yuxiang Peng¹; Ankita Mohanty¹; Kaifeng Zheng¹; Denis Leshchev²; Bobby Layne²; Ellie Kim³; Phillip Halstenberg³; Sheng Dai⁴; James F. Wishart²; Anatoly Frenkel¹; Yu-Chen Karen Chen-Wiegart¹; ¹Stony Brook University; ²Brookhaven National Laboratory; ³University of Tennessee Knoxville; 4Oak Ridge National Laboratory

9:50 AM

Uranium Chlorination/Fluorination Using Exchange Reactions: Adam Burak¹; Mohammad Umar Farooq Khan¹; Stephen Raiman¹; ¹University of Michigan

10:10 AM Break

10:30 AM

Structural and Thermochemical Investigations of Intermediate Compounds in the CsCl-UCl3 and NaCl-CsCl-UCl3 Systems: Aiswarya Padinhare Manissery¹; Juliano Schorne-Pinto¹; Hunter B Tisdale¹; Hans-Conrad zur Loye¹; Theodore M Besmann¹; ¹University of South Carolina

10:50 AM

Deposition of Surrogate Fuel in Static and Pumped Fluoride Salt **Systems**: *Diego Macias*¹; Stephen Raiman¹; ¹University of Michigan

Separation of Fission Product Cesium From an Alkali Fluoride Matrix (CsF-LiF-KF-NaF) via Melt-Crystallization Technique: Maria Del Rocio Rodriguez Laguna¹; Kevin Tolman¹; Jacob Yingling¹; Tae-Sic Yoo1; 1Idaho National Laboratory

11:30 AM

Understanding the Speciation of Molten Iodide Salts via Spectro-Electrochemistry: Stephanie Castro Baldivieso¹; Alejandro Ramos Ballesteros¹; Ruchi Gakhar¹; Gregory Holmbeck¹; ¹Idaho National Laboratory

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Materials for Sustainable Hydrogen Energy — Materials for Hydrogen Storage

Sponsored by: TMS Structural Materials Division, TMS: Energy Committee

Program Organizers: Wenwen Song, University of Kassel; Enrique Galindo-Nava, University College London; Jinwoo Kim, Korea Institute of Science and Technology (KIST); Binhan Sun, Max-Planck Institute

Thursday AM | March 27, 2025 359 | MGM Grand

Session Chairs: Jinwoo Kim, Korea Institute Of Science And Technology (Kist); Wenwen Song, University of Kassel; Enrique Galindo-Nava, University College London; Binhan Sun, East China University of Science and Technology

8:30 AM Introductory Comments

8:35 AM Invited

Assessing the Hydrogen Storage Performance of a Novel (Miniaturized) Metal-Hydride Bed System: Antonios Banos¹; Jacek Wasik¹; Tom Scott¹; ¹University of Bristol

9:05 AM

Ti-Fe-O Duplex Hydrogen Storage Alloys for Activation-Free Hydrogenation: Jinwoo Kim1; Young-Chul Yoon1; Jaedong Kang1; Krishnamohan Thekkepat¹; Seung-Cheol Lee¹; Young-Su Lee¹; Eun Soo Park²; ¹Korea Institute of Science and Technology (KIST); ²Seoul National University

9:25 AM

Effect of MgH2 on High Entropy Alloys for Energy Application: Modupeola Dada¹; Patricia Popoola¹; Philips Gbenebor¹; Lindokuhle Ntanzi¹; Rudolf Kayane¹; ¹Tshwane University of Technology

9:45 AM

Decomposition and Decelerated Grain Growth of the Nanostructured High Entropy Alloy TiVZrNbHf Under Hydrogen: Lukas Schweiger¹; Felix Roemer¹; Goekhan Gizer²; Michael Burtscher¹; Daniel Kiener¹; Claudio Pistidda²; Alexander Schoekel³; Florian Spieckermann¹; Juergen Eckert⁴; ¹Montanuniversität Leoben; ²Helmholtz-Zentrum Hereon GmbH; ³Deutsches Elektronen-Synchrotron DESY; 4Montanuniversität Leoben / Erich Schmid Institute of Materials Science, Austrian Academy of Sciences

10:05 AM Break

10:20 AM

Hydrogen Release Mechanism of MgH2 Doped With Fe-Rich **Additives**: Oluwashina Gbenebor¹; Abimbola Popoola¹; ¹Tshwane University of Technology

10:40 AM

Microstructure Impacts on H Uptake Kinetics in Polycrystalline Microstructures for Solid-State H Storage Materials: Younggil Song¹; Kyoung E. Kwon¹; Nathan Keilbart¹; Brandon Wood¹; Tae Wook Heo¹; ¹Lawrence Livermore National Laboratory

Fe-W Foams as Energy Storage Materials: Ming Chen1; Samuel Pennell¹; David Dunand¹; ¹Northwestern University

11:20 AM

Density Functional Theory Study on the Influence of Solute Elements on the Efficiency of Mg2Ni Hydrogen Storage Alloys: Min-Seok Yoon¹; Won-Seok Ko¹; ¹Inha University

MATERIALS SYNTHESIS AND PROCESSING

Materials Processing Fundamentals: Thermodynamics and Rate Phenomena — Computational Modeling and Simulation of **Materials Manufacturing**

Sponsored by: TMS Extraction and Processing Division, TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Phase **Transformations Committee**

Program Organizers: Allie Anderson, RHI Magnesita; Adrian Sabau, Oak Ridge National Laboratory; Chukwunwike Iloeje, Argonne National Laboratory; Adamantia Lazou, National Technical University of Athens; Kayla Molnar, Los Alamos National Laboratory

Thursday AM | March 27, 2025 103 | MGM Grand

Session Chairs: Allie Anderson, RHI Magnesita; Kayla Molnar, Los Alamos National Laboratory

8:30 AM Introductory Comments

8:35 AM

Predicting Blast Furnace Raceway Dynamics Using Coupled Computational Fluid Dynamics-Discrete Element Method: Ying-Hsuan Ko¹; Hernan Felipe Puentes Cantor¹; Jian-Shiang Chen¹; Wei-Jie Chen¹; Hao-Chuan Huang¹; Tsung-Yen Huang²; Chien-Hsiung Tsai³; *Te-Cheng Su*¹; ¹National Taiwan University; ²China Steel Corporation; ³National Pingtung University of Science and Technology

8:55 AM

Modeling Dynamic Burden Behavior in a Secondary Lead Reverberatory Furnace Using Computational Fluid Dynamics: Nicholas Walla¹; Zachary Holmes¹; Misbahuddin Syed¹; Armin Silaen¹; Jason Schirck²; Alexandra Anderson³; Joseph Trouba²; Joseph Grogan²; Chenn Zhou¹; ¹Purdue University Northwest; ²Gopher Resource; ³RHI Magnesita

Effect of Arc Transients on Flow in Vacuum Arc Remelting: Caleb Schrad¹; Matthew Krane¹; ¹Purdue University

Comparative Analysis of Commercial and Open-Source Software for Multiphase Flow Simulation in a Ladle Furnace Model: Mario Herrera-Ortega¹; José Ángel Ramos-Banderas¹; Constantin Alberto Hernández-Bocanegra¹; Alberto Beltrán²; Nancy Margarita López-Granados¹; ¹Instituto Tecnológico de Morelia; ²Universidad Nacional Autónoma de México

9:55 AM Break

10:15 AM

Study of Transient Thermo-Fluid Model of Meniscus Behavior in Continuous Casting Mold by Navier-Stokes-Cahn-Hilliard **Equation**: Haihui Zhang¹; Chaobin Lai¹; Zichao Wang²; ¹Jiangxi University of Science and Technology; ²Central South University

10:35 AM

Role of Entropy and Langevin Friction in Dislocation Glide Mechanisms: Mohammad Nahavandian¹; Liam Myhill¹; Enrique Martinez1; 1Clemson University

10:55 AM

Three Dimensional Effects in the Dendritic Growth Competition of Bi-Crystals: Peter Soar1; Ivars Krastins1; Paul Brown2; Owen Draper2; Nick Green³; Andrew Kao¹; ¹University of Greenwich; ²Rolls Royce Plc; ³High Temperature Research Centre, University of Birmingham

11:15 AM Concluding Comments

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components IV — Properties of Nanostructured **Materials**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Kayla Yano, Pacific Northwest National Laboratory; Assel Aitkaliyeva, University of Florida; Eric Lang, University of New Mexico; Eda Aydogan, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Benjamin Eftink, Los Alamos National Laboratory; Tanvi Ajantiwalay, Pacific Northwest National Laboratory

Thursday AM | March 27, 2025 160 | MGM Grand

Session Chairs: Eda Aydogan, Pacific Northwest National Laboratory; Kayla Yano, Pacific Northwest National Laboratory

8:30 AM Invited

Mechanical Behavior of Structural Materials With Radiation Resistant Microstructures: Thak Sang Byun1; Maxim Gussev1; Timothy Lach¹; Yan-Ru Lin¹; ¹Oak Ridge National Laboratory

9:00 AM

Anisotropic Mechanical Properties of a 14YWT Nanostructured Ferritic Alloy: Md Ershadul Alam¹; Stuart Maloy¹; G Odette²; ¹Pacific Northwest National Laboratory; ²University of California Santa Barbara

9:20 AM

Effect of Neutron Irradiation on Microstructure and Mechanical Properties of Microcrystalline and Nanocrystalline Nickel: Ramprashad Prabhakaran¹; Kayla Yano¹; Stuart Maloy¹; Indrajit Charit²; KL Murty³; ¹Pacific Northwest National Laboratory; ²University of Idaho; ³North Carolina State University

9:40 AM

High Temperature Creep Behavior of Castable and Sintered Nanostructured Alloys Using the Nanoindenation Technique: Abhinav Sharma¹; Mingxi Ouyang¹; Jason Trelewicz¹; David Sprouster¹; Lance Snead¹; ¹Stony Brook University

10:00 AM

Mesoscale Simulation of Mn-Ni Rich Precipitate Pinning of Dislocations in Reactor Pressure Vessel Steels: Ashley Foster¹; Douglas Spearot¹; ¹University of Florida

10:20 AM Break

10:40 AM

Enhancing Deformability of W-Based Refractory Multi-Principal Element Alloys Through Titanium Alloying: Ali Ozalp1; Yunus Eren Kalay¹; Osman El-Atwani²; Eda Aydogan²; ¹Middle East Technical University; ²Pasific Northwest National Laboratory

11:00 AM

Mechanical Performance of Thin Multilayer Coating Designs Developed for Various Advanced Reactors Applications: Sumit Bhattacharya¹; Wei-Ying Chen¹; Shipeng Shu¹; Abdellatif Yacout¹; ¹Argonne National Laboratory

MECHANICS OF MATERIALS

Mechanical Behavior Related to Interface Physics IV Multilayers and Interfaces Engineered on Nano-

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Nuclear Materials Committee, TMS: Surface Engineering Committee

Program Organizers: Stanislav Zak, Austrian Academy of Sciences; Nathan Mara, University of Minnesota; Barbara Putz, Empa Swiss Federal Laboratories for Materials Science and Technology; Glenn Balbus, MRL Materials Resources LLC; Kevin Schmalbach, Bruker Nano; Youxing Chen, University of North Carolina Charlotte

Thursday AM | March 27, 2025 369 | MGM Grand

Session Chairs: Alice Lassnig, Montanuniversitaet Leoben; Youxing Chen, University of North Carolina Charlotte

8:30 AM

Aperiodic Interface Spacing and Its Role in Multifunctional Ceramic Nanomultilayers: Danielle White1; Koushik Jagadish1; Yu-Tsun Shao¹; Andrea Hodge¹; ¹University of Southern California

8:50 AM

Micromechanics of Hybrid Ceramic-Organic Nanocomposites: Diletta Giuntini¹; ¹Eindhoven University of Technology

9:10 AM

High Strength and Ductility in Metal Nanolaminates With Ultra-Thin Amorphous Ceramic Interfaces: Xavier Maeder¹; Amit Sharma¹; Simon Tsianikas²; Tijmen Vermeij¹; Vivek Devulapalli¹; Chunhua Tian¹; Johann Michler¹; ¹Empa; ²University of British Columbia

9:30 AM Invited

Plasticity at the Crystalline Metal/Amorphous Oxide Interface in Al/Al2O3 Nanolaminates: Thomas Edwards¹; ¹NIMS

10:00 AM Break

10:20 AM

Combinatorial ALD/PVD Deposition of Ti/Ti,AlC Metal/MAX Multilayered Nanolaminates and Investigating Their Mechanical Properties and Deformation Mechanisms: Skye Supakul¹; Sid Pathak1; Garritt Tucker2; Kevin Jacob1; 1lowa State University; 2Baylor University

10:40 AM

Confined Layer Slip Process in Ag/Cu Nanolaminates: An Atomistic Study: Mahshad Fani¹; Luis Cervantes¹; Anshu Raj¹; Shuozhi Xu¹; ¹University of Oklahoma

11:00 AM Invited

Atomistic Analysis of the Effect of Thick Interfaces on the Deformation in Metallic Nanolayered Composites: Caizhi Zhou1; Shujing Dong¹; Youxing Chen²; ¹University of South Carolina; ²University of North Carolina at Charlotte

MECHANICS OF MATERIALS

Mechanical Response of Materials Investigated Through Novel In-Situ Experiments and Modeling — **Plastic Deformation and Fracture**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Minh-Son Pham, Imperial College London; Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dongchan Jang, Korea Advanced Institute of Science and Technology; Josh Kacher, Georgia Institute of Technology; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization

Thursday AM | March 27, 2025 366 | MGM Grand

Session Chairs: Minh-Son Pham, Imperial College London; Dongchan Jang, Korea Advanced Institute of Science and Technology

8:30 AM Invited

Per-Grain Behaviour in a Duplex-Steel During Stress Induced Phase Transformations: James Ball¹; David Collins²; ¹European Synchrotron Radiation Facility (ESRF); 2University of Cambridge

A Virtual Framework to Model the Microstructural Evolution in Laser-Direct-Drive Experiments: Andrew Shortridge¹; Ching Chen¹; Avinash Dongare¹; ¹University of Connecticut

Automated DIC-Based Local Identification of Various Nanoscale Plastic Deformation Mechanisms in HCP: Tijmen Vermeij1; Gert-Jan Slokker²; Casper Mornout²; Dennis König²; Johan Hoefnagels²; ¹EMPA; ²Eindhoven University of Technology

9:40 AM

Examination of Deformation Rate Effects Using Profilometry-Based Indentation Plastometry: Shiraz Mujahid¹; Dawn Van Iderstine¹; Hongjoo Rhee¹; ¹Mississippi State University

10:00 AM Break

10:20 AM Invited

In-Situ TEM Study on Toughening Mechanisms in Metal-Graphene Nanolayered Composites: Seung Min Han¹; ¹Korea Advanced Institute of Science and Technology

10:50 AM

Real-Time Sub-Microscopic Observation and Atomic Simulation of Deformation-Induced Martensitic Transformation at Grain Boundaries: Jesada Punyafu¹; Tomotsugu Shimokawa²; Myeong-Heom Park³; Nobuhiro Tsuji³; Mitsuhiro Murayama⁴; ¹Kvushu University; 2Kanazawa University; 3Kyoto University; 4Virginia Tech

NUCLEAR MATERIALS

Meeting Materials Challenges for the Future of Fusion Energy — Metallic Alloys II

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Tianyi Chen, Oregon State University; Amy Gandy, United Kingdom Atomic Energy Authority; Reuben Holmes, Kyoto Fusioneering; Ian Mccue, Northwestern University; Sneha Prabha Narra, Carnegie Mellon University; Jason Trelewicz, Stony Brook University; Weicheng Zhong, Oak Ridge National Laboratory

Thursday AM | March 27, 2025 158 | MGM Grand

Session Chairs: Sneha Prabha Narra, Carnegie Mellon University; Kun Wang, Alfred University

8:30 AM Keynote

Shrinking Pains - Materials Challenges in a More Compact Fusion Device: Emre Yildirim1; Sandeep Irukuvarghula1; Samara Levine1; Chris Moore²; Arunodaya Bhattacharya³; Jim Pickles¹; Chris Wilson; Jonathan Naish; Gurdeep Kamal; ¹Tokamak Energy; ²Bangor University; ³University of Birmingham

9:00 AM Invited

Progress and Issues of R&D on Fusion DEMO Structural Materials in Japan: Takashi Nozawa¹; Motoki Nakajima¹; Dai Hamaguchi¹; Taichiro Kato¹; Yasuhiro Aoki²; Hidetoshi Fujii²; Yoshiyuki Watanabe¹; Masami Ando¹; Hiroyasu Tanigawa¹; ¹National Institutes for Quantum Science and Technology; 2Osaka University

9:30 AM

Design Strategy of PWHT-Free Reduced-Activation Bainitic Steel for Vacuum Vessel Components in Fusion Reactors: Yukinori Yamamoto¹; Tim Graening Seibert¹; Roger Miller¹; ¹Oak Ridge National Laboratory

9:50 AM

Exploration of Ferrous Alloys as Radiation Damage Resistant Materials for Fusion: Sophie Barwick1; Jack Haley2; Amy Gandy2; Christopher Race¹; Katerina Christofidou¹; Russell Goodall¹; ¹University of Sheffield; ²United Kingdom Atomic Energy Authority

10:10 AM Break

10:30 AM

Modeling of Dislocation Loop Evolution in Iron Through Kinetic Monte Carlo: Anthony Tom1; Dwaipayan Dasgupta1; Brian Wirth1; ¹University of Tennessee Knoxville

10:50 AM

Fracture Toughness of F82H Steel After Neutron Irradiation to ~70 dpa at 400°C and 500°C: Xiang (Frank) Chen1; Mikhail Sokolov1; Takashi Nozawa²; Masami Ando²; Dai Hamaguchi²; Josina Geringer¹; Hiroyasu Tanigawa²; Yutai Katoh¹; ¹Oak Ridge National Laboratory; ²National Institutes for Quantum Science and Technology

11:10 AM

Enhanced Radiation Resistance of W-Based HEA Under Helium-Ion Irradiation Conditions: Kun Wang¹; Shijun Zhao²; Di Chen³; Kevin Woller4; ¹Alfred University; ²City University of Hong Kong; ³Idaho National Lab; 4MIT

11:30 AM

Tungsten-Based WTaVCr Refractory High Entropy Alloys for Fusion Energy Applications: Bai Cui1; Yongchul Yoo1; Xiang Zhang1; Fei Wang¹; Xin Chen¹; Xing-Zhong Li¹; Michael Nastasi²; ¹University of Nebraska-Lincoln; ²Texas A&M University

NUCLEAR MATERIALS

Microstructural, Mechanical, and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface II - Next-Generation Fuels III: Metallic Fuels

Sponsored by: TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Xing Wang, Pennsylvania State University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Dong (Lilly) Liu, University of Oxford; Caleb Clement, Westinghouse Electric Company; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida; Yi Xie, Peking University

Thursday AM | March 27, 2025 159 | MGM Grand

Session Chair: Yi Xie, Peking University

8:30 AM Invited

Multiscale Fuel Performance Modeling of U-Mo Fuel for Research Reactors: Benjamin Beeler¹; Bei Ye²; Shenyang Hu³; Yongfeng Zhang⁴; Maria Okuniewski⁵; ATM Jahid Hasan¹; Shipeng Shu²; Gyuchul Park²; Zhi-Gang Mei²; Sourabh Kadambi⁶; Linu Malakkal⁶; Larry Aagesen⁶; Ziang Yu⁴; Ziriu Mao³; Sukanya Majumder⁵; ¹North Carolina State University; ²Argonne National Laboratory; ³Pacific Northwest National Laboratory; ⁴University of Wisconsin; ⁵Purdue University; ⁶Idaho National Laboratory

9:00 AM

Computational Studies of Radiation Induced Segregation in Metallic Alloys: Yitao Wang¹; Jacob Jeffries²; Marie Thomas³; Daniele Offidani4; Suveen Mathaudhu3; Emmanuelle Marquis4; Enrique Martinez²; Fadi Abdeljawad¹; ¹Lehigh University; ²Clemson University; 3Colorado School of Mines; 4University of Michigan

9:20 AM

Examining Constituent Redistribution in U-19Pu-10Zr Fuel as it Evolves with Local Burnup: Allison Probert¹; Jason Schulthess²; Luca Capriotti²; Tiankai Yao²; Assel Aitkaliyeva¹; ¹University of Florida; ²Idaho National Laboratory

9:40 AM

Impact of Short-Range Order on Thermodynamic Properties of Point Defects in UMo Fuels: Ziang Yu¹; Yongfeng Zhang¹; Benjamin Beeler²; ¹University of Wisconsin-Madison; ²North Carolina State University

10:00 AM Break

10:20 AM

Phase Evolution of Neutron-Irradiated U-Mo Alloys at Low Temperature in the Low-Fluence Regime: Sukanya Majumder1; Jasmyne Emerson¹; Mehmet Topsakal²; Gyuchul Park³; Benjamin ¹Purdue University; ²Brookhaven Beeler4; Maria Okuniewski1; National Laboratory; ³Argonne National Laboratory; ⁴North Caroline State University

10:40 AM

Correlation of Thermal Properties with Local Microstructure of Irradiated Sodium-Bonded U-Zr Metallic Fuel: Cynthia Adkins1; Ethan Hisle¹; Narayan Poudel¹; Tsvetoslav Pavlov¹; Luca Capriotti¹; ¹Idaho National Laboratory

11:00 AM

Nanostructured U-Mo Based Metallic Fuels for Fast Reactors -Electronic Structure Calculations and Machine Learning: Yizhou Lu¹; Samrat Choudhury¹; ¹University of Mississippi

ADDITIVE MANUFACTURING

Nano and Micro Additive Manufacturing — Inorganic **Materials: Mechanical and Functional Properties**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Electronic Packaging and Interconnection Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Alain Reiser, KTH Royal Institute of Technology; Wendy Gu, Stanford University; Yu Zou, University of Toronto; Mostafa Hassani, Cornell University; Ming Chen, University of Nevada, Reno

Thursday AM | March 27, 2025 316 | MGM Grand

Session Chairs: Ming Chen, Northwstern University; Alain Reiser, KTH Royal Institute of Technology

8:30 AM Introductory Comments

8:35 AM Invited

Nanoscale Focused Electron and Ion Beam Induced Processing: Extending 3d Printing to the Nanoscale: Philip Rack1; 1University of

9:05 AM

Advancing Meniscus-Confined Electrodeposition Towards Higher Speed, Resolution, and Complexity in Small Scale Additive Manufacturing of Metals.: Simon Sprengel¹; Dmitry Momotenko¹; ¹Carl von Ossietzky University

9:25 AM

The Curious Case of Ni-P-O: Insights for Unusual Materials Printing at the Nanoscale: Rebecca Gallivan1; Tingyi Wang1; Yuan Gao1; Arthur Barras¹; Ralph Spolenak¹; ¹ETH Zurich

Mechanical and Microstructural Analysis of Aerosol Jet 3D Printed Gold Micropillars and Their Application in Brain Computer Interface: Sanjida Jahan¹; Chunshan Hu¹; Bin Yuan¹; Rahul Panat¹; ¹Carnegie Mellon University

10:05 AM Break

10:25 AM Invited

From 2D to 3D Electrochemical Microfabrication of Copper and Nickel Based Materials: Synthesis, Microstructure and Mechanical Properties Under Extreme Loading: Killang Pratama1; Patrik Schürch²; Jakob Schwiedrzik¹; Manish Jain¹; Chunhua Tian¹; Rajaprakash Ramachandramoorthy¹; Wabe W. Koelmans²; Johann Michler¹; Xavier Maeder¹; ¹Empa; ²Exaddon

10:55 AM

Electrochemical 3D Printing of Sn Microstructures as Future Anodes for High-Power Lithium Ion Batteries: Weishan Wu¹; Dmitry Momotenko¹; ¹Carl von Ossietzky Universität Oldenburg

Mechanics of Cracking and Delamination of 3D-Printed Metallic Films for Printed Microelectronics: Chunshan Hu¹; Sanjida Jahan¹; Rahul Panat¹; ¹Carnegie Mellon University

11:35 AM

Mechanical Properties of Nanoporous Silver: Electrohydrodynmic-Redox Printing vs. PVD Sputtering: Nikolaus Porenta1; Rebecca Gallivan¹; Ralph Spolenak¹; ¹ETH Zurich

ADVANCED CHARACTERIZATION METHODS

Neutron and X-Ray Scattering in Materials Science and Engineering — Characterization of **Manufactured Materials**

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Hillary Smith, Swarthmore College; Jennifer Niedziela, Oak Ridge National Laboratory

Thursday AM | March 27, 2025 156 | MGM Grand

Session Chair: Chen Li, University of California-Riverside

8:30 AM Invited

In-Situ Characterization of Phase Transformation Dynamics in Fusion-Based Metal Additive Manufacturing Processes by High-Speed X-Ray Diffraction: Lianyi Chen¹; ¹University of Wisconsin-Madison

The Use of Neutron Diffraction for the Understanding of Additive Manufacturing Process of Magnesium Alloys: Borja Pillado¹; Gerardo Garces²; Sandra Cabeza¹; Inés Puente-Orench³; ¹ILL; ²Cenim-Csic; 3CSIC-Universidad de Zaragoza

9:20 AM

Operando X-Ray and Neutron Diffraction and Imaging During Laser Powder Bed Fusion: Steven Van Petegem¹; ¹Paul Scherrer Institut

9:40 AM

Measurement of Residual Stress in Additively Manufactured Ti-6Al-4V & Ti-6Al-2Sn-4Zr-6Mo Walls Using Neutron Diffraction: Rajib Halder1; Samuel Lim2; Louis Chiu2; Aijun Huang2; Ke An3; Anthony Rollett¹; ¹Carnegie Mellon University; ²Monash University; ³Oak Ridge National Laboratory

10:00 AM Break

10:10 AM Invited

HIPPO Meets ERNI & BERT - Upgrading a Neutron Diffractometer with an Energy-Resolved Neutron Imaging Detector: Sven Vogel1; Alexander M. Long¹; Adrian S. Losko²; Tsviki Y. Hirsh³; Andrew F.T. Leong¹; Daniel J. Savage¹; John Rakovan⁴; ¹Los Alamos National Laboratory; ²Technical University Munich/FRM-2; ³Soreq NRC; ⁴New Mexico Bureau of Geology & Mineral Resources

10:40 AM

Mapping of the Local Residual Stress in 316L Stainless Steel Processed by Laser Powder Bed Fusion: Tianyi Lyu¹; Renfei Feng²; Changjun Cheng¹; Yu Zou¹; ¹University of Toronto; ²Canadian Light Source

Effects of Cooling Rates on Residual Stress Evolution Quantified via Neutron Diffraction in Lubricant-Free, Solid-State Repaired AA7075: Ning Zhu1; Ryan Kinser1; Jacob Strain2; Luke Brewer2; Paul Allison¹; Brian Jordon¹; ¹Baylor University; ²The University of Alabama

ADVANCED CHARACTERIZATION METHODS

Novel Strategies for Rapid Acquisition and Processing of Large Datasets from Advanced Characterization Techniques — High Throughput Testing & Materials Discovery Workflows

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Sriram Vijayan, Michigan Technological University; Rakesh Kamath, Argonne National Laboratory; Austin Mcdannald, National Institute of Standards and Technology; Fan Zhang, National Institute of Standards and Technology; Sarshad Rommel, University of Connecticut

Thursday AM | March 27, 2025 157 | MGM Grand

Session Chairs: Rakesh Kamath, Argonne National Laboratory; Sarshad Rommel, University of Connecticut

8:30 AM

Optimizing Nanoindentation Methods for the High Throughput Study of Combinatorial Thin Film Libraries: Andre Bohn¹; Adie Alwen¹; Andrea Hodge¹; ¹University of Southern California

8:50 AM Invited

Rapid Synthesis, Characterization and Mechanical Testing of Novel Printable Alloys Via Functional Grading in Additive Manufacturing: Marie Charpagne¹; Jean-Charles Stinville¹; ¹University of Illinois

9:15 AM

High-Throughput Synthesis and Rapid Characterization of Cu and Cu-Ti Alloys: Rohit Berlia1; Piyush Wanchoo1; Michael Wall1; Todd Hufnagel¹; K T. Ramesh¹; Timothy Weihs¹; ¹Johns Hopkins University

9:35 AM

Towards Accelerated Material Characterization: Uncertainty Quantification in Elemental Analysis: Jarred Fountain¹; Aaron Stebner¹; ¹Georgia Institute of Technology

9:55 AM Break

10:15 AM

Overview of Machine Learning in Low-Latency Automated Data Analysis for In-Situ Synchrotron X-Ray Diffraction in Metals and Alloys: Tingkun Liu¹; Vinay Amatya¹; Venkata B Vukkum¹; Arun Devaraj¹; ¹Pacific Northwest National Laboratory

10:35 AM

Challenges and Opportunities for Rapid EXAFS Analysis of Short-Range Order in HEAs: Howard Joress¹; Elaf Anber²; Emily Holcombe²; Jonathan Hollenbach²; Austin McDannald¹; Georgia Leigh²; Jason Hattrick-Simpers³; Bruce Ravel¹; Mitra Taheri²; Brian DeCost¹; ¹National Institute of Standards and Technology; ²Johns Hopkins University; 3University of Toronto

10:55 AM

Accelerated Discovery of Nanostructured High-Entropy Alloys With Superior Thermal Stability: Yu Zou¹, ¹University of Toronto

11:15 AM

High-Throughput Quantitative Texture Imaging Using Wide-Field Laser Polarized-Light Microscope: Brian Hoover1; Cesar Ornelas-Rascon¹; ¹Advanced Optical Technologies, Inc.

Phase Transformations and Microstructural **Evolution — Deformation and Heat Treatments**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State University; Ashley Paz y Puente, University of Cincinnati; Jonah Klemm-Toole, Colorado School of Mines; Sriram Vijayan, Michigan Technological University; Mohsen Asle Zaeem, Colorado School of Mines; Le Zhou, Marquette University; Adriana Eres-Castellanos, Colorado School of Mines; Sophie Primig, University of New South

Thursday AM | March 27, 2025 167 | MGM Grand

Session Chairs: Klaus-Dieter Liss, University of Tennessee, Knoxville; Sriram Vijayan, Michigan Technological University

8:30 AM

Synchrotron X-Ray Diffraction Monitoring of the Microstructural Evolution of a Zirconium Alloy During Complex Thermal Cycles: Thibault Chommaux¹; Romain Borrossi²; Raphaëlle Guillou¹; ¹Université Paris-Saclay, CEA; ²Framatome

8:50 AM

The Role of Mechanical Loading in bcc-hcp Phase Transition Tension-Compression Asymmetry and Twin Formation: Mehrab Lotfpour¹; Lei Cao¹; Amir Hassan Zahiri¹; Jamie Ombogo¹; ¹University of Nevada, Reno

9:10 AM

Phase Transformations in Ultrafine-Grained Ti15Mo Alloy Prepared by Severe Plastic Deformation: Milos Janecek1; Kristina Bartha1; Anna Veverková¹; Jozef Veselý¹; Pere Barriobero-Vila²; ¹Charles University; ²University of Catalonia · BarcelonaTech

9:30 AM

Semi In-Situ Observations on Stress-Induced Martensite in Metastable Beta Titanium Alloy: Ying-Chun Chao1; Hung-Wei Yen1; ¹National Taiwan University

9:50 AM Break

10:05 AM

Recent Applications of PRISMS-PF for Phase-Field Simulations of Microstructure Evolution: David Montiel¹; Supriyo Chakraborty¹; Jason Landini¹; William Andrews¹; Alexander Mensah¹; Tracy Berman¹; Brian Puchala¹; Anton Van der Ven²; John Allison¹; Katsuyo Thornton¹; ¹University of Michigan; ²University of California, Santa Barbara

10:25 AM

In-Situ Study of Bulk Hetero-Nanostructured Copper During Heating Using Mono- and Polychromatic Synchrotron X-Ray **Diffraction**: *Isshu Lee*¹; Laxman Bhatta¹; Jae-Kyung Han¹; Nobumichi Tamura²; Malte Blankenburg³; Klaus-Dieter Liss⁴; Megumi Kawasaki¹; ¹Oregon State University; ²Lawrence Berkeley National Laboratory; ³Deutsches Elektronen-Synchrotron; ⁴University of Tennessee

10:45 AM

Evaluation of Austenite Conditioning and Decomposition in Steels with Laser Ultrasonics: Minghui Lin¹; Matthias Militzer¹; ¹University of British Columbia

11:05 AM

Effects of Current-Assisted Treatment on the Microstructure, Mechanical Property, and Corrosion Behavior of Cu-8 wt% Sn Alloys in a Chloride Environment: Chih-An Wu1; Meng-Chun Chiu1; Jau-Chi Chen¹; Yung-Hua Chen¹; Chien-Lung Liang¹; ¹National Taiwan University of Science and Technology

11:25 AM

Influence of Ni on the Austenitic Deformation Mechanism of Model Fe-Cr-Ni Alloys Studied Using in Situ Synchrotron X-Ray Diffraction, Electron Microscopy, Density Functional Theory and Thermodynamic Linear-Response Theory: Tingkun Liu¹; Semanti Mukhopadhyay¹; Cheng-Han Li¹; Tianyi Li²; Yang Ren²; Prashant Singh³; Arun Devaraj¹; ¹Pacific Northwest National Laboratory; ²Argonne National Laboratory; ³Ames National Laboratory

BIOMATERIALS

Porous Materials for Biomedical Applications — Porous Materials for Biomedical Applications I

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Usman Liaqat, National University of Sciences and Technology; Waheed Miran, National University of Sciences and Technology; Khurram Yaqoob, National University of Sciences and Technology; Xizi Long, University of South China

Thursday AM | March 27, 2025 306 | MGM Grand

Session Chair: Adele Carradò, University of Strasbourg, CNRS **IPCMS**

8:30 AM Introductory Comments

8:40 AM Invited

Scalable Funtionalization of Liposomes via a Membrane Lipid Exchange Process: Xizi Long1; Chiho Kataoka-Hamai1; Chialun Ho1; Wei-Lun Huang¹; Yi-Ho Kuo¹; Li-Ting Yang¹; Wei-Peng Li¹; Akihiro Okamoto¹; ¹University of South China

Synthesis of Graphene Oxide GO@Au Nanosheets for Efficient Proliferation and Differentiation of Adipose-Derived Mesenchymal Stem Cells: Ali Mohsin¹; ¹East China University of Science and Technology State Key Laboratory of Bioreactor Engineering

9:30 AM

Gravity and Centrifugal Casting and Characterization of Composed As-Cast Foam From Biodegradable ZnMg1.5 Alloy and NaCl Salt: Primoz Mrvar1; Heinz Palkowski2; Mitja Petri3; Adele Carradò⁴; Sebastijan Kastelic¹; ¹University of Ljubljana; ²Institute of Metallurgy, Clausthal University of Technology; 3University of Ljubljana; 4University of Strasbourg, IPCMS CNRS

9:55 AM Break

Forming of Open-Structured Zn1.5Mg Alloys to be Filled with Polymers for Absorbable Tissues: Heinz Palkowski¹; Mitja Petrič²; Matteo Caranchini³; Valeria Vistoso⁴; Primoz Mrvar²; Adele Carradó⁴; ¹Clausthal University of Technology; ²University of Ljubljana; ³Polimi; ⁴Univerity of Strasbourg, CNRS IPCMS

10:40 AM

Plasma Electrolytic Oxidation Coated Porous Zinc-Magnesium Alloys for Biodegradable Implants: Jessica Salinas¹; Nafiseh Mollae²; Mónica Echeverry-Rendón²; Carl Boehlert¹; ¹Michigan State University; 2IMDEA Materials Institute

11:05 AM Concluding Comments

Powder Materials Processing and Fundamental Understanding — Synthesis II: New Material **Developments**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, University of Alabama Birmingham; Eugene Olevsky, San Diego State University; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Oak Ridge National Laboratory; Wenwu Xu, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Charles Maniere, CNRS

Thursday AM | March 27, 2025 105 | MGM Grand

Session Chair: Jose Torralba, Universidad Carlos III Madrid

8:30 AM

Development of Functionally Graded Al Metal Matrix Layered Hybrid Composite Reinforced with CNT ,Y2O3 & SiC Through PM Route: Rajat Gupta¹; Kausik Chattopadhyay¹; Nilay Krishna Mukhopadhyay¹; ¹India Institute of Technology BHU

8:50 AM

Influence of Manufacturing Processes on the Microstructure and Properties of High-Entropy Alloys for Advanced Applications: Paula Alvaredo¹; R Carbajales¹; D Guerrero¹; Jose Torralba²; Monica Campos¹; ¹Universidad Carlos III de Madrid; ²Universidad Carlos III de Madrid and IMDEA Materials Institute

9:10 AM Invited

Developing PM High Entropy Alloys to be Used in Extreme Conditions: High Temperature, Corrosion and Hydrogen Embrittlement: Jose Torralba1; Monica Campos1; Paula Alvaredo1; Alberto Meza¹; Lucia Garcia de la Cruz¹; Maria de Nicolas-Morillas¹; S. Venkatesh Kumaran¹; Rita Carbajales¹; Daniel Guerrero¹; ¹Universidad Carlos III Madrid

9:40 AM

Analysis of Defects and Testing of Tungsten Heavy Alloys: Jessica Buckner¹; John Laing¹; Mark Reece¹; Zahra Ghanbari¹; Don Susan¹; Juan Duran¹: David Weiss¹: ¹Sandia National Laboratories

10:00 AM

Boosting Mechanical and Tribological Properties in Multi-Walled Carbon Nanotube Reinforced Inconel 718 Fabricated by High-Energy Ball Milling and Spark Plasma Sintering: Sanoj Karki1; Satyavan Digole¹; Manoj Mugale¹; Amit Choudhari¹; Tushar Borkar¹; ¹Cleveland State University

10:20 AM Break

10:30 AM Invited

Self-Assembled Silica Colloids as Lightweight and Tough Composites: Florian Bouville¹; ¹Imperial College London

Understanding Powder Consolidation Processes with Compaction Experiments and Coordinated Modeling: Daniel Bufford¹; Joseph Monti¹; Stewart Youngblood¹; Marlene Barela¹; William Erikson¹; Dan Bolintineanu¹; ¹Sandia National Laboratories

Metallurgical Evaluation of Near-Canister Degradation of Charpy Toughness Observed in Low Alloy Steel Billets Produced by PM-HIP: Bryan Miller¹; Eric Sload¹; Terrance Nolan¹; Colin Ridgeway¹; ¹Naval Nuclear Laboratory

11:40 AM

Influence of Heat Treatments on Ni-Based Superalloy Densified by Spark Plasma Sintering: Evolution of PPBs and Grain Boundaries Overlap: Remi Lebot¹; Emmanuel Saly¹; Gautier Huser¹; Pierre Sallot¹; Patrick Villechaise²; Jonathan Cormier²; ¹Safran Tech; ²Institut **Pprime**

MATERIALS SYNTHESIS AND PROCESSING

Rare Metal Extraction & Processing — Recycling

Sponsored by: TMS Extraction and Processing Division, TMS: Hydrometallurgy and Electrometallurgy Committee

Program Organizers: Kerstin Forsberg, KTH Royal Institute of Technology: Athanasios Karamalidis, Pennsylvania State University: Takanari Ouchi, University of Tokyo; Gisele Azimi, University of Toronto; Shafiq Alam, University of Saskatchewan; Neale Neelameggham, IND LLC; Alafara Baba, University of Ilorin; Hong Peng, University of Queensland; Hojong Kim, Pennsylvania State University

Thursday AM | March 27, 2025 104 | MGM Grand

Session Chairs: Neale Neelameggham, IND LLC; Alafara Baba, University of Ilorin; Hojong Kim, Pennsylvania State University

8:30 AM

Recovery of Manganese Sulfate from Acidic Solutions Using Eutectic Freeze Crystallization: Mohammadreza Akbarkermani¹; Michael Svärd¹; Kerstin Forsberg¹; ¹KTH Royal Institute of Technology

8:50 AM

Assessment of Metallic Elements as Reductants in the Processing of Licoo2 (LCO): Comparison Between Aqueous Leaching Using H2SO4 and Solvoleaching Using Acidic Organic Extractants: Kurniawan Kurniawan¹; Mooki Bae²; Sookyung Kim²; ¹Korea University of Science and Technology; ²Korea Institute of Geoscience and Mineral Resources (KIGAM)

Recovery of Rhenium from Superalloy Swarf, Grindings, Turnings, and Scrap: Morgan Simco1; Richard Bradshaw1; Robert Hyers1; ¹Worcester Polytechnic Institute

Recycling of Strategic Metals from Spent Hydro-Desulphurization Catalysts Using Microbial Activities: Sadia Ilyas1; Rajiv Srivastava2; ¹Luleå University of Technology; ²Duy Tan University

Recent Advances in Titanium Science and Technology: MPMD/SMD Symposium Honoring Professor Dipankar Banerjee — Microstructure **Design in Structural Materials**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of North Texas; Abhishek Sharma, University of North Texas; Adam Pilchak, Pratt & Whitney; Rajarshi Banerjee, University of North Texas; Yunzhi Wang, Ohio State University

Thursday AM | March 27, 2025 107 | MGM Grand

Session Chairs: Hamish Fraser, Ohio State University; Rajarshi Banerjee, University of North Texas

8:30 AM Invited

Titanium Alloys Modified with Boron: Daniel Miracle1; Sesh Tamirisakandala²; Stéphane Gorsse³; ¹Air Force Research Laboratory; ²MRL Materials Resources LLC; ³University of Bordeaux, CNRS

9:00 AM Invited

An Approach to Developing High Strength Eutectic Alloys by Ternary Additions: Kamanio Chattopadhyay¹; ¹Indian Institute of Science

9:30 AM Invited

Eutectics to Single Crystals: Fundamentals to Applications: Swapnil Bhure¹; Divya Nalajala¹; Aramanda Shanmukha Kiran¹; Sumeet Rajesh Khanna¹; Abhik Choudhury¹; ¹Indian Institute of Science, Bangalore

10:00 AM Break

10:20 AM Invited

Determination of Deformation Mechanisms in Refractory Compositionally Complex Alloys: Gopal Viswanathan¹; Zachary Kloenne²; Brian Welk¹; Jean-Philippe Couzinié³; Hamish Fraser¹; ¹Ohio State University; ²Imperial College; ³University Paris-Est Creteil (UPEC)

10:50 AM Invited

Unraveling the Complexities of Room Temperature Creep in Titanium Alloys Through Cantilever Bending: Anisotropy, Tension-Compression Asymmetry and Microtextured Regions: Vikram Jayaram¹; ¹Indian Institute of Science

11:20 AM Invited

Structure and Mobility of Deformation Twin Boundaries in Ferroelatic Crystals: Yuchi Wang¹; Hao Tang²; Ju Li²; Yunzhi Wang¹; ¹Ohio State University; ²MIT

LIGHT METALS

Recycling and Sustainability in Cast Shop Technology: Joint Session with REWAS 2025 — Sustainable Melting and Casting Technology

Sponsored by: TMS Extraction and Processing Division, TMS: Recycling and Environmental Technologies Committee, TMS: Aluminum Committee

Program Organizers: Mertol Gokelma, Izmir Institute of Technology; Anne Kvithyld, SINTEF; Les Edwards, Rain Carbon Inc.; Andre-Felipe Schneider, Hatch Ltd.; Arild Hakonsen, Hycast As

Thursday AM | March 27, 2025 116 | MGM Grand

Session Chair: Mertol Gokelma, Izmir Institute of Technology

8:30 AM Introductory Comments

A Risk-Based Approach to Qualification of Hydrogen as Fuel in Aluminum Casthouses: Martin Strande¹; Thea Marstrander¹; Agathe Bjelland Eriksen¹; Oskar Altzar¹; Simon Jones¹; Mark Hannum²; Mark Fischer²; Are Bergin³; ¹Hydro Havrand; ²Fives; ³Hydro Aluminium AS

9:00 AM

Energy Efficiency and Clean Energy Usage in Cast House Furnaces: Terri-Ann Bethell¹; Lee Allen¹; Tim Hordley¹; ¹Mechatherm International Limited

9:25 AM

Environmental Impact Lifecycle Assessment of Green Sand Moulding in Foundries: Georgios Karadimas¹; Emanuele Pagone¹; Tim Birch²; ¹Cranfield University; ²Foseco International

9:50 AM Break

10:05 AM

Multifrequency Ultrasonic Treatment of Aluminum Alloys for Microstructural Modification: Raquel Jaime¹; Hélder Puga²; Miodrag Prokic³; Martijn Vos⁴; Diran Apelian¹; ¹University of California Irvine; ²University of Minho; ³MPI Interconsulting; ⁴Aluminium Rheinfelden

10:30 AM

Oxy-Fuel Combustion: Impact of Hydrogen Combustion on Aluminum Melt Quality in Secondary Melting Processes: Pooyan Kheirkhah¹; Anandkumar Makwana¹; Valmiro Sa¹; ¹Air Products & Chemicals Inc

10:55 AM

A Modeling Methodology of New Combustion Technologies for Aluminum Remelting Furnaces: Louis Piquard¹; Emilien Clement¹; Pierre-Yves Menet¹; ¹Constellium

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Refractory Metals 2025 — Tantalum and Tungsten

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Matthew Osborne, Global Advanced Metals; Paul Rottmann, University of Kentucky; Gianna Valentino, University of Maryland

Thursday AM | March 27, 2025 168 | MGM Grand

Session Chair: Gianna Valentino, University of Maryland

8:30 AM Invited

Refractory Metals, A Nanocrystalline Approach: Michael Spencer¹; ¹Touchstone Research Laboratory

9:10 AM

Designing Refractory Alloy Bond Coats That Develop Thermally-Grown Complex Oxides: An Investigation of the Cr-Ta System: Matthew Foong¹; Daniel Mumm¹; ¹University of California Irvine

9:30 AM

Observations on Surface Deformation of Tungsten Materials in Laser Focus in Air: Minsuk Seo1; Dazhong Ding2; A. Leigh Winfrey3; ¹Lawrence Livermore National Laboratory; ²Johns Hopkins University School of Medicine; 3State University of New York Maritime College

9:50 AM

Fatigue Crack Propagation in Semi-Brittle Materials: A Case Study on Tungsten: Anton Hohenwarter1; Michael Pegritz2; Stefan Wurster2; Reinhard Pippan²; ¹University of Leoben; ²Erich Schmid Institute of Materials Science, Austrian Academy of Sciences

10:10 AM Break

10:30 AM Invited

Oxidation of Refractory Metals in Molecular and Dissociated Oxygen: Elizabeth Opila1; Connor Stephens1; 1University of Virginia

11:10 AM

Effect of Microstructure on Machining Pure Tungsten: Thomas Skinner¹; Gary Rozak¹; ¹Elmet Technologies LLC

Assessment of State of the Art in Refractory Niobium Alloys: Noah Philips¹; Carolina Frey¹; Joseph Jankowski²; Kaitlyn Mullin³; Leah Mills³; Tresa Pollock³; ¹ATI Metals; ²ATI; ³University of California-Santa Barbara

NUCLEAR MATERIALS

Special Topics in Nuclear Materials: Lessons Learned; Non-Energy Systems; and Coupled Extremes — Radiation Effects in Non-Energy Systems

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Charles Hirst, University of Wisconsin-Madison; Timothy Lach, Oak Ridge National Laboratory; Caleb Clement, Westinghouse Electric Company; Stephen Taller, Oak Ridge National Laboratory; Janelle Wharry, University of Illinois; Jason Trelewicz, Stony Brook University

Thursday AM | March 27, 2025 161 | MGM Grand

Session Chairs: Caleb Clement, Westinghouse Electric Company; Timothy Lach, Oak Ridge National Laboratory

8:30 AM Invited

Advancing Radioisotope Heat Sources: Enhancing RPS for Extreme Environments: Jacob Matthews1; Alexander Gilbert1; Harsh Desai1; ¹Zeno Power Systems

9:00 AM Invited

Materials Research for High-Power Accelerator Beam-Intercepting Devices: Kavin Ammigan¹; Gaurav Arora¹; Sujit Bidhar¹; Abraham Burleigh¹; Frederique Pellemoine¹; Adrien Couet²; Nicholas Crnkovich²; Izabela Szlufarska²; ¹Fermilab; ²University of Wisconsin - Madison

9:30 AM

Post Irradiation Examination and Administrative Lifetime Limits of Highly Irradiated Components at The Spallation Neutron Source: David McClintock¹; ¹Oak Ridge National Laboratory

Cavity Formation Induced by Swift Heavy Ion Irradiation in AlN/ GaN: Mahjabin Mahfuz1; Farshid Reza1; Xingyu Liu1; Rongming Chu1; Maik Lang2; Michael Snure3; Xing Wang1; Miaomiao Jin1; ¹Pennsylvania State University; ²University of Tennessee; ³Air Force Research Laboratory

10:10 AM Break

10:30 AM

Fabrication of Titanium-Containing Tri-Carbide Ultra-High Temperature Ceramics: Ethan Payne1; Luke Hansen1; Steven Zinkle1; ¹University of Tennessee, Knoxville

10:50 AM

Modeling Galvanic Drawdown Separations Technique: Garrett Kemmerly¹; ¹Virginia Polytechnic Institute

NUCLEAR MATERIALS

Spectroscopic Methods and Analysis for Nuclear **Energy Related Materials — Imaging and** Spectroscopy of Materials for Nuclear Energy

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Scarlett Widgeon Paisner, Los Alamos National Laboratory; Arjen van Veelen, Los Alamos National Laboratory; Xiaofeng Guo, Washington State University; Farida Selim, Arizona State University; Maik Lang, University of Tennessee; Dong (Lilly) Liu, University of Oxford

Thursday AM | March 27, 2025 163 | MGM Grand

Session Chairs: Maik Lang, University of Tennessee; Scarlett Widgeon Paisner, Los Alamos National Laboratory

8:30 AM Invited

Correlative Investigation of Hydride Phase Formation and Transformation in Zircaloy-4 Using In Operando XRD and Feature **Relocation EBSD-SEM**: Joshua Silverstein¹; Quin Miller¹; Dushyant Barpaga¹; Katarzyna Grubel¹; Jose Marcial¹; Jarrod Crum¹; Walter Luscher¹; ¹Pacific Northwest National Laboratory

8:55 AM

Nano-Scale Orientation Mapping Using Electron Backscatter Diffraction: Junliang Liu1; Longfei Liu1; Hyunseok Oh1; Haiming Wen²; Adrien Couet¹; ¹University of Wisconsin- Madison; ²Missouri University of Science and Technology

9:15 AM Invited

The Use of Spatially Resolved EELS Spectroscopy to Elucidate Irradiation Induced Phase Transformation in Fe2O3 and Cr2O3 Irradiated with Ions and its Impact on Irradiation Induced-Loop Formation: Djamel Kaoumi¹; Angelica Lopez Morales¹; Yujun Xie²; Christopher Winkler¹; Benjamin Derby³; Tiffany Kaspar⁴; Daniel Schreiber⁴; Peter Hosemann²; ¹North Carolina State University; ²University of California Berkeley; ³Los Alamos National Laboratory; ⁴Pacific Northwest National Laboratory

MECHANICS OF MATERIALS

Structure and Dynamics of Metallic Glasses — **Simulation and Machine Learning**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Sebastian Kube, University of Wisconsin - Madison; Katharine Flores, Washington University in St. Louis; Daniel Sopu, Erich Schmid Institute; Yonghao Sun, The Chinese Academy of Sciences; A. Lindsay Greer, University of Cambridge; Peter Derlet, Paul Scherrer Institut

Thursday AM | March 27, 2025 367 | MGM Grand

Session Chair: Katharine Flores, Washington University in St. Louis

8:30 AM

Spatial Heterogeneities in Metallic Glass: Identifying the Origins Beyond the 100 nm Length Scale: Reza Rashidi¹; Birte Riechers¹; Robert Maass¹; ¹Federal Institute of Materials Research and Testing (BAM)

8:50 AM

Interrogating the Local Yield Surface of a Model Metallic Glass: Spencer Fajardo¹; Michael Falk¹; Sylvain Patinet²; ¹Johns Hopkins University; 2ESPCI

9:10 AM

Insight Beyond Short-Range Order in Metallic Glasses Revealed by Machine Learning: Yue Fan1; 1University of Michigan

The Role of Structural Motifs in Deformation Behavior of Simulated Metallic Glasses: Suzanne LoTempio1; W. Porter Weeks1; Katharine Flores¹; ¹IMSE - Washington University in St. Louis

Predicting Orientation-Dependent Plastic Susceptibility from Static Structure in Amorphous Solids via Convolutional Neural Networks: Zhao Fan1; Evan Ma2; 1Lawrence Berkeley National Laboratory; ²Johns Hopkins University

MATERIALS SYNTHESIS AND PROCESSING

Sustainability of High Temperature Alloys — Repair, **Recycle & Panel Discussion**

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Mark Hardy, Rolls-Royce Plc; Caspar Schwalbe, MTU Aero Engines AG; Jeremy Rame, Naarea; Benjamin Adam, Oregon State University; Jonah Klemm-Toole, Colorado School of Mines; Martin Detrois, National Energy Technology Laboratory; Katerina Christofidou, University of Sheffield

Thursday AM | March 27, 2025 102 | MGM Grand

Session Chairs: Benjamin Adam, Oregon State University; Katerina Christofidou, University of Sheffield

8:30 AM

Remanufacturing and Repair of Superalloys: A Focus on Alloy 718: Joel Andersson¹; ¹University West

Development of Direct Recycling Technique for Advanced Ni-Base Single Crystal Superalloys: Kyoko Kawagishi¹; Chihiro Tabata²; Satoshi Utada¹; Tadaharu Yokokawa¹; Shinsuke Suzuki²; Hiroshi Harada¹: ¹National Institute For Materials Science: ²Waseda University

9:30 AM

Effects of Residual Ca Content on the Mechanical Response of a New Polycrystalline Ni-Base Superalloy: George Wise1; Hon Tong Pang¹; Mark Hardy²; Nicholas Jones¹; Howard Stone¹; ¹University of Cambridge; 2Rolls-Royce plc.

9:50 AM Break

10:10 AM Panel Discussion

Thin Films and Coatings: Properties, Processing and Applications — Thin Films for Nanotechnology and **Electronics II**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tomas Grejtak, Oak Ridge National Laboratory; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Tomas Babuska, Sandia National Laboratories; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, Is2m; Brandon Krick, Florida A&M University-Florida State University

Thursday AM | March 27, 2025 101 | MGM Grand

Session Chairs: Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Karine Mougin, CNRS, Is2m; Tomas Grejtak, Oak Ridge National Laboratory

8:30 AM Invited

Material and Device Engineering for Multi Kilo Volt Class Vertical Ga2O3 Devices: Nidhin Kurian Kalarickal¹; Advait Gilankar¹; Nabasindhu Das¹: Abishek Katta¹: Fikadu Alema²: William Brandt²: Andrei Osinsky²; ¹Arizona State University; ²Agnitron Technologies

9:00 AM

Doping/Alloying Enabled Tunable Optical Properties of Epitaxial -Ga2O3 Thin Films: Debabrata Das1; Francelia Escobar1; Nathan Episcopo¹; C.V. Ramana¹; ¹The University of Texas at El Paso

9:20 AM

Thermal Measurements at the Nano-Scale: Theory, Reality, and Examples: Ron Fisher¹; John Gaskins¹; ¹Laser Thermal Analysis

Electro-Mechanical Behavior of Indium Tin Oxide Thin Films Deposited on Flexible Substrates: Thibault Chommaux1; Pierre-Olivier Renault¹; Pierre Godard¹; Philippe Goudeau¹; Dominique Thiaudière²; ¹Université de Poitiers; ²Synchrotron SOLEIL

10:00 AM Break

10:20 AM

Magnetic Nanocomposites for Flexible Magneto-Electronics: Barbara Putz1; Dominik Gutnik2; Laszlo Pethö1; Pierro-Olivier Renault³; Damien Faurie⁴; ¹Empa Thun; ²Montanuniversität Leoben; ³P'Prime Poitiers; ⁴LSPM-CNRS

MECHANICS OF MATERIALS

Accelerated Discovery and Insertion of Next Generation Structural Materials — Accelerated Structure-Property Assessment

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Soumya Nag, Oak Ridge National Laboratory; Andrew Bobel, General Motors Corporation; Bharat Gwalani, North Carolina State University; Jonah Klemm-Toole, Colorado School of Mines; Antonio Ramirez, Ohio State University; Matthew Steiner, University of Cincinnati; Janelle Wharry, University of Illinois

Thursday PM | March 27, 2025 364 | MGM Grand

Session Chairs: Bharat Gwalani, North Carolina State University; Matthew Steiner, University of Cincinnati

1:00 PM Invited

High Throughput Mechanical Testing with Multi-Gage and Topology Optimized Specimens: Syed Idrees Afzal Jalali¹; Yakov Zelickman¹; Anchen Tong¹; John Sharon²; Jamie Guest¹; Kevin ¹Johns Hopkins University; ²Raytheon Technologies Hemker1: Research Center

1:30 PM Invited

Precision and Efficiency in Nanoindentation: Automated Contact Area Measurement Techniques: Daniel Lewis1; Nicole Person1; Braden Miller¹; Joshua Cline¹; Michael Hurst²; Jacob Hempel¹; James Paramore¹; George Pharr¹; Brady Butler³; ¹Texas A&M University; ²George H.W. Bush Combat Development Complex; ³DEVCOM -Army Research Laboratory

2:00 PM

High Velocity (HiVe) Joining: A Novel Process to Join Similar/ Dissimilar Alloys: Mayur Pole¹; Benjamin Schuessler¹; Lei Li¹; Krishna Chaitanya Pitike¹; Ayoub Soulami¹; Darrell Herling¹; Vineet Joshi¹; ¹Pacific Northwest National Laboratory

2:20 PM Break

2:40 PM

Accelerated Testing to Understand the Long-Term Performance of High Temperature Materials: Victoria Tucker¹; Thomas Mann¹; Michael Titus¹; ¹Purdue University

3:00 PM

Predicting Chemistry-Dependent Mechanical Behavior in High-Entropy Alloys: Iterative Design Insights from the BIRDSHOT Center Using Data-Driven and Generative Models: Nicolas Flores¹; Trevor Hastings¹; Mrinalini Mulukutla¹; Wenle Xu¹; Daniel Lewis¹; Bibhu Sahu¹; Daniel Salas Mula¹; Danial Khatamsaz¹; Jacob Hempel¹; Douglass Allaire¹; Ibrahim Karaman¹; James Paramore¹; Brady Butler¹; George Pharr¹; Vahid Attari¹; Raymundo Arroyave¹; ¹Texas A&M

3:20 PM

Streamlined Correlation of Microstructure-Mechanical Property Relationships in Laser Clad Steels: Kevin Schmalbach¹; Eric Hintsala¹; Douglas Stauffer¹; Sanjit Bhowmick¹; ¹Bruker Nano

Microstructure and Mechanical Properties of ECAP Processed High Mn Steel Testing at 298 K and 77 K: Young Hoon Jung¹; Beom Joon Kim¹; Hyeonseok Kwon²; Marina Abramova³; Hyoung Seop Kim⁴; Nariman Enikeev⁵; Ailreza Zagraran²; Jung Gi Kim¹; ¹Gyeongsang National University; ²Pohang University of Science and Technology; ³Ufa University of Science and Technology; ⁴Tohoku University; 5Saint Petersburg State University

ADDITIVE MANUFACTURING

Additive Manufacturing Modeling, Simulation and Machine Learning — Modeling of AM Properties and Microstructures II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Jing Zhang, Purdue University; Li Ma, Johns Hopkins University Applied Physics Laboratory; Charles Fisher, Naval Surface Warfare Center - Carderock; Brandon McWilliams, US Army Research Laboratory; Yeon-Gil Jung, Changwon National University

Thursday PM | March 27, 2025 311 | MGM Grand

Session Chairs: Li Ma, Johns Hopkins University Applied Physics Laboratory; Charles Fisher, Naval Surface Warfare Center -Carderock, Jing Zhang, Purdue University

1:00 PM

AMMap Library of Additive Manufacturing Design, Alloy Discovery, and Path Planning: Alexander Richter1; Adam Krajewski1; Zhening Yang¹; Allison Beese¹; Zi-Kui Liu¹; ¹Penn State University

Digital Shadow Model Reference Control for Directed Energy **Deposition**: James Haley¹; Bruno Turcksin¹; Callan Herberger¹; Ashley Gannon¹; Steve Dewitt¹; ¹Oak Ridge National Laboratory

1:40 PM

Implementation of Alloy-Specific Thermo-Fluid Modelling for Designing Mg Alloys Suitable for Laser Powder-Bed Fusion: Seyed Mohammad Mehdi Hoseini Athar¹; Mikael Ersson¹; Peter Hedström¹; ¹KTH Royal Institute of Technology

High-Fidelity Numerical Simulation of Droplet-Powder Bed Interactions in Binder Jet Additive Manufacturing.: Mohan Sai Ramalingam¹; Shashank Sharma¹; Chaithanya Kumar K N¹; Sameehan S Joshi¹; Narendra B Dahotre¹; ¹University of North Texas

2:20 PM Break

2:40 PM

High Fidelity Modeling of Laser Absorptivity and Molten Pool Geometry During Powderbed Fusion Processes of Ti64Al4V with the Stationary and Moving Laser Beam Sources: Akash Aggarwal¹; Yung Shin¹; ¹Purdue University

Full-Field Crystal Plasticity Surrogate Modeling for Rapid Defect Assessment in AM Materials: Jason Mayeur1; Patxi Fernandez-Zelaia¹; Tasnim M.T. Oishib²; Michael Kirka¹; ¹Oak Ridge National Laboratory; ²University of New Hampshire

3:20 PM Invited

Micromechanical Modeling Exploration of Microstructure-Properties of Additively Manufactured Pure Tantalum: Li Ma1; Gianna Valentino²; ¹Johns Hopkins University Applied Physics Laboratory; ²University of Maryland

3:40 PM

Mechanical Behavior of Additively Manufactured Metamaterials Under Dynamic Load: Meir Shachar¹; William Schill¹; Brandon Zimmerman¹; Mukul Kumar¹; Mike Homel¹; Jonathan Belof¹; Jonathan Lind²; ¹Lawrence Livermore National Laboratory

ADDITIVE MANUFACTURING

Additive Manufacturing: Microstructural and Mechanical Long-Term Stability of AM Materials — Microstructure-Property Relationships

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee

Program Organizers: Benjamin Adam, Oregon State University; Jonah Klemm-Toole, Colorado School of Mines; Sneha Prabha Narra, Carnegie Mellon University; John Carpenter, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Emma White, DECHEMA Forschungsinstitut; Sudarsanam Babu, University of Maryland; Markus Chmielus, University of Pittsburgh

Thursday PM | March 27, 2025 302 | MGM Grand

Session Chairs: Sneha Prabha Narra, Carnegie Mellon University; Sudarsanam Babu, University of Maryland; Benjamin Adam, Oregon State University; Eric Payton, University of Cincinnati

1:00 PM Invited

In Situ Laser TEM and SEM Study of Austenitic Steel Solidification: Kinga Unocic1; John Lasseter2; Kevin Roccapriore2; Debangshu Mukherjee²; Yousub Lee²; Rangasayee Kannan²; Philip Rack³; Stephen Jessee²; Lawrence Allard²; Sebastien Dryepondt²; Steven Randolph²; ¹North Carolina State University; ²Oak Ridge National Laboratory; 3University of Tennessee

1:20 PM

In Situ Synchrotron Diffraction Study of Ultra-Fine Microstructure Formation During Directed Energy Deposition Additive Manufacturing of a High-Performance Al Alloy: Da Guo¹, Chengbo Zhu²; Kai Zhang¹; Harry E. Chapman¹; Imogen Cowley¹; Ravi Shivaraman¹; Amanpreet Kaur³; Dmitry Eskin²; lakovos Tzanakis³; Robert Atwood⁴; Stefan Michalik⁴; Chu Lun Alex Leung¹; Peter D. Lee¹; ¹University College London; ²Brunel University London; 3Oxford Brookes University; 4Diamond Light Source

1:40 PM

Ni-Based Superalloy MAR-M247 Fabricated by Electron-Beam Powder-Bed Fusion (E-PBF): Effect of Pre-Heating on Printability and Microstructure-Property Relationship: Minsoo Jin1; Taehyuk Kang1; Hyeonbin Noh1; Pyuck-Pa Choi1; 1KAIST

The Influence of Part Temperature on Defects and In Situ Phase Precipitation during LPBF Fabrication of Alloy 718: William Frieden Templeton¹; Shawn Hinnebusch²; Seth Strayer²; Albert To²; P. Chris Pistorius¹; Sneha Narra¹; ¹Carnegie Mellon University; ²University of Pittsburgh

2:20 PM Break

2:30 PM Invited

Location-Specific Microstructures and Properties of Haynes 282 Alloy With Laser-Wire Direct Energy Deposition Processing: Rui Feng¹; Kristin Tippey¹; Jonathan Poplawsky²; Dunji Yu²; Ke An²; Chantal Sudbrack¹; ¹National Energy Technology Laboratory; ²Oak Ridge National Laboratory

2:50 PM

Microstructure Evolution and Mechanical Properties of Ti6Al4V Processed Below -Transus Temperature Using Additive Friction Stir Deposition: Meet Gor1; Daniel Fabijanic2; Pinaki Prasad Bhattacharjee³; ¹ IIT Hyderabad and Deakin University; ²Deakin University; 3IIT Hyderabad

3:10 PM

Phase Evolution and Mechanical Performance of Additively Ferritic-Martensitic Manufactured HT9 Steel: Madhavan Radhakrishnan¹; Selvamurugan Palaniappan¹; Shashank Sharma¹; Narendra Dahotre¹; ¹University of North Texas

3:30 PM

Microstructural Features of Additively Manufactured 420 Stainless Steel After Isothermal Deformation Below the Ae1 Temperature: Harveen Bongao¹; Jubert Pasco¹; Clodualdo Aranas¹; Kudakwashe Nyamuchiwa¹; ¹University of New Brunswick

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances and Discoveries in Non-Equilibrium Driven Nanomaterials and Thin Films — 2D Materials (Part I), Metallic Systems (Part II)

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Ritesh Sachan, Oklahoma State University; Ashutosh Tiwari, University of Utah; Santosh Kc, San Jose State University; Shikhar Jha, Indian Institute of Technology Kanpur

Thursday PM | March 27, 2025 354 | MGM Grand

Session Chairs: Shikhar Jha, Indian Institute of Technology Kanpur; Ashutosh Tiwari, University of Utah

1:00 PM Invited

Graphene Infused Copper with Ultrahigh Electrical Conductivity Prepared by the Flash Method: Suprabha Das¹; Rishi Raj²; ¹University of Colorado Boulder; ²University of Colorado

1:20 PM Invited

Decoupling Irradiation-Induced Heterogeneities in Two-Dimensional Semiconductors Through Atomic Scale Mapping of Optical Modes and Infrared Excitations: Kory Burns¹; Christopher Smyth²; Eric Lang³; Tinsae Alem¹; Elaina Truhart¹; Stephen McDonnell¹; Jordan Hachtel⁴; ¹University Of Virginia; ²Sandia National Laboratories; ³University of New Mexico; ⁴Oak Ridge **National Laboratory**

1:40 PM Invited

Emerging 2D Hybrid Organic-Inorganic Thin Films for Next-Generation Optoelectronic Devices: Surendra Anantharaman¹; ¹Indian Institute of Technology Madras

2:00 PM Invited

Structural, Electronic, and Optical Properties of 2D Metal Chalcogenophosphates for Electronic and Optoelectronic Devices: Santosh Kc1; Hung Chiu1; 1San Jose State University

Photophysics of Quantum Defects in Layered Materials: Sanjay Behura1; 1San Diego State University

2:40 PM Break

3:00 PM

Mechanisms of Defect Formation in Physical Vapor Deposited Phase-Separating Alloy Films: A Phase Field Study: Kumar Ankit¹; ¹Arizona State University

3:20 PM

Self-Assembly of Plasmonic Networks Via Far from Equilibrium Chemical Dealloying: Marcello Pozzi¹; Camillo Sirvinski¹; Anastacia De Gorostiza¹; Arnold Müller¹; Ralph Spolenak¹; Henning Galinski¹; ¹ETH Zürich

3:40 PM

Controlled Kirkendall Voiding in Al-Au and Cu-Au Thin Films by Adjusting Sputtering Parameters: Oliver Wipf1; Ralph Spolenak1; ¹FTH Zurich

MECHANICS OF MATERIALS

Advances in Multi-Principal Element Alloys IV: Mechanical Behavior — Alloy Synthesis and **Mechanical Behavior**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Jennifer Carter, Case Western Reserve University; E-Wen Huang, National Yang Ming Chiao Tung University; T.S. Srivatsan, University of Akron; Xie Xie, Ford Motor Company; Jamieson Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Thursday PM | March 27, 2025 368 | MGM Grand

Session Chairs: T.S. Srivatsan, University of Akron; Wen Chen, University of Massachusetts-Amherst

1:00 PM Invited

Additive Manufacturing of Emerging Complex Alloys: Wen Chen¹; ¹University of Massachusetts-Amherst

1:20 PM Invited

Light Single-Phase Al-Based Complex Concentrated Alloy with High Specific Strength: Qiaoshi Zeng¹, ¹Hpstar

1:40 PM

Measuring the Entropy of High Entropy Alloys: Kyle Hunady¹; Elena Priesen Reis¹; Brent Fultz¹; ¹Caltech

2:00 PM Invited

Sheet Formability of CoCrFeMnNi High-Entropy Alloy: Hyoung Seop Kim¹; Yeon Taek Choi¹; ¹Pohang University of Science and Technology

2:20 PM Break

2:40 PM Invited

Thin Film Combinatorial Sputtering of Multiple-Principal Element Alloys for Rapid Materials Discovery: Philip Rack1; 1University of Tennessee

3:00 PM

Investigating Composition-Structure-Property Relationships in Nb-V-Zr-X Alloys Using a High-Throughput Synthesis Approach: Katharine Padilla¹; Aziz Octoviawan¹; Rohan Mishra¹; Katharine Flores¹; ¹Washington University in St. Louis

3:20 PM

Competition Between Faulting Plasticity and Transformation-Induced Plasticity at Cryogenic Temperatures: Hrishikesh Deodhar¹; Je In Lee²; Hyunseok Oh¹; ¹University of Wisconsin - Madison; ²Pusan **National University**

Alloy Design, Microstructure, and Mechanical Properties of CoFeNi Medium Entropy Alloy with Vanadium and Carbon Addition: Hamshini Rajendran¹; Reza Gholizadeh¹; Yoshida Shuhei¹; Tsuji Nobuhiro¹; ¹Kyoto University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Verification, Validation, and **Uncertainty Quantification — Methods II**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Dehao Liu, Binghamton University; Matt Kasemer, The University of Alabama; Ashley Spear, University of Utah; Christopher Stiles, Johns Hopkins University Applied Physics Laboratory; Anh Tran, Sandia National Laboratories

Thursday PM | March 27, 2025 320 | MGM Grand

Session Chair: Anh Tran, Sandia National Laboratories

1:00 PM

Data Assimilation for Columnar Dendrite Growth Coupled with Large-Scale Phase-Field Simulations: Tomohiro Takaki¹; Ayano Yamamura¹; Shunsuke Kanki¹; Shinji Sakane¹; Hideyuki Yasuda²; ¹Kyoto Institute of Technology; ²Kyoto University

Discovery of Quaternary Structural Materials Using Constrained Generative Models: Karun Kumar Rao1; Alexander New1; Nina Borodin¹; Nam Le¹; Christopher Stiles¹; ¹Johns Hopkins University **Applied Physics Laboratory**

1:40 PM

Generative Priors for Regularizing Ill-Posed Problems: Applications to 3D Polycrystalline RVE's: Michael Buzzy1; Andreas Robertson2; Surya Kalidindi¹; ¹Georgia Institute of Technology; ²Sandia National Labs

2:00 PM

The Unsaturation Effect: Balanced Data Aggregation for Materials Informatics via Acquisition Functions: Layla Purdy¹; Taylor Sparks¹; Ramsey Issa¹; Federico Ottomano²; ¹University of Utah; ²University of Liverpool

2:20 PM

KnowMat: Transforming Unstructured Material Science Literature into Structured Knowledge: Hasan Muhammad Sayeed¹; Ramsey Issa¹; Trupti Mohanty¹; Taylor Sparks¹; ¹University of Utah

LIGHT METALS

Aluminum Alloys: Development and Manufacturing - Manufacturing and Process Control

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mihaiela Isac, McGill Metals Processing Centre; Les Edwards, Rain Carbon Inc.

Thursday PM | March 27, 2025 114 | MGM Grand

Session Chairs: X-Grant Chen, Quebec University of Chicoutimi; David Weiss, Loukus Technologies, Inc.; Mihaiela Isac, McGill Metals **Processing Centre**

1:00 PM

Hypoeutectic Al-Ce-Ni Composite Alloy: The Interplay Between Varying Zr and Sub-Micron Alumina Reinforcement Particulates: Jordan Kozakevich¹; Dimitry Sediako¹; David Weiss²; ¹University of British Columbia; ²Loukus Technologies

Characterization of the Mechanical Behavior of AA5052 Alloy: Nicholas Hopkins¹; Benoit Revil-Baudard²; Oana Cazacu²; ¹University of Florida/REEF; ²University of Arizona

Experimental Characterization and Modeling of an AA6061 Al Alloy: Luigi Ciccia¹; Benoit Revil-Baudard¹; Oana Cazacu¹; ¹University of Arizona

2:15 PM

Influence of Contamination and Passivation on the Ultrasonic Welding Performance of Aluminum Stranded Wires: Dmitrii Ozherelkov¹; Andreas Holländer²; Guntram Wagner¹; ¹Chemnitz University of Technology; ²Fraunhofer Institute for Applied Polymer Research IAP

2:40 PM Break

2:55 PM

Mechanical and Corrosion Testing of High Recycled Content Aluminum Automotive Body Sheet Alloys: Alissa Tsai¹; Minju Kang²; Evan Huang²; Chal Park²; John Allison¹; Daniel Cooper¹; ¹University of Michigan; 2Novelis

3:20 PM

Processing and Mechanical Properties of High-Entropy-Alloy Reinforced Al-Alloy: Esra Dokumaci Alkan1; Murat Alkan1; Ugur Aybarc2; 1Dokuz Eylül University; 2CMS Jant ve Mak. San. A.S.

3:45 PM Concluding Comments

LIGHT METALS

Aluminum Reduction Technology — Process **Fundamentals and Metal Purity**

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Andre-Felipe Schneider, Hatch Ltd.; Les Edwards, Rain Carbon Inc.

Thursday PM | March 27, 2025 113 | MGM Grand

Session Chair: Samuel Senanu, SINTEF

1:00 PM Introductory Comments

1:05 PM

Enthalpies for Dissolution of Alumina in Hall-Héroult Bath: Towards More Accurate Modelling of Energy Balances: Asbjorn Solheim¹; Kristian Etienne Einarsrud²; ¹SINTEF Industry; ²NTNU

Strategy to Increase the Number of High Purity Metal (HPM) Pots at INALUM: Fathur Rahman¹; Ade Buandra¹; Ferdy Rahadian¹; Ismadi Jenal¹; Ivan Ermisyam¹; ¹Inalum

Theoretical Basis for Future Control of Impurity Elements in Hall-Héroult Cells: Asbjorn Solheim1; Ole Kjos1; Sverre Rolseth1; Egil Skybakmoen¹; ¹SINTEF Industry

Qualitative and Quantitative Analysis of Multi-Bubble Motion Using a Physical Laboratory Model of the Hall-Héroult Cell: From Sliding Under the Anode to Rising Up in the Side Channel: Ali Amiri Gheisvandi¹; Simon Laliberté-Riverin¹; Ryan Soncini²; Patrice Doiron²; Gelareh Momen³; Houshang Darvishi Alamdari¹; Seyed Mohammad Taghavi¹; ¹Université Laval; ²Alcoa - Operational Excellence Center of Excellence; 3Université du Québec à Chicoutimi (UQAC)

2:45 PM Break

3:00 PM

The Influence of Calcium Fluoride on Entrainment of Electrolyte During Metal Siphoning: Curtis Landon¹; Stephen Lindsay²; Brian Zukas1; 1Alcoa; 2Hatch

Pilot Scale Regeneration of Aluminum Fluoride from Pure Bath: Brian Zukas¹; Driss Mrabet²; Keven Turgeon²; Charles-Olivier Fournier³; ¹Alcoa Corp; ²Corem; ³Hatch

3:50 PM Concluding Comments

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Artificial Intelligence Applications in Integrated Computational Materials Engineering — Emerging Applications of AI in Materials Science

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wenwu Xu, San Diego State University; Ram Devanathan, Pacific Northwest National Laboratory; Vikas Tomar, Purdue University; Qiaofu Zhang, University of Alabama; Eshan Ganju, Purdue University; Avanish Mishra, Los Alamos National Laboratory; Victoria Miller, University of Florida; Ghanshyam Pilania, General Electric (GE Aerospace Research)

Thursday PM | March 27, 2025 351 | MGM Grand

Session Chairs: Ghanshyam Pilania, GE Aerospace Research; Avanish Mishra, Los Alamos National Laboratory

1:00 PM Invited

Machine Learning-Enhanced Wearable System for Respiratory and Heartbeat Co-Monitoring with Multi-Source Fusion Recognition: Yang Yang¹; ¹San Diego State University

Enhancing Extrusion Efficiency: Development of a Digital Twin for Glass Reinforced Polymer Processes Using Machine Learning and Real-Time Data Integration: Gulshan Noorsumar¹; Sayan Adhikari¹; Hallvard Fjær¹; Øyvind Jensen¹; Michaela Meir²; ¹IFE Institute for Energy Technology; 2Inaventa Solar

1:50 PM

Machine Learning-Driven Multiscale Analysis of Mechanical Properties in Metal-Matrix Nanocomposites: Md. Shahrier Hasan¹; Wenwu Xu1; 1San Diego State University

2:10 PM

Accelerating Crystal Plasticity Simulations with Graph Neural Networks: Kyle Farmer¹; Elizabeth Holm¹; ¹University of Michigan

2:30 PM Break

2:50 PM

Machine Learning Facilitated Integration of Characterization Data and Simulations to Generate Residual Stress Distributions: Kranthi Balusu¹; Shadab Anwar Shaikh¹; Lei Li¹; Ayoub Soulami¹; ¹Pacific Northwest National Lab

3:10 PM

Enhancing Medical Waste Recycling Through Computer Vision and Near-Infrared Spectroscopy: Babak Namazi¹; Kanishka Tyaqi¹; Nalin Kumar¹; ¹UHV technologies

3:30 PM

Generative Adversarial Network (GAN)-Based Microstructure Mapping from Surface Profile For Laser Powder Bed Fusion (LPBF): Jingwen Gao¹; Chenyang Zhu¹; Shubo Gao¹; Ming Xue²; Kun Zhou¹; ¹Nanyang Technological University; ²Infineon Technologies Asia Pacific Pte Ltd

BIOMATERIALS

Bio-Nano Interfaces and Engineering Applications — **Bio-Nano Interfaces IV**

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Kalpana Katti, North Dakota State University; Hannes Schniepp, William & Mary; Terry Lowe, Colorado School of Mines; Po-Yu Chen, National Tsing Hua University; David Kisailus, University of California-Irvine

Thursday PM | March 27, 2025 307 | MGM Grand

Session Chairs: Candan Tamerler, University of Kansas; Terry Lowe, Colorado School of Mines

1:00 PM Invited

Engineering Tissue-Biomaterial Interfaces: From Nanostructure Modification to Pathological Tissue Integration: Indranath Mitra¹; ¹College of William and Mary

1:30 PM

The Influence of Buffer Composition and Surface Topography on the Antimicrobial Properties of Copper: Rebecca Reiss1; William Kluck²; Kaitlyn Betz²; Daniela Hirsch²; Terry Lowe²; ¹New Mexico Institute of Mining and Technology; ²Colorado School of Mines

1:55 PM

Advancement of Targeted Antimicrobial Peptides Through Machine Learning: Toward Microbial Balance and Species Specificity: Kalea Chu¹; Aya Cloyd¹; Kyle Boone¹; Candan Tamerler¹; ¹University of Kansas

Surface Modification of Plasmonic Nanoparticles by Aryl Diazonium Salts for Raman Bioimaging and Biosensing: Da Li¹; Yang Zhang¹; Fan Sun²; Nordin Felidj¹; Nathalie Gagey-Eilstein¹; Aazdine Lamouri¹; Philippe Nizard¹; Jean Pinson¹; Kelly Aubertin¹; Florence Gazeau¹; Claire Mangeney¹; Yun Luo¹; ¹Paris Cité University; ²Chimie Paris Tech - PSL University

2:35 PM Break

2:50 PM

A Durable, High Strength Carbon-Negative Enzymatic Structural Materials: Shuai Wang¹; Nima Rahbar²; Suzanne Scarlate²; ¹Enzymatic, Inc; ²Worcester Polytechnic Institute

3:10 PM

Multi-Stage Biomineralization of Iron Oxide and Calcium PhosphatePhases in the Abrasion Resistant Teeth of Chiton Articulatus: Ezra Sarmiento¹; David Kisailus¹; ¹University of California Irvine

3:30 PM

Identification of SARS-CoV-2 Virus Variants Through a Label-Free SERS Technique: Han Lee¹; Jiunn-Der Liao¹; Wei-Chia Hsu¹; ¹National Cheng Kung University

NUCLEAR MATERIALS

Composite Materials for Nuclear Applications III — **Fuels & MSR Applications**

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Composite Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Anne Campbell, Oak Ridge National Laboratory; Dong (Lilly) Liu, University of Oxford; Rick Ubic, Boise State University; Lauren Garrison, Commonwealth Fusion Systems; Peng Xu, Idaho National Laboratory; Johann Riesch, Max Planck Insitute For Plasma Physics; James Wade-Zhu, UKAEA

Thursday PM | March 27, 2025 164 | MGM Grand

Session Chairs: Denise Adorno Lopes, Oak Ridged National Laboratory; Thaneshwor Kaloni, Canadian Nuclear Laboratories

1:00 PM

A Machine Learning Approach for Predicting Nuclear Fuel Performance With Solid Fission Products: Denise Adorno Lopes¹; Rinkle Juneja¹; Matthew Kurley¹; Will Cureton¹; Christian Petrie¹; Andrew Nelson¹; ¹Oak Ridged National Laboratory

Development of High-Temperature-Steam Resistant UN via the Addition of UB₂: Megan Pritchard¹; Tim Abram¹; Joel Turner¹; ¹University of Manchester

1:40 PM

Densification of 3D Printed Composite Ceramics via Spark Plasma Sintering: Nathaniel Cavanaugh¹; Dong Zhao¹; Shuting Lei²; Dong Lin³; Guang Yang²; Jie Lian¹; ¹Rensselaer Polytechnic Institute; ²Kansas State University; ³Oregon State University

Material Bonding Layered Metallic and Ceramic Composites Using Continuous Electric-Field Assisted Sintering: Andrew Gorman¹; ¹Idaho National Laboratory

2:20 PM Break

2:40 PM

Impact of (U,Zr)C Carbon Stoichiometry on Thermal Properties: Joseph Schaeperkoetter¹; Scarlett Widgeon Paisner¹; Kenneth McClellan¹; Joshua White¹; Brian Taylor²; Jhonathan Rosales²; Erofili Kardoulaki¹; ¹Los Alamos National Laboratory; ²Marshall Space Flight Center

3:00 PM

Computational Simulation on Irradiation Damage in GaAs-Based Betavoltaic Batteries: Thaneshwor Kaloni¹; J Patel¹; E Brian¹; Edmanuel Torres¹; ¹Canadian Nuclear Laboratories

Corrosion Resistance of Amorphous Fe- and Ni-Based Thermal Spray Coatings Exposed to Molten FLiNaK Salt Nuclear Reactor Coolant at 700 °C: Enrique Maya-Visuet1; 1Liquidmetal Coatings

Equivariant Neural Network Force Fields for 11-Cation Chloride Molten Salts System: Chen Shen1; Siamak Attarian1; Mark Asta2; Izabela Szlufarska¹; Dane Morgan¹; ¹University of Wisconsin-Madison; 2University of California, Berkeley

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Computational Thermodynamics and Kinetics — Solidification - A Phase-Field Modelling

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Prashant Singh, Ames National Labratory; Rodrigo Freitas, Massachusetts Institute of Technology; Nicolas Argibay, Ames National Laboratory; Raymundo Arroyave, Texas A&M University; James Morris, Ames Laboratory

Thursday PM | March 27, 2025 305 | MGM Grand

Session Chairs: Prashant Singh, Ames National Labratory; Shiddhartha Ramprakash, The Ohio State University

1:00 PM Invited

Investigating the Origin of Melting Entropy and the Latent Heat of Metallic Elements and Alloys: Anne Lin¹; Camille Bernal-Choban¹; Vladimir Ladygin¹; Brent Fultz¹; ¹California Institute of Technology

1:30 PM

Determination of Mobility for Antiphase Domain Growth in Fe3Al: An Integration of Experiments and Phase-Field Simulations: Yuheng Liu1; Masayuki Okugawa1; Tsubasa Sato1; Yuichiro Koizumi1; ¹Osaka University

1:50 PM

An Efficient Phase Field Model of Stoichiometric Compounds and Limited Soluble Phases: Dong-Uk Kim1; Seong Gyoon Kim1; Pil-Ryung Cha¹; ¹Kookmin University

2:10 PM

Anisotropic Phase Field Modeling of Tricrystal Grain Growth Using a Spherical-Gaussian-Based 5-D Computational Approach: Lenissongui Yeo1; Jacob Bair1; 10klahoma State University

2:30 PM Break

2:50 PM Invited

Designing Recycled Al-Alloys With High-Throughput Scheil Solidification: Sunyong Kwon¹; Gerald Knapp¹; Ying Yang¹; Alex Plotkowski¹; ¹Oak Ridge National Laboratory

3:10 PM

A Computational Fluid Dynamics Investigation of Running System Approaches for Reactive Alloy Castings: Christopher Jones¹; James Lennard¹; ¹AWE

3:30 PM

Microstructural Design of Multi-Principal Element Alloys: Shiddhartha Ramprakash¹; Shalini Roy Koneru²; Christopher Tandoc³; Yong-Jie Hu³; Hamish Fraser¹; Yunzhi Wang¹; ¹The Ohio State University; ²TCS Research, Tata Consultancy Services; ³Drexel University

3:50 PM

Design of a New Al-Mg-Si Based Alloy for Higher Strength Using **CALPHAD Simulations**: Sagar Kumar Deb¹; Amit Arora¹; ¹Indian Institute of Technology Gandhinagar

ADDITIVE MANUFACTURING

Designing Complex Microstructures through Additive Manufacturing — Mechanics

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Matteo Seita, University Of Cambridge; Hang Yu, Virginia Polytechnic Institute and State University; Alain Reiser, KTH Royal Institute of Technology; Yuntian Zhu, City University of Hong Kong; Xiaozhou Liao, University of Sydney

Thursday PM | March 27, 2025 317 | MGM Grand

Session Chairs: Ahmed Alade Tiamiyu, University of Calgary, Canada; Hang Yu, Virginia Polytechnic Institute and State University

1:00 PM Invited

Cellular Engineering of Additive Manufactured Metallic Materials: Hyoung Seop Kim¹; Jihye Kwon¹; Jeong Min Park²; ¹Pohang University of Science and Technology; ²Korean Institute for Materials Science

1:30 PM

Some Design Issues on Heterostructures Through Additive Manufacturing: Yuntian Zhu¹; ¹Citi University of Hong Kong

Exceptional Strength and Ductility in Heterogeneous Multi-Gradient TiAl Alloys Through Additive Manufacturing: Xingdong Dan¹; Yuntian Zhu²; Zibin Chen¹; ¹The Hong Kong Polytechnic University; ²City University of Hong Kong

2:10 PM

Microstructure and Heterogeneous Deformation of Functionally Integrated Materials Fabricated by Directed Energy Deposition Additive Manufacturing: Xin Wang¹; Baolong Zheng²; Brandon Fields²; Jacob Norman³; Benjamin MacDonald²; Lorenzo Valdevit²; Enrique Lavernia³; Julie Schoenung³; ¹University of Alabama / University of California, Irvine; ²University of California, Irvine; ³University of California, Irvine / Texas A&M University

2:30 PM Break

2:50 PM Invited

A Site-Specific Study of Complex Heterogeneous Microstructure Evolution During High-Velocity Metallic Microparticle Impact: Ahmed Alade Tiamiyu1; 1University of Calgary, Canada

3:20 PM

Towards Tailored Microstructure Design in Drop-on-Demand Molten Metal Jetting: Negar Gilani¹; Xiangyun Gao¹; Marco Simonelli¹; Mark East¹; Richard Hague¹; ¹University of Nottingham

Processing and Microstructure: Localized Control of an Al-Ce-Cu-Zr Alloy: Kevin Sisco¹; Simon Ringer¹; ¹The University of Sydney

4:00 PM

Influence of Phase Constitution on the Corrosion Behavior of Al-Added Steels Produced by Laser-Based Powder Bed Fusion Processes: Julia Richter¹; Johanna Frenck¹; Gert Bartzsch²; Steffen Scherbring³; Olena Volkova²; Javad Mola³; Thomas Niendorf¹; ¹University of Kassel; ²TU Bergakademie Freiberg; ³Osnabrueck **University of Applied Sciences**

Friction Stir Welding and Processing XIII — Additive **Friction Stir Deposition II**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Nilesh Kumar, University of Alabama, Tuscaloosa; Anton Naumov, Peter The Great St. Petersburg Polytechnic University

Thursday PM | March 27, 2025 123 | MGM Grand

Session Chair: Scott Rose, The Boeing Company

1:00 PM

Towards Achieving Sustainability in Additive Friction Stir **Deposition**: Sweta Baruah¹; Joshua Hoekstra¹; Madelyn Carter¹; Rob Patterson¹; Brett Compton¹; Tony Schmitz¹; ¹University of Tennessee Knoxville

1:20 PM

Integrating MegaStir Liquid-Cooled Tool Holder With MELD L3 Machine: Purpose and Process: Lukas Dean1; Russell Steel2; Chase Cox³; Yuri Hovanski¹; ¹Brigham Young University; ²MAZAK MegaStir; ³MELD Manufacturing

1:40 PM

Evaluation of Additive Friction Stir Deposited A206: Benjamin Pollard¹; Eric Lass¹; Benjamin Wing¹; ¹University of Tennessee

Additive Friction Stir Deposition of Carbon Steel: Selami Emanet¹; Saeid Zavari¹; Huan Ding¹; Shengmin Guo¹; ¹Louisiana State University

2:20 PM Break

2:40 PM

Fabrication of Laminated Metal Composites Using Additive Friction Stir Deposition: Ravi Sankar Haridas¹; Anurag Gumaste¹; Supreeth Gaddam¹; Eric Kusterer¹; Brandon McWilliams²; Kyu Cho²; Rajiv Mishra¹; ¹University of North Texas; ²DEVCOM Army Research Laboratory

3:00 PM

Characterization of an Alternative Solid-State Additive Manufacturing Process: Eloise Cluff¹; Joel Gibb¹; Josef Cobb²; Zachary Courtright²; Yuri Hovanski¹; ¹Brigham Young University; ²National Aeronautics and Space Administration

3:20 PM

On the Flexibility of Feedstock, Process, and Microstructure Control in Solid-Phase Metal Deposition via SolidStir®-AM: Kumar Kandasamy¹; Pankaj Kulkarni¹; Devin Davis¹; Anurag Gumaste²; Ravi Sankar Haridas²; Rajiv Mishra²; ¹Enabled Engineering; ²University of North Texas

3:40 PM

A Solid-State Additive Manufacturing Approach for the Fabrication of SiC-Reinforced Metal Matrix Composite in Automotive Components of Light Metal: Souvik Karmakar¹; Surjya Pal¹; ¹Indian Institute of Technology Kharagpur

MATERIALS SYNTHESIS AND PROCESSING

Friction Stir Welding and Processing XIII — Simulation & Spot Technologies

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Nilesh Kumar, University of Alabama, Tuscaloosa; Anton Naumov, Peter The Great St. Petersburg Polytechnic University

Thursday PM | March 27, 2025 124 | MGM Grand

Session Chairs: Ayoub Soulami, Pacific Northwest National Laboratory; Yong Chae Lim, Oak Ridge National Laboratory

1:00 PM

Advances in Meshfree Simulations of Friction Stir Welding and Processing: Ayoub Soulami¹; Lei Li¹; ¹Pacific Northwest National Laboratory

1:20 PM

Analysis of FSW Macro-Sections in Aluminum Relative to Unit-Area Data Features: Kevin Colligan1; ¹Concurrent Technologies Corporation

1:40 PM

Computational Framework for the Accurate and Efficient Simulation of FSW Processes: Michele Chiumenti¹; Henning Venghaus¹; Narges Dialami¹; Joan Baiges¹; Daniel Juhre²; ¹CIMNE; ²Otto von Guericke University Magdeburg

2:00 PM

Measurement of Heat Transfer Coefficient Between a Friction Stir Welding Tool and Workpiece During Plunge Using a 3-Omega Sensor: Matthew Goodson¹; Isaac Culter¹; Michael Miles¹; Troy Munro¹; ¹Brigham Young University

2:20 PM Break

Phase-Field Modeling of Grain Evolution and Recrystallization in Friction Stir Processing: Zhengtao Gan¹; ¹Arizona State University

3:00 PM

Friction Self-Piercing Riveting Process for 3T Configuration of AA7075-AA7075-AA6022: Tianzhao Wang¹; Sammy Ojo¹; Yong Chae Lim¹; Zhili Feng¹; ¹Oak Ridge National Laboratory

Refill Friction Stir Spot Welding in AA6061-T4 Automotive Sheets: Taylor Smith1; Damon Gale1; Jeremy Coyne2; Kate Namola2; Yuri Hovanski¹; ¹Brigham Young University; ²Toyota Motor North America

3:40 PM

Scale-Up of Friction Self-Piercing Riveting Process for Multi-Material Joints: Yong Chae Lim¹; Tianzhao Wang¹; Yiyu Wang¹; Jeremy Slade¹; Sammy Ojo¹; Zhili Feng¹; ¹Oak Ridge National Laboratory

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Functional Nanomaterials — Functional Nanomaterials V: Structure-Property Relationships

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Wenzhuo Wu, Purdue University; Keerti Kappagantula, Pacific Northwest National Laboratory; Bishnu Khanal, Sandia National Laboratories, Ying Zhong, Harbin Institute of Technology (Shenzhen); Mostafa Bedewy, University of Pittsburgh; Michael Cai Wang, University of South Florida

Thursday PM | March 27, 2025 365 | MGM Grand

Session Chairs: Chang-Yong Nam, Brookhaven National Laboratory; Jiyoung Chang, University of Utah

1:00 PM

Metal-Schiff Base Covalently Grafted to the Iron-Based Metal-Organic Framework as an Effective Heterogeneous Catalyst for Ciprofloxacin Degradation: Harminder Kaur¹; ¹Punjab Engineering College

1:20 PM

Functional Nanoglues for Heterogeneous Catalysis: Jingyue Liu1; Ying Zheng¹; Yiwei Yu¹; Bailey Holmes¹; ¹Arizona State University

Effect of Metal Modification on the Laminating Structure and Dielectric Performance of Graphene Oxide Membranes: Yijing Stehle¹; Timothy Barnum¹; Ellen Robertson¹; Maren Friday¹; Veronah Najjuuko¹; Qin Zou²; Ryan Russel¹; ¹Union College; ²Sichuan University

2:00 PM

Extreme Environment Soft Magnetic Nanocomposite Alloys: Paul Ohodnicki¹; Yuankang Wang¹; Lauren Wewer¹; Tyler Paplham¹; Alex Leary²; Ronald Noebe²; Samuel Kernion³; Kevin Byerly³; ¹University of Pittsburgh; ²NASA Glenn Research Center; ³CorePower Magnetics

2:20 PM Break

2:40 PM

Energy-Efficient Synthesis of Organic-Inorganic Hybrids Through Polymer Complexation: Shaghayegh Abtahi¹; Jiashan Mi¹; Kaitlyn Hillery¹; Nayanathara Hendeniya¹; Caden Chittick¹; Gabriel Mogbojuri¹; Aaron Rossini¹; Boyce Chang¹; ¹Iowa State University

Nanodiamond Patterning of Direct Laser Written Structures by Pulsed Laser Annealing: Sumeer Khanna¹; Jagdish Narayan¹; Roger Narayan¹; ¹NC State University

Regioselective Self-Assembly of Biomolecules Guided by Moire-Patterned 2D Homo/Heterostructures: Daiyue Wei¹; Yi Yang¹; Ossie Douglas¹; Zhewen Yin¹; Muhammad Rafique¹; Keegan Suero¹; Sofia Morales Ferreira¹; Nathan Gallant¹; Michael Cai Wang¹; ¹University of South Florida

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Local Chemical Ordering and Its Impact on Mechanical Behaviors, Radiation Damage, and Corrosion — Corrosion and Radiation Damage

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Rodrigo Freitas, Massachusetts Institute of Technology; Sriswaroop Dasari, University of Texas at El Paso; Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Mitra Taheri, Johns Hopkins University; Megan McCarthy, Sandia National Laboratories; Irene Beyerlein, University of California, Santa Barbara; Rajarshi Banerjee, University of North Texas; Srinivasan Srivilliputhur, University of North Texas

Thursday PM | March 27, 2025 352 | MGM Grand

Session Chairs: Yang Yang, Pennsylvania State University; Sriswaroop Dasari, University of Texas at El Paso

1:00 PM Invited

Atomic Scale Investigation of Surface Segregation and Local Ordering During Alloy Oxidation: Meng Li¹; Wissam Saidi²; Judith ¹Brookhaven National Laboratory; ²National Energy Technology Laboratory

1:30 PM Invited

Effects of Short Range Order on Primary Passivation in Binary Alloys on: Abhinav Roy¹; Karl Sieradzki²; James Rondinelli¹; Ian Mccue1; 1Northwestern University; 2Arizona State University

Revealing Short-Range Order in Refractory Multiprincipal Element Alloy: Implications for Oxidation Resistance: Elaf Anber¹; Brian DeCost²; Yevgeny Rakita¹; Nathan Smith³; David Beaudry¹; Georgia Leigh¹; Howie Joress²; Michael Waters³; Ben Redemann¹; Loic Perriere⁴; James Rondinelli³; Simon J.L. Billinge⁵; Tyrel McQueen¹; Chris Wolverton³; Jean Phillippe Couzinie⁴; Mitra Taheri¹; ¹Johns Hopkins University; ²National Institute of Standard and Technology; 3Northwestern University; 4University Paris-Est Créteil (UPEC) - IUT; ⁵Columbia University

2:20 PM Break

2:40 PM Invited

The Interplay Between Short-Range Order and Radiation Damage in Multi-Principal Element Alloys: Miaomiao Jin1; Hyeonwoo Kim2; Hamdy Arkoub¹; Sangtae Kim²; Yang Yang¹; ¹Pennsylvania State University; ²Hanyang University

Neutron Irradiation Induced Local Chemical Ordering in CrFeMnNi and CrFeMnNiTiAl Compositionally Complex Alloys: Nathan Curtis1; Sohail Shah²; Kaustubh Bawane²; Fei Teng²; Tiankai Yao²; Mukesh Bachhav²; Haiming Wen³; Adrien Couet¹; ¹University of Wisconsin Madison; 2Idaho National Laboratory; 3Missouri University of Science and Technology

3:30 PM

Effect of Local Chemical Order on Vacancy Diffusion in NiCoCr Medium Entropy Alloys: Eryang Lu1; Xiaoyu Gui1; Xudong An1; Filip Tuomisto¹; ¹University of Helsinki

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Materials and Chemistry for Molten Salt Systems — **Mechanical Degradation and Material Development** in Molten Salts

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Yu-chen Karen Chen-Wiegart, Stony Brook University / Brookhaven National Laboratory; Nathaniel Hoyt, Argonne National Laboratory; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Weiyue Zhou, Massachusetts Institute of Technology

Thursday PM | March 27, 2025 165 | MGM Grand

Session Chairs: Stephen Raiman, University of Michigan; Weiyue Zhou, Massachusetts Institute of Technology

1:00 PM

Effect of Stress on Corrosion of 316H in Molten FLiNaK: Kyle Williams¹; Nathaniel Thomas¹; Yinyin Hong¹; Rijul Chauhan¹; SeungSu Kim1; Lin Shao1; 1Texas A&M University

1:20 PM

Towards Understanding Embrittlement of Ni and Fe Based Alloys in Te- Containing FLiNaK Salt: Mohammad Umar Farooq Khan1; Lesley Frame²; Stephen Raiman¹; ¹University of Michigan; ²University of Connecticut

1:40 PM

Advanced Corrosion Barrier Design for Molten Salt Reactors: Sumit Bhattacharya¹; Yinbin Miao¹; Abdellatif Yacout¹; ¹Argonne National Laboratory

2:00 PM

Thermal Aging Behavior and Microstructure Evolution in Al/ Ti Modified Ni-Cr-W-Mo Alloys: Naveen Kumar N1; Sonali Ravikumar¹; Boateng Twum Donkor²; Vishal Soni¹; Abhishek Sharma¹; Govindarajan Muralidharan³; Rajarshi Banerjee¹; J Song⁴; M. A. Steiner²; Ravi Vilupanur⁵; Steven J. Zinkle⁶; Vijay K Vasudevan¹; ¹University of North Texas; ²University of Cincinnati; ³Oak Ridge National Laboratory; ⁴Virginia Polytechnic Institute and State University; ⁵California State Polytechnic University; ⁶The University of Tennessee

2:20 PM Break

2:40 PM

Development of Surveillance Test Articles for Materials Degradation Management in MSR Environments: Xinchang Zhang¹; Heramb Mahajan¹; Michael McMurtrey¹; Mark Messner²; Ruchi Gakhar¹; Qiufeng Yang¹; ¹Idaho National Laboratory; ²Argonne **National Laboratory**

3:00 PM

Development of Corrosion-Resistant High Entropy Alloy for **Nuclear Application**: *Priyanshi Agrawal*¹; Michael Moorehead¹; Arin Preston¹; Qiufeng Yang¹; Ruchi Gakhar¹; Michael McMurtrey¹; ¹Idaho **National Laboratory**

3:20 PM

Corrosion of Ni-Cr-Fe Model Alloy in Molten NaCl-MgCl2 Salt: Robert Gentile¹; Lingfeng He¹; Ruchi Gakhar²; Laura Hawkins²; Michael Woods²; Wylie Simpson³; James Earthman³; ¹North Carolina State University; ²Idaho National Laboratory; ³University of California, Irvine

3:40 PM

Molten Salt Corrosion and Irradiation Tolerance of Electric Field Assisted Sintered AlMoNbTiZr High Entropy Alloy: Crewse Petersen¹; Michael McMurtrey²; Priyanshi Agrawal²; Michael Moorehead²; Qiufeng Yang²; Ruchi Gakhar²; Stephen Raiman¹; ¹University of Michigan; 2Idaho National Labratory

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Materials for Sustainable Hydrogen Energy — Hydrogen Combustion, Energy Conversion and **Storage**

Sponsored by: TMS Structural Materials Division, TMS: Energy Committee

Program Organizers: Wenwen Song, University of Kassel; Enrique Galindo-Nava, University College London; Jinwoo Kim, Korea Institute of Science and Technology (KIST); Binhan Sun, Max-Planck Institute

Thursday PM | March 27, 2025 359 | MGM Grand

Session Chairs: Enrique Galindo-Nava, University College London; Jinwoo Kim, Korea Institute Of Science And Technology (Kist); Binhan Sun, East China University of Science and Technology; Wenwen Song, University of Kassel

1:00 PM Introductory Comments

1:05 PM Keynote

Environmental Degradation of Ni-Based Superalloys in Hydrogen-Based Combustion Systems: Dominik Dziedzic1; Philipp Schulz1; Ramanarayanan Balachandran¹; Midhat Talibi¹; Enrique Galindo-Nava1; 1University College London

1:35 PM

Numerical Modeling of Cavity Growth Resulting From Rapid Gas Decompression: Azdine Nait-Ali¹; Sylvie Castagnet¹; Jérôme Colin²; ¹Isae-Ensma; ²Université Poitiers/Pprime

1:55 PM

Attempt to Synthesize Aluminum Hydride Using Hydrogen Plasma: Goroh Itoh¹; Hiroto Yuda¹; Naoyuki Sato¹; Shigeru Kuramoto¹; Junya Kobayashi¹; ¹Ibaraki University

2:15 PM Break

2:35 PM Panel Discussion

3:55 PM Concluding Comments

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components IV — Ferritic Alloys

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Kayla Yano, Pacific Northwest National Laboratory; Assel Aitkaliyeva, University of Florida; Eric Lang, University of New Mexico; Eda Aydogan, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Benjamin Éftink, Los Alamos National Laboratory; Tanvi Ajantiwalay, Pacific Northwest National Laboratory

Thursday PM | March 27, 2025 160 | MGM Grand

Session Chairs: Benjamin Eftink, Los Alamos National Laboratory; Tanvi Ajantiwalay, Pacific Northwest National Laboratory

1:00 PM Invited

Mechanical Properties of Tempered Martensitic Steels After High Dose Fast Reactor Irradiations: Stuart Maloy¹; Nathan Bailey¹; Ramprashad Prabhakaran¹; Eda Aydogan¹; Md Alam¹; Mychailo Toloczko¹; ¹Pacific Northwest National Laboratory

Probing the Plastic Strength of Fe-Cr Alloys by Composition-Aware **Dislocation Dynamic**: Riccardo Civiero¹; Anter El-Azab¹; ¹Purdue University

1:50 PM

Chloride-Induced Stress Corrosion Crack Propagation Mechanisms in Austenitic Stainless Steel are Mechanically Driven: Saquib Bin Habib¹; Yu Lu²; Yaqiao Wu²; Donna Guillen³; David Gandy⁴; Janelle Wharry¹; Ronit Roy¹; ¹Purdue University; ²Boise State University, Center for Advanced Energy Studies; 3Idaho National Laboratory; ⁴Electric Power Research Institute

2:10 PM

Towards a Multiscale Approach for Understanding Irradiation Induced Swelling and Creep in 316 Stainless Steels - A Coupled Cluster Dynamics and Crystal Plasticity Approach: Stephanie Pitts¹; Sanjoy Mazumder¹; Michael Moorehead¹; ¹Idaho National Laboratory

Effect of Dynamic Strain Aging on High-Temperature Mechanical Properties of FeCrAl APMT Alloys: Mahmoud Hawary¹; Abdullah Alomari¹; K.L. Murty¹; ¹North Carolina State University

2:50 PM Break

Evaluation of Irradiation-Induced Hardening in Ferritic/Martensitic Steels and Hardness Correction Using Pile-Up Measurements: Kook Noh Yoon¹; Christopher Reis¹; Mehdi Balooch¹; Takuya Yamamoto²; George Odette²; Peter Hosemann¹; ¹UC Berkeley; ²UC Santa Barbara

3:30 PM

Deformation Behaviour of Self-Irradiated Model Fe-9Cr and Fe-9Cr-NiSiP Alloys at Room Temperature and 300C: A Nanoindentation Case Study: Katarzyna Mulewska¹; Damian Kalita¹; Magdalena Wilczopolska¹; Witold Chrominski¹; Łukasz Kurpaska¹; ¹National Centre for Nuclear Research

3:50 PM

Neutron Irradiation-Induced Pseudoelasticity in 316L Austenitic Stainless Steel: Arya Chatterjee¹; Soumita Mondal¹; Yu Lu²; Donna Guillen³; Benjamin Sutton⁴; David Gandy⁴; Janelle Wharry¹; ¹Purdue University; ²Boise State University; ³Idaho National Laboratory; ⁴Electric Power Research Institute

4:10 PM

Dislocation-Precipitate Interactions in Neutron-Irradiated RPV Steel: Brandon Bohanon¹; Salil Bavdekar²; Ghatu Subhash¹; Douglas Spearot¹; Assel Aitkaliyeva¹; ¹University of Florida; ²Illinois State University

MECHANICS OF MATERIALS

Mechanical Behavior Related to Interface Physics IV — Materials for Special/Extreme Application/ **Modelling of Interfaces**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Nuclear Materials Committee, TMS: Surface Engineering Committee

Program Organizers: Stanislav Zak, Austrian Academy of Sciences; Nathan Mara, University of Minnesota; Barbara Putz, Empa Swiss Federal Laboratories for Materials Science and Technology; Glenn Balbus, MRL Materials Resources LLC; Kevin Schmalbach, Bruker Nano; Youxing Chen, University of North Carolina Charlotte

Thursday PM | March 27, 2025 369 | MGM Grand

Session Chairs: Barbara Putz, Empa Swiss Federal Laboratories for Materials Science and Technology; Stanislav Zak, Austrian Academy of Sciences

1:00 PM

Atomic-Scale Elucidation of the Chemo-Mechanical Coupling Effects in Garnet-Type Solid-Electrolyte Materials: Liwen Wan1; Suyue Yuan¹; Kwangnam Kim¹; Bo Wang¹; Longsheng Feng¹; Tae Wook Heo¹; Brandon Wood¹; ¹Lawrence Livermore National Laboratory

1:20 PM

A Large Hysteresis Behavior in CaFe, As, Single Crystal via the Bauschinger Effect Associated With Buckling-Induced Formation of Nanocrystalline Structure: Alexander Horvath1; Juan Schmidt2; Daniel Saccone¹; Christopher Weinberger³; Paul Canfield²; Seok-Woo Lee1; 1University of Connecticut; 2Iowa State University; ³Colorado State University

1:40 PM Invited

Nanolayered Metallic Alloys for Extreme Applications: Tomas Polcar1; 1Czech Technical University

2:10 PM Break

2:30 PM Invited

The Effect of Interface Curvature on the Distribution of Radiation-Induced Voids: Griffin Turner¹; Digvijay Yadav¹; Emmeline Sheu¹; Yongqiang Wang²; Jon Baldwin²; Michael Demkowicz¹; Kelvin Xie¹; ¹Texas A&M University; ²Los Alamos National Laboratory

3:00 PM

Disconnection-Mediated Twinning in Magnesium: A Combined Atomistic and Phase Field Approach: Yang Hu1; Dennis Kochmann2; Brandon Runnels³; ¹Empa; ²ETH Zurich; ³Iowa State University

NUCLEAR MATERIALS

Meeting Materials Challenges for the Future of Fusion Energy — Metallic Alloys III

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Tianyi Chen, Oregon State University; Amy Gandy, United Kingdom Atomic Energy Authority; Reuben Holmes, Kyoto Fusioneering; Ian Mccue, Northwestern University; Sneha Prabha Narra, Carnegie Mellon University; Jason Trelewicz, Stony Brook University; Weicheng Zhong, Oak Ridge National Laboratory

Thursday PM | March 27, 2025 158 | MGM Grand

Session Chairs: Amy Gandy, Uk Atomic Energy Authority; Dalong Zhang, Baylor University

1:00 PM Keynote

Development of Industrially Scalable High-Temperature Steels for Fusion Applications: David Bowden¹; Viacheslav Kuksenko¹; Jack Haley¹; Jim Johnson¹; Stephen Jones²; Nicholas Lavery²; Marcus Crabbe³; Peter Barnard⁴; ¹United Kingdom Atomic Energy Authority; ²Swansea University; ³Sheffield Forgemasters; ⁴Materials Processing Institute

1:30 PM

Investigation Of Microstructure and Mechanical Properties in Cost-**Effective Thermomechanically Processed Nanostructured Ferritic** Alloys: Yan-Ru Lin¹; Yajie Zhao²; Yi-Feng Su¹; Thak Sang Byun¹; ¹Oak Ridge National Laboratory; ²University of Tennessee, Knoxville

1:50 PM

The Role of AI in Advancing Materials Development and Testing for Fusion Energy Deployment: Ross Allen1; 1digiLab

Advancing the Scalable Fabrication of Oxide Dispersion Strengthened (ODS) Steel Plates: Dalong Zhang¹; Xiang Wang²; Jens Darsell²; Kenneth Ross²; Tingkun Liu²; Zehao Li²; Benjamin Schuessler²; Kayla Yano²; Iver Anderson³; Thak Sang Byun⁴; Stuart Maloy²; Wahyu Setyawan²; ¹Baylor University; ²Pacific Northwest National Laboratory; ³Ames laboratory; ⁴Oak Ridge National Laboratory

2:40 PM Break

3:00 PM

Laser Additive Manufacturing of PFCs for Nuclear Fusion: Studying the Influence of Tungsten Deposition on RAFM Steel Using Multimodal Synchrotron Imaging: Natan Garrivier¹; Malgorzata Makowska¹; Manuel Pouchon¹; Steven Van Petegem¹; Markus Strobl¹; ¹Paul Scherrer Institute

3:20 PM

Assessment of Additive Manufacturing Techniques for Obtaining Ferritic/Martensitic ODS: Emma Kruck¹; Lucas Autones¹; Olivier Tache²; Pascal Aubry¹; Manuel Francois³; Yann De Carlan¹; ¹Cea; ²CEA-CNRS; ³UTT

3:40 PM

Characterisation of Oxide Dispersion Strengthened Steels for Nuclear Fusion Application: Viacheslav Kuksenko¹; ¹UK Atomic **Energy Authority**

NUCLEAR MATERIALS

Microstructural, Mechanical, and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface II — Next-Generation Fuels IV: Cladding and Fuel-**Cladding Interactions**

Sponsored by: TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Xing Wang, Pennsylvania State University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Dong (Lilly) Liu, University of Oxford; Caleb Clement, Westinghouse Electric Company; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida; Yi Xie, Peking University

Thursday PM | March 27, 2025 159 | MGM Grand

Session Chairs: Xing Wang, Pennsylvania State University; Caleb Clement, Westinghouse Electric Company

1:00 PM Invited

Development of Elemental Technologies for Application of SiC Fuel Cladding to BWR: Ryo Ishibashi1; Masana Sasaki2; Masatoshi Shibata²; Kenichi Yasuda²; Yoshiyuki Nemoto³; Tatsuya Hinoki⁴; ¹Hitachi, Ltd.; ²Hitachi-GE Nuclear Energy, Ltd.; ³Japan Atomic Energy Agency; 4Kyoto University

Multimodal Investigation of the Neutron Induced Defect of SiC/ SiC Composites: David Arregui-Mena¹; Takaaki Koyanagi¹; Weicheng Zhong¹; Yutai Katoh¹; ¹Oak Ridge National Laboratory

1:50 PM

Recent Progress on Ceramic Coating Development for Advanced Cladding: Jian Gan1; Chao Jiang1; Yuhan Li1; Tiankai Yao1; Laura Hawkins¹; Mukesh Bachhav¹; Yizhi Zhang²; Yifan Zhang²; Jiawei Song²; Haiyan Wang²; ¹Idaho National Laboratory; ²Purdue University

2:10 PM

Material Characterization and Pellet Cladding Interaction Performance of Optimized ZIRLO™ with Liner: Caleb Clement¹; Guirong Pan¹; Magnus Limback²; Antoine Ambard³; Zaheen Shah²; Nermine Chaari-Schule³; Kenneth Gorannsson²; Britta Helmersson²; Jonna Partezana¹; Julian Soulacroix³; ¹Westinghouse Electric Company; ²Westinghouse Electric Sweden; ³Electricite de France

2:30 PM Break

2:50 PM

Thermal Response and Mechanical Integrity of High Temperature Cr-Coated Zr Cladding Under Multiple Quench Tests: WooHyun Jung¹; Cole Dunbar¹; Jun Yeong Jo²; Kumar Sridharan¹; Hwasung Yeom2; 1University of Wisconsin, Madison; 2Pohang University of Science and Technology

Fission Product Distribution Analysis in Zr Lined U-Mo Fuels Using Transmission Electron Microscopy and Atom Probe Tomography: Nicole Rodriguez Perez¹; Sobhan Patnaik²; Shehab Shousha³; Mukesh Bachhav2; Luca Capriotti2; Geoffrey Beausoleil2; Benjamin Beeler3; Maria Okuniewski¹; ¹Purdue University; ²Idaho National Laboratory; ³North Carolina State University

3:30 PM

Characterization and Modeling of Joint Oxyde-Gaine and Inner Cladding Corrosion in Fast Reactor Fuels: Aurelien Hoel-Bacle1; Jean-Christophe Dumas¹; Philippe Bienvenu¹; Karine Hanifi¹; Isabelle Zacharie-Aubrun¹; Thierry Blay¹; Ingrid Roure¹; Catherine Sabathier¹; Doris Drouan¹; Laurent Fayette¹; Nicolas Robert¹; Pierre Benigni²; Charlotte Becquart³; ¹CEA, DES, IRESNE, DEC; ²Aix Marseille Univ, Université de Toulon, CNRS; 3University Lille, CNRS

Density Functional Theory Study of Helium Diffusion in Ni-M Alloys (M= Cr, Mo): Ximeng Wang¹; Yachun Wang²; Yongfeng Zhang¹; ¹University of Wisconsin-Madison; ²Idaho National Laboratory

ADDITIVE MANUFACTURING

Nano and Micro Additive Manufacturing — From Multi-Materials to Advanced Inorganic Materials

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Electronic Packaging and Interconnection Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Alain Reiser, KTH Royal Institute of Technology; Wendy Gu, Stanford University; Yu Zou, University of Toronto; Mostafa Hassani, Cornell University; Ming Chen, University of Nevada, Reno

Thursday PM | March 27, 2025 316 | MGM Grand

Session Chairs: Alain Reiser, KTH Royal Institute of Technology; Mostafa Hassani, Cornell University

1:00 PM Introductory Comments

1:05 PM Invited

Advances in High-Throughput, Multimaterial, Micro and Nano Additive Manufacturing: Christopher Spadaccini¹; ¹Lawrence Livermore National Laboratory

1:35 PM

3D-AJP: Fabrication of Advanced Microarchitected Multi-Material Ceramic Structures via Binder-Free and Auxiliary-Free Aerosol Jet 3D Nanoprinting: Chunshan Hu1; Sanjida Jahan1; Bin Yuan1; Caitlyn Santiago¹; Rahul Panat¹; ¹Carnegie Mellon University

1:55 PM

Single-Melt Pool Methods to Print the Unprintable: Marcus Hansen¹; Wuxian Yang²; Wen Chen²; Kelvin Xie¹; ¹Texas A&M University; ²University of Massachusetts

2:15 PM

Direct 3D Printing of Multi-Metal Components Via Drop-On-**Demand Molten Metal Jetting**: Negar Gilani¹; Xiangyun Gao¹; Marco Simonelli¹; Mark East¹; Richard Hague¹; ¹University of Nottingham

2:35 PM Break

2:55 PM Invited

Additive Manufacturing of Large-Scale Bulk and Architected Materials with Micro/Nano-Structural Control: Lorenzo Valdevit1; ¹University of California, Irvine

3:25 PM

Agglomerate Formation and Flowability Analysis of Hybrid Feedstocks Containing Micron-Sized Nanoporous Copper Powders and Nanoparticles for Laser Powder Bed Fusion Printing: Laura Duenas Gonzalez¹; Natalya Kublik¹; Bruno Azeredo¹; ¹Arizona State University

3:45 PM

Process Development and Microstructure Evaluation of Additive Manufacturing of Silicon Components: Austin Tiley1; Chia-Yu Chang1; Emily Holt1; Yi Song2; John Chen2; Ben DiMarco1; John Middendorf1; Alan Luo1; 1The Ohio State University; 2Silfex, Inc.

4:05 PM

3-Dimensional Electrocatalytic On-Site Oxygenation Using Aerosol Jet Printing for Implanted Cell Therapies: Aaditya Nandakumar¹; Rahul Panat¹; Itzhaq Cohen-Karni¹; Chunshan Hu¹; Inkyu Lee¹; Seonghan Jo¹; Suyeon Kim¹; ¹Carnegie Mellon University

ADVANCED CHARACTERIZATION METHODS

Neutron and X-Ray Scattering in Materials Science and Engineering — Technique Development

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Hillary Smith, Swarthmore College; Jennifer Niedziela, Oak Ridge National Laboratory

Thursday PM | March 27, 2025 156 | MGM Grand

Session Chair: Michael Manley, Oak Ridge National Laboratory

1:00 PM Invited

Unveiling Multiscale Structure and Dynamics with Neutron Imaging: James Torres¹; ¹Oak Ridge National Laboratory

Feasibility of a Focusing Small-Angle Neutron Scattering (SANS) Instrument at the MIT Nuclear Reactor Laboratory: Boris Khaykovich¹; ¹Massachusetts Institute of Technology

Application of Energy-Dispersive X-Ray Diffraction for Engineering Alloys: Chihpin Chuang¹; ¹Argonne National Laboratory

From Angstroms to Micrometers: Across-Length-Scale Structural Characterization of Hard Materials via X-Ray Scattering: Fan Zhang¹; Jan Ilavsky²; Andrew Allen¹; Lyle Levine¹; ¹National Institute of Standards and Technology; ²Argonne National Laboratory

2:30 PM Break

2:40 PM

The Development of a Stress-Strain Diffractometer at the MIT Reactor Using a Polychromatic Beam: Sean Fayfar¹; Jay Cremer²; Boris Khaykovich¹; ¹Massachusetts Institute of Technology; ²Adelphi Technology

3:00 PM

Back-Grinding for Improved X-Ray Diffraction: Braden Miller¹; Joshua Cline¹; Michael Hurst¹; James Paramore²; Anup Bandyopadhyay¹; Eli Norris¹; Brady Butler³; ¹Texas A&M University; ²George H.W. Bush Combat Development Complex at the Texas A&M Rellis Campus; 3DEVCOM Army Research Laboratory South at Texas A&M University

3:20 PM

The Influence of Grain Size on the Deformation-Induced Martensitic Transformation in Austenitic Steels: From Grain-Average to Single-Grain Behavior Studied by In-Situ High-Energy Synchrotron X-Ray Diffraction: Chen Cai¹; Benjamin Neding²; Gaoming Zhu³; Peter Hedström¹; ¹KTH Royal Institute of Technology; ²University of Applied Sciences Lübeck; 3Helmholtz-Zentrum Hereon

3:40 PM Invited

The Role of Annealing and Grain Boundary Controls on the Mechanical Properties of Limestones, Marbles and Novaculite: Lawrence Anovitz¹; Rui Zhang¹; Paul Bosomworth²; Juliane Weber¹; Jan Ilavsky³; Si Chen¹; Elliot Gilbert⁴; Jitendra Mata⁴; Mark Rivers⁵; Peter Eng⁵; ¹Oak Ridge National Laboratory; ²BuzzMac Internalional LLC; ³Argonne National Laboratory; ⁴Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation; ⁵University of Chicago

ADVANCED CHARACTERIZATION METHODS

Novel Strategies for Rapid Acquisition and Processing of Large Datasets from Advanced Characterization Techniques — Microstructure Characterization Workflows

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Sriram Vijayan, Michigan Technological University; Rakesh Kamath, Argonne National Laboratory; Austin Mcdannald, National Institute of Standards and Technology; Fan Zhang, National Institute of Standards and Technology; Sarshad Rommel, University of Connecticut

Thursday PM | March 27, 2025 157 | MGM Grand

Session Chairs: Rakesh Kamath, Argonne National Laboratory; Sarshad Rommel, University of Connecticut

1:00 PM

Efficient SEM Imaging Strategies for Microstructure Analysis in Metal Additive Manufacturing: Christina Koenig1; Andrei Tudor Durnescu¹; Sotero Romero¹; Laura Andrea Paz Salas¹; Joerg Jinschek¹; ¹Technical University of Denmark - DTU Nanolab

1:20 PM

Optimization of Automated Sample Polishing Enabled by the Characterization of Surface Roughness Evolution: Styler Goring¹; Michael Pagan¹; Aaron Stebner¹; ¹Georgia Institute of Technology

1.40 PM

High Throughput Characterization of 316L Stainless Steel Fabricated Using Laser Powder Bed Fusion: Justin Warner¹; Sriram Vijayan¹; ¹Michigan Tech

2:00 PM

Rapid Data-Driven Non-Destructive Inspection of Additively Manufactured IN718 Using the Side-Band Peak Counting (SPC) Non-Linear Ultrasonics Method: I-Ting Ho1; Krishna Muralidharan1; Sammy Tin¹; Devin Bayly¹; Pierre Deymier¹; Tribikram Kundu¹; ¹University of Arizona

2:20 PM Break

2:40 PM

Application of The Polyhedral Template Matching Method for Characterization of 2D Atomic Resolution Electron Microscopy Images: Darcey Britton¹; Douglas Medlin²; Alejandro Hinojos²; Michelle Hummel²; David Adams²; ¹Brigham Young University; ²Sandia National Laboratories

3:00 PM

Correlative Microscopy and AI for Rapid Analysis of Complex Material Structures: Hugues Francois-Saint-Cyr1; Alice Scarpellini1; Bartlomeij Winiarski¹; Rengarajan Pelapur¹; ¹Thermo Fisher Scientific

3:20 PM

Deep Learning-Assisted Study of 3D Damage Evolution in Semiconductor Packages Under Thermal Cycling Using X-ray Microcomputed Tomography: Eshan Ganju¹; Yaw Obeng²; William Harris³; Nikhilesh Chawla¹; ¹Purdue University; ²NIST; ³Zeiss

3:40 PM

Interrogating 3D Grain Morphology and Crystallographic Texture via Automated Polarized Light Microscopy: Paul Chao1; Rhianna ¹Sandia National Laboratories; Oakley²; Andrew Polonsky¹; ²University of New Mexico

MATERIALS SYNTHESIS AND PROCESSING

Phase Transformations and Microstructural **Evolution — Additive Manufacturing**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State University; Ashley Paz y Puente, University of Cincinnati; Jonah Klemm-Toole, Colorado School of Mines; Sriram Vijayan, Michigan Technological University; Mohsen Asle Zaeem, Colorado School of Mines; Le Zhou, Marquette University; Adriana Eres-Castellanos, Colorado School of Mines; Sophie Primiq, University of New South Wales

Thursday PM | March 27, 2025 167 | MGM Grand

Session Chairs: Le Zhou, Marquette University; Kevin Sisco, University of Sydney

1:00 PM

Microstructure Design in Duplex Stainless Steels Via Additive Manufacturing: Nima Haghdadi¹; Cindy He²; Sophie Primig²; ¹Imperial College London; ²UNSW Sydney

1:25 PM Invited

Phase Transformations in Metal Additive Manufacturing: Peeyush Nandwana¹; ¹Oak Ridge National Laboratory

Microstructure and Texture Formation in Inconel 718 Deposited by Induction-Heating-Assisted Laser-Directed Energy Deposition: Junmyoung Jang¹; Yeongcheol Shin¹; Jaeheon Lee¹; Seung Hwan Lee¹; ¹Hanyang University

2:10 PM

Investigating Appropriate Heat Treatments for Laser Powder Bed Fusion Nickel Alloy 718: James Zuback¹; Andrew lams¹; Saadi Habib¹; Mark Stoudt¹; ¹National Institute of Standards and Technology

2:30 PM Break

2:45 PM

Directed Energy Deposition of CoCrFeMnNi High Entropy Alloy: Influence of Process Parameters on Thermal Cycles and Microstructural Evolution: Nishkarsh Srivastava¹; Amit Arora¹; ¹Advanced Materials Processing Research Group, Materials Engineering, Indian Institute of Technology Gandhinagar

3:05 PM

Phase Transformations and Microstructure Evolution in Additive Laser Powder Bed Fusion Processed and Heat-Treated Co-Cr-Mo Alloy: Boateng Twum Donkor¹; Sonali Ravikumar²; Naveen Kumar Nagaraja²; Jie Song³; Matthew Steiner¹; Vijay Vasudevan²; ¹University of Cincinnati; ²University of North Texas; ³Virginia Polytechnic Institute and State University

3:25 PM

Discovery of New Nano-Scale Metastable Intermetallic Phases in Laser Rapid Solidified Aluminum-Germanium Eutectic: Arkajit Ghosh¹; Wenqian Wu²; Tao Ma¹; Jian Wang²; Amit Misra¹; ¹University of Michigan; ²University of Nebraska - Lincoln

3:45 PM

Microstructural Stability and Phase Transformations in 17-4PH Stainless Steel Builds Fabricated Via Laser Powder Bed Fusion: Gowri Shankar Bollu¹; Sriram Vijayan¹; ¹Michigan Technological University

4:05 PM

Development of a Novel Processing Technique for Cold-Rolled 2014 Aluminum Alloys via Athermally-Enhanced Electrical Annealing: Yao-Lun Cheng; Jen-Ting Wang¹; Meng-Chun Chiu¹; Yung-Hua Chen¹; Chien-Lung Liang¹; ¹NTUST

BIOMATERIALS

Porous Materials for Biomedical Applications — Porous Materials for Biomedical Applications II

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Usman Liaqat, National University of Sciences and Technology; Waheed Miran, National University of Sciences and Technology; Khurram Yaqoob, National University of Sciences and Technology; Xizi Long, University of South China

Thursday PM | March 27, 2025 306 | MGM Grand

Session Chair: Heinz Palkowski, Clausthal University of Technology

1:00 PM Introductory Comments

1:10 PM Invited

Magnetically Enhanced Nanotherapy for Targeted Cancer Treatment: Waqas Qamar Zaman¹; ¹INL

1:35 PM

Non-Thermal Plasma Modification of 3D-Printed Starch-Based Bio-Composites: Advancing Soft Robotics and Biocompatible Materials Through In-Situ Corona Discharge Treatment: Alexis Gasca¹; Rajvardhan Patil¹; Derek Xiong¹; Kaiyu Vang¹; Sankha Banerjee¹; ¹California State University, Fresno

2:00 PM

Polymers Covering Open ZnMg Structures for Controlled Corrosion in Absorbable Implants: Matteo Caranchini¹; Valeria Vistoso¹; Mitja Petrič²; Primoz Mrvar²; Stephane Mery³; Lydie Ploux⁴; Tiphaine Schott⁵; Karine Mougin⁶; Françoise Liautaud⁵; Heinz Palkowski⁷; Adele Carradò⁸; ¹University of Strasbourg, IPCMS CNRS; ²University of Ljubljana; ³IPCMS CNRS - UMR 7504; ⁴INSERM / Université de Strasbourg, UMR _S 1121; 5CETIM, Matériaux Métalliques et Surface, Mulhouse; ⁶Institut de Science des Matériaux de Mulhouse IS2M; ⁷Clausthal University of Technology; ⁸University of Strasbourg, CNRS **IPCMS**

MATERIALS SYNTHESIS AND PROCESSING

Powder Materials Processing and Fundamental Understanding — Sustainability

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, University of Alabama Birmingham; Eugene Olevsky, San Diego State University; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Oak Ridge National Laboratory; Wenwu Xu, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Charles Maniere, CNRS

Thursday PM | March 27, 2025 105 | MGM Grand

Session Chairs: Catherine Elissalde, Cnrs/University Bordeaux; Claude Estournes, Cirimat - Cnrs

Enabling the Manufacturing of Hierarchical and Layered Materials: Diletta Giuntini¹; ¹Eindhoven University of Technology

1:20 PM

A Sustainable Approach to Manufacturing Carbon Steels from Oxide Powder Feedstocks: Elias Winterscheidt¹; Apurva Nayak¹; Josh Kacher¹; ¹Georgia Institute of Technology

1:40 PM Invited

Moving Towards the Eco-Design of Flexible Piezoelectric Energy Harversters: Some Issues and Prospects: Catherine Elissalde¹; U-Chan Chung¹; Christopher Castro Chavarria¹; Nadia Bencharef¹; Rabie Aloui²; Michaël Josse¹; Barbara Lafarge²; Mario Maglione¹; Hélène Debéda³; ¹ICMCB/CNRS/Université Bordeaux; ²Université de Technologie de Compiègne; 3IMS/Bordeaux University

2:10 PM Invited

Engineering of Ceramic Oxides Microstructures using Low Temperature Sintering Processes: Claude Estournes¹; Julien De Landtsheer¹; Nicolas Albar¹; Melanie Rousselle¹; Geoffroy Chevallier¹; Alicia Weibel¹; Florence Ansart¹; Guillaume Fradet¹; Catherine Ellissalde²; Thomas Herisson de Beauvoir²; ¹CIRIMAT - CNRS; ²ICMCB CNRS

2:40 PM Break

2:50 PM Invited

Low Energy Densification Processes for Ceramic Powders: Processing to Properties: Claire Dancer¹; ¹University of Warwick

3:20 PM Invited

Processing of Barium Zirconate-Based Protonic Conductors by Suitable Combination of Cold Sintering and Post Thermal Treatment: Martin Bram¹; Moritz Kindelmann¹; Joachim Mayer²; Olivier Guillon¹; ¹Forschungszentrum Jülich; ²RWTH Aachen

Progress on Thermal Sprayed Ultrahard Coatings for Preventing Adhesive Wear of Stamping Die Surfaces: Iver Anderson¹; Jordan Tiarks¹; Rameshwari Naorem¹; Andrew Kustas²; Yun Bai³; Bill Lenling⁴; Emma White⁵; Nicolas Argibay¹; ¹Iowa State University Ames Laboratory; ²Sandia National Lab; ³Ford Motor Company; ⁴TST Fisher Barton: 5DECHEMA

MATERIALS SYNTHESIS AND PROCESSING

Recent Advances in Titanium Science and Technology: MPMD/SMD Symposium Honoring Professor Dipankar Banerjee — Alloy Design of High **Temperature Materials**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Phase Transformations Committee, TMS: Titanium Committee

Program Organizers: Yufeng Zheng, University of North Texas; Abhishek Sharma, University of North Texas; Adam Pilchak, Pratt & Whitney; Rajarshi Banerjee, University of North Texas; Yunzhi Wang, Ohio State University

Thursday PM | March 27, 2025 107 | MGM Grand

Session Chairs: Yufeng Zheng, University of North Texas; Abhishek Sharma, University of North Texas

1:00 PM Invited

Oxide Dispersion Strengthening: An Old Topic with New Developments: Michael Mills¹; Milan Heczko²; Jiashi Miao¹; Andreas Bezold¹; Stephen Niezgoda¹; Calvin Stewart¹; Yunzhi Wang¹; Emmanuelle Marquis³; Timothy Smith⁴; ¹Ohio State University; ²Czech Academy of Sciences; ³University of Michigan; ⁴NASA Glenn Research Center

1:30 PM Invited

High-Temperature Deformation and Damage Behavior a -Lean Ni-Based Superalloy: A Case Study of IN740H: Chandan Kumar¹; Praveen Kumar¹; ¹Indian Institute of Science

2:00 PM Invited

High Creep Stress Exponents and Elementary Deformation Mechanisms: Gunther Eggeler¹; ¹Ruhr-Universität Bochum

2:30 PM Break

2:50 PM Invited

An Integrated Framework to Accelerate the Design of Alloys and Processes for Texture Dominated Properties in HCP Alloys: John Allison¹; ¹University of Michigan

3:20 PM Concluding Comments

LIGHT METALS

Recycling and Sustainability in Cast Shop Technology: Joint Session with REWAS 2025 — **Purification and Alloys for Recycling**

Sponsored by: TMS Extraction and Processing Division, TMS: Recycling and Environmental Technologies Committee, TMS: **Aluminum Committee**

Program Organizers: Mertol Gokelma, Izmir Institute of Technology; Anne Kvithyld, SINTEF; Les Edwards, Rain Carbon Inc.; Andre-Felipe Schneider, Hatch Ltd.; Arild Hakonsen, Hycast As

Thursday PM | March 27, 2025 116 | MGM Grand

Session Chair: Anne Kvithyld, SINTEF

1:00 PM Introductory Comments

Classification of Automotive Aluminum Scrap Into Cast and Wrought Alloys: Shri Shankar1; Carl Soderhjelm1; Diran Apelian1; Stuart Wiesner²; ¹University of California Irvine; ²Rheinfelden Alloys

Development of Aluminum Chips Recycling Process for Recovery Rates and Corrosion Resistance of A380 Alloy: Hongfa Hu¹; ¹Mame, University of Windsor

1:55 PM Keynote

Electrolytic Purification of Aluminum Scrap in NaCl-KCl-Na, AlF, Molten Salt System: Buju Guo1; Yaowu Wang1; Wenxiong Dong1; Jinbo Qiao¹; ¹Northeastern University

2:20 PM Break

2:35 PM

Enhancing Secondary Aluminum Supply: Optimizing Urban Mining Through a Systems Thinking Approach: Milan Liu¹; Kilian Schneider²; Lampros Litos¹; Konstantinos Salonitis¹; ¹Cranfield University; ²Constellium

3:00 PM

Microstructure-Based Investigation of Bonding Mechanisms of Solid-State-Recycled Aluminum Chips for Sustainable Semi-Finished Products: Alexander Koch¹; Frank Walther¹; ¹TU Dortmund University

3:25 PM

Achieving High Impurity Tolerance in Recycled Aluminum Alloy Through Solid Phase Processing: Tianhao Wang¹; Xiao Li¹; Akash Mukhopadhyay¹; Shivakant Shukla¹; ¹Pacific Northwest National Laboratory

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Refractory Metals 2025 — Student Presentations

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Matthew Osborne, Global Advanced Metals; Paul Rottmann, University of Kentucky; Gianna Valentino, University of Maryland

Thursday PM | March 27, 2025 168 | MGM Grand

Session Chair: Paul Rottmann, University of Kentucky

1:00 PM

Flow Stress and Microstructural Evolution of TZM and Mo-La Alloys at Temperatures From 1400 to 1700 °C: Monica Martinez Henriquez¹; Gary Rozak²; Eric Taleff¹; ¹University of Texas Austin; ²Elmet Technologies LLC

1:20 PM

Effect of Geometric Features on Liquid Metal Dealloying of Additively Manufactured Niobium-Titanium: Catherine Barrie1; Kourtney Porsch²; Michael Brupbacher²; Kevin Hemker¹; ¹Johns Hopkins University; ²Johns Hopkins University Applied Physics Laboratory

1:40 PM

Microstructural Evolution of Nb-Alloys Produced via High-Pressure Torsion: Miranda Bell¹; Lethicia Calderon²; Kaitlyn Mullin³; Tresa Pollock³; Suveen Mathaudhu¹; ¹Colorado School of Mines; ²Fort Lewis College; ³University of California, Santa Barbara

Preparation of Homogeneous W-Re Alloys by Coating Tungsten Powder With Perrhenic Acid: Davis Conklin¹; Michael Zaza¹; Hailey Loehde-Woolard¹: Hermann Barrientos¹: Arne Croell²: Jhonathan Rosales³; Alan Weimer¹; ¹University of Colorado Boulder; ²University of Alabama in Huntsville; 3NASA Marshall Space Flight Center

2:20 PM

The High Temperature Performance of Mechanically Processed Equiatomic NbTaV Refractory Alloy: Eli Norris¹; Cafer Acemi¹; Ibrahim Karaman¹; Austin Whitt²; Ronald Noebe²; ¹Texas A&M University; ²NASA Glenn Research Center

2:40 PM Break

3:00 PM

Temperature Dependent Deformation in Single Crystalline MoNbTi: Daniel Magnuson¹; Benjamin Redemann¹; Tyrel McQueen¹; Pulkit Garg²; Irene Beyerlein²; Kevin Hemker¹; ¹Johns Hopkins University; ²University of California, Santa Barbara

Evaluating Microstructure and Strength Properties of Tungsten Based Refractory Multi-Principal Element Alloy Fabricated by Laser Based Directed Energy Deposition: Amaranth Karra¹; Bryan Webler¹; ¹Carnegie Mellon University

3:40 PM

Understanding the Microstructural Evolution and Mechanical Property in As-Cast and Annealed Refractory High Entropy Alloys: Merbin John¹; Deepak Pillai¹; Sydney Fields¹; Lin Li²; Feng Yan²; Liang Qi³; Yufeng Zheng¹; ¹University of North Texas; ²Arizona State University; 3University of Michigan

MECHANICS OF MATERIALS

Structure and Dynamics of Metallic Glasses — Alloy Development

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Sebastian Kube, University of Wisconsin - Madison; Katharine Flores, Washington University in St. Louis; Daniel Sopu, Erich Schmid Institute; Yonghao Sun, The Chinese Academy of Sciences; A. Lindsay Greer, University of Cambridge; Peter Derlet, Paul Scherrer Institut

Thursday PM | March 27, 2025 367 | MGM Grand

Session Chair: A. Lindsay Greer, University of Cambridge

1:00 PM Invited

Development of Al-Based Complex Confused Metallic Glasses Overcoming Glass-Forming Ability and Fragility Trade-Off: Wan Kim1; Ji Young Kim2; Min Kyung Kwak2; Eun Soo Park2; 1University of Wisconsin-Madison; ²Seoul National University

Design and Characterization of Novel Zr-Based Metallic Glasses with Nanoscale Phase Separation: Devinder Singh1; Parthiban Ramasamy²; Anna Sophie Jelinek³; Rahul Bhattacharya¹; Zhuo Chen¹; Simon Fellner¹; Christoph Gammer¹; Zaoli Zhang¹; Jürgen Eckert¹: ¹Erich Schmid Institute of Materials Science, Austrian Academy of Sciences; ²Erich Schmid Institute of Materials Science; ³Montanuniversität Leoben

Oxygen Effects on Processability of Zr-Based Bulk Metallic Glasses: Nelson Delfino De Campos Neto1; Felipe Santa Maria2; Michael Kaufman³; Marcelo de Oliveira⁴; ¹University of North Florida, Colorado School of Mines; ²Federal University of Lavras, University of São Paulo; ³Colorado School of Mines; ⁴University of São Paulo

Manipulating Atomic Topology and Chemical Affinity for Tailored Pure-Solvent Clusters in Ti-Based Metallic Glasses: Wook Ha Ryu¹; Won-Seok Ko2; Ji Young Kim3; Min Kyung Kwak3; Eun Soo Park3; ¹Kumoh National Institute of Technology & RIAM, Seoul National University; ²Inha University; ³Seoul National University

2:25 PM Break

2:45 PM

Structure-Processing-Property Relationships in Refractory Metallic Glass Powders for Additive Manufacturing: Jerry Howard¹; Forest Thompson²; Dev Chidambaram¹; Grant Crawford²; Krista Carlson¹; ¹University of Nevada, Reno; ²South Dakota School of Mines & Technology

Tungsten-Based Thin Film Metallic Glass as Diffusion Barrier Between Copper and Silicon: Pei-Yu Chen1; Jhen-De You1; Chun-Hway Hsueh¹; ¹National Taiwan University

MATERIALS SYNTHESIS AND PROCESSING

Thin Films and Coatings: Properties, Processing and **Applications — Metallic Thin Films and Coatings: Processing, Properties and Environmental Impacts**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tomas Grejtak, Oak Ridge National Laboratory; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Tomas Babuska, Sandia National Laboratories; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, Is2m; Brandon Krick, Florida A&M University-Florida State University

Thursday PM | March 27, 2025 101 | MGM Grand

Session Chairs: Tomas Grejtak, Oak Ridge National Laboratory; Tomas Babuska, Sandia National Laboratories

1:00 PM Invited

A Review of Coating Processes for Engineering Surfaces in Harsh Environments: David Mitchell¹; ¹Oak Ridge National Laboratory

1:30 PM

Design of Interpenetrating Composite Coatings for Extreme Environments: Zachary Cordero1; 1Massachusetts Institute of Technology

1:50 PM

Plasma-Assisted Surface Treatment and Coating Deposition on AZ91D and AM60 Mg Alloys for Corrosion Protection: Jiheon Jun¹; Yong Chae Lim¹; Yi-Feng Su¹; Gyoung Gug Jang¹; Ryan Robinson²; Daphne Pappas²; ¹Oak Ridge National Laboratory; ²Plasmatreat USA

2:10 PM Break

2:30 PM

Thermal Stability and Mechanical Properties of - Phase Composition W-Fe-Ni-Mo Multi-Principal Element Alloy Film: Zahidur Rahman¹; Michael J. Detisch¹; Thomas Balk¹; ¹University of Kentucky

2:50 PM

Transition Metal Dependency on the Hardness of Sputter Deposited Metal Carbide Thin Films: Gregory Thompson¹; Corinne Blacksher¹; Alyssa Stubbers¹; Chris Weinberger²; ¹University of Alabama; ²Colorado State University

3:10 PM

Systematic Control of Crystallization Temperature of Amorphous NiTi Films Using Seed Crystals: Amirhossein Shafieizad¹; Paul Rasmussen¹; Jagannathan Rajagopalan¹; ¹Arizona State University

GUIDE TO THE TMS2025 POSTER SESSION

View a changing display of posters in the Marquee Ballroom. Please join us for two separate poster presentation sessions, grouped by topic areas, on Monday and Tuesday evening. Presenters will be on hand during these sessions to discuss their work.

POSTER SESSION SCHEDULE

(for Poster Presenters)

The poster sessions, which are coupled with networking activities in the exhibit hall, are typically well-attended events. Poster presenters are encouraged to take advantage of this opportunity to discuss their work one-on-one with fellow attendees.

If you are presenting a poster, please note the following information for your assigned poster session.

Schedule for Poster Session I: Monday, March 24

Held in conjunction with the Exhibit Opening Reception

- Noon to 2:00 p.m. Poster Installation
- **2:00 p.m. to 5:30 p.m.** Gallery Viewing (Posters will be on display for visitors to browse; presenters do *not* need to be present.)
- 5:30 p.m. to 6:30 p.m. Poster Presentations (Please stand by your poster at this time to discuss your research with attendees)
- 6:30 p.m. Poster Removal (Presenters should remove posters immediately following the conclusion of the poster session. TMS Student Poster Contest entries, however, should remain up until Tuesday evening.)

Schedule for Poster Session II: Tuesday, March 25

Held in conjunction with the Exhibit Hall Happy Hour

- Noon to 2:00 p.m. Poster Installation
- 2:00 p.m. to 5:30 p.m. Gallery Viewing (Posters will be on display for visitors to browse; presenters do not need to be present.)
- 5:30 p.m. to 6:30 p.m. Poster Presentations (Please stand by your poster at this time to discuss your research with attendees)
- 6:30 p.m. Poster Removal (All posters should be removed following the conclusion of this poster session.)

NAVIGATING THE POSTER SESSIONS

(for Attendees)

Two poster sessions will be held in the TMS2025 Exhibit Hall:

- Poster Session I (held in conjunction with the Exhibit Opening Reception)
 Monday, March 24 | 5:30 p.m. to 6:30 p.m.
- Poster Session II (held in conjunction with the Exhibit Hall Happy Hour)
 Tuesday, March 25 | 5:30 p.m. to 6:30 p.m.

Confirmed posters are grouped by topic according to the listing on this page.

- · Each topic area is assigned a letter code
- Each poster within that topic is assigned a number
- You can search in the mobile app and mobilefriendly PDF for specific posters and poster numbers
- Posters that were not confirmed will be in the Open Poster Area and are not numbered.

Poster Session I

Monday, March 24 | 5:30 p.m. to 6:30 p.m.

Featuring Posters on:

Biomaterials (A)

Electronic, Magnetic, and Energy Materials (B)

Materials Degradation and Degradation by Design (C)

Materials Synthesis and Processing (D)

Mechanics of Materials (E)

Nuclear Materials (F)

Poster Session II

Tuesday, March 25 | 5:30 p.m. to 6:30 p.m.

Featuring Posters on:

Additive Manufacturing (G)

Advanced Characterization Methods (H)

Data-Driven and Computational Materials Design (J)

Light Metals (K)

SPECIAL TOPICS

2025 Technical Division Student Poster Contest - EPD 2025 Technical Division Graduate Student **Poster Contest**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

SPG-1: A Study on Optimizing Characteristics for High-Efficiency Nickel Recovery From the Nickel Intermediates and Nickel Sludge Resources: Myungsuk Kim1; Namhun Kwon1; Seoung Uk Bae1; Dong Hyun Kim¹; Jae Hong Shin¹; Kyoung-Tae Park¹; ¹Korea Institute of Industrial Technology

Design of Porous High Entropy Alloy Materials and Study on Water Electrolysis Performance: Mengyu Hong¹; ¹University of Science and Technology Beijing

Stress Corrosion Cracking of Commercial Purity Titanium Using Constant Load Method: Osama Alyousif¹; ¹Kuwait University

SPG-6: Study of Thermodynamic for Effective Ni Extraction From Nickel Pig Iron (NPI) via Carbonyl Process: Seoung Uk Bae¹; Namhun Kwon¹; Dong Hyun Kim¹; JaeJin Sim¹; Kyoung-Tae Park¹; Jae Hong Shin¹; ¹Korea Institute of Industrial Technology

SPG-7: Study on the Kinetics of Magnetizing Roasting of Niobium Mineral Tailings Containing Rare Earth Elements: Vitoria Garcia Alvarez1; Flavio Beneduce2; 1CBMM; University of Sao Paulo; ²University of Sao Paulo

SPECIAL TOPICS

2025 Technical Division Student Poster Contest — **EPD 2025 Technical Division Undergraduate Student Poster Contest**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

SPU-1: Combined X-Ray Fluorescence and X-Ray Diffraction Method Validation and Standardization: Jakob Scroggins¹; Sikhumbuzo Masina²; ¹University of Tennessee Knoxville; ²SLAC National Accelerator Laboratory

SPECIAL TOPICS

2025 Technical Division Student Poster Contest FMD 2025 Technical Division Graduate Student **Poster Contest**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

SPG-8: Advanced X-Ray and Electron Based Techniques for Material and Cell-Level Battery Analysis: Zijun Wang¹; ¹University of Colorado-Boulder; Rigaku Americas

SPG-9: Analysis of Mechanical Properties and Microstructural Changes in Al-6Cu Alloy with Combined Additions of Transition Elements Cr, Mn, and Zr After High-Temperature Exposure: Hyuncheul Lee1; Jaehui Bang1; Nawon Kwak1; Eunkyung Lee1; ¹National Korea Maritime And Ocean University

SPG-10: Atomistic Insights Into the Passivation Mechanisms of Carbon Steel, ReaxFF-MD Study: Matin Alsadat Mostaan¹; Burkan Isgor¹; Líney Árnadóttir¹; ¹Oregon State University

SPG-11: Comparison of Superconducting Properties of Three HEAs with the Same Valence Electron Concentration: Wojciech Nowak¹; Micha Babij²; Daniel Gnida²; Robert Konieczny¹; Monika K. Krawczyk¹; Dorota Podsiadła¹; Adam Pikul²; Rafa Idczak¹; ¹Institute of Experimental Physics, University of Wroclaw; ²Institute of Low Temperature and Structure Research, Polish Academy of Sciences

SPG-12: Effect of Plasma Environment Oscillations on Carbon Nanotube Field Emission Cathode Performance: Arega Margousian¹; Mitchell Walker¹; Jud Ready¹; ¹Georgia Institute of Technology

SPG-13: Electride-Driven Surface Electron Layers for Oxidation Resistance of Metals: Ja Kyoung Gu1; 1Sungkyunkwan University

SPG-14: Electron-Rich Pt/C Catalysts for High Performance Hydrogen Evolution Reaction: Hye-Ji Sim¹; University

SPG-16: Green Abundant Carbon Nanoparticles for High Voltage Insulation Materials: Anton Bjurström¹; ¹KTH Royal Institute of Technology

SPG-17: HEA Design Agent: AI-Powered Tools for Predicting and Optimizing High-Entropy Alloy Properties: You-Xun Chang1; Kuan-Hung Chao¹; Yi-Hsiang Chen¹; Fan-Yi Ouyang¹; Shun-Chi Wu¹; ¹National Tsing Hua University

SPG-18: High-Reliability Cu-to-Cu Interconnections: IMC-Free TLP Bonding via Gallium Electroplating: Tzu-Hsuan Huang¹; Shih-kang Lin¹; ¹National Cheng Kung University

SPG-19: High Cycle Shape Memory Performance Evaluation of GNP- Reinforced Polyurethane Electrospun Membranes Based on a Novel Constrained Shape Recovery Approach: Rony Thomas Murickan¹; Lihua Lou²; Luiza Benedetti¹; Abhijith Kunneparambil Sukumaran¹; Denny John¹; Anil Lama¹; Arvind Agarwal¹; ¹Florida International University; ²Clemson University

SPG-20: Interrelationship of Stress-Induced Martensitic Transformation and Pitting Corrosion in Iron-Based Shape Memory Alloys: Johanna Frenck1; Georg Frenck2; Sebastian Degener3; Malte Vollmer⁴; Thomas Niendorf¹; ¹University of Kassel; ²University of Augsburg; ³Bundesanstalt für Materialforschung und -prüfung; ⁴Volkswagen AG Baunatal

SPG-21: Nanocellulose via Soil Immersion to Modify Flax Growth and Mechanical Properties: Louise Batta1; Alan Taub1; 1University of Michigan-MSE

SPG-22: Optimizing Near Infrared Sintering for Pad-Printed Silver Microparticle Traces: Jonah Brooks¹; Maija Pearson¹; Philippe Passeraub¹; ¹Brigham Young University

SPG-23: Pumice Stone, Refractory Brick and Cork Wood on the Facade of Buildings to Mitigate Noise Pollution in Urban Street Canyons: Jeiser Rendón Giraldo¹; Henry A. Colorado L.¹; ¹Universidad de Antioquia

SPG-24: Quaternary MAB Semi-Hard Magnets MxMn5-xSiB2 (M = Cr, Mo): Experimental and Computational Studies: Shola Adeniji¹; Alexei Belik²; Takao Mori²; Boniface Fokwa¹; ¹University of California, Riverside; 2National Institute for Materials Science (NIMS)

SPG-25: Structural Constraint Integration in Generative Model for Discovery of Quantum Material Candidates: Ryotaro Okabe1; Mouyang Cheng1; Abhijatmedhi Chotrattanapituk1; Mingda Li1; ¹Massachusetts Institute of Technology

SPG-26: Superconductivity in Additively Manufactured High-Entropy Alloys: Nb₃₄Ti₃₃Zr₁₄Ta₁₁Hf₈ and Ti_{0.5}(ZrNbTaHf)_{0.5}: Bartosz Rusin¹; Piotr Sobota¹; Wojciech Nowak¹; Jakub Ciftci²; ukasz rodowski²; Rafa Idczak¹; ¹University of Wroclaw; ²AMAZEMET

SPG-27: Synchrotron Radiation Based Observation of and Phases of CuSn Under Electric Current: Shubhayan Mukherjee¹; Yu-chen Liu¹; Shih-kang Lin¹; ¹National Cheng Kung University

SPG-28: The Phase Equilibria of the Cu-Sn-Ti Ternary System: Ssu-Chi Huang¹; Hao-Wei Lee¹; Yee-Wen Yen¹; ¹National Taiwan University of Science and Technology

SPG-29: Towards Low-Temperature Additive Manufacturing Process for Miniaturized Disposable Antibody-Type Biosensor: Elizabeth Clark¹; Enrico Condemi²; Philippe Passeraub¹; ¹Brigham Young University; 2aeChem Sàrl

SPG-30: Tuning Microstructure and Material Properties of Laser-Based Directed Energy Deposition (L-DED) Duplex Stainless Steel via In-Situ Alloying: Prayag Burad¹; Vishal Mahey¹; Sougata Roy¹; ¹Iowa State University

SPG-31: Vanadium-Stabilized MoB Nanoparticles for Enhanced Hydrogen Evolution at High Current Densities: Sang Bum Kim1; Johan Yapo¹; Akira Yasuhara²; Kunio Yubuta³; Boniface Fokwa¹; ¹University of California Riverside; ²JEOL Ltd.; ³Shinshu University

SPECIAL TOPICS

2025 Technical Division Student Poster Contest FMD 2025 Technical Division Undergraduate **Student Poster Contest**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

SPU-2: Carbon Nanotube Field Emission Arrays: A Comparative Study of Polysilicon and Chromium Gate Materials: Gabriel Feng¹; Jud Ready¹; Arega Margousian¹; ¹Georgia Tech Research Institute

SPU-3: Copper Metallizations via Micro-Vacuum Cold Spray: Thomas Hands¹; Paul Fuierer¹; ¹New Mexico Tech

SPU-4: Demonstrating the Reprocessability of Liquid Crystalline Epoxy Networks (LCENs): Mohammad Husein¹; Cotton Pekol¹; David Harper¹; ¹University of Tennessee Knoxville

SPU-5: Exploring Tetrahedral Nitrogen Formation in Electronically-Doped GaAsN Alloys: Matteo Carcassi¹; Joshua Cooper¹; Dashal Womack¹; Rachel Goldman¹; ¹University of Michigan

SPU-6: Exploring the Self-Assembly of Sensory Recombinant Proteins Governed by the Phase Transition of ELP: Adriana LaVopa¹; Bornita Deb1; Emma McDougal1; Yeongseon Jang1; 1University of Florida

SPU-7: Investigation of Sintering Conditions for Optimization of High Entropy Garnet Ceramics: Marlena Alexander¹; Kaden Anderson¹; Chuck Melcher¹; Luis Stand¹; Mariya Zhuravleva¹; ¹University of Tennessee Knoxville

SPU-8: Nanocrystalline Thermoelectric Materials Synthesis: Metri Zughbi¹; Kevin Anderson²; Boris Feygelson²; James Wollmershauser²; Benjamin Greenberg²; ¹Lehigh University; ²U.S. Naval Research Lab

SPU-9: Optimization of Laser-Induced Graphene Oxide Sensors for Flexible Energy Storage Applications: Ryan Russell¹; Yijing Stehle¹; ¹Union College

SPU-10: Size Evolution of CeOx Nanoglue Islands and Their Catalytic Performance for CO Oxidation: Bailey Holmes1; Ying Zheng¹; Asuka Firdaus¹; Jingyue Liu¹; ¹Arizona State University

SPU-11: Synthesis of Skyrmions in $Fe_{1-x}Co_xSi$: Madeline Maben¹; ¹University of Tennessee Knoxville

SPU-12: Tuning Graphene Functionalization via Diazonium Chemistry: Cole Rabe1; 1University of Wisconsin - Madison

SPU-13: ZnO Nanorod Growth for Electron Transport Layer in Perovskite Solar Cells: Brianna Sebastian-Olazabal¹; Wendifer Reyes Ramos¹; Bipin Rijal¹; Tara Dhakal¹; ¹Binghamton University

SPECIAL TOPICS

2025 Technical Division Student Poster Contest - LMD 2025 Technical Division Graduate Student **Poster Contest**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Decarbonizing Aluminum Recycling: **Evaluating** Hydrogen in a Lab-Scale Tilting Rotary Furnace: Stefan Tichy¹; ¹Montanuniversitaet Leoben

SPG-34: Development of Stable Nanocrystalline Al-Si and Al-La Alloys for High-Strength Lightweight Applications: Sridhar Lanka¹; Amanendra K. Kushwaha¹; Manoranjan Misra¹; ¹University of Nevada, Reno

SPG-36: Effects of Al Content on the Tensile and Fatigue Properties of SEN Magnesium Alloy Extrusions: Jee Eun Jang1; Ji-Yoon Lee1; Gun Woong An¹; Sung Hyuk Park¹; ¹Kyungpook National University

SPG-37: Fabrication of Aluminum Welding Fillers Reinforced with Niobium Diboride Nanoparticles for Aerospace Applications: Norman Burgos¹; Oscar Marcelo Suárez¹; ¹University of Puerto Rico at Mayagüez

SPG-38: Investigating the Process-Microstructure-Property Relationships of Large-Scale Deposition with Nano-Treated Al6061 Alloy via Wire Arc Additive Manufacturing: Pial Das1; Roman Savinov²; Yashwant Bandari³; Shuvodeep De⁴; Sougata Roy¹; ¹lowa State University; ²University of Cincinnati; ³Fastech LLC; ⁴Texas State University

SPG-39: Multi-Scale Characterization of Al-1100 and Al-6061 Alloys Processed by a Cold Angular Rolling Process: Yun-Hsuan Wu¹; Melissa Santala¹; ¹Oregon State University

SPG-40: Relationship Between Grain Boundary Precipitation and Hydrogen Embrittlement in an Al-4%Cu-1.5%Mg Alloy: Atsumi Ito¹; Taiki Kimura¹; Ryu Minobe¹; Goroh Itoh¹; Shigeru Kuramoto¹; Junya Kobayashi¹; ¹Ibaraki University

SPG-41: The Role of Interfaces and Crystallographic Grain Orientation on Cyclic Stress Strain Behavior of Magnesium Alloys: Arianna Mena1; Justin Smith1; Aeriel Murphy-Leonard1; 1The Ohio State University

SPG-42: Understanding the Deformation Behavior in Cold Rolled Ti-12Mo Binary Alloy System Using Advanced Characterization Techniques: Deepak Pillai¹; Merbin John¹; Fan Sun²; Liang Qi³; Yufeng Zheng¹; ¹University of North Texas; ²Institut de Recherche de Chimie Paris; ³University of Michigan

SPG-43: Understanding the Microstructure and Texture Evolution of Mg-Ca-Zn Alloys During Recrystallization: Rogine Gomez1; Aeriel Leonard¹; ¹The Ohio State University

SPG-44: Understanding the Role of Alloying on Low Cycle Fatigue Behavior in Mg Alloys: Justin Smith1; Aeriel Murphy-Leonard1; 1Ohio State University

SPECIAL TOPICS

2025 Technical Division Student Poster Contest - LMD 2025 Technical Division Undergraduate **Student Poster Contest**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

SPU-14: Effect of Annealing on the Microstructure and Mechanical Properties of Quaternary High-Entropy Alloys at Different Treatment Durations: Rakhmatjon Gaipov¹; Elyorjon Jumaev¹; Omon Sultonov¹; Amir Abidov²; Farkhod Abdullaev²; Orifjon Mikhliev³; ¹University of Business and Science; ²Uzbekistan Technological Metals Complex JSC; 3FIE UzLITI Engineering LLC

SPU-15: Increasing Strength, Hardness and Corrosion Resistance of A356.1 Through Heat Treatments and Addition of Magnesium: Tomas Peralta¹; ¹University of Michigan

SPECIAL TOPICS

2025 Technical Division Student Poster Contest — MPMD 2025 Technical Division Graduate Student **Poster Contest**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

SPG-48: Additively Processed Maraging Steel M789 and Its Heat Treatment, Homogenized Microstructure and Precipitation Hardening: Andrea Malkova¹; Ludmila Kučerová¹; Karolína Burdová¹; ¹Západoceská Univerzita v Plzni

SPG-49: Artificial Intelligence Enabled Microstructural Feature **Detection**: Hariharan Saravanan¹; *Pooja Maurya*¹; Alex Gaudio²; Asim Smailagic¹; P. Chris Pistorius¹; ¹Carnegie Mellon University; ²Johns Hopkins University

SPG-51: Characterization of Nitinol Powders for Cold Spray Welding: Matthew Gleason¹; ¹Worcester Polytechnic Institute

SPG-52: Comparative Analysis of Mechanical Properties and Microstructures in Hot and Cold Wire Laser-Directed Energy Deposition of Stainless Steel 316: Nahal Ghanadi¹; Somayeh Pasebani¹; ¹Oregon State University

SPG-54: Development of Functionally Graded Materials via AM: A Combined Experimental and Computational Approach: Jorge Valilla¹; Damien Tourret¹; Ilchat Sabirov¹; ¹Imdea Materials

SPG-55: Development of Lightweight, Ballistic Shock-Resistant Materials by Friction Stir Processing: Varun Pushpa1; Amlan Kar1; Grant Crawford¹; ¹South Dakota School of Mines and Technology

SPG-56: Effect of Lunar Dust on Microstructural and Mechanical Properties of 3D Printed Stainless Steel: Aye Thiri Khaing¹; Mohsen Eshraghi¹; Chris Bachman¹; Raffi Shirinian¹; ¹California State University Los Angeles

SPG-57: Effect of Wire Feed Rate on Microstructure and Mechanical Properties in Multi-Wire GTAW-Based WAAM Steel Alloys: Ganesan Gunasekaran¹; Neel Gupta¹; Siddartha .¹; Shahu Karade¹; Narasimhan K¹; Karunakaran K.P.¹; ¹Indian Institute of Technology Bombay

SPG-58: Effects of Inclusions on Fatigue Behavior of High Strength Bar Steel: Natalie Compton¹; Kip Findley¹; ¹Colorado School of Mines SPG-59: Electrochemical Corrosion Properties and Fatigue Life of Al 7075 Parts Prepared by Additive Friction Stir Deposition: Ehsan Bagheri¹; Noushin Adibi¹; Peyton Wilson¹; Michael Khonsari¹; Shengmin Guo¹; ¹Louisiana State University

SPG-60: Energy Density and Infill Angles In Tailoring Laser-Wire **Directed Energy Deposition Microstructure**: Matthew Engquist¹; Amir Shakibi¹; Mohsen Eshraghi¹; ¹California State University, Los **Angeles**

Enhancing WAAM of Aluminum 2219 Walls Through Thermal Imaging for Improved Process Control and Material Quality: Oguzcan Dedeci¹; ¹Roketsan Missiles Inc.

Fabrication and Laser-Assisted Machining (LAM) of Fused Silica-Based Ceramic Composites Reinforced with Nanoparticles: Rajat Jain¹; ¹National Institute of Technology Warangal

SPG-63: Formable Ordered Microcomposite Energetics (FOMEs) as Structural Energetics: Nare Cho1; Bryan Llumiquinga1; Iris You1; Shane Esola²; Jonathan Singer¹; ¹Rutgers University; ²US Army **DEVCOM Armaments Center**

SPG-64: Foundational Computer Vision Models for Automated Powder Morphology Characterization: Stephen Price¹; Kiran Judd¹; Kyle Tsaknopoulos¹; Elke Rundensteiner¹; Danielle Cote¹; ¹Worcester Polytechnic Institute

SPG-68: Enhancing Investment Casting Through Direct 3D Printing of Silica Molds: A Comparative Study of Thermal Debinding and Sintering Processes: Aabha Chandra¹; Holly Martin¹; Pedro Cortes²; ¹Youngstown State University; ²The University of Texas at El Paso

SPG-69: Investigating the Potential of Large Scale Wire Arc Additive Manufacturing to Deposit Duplex Stainless Steel for Structural Applications: Vishal Mahey1; Prayag Burad1; Sougata Roy¹; ¹Iowa State University

SPG-70: Ionic Liquid (IL) Compatibilization of Macropore-Infused Nanocomposite Thermosets (MINETs) for Structural Ion Transport: Bryan Llumiquinga¹; Iris You¹; Nare Cho¹; Kevin Miller²; Jonathan Singer¹; ¹Rutgers University; ²Murray State University

SPG-72: Mechanical Properties of 3D Printed High Performance Ceramics and Multi-Material Ceramics Fabricated via Vat Photopolymerization: Taslima Akter1; Holly Martin1; Pedro Cortes2; ¹Youngstown State University; ²The University of Texas at El Paso

SPG-73: Mesoscale Modeling of Hydrogen Embrittlement in Iron-Hydrogen Alloys: Daniel Coelho1; Nikolas Provatas1; 1McGill University

SPG-74: Microstructural Evolution and Mechanical Properties of Cu-30Ni Fabricated via Wire-DED: From As-Built to Heat-Treated States: Debasis Rath1; Debjit Misra1; Markus Chmielus1; Zachary Harris¹; ¹University of Pittsburgh

SPG-75: Microstructures of a Ti-6Al-4V Alloy Additively Manufactured by the Powder Bed Fusion with Blue Diode Laser: Naoya Nishikawa¹; Koki Maeda²; Takahiro Kunimine¹; Yuji Sato³; Masahiro Tsukamoto³; ¹Kanazawa University; ²Kindai University; 3Osaka University

SPG-76: Molten Salts for Lithium-Ion Batteries Recycling: Jennifer Navarro Naranjo¹; ¹University of Nevada Reno

SPG-77: Nanostructures in the Direct Energy Deposited Metastable Beta Ti-5Al-5Mo-5V-3Cr Alloy: Sydney Fields¹; Deepak Pillai¹; Dian Li¹; Tirthesh Ingale¹; Vishal Soni¹; Mohammad Merajul Haque²; Yiliang Liao²; Rajarshi Banerjee¹; Yufeng Zheng¹; Yao Li¹; ¹University of North Texas; 2lowa State University

SPG-78: Optimization on Yield Production of Nanoporous Copper Powders via Chemical Dealloying: Aishwarya Thotta Jayachandran¹; Laura Duenas Gonzalez¹; Natalya Kublik¹; Bruno Azeredo¹; ¹Arizona State University

SPG-79: Parametric Study of Beam Deflection to Reduce Residual Stresses in Electron Beam Welded Thin Plates: Rebecca Bauman¹; Alistair Smith2; Howard Stone1; 1University of Cambridge; 2Rolls-Royce

SPG-80: Performance Evaluation of Wire Arc Additive Manufacturing (WAAM) Repairs of H13 Tool Steel Forging Die: Akash Belure1; Mayank Garg1; David Schwam1; Tushar Borkar1; ¹Cleveland State University

SPG-82: Predicting the Effects of a Lunar Environment on a Wire-Laser Directed Energy Deposition Process via Numerical Modeling: Nathan Stoetzel¹; Mohsen Eshraghi¹; ¹California State University, Los Angeles

SPG-83: Recovering and Processing Metal Feedstock Powders for Re-Use in Cold Spray Additive Manufacturing: Ashton Lyon¹; Kyle Tsaknopoulos¹; Danielle Cote¹; ¹Worcester Polytechnic Institute

SPG-84: Reversing Conventional Wisdom: Discovery of Welded Joints with Superior Cryogenic Strength-Ductility Over Base Metals: Yoona Lee1; Jeong Min Park2; Dongwon Shin3; Wei Xiong4; Marcia Myung Hye Ahn4; Namhyun Kang1; 1Pusan National University; 2Korea Institute of Materials Science; 3Oak Ridge National Laboratory; 4University of Pittsburgh

SPG-85: Self-Limiting Electrospray with High-Flow Rate Emitters and Defect Elimination Using Secondary Bias: Rahman Pejman¹; Ayman Rouf¹; Shubin Xie¹; Jonathon Singer¹; ¹Rutgers University

SPG-86: Strategies for Vat Photopolymerisation of Dense and Porous Silicon Carbide Ceramics with Enhanced Properties: Terence Ho1; Zehui Du1; Chee Lip Gan1; 1Nanyang Technological University

SPG-88: Ultrasonic Vibration-Assisted Direct Energy Deposition 3D Printing of High-Strength Aluminum Alloys: Lovejoy Mutswatiwa¹; ¹Pennsylvania State University

SPG-89: Understanding the High Temperature Oxidation and Interdiffusion Behaviour of Tantalum Alloyed - Based Titanium Aluminide: Shivansh Mehrotra¹; Kushal Samanta¹; Dibyajyoti Ghosh¹; Sangeeta Santra¹; ¹Indian Institute of Technology Delhi

Unravelling the Powder-Microstructure-Property Relationship in Cu-10Sn Alloy Manufactured by Laser Beam Powder Bed Fusion: Kangwei Chen¹; Simon Ringer¹; Keita Nomoto¹; ¹University of Sydney

SPG-92: Validation and Implementation of Thermal Conductivity Measurements in Non-Contact Modulation Calorimetry: Regan Krizan¹; Lydia Tonani-Penha¹; Gwendolyn Bracker¹; Robert Hyers¹; ¹Worcester Polytechnic Institute

SPECIAL TOPICS

2025 Technical Division Student Poster Contest MPMD 2025 Technical Division Undergraduate **Student Poster Contest**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

SPU-16: Additive Manufacturing with Spherical UO2 Powder: Tanvir Hassan¹; Anil Prasad R²; Ghaouti Bentoumi²; Nikolaos Kotsios²; James Crigger²; ¹Canadian Nuclear Laboratories; Toronto Metropolitan University; ²Canadian Nuclear Laboratories

SPU-17: Bio-Insulation Decreases VOCs and Improves Human Health: Joshua Carlson1; Daniel Casey1; Erin Clingerman1; Naszir Mantilla¹; Molly Rodgers¹; ¹University of Michigan

SPU-18: Computational Method to Predict Volumetric Contraction of Alloys During the Liquid-to-Solid Phase Transition: Audrey Thiessen¹; Aurora Pribram-Jones²; Jonas Kaufman³; Lori Bassman¹; Kevin Laws⁴; ¹Harvey Mudd College; ²University of California, Merced; ³Lawrence Livermore National Laboratory; ⁴University of **New South Wales**

SPU-19: Controlling Porosity of Electrosprayed Polyimide Films Through Co-Solvent Blending: Emily Li¹; Robert Green-Warren¹; Isha Shah¹; Jonathan Singer¹; ¹Rutgers University

SPU-20: Electroplating for Surface Modification of Powders for Additive Manufacturing: Sarah Fenton¹; Eric Klein¹; Robert Hyers¹; ¹Worcester Polytechnic Institute

SPU-21: Exploring a "Universal Dip" for Electrospray Applications: Hannah Mow¹; Jonathan Singer¹; ¹Rutgers University

SPU-22: Exploring Effects of Additives on the Thermal Stability and Processability of Paper Fiber Reinforced Polypropylene for Automotive Applications: Jocelyn Hess1; Cecile Grubb1; David Harper¹; David Keffer¹; ¹University of Tennessee, Knoxville

SPU-24: How Powder Morphology and Surface Energies Affect Ambient Moisture Adsorption: Sajjad Jaffer1; 1Purdue University

SPU-25: Material Processing Development for the Fabrication of Melt Wires for Monitoring Nuclear Reactor Temperatures: Shanae Brachtl¹; Adam Storms¹; Rene Rodriguez¹; ¹Idaho State University

SPU-27: Reduction of Absorbed Interstitial Elements in Metallic Feedstock Powder During Heat Treatment: Audrey Johnson¹; Kyle Tsaknopoulos¹; Danielle Cote¹; ¹Worcester Polytechnic Institute

SPECIAL TOPICS

2025 Technical Division Student Poster Contest - SMD 2025 Technical Division Graduate Student **Poster Contest**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

SPG-93: A First-Principles Study of Self, Dilute, and Non-Dilute Solute Diffusion Properties of BCC Transition Metals: Tanvir Rahman¹; Chelsey Hargather²; ¹New Mexico Institute of Mining and Technology; ²Los Alamos National Laboratory

SPG-94: A Quasi-Brittle Fracture Mechanics Model for Assessing Treatment Effects in Human Cortical Bone: Glynn Gallaway1; Thomas Siegmund¹; ¹Purdue University

SPG-95: Al-Driven Multiscale Computational Framework for Corrosion-Induced Degradation of High Temperature Alloys: Praneeth Bachu¹; Radhakrishnan Balasubramaniam²; Tracie Lowe²; Celine Hin¹; Rishi Pillai²; ¹Virginia Tech; ²Oak Ridge National Laboratory

SPG-97: Comparison of Microstructure and Mechanical Properties of Automotive Press Hardened Beams Manufactured by Different Processing Routes: Micah Gendich¹; ¹University of Michigan

SPG-98: Correlating 3D Stress Distributions with Twin Nucleation and Growth Using PRISMS-Plasticity: Michael Pilipchuk1; Sangwon Lee¹; Chaitali Patil¹; John Allison¹; Ashley Bucsek¹; Veera Sundararaghavan¹; ¹University of Michigan

SPG-99: Effect of Aging on High Entropy NiTiHfZrCu Shape Memory Alloys: Hatim Raji¹; Mehmet Kelestemur²; Tolga Ensari²; Soheil Saedi¹; ¹Florida Institute of Technology; ²Arkansas Tech

- SPG-101: Effect of Local Lattice Distortion on Dislocation Based Plastic Deformation Characteristics of NbMoTaW-Ti Alloys: Ali Ozalp¹; Eda Aydogan²; Yunus Eren Kalay¹; ¹Middle East Technical University; ²Pacific Northwest National Laboratory
- SPG-102: Electrochemical and Mechanical Characterization of Hydrogen Embrittlement in PH Nickel Alloys: Yousif Al Rabie¹; ¹Georgia Institute of Technology
- SPG-103: Enabling Gen-IV Fission and Gen-I Fusion Reactors via **Ductile Refractory Alloys**: Luke Gaydos¹; Hailong Huang²; Zongyang Lyu²; Prashant Singh²; Duane Johnson²; Ryan Ott²; Nicolas Argibay²; ¹lowa State University; ²Ames National Laboratory
- Exploration of Process-Microstructure-Property Relationships in Laser-DED Manufactured High-Temperature FeCrAl Alloy for Nuclear ATF: Salikh Omarov1; Prayag Burad1; Christopher Silligman¹; Sougata Roy¹; ¹Iowa State University
- SPG-105: Fabrication and Characterization of CeO2 + (C, Eu2O3) Pellets: Julian Valdez1; Robert Frost2; Denise Lopes3; Kyle Johnson4; Elizabeth Sooby¹; Jacob Flowers¹; Dzemil Adrovic²; Anthony Horsman¹; ¹University of Texas at San Antonio; ²Uppsala University; ³ORNL; ⁴Westinghouse Sweden AB
- SPG-106: Film Characterization and Repassivation Kinetics of Carbon & Austenitic Stainless Steel in Thiosulfate-Containing Environments: Abdullah Alzubail¹; Preet Singh¹; ¹Georgia Institute of Technology
- Flow Stress Behavior, Deformation Micro-Mechanisms and Microstructural Evolution of Heat-Treated Alloy 625 Using SASH Model: Sonika Chahar¹; Suhrit Mula¹; ¹Indian Institute of Technology Roorkee
- SPG-108: Gecko-Inspired Dry Adhesive Micropillar Arrays: Impact of Geometry and Contact Shape on Performance: Isabel Lopez1; ¹California State University, Los Angeles
- SPG-109: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Tantalum
- : Olajesu Olanrewaju1; Kevin Jacob1; Curt Bronkhorst2; Nan Chen2; Marko Knezevic3; Sid Pathak1; 1lowa State University; 2University of Wisconsin; 3University of New Hampshire
- SPG-110: High-Cycle Fatigue of a Nickel Superalloy Pre-Exposed to Type II Hot Corrosion: Simulating Service Damage: Jordan Buckley¹; Louis Scott¹; Yong Li¹; Helen Davies¹; Mark Hardy²; ¹Swansea University; 2Rolls-Royce
- SPG-111: Influence of Microstructure on Fatigue Behavior of Additively Manufactured Nickel Aluminum Bronze: Nathan Heniken¹; Jiashi Miao¹; Veronika Mazanova²; Aeriel Murphy-Leonard¹; ¹Ohio State University; ²Czech Academy of Sciences
- SPG-112: Investigating the Microstructures of As-Cast Advanced High Strength Steels: Nhu Ngo1; Bryan Webler1; Petrus Pistorius1; ¹Carnegie Mellon University
- SPG-113: Investigation into Hot Corrosion Induced Pit Morphology of a Novel Nickel-Based Superalloy: Louis Scott1; Jordan Buckley1; Helen Davies¹; Mark Hardy²; Yong Li¹; ¹Swansea University; ²Rolls-Royce
- SPG-114: Ionic Liquid Mediated Extraction of Cellulose from Fruit Wastes: Erin Clingerman¹; Brian Love¹; Tolulope Lawal¹; ¹University of Michigan - Ann Arbor
- SPG-115: Kink Band Boundary Structure and Evolution in NbTaTiHf MEA: Xiaoyu Chen1; David Cook1; Madelyn Payne1; Andrew Minor1; Robert Ritchie¹; Mark Asta¹; ¹University of California, Berkeley
- SPG-117: Microstructural and Mechanical Evaluation of Wire-Arc DED Fabricated High Strength Steels: Jason Langevin¹; Danielle Cote¹; Kyle Tsaknopoulos¹; ¹Worcester Polytechnic Institute

- SPG-118: Microstructure and Mechanical Properties Uniformity **Analysis Across Different Locations of Forging Preform Fabricated** by SLM: Sambhaji Kusekar1; Tushar Borkar1; Jay Desai1; David Schwam¹; Amit Choudhary¹; ¹Cleveland State University
- SPG-119: Microstructure Characterization of Rapid Joule Heated Refractory High Entropy Alloys: Merbin John¹; Deepak Pillai¹; Yao Li¹; Feng Yan²; Liang Qi³; Yufeng Zheng¹; ¹University of North Texas; ²Arizona State University; ³University of Michigan
- SPG-120: Non-Contact Method to Measure Thermal Conductivity: A Comparative Study of Additive Manufactured SS-316L: Jessica Reves Holguin¹; Hunter Schonfeld¹; Bryan Kaehr²; Jeffrey Braun³; Saman Zare¹; Patrick Hopkins¹; ¹University of Virginia; ²Sandia National Laboratories; 3Laser Thermal
- SPG-121: Predicting and Understanding Peierls Stress Spectrum in Multi-Principal Element Alloys: Kourosh Jafari Ghalejooghi¹; Penghui Cao¹; ¹University of California Irvine
- SPG-122: Rapid Radiation Damage Assessment Using Transient Grating Spectroscopy: Elena Botica Artalejo¹; Gregory Wallace²; Michael Short¹; ¹Massachusetts Institute of Technology; ²MIT Plasma Science and Fusion Center
- SPG-123: Revisiting the Composition and Crystal Structure of WB2-x for Fusion Neutron Shielding: Sercan Cetinkaya1; Edward G. Obbard¹; Patrick A. Burr¹; Kevin J. Laws¹; Vanessa K. Peterson²; ¹University of New South Wales Sydney; ²ANSTO
- SPG-124: Sigma Phase Transformation Kinetics of a FeCrNi Alloy Studied by In Situ Neutron Diffraction: Monika Rolinska¹, Matthew Tucker²; Lewis Owen³; Joakim Odqvist¹; Peter Hedström¹; ¹KTH Royal Institute of Technology; ²Oak Ridge National Laboratory; ³University
- SPG-126: The Occurrence and Disappearance of Serrations at 650°C Temperature in IN718 ODS Superalloy Processed by Powder Metallurgy Route: Suyog Gaikwad¹; Vikram Dabhade¹; SVS Narayana Murty²; Sushant Manwatkar²; ¹Indian Institute of Technology Roorkee; ²Vikram Sarabhai Space Centre (VSSC), Indian Space Research Organization (ISRO),
- SPG-127: Thermal Expansion of MoSi2-Si Oxidation Barrier System for RHEA-Based Gas Turbines: Matthew Betz1; Zachary Moscoso1; Don Lipkin¹; Raymundo Arroyave¹; ¹Texas A&M University
- SPG-128: Thermo-Mechanical Fatigue Damage in a Single Crystal Nickel Superallov: Alberto Gonzalez Garcia¹: Jonathan Jones¹: Mark Whittaker¹; Julian Mason-Flucke²; ¹Swansea University; ²Rolls-Royce plc
- SPG-129: Tuning the Microstructure of High Entropy Alloys by Using Spinodal Decomposition to Enhance Ductility: Emre Gunes¹; Eren Kalay²; ¹Gazi University Additive Manufacturing Technology Application and Research Center (EKTAM); 2Middle East Technical University
- SPG-130: Understanding Compositional Effects on the Oxidation Behavior of Binary Nb-Ti Alloys: Lauren Bowling¹; Elizabeth Opila¹; ¹University of Virginia
- SPG-131: Understanding the Role of Microstructure on the Sub Critical Crack Growth Rate and Crack Path in Pipeline Ferritic Stainless Steels: Elisabeth Kuebel¹; Ramgopal Thodla²; Aeriel Leonard1; 1The Ohio State University; 2DNV GL
- SPG-132: Using Bernal Holes to Analyze Experimentally Observed Grain Boundaries In FCC Metals: Elizabeth Heon1; Matthew Chisholm¹; Gerd Duscher¹; ¹University of Tennessee Knoxville

SPECIAL TOPICS

2025 Technical Division Student Poster Contest SMD 2025 Technical Division Undergraduate **Student Poster Contest**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

SPU-28: A Comparative Analysis of Anodization Effects on Magnesium-Modified Al 356.1 Alloy: Isabelle Holden1; Chase Walraven¹; Jack Restum¹; ¹University of Michigan

SPU-29: Developing a High Temperature Alumina-Forming Bond Coat Alloy in the Nb-Si-Al-Ti-Mo-Cr Composition Space: Eddy Rao¹; Melina Endsley¹; Collin Holgate¹; Tresa Pollock¹; ¹University of California, Santa Barbara

SPU-30: Electron Localization as an Indicator of Macroscopic Properties in Compositionally Complex Brass Alloys: Jose Ortiz1; Jared Kim¹; Aurora Pribram-Jones¹; Jonas Kaufman²; Lori Bassman³; Kevin Laws⁴; ¹University of California, Merced; ²Lawrence Livermore National Laboratory; ³Harvey Mudd College; ⁴University of New South Wales

SPU-31: Formation and Fractionation of Solid Solution REE-F Compounds: Olivia Bahhage1; Natalie Yaw1; Malin Dixon Wilkins1; John McCloy¹; Xiaofeng Guo¹; ¹Washington State University

SPU-32: High Entropy Lead-Free, Free Machining Brass with Calcium: Julien Luu1; Isaiah Jeter1; Alejandro Trujillo2; Aurora Pribram-Jones²; Jane Yang³; Lori Bassman¹; Kevin Laws³; ¹Harvey Mudd College; ²University of California, Merced; ³University of New South Wales

SPU-33: Molecular Dynamics Study of S3 Grain Boundary Energies in Nickel at Finite Temperatures: Madinabonu Nosirova¹; Meizhong Lvu¹: Elizabeth Holm¹: ¹University of Michigan

SPU-34: Oxide Dispersion Strengthened Metastable Self-Healing Alloys for Nuclear Applications: Sarah McDearis¹; Priyanka Agrawal¹; Amit Singh¹; Supreeth Gaddam¹; Rajiv Mishra¹; ¹UNT Center for Friction Stir Processina

SPU-35: Synthesis Characterization and Properties of Steel-Copper Metallic Composites via Additive Manufacturing: Mia Mikolajczak¹; Yuheng Nie¹; Nabila Ali¹; Marie Charpagne¹; ¹University of Illinois at Urbana Champaign

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

2D Materials - Preparation, Properties, Modeling & **Applications — Poster Session**

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Nuggehalli Ravindra, New Jersey Institute of Technology; Madan Dubey, US Army Research Laboratory; Hesam Askari, University of Rochester; Ritesh Sachan, Oklahoma State University; Joshua Young, New Jersey Institute of Technology; Sufian Abedrabbo, Khalifa University; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Chintalapalle V Ramana, University of Texas

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Nuggehalli Ravindra, New Jersey Institute of Technology; Sufian Abedrabbo, Khalifa University

B-1: A Novel Graphene-Enabled Tunable Plasmonic TE-TM Mode Waveguide Filter: Yadvendra Singh¹; Harish Subbaraman¹; ¹Oregon State University

B-2: Heterolayered Anion-Mixed Salt-Inclusion Structures: Anna Berseneva¹; Hans-Conrad zur Loye²; ¹National Renewable Energy Laboratory; ²University of South Carolina

B-3: In-Situ Characterization of Mechanical and Fracture Behavior in MXene/PVDF Nanocomposites: Bita Soltan Mohammadlou¹; James Fitzpatrick¹; Yury Gogotsi¹; ¹Drexel University

Mesoscale Simulation of Electrical Performance Degradation on Electronics Due to Defects and Carriers Dynamics Induced by Ionizing Radiation: Xiaoyu Guan¹; ¹University of Florida

Synthesis of TiS2 Magnesium Ion Battery Cathode Material by CVT Method: Jinan Wang¹; Jiang Diao¹; Hao Qin¹; Hongyu Liu¹; Hongyi Li¹; Bing Xie¹; Guangsheng Huang¹; Jingfeng Wang¹; Fusheng Pan¹; ¹Chongging University

B-4: Understanding the Negative Poisson's Ratio of Graphene Oxide Through Rotation Mechanisms: Jacob Newman¹; Yijing Stehle¹; ¹Union College

BIOMATERIALS

Advanced Biomaterials for Biomedical Implants — **Poster Session**

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Tolou Shokuhfar, University of Illinois at Chicago; Fariborz Tavangarian, Penn State; Vinoy Thomas, University of Alabama at Birmingham

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chair: Vinoy Thomas, University of Alabama at Birmingham

Biodegradable Gel Electrolyte for Bioresorbable and Implantable Biomedical Devices: Jaewon Kim1; Giheon Kim1; Jahyun Koo1; 1Korea University

A-1: Innovative Bone Implants: Drawing Inspiration from Marine Sponges for Next-Gen Solutions: Armaghan Hashemi Monfared¹; Fariborz Tavangarian²; Niloofar Fani²; Sorour Sadeghzade³; ¹Pennsylvania State University; ²Penn State Harrisburg; ³Westlake University

Structural Properties of Ti-xNb Alloys for Biomedical Applications: Ziad Djafia¹; Mamoun Fellah¹; Naouel Hezil¹; Mohammed Abdul Samad²; ¹ABBES Laghrour - Khenchela University; ²KFUPM KSA

Synthesis and Corrosion Behavior of Nitinol for Biomedical Applications Produced by Mechanical Alloying Method: Nabila Bouchareb¹; Mamoun Fellah¹; Naouel Hezil¹; Imen Rim¹; ¹ABBES Laghrour-University

MATERIALS SYNTHESIS AND PROCESSING

Advanced Laser Manufacturing of High-Performance Materials — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Adam Hicks, Air Force Research Laboratory; Jared Speltz, University of Dayton Research Institute

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Experimental Study on the Influence of Scanning Speed and Powder Feeding Rate on the Interface Performance of T15 Laser Cladding Layer: Mingming Duan¹; Yingtao Zhang¹; ¹Hohai University

D-2: Optical Reflectance Tailoring of Powders for Laser-Based Sintering via Magnetron Sputtering: Camilo Bedoya Lopez¹; Carlos Castano¹; ¹Virginia Commonwealth University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advanced Materials for Energy Conversion and Storage 2025 — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Energy Conversion and Storage Committee, TMS: High Temperature Alloys Committee

Program Organizers: Surojit Gupta, University of North Dakota; Jung Choi, Pacific Northwest National Laboratory; Amit Pandey, Lockheed Martin Space; Partha Mukherjee, Purdue University; Soumendra Basu, Boston University; Paul Ohodnicki, University of Pittsburgh; Eric Detsi, University of Pennsylvania; Cengiz Ozkan, University of California

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chair: Soumendra Basu, Boston University

Enhanced Temperature Stability of LLTO (Li3xLa2/3-xTiO3) Solid Electrolyte Through Sr Doping: Wolil Nam¹; Moonhee Choi¹; JiHyun Park¹; ¹Korea Institute of Ceramic Engineering & Technology

Enhancing the Thickness Uniformity of Electroplated Cobalt Thin Films on SOFC Interconnectors Through Electrochemical and Microstructural Control: Ki-Young Lee1; Hyun Park1; Hyo-Jong Lee1; Jung Han Kim¹; ¹Dong-A University

Fabrication and Characterization of Polyurea-Polyurethane/Silver Bilayer Shell Phase-Change Nanocapsules: Sitong Liu1; Tonghe Li1; Dengti Hu¹; Hao Bai¹; ¹University of Science and Technology Beijing

Improved Electrochemical Performance in Sodium-Ion Batteries Using Carbon-Coated, Fe and Cr Co-Doped Sodium Vanadium Fluorophosphate as Cathode Material: Sanchayan Mahato¹; Koushik Biswas¹; ¹Indian Institute of Technology Kharagpur

Layered Intercalated Architecture of Ni₂V₂O₇ Nanoparticle and N-Doped Reduced Graphene Oxide Composite Sheet as an Electrode Material for Asymmetric Supercapacitor: Rohit Anand1; Arghyadeep Sau¹; Karabi Das¹; Siddhartha Das¹; ¹Indian Institute of Technology Kharagpur

B-5: Preparation of Carbon Coating Layers for LiFePO with Excellent Performance by Additive Addition: Da Eun Kim1; Yong Joon Park1; 1Kyonggi University

Study on the Purification Performance of Low Concentration Gas Using Parallel Column Chromatography: Jun Zhao¹; ¹China University of Mining and Technology

B-6: Surface Treatment Using Sulfur for Stabilized Cathode/ Sulfide Electrolyte Interface: Ha Young Ko1; Yong Joon Park1; ¹Kyonggi University

B-7: The Impact of UV Irradiation on Dielectric Properties of Graphene Oxide Membranes: Maren Friday¹, Yijing Stehle¹, ¹Union College

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances and Discoveries in Non-Equilibrium Driven Nanomaterials and Thin Films — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Ritesh Sachan, Oklahoma State University; Ashutosh Tiwari, University of Utah; Santosh Kc, San Jose State University; Shikhar Jha, Indian Institute of Technology Kanpur

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

B-8: Conversion of c-Si and a-Si to Q-Si Phases by Ion Irradiation: Siba Sundar Sahoo¹; Jagdish Narayan¹; Ambuj Tripathi²; Roger ¹North Carolina State University; ²Inter University Narayan¹; **Accelerator Center**

B-41: Next-Generation Interconnects: Ruthenium and Ruthenium Alloys for Improved EM Resistance and Low Resistivity: Minju Kang¹; ¹Sungkunkwan

MATERIALS SYNTHESIS AND PROCESSING

Advances in Bcc-Superalloys — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee, TMS: Refractory Metals & Materials Committee

Program Organizers: Alexander Knowles, University of Birmingham; Christopher Zenk, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Howard Stone, University of Cambridge; Oleg Senkov, Air Force Research Laboratory; Eric Lass, University of Tennessee-Knoxville; Thomas Hammerschmidt, Ruhr University **Bochum**

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Sandy Knowles, University of Birmingham; Christopher Zenk, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

D-3: Design of Novel Intermetallic Reinforced Nano-Structured Steels for Nuclear: Iris Carneiro¹; Luke Howard¹; Alexander Knowles¹; ¹University of Birmingham

BIOMATERIALS

Advances in Biomaterials for Bioink Formulation and 3D Printing of Scaffolds — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Changxue Xu, Texas Tech University; Yifei Jin, University of Nevada Reno; Zhengyi Zhang, Huazhong University of Science and Technology; Jun Yin, Zhejiang University

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

A-2: 3D Printing of Mechanically Reinforced Hydrogels Based on Ketoenamine-Crosslinked Polyrotaxane Network: Kundo Park¹; Grace Hu¹; Zeqing Jin¹; Dan Zheng²; Chenfeng Ke²; Grace Gu¹; ¹University of California Berkeley; ²Washington University in St. Louis

A-3: Enhanced Mechanical Properties of 3D Printed Gelatin Methacryloyl (GelMA)-Based Hydrogels for Peripheral Nerve Recovery: Yerim Lee¹; Jaewon Kim¹; Prabir Patra²; Jahyun Koo¹; ¹Korea University; ²Marshall University

A-4: Rapid 3D Printing of Electro-Active Hydrogels: Wenbo Wang¹; Xiangfan Chen¹; ¹Arizona State University

MATERIALS SYNTHESIS AND PROCESSING

Advances in Ceramic Materials and Processing — Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Bowen Li, Michigan Technological University; Dipankar Ghosh, Old Dominion University; Eugene Olevsky, San Diego State University; Kathy Lu, University of Alabama Birmingham; Faqin Dong, Southwest University of Science and Technology; Ruigang Wang, Michigan State University; Alexander Dupuy, University of Connecticut; Jinhong Li, China University of Geosciences; Gregory Thompson, University of Alabama; Babak Anasori, Purdue University

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Bowen Li, Michigan Technological University; Jinhong Li, China University of Geosciences

D-4: Characterization of Bauxite Residue for Feasibility Study of Its Application in the Ceramic Construction Industry: Marcus Mendes¹; Leonardo Pedrot¹; Flávio Ferreira¹; José Maria Carvalho¹; Beatryz Mendes¹; ¹Universidade Federal de Viçosa

Degradation of Orange II Dye of Zn Doped Copper Oxide Thin Films Deposited by Spin Coating Method: Madiha Zerouali¹; Dikra Bouras²; Mamoun Fellah³; Radouane Daira¹; Regis Barille⁴; Manel Sellam⁵; ¹Laboratory of Research on the Physical-Chemistry of Surfaces and Interfaces; ²University of Souk-Ahras; ³ABBES Laghrour University; ⁴Université dAngers/UMR CNRS; ⁵University Larbi Ben Mhidi

D-5: Incorporation of Corn Straw in Soil-Cement Bricks and the Effects on Their Characteristics: João Antônio Jeunon¹; Juan Ferreira¹; Euzebio Zanelato²; Samuel Dutra Júnior¹; Markssuel Marvila¹; Afonso Azevedo³; ¹Universidade Federal de Viçosa - CRP; ²IFES; ³Universidade Estadual Do Norte Fluminense

Na2SO4·10H2O Phase Change Cold Storage Material: Composition Optimization and Performance Regulation: Qirui Wang¹; Hongen Nian¹; Xiaoling Tan²; Xiang Wang³; Yujing Zhao¹; Zhaoying Wang¹; ¹Qinghai Salt Lake Research Institute, Chinese Academy of Sciences; ²Qinghai University; ³Peking University

D-6: Nacre-Inspired CuAgTi Alloy-Alumina Lamellar Composites: *Taeyoon Kim*¹; Je In Lee¹; ¹Pusan National University

Structural Comparative Study of Zirconium-Zinc Oxide Thin Films on Ceramic and Glass Substrates: Dikra Bouras¹; Mamoun Fellah²; Regis Barille³; Madiha Zerouali⁴; Nawel Hambli¹; Merah Neçar⁵; ¹University of Souk-Ahras; ²ABBES Laghrour University; ³Université dAngers/UMR CNRS; ⁴Laboratory of Research on the Physical-Chemistry of Surfaces and Interfaces; ⁵King Fahd University of Petroleum and Minerals

Synthesis and Dielectric Properties of BaTiO₃ Solid Solutions Co-Doped with La³+ and Bi³+: María Inés Valenzuela Carrillo¹+; Nely Esmeralda Hernández Pérez¹+; Miguel Pérez Labra¹+; Francisco Raúl Barrientos-Hernandez¹+; José Antonio Romero Serrano²+; Martín Reyes Pérez¹+; Alejandro Cruz Ramírez²+; Julio César Juárez Tapia¹+, ¹Autonomous University of Hidalgo State; ²Instituto Politécnico Nacional

Synthesis and Structural and Dielectric Characterization of Capacitors Based on BaTiO3 Co-Doped Er3+ And Cr3+: E.R Ramirez-Martinez¹; M. Pérez-Labra¹; F.R. Barrientos-Hernández¹; J.A. Romero-Serrano²; A. Hernández-Ramírez²; M. Reyes-Pérez¹; M.I Valenzuela-Carrillo¹; G. Urbano-Reyes¹; I.P. Zamudio-García¹; ¹Autonomous University of Hidalgo; ²Instituto Politécnico Nacional

Synthesis of Na-P1 Zeolite from Expanded Perlite: Imanol González-Ángeles¹; *M. Garcia-Ramirez¹*; F.R. Barrientos-Hernández¹; María I. Reyes-Valderrama¹; Julio Juárez-Tapia¹; M. Reyes-Pérez¹; ¹Universidad Autonoma del Estado de Hidalgo

Thermodynamic Study of Calcium Oxide Evaporation Under Various Redox Conditions: Sergey Shornikov¹; ¹Vernadsky Institute of Geochemistry of RAS

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Advances in Magnetism and Magnetic Materials — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Magnetic Materials Committee

Program Organizers: Matthew Kramer, Ames Laboratory; Eric Theisen, Energy & Environmental Research Center; Yaroslav Mudryk, Ames National Laboratory/Iowa State University; Daniel Salazar, BCMaterials

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chair: Radhika Barua, Virginia Commonwealth University

B-9: A Study on the Improvement of Coercivity of Nd-Fe-B Permanent Magnets by GBDP of Ternary Alloy: Hyun Bin Joo¹; Seung-Yeon Park¹; Seong Min Choi¹; Se Rin Jeong¹; Soong Ju Oh²; Kyoung-Mook Lim¹; ¹Korea Institute of Industrial Technology; ²Korea University

B-10: Evolution and Effect of Nd₆Fe₁₃Si-type Grain Boundary Phase on the Coercivity of Nd-Fe-B Sintered Magnet: *Ikenna Nlebedim*¹; Xubo Liu¹; ¹Ames National Laboratory

B-11: Investigation of Ultra-High-Performance Soft Magnetic Materials with Controlled Nanocrystal Growth Through Nucleation-Dominant Composition Design: Subin An¹; Wook Ha Ryu²; Eun Soo Park¹; ¹Seoul National University; ²Kumoh National Institute of Technology

Magnetic High Entropy Oxide for Water Pollutant Degradation: Sanjula Pradhan¹; Nand Prasad¹; ¹IIT BHU

B-12: Magnetocaloric Effect for Gd(Mn,Fe,Co)Si Alloys: Przemyslaw Zackiewicz¹; Aleksandra Kolano-Burian¹; ¹Lukasiewicz Research Network - Imn

B-13: Medium Entropy Fe-Co-Ni-B-Al Alloys Obtained by Spark Plasma Sintering: Tymon Warski¹; Krzysztof Pecak¹; Anna Czech¹; Anna Wojcik²; Robert Chulist²; Wojciech Maziarz²; Maciej Kowalczyk³; Lukasz Hawelek¹; ¹Lukasiewicz Research Network - Institute of Non-Ferrous Metals; ²Institute of Metallurgy and Materials Science of Polish Academy of Sciences; 3Warsaw University of Technology

Synthesis and Characterization Magnetic Membranes Based on PVA-SPION for Hyperthermia and Dielectric Applications: Imaddin Al-Omari¹; Anjitha Biju²; Ajeesh Somakumar³; Cyriac Joseph⁴; Francis Fernandez⁵; Harikrishna Varma P R⁵; TN Narayanan⁶; MR Anantharaman²; ¹Sultan Qaboos University; ²Cochin University of Science and Technology; ³Polish Academy of Sciences; ⁴Mahatma Gandhi University; ⁵Sree Chitra Tirunal Institute for Medical Sciences and Technology; 6Tata Institute of Fundamental Research

B-14: Synthesis and Magnetic Evaluation of Carbonaceous **Spinel Ferrite Nanocomposites**: Naveen Narasimhachar Joshi¹; Shivashankar S. A.²; ¹North Carolina State University; ²Indian Institute of Science

B-44: Thermodynamic Investigation of Rare-Earth Reduced Magnet Systems: Emily Moore¹; Kate Elder¹; Brandon Bocklund¹; Akila Raja¹; German Samolyuk¹; Olena Palasyuk²; Andriy Palasyuk²; David Parker³; Aurélien Perron¹; Scott McCall¹; ¹Lawrence Livermore National Laboratory; ²Ames National Laboratory; ³Oak Ridge National Laboratory

MECHANICS OF MATERIALS

Advances in Multi-Principal Element Alloys IV: Mechanical Behavior — Poster Session I

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Jennifer Carter, Case Western Reserve University; E-Wen Huang, National Yang Ming Chiao Tung University; T.S. Srivatsan, University of Akron; Xie Xie, Ford Motor Company; Jamieson Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

E-1: A Machine Learning Approach for the Prediction of Formability and Thermodynamic Stability of Refractory Compositionally Complex Alloy Containing Mo and W: Carla Joyce Nocheseda¹; Tao Liang¹; Haixuan Xu¹; Eric Lass¹; ¹The University of Tennessee

E-2: As-Cast Microstructure, Hardness and High Temperature Creep Behavior of an Equimolar CoNiFeCr Alloy; Effects of a Ti or Ta Addition: Yasmina El Hadad¹; Lyna Amrouche¹; Romin Chevalme¹; Siouare Hammi¹; Lionel Aranda¹; Patrice Berthod¹; ¹University of Lorraine

Cluster-Model-Based Composition Design Method for High-Entropy Alloys: Shuang Zhang¹; Cunlei Zou¹; Wanyu Ding¹; Yajun Zhao¹; Chuang Dong¹; ¹Dalian Jiaotong University

Compositional Effect on Microstructure and Deformation Behavior of Metastable Refractory High-Entropy Alloys: Yunjong Jung¹; Kangjin Lee¹; Kanghyun Park¹; Chanho Lee²; Gian Song¹; ¹Kongju National University; ²Auburn University

Deciphering the Operative Micromechanisms Affecting the Strain Rate Sensitivity in (FeCrNi)99Si1 Medium Entropy Alloy: Swati Mahato¹; Krishanu Biswas¹; Nilesh Gurao¹; ¹India Institute of Technology Kanpur

Development of Ductile Refractory High Entropy Alloys with High Strength via Controlling Cold-Rolling and Annealing Process: Kangjin Lee¹; Yunjong Jung¹; Kanghyun Park¹; Chanho Lee²; Gian Song¹; ¹Kongju National University; ²Auburn University

E-3: Development of γ '-Strengthened Medium-Entropy Alloys with Mitigated Mechanical Instability at Extremely Low Temperatures: Jun Seok Lee¹; Tae Hyeong Kim¹; Jungwan Lee²; Young-Kyun Kim³; Young-Sang Na³; Jae Wung Bae¹; ¹Pukyong National University; ²Pohang University of Science and Technology (POSTECH); ³Korea Institute of Materials Science (KIMS)

E-4: Effect of Microstructure on Hot Deformation and Dynamic Recrystallization Behavior of WMoFeNi MPEA Alloy Regulating Alloy Composition: Riya Barua1; Thomas Balk1; 1University of Kentucky

E-5: Effect of Processing Route on the Morphology of Fe-Rich Phase and Concurrent Mechanical Response in Cu-Rich Compositionally Complex Alloy: Deeksha Mishra1; Rajiv S. Mishra2; Jaiveer Singh¹; Saurabh S. Nene¹; ¹Indian Institute of Technology Jodhpur; ²University of North Texas

E-52: Effect of Ti Addition on Strengthening and Deformation Mechanism of Ni-Rich High Entropy Alloy Synthesized via Spark Plasma Sintering: An Experimental and Atomistic Approach: Sudhansu Maharana¹; Manashi Sabat¹; D.K.V.D. Prasad¹; Tapas Laha¹; ¹Indian Institute of Technology Kharagpur

E-6: Effects of Molybdenum and Silicon Co-doping on Microstructures and Mechanical Properties of CoCrNi Medium Entropy Alloy: Sheng-Wei Chen1; Chun-Hway Hsueh1; 1National Taiwan University

Engineering Multi-Principal Element Alloys for Hard Metal Binders: Tomi Suhonen¹; Song Lu¹; Tatu Pinomaa¹; Tom Andersson¹; Luis Vallejo Rodriguez¹; Alexandre Viardin²; Markus Apel²; Anssi Laukkanen¹; ¹VTT Technical Research Center of Finland; ²Access Technology

E-7: Enhanced Strain Hardening During Plastic Deformation of FCC Multi-Principal Element Alloys with L12 Nanodomains: Wenle Xu1; Daniel Salas¹; Bibhu Sahu¹; Ibrahim Karaman¹; Raymundo Arroyave¹; Mrinalini Mulukutla¹; Trevor Hastings¹; ¹Texas A&M University

E50: Enhancement of Mechanical Properties of Ni-Based ODS HEA by Optimization of Oxide Dispersoid Content: Manashi Sabat¹; Sudhansu Maharana¹; Tapas Laha¹; ¹Indian Institute of Technology Kharagpur

Composition-Temperature-Grain-Strength **Establishing** Relationship of FCC Complex Concentrated Alloys: Dong Whan Kim¹; Heh Sang Ahn¹; Wook Ha Ryu¹; Hwi Yoon Jeong²; Je In Lee²; Eun Soo Park¹; ¹Seoul National University; ²Pusan National University

E-9: Expansion of Natural Mixing Guided Design via Understanding the Solidification Behavior: Jae Kwon Kim¹; Min Seok Kim¹; Eun Soo Park¹; ¹Seoul National University

E-10: Harnessing Defects for Enhanced Strength in Medium Entropy Alloys: Ning Zhang¹; Charles Matlock¹; ¹Baylor University

E-11: Heterogeneous Failure Mechanisms in an Eutectic High Entropy Alloy Under High Strain-Rate Loading: Soumya Dash1; Yu Zou¹; ¹University of Toronto

E-12: High-Density Nanoprecipitates and Phase Reversion via Maraging Enable Ultrastrong Yet Strain-Hardenable Medium-Entropy Alloy: Hyeonseok Kwon¹; Praveen Sathiyamoorthi²; Manogna Gangaraju²; Alireza Zargaran¹; Jaemin Wang¹; Yoon-Uk Heo¹; Stefanus Harjo³; Wu Gong³; Byeong-Joo Lee¹; Hyoung Seop Kim¹; ¹Postech; ²Indian Institute of Technology (BHU) Varanasi; ³J-PARC center

E-47: High and Moderate Temperature Deformation Modeling of High Entropy Alloys: Charles Xu¹; Gopal Viswanathan¹; Yunzhi Wang¹; Stephen Niezgoda¹; ¹The Ohio State University

E-13: In-Situ Compression of Al5Co35CrFe2ONi5 Alloy Studied Using Synchrotron Radiation: Pablo Pérez Zubiaur¹; *Gerardo Garces*¹; Judit Medina¹; Andreas Stark²; Norbert Schell²; Paloma Adeva¹; ¹Cenim-Csic; ²HEREON

E-14: In-Situ Deformation Study of Non-Shearable Nanodispersion Strengthened Refractory Complex Concentrated Alloys: Md Al Amin Bhuiyan Shuvo¹; Jaekwon Kim²; Eun Soo Park²; Hyunseok Oh¹; ¹University of Wisconsin-Madison; ²Seoul National University

E-46: In situ Neutron Diffraction Study on L12-Precipitation-Strengthened (FeCoNi)86Al7Ti7 High Entropy Alloy: Lia Amalia¹; Zongyang Lyu¹; Peter Liaw¹; Yanfei Gao¹; ¹University of Tennessee

Interplay Between Lattice Distortion and Bond Stiffness Towards Strengthening of Refractory BCC High Entropy Alloys: Dharmendra Pant¹; Dilpuneet Aidhy¹; ¹Clemson University

E-15: Investigation of Elastic and Plastic Deformation Behavior of Nature Selected Refractory High Entropy Alloy: Jae Kwon Kim¹; Ji Young Kim¹; Hyun Seok Oh²; Eun Soo Park¹; ¹Seoul National University; ²University of Wisconsin-Madison

Investigation of Mechanical and Corrosion Behavior of Nitinol for Biomedical Implant Applications: Nabila Bouchareb¹; Mamoun Fellah¹; Naouel Hezil¹; Imen Rim¹; ¹ABBES Laghrour-University Khenchela

MECHANICS OF MATERIALS

Advances in Multi-Principal Element Alloys IV: Mechanical Behavior — Poster Session II

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Peter Liaw, University of Tennessee; Michael Gao, National Energy Technology Laboratory; Jennifer Carter, Case Western Reserve University; E-Wen Huang, National Yang Ming Chiao Tung University; T.S. Srivatsan, University of Akron; Xie, Ford Motor Company; Jamieson Brechtl, Oak Ridge National Laboratory; Gongyao Wang, Globus Medical

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

E-16: Low Cycle Fatigue of a Medium Entropy Alloy with Short-Range Ordering: Hugh Shortt¹; Nathan Grain¹; Xuesong Fan¹; Jochi Tseng²; Michael Gao³; Lizhi Ouyang⁴; Peter Liaw¹; ¹University of Tennessee Knoxville; ²Spring-8; ³National Energy Technology Laboratory; ⁴Tennessee State University

E-17: Mechanical Behavior of 16 Refractory High Entropy Alloys Under Compressive and Tensile Stress: A Molecular Dynamics Study: Abdullah Al Mamun¹; Yanqing Su¹; Xiang-Guo Li²; ¹Utah State University; ²Sun Yat-Sen University

E-18: Microstructural Evolution and Mechanical Behavior of HfTiZrNbx Refractory High-Entropy Alloys Under Different Annealing Conditions: Joseph Tamirka Bawah¹; Peter K. Liaw¹; Eric. A. Lass¹; ¹University of Tennessee Knoxville

E-19: Microstructure and Mechanical Properties of In-Situ TiC Reinforced TaNbVTi High Entropy Alloy Matrix Composites: Hyeok Jae Choi¹; *Jin Kyu Lee*¹; ¹Kongju National University

E-20: Modeling Dense Alloys in Discrete Dislocation Dynamics: $Yang\ L^{i}$; Benjamin Anglin²; Ryan Sills¹; ¹Rutgers University; ²Naval Nuclear Laboratory

E-21: Overcoming Strength-Ductility Trade-Off Through Periodic Spinodal Decomposition in Ferrous Medium-Entropy Alloy: Hyojin Park¹; Farahanz Haftlang²; Yoon-Uk Heo¹; Jae Bok Seol³; Zhijun Wang⁴; Hyoung Seop Kim¹; ¹Pohang University of Science and Technology; ²Northwestern University; ³Gyeongsang National University; ⁴Northwestern Polytechnical University

E-22: Oxidation Behavior of Low-Density Non-Equiatomic AlCuFeNiTi High Entropy Alloy: Manoj Mugale¹; Mayank Garg¹; Satyavan Digole¹; Sanoj Karki¹; Amit Choudhari¹; Tushar Borkar¹; ¹Cleveland State University

Precipitation/TRIP-Induced Heterogeneous Microstructures in Non-Equiatomic CoCrNi Medium Entropy Alloys to Achieve Superior Strength-Ductility Combination: Yu-Hsuan Huang¹; Chun-Hway Hsueh¹; ¹National Taiwan University

E-23: Refractoriness, Thermal Expansion Behavior and Microstructure Stability at 1200°C of an Equimolar Cast CoNiFeCr Alloy and Its Versions with Addition of Titanium or of Tantalum: Romin Chevalme¹; Siouare Hammi¹; Yasmina El Hadad¹; Lyna Amrouche¹; Lionel Aranda¹; Patrice Berthod¹; ¹University of Lorraine

E-24: Revealing the Deformation Mechanism Competition in Multi-Principal Element Alloys by Nanobending Experiments: Novin Rasouli¹; Matthew Daly¹; ¹University of Illinois at Chicago (UIC)

Sequential Mechanical Alloying of AlNbTaTiV Particles: Phase Formation and Microstructural Evaluation: Marvin Tolentino¹; Aisa Grace Custodio¹; Gobinda Saha¹; Clodualdo Aranas¹; *Jubert Pasco*¹; ¹University of New Brunswick

E-25: Significant Improvement of Strain Hardening Through Massive Coherent Boundaries in Nano-Lamellar Structured Complex-Concentrated Alloys: Tae Jin Jang¹; You Na Lee¹; Ju-Hyun Baek¹; Sang-Ho Oh²; Yeon Taek Choi²; Byeong-Joo Lee²; Hyoung Seop Kim²; Alireza Zargaran²; Seok Su Sohn¹; ¹Korea University; ²Pohang University of Science and Technology

Strength-Ductility Synergies in CuCoFeMnNi High-Entropy Alloys: Effects of Deformation and Recrystallization: *Nitish Bibhanshu*

E-26: Stretch Formability and Cryogenic Environmental Applicability of Fex(CoNi)90-xCr10 Ferrous Medium-Entropy Alloys: Yeon Taek Choi¹; Jihye Kwon¹; Rae Eon Kim¹; Shin-Yeong Lee¹; Do Won Lee¹; Jaehun Kim¹; Jae Wung Bae²; Hyoung Seop Kim¹; ¹Pohang University of Science and Technology; ²Pukyong National University

Study of the Serration Deformation Mechanisms at 15 K: You Sub Kim¹; Taeuk Kang¹; Soon-Ku Hong¹; Jamieson Brechtl²; Mikhail Lebyodkin³; Yi-Hsuan Cheng⁴; E-Wen Huang⁴; Peter K. Liaw⁵; Stefanus Harjo⁶; Wu Gong⁶; Soo Yeol Lee¹; ¹Chungnam National University; ²Oak Ridge National Laboratory; ³Université de Lorraine; ⁴National Yang Ming Chiao Tung University; ⁵University of Tennessee; ⁵Japan Atomic Energy Agency

Study on Superplastic Behavior of L21 Precipitate-Hardened BCC High Entropy Alloy: Kanghyun Park¹; Sang-Hun Shim²; Kangjin Lee¹; Yunjong Jung¹; Ka Ram Lim²; Chanho Lee³; Gian Song¹; ¹Kongju National University; ²Korea Institute of Materials Science (KIMS); ³Auburn University

E-27: The Rule of Mixtures, A New Evans-Polanyi-Semenov Relation, and Twinning Predictions for High Entropy Transition Metal Ceramics: Marium Mostafiz Mou¹; Tarek Haque¹; Sam Daigle¹; Donald Brenner¹; ¹North Carolina State University

Theory Guided Combinatorial Design of Metastable High Entropy Alloys: Chinmoy Mahata¹; Sadhasivam M.¹; Pradeep K. G.¹; ¹IIT Madras

E-28: Tribological Stress Field Model Validation by Using Deformation Twins as Probes: *Antje Dollmann*¹; ¹KIT

E-29: Unveiling Yield Strength of High Entropy Alloys Using Physics-Enhanced Machine Learning Under Diverse Experimental Conditions: Jeong Ah Lee1; Roberto B. Figueiredo2; Hyojin Park1; Jae Hoon Kim3; Hyoungseop Kim1; 1Pohang University of Science and Technology (POSTECH); ²Universidade Federal de Minas Gerais; ³Cornell Tech

E-30: Welding-Driven Compositional Heterogeneity Enhances Cryogenic Mechanical Properties in Metastable Ferrous Medium-Entropy Alloy Welds: Yoona Lee1; Jeong Min Park2; Nokeun Park3; Hyoung Seop Kim⁴; Namhyun Kang¹; ¹Pusan National University; ²Korea Institute of Materials Science: ³Yeungnam University: ⁴Pohang University of Science and Technology

MATERIALS SYNTHESIS AND PROCESSING

Advances in Surface Engineering VII — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Surface Engineering Committee

Program Organizers: Bharat Jasthi, South Dakota School of Mines & Technology; Tushar Borkar, Cleveland State University; Rajeev Gupta, North Carolina State University; Ning Zhu, Baylor University

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Advanced Nanocrystalline Oxide Coatings with High Conformality for 3D Complex Cutting Tools: Joonbong Lee1; Dae Haa Ryu1; Ki Buem Kim¹; Taekjib Choi¹; ¹Sejong University

D-7: Controlling the Spangle Size and Crystallographic Texture of Hot-Dip Galvanized Coatings Through Substrate Surface Modification: Eui-Jin Jung¹; Gu-Jin Chung¹; Joo-Youl Huh¹; Tae-Chul Kim²; ¹Korea University; ²POSCO Techinical Research Laboratories

D-8: Correlating Pile Up Height from Indentation with Surface Residual Stress in H-Shaped Steel Beam Processed by Quenching and Self-Tempering: So-Hyeon Lee1; Gyeong-Seok Hwang1; Ju-Young Kim1; 1UNIST (Ulsan National Institute of Science and Technology)

Enhancing Electrochemical Performance of LiCoO₂ Cathodes With BaTiO, and Ba(Zr,Ti)O, Coatings of Different Dielectric Properties for High-Rate Applications: Seokha Heo1; Moonhee Choi2; 1Pusan National University; ²Korea Institute of Ceramic Engineering & Technology

Enhancing High Rate Performance of Cathodes Through Surface Modification and Dielectric Coating: JiHve Seo1: Moonhee Choi1: ¹Korea Institute of Ceramic Engineering & Technology

D-62: High-Temperature Wear Characteristics According to Nitrided Layer at the AISI H13 Steel Using Controlled Nitriding: Seok Won Son¹; Heon Kang¹; Dae-Young Kim²; Kee-Ahn Lee³; Hyo-Seop Kim1; 1KITECH; 2DS-LIQUID; 3Inha University

Micro-Textured Slippery Aluminium Alloys for Marine Applications: Nishkarsh Srivastava¹; Aaqib Khan¹; Rakesh Choubey¹; Sriharitha Rowthu¹; ¹Indian Institute of Technology Gandhinagar

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Alloys and Compounds for Thermoelectric and Solar Cell Applications XIII — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Hsin-Jay Wu, National Taiwan University; Sinn-wen Chen, National Tsing Hua University; Franck Gascoin, CNRS Crismat Unicaen; Philippe Jund, Montpellier University; Yoshisato Kimura, Tokyo Institute of Technology; Takao Mori, National Institute for Materials Science; Wan-Ting Chiu, Institute of Science Tokyo; Chenguang Fu, Zhejiang University

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

B-15: Cation Disorder as an Effective Strategy for Improving Near Room-Temperature Performance of SnSe: Bo-Chia Chen1; Hsin-Jay Wu¹; ¹National Yang-Ming Chiao Tung University

B-16: Co-Based Diffusion Barrier for n- and p-Type Skutterudite-Based Thermoelectric Materials Obtained via Pulse Plasma Sintering: Miroslaw Kruszewski¹; Konrad Cymerman¹; Jakub Flaga¹; Marcin Chmielewski²; Dorota Moszczyńska¹; Łukasz Ciupiński¹; ¹Warsaw University of Technology; ²Łukasiewicz Research Network - Institute of Microelectronics and Photonics

B-17: Development of Thin-Film Diffusion Barrier for AgSbTe, Single Leg Thermoelectric Device: Yi-Hsuan Lai¹; Yun-Han Huang Lu1; Hsin-jay Wu1; 1National Yang Ming Chiao Tung University

B-18: Enhanced Thermoelectric Performance of n-Type PbTe: Ming-Yu Cheng¹; Wen-Ching Wu¹; Hsin-jay Wu¹; ¹National Yang Ming Chiao Tung University

B-19: Enhancing Thermoelectric Performance of Ta, Sb Added NbCoSn Half-Heusler with the Atomic-Scale Microstructure Analysis: Donghyeon Chae1; Pyuckpa Choi1; Hail Park1; Chanwon Jung²; ¹KAIST; ²Pukyong National University

B-20: Enhancing Thermoelectric Performance of p-Type Bi₂Te₂ via Light-Doping and Defect Engineering: Cheng-Yu Tsai1; Hsin-Jay Wu¹; ¹National Yang Ming Chiao Tung University

B-21: Hybridization of Bi, Te, with Self-Healing Ni-bpyPTD for Advanced Thermoelectric Device: Jen-Hsun Weng¹; Wan-ting Yen¹; Hsin-jay Wu¹; ¹National Yang Ming Chiao Tung University

Influence of SnTe Stoichiometry on Thermoelectric Performance: Chun-Han Ku1; Alber T. Wu1; 1National Central University

B-22: Phase Equilibria of Co-Ge-Sb System: Cheng-Hsi Ho1; Yung-Chun Tsai¹; Hong-Dian Chiang¹; Sinn-wen Chen¹; ¹National Tsing Hua University

B-23: Whisker Inhibition and Thermoelectric Properties Enhancement in Silver Chalcogenide Materials: Yun-Han Huang Lu¹; Hsin-Jay Wu¹; ¹National Yang Ming Chiao Tung University

BIOMATERIALS

Bio-Nano Interfaces and Engineering Applications — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee

Program Organizers: Candan Tamerler, University of Kansas; Kalpana Katti, North Dakota State University; Hannes Schniepp, William & Mary; Terry Lowe, Colorado School of Mines; Po-Yu Chen, National Tsing Hua University; David Kisailus, University of California-Irvine

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

3D Printed Scaffolds with Metal Nanoparticles as Sensing Modalities: Nate Lucas¹; Taylor Bader¹; Candan Tamerler¹; ¹University of Kansas Bioengineering

Synthetic Salmon Calcitonin Alters the Mineral: Matrix Nanostructure of Mice with Chronic Kidney Disease: Elizabeth Montagnino¹; William Bush¹; Thomas Siegmund¹; John Howarter¹; Rachel Surowiec¹; ¹Purdue University

BIOMATERIALS

Biological Materials Science — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Biomaterials Committee

Program Organizers: Yuxiao Zhou, Texas A&M University; Ling Li, University of Pennsylvania; Steven Naleway, University of Utah; Ning Zhang, Baylor University; Grace Gu, University of California, Berkeley; Debora Lyn Porter, University of California Merced

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Yuxiao Zhou, Texas A&M University; Steven Naleway, University of Utah; Ling Li, University of Pennsylvania; Grace Gu, University of California, Berkeley; Debora Lyn Porter, University of California Merced; Ning Zhang, Baylor University

Dendrometric Characteristics of Reforested Brazilian Wood Trees Paubrasilia Echinata Lam: Sinval Marques; Jose Oliveira¹; Fabrício Gonçalves1; 1UFES

A-5: Deriving Biodegradable Polymers From Spent Coffee Grounds: Cristina Gandolfo¹; Richard Alan Gross¹; Josh Draper¹; ¹Rensselaer Polytechnic Institute

Durability Performance of Enzymatic Cementitious Materials: Sara Heidarnezhad¹; Nima Rahbar¹; ¹Worcester Polytechnic Institute

A-6: Effects of Intratrabecular Architecture on the Mechanical Behavior of Trabeculae: Chenxu Yue¹; Yichun Tang¹; Chengyao Gao¹; Yuxiao Zhou²; Jing Du¹; ¹Pennsylvania State University; ²Texas A&M University

A-7: Exploring Biomechanical Variations Between Medial and Adventitial Layers of Porcine Aorta: Hanwen Fan¹; Hutomo Tanato¹; Yuxiao Zhou1; 1Texas A&M University

A-8: Micro-Mechanical Structure-Property Relationships in Filamentous Fungi for Biomedical Applications: Jessica Redmond¹; Ihsan Elnunu¹; James Gallagher¹; Steven Naleway¹; ¹University of Utah

A-9: Micromechanical Investigations of the Remarkable Damage Tolerance in Tooth-Enamel of Hadrosaurid Dinosaurs: Amruta Vaghela¹; Soumya Varma²; Sid Pathak¹; ¹Iowa State University; ²KLA Corporation

A-10: Mushroom Biotemplating Material Properties and Methods: Emmely Villlata¹; Debora Lyn Porter¹; ¹University of California, Merced

A-11: Orientation-Dependent Biomechanical Properties of Bovine Tibial Cortical Bone: Hutomo Tanoto¹; Hanwen Fan¹; Yuxiao Zhou¹; ¹Texas A&M University

A-12: Survive the Cold: On the Thermal Protective Roles of the Hairy Trichomes From the Common Mullein Leafs: Yang Geng¹; Asma Meem²; Christian Machado²; Ruduan Yuan³; James Weaver⁴; Meng Li³; Kyoo-Chul Park²; Ling Li¹; ¹University of Pennsylvania; ²Northwestern University; ³Chongqing University; ⁴Harvard University

A-13: Understanding and Modifying the Microstructure of Fungi for Tunable Mechanical Properties: Atul Agrawal¹; Steven Naleway¹; ¹University of Utah

MATERIALS SYNTHESIS AND PROCESSING

Composite Materials: Sustainable and Eco-Friendly Material Development and Applications — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Composite Materials Committee

Program Organizers: Yahya Al-Majali, Ohio University; Brian Wisner, Ohio University; Ioannis Mastorakos, Clarkson University; Simona Hunyadi Murph, Savannah River National Laboratory; Muralidharan Paramsothy, NanoWorld Innovations (NWI)

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chair: Yahya Al-Majali, Ohio University

D-59: Comparitive Analysis of the Flexural Resistance of Epoxyde Hybrid Composites Reinforced With Coconut Fiber: Rebeca Seixas Quintanilha Gomes¹; Felipe Perisse Duarte Lopes¹; Pedro Rabello Neves¹; David Coverdale Rangel Velasco¹; Carlos Fontes Vieira¹; ¹Universidade Estadual do Norte Fluminense

D-60: Comparative Analysis of the Tensile Resistance of Epoxyde Hybrid Composites Reinforced With Coconut Fiber: Rebeca Seixas Quintanilha Gomes¹; Felipe Perisse Duarte Lopes¹; Pedro Rabello Neves¹; David Coverdale Rangel Velasco¹; Carlos Fontes Vieira¹; ¹Universidade Estadual do Norte Fluminense

Eco-Friendly Photocatalytic Degradation of Textile Dye by Nickel-Doped Zinc Oxide Synthesized via Spray Pyrolysis Under UV and Solar Irradiation: Manel Sellam¹; Bouras Dikra²; Mamoun Fellah³; Zerouali Mediha⁴; ¹Laboratoire des Sciences Analytiques, Matériaux et Environnement (LASME), Université Larbi ben M'Hidi; ²University of Souk-Ahras, Algeria; ³ABBES Laghrour University; ⁴Physico Chemistry of Surfaces and Interfaces Research Laboratory (LRPCSI)

Effect of Heat Treatment on Wear Mechanism of TiC/FC250 Composites: Yujin Lim¹; ilguk Jo¹; Jaeseoung Choi¹; ¹Dong-Eui University

Effect of Replacing Fly Ash With Portland Cement in the Residence on the Compression of Mortars at 7, 14 and 28 Days: Hugo Garcia Ortiz1; Julio Cesar Juarez Tapia1; Alma Victoria Sánchez Mendoza1; Marco Antonio Escamilla García¹; Francisco Omar Lagarda García¹; ¹Universidad Autonoma del Estado de Hidalgo

Recycling of Construction Waste in the Composistion of Artificial Finishing Stones: Marcelo Reis¹; Carlos Fontes Vieira¹; Henry Lopera²; Afonso Azevedo¹; Elaine Carvalho¹; ¹State University of North Fluminense Darcy Ribeiro-UENF; 2Universidad de Antioquia

Study on the Effect of High Active Solid Waste Mineral Admixture on Mechanical Properties of High-Performance Concrete: Gang Du¹; Canhua Li¹; Bo Gao¹; Jiamao Li¹; Lanyue Zhang¹; ¹Anhui University of Technology

Use of Steel Fibers to Develop High-Strength Artificial Stones: José Lucas Lirio¹; José Alexandre Tostes Linhares Júnior¹; Elaine de Carvalho¹; Afonso de Azevedo¹; Dialma Souza¹; Carlos Maurício Vieira1; 1UENF

MATERIALS SYNTHESIS AND PROCESSING

Electrical Steels — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Magnetic Materials Committee, TMS: Steels Committee

Program Organizers: Youliang He, CanmetMATERIALS, Natural Resources Canada; Kester Clarke, Los Alamos National Laboratory; Jun Cui, Iowa State University

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chair: Youliang He, CanmetMATERIALS, Natural Resources Canada

Effect of Intercritical Annealing Time During Hot Rolling on the Microstructure and Magnetic Properties of Low-C Grain Non-Oriented Electrical Steels With 2% Si: Jesus Garcia Magana¹; Constantin Alberto Hernandez Bocanegra¹; Nancy Margarita Lopez Granados¹; Jose Angel Ramos Banderas¹; ¹Instituto Tecnologico de Morelia

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Electronic Packaging and Interconnection Materials II — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Electronic Packaging and Interconnection Materials Committee

Program Organizers: C. Kao, National Taiwan University; Yu-An Shen, Feng Chia University; Christopher Gourlay, Imperial College London; Fan-Yi Ouyang, National Tsing Hua University; Hiroshi Nishikawa, Osaka University; Hannah Fowler, Sandia National Laboratories; Kazuhiro Nogita, University of Queensland; Praveen Kumar, Indian Institute of Science; Tae-Kyu Lee, Cisco Systems; Yan Li, Samsung Semiconductor Inc.

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chair: Yu-An Shen, Feng Chia University

B-31: Advancing Reliability in Low-Temperature Solders Using Hybrid SAC/SnBi Alloys: Po-Kai Chang¹; Shang-Yang Chen¹; Kelvin Li²; Chang-Meng Wang²; Albert T. Wu¹; ¹Nation Central University; ²Shenmao Technology Inc.

B-32: Designing Mechanically Resilient Thermal Interface Materials: Geeta Pokhrel¹; Chelsea Davis²; John Howarter¹; ¹Purdue University; ²University of Delaware, Newark

B-33: Developing High-Reliability Solder Alloys for Automotive Electronics: Wei-Ting Lin¹; Kelvin Li²; Watson Tseng²; Chang-Meng Wang²; Albert T. Wu¹; ¹National Central University; ²Shenmao Technology Inc.

Electromigration Failure Mechanisms and Microstructural Changes of Silver Sintered Joints Under Different Bonding Thickness: Yun-Chan Kim1; Dong-Yurl Yu1; Shin-Il Kim1; Min-Ji Yu2; Dongjin Byun 3 ; Junghwan Bang 4 ; 1 Korea Institute of Industrial Technology, Korea University; 2 Korea Institute of Industrial Technology, Konkuk University; ³Korea University; ⁴Korea Institute of Industrial Technology

B-34: Innovative Graphene Coated Cu Powder for Sintering in Air Atmosphere: Seoyeong Lee1; Minsu Kim1; Sangwoo Ryu2; 1Korea Institute of Industrial Technology; 2Kyonggi University

B-35: Interconnect-Based Sensor Array for Characterizing Thermal Management of IC Chips: Graham Werner¹; Oliver Trzcinski¹; Weili Cui²; Ping-Chuan Wang¹; ¹SUNY New Paltz; ²Binghampton University

NUCLEAR MATERIALS

Elucidating Microstructural Evolution Under Extreme Environments — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Mukesh Bachhav, Idaho National Laboratory; Boopathy Kombaiah, Idaho National Laboratory; Janelle Wharry, University of Illinois; Assel Aitkaliyeva, University of Florida; Miaomiao Jin, Pennsylvania State University; Farida Selim, Arizona State University ; Nathan Almirall, GE Aerospace

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Mukesh Bachhav, Idaho National Laboratory; Farida Selim, Arizona State University; Nathan Almirall, GE Aerospace

F-1: Advanced In-Situ Strain Mapping for Zr Oxidation by Precession-Assisted 4D-STEM: Yongwen Sun¹; Ying Han¹; Dan Zhou²; Athanassios Galanis³; Alejandro Gomez-Perez³; Starvos Nicolopoulos³; Hugo Garza⁴; Yang Yang¹; ¹The Pennsylvania State University; ²Leibniz-Institut für Kristallzüchtung; ³NanoMEGAS SPRL; 4DENSsolutions

Al-Mg-Si Alloy Sheet Through Cryogenic Two-Speed Rolling Processing Simultaneous Improvement in Strength, Ductility and Microstructural Behavior: Yong Hwan Lee1; Dae Wook Kim1; Uro Heo¹; Hae Woong Yang¹; ¹Pohang Institute of Metal Industry Advancement

F-2: Characterization and Irradiation of YH for Microreactors: Ryan Pena¹; Caitlin Kohnert²; Khalid Hattar³; Chester Ramsey³; Aditya Shivprasad²; Darrell Cheu²; Eric Lang¹; ¹University of New Mexico; ²Los Alamos National Laboratory; ³University of Tennessee

F-3: Irradiation Resistance Behavior Study of MoNbTaVW Refractory High Entropy Alloy Using Molecular Dynamic Simulation: Abdullah Al Mamun¹; Yanqing Su¹; Xiang-Guo Li²; ¹Utah State University; ²Sun Yat-Sen University

F-4: Mechanisms of Chloride-Induced Stress Corrosion Cracking in Welded Spent Nuclear Fuel Canister Steel: Nathan Gehmlich1; Haozheng Qu²; Rebecca Schaller³; Mychailo Toloczko⁴; Janelle Wharry¹; Maria Okuniewski¹; ¹Purdue University; ²GE Vernova Advanced Research Center; 3Sandia National Laboratories; 4Pacific Northwest National Laboratory

Mesoscale Simulation of Performance Degradation of Electronic Devices Caused by Ionizing Radiation: Xiaoyu Guan¹; Michael Tonks1; 1University of Florida

Phase Field Modeling of Isothermal Grain-Growth in Pure Titanium: Aiden Long¹; Md Ali Muntaha¹; Ankit Kumar¹; Sudipta Mondal¹; Nikhilesh Chawla¹; Kenneth Sandhage¹; Janelle Wharry¹; ¹Purdue

F-8: Oxidation Kinetics for UB, in Air Atmospheres: Natasha Engel¹; Jennifer Stansby²; Elizabeth Sooby¹; ¹University of Texas at San Antonio; ²University of New South Wales

F-5: Prediction of Neutron-Irradiated Cavity Microstructures via Dual-Ion Irradiation up to 184 dpa in T91 Steel: Valentin Pauly¹; Gary Was1; 1University of Michigan

F-6: Synergistic Effects of In-Situ Proton Irradiation and Corrosion on Metals and Ceramics in Liquid Pb-4Bi: Wande Cairang¹; Weiyue Zhou¹; Mark Lapington²; Keshav Vasudeva¹; Yong Zhang¹; Minyi Zhang²; Paola Massielle Amadeo¹; Kevin Woller¹; Sara Ferry¹; Felix Hofmann²; Xing Gong³; Michael Short¹; ¹Massachusetts Institute of Technology; ²University of Oxford; ³Shenzhen University

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Energy Technologies and CO2 Management — **Poster Session**

Sponsored by: TMS Extraction and Processing Division, TMS Light Metals Division, TMS: Energy Committee, TMS: Recycling and **Environmental Technologies Committee**

Program Organizers: Onuralp Yucel, Istanbul Technical University; Chukwunwike Iloeje, Argonne National Laboratory; Shafiq Alam, University of Saskatchewan; Donna Guillen, Idaho National Laboratory; Fiseha Tesfaye, Metso Finland Oy, Åbo Akademi University; Lei Zhang, University of Alaska Fairbanks; Susanna Hockaday, Curtin University, WASM; Neale Neelameggham, IND LLC; Hong Peng, University of Queensland; Nawshad Haque, Commonwealth Scientific and Industrial Research Organization; Alafara Baba, University of Ilorin; Tuan Nguyen, University of Queensland; Adam Powell, Worcester Polytechnic Institute; Thomas Battle; Duhan Zhang, Massachusetts Institute of Technology

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Cold Experimental Study on the Gas-Solid Two-Phase Fluidization Characteristics of Fluidized Reduction Reactors: Zhengjiang Yang¹; Mingmei Zhu¹; Chenghong Li¹; Xianwu Zhang¹; ¹Chongqing University

B-24: Industrial Symbiosis for Reduced CO2 Emissions and Energy Optimisation in Ferroalloys Production: Halvor Dalaker¹; Torbjørn Pettersen¹; Bernd Wittgens¹; ¹Sintef

B-25: Influence of Carbon Level on Reaction Behavior of High-Carbon Metallic Briquette in Blast Furnace: Huiqing Tang¹; Yan Liu¹; Jian Yao¹; ¹University of Science and Technology Beijing

Low-Temperature Synthesis and Thermodynamic Properties of the AgGaGeS4 Compound for Potential Applications in Optoelectronics and Gas Sensors: Mykola Moroz¹; Pavlo Demchenko²; Myroslava Prokhorenko³; Bohdan Rudyk¹; Oleksiy Garashchenko¹; Serhiy Prokhorenko³; Oleksandr Lazarenko⁴; Oleksandr Reshetnyak²; Fiseha Tesfaye⁵; Leena Hupa⁶; ¹National University of Water and Environmental Engineering; ²Ivan Franko National University of Lviv; ³Lviv Polytechnic National University; ⁴Lviv State University of Life Safety; ⁵Metso Metals Oy, Åbo Akademi University; ⁶Åbo Akademi University

Numerical Analysis of Coalbed Methane Injection Into Blast Furnace Tuyeres: Xing Peng¹; ¹Hunan Valin LY Steel Company

B-43: Recovery of Base and Minor Metals From By-Products Considering Energy Consumption and CO2 - Minimization: Juergen Antrekowitsch1; 1University of Leoben

B-26: Reduction Kinetics of High-Phosphorus-Iron-Ore Pellet Under Hydrogen Atmosphere: Huiqing Tang1; Yan Liu1; Jian Yao1; ¹University of Science and Technology Beijing

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmental Degradation of Additively Manufactured Materials — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Kinga Unocic, North Carolina State University; Sebastien Dryepondt, Oak Ridge National Laboratory; Michael Kirka, Oak Ridge National Laboratory; Xiaoyuan Lou, Purdue University; Emma White, DECHEMA Forschungsinstitut; Benjamin Adam, Oregon State University; Mark Stoudt, National Institute of Standards and Technology; Xiaolei Guo, Colorado School of Mines

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

C-1: Microstructure and Corrosion Behavior of Ni-Based Coating Alloy: Song Yi Kim¹; JunHee Han¹; Hwi-Jun Kim¹; Min-Ha Lee¹; ¹Kitech

Spheroidization of Refractory Tungsten Metal Powder for Additive Manufacturing Using Inductively Coupled Thermal Plasma: Chulwoong Han1; Song Yi Kim1; Ji-Woon Lee2; 1Kitech; 2Kongju **National University**

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Environmental Degradation of Multiple Principal Component Materials — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Wenjun Cai, Virginia Polytechnic Institute and State University; XiaoXiang Yu, Novelis Inc.; Vilupanur Ravi, California State Polytechnic University Pomona; Christopher Weinberger, Colorado State University; Elizabeth Opila, University of Virginia; Bai Cui, University of Nebraska Lincoln; Mark Weaver, University of Alabama; Bronislava Gorr, Kit; Gerald Frankel, Ohio State University; ShinYoung Kang, Lawrence Livermore National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

C-2: Atomistic Exploration of Orientation-Dependent Tribological Properties of CrCoNiFe at Elevated Temperatures: Anton Hengst¹; Jonathan Cappola¹; Wenjun Cai²; Zhengyu Zhang²; Lin Li¹; ¹Arizona State University; ²Virginia Polytechnic Institute and State University

Exploring the Synergistic Benefits of Al and Ti Addition on Aqueous Passivation of Cr Containing Fe-Cr-Al-Ti Alloys: Kaitlyn Anderson¹; Debashish Sur¹; Samuel Inman¹; Jie Qi¹; John Scully¹; ¹University of Virginia

C-3: Investigation of Electrochemical Behavior of Novel Liquid-Phase Reinforced Cu-Ga-In Ternary Alloys: Mo Rizwan Ahmad Qureshi¹; Rakesh Das²; Chandra Sekhar Tiwary²; Amit Arora¹; ¹Indian Institute of Technology Gandhinagar; ²Indian Institute of Technology Kharagpur

C-4: Metallographic Follow-Up of the Oxidation Progress With Time of Cast Cantor Alloys at 1000°C: Lyna Amrouche1; Romin Chevalme¹; Siouare Hammi¹; Yasmina El Hadad¹; Erwan Etienne¹; Patrice Berthod¹; ¹University Of Lorraine

C-5: Oxidized Surfaces and Deteriorated Subsurfaces of HEAs and MC-Strengthened HEAs Oxidized at High Temperature in Presence of Water Vapor: Patrice Berthod¹; Lionel Aranda¹; Ghouti Medjahdi¹; ¹University Of Lorraine

MECHANICS OF MATERIALS

Fatigue in Materials: Fundamentals, Multiscale **Characterizations and Computational Modeling — Poster Session**

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Orion Kafka, National Institute of Standards and Technology; J.C. Stinville, University of Illinois Urbana-Champaign; Garrett Pataky, Clemson University; Brian Wisner, Ohio University; Krzysztof Stopka, Purdue University; Kelly Nygren, Cornell University

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Effect of Residual Stress in Powder Metallurgy Hot Isostatic Pressing Process: Sam Sobhani¹; Andy Fan¹; ¹Oregon State university

MATERIALS SYNTHESIS AND PROCESSING

Friction Stir Welding and Processing XIII — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Shaping and Forming Committee

Program Organizers: Yuri Hovanski, Brigham Young University; Yutaka Sato, Tohoku University; Piyush Upadhyay, Pacific Northwest National Laboratory; Nilesh Kumar, University of Alabama, Tuscaloosa; Anton Naumov, Peter The Great St. Petersburg Polytechnic University

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

EBSD Analysis of AA7075-T6 Thin Sheets Butt Joints Obtained by Impulse Friction Stir Welding: Keqi Wang¹; Anton Naumov¹; Qibao Li²; Baiyang Chen²; Peihu Gao²; ¹Peter The Great St. Petersburg Polytechnic University; 2Xi'an Technological University

D-9: Friction Stir Butt-Lap Welding of Aluminum to Steel: A New Joint Design to Improve Mechanical Properties: Olivia Russell¹; ¹South Dakota School of Mines

Temperature and Stresses in AA 6082-T6 Friction Stir Spot Welding (FSSW) Using Coupled Eulerian-Lagrangian Finite Element Method: Ahmad Bawagnih1; Fadi Al-Badour1; 1King Fahd University of Petroleum and Minerals

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Functional Nanomaterials — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Nanomaterials Committee

Program Organizers: Wenzhuo Wu, Purdue University; Keerti Kappagantula, Pacific Northwest National Laboratory; Bishnu Khanal, Sandia National Laboratories, Ying Zhong, Harbin Institute of Technology (Shenzhen); Mostafa Bedewy, University of Pittsburgh; Michael Cai Wang, University of South Florida

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Effect of Polymerization Temperature on the Photocatalytic Activity of Polyaniline: Sadia Rafiq1; Masuma Lovely1; Md Muktadir Billah¹; Mahbub Hasan¹; ¹Bangladesh University of Engineering and Technology

Facile Synthesis of Aloe-Gold Nanoclusters and Their Molecular Binding, Antibacterial and Cytotoxicity Profiling: Thabang Lebepe¹; Oluwatobi Samuel Oluwafemi¹; ¹University of Johannesburg

B-27: High-Performance Interfacial Water Evaporation of Black TiO2-x With High-Concentration Bulk Oxygen Vacancies: Young-In Lee1; Jongmin Byun1; Hee Yeon Jeon1; 1Seoul National University of Science and Technology

B-28: Improving Supercapacitor Performance via Multi-Layer Transition Metal Oxide Thin Films: Kiran Lochun¹; ¹Georgia Institute of Technology

One-Dimensional Titanium Oxide Lepidocrocite Nanofilaments: From Fabrication to Application: Adam Walter¹; Gregory Schwenk¹; Hussein Badr¹; Michel Barsoum¹;

Synthesis, Characterization, and Bactericidal Application of Zinc Oxide Nanoparticles Obtained by Coprecipitation Method: Mizraim Flores¹; Laura García¹; Iván Reyes²; Elia Palacios³; Pedro Ramírez¹; Edwin Pérez¹; José Barrera¹; Kevin Lagunes¹; José Ozornio⁴; ¹Universidad Tecnológica de Tulancingo; ²Universidad Autónoma de San Luis Potosí; 3Instituto Politécnico Nacional; 4Centro de Bachillerato Tecnológico Industrial y de Servicios No. 179

The Utilization of Cellulose Nanocrystals-Infused Hydrogels for Enhanced Efficacy in Cancer Chemotherapy: Terungwa lorkula1; Emmanuel Faderin²; Rofiat Kajola³; Odo Onyinyechi⁴; Juliet Igboanugo⁵; Janefrances Chukwu⁶; Obembe Oluwafunke⁷; Clinton Ehigie⁸; Ikhazuagbe Ifijen⁹; Ademulegun Ikponwmonsa⁹; ¹Brigham Young University; ²Southern Illinois University; ³Tufts University; ⁴University of Nigeria; ⁵Department of Health, Human Performance and Recreation; 6West Virginia University; 7Universite Paris-Cite; 8University of Benin; 9Rubber Research Institute of Nigeria

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Innovations in Energy Materials: Unveiling Future Possibilities of Computational Modelling and Atomically Controlled Experiments — Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS Structural Materials Division, TMS: Energy Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Composite Materials Committee

Program Organizers: Paolo Mele, Shibaura Institute of Technology; Julio Gutierrez Moreno, Barcelona Supercomputing Center; Hussein Assadi, RIKEN (The Institute of Physical and Chemical Research); Esmail Doustkhah, Istinye University; Marco Fronzi, The University of Sydney; Donna Guillen, Idaho National Laboratory; Srujan Rokkam, Advanced Cooling Technologies, Inc.; Tuan Nguyen, University of Queensland

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

B-30: Machine Learned Multiphysics Modeling: Enhancing Uniform Distribution of Low-Energy Lithium-Ion Transport Channels in Solid Electrolyte Interphase of Electrodes: Arjun S. Kulathuvayal¹; Yanging Su¹; ¹Utah State University

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Materials and Chemistry for Molten Salt Systems — **Poster Session**

Sponsored by: TMS Structural Materials Division, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee

Program Organizers: Stephen Raiman, University of Michigan; Michael Short, Massachusetts Institute of Technology; Kumar Sridharan, University of Wisconsin-Madison; Yu-chen Karen Chen-Wiegart, Stony Brook University / Brookhaven National Laboratory; Nathaniel Hoyt, Argonne National Laboratory; Jinsuo Zhang, Virginia Polytechnic Institute and State University; Weiyue Zhou, Massachusetts Institute of Technology

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chair: Stephen Raiman, University of Michigan

C-6: Assessment of Mixed Cation Lanthanide/Actinide Surrogate Systems Toward Reduction of Molten Salt Pyroprocessing Waste: Kelly Varnell¹; Hojong Kim¹; Tae-Sic Yoo²; ¹Pennsylvania State University; 2Idaho National Laboratory

Comparative Study on Stress Assisted Corrosion Behavior of Oxide-Oxide & Carbon-Silicon Carbide Ceramic Matrix Composites in a Molten NaCl-Na2SO4 Salt: Wylie Simpson¹; James Earthman¹; ¹University of California Irvine

Corrosion of Nickel Alloys and Stainless Steels in Molten Chloride Salt: Daniel Koury¹; Thomas Hartmann²; ¹University of Nevada; ²Pacific Northwest National Laboratory

Dealloying of Post-Cold Rolled Model Ni-Cr Alloy in Molten FLiNaK Salts: Harjot Singh¹; Ho Lun Chan¹; Elena Romanovskaia¹; Valentin Romanovski¹; Iliana Marrujo²; Peter Hosemann²; Andrew Minor²; John Scully¹; Sean Mills²; ¹University of Virginia; ²University of California, Berkeley

C-7: Development of a New Nickel-Based Alloy Hardened by Nano' (Ni3Al) for Molten Salt Reactors: Adrien Delagnes1; Martin Madelain1; Nicolas Mari¹; Romain Malacarne²; Olivier Taché³; Jacques Perrin Toinin¹; Brigitte Bacroix⁴; Yann De Carlan¹; ¹Université Paris-Saclay, CEA, Service de Recherche en Matériaux et procédés Avancés; ²Université Paris-Saclay, CEA, Service de Recherche en Corrosion et Comportement des Matériaux; 3Université Paris-Saclay, CEA-CNRS (UMR 3685), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie; 4CNRS, Université Sorbonne Paris Nord, Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS (UPR 3407), F-93430

Dissolution and Diffusion Processes of Metallic Titanium in Liquid Tin and the Electrochemical Behavior of Ti-Sn Alloy Separation: Xuena Men¹; Zepeng Lv¹; Jianxun Song¹; Shaolong Li¹; ¹Zhengzhou Universiy

C-8: Effect of Aluminum Content on the Corrosion Resistance of Ni₇₀Mo₁₀Cr₂₀Al Alloys for Molten Salt Reactors: Oscar Sonzogni¹; Jean-Philippe Couzinié²; Romain Malacarne³; Dimitri Mercier⁴; Patrick Olier¹; Pascal Aubry¹; ¹Université Paris-Saclay, CEA, Service de recherche en matériaux et procédés avancés, F-91191; ²Université Paris Est, ICMPE (UMR 7182) CNRS-UPEC, 2-8 rue Henri Dunant, F-94320, F-94320; 3Université Paris-Saclay, CEA, Service de recherche en corrosion et comportement des matériaux dans leur environnement, F-91191; ⁴PSL Research University, CNRS -Chimie ParisTech, Institut de Recherche de Chimie Paris, Physical Chemistry of Surfaces Group, 11 Rue Pierre et Marie Curie

C-9: Evaluation of Corrosion in Ni-Based Alloys in Molten Fluoride Salt: Ryan Gordon¹; Will Ward¹; Kasturi Sasidhar¹; Ryan Thier²; Adrien Couet¹; Jaimie Tiley³; Soumya Nag³; Rishi Pillai³; Bruce Pint³; Steve Zinkle²; Kumar Sridharan¹; ¹University of Wisconsin- Madison; ²University of Tennessee; ³Oak Ridge National Laboratory

First Principles Investigation of the Structural and Thermophysical Properties of Ni2+ in Alkali-Halide Eutectic Molten Salts: Linu Malakkal¹; Nirmalendu Patra²; Alejandro Ramos-Ballesteros¹; Benjamin Beeler³; Gregory Holmbeck¹; Simerjeet Gill²; Ruchi Gakhar¹; ¹Idaho National Laboratory; ²Brookhaven National Laboratory; ³North Carolina State University

C-10: FLiNaK Corrosion of Cermet Structural Materials for Applied Advanced Coating Designs in Molten Salt Reactors: Kevin Yan1; Dong Zhao¹; Saurabh Sharma¹; Jie Lian¹; ¹Rensselaer Polytechnic Institute

C-11: Impact of EuCl3 on the Morphological Evolution of Ni-20Cr Alloys in LiCl-KCl Eutectic Molten Salt Environments: Ankita Mohanty¹; Yuxiang Peng¹; Kaifeng Zheng¹; Bobby Layne²; Kazuhiro Iwamatsu²; Ellie Kim³; Phillip Halstenberg³; Mingyuan Ge²; Denis Leshchev²; Xianghui Xiao²; Sheng Dai³; Eli Stavitski²; James Wishart²; Yu-chen Karen Chen-Wiegart¹; ¹Stony Brook University; ²Brookhaven National Laboratory; 3University of Tennessee Knoxville

C-12: Impact of Sample Preparation on Corrosion Behavior of Alloys in Molten Salts: Weiyue Zhou1; Aaron De Leon1; Nayoung Kim1; Kevin Woller¹; Michael Short¹; Guigiu (Tony) Zheng²; Caroline Sorensen²; ¹Massachusetts Institute of Technology; ²Commonwealth Fusion Systems

C-13: Investigating the Combined Corrosion and Radiative Effects on 316SS and Welded Joints in Static FLiNaK Salt: Nicholas Borrego¹; Minghui Chen¹; Khalid Hattar²; Eric Lang¹; ¹The University of New Mexico; 2University of Tennessee

Investigating the Corrosion of NITE-SiC/SiC in Molten FLiNaK Salt: Keshav Vasudeva¹; Wande Cairang¹; Weiyue Zhou¹; Sara Ferry¹; ¹Massachusetts Institute of Technology

C-14: Laser-Based Spectroscopy Techniques to Evaluate Molten Salt/Liquid Metal Corrosion Properties: Chaitanya Peddeti¹; Peter Hosemann¹; ¹University of California, Berkeley

C-15: Silicide-Based Coatings to Prevent Molten Chloride Corrosion: Seongwon Ham1; Sangtae Kim1; 1Hanyang University

Thermodynamic Assessment of Reciprocal Salt Systems Involving Cesium, Rubidium, and Iodine With LiF-NaF-KF and NaCl-KCl-MgCl2 for Molten Salt Reactor Applications: Clara Dixon1; Mina Aziziha¹; Juliano Schorne-Pinto¹; Jorge Paz Soldan Palma¹; Jack Wilson¹; Amir Mofrad¹; Theodore Besmann¹; ¹University of South Carolina

C-16: Thermodynamic Assessment of the NaCl-ZrCl4, KCl-ZrCl4, and MgCl2-ZrCl4 Systems for Molten Chloride Reactors: Jack Wilson¹; Juliano Schorne-Pinto¹; Mina Aziziha¹; Ronald Booth¹; Hunter Tisdale¹; Hans-Conrad zur Loye¹; Theodore Besmann¹; ¹University of South Carolina

C-24: Tuning Fabrication Parameters to Produce Unique, Microstructurally Tailored Ni-Cr and Fe-Cr Samples for Corrosion and Irradiation Testing: Santiago de Stefano Cavazos¹; Mira Khair¹; Kayla Yano²; Ho Lun Chan³; John Scully³; Elena Romanovskaia²; Elizabeth Sooby¹; ¹University of Texas San Antonio; ²Pacific Northwest National Lab; 3University of Virginia

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Materials for Sustainable Hydrogen Energy — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Energy

Program Organizers: Wenwen Song, University of Kassel; Enrique Galindo-Nava, University College London; Jinwoo Kim, Korea Institute of Science and Technology (KIST); Binhan Sun, Max-Planck Institute

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

B-42: High Temperature Hydrogen Degradation of Structural Materials of Nuclear-Hydrogen Generating Systems: Jun Yeong Jo¹; Hwasung Yeom¹; ¹Pohang University of Science and Technology

MATERIALS SYNTHESIS AND PROCESSING

Materials Processing Fundamentals: Thermodynamics and Rate Phenomena — Poster **Session**

Sponsored by: TMS Extraction and Processing Division. TMS Materials Processing and Manufacturing Division, TMS: Process Technology and Modeling Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Phase Transformations Committee

Program Organizers: Allie Anderson, RHI Magnesita; Adrian Sabau, Oak Ridge National Laboratory; Chukwunwike Iloeje, Argonne National Laboratory; Adamantia Lazou, National Technical University of Athens; Kayla Molnar, Los Alamos National Laboratory

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

D-10: Analysis of Circulation Flow and Mixing Time in Ruhrstahl-Heraeus Degasser With Argon Ladle Bottom Blowing Through Numerical Modeling: Alejandro Alcaraz Ramirez¹; José Ramos Banderas¹; Constantin Hernández Bocanegra¹; Aldo Figueroa Fierros¹; Gildardo Solorio Díaz¹; ¹Instituto Tecnologico de Morelia

D-11: Comparative Study Between Actual Conditions and Proposed Operating Conditions for a Floor Furnace Used in the Heating of a Metallurgical Ladle Through Numerical Simulation: Brayann Alvarado¹; José Ramos Banderas²; Constantin Hernández Bocanegra²; Mario-Ulises Calderon Rojas²; Gildardo Solorio Diaz³; Nancy López Granados²; ¹Association for Iron & Steel Technology (AIST); ²Instituto Tecnológico de Morelia; ³Universidad Michoacana de San Nicolas de Hidalgo

Comparative Study of Two Methodologies for the Analysis of the Thermal Evolution of Steel Slabs in a Reheating Furnace: Mario-Ulises Calderon Rojas¹; José-Ángel Ramos-Banderas¹; Constantin-Alberto Hernandez-Bocanegra¹; Gildardo Solorio-Díaz²; José-Jaime López-Soria¹; ¹Instituto Tecnologico de Morelia; ²Universidad Michoacana de San Nicolas de Hidalgo

Effect of Ladle Shroud Blockage on Flow Dynamics and Cleanliness of Steel in Coupled Ladle-Shroud-Tundish System: Favio Ocampo-Vaca¹; Constantin Hernández-Bocanegra¹; José Ramos-Banderas¹; Nancy López-Granados¹; Gildardo Solorio-Díaz²; ¹Instituto Tecnológico de Morelia; ²Universidad Michoacana de San Nicolás de Hidalgo

Numerical Modeling of SEN Depth on Heat Transfer, Fluid Flow and Solidification in Thin Slab Continuous Casting Mold: Raul Tinajero Alvarez¹; Jonathan García Merino¹; Constantin Hernández Bocanegra¹; José Ramos Bandeeras¹; Gildardo Solorio Díaz²; Nancy López Granados¹; ¹Instituto Tecnológico de Morelia; ²Universidad Michoacana de San Nicolas de Hidalgo

Numerical Simulation of Multiphase Flow in a Single Snorkel Refining Furnace With Dual Injections of Argon Gas for the Degassing Process: Aldo Emmanuel Figueroa Fierros¹; José Ángel Ramos Banderas¹; Constantin Alberto Hernandez Bocanegra¹; Nancy López Granados¹; Alberto Beltran²; ¹Instituto Tecnologico de Morelia; ²Universidad Nacional Autónoma de México (UNAM)/ campus Morelia

D-12: Numerical Simulation of Stirring Coil System for Use in the Steel Refining Ladle: Jorge Munguia1; Jose-Angel Ramos1; Constantin-Alberto Hernandez¹; Mario Herrera¹; Alberto Beltran²; Ilse-Ivette Becerril¹; ¹Instituto Tecnologico de Morelia; ²Universidad Autonoma de Mexico

NUCLEAR MATERIALS

Mechanical Behavior of Nuclear Reactor Materials and Components IV - Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee

Program Organizers: Kayla Yano, Pacific Northwest National Laboratory; Assel Aitkaliyeva, University of Florida; Eric Lang, University of New Mexico; Eda Aydogan, Pacific Northwest National Laboratory; Caleb Massey, Oak Ridge National Laboratory; Benjamin Eftink, Los Alamos National Laboratory; Tanvi Ajantiwalay, Pacific Northwest National Laboratory

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Annealing Study of Highly Embrittled RPV Weld: Mikhail Sokolov¹; ¹Oak Ridge National Laboratory

Comparative Analysis of SMR Powder Formation and Properties Using VIGA and EIGA: Jeongchan Lee1; Sung-Min Park1; Jeongkil Kim²; Dongsoo Kim²; Sehawn Ahn²; Seoksu Sohn³; Kwangsuk Park¹; Chang-Soo Park¹; ¹Korea Institute of Industrial Technology; ²Doosan Enerbility; 3Korea University

F-7: Grain Size Effect on Helium Ion Irradiation and Mechanical Response of Ti-Zr-Ni Quasicrystals: Myeongjun Lee¹; Geun Hee Yoo¹; Kook Noh Yoon²; Mehdi Balooch²; Peter Hosemann²; Eun Soo Park¹; ¹Seoul National University; ²University of California, Berkeley

MECHANICS OF MATERIALS

Mechanical Behavior Related to Interface Physics IV Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Nanomechanical Materials Behavior Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Nuclear Materials Committee, TMS: Surface Engineering Committee

Program Organizers: Stanislav Zak, Austrian Academy of Sciences; Nathan Mara, University of Minnesota; Barbara Putz, Empa Swiss Federal Laboratories for Materials Science and Technology, Glenn Balbus, MRL Materials Resources LLC; Kevin Schmalbach, Bruker Nano; Youxing Chen, University of North Carolina Charlotte

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

E-31: Evaluation of Interfacial Failure Characteristics and Its Prediction Based on Finite Element Method for Epoxy Adhesive: Minki Kim1; Yujin Chae1; Min-Su Kim1; 1Korea Institute of Industrial Technology

E-32: Influence of Temperature on the Interlayer Strength of Muscovite, a Layered Solid: Henry Afful1; Frank DelRio2; Anastasia Ilgen²; Corinne Packard¹; ¹Colorado School of Mines; ²Sandia National Laboratories

E-33: Thin Film Adhesion Measurement With Micro-Scale Bulge Tester: Stanislav Zak1; 1Austrian Academy of Sciences

MECHANICS OF MATERIALS

Mechanical Response of Materials Investigated Through Novel In-Situ Experiments and Modeling — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Minh-Son Pham, Imperial College London; Saurabh Puri, Microstructure Engineering; Amit Pandey, Lockheed Martin Space; Dongchan Jang, Korea Advanced Institute of Science and Technology; Josh Kacher, Georgia Institute of Technology; Jagannathan Rajagopalan, Arizona State University; Robert Wheeler, Microtesting Solutions LLC; Dhriti Bhattacharyya, Australian Nuclear Science and Technology Organization

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

E-34: An Experimental Technique for Probing Cavitation Pressure in Soft Matter Under Azimuthal Shear: Alexandria Rogers¹; Yuan Ji¹; Christopher Karber¹; Jacob Rogers¹; Justin Wilkerson¹; ¹Texas A&M University

E-51: Microstructure and Mechanical Property Correlation of Multi-Component Materials Using the PI 89 Auto SEM PicoIndenter: Kevin Schmalbach¹; Justin Cheng²; Eric Hintsala¹; Nathan Mara³; Douglas Stauffer⁴; Sanjit Bhowmick¹; ¹Bruker Nano Surfaces and Metrology; ²University of Minnesota Twin Cities; ³University of Minnesota; ⁴Bruker Nano Surfaces & Metrology

E-35: Tensile Deformation Behavior of Polycrystalline Pure Cobalt With HCP / FCC Dual Phase Studied by In-Situ X-Ray Diffraction: Takumi Suzumura¹; Si Gao¹; Shuhei Yoshida¹; Nobuhiro Tsuji¹; ¹Kyoto University

E-36: The Role of Precipitates on Cyclic Stability of NiTi and NiTiCu Shape Memory Alloy Thin Films: Hyemin Ryu1; Zhuo Feng Lee1; Ji-Young Kim¹; Sunkun Choi¹; Gi-Dong Sim¹; ¹Korea Advanced Institute of Science and Technology

E-37: Thermo-Mechanical Performance of Composite Metal Foams: Zubin Chacko¹; Afsaneh Rabiei¹; ¹North Carolina State University

NUCLEAR MATERIALS

Meeting Materials Challenges for the Future of Fusion Energy — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Tianyi Chen, Oregon State University; Amy Gandy, United Kingdom Atomic Energy Authority; Reuben Holmes, Kyoto Fusioneering; Ian Mccue, Northwestern University; Sneha Prabha Narra, Carnegie Mellon University; Jason Trelewicz, Stony Brook University; Weicheng Zhong, Oak Ridge National Laboratory

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

F-9: Improved Damage Detection Around Grain Boundaries in Tungsten from Atomistic Calculations: Younggak Shin¹; Keonwook Kang²; Byeongchan Lee¹; ¹Kyung Hee University; ²Yonsei University

F-10: In Situ Micropillar Compression Study of Ultra-Fine-Grained Tungsten at Elevated Temperature: Yifan Zhang¹; Chao Shen²; Adil Wazeer²; Ke Xu²; Tanner McElroy²; Anyu Shang²; Haiyan Wang²; Xinghang Zhang²; ¹Clemson University; ²Purdue University

F-11: RAFM Welding with In-Situ Thermal Processing for Simplified First Wall Fabrication: Daniel Codd¹; Joseph McCrink²; Xiang (Frank) Chen3; Timothy Lach3; 1University of San Diego; 2KVA Technologies; ³Oak Ridge National Laboratory

F-12: Synergetic Effects of Hydrogen on Cavity Formation in Candidate Fusion Blanket Materials: Past and Future Studies: Lihao Shi¹; Fei Gao¹; ¹University of Michigan, Ann Arbor

Thermal Permeation of Tungsten Wafers: Muhammed Kose¹; Enrique Martinez-Saez¹; ¹Clemson University

Temperature Dependent Thermal-Mechanical Properties of Plasma-Facing Materials - W, SiC, and Fe-Cr Alloy: Jie Peng; David Cerecedar¹; ¹Villanova University

NUCLEAR MATERIALS

Microstructural, Mechanical, and Chemical Behavior of Solid Nuclear Fuel and Fuel-Cladding Interface II — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Nuclear Materials Committee, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Xing Wang, Pennsylvania State University; Miaomiao Jin, Pennsylvania State University; Jason Harp, Oak Ridge National Laboratory; Fabiola Cappia, Idaho National Laboratory; Dong (Lilly) Liu, University of Oxford; Caleb Clement, Westinghouse Electric Company; Jennifer Watkins, Idaho National Laboratory; Michael Tonks, University of Florida; Yi Xie, Peking University

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chair: Xing Wang, Pennsylvania State University

- F-13: A Comparative Study of the Third Element Effect in FeCrAl Oxidation and Corrosion: Catherine Lynch¹; Debashish Sur¹; Benjamin Redemann²; John Scully¹; Elizabeth Opila¹; ¹University Of Virginia; ²John Hopkins University
- F-14: Advanced Electron Microscopy Characterization of the Fuel-Cladding Chemical Interaction Region in a High Burnup U-10Zr Fuel: Bao-Phong Nguyen¹; Daniele Salvato²; Fei Teng²; Fei Xu²; Yachun Wang²; Fidelma Di Lemma²; Luca Capriotti²; Assel Aitkaliyeva¹; Tiankai Yao²; ¹University of Florida; ²Idaho National Laboratory
- F-16: Deep Learning Potential for Exploring HighTemperature **Properties of Yttrium Hydride**: Yuqing Huang¹; Jacob Eapen¹; ¹North Carolina State University
- F-17: Density Functional Theory Study of Charge Distribution and Transport at Metal-ZrO2 Interface: Ximeng Wang¹; Junliang Liu¹; Maryam Zahedian¹; Ricardo Vidrio¹; Yuhan Tong¹; Adrien Couet¹; Jennifer Choy¹; Alexander Kvit¹; Yongfeng Zhang¹; ¹University of Wisconsin-Madison
- F-18: Evolution of Sputtered Protective Bilayer Coatings Under LOCA Steam Exposure: Brock Nowak¹; Fei Long¹; Kevin Daub¹; Suraj Persaud¹; Zhongwen Yao¹; ¹Queen's University
- F-20: Impact of Uranium Feedstock Impurities on the Microstructure and Oxidation Resistance of Uranium Nitride (UN): Max Salata-Barnett¹; Tim Abram¹; ¹University of Manchester
- F-21: Improving Radiation and Corrosion Resistance of Cr-Based Coatings Through Structural and Compositional Optimization: Nabil Daghbouj¹; Tomas Polcar¹; ¹Czech Technical University in Prague
- F-23: Investigating Microstructural Effects on TRISO Fuel Mechanics via Multiphysics and Multiscale Modeling: Merve Gencturk¹; Karim Ahmed¹; Nicholas Faulkner¹; Claire Griesbach²; Ramathasan Thevamaran²; Tyler Gerczak³; Yongfeng Zhang²; ¹Texas A&M University; ²University of Wisconsin-Madison; ³Oak Ridge **National Laboratory**
- F-24: Investigating Porosity and Swelling Evolution in Uranium-10wt%Zirconium Fuels Under Varied Irradiation Conditions: Morgan Smith¹; Nicole Rodriguez Perez¹; Janelle Wharry¹; Maria Okuniewski¹; ¹Purdue University

Mitigating FCCI in Metallic Fuels: Evaluating Cladding Liners with Multiscale Modeling: Shehab Shousha¹; Benjamin Beeler¹; Larry Aagesen²; Geoffrey Beausoleil II²; Nicole Rodriguez Perez³; Maria Okuniewski³; ¹North Carolina State University; ²Idaho National Laboratory; ³Purdue University

Numerical Modelling of Delayed Hydride Cracking Using the Phase Field Modelling: Shyam Kishor Sharma¹; B.K. Mishra¹; Indra Vir Singh¹; Rishi Sharma²; ¹Indian Institute of Technology Roorkee; ²Nuclear Power Corporation of India Limited

- F-26: Obtaining the Chemical Information of Secondary Phases and Precipitates Induced by Fission Products in FCCI Region of a High Burnup Metallic Fuel Using Nano SIMS and TEM-EELS: Arnold Pradhan¹; Tiankai Yao²; Indrajit Charit³; ¹INL; ²Idaho National Laboratory; ³University of Idaho; Center for Advanced Energy Studies
- F-27: Phase-Field Modeling of Constituent Redistribution in U-Zr Metallic Fuel Considering Porosity Effects: Woojin Jung¹; Kunok Chang¹; Ju-Seong Kim²; ¹Kyung Hee University; ²Korea Atomic Energy Research Institute

Point Defect Mobility and Phase Stability of Novel UZrCN Nuclear Fuel from First Principles: R. Seaton Ullberg¹; Jinyi Liu¹; Sarah Hamilton²; Simon Phillpot¹; ¹University of Florida; ²Idaho National Laboratory

- F-28: Tracking Structure Evolution and Alloy Element Redistributions During Zircaloy-4 Oxidation via Complementary In-Situ XRD, Ex-Situ Electron Microscopy, and Atom Probe Tomography: Josephine Hartmann¹; Tamas Varga²; Chris McRobie¹; Caleb Schenck¹; Fu-Yun Tsai¹; Vaithiyalingam Shutthanandan²; Arun Devaraj²; David Senor²; Bharat Gwalani¹; Elizabeth Kautz¹; ¹North Carolina State University; ²Pacific Northwest National Laboratory
- Understanding the Process-Microstructure-Property Relationship of FeCrAl Alloy Deposited via L-DED: Salikh Omarov¹; Prayag Burad¹; Christopher Silligman¹; Sougata Roy¹; ¹lowa State University

Unraveling the Mechanisms of Oxide Texture Formation on Zirconium Alloys: Junliang Liu1; Houzhi Liu2; Bhagwat Ghule1; Hongliang Zhang³; Gene Lucadamo⁴; William Howland⁴; Sergio Lozano-Perez²; Chris Grovenor²; Adrien Couet¹; ¹University of Wisconsin - Madison; ²University of Oxford; ³Fudan University; ⁴Naval Nuclear Laboratory

BIOMATERIALS

Natural Fibers and Biocomposites: A Sustainable Solution — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Biomaterials Committee, TMS: Composite Materials Committee

Program Organizers: Henry Colorado, Universidad de Antioquia; Sergio Monteiro, Instituto Militar de Engenharia; Marc Meyers, University of California, San Diego; Carlos Castano Londono, Virginia Commonwealth University; George Youssef, San Diego State University; Felipe Perisse Duarte Lopes, Universidade Estadual do Norte Fluminense; Daniel Salazar, BCMaterials

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chairs: George Youssef, San Diego State University; Daniel Salazar, BCMaterials; Henry Colorado, Universidad de Antioquia

- 3D Printing in Additive Manufacturing In Stereolithography: Coconut Shell Powder Additive: Victor Goncalves1; David Coverdale Rangel Velasco¹; Henry Alonso Colorado Lopera²; Carlos Maurício Fontes Vieira¹; Felipe Perissé Duarte Lopes¹; ¹UENF; ²Universidad de Antioquia UdeA
- A-14: Additive Manufacturing of Polymer Matrix Composites with Coffee Waste: Henry Colorado¹; ¹Universidad de Antioquia

A-17: Characterization of a Novel Ecofriendly Polymeric Composites Based in Montmorillonite Clay: Nicole Coutinho1; David Velasco¹; Felipe Perisse Duarte Lopes¹; Carlos Maurício Fontes Vieira¹; Geovana Carla Girondi Delaqua²; Afonso Rangel Garcez de Azevedo¹; Jaqueline Moreira de Oliveira; ¹Universidade Estadual do Norte Fluminense; 2UENF

A-18: Characterization of Composites Polymers Reinforced with Coconut Sheath Fibers: João Chaim Almeida¹; Luís Fernando Fortunato de Freitas¹; David Coverdale Rangel Velasco¹; Noan Tonini Simonassi¹; Carlos Maurício Fontes Vieira¹; Felipe Perisse Duarte Lopes²: ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro: ²Universidade Estadual do Norte Fluminense

A-19: Comparative Analysis of Compressive Resistance of Epoxyde Composites Reinforced with Silica: Jaqueline de Oliveiira1; David Velasco¹: Nicole Coutinho¹: Noan Simonassi¹: Carlos Vieira¹: Felipe Perisse Duarte Lopes¹; ¹Universidade Estadual do Norte Fluminense

A-20: Compressive Resistance of Epoxyde Hybrid Composites Reinforced with Açai Fiber and Chamotte Powders: Jaqueline de Oliveiira¹; David Velasco¹; Rebeca Gomes¹; Noan Simonassi¹; Carlos Vieira¹; Felipe Perisse Duarte Lopes¹; ¹Universidade Estadual do Norte Fluminense

A-21: Compressive Strength of Composites Reinforced with Casuarina Particulate for Protective Coatings: Nicole Coutinho¹; Afonso Rangel Garcez de Azevedo¹; Felipe Perisse Duarte Lopes¹; David Velasco¹; Carlos Maurício Fontes Vieira¹; Geovana Carla Girondi Delagua¹; ¹Universidade Estadual do Norte Fluminense

A-22: Effects of Hardener Content on Properties of Epoxy-Granite Composite Artificial Stones: José Lucas Lirio¹; David Coverdale Velasco²; Elaine Carvalho¹; Felipe Perisse Duarte Lopes¹; Djalma Souza¹; Carlos Maurício Vieira¹; ¹Universidade Estadual do Norte Fluminense; 2IFFluminense/UENF

Eva and Ramie Fiber: 3D Filament Manufacturing and Additives: Victor Goncalves¹; David Coverdale Rangel Velasco¹; Luís Fernando Fortunato De Freitas¹; Henry Alonso Colorado Lopera²; Carlos Maurício Fontes Vieira¹; Felipe Perissé Duarte Lopes¹; ¹UENF; ²Universidad de Antioquia UdeA

A-23: Evaluating Impact Resistance of Epoxy Composites Incorporating FGD Gypsum: Júlia Souza¹; David Coverdale Velasco²; José Lucas Lirio³; Djalma Souza³; Felipe Perisse Duarte Lopes³; Carlos Maurício Vieira³; ¹IFFluminense; ²IFFluminense/UENF; ³Universidade Estadual do Norte Fluminense

Fatigue in High-Performance Bicycles: Comparing Natural and Synthetic Fiber Composites with Epoxy and 3D Resins: Luis Fernando Fortunato de Freitas¹; Darcy Oliveira¹; Luis Arrubla Agudelo¹; Carlos Fontes Vieira¹; Felipe Perissé Duarte Lopes¹; ¹UENF

A-24: Hardness Properties of Epoxy Composites Reinforced with Sugarcane Bagasse Dust for High Performance Flooring: Juliana Ribeiro¹; Luis Fernando de Freitas¹; Noan Simonassi¹; Carlos Maurício Vieira¹; Felipe Perisse Duarte Lopes²; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro; ²Universidade Estadual do Norte Fluminense

Incorporation of Coffee Grounds Powder as Reinforcement in Epoxy Resin for High-Performance Industrial Coatings: A Blue Ocean Strategy Analysis: Bruna Cobuci¹; Hugo Soares¹; Frederico Margem¹; Noan Simonassi¹; Carlos Maurício Vieira¹; Felipe Lopes¹; ¹UENF

A-25: Izod Impact Tests on Epoxy Matrix Composites Reinforced with Montmorillonite Clay Particulate: Juam Pierott Cabral¹; Rebeca Seixas Quintanilha Gomes²; David Coverdale Rangel Velasco¹; Noan Tonini Simonassi¹; Sergio Neves Monteiro³; Felipe Perisse Duarte Lopes¹; ¹Universidade Estadual do Norte Fluminense; ²UENF; ³Instituto Militar de Engenharia

Processing of Composites Incorporated with Glass Waste in 3D Printing as a Potential for High-Performance Sunglasses: Rogério Rabello¹; Darcy Oliveira¹; Victor Gonçalves¹; Carlos Vieira¹; Sergio Monteiro¹; Felipe Lopes¹; ¹UENF

A-26: Protection and Waterproofing of Natural Limestone Rocks: Magno Padua¹; José Lucas Carvalho Lírio¹; Noan Tonini Simonassi¹; Carlos Maurício Fontes Vieira1; Felipe Perisse Duarte Lopes1; ¹Universidade Estadual do Norte Fluminense

A-15: Revealing Properties of Primary vs. Secondary Plant Cell Wall for Designing Bioinspired Composites: Anamika Prasad¹; Salman Jamal¹; ¹Florida International University

A-16: Structure and Properties of Two Natural Fibers From South America: Henry Colorado¹; Marc Meyers²; Sergio Neves Monteiro³; ¹Universidad de Antioquia; ²University of California San Diego; ³Instituto Militar de Engenharia

A-27: Tensile Resistance of Epoxyde Composites Reinforced Chamotte Residues Powder: Jaqueline de Oliveiira¹; David Velasco¹; Darcy Lucas Oliveira¹; Noan Simonassi¹; Carlos Vieira¹; Felipe Perisse Duarte Lopes¹; ¹Universidade Estadual do Norte Fluminense

Torque Resistance of Polymeric Composites Reinforced with Natural and Synthetic Fibers: A Comparison: Luis Fernando Fortunato de Freitas¹; Darcy Oliveira¹; Luis Arrubla Agudelo¹; Carlos Fontes Vieira1; Felipe Perissé Duarte Lopes1; 1UENF

Torsional Strength of Polymer Composites Reinforced with Natural and Synthetic Fibers Under Accelerated Uv Aging: Luis Fernando Fortunato de Freitas¹; Darcy Oliveira¹; Luis Luis Arrubla Agudelo¹; Carlos Carlos Fontes Vieira¹; Felipe Perisse Duarte Lopes¹; ¹UENF

A-28: Utilization of FGD Gypsum in Epoxy Composites: A Flexural Strength Evaluation: Júlia Souza1; David Coverdale Velasco2; José Lucas Lirio3; Djalma Souza3; Felipe Perisse Duarte Lopes3; Carlos Maurício Vieira³; ¹IFFluminense; ²IFFluminense/UENF; ³Universidade Estadual do Norte Fluminense

ELECTRONIC, MAGNETIC, AND ENERGY MATERIALS

Phase Stability, Phase Transformations, and Reactive Phase Formation in Electronic Materials XXIV — **Poster Session**

Sponsored by: TMS Functional Materials Division, TMS: Alloy Phases Committee

Program Organizers: Yu-Chen Liu, National Cheng Kung University; Hiroshi Nishikawa, Osaka University; Shih-kang Lin, National Cheng Kung University; Yee-wen Yen, National Taiwan University of Science and Technology; Chih-Ming Chen, National Chung Hsing University; Chao-hong Wang, National Chung Chung University; Jaeho Lee, Hongik University; Zhi-Quan Liu, Shenzhen Institutes of Advanced Technology; Ming-Tzer Lin, National Chung Hsing University; A.S.Md Abdul Haseeb, Bangladesh University of Engineering and Technology (BUET); Ligang Zhang, Central South University; Sehoon Yoo, Korea Institute of Industrial Technology; Ping-Chuan Wang, Suny New Paltz; Yu-An Shen, Feng Chia University

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Yu-Chen Liu, National Cheng Kung University; Yu-An Shen, Feng Chia University

Flux-Less Solder Ball Attachment Technology (FLAT) for Advanced BGA Assembly: Dongjin Kim1; Seonghui Han1; Sang Eun Han1; Dong-Gyu Choi¹; Kwansik Chung²; Eunchae Kim²; Sehoon Yoo¹; ¹Korea Institute of Industrial Technology; ²Prinsol Co., Ltd

B-36: Liquidus Projection and Invariant Reactions of Bi-Cu-Sn System: Hsin-Chieh Huang¹; Sinn-wen Chen¹; ¹National Tsing Hua University

B-37: Orientation Effects on the Electrically Induced Phase Transformation in Zirconia: Muhammad Waseem Ashraf¹; Eric Homer¹; ¹Brigham Young University

B-38: Phase Equilibria, Solidification and Properties of Al-Cu-Ni-Sn Alloys: Wen-yu Chang¹; Yung-Chun Tsai¹; Cheng-Hsi Ho¹; Sinn-wen Chen¹; ¹National Tsing Hua University

B-39: Simulation of Polycrystalline Microstructure Formation in Thin Film for Nanoscale Device Using Phase-Field Method: Hwanwook Lee¹; Jungin Park¹; Daeun Choi¹; Yongwoo Kwon¹; ¹Hongik University

B-40: Sn-Zn-Bi Low-Melting Alloy with Great Aging Resistance and Wettability: Hao-Zhe Kao¹; Chih-Ming Liang¹; Yu-An Shen¹; ¹Feng Chia University

MATERIALS SYNTHESIS AND PROCESSING

Phase Transformations and Microstructural Evolution — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Phase Transformations Committee

Program Organizers: Bharat Gwalani, North Carolina State University; Ashley Paz y Puente, University of Cincinnati; Jonah Klemm-Toole, Colorado School of Mines; Sriram Vijayan, Michigan Technological University; Mohsen Asle Zaeem, Colorado School of Mines; Le Zhou, Marquette University; Adriana Eres-Castellanos, Colorado School of Mines; Sophie Primig, University of New South

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

D-13: Analysis of Self-Healing Behavior in Co-Based Superalloy by Spontaneous Segregation of B and Y During In-Situ Tensile Test at Elevated Temperature: Hyun Gi Min¹; Kooknoh Yoon²; Jungsoo Lee³; Eun Soo Park¹; ¹Seoul National University; ²University of California Berkeley; 3Max-planck-Institut fur Eisenforschung

D-14: Analysis of the L12 to hP24 Phase Transformation Behavior of a Co3Ti Precipitate During High Temperature Tensile Deformation of a Co-Based Superalloy System: Hyun Gi Min¹; William Cunningham²; Kooknoh Yoon³; Minseok Kim¹; Daniel Gianola²; Eun Soo Park¹; ¹Seoul National University; ²University of California Santa Barbara; 3University of California Berkeley

D-16: As-Cast Microstructure of the Ni-Based Superalloy Rene N5 Fabricated via Lost-Wax Casting: Rafal Cygan¹; Andrzej Trojan²; Tomasz Szczech²; Grzegorz Labaj²; Jadwiga Pipala²; Mateusz Orzel²; Grzegorz Boron²; Ewelina Halon²; Pawel Koziol²; Lukasz Rakoczy³; ¹Consolidated Precision Products Corporation / AGH University of Krakow; ²Consolidated Precision Products Corporation; ³AGH University of Science and Technology

D-17: Characterizing the Phase Transformations in $W_{_{0.125}} Mo_{_{0.375}} FeNi$ with Thermal Analysis: Ryan Chapman¹; Thomas Balk¹; ¹University of Kentucky

D-18: Effect of Co/Ni Ratio on Shape Memory Effect of the CrMnFeCoNi Multi-Component Alloys: Jinsurang Lim1; Hwi Yun Jeong¹; Hyun Seok Oh²; Je In Lee¹; ¹Pusan National University; ²University of Wisconsin-Madison

Effect of Pass Rolling Reduction on Martensite Variant, Texture, and Mechanical Properties of Hot-Rolled Nb-V Low Carbon Steel: Murugesh kumar Ramar¹; Sadhan Ghosh¹; ¹Indian Institute of Technology, Roorkee

D-19: Effect of Zr Addition on Microstructural Evolution and Mechanical Properties of Deformed and Annealed Cu-Fe Alloys: Hojoon Moon¹; Jungwook Cho¹; ¹Pohang University of Science and Technology

Effect on the Mechanical and Microstructural Properties of Welding Using Different Commercial E7018 Electrodes Via the SMAW Process: Eduardo Guzmán-Ríos¹; M. Garcia-Ramirez¹; Julio Juárez-Tapia¹; Raúl Barrientos-Hernández¹; Martín Reyes-Pérez¹; María I. Reyes-Valderrama¹; ¹Universidad Autonoma del Estado de Hidalgo

D-20: Effects of Rapid Thermal Processing Parameters on the Microstructural Evolution of 4140 Steel: David Starr1; Thomas Balk1; ¹University of Kentucky

D-21: Healable Ti-6Al-4V Base Alloy with Cyclability Between Stress-Induced Martensite Transformation and Thermally Induced Transformation: Kiwan Seo1; Ji Young Kim1; Cham Il Kim2; Eun Soo Park¹; Do-Hyang Kim²; ¹Seoul National University; ²Yonsei University

Investigating Atomic Size Misfit Effects in Refractory High-Entropy Alloys: Juree Jung1; Jongtae Kim1; Jiwoon Lee2; Gian Song2; Mihye Lee¹; Donghyun Bae³; Junhee Han¹; Leeseung Kang¹; ¹Korea Institute of Industrial Technology; ²Kongju National University; ³Yonsei university

Investigation on the NiTiCoHf Multicomponent Shape Memory Alloys: Jongtae Kim1; Juree Jung1; Jaeyeol Jeon1; Leeseung Kang1; Konrad Kosiba²; Donghyun Bae³; Junhee Han¹; ¹Korea Institute of Industrial Technology; ²Leibniz Institute for Solid State and Materials Research; 3Yonsei University

D-22: Knowledge-Processing-Microstructure of Pure Fe Produced by Laser Powder Bed Fusion: Ethan Freed¹; Thinh Huynh¹; Yongho Sohn¹; ¹University of Central Florida

D-61: Microstructural Characterization of Quenched and Partitioned Ductile Iron (Q&PDI): Kumar Karuna Nidhi1; Shiv Brat Singh¹; ¹Indian Institute of Technology Kharagpur

D-23: Microstructure Evolution of Directionally Solidified Ni-Based Superalloy MAR-M247 Induced by Solution Heat-Treatment: Dorota Wyrobek¹; Rafal Cygan²; Lukasz Rakoczy³; ¹Consolidated Precision Products; ²Consolidated Precision Products / AGH University of Krakow; 3AGH University of Science and Technology

Microstructure Modification of Cu-Al-Zn-Sn Alloys for Control Optical and Mechanical Properties: Gyeol Chan Kang¹; Haejin Park¹; Hyo Soo Lee²; JinKyu Lee³; TaekJib Choi¹; Ki Buem Kim¹; ¹Sejong University; ²Korea Institute of Industrial Technology; ³Kongju National University

D-24: Microstructure of Repair Welding Technology of the Co-Based Superalloy X40: Dorota Wyrobek1; Rafal Cygan2; Lukasz ¹Consolidated Precision Products; ²Consolidated Precision Products / AGH University of Krakow; 3AGH University of Science and Technology

Negative Strain Rate Sensitivity in AlO.3CoCrFeNi High Entropy Alloy During Hot Deformation: Ji-Woon Lee1; Kwang Tae Son2; Gian Song¹; Junhee Han³; Chulwoong Han³; Hyoseop Kim³; ¹Kongju National University (CAMP2); ²Oregon State University; ³Korea Institute of Industrial Technology

D-25: Novel Lightweight CoCrNiAlSi Medium-Entropy Alloys with High Strength and Ductility: Pei-Yu Chen1; Jhen-Yu Yen1; Chun-Hway Hsueh¹; ¹National Taiwan University

D-26: Phase Stability in Rene 125 Ni-Based Superalloy – Thermodynamic Predictions and Microstructure Observation: Lukasz Rakoczy¹; Rafal Cygan²; Dorota Wyrobek¹; ¹AGH University of Science and Technology; ²Consolidated Precision Products / AGH University of Krakow

D-27: Prediction of Steel Plate Deformation Using Phase Transformation-Based Finite Element Analysis: Jin Mo Koo¹; Kyung Mun Min²; Seo Yeon Jo¹; Sung Chul Lee³; Jeong Hoon Kim³; Myoung Gyu Lee¹; ¹Seoul National University; ²Korea Institute of Materials Science; ³Rolling Process Research Team, Hyundai Steel

D-28: Resistivity and Its Temperature Coefficient in Fe-Mn-Al-C-Based Alloy: *Nobuaki Takeuchi*¹; Masatoshi lizuka¹; Kosuke Kemmotsu¹; Daisuke Ando¹; Kiyohito Ishida¹; Yuji Sutou¹; ¹Tohoku University (Eng.)

D-29: Selective Acceleration of Carbide Evolution Kinetics on Phase Boundaries by Electric Current Treatment: *Siwhan Lee*¹; Yijae Kim¹; Junyoung Chae¹; Heung Nam Han¹; ¹Seoul National University

D-30: Solidification Microstructures in Mixtures of Superalloys 625 and **718**: *Kyrus Tsai*²; Kyle Wade¹; Lesley Frame¹; Rainer Hebert¹; Mark Aindow¹; ¹University of Connecticut

D-31: Study of Deformation Mechanism and Microstructural Evolution in a Dual-Precipitation Strengthened Novel CoCrNi Medium Entropy Alloy by Al and Nd Co-Doping: Chung Chih Tsai¹; Chun-Hway Hsueh¹; ¹National Taiwan University

D-32: Study of Recrystallization Behavior and Mechanical Properties-Crystallographic Texture Correlation in Hot/Cold Rolled and Annealed 6.8Al-Fe and 9.7Al-Fe (wt%) Ferritic Low-Density Steels: Vinit Kumar Singh¹; Amrita Kundu²; Shiv Brat Singh¹; ¹IIT Kharagpur; ²Jadavpur University

Study on Banded Segregation of High-Strength Hot-Rolled Grade Steel and the "Void" Defect in Casting Slabs: Feifei Yang¹; Zhanpeng Yin¹; Yanzhao Luo¹; Xin Li¹; Guobiao Di²; ¹Shougang Group Co.,Ltd. Technology Research Institute

D-33: Sustainable NiTi Shape Memory Metallurgy: *Sakia Noorzayee*¹; Jan Frenzel¹; Gunther Eggeler¹; ¹Ruhr University Bochum

D-34: The Effect of Copper Content on High Strength Precipitation Hardened Aluminum Alloys Processed Via Additive Friction Stir Deposition: *Jacob Strain*¹; Luke Brewer¹; ¹University of Alabama

D-35: Thermal Analysis of Austenite Decomposition in an Experimental UHSS Cr-Mo-V Steel: Ricardo Guzman-Garfias¹; Octavio Vázquez-Gómez¹; Héctor Vergara-Hernández¹; Monserrat López-Cornejo¹; Julio Villalobos¹; Florelia Garcia-Izquierdo¹; ¹Tecnológico Nacional de México / I.T. Morelia

MATERIALS SYNTHESIS AND PROCESSING

Powder Materials Processing and Fundamental Understanding — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Powder Materials Committee

Program Organizers: Elisa Torresani, San Diego State University; Kathy Lu, University of Alabama Birmingham; Eugene Olevsky, San Diego State University; Diletta Giuntini, Eindhoven University of Technology; Paul Prichard, Oak Ridge National Laboratory; Wenwu Xu, San Diego State University; Ma Qian, Royal Melbourne Institute of Technology; Charles Maniere, CNRS

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

D-36: Controlling Embrittlement in Refractory Nanophase Separation Sintering Alloys: Colton Gilleland¹; Michael Pavel¹; B. Chad Hornbuckle²; Kris Darling²; Gregory Thompson¹; ¹University of Alabama; ²Army Research Laboratories

D-37: Effect of Vacuum Heat Treatment on the Oxygen Concentration and Microstructural Features of 316H Stainless Steel Powder for PM-HIP: Arpan Arora¹; Peng Wang¹; Stephen Raiman¹; ¹University of Michigan

Enhancing Performance of Aluminium Metal Matrix Composites Through Customized Reinforcement Distribution in Multi-Scale Segregated Structures: *Snehasish Adhikari*¹; Karabi Das¹; Siddhartha Das¹; ¹Indian Institute of Technology Kharaqpur

D-38: Evaluation of Effect of Particle Shape on Sintering Behavior by Large-Scale Phase-Field Simulations: *Aoi Nakazawa*¹; Shinji Sakane¹; Tomohiro Takaki¹; ¹Kyoto Institute of Technology

Experimentally and Computationally Driven High-Throughput Materials by Design: Sean Fudger¹; ¹US Army Research Laboratory

D-39: Impurity Analysis of Powder from Different Material Systems Synthesized via Vacuum-Induction-Melting and Ultrasonic Atomization Powder: *Michael Rademacher*¹; Eduardo Lago Chamero¹; ¹Georgia Institute of Technology

D-40: Investigating the Stability and Electronic Structure of Chromium Copper Oxide Catalysts Using XPS and DFT Modeling: Carlos Blank¹; Camilo Bedoya¹; Carlos Castano¹; ¹Virginia Commonwealth University

D-41: Mechano-Chemical Competition in Mechanically Driven Complex Concentrated Alloys: Luyan Li¹; Yuan Yao¹; Mostafa Hassani¹; ¹Cornell University

D-42: Pm-HIP Production of Ductile Tungsten: *Dekota Thies*¹; ¹University of Michigan

D-43: Structural Engineering of (Bi/Mn) Double Perovskites for Photodetector Applications: Franchesca Bellevu¹; Amr Elattar¹; Tarik Dickens¹; ¹FAMU-FSU College of Engineering

D-44: Structure-Property Relationship for Bioinspired Ceramic-Metal Composites: *Sourabh Kumar*¹; Hortense Le Ferrand¹; ¹Nanyang Technological University, Singapore

Thermal and Mechanical Property of Cu Material Composites as a Function of Ti and Cr Content by a Spark Plasma Sintering (SPS): Minhyeok Yang¹; Bum soon Park¹; Yu gyun Park¹; Hyoung seok Moon¹; Hyun kuk Park¹; ¹Korea Institute of Industrial Technology

D-45: Use of Field Assisted Sintering Technology (FAST) for the Manufacture of a Metallic Ultra-High Temperature Materials System: Matthew Gelmetti¹; ¹University of Sheffield

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Refractory Metals 2025 — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Refractory Metals & Materials Committee

Program Organizers: Matthew Osborne, Global Advanced Metals; Paul Rottmann, University of Kentucky; Gianna Valentino, University of Maryland

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chair: Matthew Osborne, Global Advanced Metals

C-17: Fabrication of Mo-Si-B Alloy Through Spark Plasma Sintering using Mo Powder Containing La₂O₃ Nanoparticles Uniformly Dispersed via Ultrasonic Spray Pyrolysis: Woocheol Kim¹, Wonjune Choi²; Young-In Lee¹; Sung-Tag Oh¹; Jongmin Byun¹; ¹Seoul National University of Science and Technology; ²Dankook University

C-18: Get Low: Achieving Ultra-Fine Grain Sizes in Niobium with High-Pressure Torsion: Lethicia Calderon¹; Miranda Bell¹; Ruben Ochoa¹; Adam Freund¹; Joshua Edwards¹; Nicholas Krienke¹; Suveen Mathaudhu¹; ¹Colorado School of Mines

C-19: Investigating the Microstructure and High-Temperature Mechanical Properties of Additively Manufactured W-Re Alloys: Eliott Wallace¹; Alex Lark²; Gianna Valentino¹; ¹University of Maryland, College Park; ²Johns Hopkins University Applied Physics Laboratory

C-20: New Family of Refractory Ti-Rich HEA Superconductors with High Upper Critical Field: Piotr Sobota¹; Bartosz Rusin¹; Daniel Gnida²; Rafal Topolnicki¹; Tomasz Ossowski³; Wojciech Nowak¹; Adam Pikul²; Rafal Idczak³; ¹University of Wroclaw / Polish Academy of Sciences; ²Polish Academy of Sciences; ³University of Wroclaw

MATERIALS SYNTHESIS AND PROCESSING

REWAS 2025: Sustainable End-of-Life Management and Recycling Solutions for Batteries, Wind Turbines, and Photovoltaics — Poster Session

Sponsored by: TMS Extraction and Processing Division, TMS: Recycling and Environmental Technologies Committee

Program Organizers: Christina Meskers, SINTEF; Mertol Gokelma, Izmir Institute of Technology; Adamantia Lazou, National Technical University of Athens; Elsa Olivetti, Massachusetts Institute of Technology

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

D-46: A Preliminary Study on the Recycling of Oxide-Based Solid-**State Electrolytes**: *Hyunjoon Lee*¹; Hyunju Lee²; Mooki Bae²; Jongwon Choi²; Sookyung Kim¹; ¹Korea National University of Science and Technology; ²Korea Institute of Geoscience and Mineral Resources

D-47: Assessing Circular Economy in Photovoltaics: Life Cycle Perspective of Material Recovery, Reuse, and Remanufacturing: Kirula Kahanavitage Don1; Sahar Shata1; Haoyang He1; Julie Schoenung¹; ¹Texas A&M University

D-48: Enhancing Graphite Flotation Efficiency in the Presence of PVDF Binder via Surface Modifications by Ultrasound and UV Irradiation: Shamanta Shafique¹; Mostafa Khodakarami¹; Md Shariful Islam¹; Manoranjan Misra¹; ¹University of Nevada, Reno

D-49: Pilot-Scale Hydrometallurgical Recycling of NMC Blackmass: Firat Tekmanli¹; Bengi Yagmurlu¹; ¹Technische Universität Clausthal

Re-Use of Wind Turbine Blades as Pedestrian Bridges in Beaverbrook Park: Cayleigh Nicholson1; Gabriel Ackall1; W. Jud Ready¹; Russell Gentry¹; ¹Georgia Institute of Technology

D-50: Solubilities of Lithium, Nickel, and Cobalt Oxides in Deep Eutectic Solvents: Rejwanur Rahman¹; Andreas Schwetter¹; Sneha Jayaram²; Jihye Kim¹; ¹Colorado School of Mines; ²Gettysburg College

D-51: Solvo-Metallurgical Process for the Extraction of Lithium from End-of-Life Electric Vehicle Lithium-Ion Batteries: MD Shariful Islam¹; Manoranjan Misra¹; ¹University of Nevada, Reno

D-52: Supply Risk Aware Alloy Discovery and Design: Mrinalini Mulukutla¹; Robert Robinson¹; Brent Vela¹; Danial Khatamsaz¹; Nhu Vu¹; Raymundo Arroyave¹; ¹Texas A&M University

Sustainable Route for Nd Recycling from End-of-Life NdFeB Magnet Using a Deep Eutectic Solvent: Jai Shree1; Nawshad Haque²; Shuronjit Sarker¹; Warren Bruckard²; Veeriah Jegatheesan¹; Biplob Pramanik¹; ¹RMIT University; ²CSIRO

MECHANICS OF MATERIALS

Solid-State Diffusion Bonding of Metals and Alloys Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Mohamed Elbakhshwan, University of Wisconsin Madison; Peng Wang, University of Michigan; Tate Patterson, Idaho National Laboratory; Fei Gao, University of Michigan; Todd Allen, University of Michigan; Mark Anderson, University of Wisconsin Madison

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chair: Xinchang Zhang, Idaho National Laboratory

E-38: Analysis of Kirkendall Voids Formation in Ni(W) Diffusion-Induced Recrystallization Region: Minho Oh1; Hee-Soo Kim2; Equo Kobayashi¹; Masanori Kajihara¹; ¹Tokyo Institute of Technology; ²Chosun University

E-39: Solid-State Bonding of Composite Metal Foam: John Cance1; Afsaneh Rabiei¹; ¹North Carolina State University

Solid-State Diffusion as a Tool for Alloy Design Optimization: Joao Henrique Mota¹; Nelson Neto²; Francisco Coury³; ¹Programa de Pós-Graduação em Ciência e Engenharia de Materiais; ²Colorado School of Mines; 3Universidade Federal de São Carlos

NUCLEAR MATERIALS

Solid-state Processing and Manufacturing for Extreme Environment Applications: Integrating Insights and Innovations — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Nuclear Materials Committee, TMS: Shaping and Forming Committee

Program Organizers: Priyanka Agrawal, University of North Texas; Hang Yu, Virginia Polytechnic Institute and State University; Boopathy Kombaiah, Idaho National Laboratory; Joao Oliveira, Faculdade Ciencias Tecnologias; Tianhao Wang, Pacific Northwest National Laboratory; Mukesh Bachhav, Idaho National Laboratory; John Shelton, Northern Illinois University; Shivakant Shukla, Pacific Northwest National Laboratory; Efthymios Polatidis, University of Patras; Lakshmi Narayan Ramasubramanian, Indian Institute of Technology; Sanya Gupta, Cummins Inc.

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

E-53: Characteristics of B4C-Based Aluminum Matrix Composites for Nuclear Applications: Seungchan Cho1; Minwoo Kang1; Tae Gyu Lee¹; Donghyun Lee¹; Junnghwan Kim¹; Sang-Bok Lee¹; Sang-Kwan Lee1; 1Korea Institute of Materials Science (KIMS)

F-30: Laser Welding Effects on Microstructure and Mechanical Properties on Oxide Dispersion Strengthened Steel MA956: Ryan Sundburg¹; Elizabeth Getto²; Brad Baker²; Matthew Swenson¹; ¹University of Idaho; ²United States Naval Academy

MECHANICS OF MATERIALS

Spatially Tailored Materials: Processing-Structure-**Properties — Poster Session**

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Gianna Valentino, University of Maryland; Marie Charpagne, University of Illinois; Ian Mccue, Northwestern University; J.C. Stinville, University of Illinois Urbana-Champaign

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Session Chairs: J.C. Stinville, University of Illinois Urbana-Champaign; Gianna Valentino, University of Maryland

E-40: Abnormal Martensitic Transformation and Morphology Induced by Chemical Heterogeneity in Additively Manufactured Maraging Steel: Hyeonbeen Noh1; Jeongho Han2; KenHee Ryou3; Pvuck-Pa Choi1: ¹KAIST; ²Hanyang University; ³Northwestern University

E-41: Effects of Stacking-Fault Energy and Thermo-Mechanical Treatments on Evolution of Heterogeneous Nanostructure and Mechanical Properties of SUS316LN Stainless Steels: Hiromi Miura¹; Yojiro Oba¹; Masakazu Kobayashi¹; Chihiro Watanabe²; ¹Toyohashi University of Technology; 2Kanazawa University

E-42: Evaluation of the Mechanical and Thermal Properties of Directed Energy Deposited 316L Stainless Steel-Copper Composite With Complex 3D Structures: Dongin Choi¹; Yong Hwan Cho¹; Sung-gyu Kang²; Kyeongjae Jeong¹; HyunJoo Choi³; In-Suk Choi¹; Heung Nam Han¹; ¹Seoul National University; ²Gyeongsang National University; 3Kookmin University

Fine-Tuning of Heat Treatment Parameters for Nano-Scale Cu-Precipitates: Kapil Dev Sharma¹; Anish Karmakar¹; ¹Indian Institute of Technology, Roorkee

E-43: High Strain Rate Properties and Microstructure of Fe-Cu Alloys Made Through Laser Powder Bed Fusion: Daniel Rubio-Ejchel¹; Lauren Poole²; Daniel Yin¹; Frank Zok²; Amit Misra¹; Jerard Gordon¹; ¹University of Michigan; ²University of California, Santa **Barbara**

E-44: Mechanical and Material Characterization of BP-DED Ti-Nb-Cu Functionally Graded Materials: Michael Lester1; Daniel Rubio-Ejchel²; Teresa Valenzuela¹; Jun Fan²; Wenda Tan²; Jerard Gordon²; William LePage¹; ¹University of Tulsa; ²University of Michigan

E-48: Multi-Material PBF-LB Additive Manufacturing of Aluminum and Copper Combinations: Sven Gründer1; Florian Hengsbach1; Mirko Schaper¹; ¹Paderborn University

Research Progress of Continuous Graded Alloy Fabrication by LPBF: Baicheng Zhang¹; ¹University of Science and Technology, Beijing

MATERIALS DEGRADATION AND DEGRADATION BY DESIGN

Steels in Extreme Environments — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Hyunseok Oh, University of Wisconsin -Madison; Lawrence Cho, Colorado School of Mines; Jeongho Han, Hanyang University; Motomichi Koyama, Tohoku University; Peeyush Nandwana, Oak Ridge National Laboratory; Fnu Kasturi Narasimha Sasidhar, University of Wisconsin - Madison

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Adsorption Studies on Corrosion Inhibition Performance of Waste For Pipeline Steel in Oil and Gas Production: Omotayo Sanni¹; Jianwei Ren¹; Tien-Chien Jen¹; ¹University of Johannesburg

Corrosion Inhibition of Mild Steel in Hydrochloric Acid Solution Using Agricultural Waste as a Possible Environmentally Friendly Corrosion Inhibitor for Oil and Gas Industry: Omotayo Sanni¹; Jianwei Ren¹; Tien-Chien Jen¹; ¹University of Johannesburg

Developing an Atomistic Corrosion Model of Austenitic Steel Alloys from Ab-Initio Simulations of MnCr₂O₄ and Cr₂O₃: R. Seaton Ullberg¹; Xueyang Bognarova²; Michael Tonks¹; Simon Phillpot¹; ¹University of Florida; ²Los Alamos National Laboratory

C-21: Influence of Processing Conditions and Loading Rate on the Fracture Toughness of 316L Welds at Cryogenic Temperatures: Jake Benzing¹; Nicholas Derimow¹; Enrico Lucon¹; Timothy Weeks¹; ¹National Institute of Standards and Technology

C-25: Mechanisms of Pore Collapse in Additively Manufactured 316L Stainless Steel Under High Strain Rates: Taylor Sloop¹; Elias Winterscheidt1; Ella Parker1; Kevin Lamb2; Josh Kacher1; Naresh Thadhani¹; ¹Georgia Institute of Technology; ²CNS-Y12 Oak Ridge, TN

C-22: Surface and Corrosion Characteristics of High-Alloyed Steel Tubes Under Annealing Conditions: Sung Jin Kim¹; Jin Sung Park¹; Yi Je Cho¹; ¹Sunchon National University

C-23: Susceptibility to Hydrogen Embrittlement of 22Mn All-Weld Metals: Effect of Temperature on Deformation Behavior: Donghyeon Choi¹; Jimin Nam¹; Jaeseok Yoo²; Namhyun Kang¹; ¹Pusan National University; 2Hanwha Ocean

Validation and Characterisation of Advanced Coating Solutions Applied to Tool Steels Used as Aluminum Extrusion Die: Creep and Life Time: Zeynep Tutku Ozen¹; Ilyas Artunc Sari¹; Irem Yaren Siyah¹; Berat Bayramoglu¹; Ibrahim Bat¹; Gorkem Ozcelik¹; ¹Asas Aluminum

D-54: Evaluation of Forming Stability and Crack Resistance in Inconel 718 Under Heat Treatment Conditions in Hot Forging Processes: Ji Seob An1; Seung-Hyun Yeo1; A-Ra Jo1; Myeong-Sik Jeong²; Jong-Sik Kim³; Sunkwang Hwang²; ¹KITECH / Pusan National University; ²KITECH; ³Korea Precision Casting Metal

D-55: Microstructure, Mechanical, Oxidation and Electrochemical Behavior of Thermo-Plastically Deformed High Entropy Alloys: Mayank Garg¹; Tushar Borkar¹; ¹Cleveland State University

D-56: Optimization of Ductility and Creep Life of Inconel 939-Type Nickel-Based Superalloys: Dong Whan Kim1; Min Seok Kim1; Eun Soo Park1; 1Seoul National University

MECHANICS OF MATERIALS

Structure and Dynamics of Metallic Glasses — **Metallic Glasses Poster Session**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Sebastian Kube, University of Wisconsin - Madison; Katharine Flores, Washington University in St. Louis; Daniel Sopu, Erich Schmid Institute; Yonghao Sun, The Chinese Academy of Sciences; A. Lindsay Greer, University of Cambridge; Peter Derlet, Paul Scherrer Institut

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

E-49: 4D-STEM of Medium Range Ordering and Their Correlation to Properties in ZrCu, ZrCuAl, and ZrCuNiTiAl Metallic Glasses: Minhazul Islam¹; Gabriel Calderon Ortiz¹; Soohyun Im¹; Yuchi Wang¹; Yuchu Wang²; Yue Fan²; Yunzhi Wang¹; Jinwoo Hwang¹; ¹The Ohio State University; ²University of Michigan

E-45: Development of Zr-Based Metallic Glasses with Low Glass Transition Temperature for Thermoplastic Forming: Wook Ha Ryu¹; Min Kyung Kwak²; Chae Woo Ryu³; Eun Soo Park²; ¹Kumoh National Institute of Technology & RIAM, Seoul National University; 2Seoul National University; 3Hongik University

MATERIALS SYNTHESIS AND PROCESSING

Sustainability of High Temperature Alloys — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: High Temperature Alloys Committee

Program Organizers: Mark Hardy, Rolls-Royce Plc; Caspar Schwalbe, MTU Aero Engines AG; Jeremy Rame, Naarea; Benjamin Adam, Oregon State University; Jonah Klemm-Toole, Colorado School of Mines; Martin Detrois, National Energy Technology Laboratory; Katerina Christofidou, University of Sheffield

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

D-53: Enhancement of Crack Propagation Resistance by Healing Treatment in Boron Containing FeNi-Base Superalloy: Cham Il Kim¹; Ji Yeong Lee²; Won Tae Kim³; Eun Soo Park⁴; Do-Hyang Kim¹; ¹Yonsei University; ²Korea Institute of Science and Technology; ³Cheongiu University; 4Seoul National University

MATERIALS SYNTHESIS AND PROCESSING

Thin Films and Coatings: Properties, Processing and Applications — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Thin Films and Interfaces Committee

Program Organizers: Tomas Grejtak, Oak Ridge National Laboratory; Gerald Ferblantier, University of Strasbourg - IUT LP / ICube Laboratory - CNRS; Tomas Babuska, Sandia National Laboratories; Ramana Chintalapalle, University of Texas at El Paso; Karine Mougin, CNRS, Is2m; Brandon Krick, Florida A&M University-Florida State University

Monday PM | March 24, 2025 Marquee Ballroom | MGM Grand

Hydrophobic Behaviour of Polyurethane Based Metal Oxide Composite Coating for the Protection of Ancient Artefacts and Monuments: Pankaj Kumar¹; Karabi Das¹; Ramkrishna Sen¹; Siddhartha Das¹; ¹Indian Institute of Technology Kharagpur

D-57: Microstructural Characterization and Mechanical Behavior of Mg-Ti Alloys Fabricated by Physical Vapor Deposition: Reza Motallebi¹; Yuhyun Park²; Digvijay Yadav¹; Raj Patel¹; Gi-Dong Sim²; Kelvin Xie¹; ¹Texas A&M University; ²Korea Advanced Institute of Science and Technology

MOF-Based Self-Healing Coating Material with Triple Distinct and Efficient Healing Bond for Preventing Fat, Oil, and Grease Deposition and Corrosion in Sewer System: Sachin Yadav¹; Biplob Pramanik¹; ¹RMIT University

Pseudocapacitive Behaviour of Zn-TiO2-SnO2 Nano-Composite Coatings: Ayodele Daniyan¹; Lasisi Umoru¹; Ojo Fayomi²; Kunle Oluwasegun³; ¹Obafemi Awolowo University; ²Bells University of Technology, Ota, Nigeria; 3University of Manitoba

D-58: Reactive Multilayer Induced Self-Healing in Thin Films -The Importance of Diffusion Barriers: Nensi Toncich1; Patricia Moll1; Kristian Skailand¹; Ralph Spolenak¹; ¹ETH Zürich

A Career in Powder Processing and Additive Manufacturing: A MPMD Symposium Honoring David Bourell — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Powder Materials Committee

Program Organizers: Paul Prichard, Oak Ridge National Laboratory; Allison Beese, Pennsylvania State University; Iver Anderson, Iowa State University Ames Laboratory

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Research and Application of Shougang's Thick Material Layer Sintering Technology: Dongqing Wang¹; Wen Pan¹; Zhixing Zhao¹; Yapeng Zhang¹; Huaiying Ma¹; ¹Shougang Group

ADDITIVE MANUFACTURING

Additive Manufacturing and Alloy Design: Bridging Fundamental Physical Metallurgy, Advanced Characterization Techniques, and Integrated **Computational Materials Engineering for Advanced** Materials — Poster Session - Advanced Materials

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Amir Farkoosh, Northwestern University; David Seidman, Northwestern University; Enrique Lavernia, Texas A&M University, Noam Eliaz, Tel-Aviv University, Lee Semiatin, MRL Materials Resources LLC

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

G-25: Achieving Excellent Mechanical Properties and Unique Phase Transformation in High-Entropy Alloys Via Additive Manufacturing: Haiming Wen1; Matthew Luebbe1; 1Missouri University of Science and Technology

G-26: Additive Manufacturing of Co-Based Superalloys with High Volume Fraction via Direct Ink Writing: Jian Liu¹; Wen Chen¹; ¹University of Massachusetts Amherst

G-27: Additive Manufacturing of Removable Partial Dentures: Saber Goodarzi¹; Shamaita Shabnam¹; Jyoti Prakash Naidu²; Abu Syed Kabir¹; ¹Carleton University; ²SleepLabs

Advanced Additively Manufactured Permanent Magnets for New Energy and Mobility Applications: Amin Azar¹; Spyros Diplas²; ¹3D-Components AS; ²SINTEF

Dislocation Glide Under the Correlated Stacking Fault Noise in Random Alloys: Hyunsoo Lee¹; Enrique Martinez¹; ¹Clemson University

G-28: Microstructural and Crystallographic Aspects Affecting MFIS in NiMnGa Magnetic Shape Memory Alloys Manufactured by LPBF: Anna Wojcik1; Wojciech Maziarz1; Arkadiusz Szewczyk1; Lukasz Zrodowski²; Bartosz Morończyk²; Rafal Wroblewski²; Maciej Kowlaczyk²; Robert Chulist¹; ¹Institute of Metallurgy and Materials Science, Polish Academy of Sciences; 2Warsaw University of Technology

G-29: Microstructural Development in Ni-Fe-Mo Permalloy Produced by Laser Powder Bed Fusion: Nicolas Ayers1; Yongho Sohn¹; ¹University of Central Florida

G-30: Microstructure, Mechanical Properties, and Conductivity of CuNiSi Alloy Fabricated by Laser Powder Bed Fusion: Siyu Sun1; Simon Ringer¹; Keita Nomoto¹; ¹The University of Sydney

G-31: Non-Equimolar Cantor High Entropy Alloy Fabrication Using Metal Powder Cored Wire Arc Hot Wire Laser Deposition Additive Manufacturing: Eric MacDonald¹; Anatoliy Zavdoveev²; Pedro Cortes¹; ¹University of Texas at El Paso; ²Paton Electric Welding Institute of NAS of Ukraine

Selective Powder Deposition of Refractory Zirconium Alloys: Challenges and Opportunities: Phylis Makurunje¹; Jack Callaghan²; ¹Nuclear Futures Institute; ²Bangor University

G-32: Semi-Autonomous Multi-Objective Bayesian Optimization with Decision Maker Preference for Improving Performance and Manufacturability of Refractory High Entropy Alloy: Md. Shafiqul Islam¹; Doguhan Sariturk¹; Raymundo Arroyave¹; ¹Texas A&M University

G-33: Superior Strengthening via Nanoscale Lamellae in Eutectic Multi-Principal Element Alloy Additively Manufactured by Laser Powder Bed Fusion: Thinh Huynh1; Kevin Graydon1; Tanner Olson2; Amberlee Haselhuhn²; Yongho Sohn¹; ¹University of Central Florida; ²LIFT

ADDITIVE MANUFACTURING

Additive Manufacturing and Alloy Design: Bridging Fundamental Physical Metallurgy, Advanced Characterization Techniques, and Integrated **Computational Materials Engineering for Advanced** Materials — Poster Session - Aluminum Alloys

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Amir Farkoosh, Northwestern University; David Seidman, Northwestern University; Enrique Lavernia, Texas A&M University; Noam Eliaz, Tel-Aviv University; Lee Semiatin, MRL Materials Resources LLC

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Additive Friction Stir Deposition of Al-Ce Alloys: Vishal Soni¹; Devin Davis¹; Liam Menchaca¹; Naveen Kumar Nagaraja¹; David Weiss²; Rajiv Mishra¹; Vijay Vasudevan¹; ¹University of North Texas; ²Loukus Technologies, Inc.

G-10: Additive Manufacturing of A356 Aluminum Alloy with Incorporated Oxygen Atoms: Juyeon Han1; Soomin Kim1; Somin Lee1; Zhenxing Zhou²; Soomin Lee¹; Weiwei Zhou²; Naoyuki Nomura²; Hyunjoo Choi¹; ¹Kookmin University; ²Tohoku University

- G-11: Designing a Wire Feedstock From Recycled Aluminum for Additive Manufacturing: Jamie McIntyre¹; John Carsley²; Jonah Klemm-Toole¹; ¹Colorado School of Mines; ²Novelis
- G-12: Development of Aluminum Copper Alloys for LPBF Applications via In Situ Alloying of Commercial Powders: John O'Connell¹; Anne Dunn¹; Timothy Nice¹; Nataniel Badgett¹; Mahmudul Hasan¹; Hunter Wilkinson¹; Deep Choudhuri¹; Bhaskar Majumdar¹; ¹New Mexico Institute of Mining and Technology
- G-122: Formation of Al(Fe,Mn)Si Nano-Scale Precipitates in WAAM Aluminum: Jacob Aljundi¹; Aditya Pulipaka¹; Mo-Rigen He²; Kevin Hemker²; ¹Naval Surface Warfare Center Carderock Division; ²Johns **Hopkins University**
- G-13: Insights Towards the Grain Refinement of Al-Mn-Fe-Si Alloy via In Situ Reaction During Laser Direct Energy Deposition: Qingyu Pan¹; Fan Zhang²; Deepak Vikraman Pillai³; Zilong Zhang⁴; Yufeng Zheng³; Lang Yuan⁴; Monica Kapoor⁵; John Carsley⁵; Xiaoyuan Lou¹; ¹Purdue University; ²National Institute of Standards and Technology; ³University of North Texas; ⁴University of South Carolina; ⁵Novelis Global Research and Technology Center
- G-14: Nano-Treated Aluminum Alloy 2024 with Exceptional Strength and Ductility via Laser Powder Bed Fusion: Tianqi Zheng¹; Guan-Cheng Chen¹; Bingbing Li²; Xiaochun Li¹; ¹University Of California, Los Angeles; ²California State University, Northridge
- G-15: Strength Enhancement of Al Alloy via Microstructure Design Strategy Using Laser Powder Bed Fusion: Ankita Roy¹; Roopam Jain¹; Priyanka Agrawal¹; Ravi Haridas¹; Clara Mock²; Brandon McWilliams²; Kyu Cho²; Rajiv Mishra¹; ¹University of North Texas; ²Army Reasearch Lab
- G-16: The 3D Microstructure of Annealed LPBF AlSi10Mg Characterized by a Combination of Synchrotron Microdiffraction and Transmission X-Ray Microscopy: Marion Defer1; Yubin Zhang1; Soumyadeep Dasgupta²; Ashwin Shahani²; Xianghui Xiao³; Wenjun Liu⁴; Dorte Juul Jensen¹; ¹Technical University of Denmark; ²University of Michigan - Ann Arbor; ³Brookhaven National Laboratory; ⁴Argonne National Laboratory

Additive Manufacturing and Alloy Design: Bridging Fundamental Physical Metallurgy, Advanced Characterization Techniques, and Integrated **Computational Materials Engineering for Advanced** Materials — Poster Session - Nickel-Based **Superalloys**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Amir Farkoosh, Northwestern University; David Seidman, Northwestern University; Enrique Lavernia, Texas A&M University; Noam Eliaz, Tel-Aviv University; Lee Semiatin, MRL Materials Resources LLC

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

G-17: Fabricating Crack-Free, High-Density Inconel 738LC Using Direct Energy: Yusufu Ekubaru¹; Nakabayashi Takuya¹; ¹Nikon Corporation

- G-18: Homogenization Heat Treatment Simulation of DED-Arc Haynes 282: Gideon Crawford¹; Sophia Hill¹; Jonah Klemm-Toole¹; Joy Gockel¹; ¹Colorado School of Mines
- G-19: Impact of High Energies Laser Beam Shapes on Microstructure Development After Solution Annealing of Inconel 718: Crtomir Donik¹; Matjaž Godec¹; Irena Paulin¹; Simon Malej¹; Bojan Podgornij¹; Borut Žužek¹; Danijela Skobir Balantič¹; Richard Off²; Narges Mirsabeigi³; Katrin Wudy³; ¹Institute Of Metals And Technology; ²EOS GmbH Electro Optical Systems; ³Technical University of Munich
- G-20: Investigating the Influence of Heat Treatment on LPBF IN718 with Varied Beam Shapes: Insights into Static and Dynamic Mechanical Properties: Matjaz Godec1; rtomir Donik1; Irena Paulin1; Simon Malej¹; Bojan Podgornik¹; Borut Žužek¹; Danijela Skobir Balanti¹; Richard Off²; Narges Mirsabeigi³; Katrin Wudy²; ¹Institute Of Metals And Technology; ²Technical University of Munich; ³EOS **GmbH Electro Optical Systems**
- Microstructure, Mechanical Properties and Thermal Expansion Behavior of Laser Powder Bed Fusion Fabricated IN718-YSZ Compositionally Graded Composite: Amey Parnaik1; V. Chakkravarthy²; Jitendar Kumar Tiwary³; Yaojie Wen⁴; Baicheng Zhang⁴; Lakshmi Narayan Ramasubramanian¹; ¹Indian Institute of Technology Delhi; ²Cranfield University; ³Chalmers University of Technology; 4University of Science and Technology Beijing
- G-21: Oxide Dispersion Strengthened 718 Ni Alloy Fabricated Through Direct Energy Deposition: Emiliano Flores¹; Benjamin Stegman¹; Anyu Shang¹; William Jarosinski²; Joseph Corpus²; Haiyan Wang¹; Xinghang Zhang¹; ¹Purdue University; ²Linde Advanced Material Technologies
- G-22: Process and Properties Relationships of Solidification in Solid-Solution Ni-Based Superalloys Fabricated via Laser Powder **Bed Fusion**: Amanda Heimbrook¹; ¹Oak Ridge National Laboratory
- G-23: Solidification Behavior and Dissolution Mechanism of Laves Phase in Additively Manufactured Inconel 718: Vivek Singh1; Murugaiyan Amirthalingam²; Shyamprasad Karagadde¹; Sushil Mishra¹; ¹Indian Institute of Technology Bombay; ²Indian Institute of **Technology Madras**
- G-24: Solidification Condition Effect on Cracking Behavior in Rene 80 Thin-Wall Components Fabricated by Directed Energy Deposition: Can Sun1; Hamedreza Seyyedhosseinzadeh2; Changjie Sun³; Alexander Kitt⁴; Lang Yuan¹; ¹University of South Carolina; ²The University of Texas at Tyler; 3GE Research; 4EWI

Additive Manufacturing and Alloy Design: Bridging Fundamental Physical Metallurgy, Advanced Characterization Techniques, and Integrated Computational Materials Engineering for Advanced Materials — Poster Session - Processing, Defect Formation and Detection

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Amir Farkoosh, Northwestern University; David Seidman, Northwestern University; Enrique Lavernia, Texas A&M University; Noam Eliaz, Tel-Aviv University; Lee Semiatin, MRL Materials Resources LLC

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

G-35: Additive Friction Stir Deposition of Consolidated Metal Powder Feedstock: Amit Kumar Singh¹; Aishani Sharma¹; Ravi Sankar Haridas¹; Rajiv Mishra¹; ¹University of North Texas

G-36: Detection and Classification of Cracking via Acoustic Emission in Laser-Melting Experiments: Evan Raeker¹; Kaitlyn Mullin¹; Nikhil Tulshibagwale¹; James Lamb¹; Tresa Pollock¹; ¹University of California, Santa Barbara

G-37: Development and Validation of Topology Optimization Methodologies for Lattice Structured Architectures: Calvin Downey¹; Max Nezdyur¹; Lynn Munday¹; Swapnil Morankar¹; Cameron Howard¹; Jakub Toman¹; Carolyn Seepersad¹; Boone Beausoleil¹; ¹Idaho National Laboratory

G-38: The Use of Extraction Replication to Study Nano Precipitates in Powder Feedstocks and the Corresponding Additively Manufactured Builds: Qiushi Jin1; Manuel Sanchez-Poncela2; Rainer Hebert¹; Mark Aindow¹; ¹University of Connecticut; ²ArcelorMittal Global R&D Spain

ADDITIVE MANUFACTURING

Additive Manufacturing and Alloy Design: Bridging Fundamental Physical Metallurgy, Advanced Characterization Techniques, and Integrated **Computational Materials Engineering for Advanced** Materials — Poster Session - Solidification and Related Phenomena

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Amir Farkoosh, Northwestern University; David Seidman, Northwestern University; Enrique Lavernia, Texas A&M University; Noam Eliaz, Tel-Aviv University; Lee Semiatin, MRL Materials Resources LLC

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

G-118: Comparative Analysis of Different Inoculant Addition Methods on the Microstructure of Additively Manufactured **Geometries**: Ehiremen Asemewanlen¹; Aaron Stebner¹; Institute of Technology

G-39: Predictive Modeling of Grain Morphology and Phase Fraction in Metal Additive Manufacturing Using Coupled Thermal Simulation, a PF-CA Model, and a Kinetic Model: Hamed Hosseinzadeh1; 1Manufacturing Technology Project

G-40: Quantifying Thermal History in Laser Powder Bed Fusion Using In-Situ Sensing Techniques: Holden Hyer¹; Brandon Schreiber¹; Daniel Sweeney¹; Christian Petrie¹; ¹Oak Ridge National Laboratory

G-41: Rapid Estimation of the Liquidus Curve for Unexplored Multicomponent Alloy Chemistries: Joshua Willwerth¹; Shibo Tan¹; Abrar Rauf¹; Alan Taub¹; Wenhao Sun¹; ¹University of Michigan

G-42: Revealing the Complexity of Reactive Inoculation in Laser Powder Bed Fusion by Advanced In-Situ and Ex-Situ Characterization and Modeling: Adriana Eres-Castellanos¹; Kamel Fezzaa²; John Martin³; Xinyi He⁴; Sophie Primig⁴; Amy Clarke⁵; ¹Colorado School of Mines; ²Argonne National Laboratory; ³HRL Laboratories; 4UNSW Sydney; 5Los Alamos National Laboratory

Additive Manufacturing and Alloy Design: Bridging Fundamental Physical Metallurgy, Advanced Characterization Techniques, and Integrated Computational Materials Engineering for Advanced Materials — Poster Session - Steels and Iron Alloys

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Amir Farkoosh, Northwestern University; David Seidman, Northwestern University; Enrique Lavernia, Texas A&M University; Noam Eliaz, Tel-Aviv University; Lee Semiatin, MRL Materials Resources LLC

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

G-1: Additive Manufacturing of Alumina-Forming Austenitic Steels for Next-Generation Nuclear Systems: Lorenzo Notari¹; Enrico Virgillito²; Daniele De Caro²; Mariangela Lombardi¹; Francisco Ferrè²; ¹Politecnico di Torino; ²newcleo Srl.

G-2: Development of Additively Manufactured Austenitic Stainless Steel with Excellent Strength and Ductility Combination Through Ti Addition: Hyejin Song¹; Dongyong Park¹; Hojin Lee¹; Jin Seok Jang¹; ¹KITECH

G-3: Effects Combined Homogenization and Cryogenic Treatment on the Microstructure and Mechanical Properties of 17-4 PH Stainless Steel Fabricated by Laser-Powder Bed Fusion: Hyun-Hak Kang¹; Seung-Chang Han¹; Si-Mo Yeon²; Vladimir Luzin³; Tea-Sung Jun¹; ¹Incheon National University; ²Korea Institute of Industrial Technology; ³Australian Nuclear Science and Technology Organisation

G-4: Evaluating Printed 316L Stainless Steel Samples Using Novel Dry Metal Alloy (DMA) Powder Feedstock for Compositionally **Uniform**: Stephen Hanson¹; Nathan Huft¹; Sudhakar Vadiraja¹; Peter Lucon¹; ¹Montana Technological University

G-5:Heat Treatment of QT 17-4+ Steel: Impacts on Microstructure, Mechanical Properties, and Corrosion Resistance: Abheepsit Raturi¹; Vyas Sharma¹; Eyal Sabatani¹; Vladimir Popov¹; Amir Farkoosh²; Dieter Isheim²; Amir Natan¹; David Seidman²; Noam Eliaz¹; ¹Tel Aviv University; 2Northwestern University

G-6: Improvement of the Mechanical Properties of Austenitic Stainless Steel by Incorporating TiN-WC Ceramic Nanoparticles Fabricated Via Selective Laser Melting: Baibhav Karan¹; Qiyang Tan¹; Ayan Bhowmik²; Mingxing Zhang¹; ¹The University of Queensland; ²Indian Institute of Technology Delhi

G-7: L-PBF Duplex Stainless Steel Graded Lattice Structure (GLS): Mechanical Performance and Residual Stresses on the Magnetic Properties: Kamal Sleem¹; ¹Università Politecnica delle Marche

G-8: Maraging Steels with Enhanced Strength-Ductility Synergy via Additive Manufacturing: Wuxian Yang¹; Wen Chen¹; ¹University of Massachusetts Amherst

G-9: Twin-Related Grain Boundary Engineering of 316L Stainless Steel by Laser Additive Manufacturing: Chenglu Tang1; Jingfan Yang²; Xiaoyuan Lou¹; ¹Purdue University; ²Idaho National Laboratory

ADDITIVE MANUFACTURING

Additive Manufacturing and Alloy Design: Bridging Fundamental Physical Metallurgy, Advanced Characterization Techniques, and Integrated Computational Materials Engineering for Advanced Materials — Poster Session - Titanium Alloys

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: High Temperature Alloys Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Amir Farkoosh, Northwestern University; David Seidman, Northwestern University; Enrique Lavernia, Texas A&M University; Noam Eliaz, Tel-Aviv University; Lee Semiatin, MRL Materials Resources LLC

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Atomic Layer Deposition (ALD) for Improved Ti64 Feedstocks for Laser Powder Bed Fusion Processes: Chris Gump1; Joseph Gauspohl¹; Brandon Castro¹; Brianna Boeyink¹; Jeremy Iten²; Anthony Manerbino²; Arrelaine Dameron¹; ¹Forge Nano; ²Elementum 3D

G-34: Effect of Fe Alloying on Phase Evolution, Microstructure, Mechanical and Tribological Properties of Ti64 Alloy via Laser-Material-Deposition: Ipsita Mohanty¹; Saurav Misra¹; Sujoy Kar¹; Partha Saha¹; ¹Indian Institute of Technology Kharagpur

Optimizing Process Parameters in Laser Powder Bed Fusion of Ti-6Al-4V: Understanding Melt Pool Dynamics and Pore Splitting Phenomena Using Ultra-High-Speed Synchrotron Radiography: Elena Ruckh1; Samy Hocine1; Ruben Lambert-Garcia1; Anna Getley1; Maureen Fitzpatrick¹; Caterina Iantaffi²; Sebastian Marussi¹; Andy Farndell³; Marta Majkut⁴; Alexander Rack⁴; Nick Jones³; Chu Lun Alex Leung¹; Peter D. Lee¹; ¹University College London; ²European Space Agency (ESA); 3Renishaw plc.; 4European Synchrotron Radiation Facility

ADDITIVE MANUFACTURING

Additive Manufacturing and Innovative Powder/ Wire Processing of Multifunctional Materials — **Poster Session**

Sponsored by: TMS Functional Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Magnetic Materials Committee, TMS: Powder Materials Committee

Program Organizers: Daniel Salazar, BCMaterials; Markus Chmielus, University of Pittsburgh; Henry Colorado, Universidad de Antioquia; Riccardo Casati, Politecnico Di Milano

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Daniel Salazar, BCMaterials; Riccardo Casati, Politecnico Di Milano

G-123: 3D Printing of Hierarchical Porous Metal Structures: Luyang Liu¹; Natalya Kublik¹; Bruno Azeredo¹; Xiangfan Chen¹; ¹Arizona State University

G-117: Analyzing Production Cost and Powder Quality of Additive Manufacturing Feedstock Made Through Ultrasonic Atomization: Eduardo Lago Chamero¹; Michael Rademacher¹; ¹Georgia Institute Of Technology

Binder Jet Powder-Based 3D Printing of 17-4 Stainless Steel with Comprehensive Property Characterization: Amin Mianjy¹; Deep Vira¹; Sandesh Giri¹; Sen Liu¹; ¹University Of Louisiana At Lafayette

G-43: Effect of Interpass Cooling Temperature on Microstructure and Mechanical Properties by WAAM Process Using Steel Wire: Changwook Ji¹; Chung-Soo Kim¹; ¹Korea Institute of Industrial Technology

G-44: Effects of Processing Parameters on Joining Strength of 316L-Cu Interface in Multi-Materials Laser Powder Bed Fusion: Dehao Liu¹; Jiaqi Yang¹; ¹Binghamton University

G-45: Enhanced Cryogenic Tensile Properties of Additive Manufacturing STS316L Steel Using Nano-Oxide Dispersion of Reusable Powder: Chohyeon Lee¹; Jo Wonhui¹; Saurabh Tiwari¹; Cho Kisub¹; Kim Hyoungseop²; Seol Jaebok¹; ¹Kookmin University; ²Pohang University of Science and Engineering

Fabrication of Heterogenous Steel Alloy Using Multi-Wire Arc Additive Manufacturing: Ganesan Gunasekaran¹; Siddartha .¹; Shahu Karade¹; Narasimhan K¹; Karunakaran K.P.¹; ¹Indian Institute of Technology Bombay

G-46: From Rotational to Translational and Interlocking Particle Rearrangement: Exploring Binder Jet Printing of Controlled Irregular-Shaped and Fully-Dense Copper Powder: Mahsa Beyk Khorasani¹; Markus Chmielus¹; John Barnes²; ¹University of Pittsburgh; ²Metal Powder Works

G-47: Heterogenic Interface Stability of Multiple Alloy Systems by Additive Manufacturing and Sintering Process: Seong Gyu Chung¹; Omer Cakmak¹; Seung Hoon Lee¹; Jung Wook Cho¹; Kumar Sridharan³; Hwasung Yeom¹; ¹Pohang University of Science and Technology; ²University of Wisconsin Madison

Innovative Use of Glass Waste and Additives for Additive Manufacturing of Ceramic Bricks: Carlos Fernando Revelo Huertas¹; Henry Alonso Colorado Lopera²; Carlos Mauricio Fontes Vieira¹; ¹State University of Northern Rio de Janeiro; ²University of Antioquia

Manufacturing of Spherical Maraging Steel Powders for Additive Manufacturing Using by Waste Precision Mold: Donghee Ryu¹; Yulhee Kim¹; Junhee Han¹; Sahn Nahm²; Leeseung Kang¹; ¹Korea Institute of Industrial Technology; ²Korea University

G-48: Manufacturing of Spherical Molybdenum Powder for Additive Techniques Using Plasma Atomization: Marcin Lis¹; Adriana Wrona¹; Adam Sekuła¹; Anna Czech¹; Magorzata Osadnik¹; Adrian Kukofka²; Jacek Mazur¹; ¹Łukasiewicz Research Network-Institute of-Non Ferrous Metals; ²Progresja S.A.

Tailoring Microstructure for 2 GPa Class AISI D2 Tool Steel by Material Extrusion Additive Manufacturing (MEX): Min Su Jeon¹; So-Yeon Park¹; Yong-Hoon Cho¹; Michelle Baek²; Hyoung-Seop Kim³; Kee-Ahn Lee¹; ¹Inha University; ²Markforged; ³Pohang University of Science and Technology

ADDITIVE MANUFACTURING

Additive Manufacturing Fatigue and Fracture: Towards Accurate Prediction — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Mechanical Behavior of Materials Committee

Program Organizers: Nik Hrabe, National Institute of Standards and Technology; Nima Shamsaei, Auburn University; John Lewandowski, Case Western Reserve University; Mohsen Seifi, ASTM International/Case Western Reserve University

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chair: Nik Hrabe, National Institute of Standards and Technology (NIST)

G-119: Analysis of Wear Behavior in CoCrFeMnNi Alloys Additively Manufactured by Directed Energy Deposition Process: Geonwoo Baek¹; SungJae Jo¹; Daehyeon Kim¹; Gyeongwuk Kim¹; Ji-won Ha¹; Soon-jik Hong¹; ¹Kongju National University

G-49: Directed Energy Deposition of TiNbVZr Based Complex Concentrated Alloy for High Temperature Applications: Jan Dzugan¹; Jan Kout¹; Martina Koukolikova¹; Josef Strasky²; Milos Janecek²; Petr Harcuba²; Libor Kraus¹; ¹COMTES FHT; ²Charles University

G-50: Fatigue Properties of Laser-Powder Bed Fusion Fabricated Dissimilar IN718/SS316 Components: Sumit Choudhary¹; Vidit Gaur¹; ¹Indian Institute of Technology Roorkee

High-Cycle & Low-Cycle Fatigue Study of Additively Manufactured Nanoprecipitation Strengthened High Entropy Alloys: Poresh Kumar¹; Tu-Ngoc Lam¹; Mao-yaun Luo¹; Lia Amalia²; Jing-Syuan Lai¹; Ke An³; Yan Chen³; Dunji Yu³; Peter Liaw²; Po-Heng Chou⁴; An-Chou Yeh⁵; Soo Lee⁶; Jayant Jain⁻; Sudhanshu Singh®; E-Wen Huang¹; ¹National Yang Ming Chiao Tung University; ²University of Tennessee Knoxville; ³Oak Ridge National Laboratory; ⁴University of Tenessee Knoxville; ⁵National Tsing Hua University; ⁶Chungnam National University; †Indian Institute of Technology Delhi; ®Indian Institute of Technology Kanpur

G-51: High-Temperature Damage Mechanisms in Additively Manufactured Nickel-Based Superalloy IN939: Marketa Galikova¹; Ivo Kuběna¹; Ivo Šulák¹; Institute of Physics of Materials, CAS

G-52: Impact of Hatching Strategy on Mechanical Properties and Residual Stresses in Additively Manufactured AlSi10Mg Components: Sebastian Gersch¹; Jörg Bagdahn¹; ¹Hochschule Anhalt

Influence of Raster Angle and Infill Density on Impact Resistance of High Impact Polystyrene (HIPS): Mechack Nduwa¹; Aaron Adams¹; Edgar Bryant¹; David Stollberg¹; Cameron Coates¹; ¹Kennesaw State University

G-120: Influence of Wear Sliding Condition on the Wear Behavior of 316L by Directed Enery Deposition Processe: *Sung-jae Jo¹*; Dae-Hyeon Kim¹; Geonwoo Baek¹; HyunJoong Kim¹; Ji-won Ha¹; Gyeongwuk Kim¹; Soon-jik Hong¹; ¹Kongju National University

Microanalysis of Defects, Grain Structure, Surface Treatment and Its Correlation to Fatigue Behavior of Additively-Manufactured 316L Stainless Steel: *Jackelin Amorin*¹; Can Uysalel¹; Maziar Ghazinejad¹; ¹University of California San Diego

Additive Manufacturing Materials in Energy **Environments II — Poster Session**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Nuclear Materials Committee

Program Organizers: Isabella Van Rooyen, Pacific Northwest National Laboratory: Subhashish Meher, Pacific Northwest National Laboratory; Kumar Sridharan, University of Wisconsin-Madison; Xiaoyuan Lou, Purdue University; Yi Xie, Peking University; Michael Kirka, Oak Ridge National Laboratory; Mohan Sai Kiran Nartu, Pacific Northwest National Laboratory

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chair: Mohan Nartu, Pacific Northwest Naitonal Laboratory

G-53: Characterization of Aerosol Jet Printed Polyimide/h-BN Nanocomposite Thin Films for Space Applications: Lucas Clark¹; Fahima Ouchen²; Laura Davidson²; Oshadha Ranasingha³; Emily Heckman⁴; Carrie Bartsch⁴; Ahsan Mian¹; ¹Wright State University; ²KBR; ³University of Massachusetts Lowell; ⁴Air Force Research Laboratory

G-54: Cold Spray Coating to Mitigate Chlorine-Induced Stress Corrosion Cracking (CISCC) of Stainless Steel Dry Cask Storage System for Spent Nuclear Fuel: Jinwook Choi¹; Kumar Sridharan²; Hwasung Yeom¹; ¹Pohang University of Science and Technology; ²University of Wisconsin

G-55: Functionally Graded Joints Between Ferritic SA508 Low Alloy Steel to Austenitic 316L Stainless Steel Via Laser Directed Energy Deposition: Chenglu Tang¹; John Snitzer¹; Jingfan Yang²; Evan Mcdermott¹; Xiaoyuan Lou¹; ¹Purdue University; ²Idaho National

G-56: Investigation of Scan Speed Effects on Recrystallization of LPBF Processed 316H Stainless Steel.: Ousmane Ndiaye1; Jim Stubbins¹; ¹University of Illinois Urbana-Champaign

G-57: ODS Steels Produced by Laser Powder Bed Fusion for Fusion Power Systems: Irena Paulin¹; rtomir Donik¹; Anna Dobkowska²; Jiri Kubasek³; Matjaž Godec¹; ¹Institute Of Metals And Technology; ²Warsaw University of Technology; ³University of Chemistry and Technology

ADDITIVE MANUFACTURING

Additive Manufacturing Modeling, Simulation and Machine Learning — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Jing Zhang, Purdue University; Li Ma, Johns Hopkins University Applied Physics Laboratory; Charles Fisher, Naval Surface Warfare Center - Carderock; Brandon McWilliams, US Army Research Laboratory; Yeon-Gil Jung, Changwon National University

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chair: Jing Zhang, Purdue University

G-58: A Data Driven Framework to Predict and Bridge Multiscale Mechanical Phenomenon in Additively Manufactured Component: Abhijeet Dhal¹; Dilip Banerjee²; Rajiv Mishra¹; ¹University of North Texas; 2National Institute of Standards and Technology

G-59: A Deep Learning Framework for Predicting Surface Deformation of Alloys Under Uniaxial Tensile Loading at Microscopic Length Scale: Kavindu Wijesinghe¹; Steven Arnold²; Ajit Achuthan¹; ¹Clarkson University; ²NASA Glenn Research Center

G-60: A Machine Learning-Based Approach for Process Optimization in Laser Based 3-D Printing of High-Performance Al-Alloys: Jun Zheng¹; Ruobin Qi¹; John O'Connell¹; Jack White¹; Bhaskar Majumdar¹; ¹New Mexico Institute of Mining and Technology

G-61: A New Fast Solidification Cracking Indexing Tool for Metallic Alloys: Henry Leon-Henao¹; Kaue C. Riffel¹; Antonio Ramirez¹; ¹The Ohio State University

G-62: Additive Manufacturing Guided with High-Speed Photography and Machine Learning: Stanford White¹; Samrat Choudhury¹; Yiwei Han¹; ¹University of Mississippi

G-63: AM Microstructure Image Prediction Using Dimension Reduction: Arulmurugan Senthilnathan¹; Paromita Nath²; Sankaran Mahadevan¹; ¹Vanderbilt University; ²Rowan University

Can Machine Learning Predict the Liquidus Temperature of Binary Alloys?: Yifei He1; 1Yale University

G-64: Controlling Bubble Transport with External Magnetic Fields in Additive Manufacturing: Ivars Krastins¹; Xianqiang Fan²; Harry Chapman²; Catherine Tonry¹; Peter Soar¹; Koulis Pericleous¹; Peter Lee²; Andrew Kao¹; ¹University of Greenwich; ²University College London

G-124: Controlling Microstructure and Defect Through Physics-Informed Machine Learning in Laser Powder Bed Fusion Process: Aditya Pandey¹; Vidit Gaur¹; ¹Indian Institute of Technology Roorkee

Correlating Processing, Microstructure and Property with Machine Learning for Powder-Bed Fusion Additive Manufacturing: Xipeng Tan¹; ¹National University Of Singapore

G-65: Development of a Steady-State 3D Heat Transfer and Materials Flow Model for Multi-Layer Additive Friction Stir Deposition: Prachi Sharma¹; Amit Arora¹; ¹Indian Institute of Technology Gandhinagar

G-66: Effect of Nucleation Model and Data Resolution on Cellular Automata Texture Strength Prediction: Matthew Rolchigo¹, John Coleman¹; Gerald Knapp¹; Alex Plotkowski¹; ¹Oak Ridge National Laboratory

G-67: Elastoplastic Thermomechanical Simulation of Powder Bed Fusion Incorporating Isotropic Strain Hardening and Cyclic Hardening/Softening Effects: A Comprehensive Approach: Hamed Hosseinzadeh¹; ¹Manufacturing Technology Project

Evaluating Absorptivity from Surface Temperature Measurements of Tracks Produced by Direct Laser Metal Deposition: Andrii Maksymenko¹; ¹San Diego State University

Finite Element Analysis of Deposition Strategies in Dissimilar Metal Additive Manufacturing: Nishkarsh Srivastava¹; Amit Arora¹; ¹Indian Institute of Technology Gandhinagar

Finite Element Analysis of Porous Implants Used for Forearm Free Flap Implant: Leila Ladani¹; Adithi Muruganandam¹; Sahana Sundaran¹; Michael Palmieri¹; David Lott²; Brent Chang²; ¹Arizona State University; ²Mayo Clinic

G-69: Gaussian Process Regression Modelling and Texture Control During Hot Deformation of Additively Manufactured Maraging Steels: Jubert Pasco¹; Clodualdo Aranas Jr.¹; Thomas McCarthy¹; University of New Brunswick

Hierarchical Machine Learning Framework for Optimizing Material Properties.: Zahra Zanjani Foumani¹; Mahsa Amiri¹; Ramin Bostanabad¹; Lorenzo Valdevit¹; ¹University of California Irvine

Hyperspectral In-Situ Process Monitoring with High-Speed Infrared Pyrometry, Eddy Current Testing, and Machine Learning, for Predictive Analysis of AM Part Properties: Medad Monu¹; Dermot Brabazon¹; ¹Dublin City University

Impact of Infill Density and Raster Angle on 3D Printed High Impact Polystyrene (HIPS) Tensile Behavior: Mechack Nduwa¹; Aaron Adams¹; Edgar Bryant¹; David Stollberg¹; Cameron Coates¹; ¹Kennesaw State University

G-70: Integrating CAFE with MOOSE for Microstructure Evolution Analysis in 316L Stainless Steel 3D Printing Process: *Tsu-Chun Teng*¹; Dewen YuShu²; Luis Nuñez²; Wen Jiang¹; ¹North Carolina State University; ²Idaho National Laboratory

G-71: Large Language Models for Distilling Knowledge in Additive Manufacturing: Achuth Chandrasekhar¹; Jonathan Chan¹; Francis Ogoke¹; Olabode Ajenifujah¹; Amir Barati Farimani¹; ¹Carnegie Mellon University

G-72: LLM Agents for 3D Printing Error Detection and Correction: *Yayati Jadhav*¹; Peter Pak¹; Amir Barati Farimani¹; ¹Carnegie Mellon University

G-73: Local Stress Analysis of Ti5553 Lattice Structures Under Mixed Mode Stresses: Subhadip Sahoo¹; Mohammad M. Keleshteri¹; Jason Mayeur²; Thomas Voisin³; Kavan Hazeli¹; ¹The University of Arizona; ²Oak Ridge National Laboratory; ³Lawrence Livernore National Laboratory

G-74: Machine Learning Guided Prediction of Printability During Additive Manufacturing: Stanford White¹; Yu Zhang¹; Samrat Choudhury¹; Mo Maniruzzaman¹; ¹University of Mississippi

G-126: Mathematical Quantification of Meniscus Fluctuations and Asymmetries in a Medium-Thin Slab Mold: *Eriwiht Tello*¹; Saul Garcia-Hernandez¹; Enif Gutierrez¹; Marbella Durán González¹; Rodolfo Davila Morales²; ¹TecNM-Instituto Tecnologico de Morelia; ²Instituto Politecnico Nacional-ESIQIE

G-75: Mathematical Study of Partial Blockage of SEN in Specific Zones on Flow Patterns in the Mold: Marbella Durán González¹; Enif Gutiérrez¹; Saul Garcia-Hernandez¹; Eriwiht D. Tello Cabrera¹; Instituto Tecnologico de Morelia

G-76: Mechanical Evaluation of Nested Structures Using Finite Element Analysis: Niloofar Fani¹; Armaghan Hashemi Monfared²; Chao Gao³; Fariborz Tavangarian¹; ¹Penn State Harrisburg; ²Pennsylvania State University; ³Norwegian University of Science and Technology

G-77: Microstructural Investigation and Numerical Analysis and Observation of Additively Manufactured Anti-Tetra-Chiral 316L Stainless Steel Samples: Gabriele Grima¹; Alberto Santoni¹; Kamal Sleem¹; Maria Laura Gatto¹; Anna Maria Schiavone¹; Marcello Cabibbo¹; Stefano Spigarelli¹; Eleonora Santecchia¹; ¹Università Politecnica delle Marche

G-78: Microstructure Prediction in Laser Powder Bed Fusion via Physics-Based Modeling and In-Situ Sensor Data Fusion: Kaustubh Deshmukh¹; Mihir Darji¹; Antonio Carrington¹; Alex Riensche¹; Christopher Williams¹; Prahalada Rao¹; ¹Virginia Tech

Modeling GMA-DED Bead and Layer Geometry for Defect Elimination: Sophia Hill¹; Jonah Klemm-Toole¹; ¹Colorado School of Mines

G-79: Multi-Objective Study on Optimization of WAAM Parameters for Optimal Material Properties: Anthony Gonzalez¹; Alexander Aleman¹; Arvind Agarwal¹; Tyler Dolmetsch¹; Abderrachid Hamrani¹; ¹Florida International University

G-80: Multi-Phase-Field Modeling and High-Performance Simulations for Grain Structures Depending on Scanning Strategy During PBF Additive Manufacturing: Tomohiro Takaki¹; Yuki Takahashi¹; Konosuke Ikeda¹; Shinji Sakane¹; Takayuki Aoki²; ¹Kyoto Institute of Technology; ²Tokyo Institute of Technology

On the of Rapid Solidification in Additive Manufacturing Conditions by Combining Multiscale Simulations and In-Situ Monitoring Techniques: Tatu Pinomaa¹; Adriana Eres-Castellanos²; Joni Kaipainen³; Joni Kaipainen¹; Nikolas Provatas⁴; Amy Clarke⁵; Anssi Laukkanen¹; Joseph McKeown⁶; Thomas Voisin⁶; ¹VTT Technical Research Centre of Finland; ²Colorado School of Mines; ³University of Arizona; ⁴McGill University; ⁵Los Alamos National Laboratory; °Lawrence Livermore National Laboratory

Performance Optimization of Additively Manufactured -TI5553 Alloy Lattice Structures: A Methodical Approach Integrating Topology and Strut-Level Microstructure: Mohammad M Keleshteri¹; Subhadip Sahoo¹; Jason Mayeur²; Thomas Voisin³; Kavan Hazeli¹; ¹University of Arizona; ²Oak Ridge National Laboratory; ³Lawrence Livermore National Laboratory

G-81:Quantifying the Characteristics of Pore Features Using Gaussian Process Machine Learning in LPBF Process Parameter Space: *Tasrif Ul Anwar*¹; Maher Alghalayini²; Nadia Kouraytem¹; ¹Utah State University; ²Lawrence Berkeley National Laboratory

G-82: Sensing-Based AM Process Mapping to Improve Reliability: Glenn Bean¹; ¹The Aerospace Corporation

G-83: Simulation of Melt Pool Dynamics in Wire-Based and Powder-Based Directed Energy Deposition: Mohammad Younes Araghi¹; Shuozhi Xu¹; ¹University of Oklahoma

G-84: Towards a Fully Predictive Additive Manufacturing Module: *Amer Malik*¹; Minh-Do Quang¹; Johan Jeppsson¹; Andreas Markström¹; ¹Thermo-Calc Software

G-85: Understanding Structure-Property Interplay in 3D Printed Gyroid TPMS Lattices: Kunal Gide¹, ¹George Mason University

ADDITIVE MANUFACTURING

Additive Manufacturing of Refractory Metallic Materials — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Refractory Metals & Materials

Program Organizers: Fernando Reyes Tirado, Nasa Marshall Space Flight Center: Omar Mireles, Los Alamos National Laboratory: Faramarz Zarandi, RTX Corporation; Jeffrey Sowards, NASA Marshall Space Flight Center; Antonio Ramirez, Ohio State University; Eric Brizes, NASA Glenn Research Center; Eric Lass, University of Tennessee-Knoxville; Matthew Osborne, Global Advanced Metals; Joao Oliveira, Faculdade Ciencias Tecnologias; Ian Mccue, Northwestern University; Zachary Sims, Small Business **Consulting Corporation**

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chair: Fernando Reyes Tirado, Nasa Marshall Space Flight Center

G-88: Alloy Design and Microstructure-Property Relationships for Non-Equiatomic Ti-Zr-Nb-Ta-V-Cr Alloys with Tensile Ductility Made By Laser Powder Bed Fusion: Dillon Jobes1; Daniel Rubio-Ejchel¹; Lucero Lopez¹; William Jenkins²; Christopher Tandoc³; Jacob Hochhalter²; Amit Misra¹; Liang Qi¹; Yong-Jie Hu³; Jerard Gordon¹; ¹University of Michigan; ²University of Utah; ³Drexel University

Directed Energy Deposition of Vanadium for Interlayers in Laser Welding: Brett Roper¹; Dalton Pierce¹; Austin Pisani¹; Jack Herrmann¹; Andrew Kustas¹; Erin Barrick¹; ¹Sandia National Laboratories

G-86: High Temperature Mechanical Properties of Laser Powder Bed Fusion Processed Nb-Based C103 Alloy: Sucharita Banerjee¹; Advika Chesseti²; Tirthesh Ingle²; Monica Martinez¹; Thomas Bennett¹; Rajarshi Banerjee²; Narendra Dahotre²; Eric Taleff¹; ¹University of Texas at Austin; ²University of North Texas

G-87: Laser Assisted Additive Manufacturing of W and W-Re for Fusion Power Application: Material Response in Manufacturing Environment: Katie Estrada¹; Krishna Kamlesh Verma¹; Rameshwari Naorem²; Hailong Huang²; Nicolas Argibay²; Vijay K. Vasudevan¹; Narendra Dahotre¹; ¹University of North Texas; ²Ames National Laboratory

ADDITIVE MANUFACTURING

Additive Manufacturing: Length-Scale Phenomena in Mechanical Response — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Sezer Ozerinc, University of Illinois at Urbana-Champaign; Yu Zou, University of Toronto; Tianyi Chen, Oregon State University; Wendy Gu, Stanford University; Eda Aydogan, Pacific Northwest National Laboratory; Keivan Davami, University of Alabama

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Mechanical Behavior of Additively Manufactured Metals at Nanoscale: From Pillars to Architectures: Wenxin Zhang¹; Zhi Li²; Julia Greer¹; ¹California Institute of Technology; ²Institute of High Performance Computing, A*STAR

ADDITIVE MANUFACTURING

Additive Manufacturing: Marine Materials and Structures — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Mohsen Mohammadi, University Of New Brunswick; Meysam Haghshenas, University Of Toledo; Charles Fisher, Naval Surface Warfare Center - Carderock

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chair: Mohsen Mohammadi, University Of New Brunswick

G-89: 3D Printing of High-Sensitivity Architected Piezoelectric Hydrophones with Designed Beam Patterns: Victor Couedel1; Haotian Lu¹; Rayne Zheng¹; ¹University of California, Berkeley

G-90: Collection, Processing and Use of In-situ Assessment Data to Support the Qualification of Additively Manufactured Parts: Derek Hass¹; Yuri Plotnikov¹; Kyle Snyder¹; John Sions¹; Reagan Orth¹; Banafsheh Zee¹; ¹Commonwealth Center for Advanced Manufacturing

G-91: Exploring the Effect of Build Height on Microstructure and Tensile Behavior of Large-Scale Wire-Arc Additive Manufactured Duplex Stainless Steel 2209: Vishal Mahey¹; Grant Johnson¹; Prayag Burad¹; Peter Collins¹; Sougata Roy¹; ¹Iowa State University

G-92: Exploring the Process-Microstructure-Property Relationship of Nano-Treated Aluminum Alloy Deposited via Wire Arc Additive Manufacturing: Pial Das1; Roman Savinov2; Yashwant Bandari3; Shuvodeep De⁴; Sougata Roy¹; ¹Iowa State University; ²University of Cincinnati; ³Fastech LLC; ⁴Texas State University

G-93: Nano-indentation Tomography of Wire-Arc Additive Manufactured Nickel Aluminum Bronze Alloy: Faizan Hijazi¹; Mostafa Omar¹; Justin Norkett²; David Rowenhorst³; Charles Fisher²; Jaafar El Awady¹; ¹Johns Hopkins University; ²Naval Surface Warfare Center: 3U.S. Naval Research Laboratory

G-94: Process-Microstructure-Property Relationship of Duplex Stainless Steel Deposited via L-DED Process: Build Orientation and Alloying Perspectives: Prayag Burad¹; Vishal Mahey¹; Grant Johnson¹; Peter Collins¹; Sougata Roy¹; ¹Iowa State University

G-95: Seawater Corrosion Resistance of Austenitic Stainless Steel Claddings on Low Carbon Steel Fabricated with Laser-Wire Directed Energy Deposition: Scott Bozeman¹; Julie Tucker¹; O Isgor¹; ¹Oregon State University

G-96: Solidification Behavior and Weldability of Cu-Based Feedstock in Gas Metal Arc Directed Energy Deposition: Joe Kleindienst¹; Nick Bagshaw²; Jonah Klemm-Toole¹; ¹Colorado School of Mines: ²Fortius Metals

ADDITIVE MANUFACTURING

Additive Manufacturing: Microstructural and Mechanical Long-Term Stability of AM Materials — **Poster Session**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee

Program Organizers: Benjamin Adam, Oregon State University; Jonah Klemm-Toole, Colorado School of Mines; Sneha Prabha Narra, Carnegie Mellon University; John Carpenter, Los Alamos National Laboratory; Eric Payton, University of Cincinnati; Emma White, DECHEMA Forschungsinstitut; Sudarsanam Babu, University of Maryland; Markus Chmielus, University of Pittsburgh

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Additive Manufacturing and Characterization of A709 Stainless Steels for Nuclear Applications: Subhashish Meher¹; Asif Mahmud¹; Peter Renner¹; John Snitzer²; Xiaoyuan Lou²; Isabella van Rooyen¹; ¹Pacific Northwest National Laboratory; ²Purdue University

Effect of Number of Wires in Microstructure and Mechanical Properties of Wire Arc Additive Manufactured Components: Ganesan Gunasekaran¹; Neel Kamal Gupta¹; Siddartha .¹; Shahu Karade¹; Narasimhan K¹; Karunakaran K.P.¹; ¹Indian Institute of **Technology Bombay**

Enhanced Properties of SS316 Manufactured Using Direct Energy Deposition: Sung Eun Kim1; Jong Dae Hong2; Hong Ryoul Oh2; Hyungil Kim²; ¹Inha University; ²Korea Atomic Energy Research Institute

G-105: Fatique Life Evaluation of Binder Jet Printed and Sintered Metal Components: Pierangeli Rodriguez De Vecchis¹; Katerina Frederick²; Joseph Hayes³; John Reidy⁴; Kyle Myers³; Markus Chmielus¹; ¹University of Pittsburgh; ²Formerly Desktop Metal, Currently at Westinghouse Electric Company; ³Desktop Metal; ⁴Formerly Desktop Metal, Currently at Northwestern University

G-97: Investigation of M2 Tool Steel Fabricated by Selective Laser Melting Compared to Binder Jetting: Microstructural, Mechanical, and Tribological Insights: Amit Choudhari¹; Manoj Mugale¹; Sanoj Karki¹; Sambhaji Kusekar¹; Satyavan Digole¹; Tushar Borkar¹; ¹Cleveland State University

Mechanical and Micro-structural Characterization of Continuous Fiber Reinforced 3D Printed Composite via Finite Element Analysis: Jinyoung Jung¹; Geun Sik Shin¹; Simon Willenbrink²; Robert Boehm²; Jun Yeon Hwang¹; ¹Korea Institute of Science and Technology; ²Leipzig University

Microstructure & Porosity Analysis in Forced-Cooled WAAMED Al-Mg Alloys: Sara Soliman¹; Mohamed Abdelaziz²; Hanadi Salem³; Gildas L'Hostis¹; ¹Université de Haute Alsace, UHA; ²Université Française d'Égypte; 3 American University in Cairo

Minimizing Directional Anisotropy Through Point Melt Scanning Strategies for IN718 Bulk Parts- Fabricated Via EB-PBF: Shadman Tahsin Nabil¹; Cristian Banuelos¹; Michael Madigan²; Sammy Tin²; Gael Fierro¹; Ryan Wicker¹; Francisco Medina¹; ¹W.M. Keck Center for 3D Innovation; ²University of Arizona

G-98: Optimization of Processing Conditions of a High-Strength, Additively Manufactured Aluminum Alloy for IR Mirror Applications: Julian Lohser¹; Benjamin MacDonald¹; Paul Adams¹; Jenn-Ming Yang²; Rafael Zaldivar¹; ¹The Aerospace Corporation; ²University of California, Los Angeles

G-99: Temperature-Dependent Fracture Behavior of Laser Powder Bed Fusion SUS316L: Charpy Impact and Tensile Testing: Tae Hyeong Kim1; Jun Seok Lee1; Haeum Park2; Jeong Min Park2; Jae Wung Bae¹; ¹Pukyong National University; ²Korea Institute of Materials Science (KIMS)

ADVANCED CHARACTERIZATION METHODS

Advanced Characterization Techniques for Quantifying and Modeling Deformation — Poster Session

Sponsored by: TMS Structural Materials Division, TMS Extraction and Processing Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Materials Characterization Committee

Program Organizers: Wolfgang Pantleon, Technical University of Denmark; Irene Beyerlein, University of California, Santa Barbara; C. Tasan, Massachusetts Institute of Technology; M. Arul Kumar, Indian Institute of Technology Kanpur

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

H-1: 3D Indentation of Metallic Composites to Study the Effects of Particle Shape and Particle Orientation: Luo Li¹; Tariq Khraishi¹; Yu-Lin Shen¹; ¹University of New Mexico

H-2: Crytal Orientation Dependence of Dislocation Structure in Tensile-Deformed High Purity Iron: Wing Sum Lau¹; Shuhei Yoshida¹; Nobuhiro Tsuji¹; ¹Kyoto University

H-3: Length-Scale Effects on Geometrically Necessary Dislocation Characterization in Aluminum 6016 Using HR-EBSD: Sarah Sanderson¹; Sajjad Izadpanah²; Marko Knezevic²; Michael Miles¹; David Fullwood¹; ¹Brigham Young University; ²University of New Hampshire

H-4: Micro-Scale Digital Image Correlation for Reliability Characterization of Epoxy/Al Joint in High Precision Sensing Camera Assembly: Minhyuck Lee1; Minjeong Sohn2; Seongkyu Choi2; Nakyung Jeong²; Sang-Eui Lee³; Tae-Ik Lee²; ¹Korea Institute of Industrial Technology, Inha University; ²Korea Institute of Industrial Technology; 3Inha University

H-5: Microstructural Investigation of Strained Aluminum with External Electrical Pulses by Using an Electrical-Straining Stage in TEM: Youngwoon Kim1; Seok-Yong Hong1; Mingzhe Li1; Jin-Wook Kim1; 1Seoul National University

H-6: Oxygen, a Strengthening and Embrittling Element for Titanium Inherited From High Temperature Oxidation: A Multimodal Framework Using High Speed Nanoindentation Mapping: Damien Texier¹; Ayyoub Dziri¹; Quentin Sirvin¹; Thiebaud Richeton²; Henry Proudhon³; Marc Legros⁴; ¹Institut Clement Ader - UMR CNRS 5312; ²LEM3 - UMR CNRS 7239; ³Centre des Matériaux - Mines Paris PSL; 4CEMES

Rate-Dependent Serration Flow and Mechanical Properties of High Manganese Steel at 15 K: Taeho Lee¹; SooYeol Lee¹; Chetan Singh¹; YouSub Kim¹; JunYun Kang²; JunHyun Han¹; Dong-Hyun Lee¹; ¹ChungNam National University; ²Korea Institute of Materials Science

ADVANCED CHARACTERIZATION METHODS

Advanced Real Time Imaging — Poster Session

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Advanced Characterization, Testing, and Simulation Committee, TMS: Alloy Phases Committee, TMS: Biomaterials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Jinichiro Nakano, MatterGreen; David Alman, National Energy Technology Laboratory; Il Sohn, Yonsei University; Hiroyuki Shibata, Tohoku University; Antoine Allanore, Massachusetts Institute of Technology; Noritaka Saito, Kyushu University; Zuotai Zhang, Southern University of Science and Technology; Bryan Webler, Carnegie Mellon University; Wangzhong Mu, KTH Royal Institute of Technology; Pranjal Nautiyal, Oklahoma State University; Jiawei Mi, University of Hull

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

In Situ Synthesis and 3D Visualization of Hierarchically-Assembled ZnS Nanostructures: Yu-Jin Song¹; Taehwan Lim²; Hee-Suk Chung³; Jung Han Kim¹; ¹Dong-A University; ²Kangwon National University; ³Korea Basic Science Institute

LIGHT METALS

Advances in Titanium Technology — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Titanium Committee

Program Organizers: Abhishek Sharma, University of North Texas; Srinivas Aditya Mantri, Argonne National Laboratory; Zachary Kloenne, Imperial College London; Fan Sun, Centre National de la Recherche Scientifique - Paris Sciences et Lettres University; Stoichko Antonov, National Energy Technology Laboratory

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

- K-1: Analysis of Additively Manufactured Ti64 Alloy Premixed with TiO2 Nanoparticles Using Directed Energy Deposition: Shamaita Shabnam¹; Saber Goodarzi¹; Jyoti Prakash Naidu²; Abu Syed Kabir¹; ¹Carleton University; ²SleepLabs
- K-2: Backstress Characterization in Grade 4 & 5 Titanium Through Stress Dip Testing: Joshua Lim¹; Zahidul Sarkar²; Michael Miles¹; Marko Knezevic²; David Fullwood¹; ¹Brigham Young University; ²University of New Hampshire
- K-3: Characterization and Modeling of Ti-6Al-4V Sheet Undergoing Cyclic Bending Under Tension: Blake Jensen¹; David Fullwood¹; Michael Miles¹; Marko Knezevic²; Brad Kinsey²; Weston Bartlett²; Brigham Stacey¹; Tyson Neville¹; ¹Brigham Young University; ²University of New Hampshire
- K-4: Designing a Novel Ti-6Al-4V Based Alloy System Exhibiting TRIP Behavior via Controlled Beta Phase Metastability: Kiwan Seo1; Ji Young Kim¹; Eun Soo Park¹; ¹Seoul National University
- K-6: Microstructure and Mechanical Properties of Wire-Based Electron Beam Additively Manufactured Ti-6Al-4V: Okay Tutar1; ¹Roketsan

K-5: Powder Characterization for Additive Manufacturing of Recycled Titanium Powder: Daehyeon Kim1; Sungjae Jo1; Geonwoo Baek¹; Hyunjoong Kim¹; Gyeongwuk Kim¹; Jiwon Ha¹; Soon-Jik Hong¹; ¹Kongju National University

Tribo-Corrosion Behavior of Near Betta Alloys for Biomedical Applications: Toualbia Khaled1; Mamoun Fellah2; Naouel Hezil1; Nabila Bouchareb1; Dhikra Bouras3; Majeed Ali Habeeb4; Rim Imen1; Alex Montagne⁵; Alejandro Perez Larios⁶; Gamal A. El-Hiti⁷; ¹Abbas Laghrour University-Khenchela-Algeria; ²Abbes Laghrour University Khenchela; ³University of Souk-Ahras, Algeria; ⁴University of Babylon Babil, Iraq; 5Laboratory of Mechanics Surfaces and Materials Processing, ARTS ET METIERS ParisTech; 6Centro Universitario de los Altos, University of Guadalajara; ⁷King Saud University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

AI/Data Informatics: Computational Model Development, Verification, Validation, and **Uncertainty Quantification — Poster Session**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Computational Materials Science and Engineering Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Alloy Phases Committee

Program Organizers: Darren Pagan, Pennsylvania State University; Kamal Choudhary, National Institute of Standards and Technology; Saaketh Desai, Sandia National Laboratories; Dehao Liu, Binghamton University; Matt Kasemer, The University of Alabama; Ashley Spear, University of Utah; Christopher Stiles, Johns Hopkins University Applied Physics Laboratory; Anh Tran, Sandia National Laboratories

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chair: Darren Pagan, Pennsylvania State University

- J-1: A Data Structure and Collection System for Experimental Processes in Materials Science: Masaya Kumagai¹; Hirofumi Tsuruta²; Ryosuke Tanaka²; Ken Kurosaki¹; ¹Kyoto University; ²SAKURA internet Inc.
- J-2: Construction of Physical Property Temperature-Dependency Benchmarks for High-Accuracy Machine Learning Models: Takeshi Yokomizo¹; Yifan Sun¹; Masaya Kumagai¹; Hirofumi Tsuruta²; Yuji Ohishi3; Ken Kurosaki1; 1Kyoto University; 2SAKURA internet Inc.; 3Osaka University
- J-3: Data-Centric Engineering of Materials and Structures -Dissimilar Metal Welds as Use Case: Samuel Eka1; 1University of Manchester
- J-57: Data-Driven Study on Multi-Target Prediction of Mechanical Properties of Aluminum Alloys: Mohammed Quraishy¹; ¹Indian Institute of Technology, Kharagpur
- J-4: Data Management of Through-Life Structural Integrity Assessment of Dissimilar Metal Welds for Nuclear Application: Samuel Eka1; 1University of Manchester
- J-5: Enhancing Computational Materials Research Through Large Language Model (LLM) Interfaces: Juan Verduzco¹; Ethan Holbrook¹; Alejandro Strachan¹; ¹Purdue University
- J-6: Forward Prediction and Inverse Design of Additively Manufacturable Alloys via Autoregressive Language Models: Bo Ni¹; Benjamin Glaser¹; S. Mohadeseh Taheri-Mousavi¹; ¹Carnegie Mellon University

Intelligent Optimization Algorithm-Based Optimization Model of Water Volume in Secondary Cooling Zone of Continuous Casting: Chenghong Li1; Mingmei Zhu1; Xianwu Zhang1; Zhengjiang Yang1; KunChi Jiang¹; ¹Chongqing University

J-7: Investigation of Phase-Field Data Assimilation System for Dendrite Growth Problem: Aya Maruhashi¹; Ayano Yamamura¹; Shinji Sakane¹; Tomohiro Takaki¹; ¹Kyoto Institute of Technology

J-8: ML-DiCE: A Machine Learning Framework for Predicting Diffusion Coefficients in Impure Metallic and Multi-Component Alloy Media: Arjun S. Kulathuvayal¹; Yi Rao¹; Yanqing Su¹; ¹Utah State University

Models of Magnetic Properties for Rapid Screening of Alternative Materials: Nam Le1; Georgia Leigh2; Elizabeth Pogue1; Anna Langham²; Michael Pekala¹; Vincent La¹; Douglas Trigg¹; Bianca Piloseno¹; Sebastian Lech²; Christopher Stiles¹; Mitra Taheri²; ¹Johns Hopkins University Applied Physics Laboratory; ²Johns Hopkins University

J-9: Optimizing Microstructure Prediction and Control in Advanced Structural Materials Using Deep Generative Models and Physics-Based Methods: Xiaofan Zhang¹; Junya Inoue¹; Satoshi Noguchi²; ¹The University of Tokyo; ²JAMSTEC

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Algorithms Development in Materials Science and **Engineering — Poster Session**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee, TMS: Phase Transformations Committee, TMS: Process Technology and Modeling Committee, TMS: Alloy Phases Committee

Program Organizers: Remi Dingreville, Sandia National Laboratories; Saaketh Desai, Sandia National Laboratories; Hojun Lim, Sandia National Laboratories; Jeremy Mason, University of California, Davis; Vimal Ramanuj, Oak Ridge National Laboratory; Sam Reeve, Oak Ridge National Laboratory; Douglas Spearot, University of Florida

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

J-10: Bayesian Classification for Constraining the Design of Compositionally Graded Alloys (CGAs): James Hanagan¹; Eli Norris¹; Maryam Ghotbi¹; Brent Vela¹; Raymundo Arróyave¹; ¹Texas A&M University

J-11: High-Throughput Optimization of Cermet Coatings Using Simulation and Experiments: Dylan Zilifian¹; Kevin Yan¹; Dong Zhao¹; Subrato Sarkar¹; Rahul Rahul¹; Jie Lian¹; ¹Rensselaer Polytechnic Institute

LIGHT METALS

Alumina and Bauxite — Poster Session

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Efthymios Balomenos, Metlen Energy and Metals; Les Edwards, Rain Carbon Inc.

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Improvement Mechanical Properties Has Exposure to Hot Isostatic Pressing at Different Times of Ceramics -Al2O3 for Total Hip Arthroplasty: Hannachi Bouzid1; 1Univ-khenchela.dz

LIGHT METALS

Aluminum Alloys: Development and Manufacturing Poster Session

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Mihaiela Isac, McGill Metals Processing Centre; Les Edwards, Rain Carbon Inc.

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Sumanth Shankar, McMaster University; Alex Chun Lun Leung, University College London; Musa Javidani, Quebec University of Chicoutimi

K-7: A Study on New Precipitates in Al-Cu Alloys with La or Sr Additions Designed Using Machine Learning Based on OQMD: Seoyeon Jeon¹; Suwon Park¹; Ahyeon Cho¹; Sehoon Kim²; Yongjoo Kim³; Hyunjoo Choi¹; ¹Kookmin University; ²Korea Automotive Technology Institute (KATECH); ³Korea University

Al-Ca Eutectic Alloy: A New Candidate for Heat-Resistant Aluminum Alloys: Jinshian Huang¹; Daisuke Ando¹; Yuji Sutou¹; ¹Tohoku University

Computational Design of a Novel Recycled Aluminum Die Casting Alloy for Improved Thermal Conductivity: Umit Koc1; Bars Kara1; Samet Sahin²; Sezgin Bayram²; Emre Cinkilic³; ¹Yesilova Holding; ²Can Metal; ³Hakkari University

K-8: Controlling Precipitation in AlMgCu Alloys via Microalloying and Heat Treatment: Witold Chrominskii; Marta Lipinskai; Micha Misiak¹; Grzegorz Cieślak¹; Malgorzata Lewandowska¹; ¹Warsaw University of Technology

K-9: Corrosion Resistance of an AlCeMg/Stainless-Steel Reactive Bond: Jamieson Brechtl¹; Melanie Moses-DeBusk¹; Yan-Ru Lin¹; Ercan Cakmak¹; Tracie Lowe¹; James Keiser¹; Michael Kesler¹; David Weiss²; Kashif Nawaz¹; ¹Oak Ridge National Laboratory; ²Loukus Technologies, Inc.

Development and Characterization of Microporous Al-Si-Zr Alloys with Enhanced Porosity for Filtration Applications: Dikra Bouras¹; Mamoun Fellah²; Regis Barille³; Manel Sellam⁴; Madiha Zerouali⁵; Neçar Merah⁶; Gamal A. El-Hiti⁷; ¹University of Souk-Ahras, Algeria; ²ABBES Laghrour University; ³MOLTECH-Anjou, Université dAngers/ UMR CNRS 6200; ⁴Laboratoire des Sciences Analytiques, Matériaux et Environnement (LASME), Université Larbi ben M'Hidi; 5Laboratory of Research on the Physical-Chemistry of Surfaces and Interfaces (LRPCSI), University of 20 Août 1955-Skikda; 6King Fahd University of Petroleum and Minerals; 7King Saud University

Effect of T6 Heat Treatment on Microstructure and Mechanical Properties of A356 Aluminum Alloy: Shaoguang Yang¹; Junming Chen²; Lu Jin³; Aimin Zhao¹; ¹University of Science and Technology Beijing; ²Beijing Guowang Fuda Science and Technology Development Co., Ltd.; 3Shandong Iron & Steel Group Rizhao Co., Ltd.

K-10: Effect of Tungsten Content on the Thermal Conductivity and Thermal Expansion of Aluminum-Graphite Composites: Hyun-Kuk Park¹; Min-Hyeok Yang¹; Yu-Gyun Park¹; Hyoung-Seok Moon¹; ¹The Korea Institute of Industrial Technology

K-11: Effect of Weld Microstructure on Solidification Cracking During Laser Welding of Extruded Al-Mg-Si Alloys: Jaeheon Lee1; Junmyoung Jang¹; Yeongcheol Shin¹; Yongjoon Kang²; Mungu Kang³; Taeseong Lim³; Seung Hwan Lee¹; ¹Hanyang University; ²Korea Institute of Materials Science; ³Hyundai Motor Group

K-12: Effect of Zirconium on the Microstructure and Mechanical Properties of Laser Powder Bed Fused Eutectic Al-Ce Alloy: Haijian Yang¹; Thinh Huynh²; Yongho Sohn²; Le Zhou¹; ¹Marquette University; ²University of Central Florida

K-13: Effects of Melt Conditioning and Filtration on Recycled Aluminum Ingots for Sheet: Hyunkyu Lim¹; Umar Daraz¹; Seongho Ha¹; Bonghwan Kim¹; Young Ok Yoon¹; Shae K. Kim¹; ¹Korea Institute of Industrial Technology

Elucidating Mechanisms of Thermal Stability and Performance Enhancement in Hypoeutectic Al-Si Alloys with Trace Transition Metal Additions: Jaehui Bang¹; Hyunchuel Lee¹; Nawon kwak¹; Eunkyung Lee¹; ¹National Korea Maritime And Ocean University

Evaluation of Mechanical Properties with Less Proportions of Rare Earth Element Reinforced to AA 2024: Jyothi Babu Racharla¹; ¹NIT ΑP

K-14: Influence on the Microstructure, Mechanical Properties and Electrical Conductivity of the Addition of Rare Earth to Al-Si Alloys: Eunchan Ko1; ByeongKwon Lee1; HyoSang Yoo2; YongHo Kim2; HyeonTaek Son²; ¹Korea Institute of Industrial Technology, Chonnam National University; ²Korea Institute of Industrial Technology

Intermetallic Formation and Defects Control in Spray Forming AA7055 Alloy: Zexiang Deng¹; Wei Sun¹; Xiaojuan Hu¹; Yong Zhang¹; Sansan Shuai²; Guang Zeng¹; ¹Central South University; ²Shanghai University

Microstructure and Elevated Temperature Mechanical Properties of a Novel Heat-Resistant Al-6Cu-0.5Mn-2Ni-X Alloy: Diya Mukherjee¹; Himadri Roy²; Manidipto Mukherjee²; Dong Qiu¹; Nilrudra Mandal²; Mark A Easton¹; ¹RMIT University; ²CSIR-Central Mechanical **Engineering Research Institute**

K-15: Microstructure Characterizations and Electrical Conductivity of Aluminum Alloys by Heat Treatment Temperature: Hyo-Sana Yoo¹; YongHo Kim¹; ByeongKwon Lee¹; EunChan Ko¹; CheolWoo Kim¹; HyeonTaek Son¹; ¹Korea Institute of Industrial Technology

K-24: Natural Aging Behavior of Al-Mg-Si Alloy Sheets Derived from 6xxx Series Aluminum Scrap for Automotive Applications: Heon Kang¹; Seok Won Son¹; Young Kil Jung²; Jae Hyuck Shin²; Yong Shin Kim³; ¹Korea Institute of Industrial Technology; ²Korea Automotive Technology Institute; ³Dong Shin Motech

K-16: Precipitation and Its Thermal Stability in a Conventionally Non-Heat Treatable AA3xxx Aluminum Alloy: Suqin Zhu¹; Xiangyuan Cui¹; Yasuhiro Aruga²; Hongwei Liu¹; Simon Ringer¹; ¹The University of Sydney; ²Kobe Steel, Ltd.

Progressive Dynamic Recrystallization (DRX) and Texture Behaviors of Al-7Mg Alloy During Hot Torsion: Ji-Woon Lee1; Kwang Tae Son²; Jongun Moon¹; Gian Song¹; Jin-Kyu Lee¹; Soon-Jik Hong¹; ¹Kongju National University (CAMP2); ²Oregon State University

K-17: Study of Microstructure, Thermal Conductivity And Forming Processes of the Al-xRE Based Alloys for Electric Motor Housing: Hyeon-Taek Son1; Yong-Ho Kim1; Kyu-Seok Lee1; Seong-Ho Lee1; ¹Korea Institute of Industrial Technology

Study on the Effect of Adding La on the Microstructure and Corrosion Characteristics of Al-Si-Cu Alloy: Haewoong Yang¹; Uro Heo¹; Jong Goo Park¹; Dae Wook Kim¹; Kyeonghun Kim¹; ¹Pohang Institute of Metal Industry Advancement

Correlation Analysis of Surface Residual Stress and Microstructure via Design of Experiments (DOE): Nawon Kwak1; Jaehui Bang1; Hyunchuel Lee¹; Eunkyung Lee¹; ¹National Korea Maritime And Ocean University

Weld Quality Improvement Using Electrode Patterning in Resistance Spot Welding of Al6O61 Alloy: Jae Hun Kim¹; Changwook Ji¹; ¹Korea Institute of Industrial Technology

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Artificial Intelligence Applications in Integrated Computational Materials Engineering — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Wenwu Xu, San Diego State University; Ram Devanathan, Pacific Northwest National Laboratory; Vikas Tomar, Purdue University; Qiaofu Zhang, University of Alabama; Eshan Ganju, Purdue University; Avanish Mishra, Los Alamos National Laboratory; Victoria Miller, University of Florida; Ghanshyam Pilania, General Electric (GE Aerospace Research)

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Data Assimilation of Multi-Phase-Field Model Based on Physically Informed Neural Network: Chang Liu¹; Meng Zhang¹; Junya Inoue¹; Ryoya Tsuruoka¹; Satoshi Noguchi¹; ¹University of Tokyo

J-12: Establishing a Novel Systematic Alloy Design Strategy Based on Large Language Model Framework: Kiwan Seo1; Min Seok Kim1; Jae Kwon Kim¹; Eun Soo Park¹; ¹Seoul National University

J-13: Harnessing Graph Neural Networks for Classification of Unique Glassy Structures in CuZr Metallic Glasses: Emily Gurniak1; Suyue Yuan²; Xuezhen Ren¹; Paulo Branicio¹; ¹University of Southern California; 2LLNL

J-14: Prediction of Material Parameters Using Machine Learning Supported by Large-Scale Phase-Field Simulations of Dendrite Growth: Haruki Yano1; Souta Fujikawa1; Ayano Yamamura1; Shinji Sakane¹; Tomohiro Takaki¹; ¹Kyoto Institute of Technology

J-15: Starrydata Explorers: Visualization Platforms to Overview the Past Reported Experimental Samples: Yukari Katsura¹; Tomoya Mato¹; Yu Takada¹; Dewi Yana¹; Erina Fujita²; Fumikazu Hosono¹; Eiji Koyama¹; Naoto Saito¹; Yoshihiro Sakamoto³; Atsumi Tanaka¹; Masaya Kumagai4; 1National Institute for Materials Science; 2The Institute of Statistical Mathematics; 3RIKEN; 4SAKURA Internet, inc.

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Bridging Scale Gaps in Multiscale Materials Modeling in the Age of Artificial Intelligence — **Poster Session**

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering

Program Organizers: Liang Qi, University of Michigan; Yue Fan, University of Michigan; Katsuyo Thornton, University of Michigan; Peter Voorhees, Northwestern University; Eric Homer, Brigham Young University; Srujan Rokkam, Advanced Cooling Technologies,

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Study of Xe Binding in Ag-Exchange Chabazite for Radio-Nuclide Absorption: Soham Savarkar1; Preston Vargas2; Richard Hennig1; Juan Nino¹; ¹University of Florida; ²Sandia National Laboratories

ADVANCED CHARACTERIZATION METHODS

Characterization of Minerals, Metals and Materials 2025: In-Situ Characterization Techniques — Poster Session I

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Zhiwei Peng, Central South University; Kelvin Xie, Texas A&M University; Mingming Zhang, Baowu Ouyeel Co. Ltd; Jian Li, CanmetMATÉRIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, AnalytiChem Group, USA; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, Devcom Arl Army Research Office; Shadia Ikhmayies, The University of Jordan

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory

H-8: Activation of Granite Waste by Grinding for Applications as a Precursor In Geopolymers: Cássia Souza¹; Beatryz Mendes¹; Leonardo Pedroti¹; ¹Universidade Federal De Vicosa

Addition of Particulate Material From Sintering Plant to a Red Ceramics Mass: Carlos Vieira¹; Geovana Carla Delagua¹; ¹State University of Northern Rio de Janeiro

H-9: Analysis of Accelerated Degradation in the Laboratory of Pressed Ceramic Blocks of Red Ceramic: Izzis Simões¹; Mayara Almeida¹; Niander Cerqueira¹; Jonathan Madalena¹; Luiz Henrique Barbosa Jr.¹; Bruno Silva¹; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense (UENF)

Atom Probe Tomography on a Novel Mg-Er Alloy: Rashi Rajanna¹; Jayant Jain¹; ¹Indian Institute of Technology, Delhi

- H-10: Characterization and Mechanical Analysis of Different Types of Biochar Incorporated Into Coating Mortar: Jane Santos¹; Leonardo Pedroti¹; Angélica de Cassia Oliveira Carneiro¹; José Carlos Ribeiro¹; Flavio Ferreira¹; Ricardo André Fiorotti Peixoto²; Nathália Albuini-Oliveira¹; Wellington Fernandes¹; ¹Universidade Federal de Viçosa; ²Universidade Federal de Ouro Preto
- H-11: Characterization of Feedstock and Recovered End-of-Life NdFeB Magnet Using X-Ray Absorption and Emission Spectroscopy: Khagesh Kumar¹; Mikhail Solovyev¹; Matthew Earlam¹; Michael Dziekan¹; Eva Allen¹; Jessica Macholz¹; ¹Argonne National Laboratory
- H-12: Characterization of Yellow and Red Clays and Bauxite Residue: Analysis of Properties and Potential for Ceramic Products: Marcus Mendes¹; Leonardo Pedroti¹; Jose Maria Carvalho¹; Flavio Ferreira¹; Beatryz Mendes¹; Leslie Xavier¹; Wellington Fernandes¹; Nathália Oliveira¹; ¹Universidade Federal de Viçosa
- H-13: Contribution of Mineral Oil on Pore Stability of Alkali-Activated Composites for Co2 Capture: Laura Silvestro¹; Madeleing Barraza²; Alexandre Esteves²; Clara Vieira²; Carlos Mauricio Vieira²; Sergio Monteiro³; Afonso Azevedo²; ¹UFTPR; ²Universidade Estadual Do Norte Fluminense; 3IME

Dendrite Growth Observation of the Ni-Based System Using In-Situ Synchrotron Imaging: Won Sang Shin¹; Dae-yoon Kim¹; Min-Seo Kim¹; Jae-Won You¹; Yoo-Seok Kim¹; Jun-Pyo Park¹; Myung Gwan Hahm1; Yoon-Jun Kim1; 1Inha University

- H-15: Durability Evaluation of Cement-Based Composites Reinforced With Guaruman Fibers: Thuany Lima1; Afonso Azevedo2; Sergio Monteiro³; ¹CEFET-RJ; ²UENF; ³IME
- H-16: Effects of Red Mud on the Mechanical and Piezoresistive Properties of Mortars: Henrique Ribeiro Oliveira¹; Gustavo Henrique Nalon¹; Gustavo Emilio Soares De Lima¹; Leonardo Gonçalves Pedroti¹; José Carlos Lopes Ribeiro¹; José Maria Franco de Carvalho¹; Flávio Antônio Ferreira¹; ¹Universidade Federal De Vicosa
- H-17: Evaluation of Applicability of Natural Pineapple Leaf Fibers for Preparation of Coating Mortars: Iully Pereira1; José Linhares Junior¹; Isabela Devesa¹; Elias Júnior¹; Manoel Santos¹; Juliana Natalli¹; Afonso Azevedo¹; ¹Universidade Estadual Do Norte Fluminense
- H-18: Evaluation of the Physical and Mechanical Properties of Extruded, Pressed, and Fired Red Ceramic Blocks: Bruno Silva¹; Niander Cerqueira¹; Jonathan Madalena¹; Jonas Alexandre¹; Elias Cruz Junior¹; Rafael Oliveira¹; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)
- H-19: Experimental and Numerical Evaluation of Soil-Cement Blocks Under Simple Compression and Cyclic Shear Loads: Mayara Almeida¹; Elias Nascimento Junior¹; Niander Cerqueira¹; Andryl Ferreira¹; Afonso Azevedo¹; Jonathan Madalena¹; ¹Universidade Estadual do Norte Fluminense (UENF)
- H-20: Experimental and Numerical Modeling of Thermal Performance of Extruded, Pressed and Fired Ceramic Blocks: Jonathan Madalena¹; Bernard Sá¹; Niander Cerqueira¹; Bruno Silva¹; Afonso Azevedo¹; Jonas Alexandre¹; Mayara Almeida¹; ¹Universidade Estadual do Norte Fluminense (UENF)
- H-21: Feasibility of Incorporating Water Treatment Plant Sludge Into Ceramic Blocks: Wellington Fernandes¹; André Coelho²; Leonardo Pedroti¹; Gustavo Lima¹; Mateus Neves²; ¹Universidade Federal De Vicosa; ²UNIVICOSA
- H-22: Influence of Marble Granulometry on the Hardened State Properties of Mortars: Euzebio Zanelato¹; Afonso Azevedo²; Markssuel Marvila³; ¹IFF; ²Universidade Estadual Do Norte Fluminense; ³UFV

Investigating the Tribological Behavior of Nitinol Alloys Manufactured via Mechanical Alloying for Hip Implant Applications: Nabila Bouchareb1; Naouel Hezil1; Mamoun Fellah1; Bouras Dikra2; Majeed Ali Habeeb³; Imen Rim¹; Merah Neçar⁴; Alejandro Perez Larios⁵; A. El-Hiti Gamal⁶; Obrosov Aleksei⁷; Montagne Alex⁸; ¹Abbes Laghrour University Khenchela; ²University of Souk-Ahras; ³University of Babylon Babil; 4King Fahd University of Petroleum and Minerals; ⁵Centro Universitario de los Altos, University of Guadalajara; ⁶King Saud University; ⁷Brandenburg Technical University; ⁸Université Polytechnique Hauts-de-France

Investigation of Laves Phase Dissolution and Homogenization Kinetics in IN718 With Varying Si Content Through a Combination of Characterization and Calculation: Dattatreyai Pati1; Manas Paliwal¹; ¹IIT Kharagpur

ADVANCED CHARACTERIZATION METHODS

Characterization of Minerals, Metals and Materials 2025: In-Situ Characterization Techniques — Poster **Session II**

Sponsored by: TMS Extraction and Processing Division, TMS: Materials Characterization Committee

Program Organizers: Zhiwei Peng, Central South University; Kelvin Xie, Texas A&M University; Mingming Zhang, Baowu Ouyeel Co. Ltd; Jian Li, CanmetMATERIALS; Bowen Li, Michigan Technological University; Sergio Monteiro, Instituto Militar de Engenharia; Rajiv Soman, AnalytiChem Group, USA; Jiann-Yang Hwang, Michigan Technological University; Yunus Kalay, Middle East Technical University; Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory; Andrew Brown, Devcom Arl Army Research Office; Shadia Ikhmayies, The University of Jordan

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Juan Escobedo-Diaz, University of New South Wales; John Carpenter, Los Alamos National Laboratory

H-26: Microstructural Characterization of Nitrided Low Alloy Steel Using EPMA Scatter Diagram Method: Kazunori Tsukamoto¹; Takashi Kimura²; Kim Minheon³; Osamu Umezawa³; ¹JEOL ltd.; ²NIMS; ³Yokohama National University

H-27: Physico-Chemical and Mineralogical Characterization of Soils for the Production of Extruded, Pressed, and Fired Red Ceramic **Blocks**: Bruno Silva¹; *Niander Cerqueira*¹; Jonathan Madalena¹; Jonas Alexandre¹; Izzis Simões¹; Luísa Barreto¹; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)

H-28: Production and Evaluation of Technological Properties of Artificial Agglomerated Rock With Black Rock Waste São Gabriel: Evanizis Frizzera¹; Matheus Silva¹; Mônica Castoldi Borlini Gadioli²; Mariane Aguiar²; Carlos Mauricio Vieira³; Afonso Azevedo³; ¹IFES; ²CETEM; ³Universidade Estadual Do Norte Fluminense

H-29: Rheological and Mechanical Viability of Alkali-Activated Pastes for Oil Well Application: Carlos Mauricio Vieira¹; Sheila Silva¹; Madeleing¹; Lucas Cruz¹; Sergio Monteiro¹; Afonso Azevedo¹; ¹Universidade Estadual Do Norte Fluminense

Role of Biogas Recirculation in Direct Reduction of Iron Ore with Woody Biomass: Yang Shu¹; Bing Deng¹; Hongrao Zhang¹; Lingyun Yi¹; Yating Zhang¹; Zhiwei Peng¹; ¹Central South University

H-30: Soil Blocks Using Geopolymer and Partial Replacement of Soil With Construction Waste: Niander Cerqueira¹; Luísa Barreto²; Esthevão Silva¹; Josué Santos¹; Sabrina Silva²; Isabella Souza¹; Thomás Perez¹: Afonso Azevedo¹: ¹Universidade Estadual do Norte Fluminense (UENF); 2Instituto Federal Fluminense (IFF)

Structural and Dielectric Properties Analysis of Batio3 Doped Single and Double With Gadolinium and Europium: Ricardo Martinez1; 1UAEH

Synthesis and Characterization of Conventional and Non-Conventional Adsorbent Materials: V. Acosta-Sánchez1; M. García-Hernández²; M. Pérez-Labra¹; A. Cruz-Ramírez²; F. Patiño-Cardona³; M. Reyes-Pérez¹; J. Juárez-Tapia¹; J. Martínez-Soto¹; F. Barrientos-Hernández¹; ¹Autonomous University of Hidalgo State; ²ESIQIE-IPN; ³Consejo de Ciencia, Tecnología e Innovación de Hidalgo

Synthesis and Characterization of Surfactant Modified Clays for Adsorption Applications: Imen Rim1; Mamoun Fellah1; Naouel Hezil1; Nabila Bouchareb²; Gamal A El-Hiti³; Neçar Merah⁴; Aleksei Obrosov⁵; Alex Montagne⁶; ¹ABBES Laghrour-University, Khenchela; ² ABBES Laghrour-University, Khenchela; ³King Saud University; ⁴King Fahd University of Petroleum and Minerals; 5Brandenburg Technical University: 6Université Polytechnique Hauts-de-France

H-31: Technological Properties of Soil-Cement Bricks Produced With Soils From the Red Ceramic Industry of Campos Dos Goytacazes: Bruno Silva¹; Niander Cerqueira¹; Jonas Alexandre¹; Natália Gomes¹; Gustavo Xavier¹; Afonso Azevedo¹; ¹Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF)

The Reaction Behavior and Removal Law of Alkali Metals in the Pellet Process of Belt Roaster: Tian Yunging¹; ¹Research Institute of Technology, Shougang Group Corporation

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Chemistry and Physics of Interfaces — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Chemistry and Physics of Materials Committee, TMS: Mechanical Behavior of Materials Committee, TMS: Thin Films and Interfaces Committee

Program Organizers: Timofey Frolov, Lawrence Livermore National Laboratory; Fadi Abdeljawad, Lehigh University; Kaila Birtsch, Los Alamos National Laboratory; Daniel Moore, Lehigh University; Christopher Schuh, Northwestern University

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

J-16: Diffusion Behavior at the Interface of (110) Aluminum Substrates via Molecular Dynamics Simulation: Armin Shashaani¹; Panthea Sepehrband¹; ¹Santa Clara University

J-17: Elemental Segregation and Cohesion in Ferritic Iron Grain Boundaries: A First Principles Perspective: Han Mai¹; Xiang-Yuan Cui²; Tilmann Hickel³; Jörg Neugebauer¹; Simon Ringer²; ¹Max Planck Institute for Sustainable Materials GmbH; 2The University of Sydney; ³Bundesanstalt für Materialforschung und -prüfung (BAM)

J-18: Impact of Thermal Gradient on Interfacial Energy and its Anisotropy in Al-Cu Alloy: Amrutdyuti Swamy¹; Pabitra Choudhury¹; Anthony Lavelle¹; ¹New Mexico Tech

J-19: Interface Energy and Structure Anisotropy of Coherent Heterophase Interfaces: Christian Brandl¹; ¹The University of Melbourne

J-20: Interfacial Process Underlying the Environment-Dependent Friction on Calcite Single Crystals: Binxin Fu1; Rosa Espinosa-Marzal¹; ¹University of Illinois at Urbana-Champaign

J-21: Molecular Dynamics and Machine Learning Investigation of Segregation Effects on the Mechanical Behavior of 5 Cu-Ag Grain Boundaries: Shimanta Das1; Chongze Hu1; 1The University of Alabama

J-22: Optimizing Grain Boundary Structures With LAMMPS Using Evolutionary Algorithms: Jarin French¹; Chaitanya Bhave¹; Larry Aagesen¹; Yifeng Che¹; Shuxiang Zhou¹; ¹Idaho National Laboratory

J-23: Phase-Field Modeling of Woven Carbon Fiber Oxidation: Robert Clayton¹; Michael Tonks¹; Ryan Gosse¹; Michael Sakano²; Simon Phillpot¹; ¹University of Florida; ²Spectral Energies

J-24: Shifting of Failure Patterns in Aluminium-Magnesium Alloy Incorporated With Faceted Grain Boundary: An Atomistic-Scale Investigation: Akarsh Verma¹; Sandeep Singh¹; Shigenobu Ogata¹; ¹University of Petroleum and Energy Studies (UPES)

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Computational Thermodynamics and Kinetics — Poster Session I - Phase-Field Modeling (Focus)

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Prashant Singh, Ames National Labratory; Rodrigo Freitas, Massachusetts Institute of Technology; Nicolas Argibay, Ames National Laboratory; Raymundo Arroyave, Texas A&M University; James Morris, Ames Laboratory

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

- J-25: Nucleation and Coarsening of Multicomponent Precipitates in an Aluminum Matrix: The Combined Impacts of Interfacial Mobility and Interfacial Energy: Daniel Larouche¹; ¹Laval University
- J-26: Optimizing The Kinetic Properties of Materials Gradients: Samuel Price¹; Zhaoxi Cao¹; Ian McCue¹; ¹Northwestern University
- J-27: Phase-Field Model of Solution and Stoichiometric Phases With Molar Volume Difference: *Chengyin Wu*¹; Yanzhou Ji¹; ¹Ohio State University
- J-28: Phase-Field Modeling of Droplet Entrapment During Directional Solidification in Hypomonotectic Systems: Lingxia Shi¹; Katsuyo Thornton¹; ¹University of Michigan
- J-29: Phase-Filed Multi-Physics Modeling and Simulations for Fragmentation of Semi-Solid Grains: Gensei Kobayashi¹; Mitsuteru Asai²; Shinji Sakane¹; Tomohiro Takaki¹; ¹Kyoto Institute of Technology; ²Kyushu University
- J-30: Simulation of General Shape Precipitate Using Phase-Field Model Incorporating Interfacial Energy Anisotropy: Hwijae Cho¹; Hyung-Uk Jang¹; Dong-Uk Kim¹; Pil-Ryung Cha¹; ¹Kookmin University
- J-31: Solidification Simulation of Aluminum Alloys: Controlling Beta Phase Formation With Phase-Field Simulation: Hyung-Uk Jang¹; Hwi Jae Cho¹; Dong-Uk Kim¹; Pil Ryung Cha¹; ¹Kookmin University
- J-32: The Influence of Spatially Stochastic Toughness on Intergranular Fracture: A Phase Field Fracture Study: Miguel Fernandez¹; Douglas Spearot¹; Remi Dingreville²; Joseph Monti²; ¹University of Florida; ²Sandia National Laboratories
- J-33: Thermodynamic Theory of Strained Thin Films of Incipient Ferroelectric KTaO3: *Utkarsh Saha*¹; ¹Penn State
- J-34: Uniaxial Compression Simulations of Solid-Liquid Mixture by Phase-Field Lattice Boltzmann Method: *Tomoki Uchiyama*¹; Namito Yamanaka¹; Shinji Sakane¹; Tomohiro Takaki¹; ¹Kyoto Institute of Technology

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Computational Thermodynamics and Kinetics — Poster Session II - Thermodynamic Modeling, and Phase Transformation (Focus)

Sponsored by: TMS Functional Materials Division, TMS Structural Materials Division, TMS: Alloy Phases Committee, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Integrated Computational Materials Engineering Committee

Program Organizers: Prashant Singh, Ames National Labratory; Rodrigo Freitas, Massachusetts Institute of Technology; Nicolas Argibay, Ames National Laboratory; Raymundo Arroyave, Texas A&M University; James Morris, Ames Laboratory

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

- J-35: Advancing Mineral Extraction: Predictive Modeling of Colloidal Cluster Dynamics via Diglycolamide Complexants: Kaustubh Bawankule¹; John Howarter¹; ¹Purdue University
- J-36: Density Functional Theory Study on the Phase Transformation Behaviors of Mg-Sc Shape Memory Alloys: Hye-Hyun Ahn¹; Won-Seok Ko¹; ¹Inha University
- First-Principles Exploration of Cr/Co/Ni-Doping Impact on Electronic and Optical Properties of PrAlO3 Perovskites: Sijie Wang¹; Zixian Li¹; Liangying Wen¹; ¹Chongging University
- J-37: First-Principles Prediction of Band Edges of Ultra-Wide Bandgap Polar Wurtzite B_xAl_{1.x}N System: Cody Milne¹; Tathagata Biswas²; Arunima Singh¹; ¹Arizona State University; ²Université catholique de Louvain
- J-38: High-Temperature Refractory Al-M-Si-O (M= Nb, Ta) Systems: Julian Gebauer¹; Peter Franke¹; Hans Jürgen Seifert¹; ¹Karlsruhe Institute of Technology
- J-61: Kinetic and Thermodynamic Considerations for Grain Boundary Microstates in Compositionally Complex Alloys: *Mitra Taheri*¹; Emily Mang¹; Annie Barnett¹; Jaime Marian²; Michael Falk¹; ¹Johns Hopkins University; ²University of California, Los Angeles
- J-39: Predicting Elemental Segregation Tendency via Ab Initio and Machine Learning Methods: Ho Lee¹; Sangtae Kim¹; Liang Qi²; ¹Hanyang University; ²University of Michigan
- J-40: Regulating Stress-Strain Behavior of NiTi Shape Memory Alloys via 1D Nanoscale Concentration Modulations: Zexu Chen¹; Hariharan Sriram¹; Longsheng Feng¹; Yunzhi Wang¹; ¹The Ohio State University
- J-41: Simulation of Systematic Concentration Variation in CrTaVW High Entropy Alloys: Bochuan Sun¹; Enrique Saez¹; Osman Atwani²; Duc Nguyen-Manh³; Jan Wróbel⁴; ¹Clemson University; ²Pacific Northwest National Laboratory; ³United Kingdom Atomic Energy Authority; ⁴Warsaw University of Technology

Thermodynamic Analysis of Nb-Si-Ti Alloys Prepared by Molten Salt Electrolysis: *Lingyue Song*¹; Hui Li¹; Jinglong Liang¹; ¹North China University of Science and Technology

Thermodynamic Simulation of LiF Obtaining of A-Spodumene by Direct Roasting With NaF: M. Pérez-Labra¹; A. Hernandez-Ramirez²; J.A. Romero-Serrano²; M. U. Flores-Guerrero³; M. Reyes-Pérez¹; A. Cruz-Ramírez²; F. R. Barrientos-Hernández¹; F. Patiño-Cardona⁴; ¹UAEH; ²ESIQIE-IPN; ³Technological University of Tulancingo; ⁴Consejo de Ciencia, Tecnologia e Innovación de Hidalgo Science Building

Thermodynamics of Amorphization in Heterostructural AlN-Based Alloys: Neha Yadav¹; Cheng-Wei Lee¹; Prashun Gorai²; ¹Colorado School of Mines; ²Rensselaer Polytechnic Institute

ADDITIVE MANUFACTURING

Designing Complex Microstructures through Additive Manufacturing — Poster Session I

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Matteo Seita, University Of Cambridge; Hang Yu, Virginia Polytechnic Institute and State University; Alain Reiser, KTH Royal Institute of Technology; Yuntian Zhu, City University of Hong Kong; Xiaozhou Liao, University of Sydney

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

G-100: Cell Boundary Engineering of Ferrous Medium-Entropy Alloy Fabricated by Laser Powder Bed Fusion: Jeong-Min Park1; Hyeonseok Kwon²; Jungho Choe¹; Kyung Tae Kim¹; Ji-Hun Yu¹; Hyoung Seop Kim²; ¹Korean Institute of Materials Science; ²Pohang University of Science and Technology

G-101: Enhancing Mechanical Properties of Alloys With Non-Equilibrium Microstructures Formed During Hydrogel Infusion-Based Additive Manufacturing (HIAM): Thomas Tran1; Julia Greer1; ¹California Institute of Technology

G-103: Understanding the Effect Build Orientation and Alloying Strategy in Microstructure and Mechanical Behavior of Laser Metal Deposited Duplex Stainless Steel: Prayag Burad¹, Vishal Mahey¹; Sougata Roy1; 1 lowa State University

ADDITIVE MANUFACTURING

Designing Complex Microstructures through Additive Manufacturing — Poster Session II

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Additive Manufacturing Committee

Program Organizers: Matteo Seita, University Of Cambridge; Hang Yu, Virginia Polytechnic Institute and State University; Alain Reiser, KTH Royal Institute of Technology; Yuntian Zhu, City University of Hong Kong; Xiaozhou Liao, University of Sydney

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

G-104: A Synchrotron Imaging Investigation of the Application of Ultrasound on Directed Energy Deposition: Harry Chapman¹; Xianqiang Fan¹; Catherine Tonry²; Ivars Krastins²; Kai Zhang¹; Sebastian Marussi¹; Martyn Jones³; Chu Lun Leung¹; Andrew Kao²; Peter Lee¹; ¹University College London; ²University of Greenwich; ³Rolls-Royce plc.

Creating Mechanically Superior 3D Microscale Metal-Ceramic Metamaterials Using Template-Assisted Electrodeposition: Alexander Groetsch1; Christopher Gunderson2; Peter Schweizer3; Janne-Petteri Niemelä²; Ivo Utke²; Xavier Maeder²; Johann Michler²; ¹KTH Royal Institute of Technology; ²Empa - Swiss Federal Laboratories for Materials Science and Technology; 3Lawrence Berkeley National Laboratory

Effect of Alumina Doping at SS-Al Bimetallic Interface: Amrit Paul¹; ¹CSIR-CMERI

G-106: Effect of Laser Melt Schedule on the Microstructure of Additively Manufactured IN718 Alloy: Gyan Shankar Nln1; Gerald Knapp¹; John Coleman¹; Matt Rolchigo¹; Jay Reynolds¹; Chris Fancher¹; ¹Oak Ridge National Laboratory

G-107: Enhancing Alloy Development for Additive Manufacturing Through Combinatorial High-Throughput Experimentation: Sertac Altınok¹; Umut Gülletutan¹; Koray Yurtışık²; Yunus Kalay²; ¹Advanced Manufacturing Technologies, Turkish Aerospace Inc; ²Middle East **Technical University**

G-108: Enhancing Mechanical Properties of Bio-Inspired, 3D-Printed Composites via Topological Interlocking: Jie Yang¹; Chien-Chih Lin1; Po-Yu Chen1; 1National Tsing Hua University

Formation of a Novel Nano-Lamellar Microstructure in Peritectic Alloys via Laser Surface Remelting: Shanmukha Kiran Aramanda¹; Metin Kayitmazbatir¹; Amit Misra¹; Ashwin Shahani¹; ¹University of Michigan

G-109: Invar-Ag Microcomposites Formed by Ag Dendritic/ Cellular Infiltration of Pre-Cast or Pre-Additively Manufactured Invar-Cu: Haobo Wang1; Prosenjit Biswas1; Ji Ma1; Jerrold Floro1; ¹University of Virginia

G-110: Investigating Microstructural Evolution and Internal Stress Development in Additively Manufactured Metals Using Phase Field Modeling: Mahshad Fani¹; Mohammad Younes Araghi¹; Anirban Patra²; Shuozhi Xu¹; ¹University of Oklahoma; ²Indian Institute of **Technology Bombay**

G-111: Laser Powder Bed Fusion of In718/GRCop-42 Bimetallic Structures: Effect of Deposition Order and Process Parameters: Alasdair Bulloch¹; Andy Harris²; Allin Groom²; Amanda Cruchley³; Chris Tuck¹; Richard Hague¹; Marco Simonelli¹; ¹University of Nottingham; ²Autodesk Research; ³The Manufacturing Technology

G-112: Microstructural Control in Directed Energy Deposition: In-Situ Layer Thickness Control and Analytical Modeling With 316L Stainless Steel: William Kunkel¹; Dan Thoma¹; ¹University of Wisconsin-Madison

G-113: Processing-Microstructure Relationships in Ferrous Alloys via Mixed Powder Laser Powder Bed Fusion: Mustafa Tobah¹; Zenan Zhang¹; Mohsen Taheri Andani²; Veera Sundararaghavan¹; Amit Misra¹; ¹University of Michigan Ann Arbor; ²University of Michigan, Ann Arbor / Texas A&M University

G-114: Tailoring the Microstructure of AA6061 Using Pulsed Laser in Powder Bed Fusion: Sivaji Karna¹; Tianyu Zhang¹; Can Sun¹; Andrew J. Gross¹; Daniel Morrall²; Timothy Krentz²; Dale Hitchcock²; Lang Yuan¹; ¹University of South Carolina; ²Savannah River National

G-115: The Effect of Scan Strategies on 316 Grade Stainless Steel Fabricated Using Laser Powder Bed Fusion: Justin Warner¹; Sriram Vijayan¹; ¹Michigan Tech

ADVANCED CHARACTERIZATION METHODS

Heterostructured and Gradient Materials (HGM VI): Principle, Processing and Properties — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Shaping and Forming Committee

Program Organizers: Yuntian Zhu, City University of Hong Kong; Kei Ameyama, Ritsumeikan University; Irene Beyerlein, University of California, Santa Barbara; Yuri Estrin, Monash University; Huajian Gao, Tsinghua University; Ke Lu, Liaoning Academy of Materials; Hyoung Seop Kim, Pohang University of Science and Technology; Xiaolei Wu, Institute of Mechanics

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Investigating the Effect of Spatially Controlled Heat Treatments of a Compositionally Graded Ti-Cr Alloy Produced by Powder Fed Laser Additive Manufacturing: Nicholas Oldham¹; Matthew Dolde¹; Fatih Sikan¹; Maria Quintana¹; Brian Martin¹; Peter Collins¹; Richard Smith²; Wenqi Li²; Rikesh Patel²; Matt Clark²; ¹Iowa State University; ²University of Nottingham

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

High Performance Steels — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Steels Committee

Program Organizers: Benjamin Adam, Oregon State University; C. Tasan, Massachusetts Institute of Technology; Adriana Eres-Castellanos, Colorado School of Mines; Krista Limmer, DEVCOM Army Research Laboratory; Jonah Klemm-Toole, Colorado School of Mines; Pello Uranga, University of Navarra

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Effect of HIP and Annealing Conditions on Mechanical Properties of 15-5PH Stainless Steel: Sung-Min Park¹; Jun-Won Yoon¹; Jeongchan Lee¹; Kwangsuk Park¹; Sung-Hwa Ji²; Donghoe Kim³; Chang-Soo Park¹; ¹Korea Institute of Industrial Technology; ²Pumster; ³Korea University

Evaluation of Dynamic Recrystallization Behavior and Dislocation Density of 1.6 wt. % High Carbon Steel During Hot Deformation: JaeYeol Jeon¹; Jun-Hee Han¹; Dae-Geun Kim²; ¹Korea Institute of Industrial Technology; ²Institute for Advanced Engineering

Manufacturing of Advanced High Strength High Mn Steel: José Arcos¹; Nancy Margarita Lopez-Granados¹; Constantin Alberto Hernández-Bocanegra¹; José Angel Ramos-Banderas¹; ¹TecNM-Instituto Tecnológico de Morelia

Numerical Study on the Flow and Degassing Behavior of High Performance Steel in Vacuum Tank Degasser: Jiang Zhong¹; Jin Xu¹; Ruorong Zhou¹; Diqiang Luo¹; ¹Jiang Xi University of Science and Technology

J-42: On the Effect of Carbide Decomposition on the Wear Resistance of Ultra-High Strength Steels: Julian Rackwitz¹; Sebastian Arevalo¹; Minho Yun¹; Cemal Tasan¹; ¹Massachusetts Institute of Technology

Study on the Control of Impurity Elements and the Evolution Mechanism of Inclusions in Ultra-Low Sulfur 310S Stainless Steel: Rensheng Li¹; Ligang Liu¹; You Zhou¹; Xu Gao¹; Wanlin Wang¹; ¹Central South University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Local Chemical Ordering and Its Impact on Mechanical Behaviors, Radiation Damage, and Corrosion — Poster Session

Sponsored by: TMS Structural Materials Division, TMS Materials Processing and Manufacturing Division, TMS: Chemistry and Physics of Materials Committee, TMS: Computational Materials Science and Engineering Committee, TMS: Corrosion and Environmental Effects Committee, TMS: Nuclear Materials Committee, TMS: Phase Transformations Committee

Program Organizers: Rodrigo Freitas, Massachusetts Institute of Technology; Sriswaroop Dasari, University of Texas at El Paso; Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Mitra Taheri, Johns Hopkins University; Megan McCarthy, Sandia National Laboratories; Irene Beyerlein, University of California, Santa Barbara; Rajarshi Banerjee, University of North Texas; Srinivasan Srivilliputhur, University of North Texas

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Session Chairs: Rajarshi Banerjee, University of North Texas; Rodrigo Freitas, Massachusetts Institute of Technology; Penghui Cao, University of California, Irvine; Yang Yang, Pennsylvania State University; Sriswaroop Dasari, University of Texas at El Paso

Effect of Nb Concentration on the Oxidation Behavior of Zr-Nb Alloys: Sean Li²; Chaitanya Deo¹; Remi Dingreville²; Scott Monismith²; Preet Singh¹; ¹Georgia Institute of Technology; ²Sandia National Laboratories, Center for Integrated Nanotechnologies

J-43: Temperature-Dependent Behavior of Local Chemical Ordering in the Structure of CrCoNi: Guilherme Stumpf¹; Vinicius Bacurau¹; Caroline Stoco¹; Gustavo Bertoli¹; Eric Mazzer¹; Francisco Coury¹; ¹UFSCar

LIGHT METALS

Magnesium Technology 2025 — Poster Session

Sponsored by: TMS Light Metals Division, TMS: Magnesium Committee

Program Organizers: Domonkos Tolnai, Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon; Aaron Palumbo, Big Blue Technologies; Aeriel Murphy-Leonard, Ohio State University; Neale Neelameggham, IND LLC

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Characteristics of Advanced Thermo-Mechanical Multi Composite Core Rod: Junghwan Kim¹; Tae-Ho Lee¹; Sangmin Shin¹; Hyeonjae Park¹; Seungchan Cho¹; Taegyu Lee¹; Sang-Bok Lee¹; Sang-Kwan Lee¹; ¹Korea Institute of Materials Science (KIMS)

K-18: Comparative Studies on Corrosion of Short Fibre-Reinforced Mg Composites With and Without PEO Coatings: Hongfa Hu¹; ¹Mame, University of Windsor

K-23: Deformation Behavior of Mg-Zn-Ca Alloy During Uniaxial Compression: Aman Shukla¹; Shiv Brat Singh¹; ¹Indian Institute of Technology-Kharagpur

K-19: Effect of Al Additions and Heat Treatment on the Microstructure and Mechanical Properties of Mg-9.5Li-0.5Zn Alloys: Yong-Ho Kim¹; Hyo-Sang Yoo¹; Byeong-Kwon Lee¹; Eun-Chan Ko¹; Hyeon-Taek Son¹; ¹Korea Institute of Industrial Technology

K-20: Evaluation of Post Annealing on DSR-Processed AXM Alloys: Christopher Hale¹; ¹North Carolina A&T State University

K-21: Influence of Al Content on Mechanical Properties and Microstructure of Ulutralight Mg-Li-Bi Alloy: Byeongkwon Lee¹; Eun Chan Ko¹; Yong Ho Kim¹; HyoSang Yoo¹; HyeonTaek Son¹; SungKil Hong²; ¹Korea Institute of Industrial Technology; ²Chonnam National University

K-22: Magnesium Primary Production from MgO Using Molten Salt Electrolysis and G-METS Distillation: Connor Wirsing¹; Charles Logman¹; Sarah Fenton¹; Dimitry Blazy¹; Jameson Courtney¹; Daniel McArthur Sehar¹; Artem Iurkovskyi¹; Adam Powell¹; ¹Worcester Polytechnic Institute

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Materials Aging and Compatibility: Experimental and Computational Approaches to Enable Lifetime **Predictions — Poster Session**

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee, TMS: Corrosion and **Environmental Effects Committee**

Program Organizers: Bishnu Khanal, Sandia National Laboratories; Michael Melia, Sandia National Laboratories; Coby Davis, Sandia National Laboratories; Kerri Blobaum, Lawrence Livermore National Laboratory; Anthony Van Buuren, Lawrence Livermore National Laboratory, Nan Butler, Sandia National Laboratories

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

J-44: Accelerated Aging and Lifetime Performance Predictions of Silicone Cushions Under Compression: Karly Knox1; Hannah Eshelman¹; Nancy Merino¹; Maira Ceron¹; Patrick Campbell¹; ¹Lawrence Livermore National Laboratory

J-45: Impacts of Aging Additively Manufactured Silicone Polymers in the Presence of Organic Solvents: Nancy Merino¹; Hannah Eshelman¹; Karly Knox¹; Maira Ceron¹; Patrick Campbell¹; ¹Lawrence Livermore National Laboratory

J-62: Microstructure Influence on the Intergranular Corrosion of Aluminum Alloys by Integrating Experimental Data and Microstructure Incorporated Computational Modeling: Mohammad Umar Farooq Khan1; Leila Saberi1; I-Wen Huang2; Christopherr Taylor²; ¹The Ohio State University; ²Novelis Global R&T Center

LIGHT METALS

Melt Processing, Casting and Recycling — Poster Session

Sponsored by: TMS Light Metals Division, TMS: Aluminum Committee

Program Organizers: Arild Hakonsen, Hycast As; Les Edwards, Rain Carbon Inc.

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Ultra-Short Process for Producing Pure Nickel Casting Strip: Ligang Liu¹; Rensheng Li¹; Peisheng Lyu¹; Wanlin Wang¹; Lejun Zhou¹; ¹Central South University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Microstructural Evolution and Material Properties Due to Manufacturing Processes: A Symposium in Honor of Anthony Rollett — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Curt Bronkhorst, University of Wisconsin-Madison; Elizabeth Holm, University of Michigan; Ricardo Lebensohn, Los Alamos National Laboratory; Sukbin Lee, Ulsan National Institute Of Science And Technology, Nathan Mara, University of Minnesota

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

J-48: Advantages and Limitations of the Coupled Random Cellular Automata Finite Element Model of Dynamic Recrystallization: Lukasz Madej¹; Kacper Pawlikowski¹; Mateusz Sitko¹; Konrad Perzynski¹; ¹AGH University of Krakow

J-49: Effects of Cellular Microstructure on Strength, Fatigue and Hydrogen Embrittlement of Additively Manufactured Alloys: Minh-Son Pham1; 1Imperial College London

J-59: Evaluation of Additively Manufactured Parts Using a Work-Hardening Analysis: Ryan Holdsworth¹; Joshua Yee²; Diran Apelian³; Enrique Lavernia¹; Alan Jankowski²; ¹Texas A&M University; ²Sandia National Laboratories; 3University of California, Irvine

J-51: Improving Mechanical Durability of SLA Printed Components for Load-Bearing: Niloofar Fani¹; Armaghan Hashemi Monfared²; Sorour Sadeghzade³; Fariborz Tavangarian¹; ¹Penn State Harrisburg; ²Pennsylvania State University; ³Westlake University

Morphological Stability of Recrystallization Fronts: Theory and Simulations: Moneesh Upmanyu¹; ¹Northeastern University

J-60: Revealing the Influence of Rolling Reduction and Temperature on the Deformation and Recrystallization Behavior of Ta-10W Alloy: Ki-Seong Park¹; Shi Hoon Choi¹; ¹Sunchon National University

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Microstructural Evolution and Material Properties Due to Manufacturing Processes: A Symposium in Honor of Anthony Rollett — Student Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Computational Materials Science and Engineering Committee

Program Organizers: Jonathan Zimmerman, Sandia National Laboratories; Curt Bronkhorst, University of Wisconsin-Madison; Elizabeth Holm, University of Michigan; Ricardo Lebensohn, Los Alamos National Laboratory; Sukbin Lee, Ulsan National Institute Of Science And Technology; Nathan Mara, University of Minnesota

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

J-46: Enhanced Thermal Stability in Additive Friction Stir Deposited ODS IN9052 Al Alloy: Aishani Sharma1; Roopam Jain1; Priyanka Agrawal¹; Shreya Mukherjee¹; Anurag Gumaste¹; Davin F. Davis¹; Ravi Sankar Haridas¹; Rajiv Mishra¹; ¹University of North Texas

J-63: Evolution of Grain Boundary Character Distribution in High-Mn Steel: Poorna Chander K1; Sumantra Mandal1; Shiv Brat Singh1; ¹Indian Institute of Technology Kharagpur

Impact of Cold-Wire Gas Metal Arc Welding (CW-GMAW) Parameters on Microstructure and Microhardness Characteristics in Repairing S275JR Structural Steel: Zahraddeen Musa¹; Supriyo Ganguly¹; Wojciech Suder¹; Victor Igwemezie¹; Kuladeep Rajamudili¹; ¹Cranfield University

J-47: Investigating Microstructural Changes in Wrought 316L and As-Deposited Wire Arc Additively Manufactured 316LSi After Forging Using Double Cone Samples: Brett Ley¹; Vishnu Ramasamy¹; Jennifer Carter¹; Glenn Daehn²; Zhigang Xu³; Bradley Jared⁴; Kornel Ehmann⁵; John Lewandowski¹; ¹Case Western Reserve University; ²The Ohio State University; ³North Carolina Agricultural and Technical State University; 4University of Tennessee Knoxville; 5Northwestern University

J-56: Microstructure Evolution and Mechanical Behavior of As-Cast Chromium-Contained Ductile Cast Iron: Kumar Karuna Nidhi¹; Siddhartha Roy¹; Shiv Brat Singh¹; ¹Indian Institute of Technology

J-58: Role of Relative Amount of Mn and Ni on Chemical and Mechanical Stability of Austenite in -Ferrite Containing Medium-Mn Steels: Navanit Kumar¹; Tapas Kumar Bandyopadhyay¹; ¹Indian Institute of Technology, Kharagpur

J-55: Understanding the TRIP Effect in Hot- and Cold-Rolled Al-Added Medium-Mn Steels: Insights Into Austenite Stability and Martensitic Transformation Kinetics: Deepak Kumar¹; Indrani Sen¹; Tapas Kumar Bandyopadhyay¹; ¹Indian Institute of Technology Kharagpur

ADDITIVE MANUFACTURING

Nano and Micro Additive Manufacturing — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS Structural Materials Division, TMS: Additive Manufacturing Committee, TMS: Electronic Packaging and Interconnection Materials Committee, TMS: Nanomechanical Materials Behavior Committee

Program Organizers: Alain Reiser, KTH Royal Institute of Technology; Wendy Gu, Stanford University; Yu Zou, University of Toronto; Mostafa Hassani, Cornell University; Ming Chen, University of Nevada, Reno

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

Enhancing In-Situ Resource Utilization: Additive Manufacturing of Lunar Highlands Regolith with Graphene Nanoplatelets: Katrina Rodriguez¹; Brandon Aguiar¹; Ambreen Nisar¹; Tony Thomas¹; Arvind Agarwal¹; ¹Florida International University

ADVANCED CHARACTERIZATION METHODS

Neutron and X-Ray Scattering in Materials Science and Engineering — Poster Session

Sponsored by: TMS Functional Materials Division, TMS: Chemistry and Physics of Materials Committee

Program Organizers: Michael Manley, Oak Ridge National Laboratory; Chen Li, University of California-Riverside; Hillary Smith, Swarthmore College; Jennifer Niedziela, Oak Ridge National Laboratory

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

H-32: Anomalous Neutron Nuclear-Magnetic Interference Spectroscopy: Chuliang Fu¹; Phum Siriviboon¹; Artittaya Boonkird¹; Michael Landry¹; Chen Li²; Weiwei Xie³; Mingda Li¹; ¹Massachusetts Institute of Technology; ²University of California, Riverside; ³Michigan State University

In-Situ and Multimodal Capabilities of Laue Diffraction Instrument at 34-ID-E of the Advanced Photon Source: Dina Sheyfer1; Wenjun Liu¹; Jonathan Tischler¹; ¹Argonne National Laboratory

H-33: Machine Learning Models For X-Ray Diffraction Temperature Inference: Griffin Hess1; Georgios Zipitis1; Sachith Dissanayake1; Chenliang Xu1; Niaz Abdolrahim1; 1University of Rochester

ADVANCED CHARACTERIZATION METHODS

Novel Strategies for Rapid Acquisition and Processing of Large Datasets from Advanced Characterization Techniques — Poster Session

Sponsored by: TMS Materials Processing and Manufacturing Division, TMS: Advanced Characterization, Testing, and Simulation Committee

Program Organizers: Sriram Vijayan, Michigan Technological University; Rakesh Kamath, Argonne National Laboratory; Austin Mcdannald, National Institute of Standards and Technology; Fan Zhang, National Institute of Standards and Technology, Sarshad Rommel, University of Connecticut

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

H-35: Artificial Intelligence X-Ray Imaging for Sustainable Metal Manufacturing: Enzo Liotti¹; ¹University of Oxford

H-34: Classification of Defects in Tomographic Reconstructions of Hyperscale Advanced Packages: Orion Kafka1; Jason Killgore1; Newell Moser¹; Zachary Grey¹; Jake Rezac¹; ¹National Institute of Standards and Technology

Enhanced Quantification of Reinforcement Particles in Additively Manufactured IN718 Using Microfocus X-Ray Computed Tomography and CGAL Alpha Wrapping Tool: I-Ting Ho1; Devin Bayly¹; Pascal Thome¹; Sammy Tin¹; ¹University of Arizona

DATA-DRIVEN AND COMPUTATIONAL MATERIALS DESIGN

Verification, Calibration, and Validation Approaches in Modeling the Mechanical Performance of Metallic Materials — Poster Session

Sponsored by: TMS Structural Materials Division, TMS: Mechanical Behavior of Materials Committee

Program Organizers: George Weber, NASA Langley Research Center; Joshua Pribe, Analytical Mechanics Associates; Saikumar Reddy Yeratapally, Science and Technology Corporation; Kirubel Teferra, Naval Research Laboratory; Diwakar Naragani, Cornell University

Tuesday PM | March 25, 2025 Marquee Ballroom | MGM Grand

J-54: Explicit Finite Element Model of Composite Metal Foam's Mechanical Response During Quasi-Static and Dynamic **Compression**: Aman Kaushik¹; Afsaneh Rabiei¹; ¹North Carolina State University

A	Adams, D	Ahmed, S
A	Adamska, A	Ahn, H
Aagesen, L33, 66, 157, 205, 231,	Adams, P	Ahn, M260
275, 296	Adam, T69	Ahn, S
Aalbers, E	Addamane, S143	Ahn, Y
Abando, N	Adeeko, O	Aich, S
Abba, M	Adegbola, S	Aidhy, D 40, 53, 73, 85, 110, 158, 266
Abbey, B	Adelele A 175	Aidukas, T
Abdelaziz, M290	Adeleke, A	Aifantis, E
Abdeljawad, F21, 22, 42, 52, 91, 125,	Adeosun, S	Aimone, E
157, 193, 203, 231, 295	Aderibigbe, M	Aindow, M 84, 95, 105, 171, 278, 284
Abdelsamie, M	Adesina, K124	Ainger, K
Abdoelatef, M	Adeva, P	Airoudj, A
Abdolrahim, N 135, 151, 154, 190, 300	Adeyemi, C	Aitkaliyeva, A 23, 30, 36, 55, 56, 63,
Abdul Aziz, M	Adhikari, S	65, 70, 75, 94, 100, 107, 127, 134, 137,
Abdulhafez, M 139 Abdul-Jabbar, N 177	Adibi, N	140, 142, 160, 167, 177, 196, 202, 205,
Abdulkareem, A	Adkins, C231	210, 223, 229, 231, 248, 269, 273, 275
Abdullaev, F	Admal, N	Aizawa, T
Abdullah, A	Adnan, S	Ajam, A
Abdul Samad, M263	Adrovic, D	Ajantiwalay, T 15, 30, 63, 99, 100, 119, 134, 167, 202, 229, 248, 273
Abdul Samad, Y	A. El-Hiti, G	Ajayan, P
Abedrabbo, S8, 42, 75, 111, 144,	Aeppli, G20	Ajenifujah, O
179, 262	Afful, H	Ajjarapu, P
Abe, H	Afonin, A	Akamatsu, H43
Abels, K	Afrasiabi, M13, 141	Akamatsu, S65
Abergel, R 36, 70, 107, 140, 177, 210	Agarwal, A13, 66, 71, 82, 83, 141,	Akande, R175
Abornathy, H	144, 182, 257, 288, 300	Akanji, F
Abernathy, H	Agarwal, S	Akbarkermani, M234
Abney, M	Agava, R	Akbar, M
Abraham, J	Ager, J	Akerson, A
Abraham, S	Aggarwal, A	Akin, S
Abramova, M238	Agnew, S	Akram, N
Abrams, T	129, 132, 151, 200	Aksenova, D
Abram, T	Agraffeil, C106	Aksu, E
Abreu-Faria, G	Agraharam Chan, P218	Aktaa, J157
Abtahi, S	Agrawal, A 50, 65, 187, 268	Akter, A
Acar, P	Agrawal, P35, 37, 71, 157, 217,	Akter, T259
Acemi, C	247, 262, 280, 283, 300	Alamdari, H55
Achard, J	Agrawal, R	Al Amiri, E
Acharya, R96	Agrawal, V	Alam, M
Acheampong, E192	Agudo Jácome, L	208, 234, 270
Achuthan, A	Aguiar, B	Al Assadi, M
Ackall, G279	Aguiar, M	Alavi, M
Ackelid, U	Aguilera-Navarrete, I147	Alawein, M
Ackölf, K 20, 53, 124, 190, 207, 218	Aguirre, T122	Alazemi, R57
Acosta-Sánchez, V	Agyemang, P124, 192	Al-Badour, F
Acquah, E	Ahlawat, S	Albakri, M53
Actis Grande, M	Ahli, N	Albalushi, T219
Adaan-Nyiak, M	Ahlquist, J	Al Balushi, Z8
Adair, C	Ahmad A	Albar N
Adam, B24, 26, 56, 58, 95, 97, 130,	Ahmad, A	Albar, N
164, 178, 182, 189, 212, 214,	Ahmad, L	Al-Boqami, S
237, 239, 270, 281, 290, 298	Ahmed, K	Albuhairan, H92
Adams, A	Ahmed, M	Albuini-Oliveira, N

Alcaraz Ramirez, A273	Almer, J101	Anand, A
Aldhanhani, M 50, 219	Almirall, N	Anand, R80, 263
Alduaij, A61	196, 223, 269	Anantharaman, M265
Aleksei, O295	Almishal, S	Anantharaman, S
Alema, F238	Al Obaidli, J55	Anas, J49
Aleman, A	Alomari, A248	Anasori, B
Alem, N	Al-Omari, I	149, 264
Alem, T144, 240	Aloui, R	Anayee, M
Ales, T	Alqahtani, B	Anber, E 141, 161, 209, 232, 246
Alewi, D	Al Rabie, Y	Anderoglu, O 30, 62, 100, 206
Alexander, M	Alshaikh, A	Anderson, A 54, 92, 167, 202,
Alexandre, J	Al-Shami, A	228, 273
Alex, M295	Al-Shammari, A	Anderson, I 22, 30, 38, 76, 108, 112,
Alfarsi, Y	Alshammari, S	147, 149, 157, 249, 252, 282
Alfreider, M	Al-Shammari, S	Anderson, K 160, 258, 270
Algendy, A	Alshamsi, A50	Anderson, M
Alghalayini, M184, 288	Alshannaq, M	Anderson, N
Al Ghawi, M	Al Sharji, A	Anderson, P
Alhammadi, H	Altınok, S	Andersson, A52
Alhammadi, M 50	Alturk, S53, 169	Andersson, D
Alhayas, H219	Altvater, M	Andersson, J 81, 182, 237
Al Hunaini, M49	Altzar, O	Andersson Neretnieks, I
Ali, A	Aluie, H	Andersson, T
Ali, F	Alustad, M	Ando, D
Ali Habeeb, M	Alvarado, B	Ando, M
Ali, M	Alvaredo, P	Andorful, I
Ali, N	Alvarez Montano, V14, 208	András, K
Ali, S	Alverson, M	Andreev, A
Al Jaziri, M	Alvi, S	Andreev Batat, S
Aljundi, J	Alwen, A	André Fiorotti Peixoto, R294
Alkan, M	Alyousif, O	Andreoli, A
Al Kotob, M	Alzarooni, A	Andrew, M
Allaire, D	Alzarouni, A	Andrews, D
Al-Lami, J	Alzubail, A	Andrews, J
Allano, B	Amadeo, P	Andrews, W 17, 62, 233
Allanore, A	Amalia, L16, 50, 161, 186, 226,	Andreyev, A
Allard, L	266, 286	Andri, R
Alla, S	Amann, F	Anegbe, B
Aller A 250	Amano, N	An, G
Allen, A	Amaral, H	Angell, R
Allen, B	Amaro, R	Anglin, B 116, 136, 151, 266
Allen, C	Amatya, V	Angot, T
Allen, E	Ameyama, K	Angus, X
Allen, M	199, 298	An, J
Allen, Q	Amin, A147, 148	Anjaria, D
Allen, R	Amini, S	An, K
Allen, T	Amiri Gheisvandi, A	232, 239, 286
Allgor, E	Amiri, M	Ankem, S
Allison, J27, 28, 43, 61, 85, 102,	Amirthalingam, M283	Ankit, K
105, 233, 241, 253, 260	Ammigan, K	Ånnhagen, L
Allison, P225, 232	Amon, A	Anovitz, L
Al-Majali, Y 21, 53, 91, 126, 147, 268	Amon, L	An, Q
Alman, D	Amorin, J	An, S
Almarzooqi, A	Amos, R	Ansari, K
Al Marzooqi, A55	Amouretti, A	Ansart, F
Almasri, R	Amouyal, Y	Anthony, B
Almeida, M	Amrouche, L 224, 265, 266, 271	Anthony, R
Almeida, R	Amroussia, A	Antillon, E
		. ,

	Arpon, A	Autones, L
Antinozzi, S	Arputharaj, J	Autran, P
120, 150, 186, 291	Arregui-Mena, D	Averback, R
Antony Jose, S	Arregui Mena, J94	Aversa, R
Antoun, B	Arrè, L	Ávila Calderón, L
Antrekowitsch, J	Arroyave, R 12, 22, 40, 46, 53, 76,	Avila, L
Anwar, T	92, 126, 130, 153, 158, 172, 176, 194,	Avtzi, Y
An, X246	213, 218, 221, 238, 244, 261, 265, 279,	Awasthi, P 79, 100, 217
An, Y116	282, 296	Aworinde, O
Aoki, T141, 288	Arróyave, R 19, 34, 84, 292	Awoyemi, R192
Aoki, Y	Arrubla Agudelo, L 67, 104, 276	Ayala Calderon, C74
Ao, T218	Arslanoglu, M 42, 118, 144	Aybarc, U241
Apelian, D 120, 157, 171, 235, 253, 299	Arthanari, M	Aydin, G182
Apel, M 110, 122, 265	Artini, C18	Aydogan, E 10, 11, 30, 38, 63, 79, 100,
Apodaca, S101	Aruga, Y	115, 134, 157, 167, 181, 202,
Apostolov, Z	Arul Kumar, M11, 42, 79, 116, 147,	204, 229, 248, 261, 273, 289
Appel, F93	184, 216, 290	Aydogmus, D128
Appelhans, L221	Arzoumanidis, A168	Aye, K
Appel, M211	Arzt, E101	Ayers, N
Appel, O	Asadi, P	Ayers, T
Appolaire, B	Asai, M	Ayinla, K
Appunhi Nair, K96	Asemewanlen, E284	Aymon, B
Arachige, H206	Asghari-Rad, P	Aytug, T
Aragon, N 18, 41, 156	Ashad, F	Ayush, K
Aramanda, S	Ashburn, M	Ayyagari, S
Aranas, C	Ashman, P	Azakli, Y
Aranas Jr., C	Ashraf, M	Azar, A
Aranda, L	Askari, H 8, 42, 75, 111, 144, 179,	Azeredo, B
Arata, E	190, 262	Azevedo, A 264, 269, 294, 295
Araujo, J	Asle Zaeem, M 34, 59, 68, 75, 89, 92,	Azimi, A
Archambeau, C	101, 105, 131, 138, 173,	Azimi, G 28, 36, 60, 175, 208, 234
Archer, A	207, 233, 251, 277	Aziziha, M
Archibald, C89	Asli, A	Azpeitia, X
Arciniaga, L207	Assadi, H 27, 59, 98, 131, 171, 272	Azu, S
Arcos, J	Asta, M 15, 18, 22, 29, 43, 62, 83, 91,	Azzaz, R
		112202, 10111111111111111111111111111111
Aremu, A	99, 120, 141, 164, 165, 186,	
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261	В
Aremu, A	99, 120, 141, 164, 165, 186,	В
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261	B Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	B Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	B Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P
Aremu, A	99, 120, 141, 164, 165, 186, 217, 222, 243, 261 Astecker, T	Bała, P

Bae, J 138, 165, 196, 265, 266, 290	Bambach, M	Barreto, L
Baek, G	Bamer, F	Barrett, C
Baek, J	Bamney, D	Barrett, M
Baek, M 70, 145, 286	Bamrud, F	Barrick, E 78, 167, 289
Bae, M	Bandari, Y 146, 183, 215, 258, 289	Barrie, C254
Bae, S	Bandi, S	Barrientos, H254
Baganis, A	Bandla, D168	Barrientos-Hernandez, F
Bagdahn, J	Bandyopadhyay, A	Barrientos-Hernández, F 264, 295, 296
Bagheri, E	Bandyopadhyay, R	Barrientos-Hernández, R
Bagherpour, E	Bandyopadhyay, S 62, 97	Barriobero-Vila, P
Bagot, P	Bandyopadhyay, T	Barrios, A
Bagshaw, N	Banerjee, D 143, 181, 182, 209, 287	Barron, P
Bahat, S	Banerjee, R10, 13, 16, 17, 37, 44,	Barsotti, A
Bahhage, O	46, 47, 60, 81, 92, 115, 118, 119, 132,	Barsoum, M271
Bahl, S 103, 105, 110, 113, 214	159, 165, 175, 200, 209, 216, 220, 222,	Bartel, C53
Bahn, J	226, 235, 246, 247, 253, 259, 289, 298	Bartha, K
Bahr, D 20, 23, 39, 72	Banerjee, S	Barthelat, F
	· ·	Barthelemy, P
Baiges, J	156, 184, 216, 252, 289	
Baig, S	Banerjee, T	Bartlett, L
Bai, H	Bang, J 257, 269, 293	Bartlett, M
Baihaqi, Z	Bang, S	Bartlett, S100
Bailey, N	Ban, H98, 103	Bartlett, W
Baird, S	Banik, R	Barton, D 34, 92, 196, 211
Bair, J244	Banno, Y	Bartsch, C
Bai, X 18, 92, 192	Bano, S	Bartzsch, G
Bai, Y	Banos, A	Baruah, S
Bajpai, P17	Banuelos, C	Barua, R
Bajpai, S	Bao, S	Barwick, S
Baker, A 15, 185, 208, 211	Baraheem, R	Baryshev, S
Baker, B	Baral, A	Basavanagowda, B
Baker, D	Baranack, G126	Baski, A
Baker, J119	Barati Farimani, A 145, 213, 288	Bassen, G
Baksi, M	Barati, M	Bassett, K
•		
Balachandramurthi, A	Barber, J	Bassman, L 34, 119, 260, 262
Balachandran, R247	Barbier, T	Bastos da Silva, A
Balani, K	Barbosa Jr., L294	Basu, R
Balasubramaniam, R	Barela, M	Basu, S 12, 43, 80, 116, 148, 184, 263
Balbus, G 31, 63, 100, 134, 168,	Bargon, M	Bates, J
203, 225, 229, 248, 274	Bar, H	Bates, K
Balcorta, V	Barham, S	Bathula, V
Baldinozzi, G	Baril-Boudreault, X	Bat, I
Baldivieso, S	Barile, C	Batta, L
Baldwin, J	Barille, R	Battalgazy, B153
Baldwin, O	Barka, N	Battas, B66
Baldwin, S	Barker, Z64	Batteas, J
Bale, H	Barmak, K	Battle, T 24, 56, 94, 128, 270
Balila, N	Barnard, D118	Baudequin, X
Balk, T 45, 255, 265, 277	Barnard, P	Bauer, A
Ballesteros, A	Barnes, J	Bauer, E
Ball, J	Barnett, A 125, 165, 224, 296	Bauman, A145
Ballor, J	Barnett, M	Bauman, R
Bally-Le Gall, F212	Barnett, S	Baumbach, R
Balog, N	Barnhill, N	Baumgarten, A
Balogun, O	Barnum, T246	Bauret, N
Balomenos, E 49, 86, 123, 154,	Barooni, A	Baus, C221
191, 292	Barpaga, D	Bavdekar, S 19, 51, 248
· · · · · · · · · · · · · · · · · · ·		
Balooch, M	Barras, A	Bawagnih, A
Balpande, A	Barraza, M	Bawah, J
Balusu, K	Barrera, J	Bawane, K 33, 53, 94, 177, 223, 246

Bawankule, K210, 296	Bell, M	Beyerlein, I 11, 13, 18, 26, 33, 42, 50,
Bawa, R	Bellon, P 33, 56, 113, 130, 160	58, 60, 66, 79, 96, 101, 103, 105, 116,
Bay, B	Bell, S	123, 129, 132, 137, 147, 163, 165, 171,
Bayly, D	Bellus, J	184, 199, 200, 204, 206, 216, 217, 225,
Bayramoglu, B	Belof, J	226, 246, 254, 290, 298
Bayram, S	Beltran, A	Beygelzimer, Y
Bazarnik, P	Beltrán, A	Beyk Khorasani, M
Beals, R	Belure, A	Bezold, A
		Bhagavath, S
Beamer, C	Benafan, O	C .
Bean, C	Bencharef, N	Bhandari, B
Bean, G	Benedetti, L	Bhanu, V
Beatty, J	Beneduce, F	Bhashyam, G96
Beaudoin, A187	Benefan, O126	Bhattacharjee, P
Beaudry, D	Benigni, P250	Bhattacharya, A 92, 101, 108, 230
209, 246	Beniwal, D226	Bhattacharya, K 80, 130, 203
Beausir, B83	Ben Jedidia, Y	Bhattacharya, R254
Beausoleil, B	Ben Messaoud, H	Bhattacharya, S
Beausoleil, G	Bennett, T	Bhattacharyay, D
Beausoleil II, G275	Bennett, W149	Bhattacharyya, D 31, 64, 83, 101,
Beaver, L	Benoudia, M	135, 168, 203, 230, 274
Becerril, I	Benson, C	Bhattacharyya, J 15, 46, 106, 132,
Béchade, J187	Bentley, D57	151, 200
Beck, M	Bentoumi, G	Bhatta, L199, 233
Beck, S	Benzeşik, K 24, 56, 128	Bhatt, S
Beckwith, C53	Benzerga, A	Bhave, C 168, 205, 296
Becquart, C	Benzesik, K	Bhesania, A
Bedard, B171	Benzing, J 11, 20, 75, 78, 130, 280	Bhowmick, S 168, 238, 274
Bedekar, V	Beraud, M	Bhowmik, A
Bedewy, M129, 139, 163, 199, 226,	Berbalk, S	Bhowmik, S
246, 271	Beretta, S 9, 113, 151	Bhure, S
Bednarcyk, B	Berfield, T 9, 146, 183	Bianchi, G
Bednarczyk, W	Berggren, S	Bian, M
Bedoya, C	Bergin, A	Bibhanshu, N
Bedoya Lopez, C	Berglund, I	Bichler, L
Bedroy, D	Berlia, R	Bidhar, S
Beeler, B164, 168, 231, 249, 272, 275	Berman, M	Bieberdorf, N
Beersaerts, G123	Berman, T 28, 43, 105, 227, 233	Bienvenu, P
Beese, A38, 76, 77, 112, 222, 239, 282	Bernal-Choban, C	Bie, X
Begley, B 12, 28, 120	Bernholdt, D	Biggs, K
Begley, M	Bernstein, L	Bijjala, S
Behera, G	Bernstein, N	Biju, A
Behera, S	Berseneva, A	Bilal, H
Beheshti, A	Bertheau, D	Bilionis, I
Behura, S	Berthebaud, D 48, 78, 121	Billah, M
Behzadinasab, M	Berthel, J	Billinge, S
Beidaghi, M35, 44	Bertherat, M 65, 86, 94, 136	Billy, E
Beishline, R	Berthod, P 224, 265, 266, 271	Binde Stoco, C218
Bejger, G14	Bertin, N 123, 168, 203	Bing, C184
Bejjipurapu, A197	Bertoli, G298	Bingham, M215
Belak, J	Bertsch, K 38, 71, 126, 195, 222	Bin Habib, S
Belcher, C	Berziou, C	Biolchini, F223
Belik, A257	Besmann, T 62, 227, 273	Birchall, F
Bellah, M	Besson, J	Birchall, S
Bell, C107, 108	Bethell, T	Birch, R
Bell, E118	Betzing, M87	Birch, T235
BellÉ, M	Betz, K	Birnbaum, A
Bellet, M113	Betz, M261	Birtsch, K21, 52, 91, 125, 157,
Bellevu, F278	Beuth, J	193, 295
Bellino, J		Bishara, H

Bishop, C 21, 207, 209, 213	Bollineni, R	Bourgès, C18
Bishop, O15	Bollu, G	Bouteiller, H
Bisht, A	Bolme, C	Bouville, F
Bisikalov, A	Bolster, L	Bouzid, H292
Bisson, R	Bölükbaşı, P	Bowden, D117, 249
Biswal, H	Bolyachkin, A	Bowden, M
Biswas, A 14, 82, 154, 160	Bolzowski, R	Bowling, L
Biswas, K	Bombač, D	Bowman, K 126, 159, 195, 222
Biswas, P	Bond, L118	Bowman, W216
Biswas, S	Bonebrake, J	Boyce, B
Biswas, T	Bongao, H	178, 221
Bitzek, E	Bong, H	Boyce, D
Bjørseth, A	Bonini, J	Boyne, A
Bjurström, A	Bonnet, G	Bozeman, S
Blackburn, T	Bonnin, A	Bozzolo, N
Blackman, O	Bonora, N	Braatz, J
Black, R	Bonzu Ackah, M	Brabazon, D
Blacksher, C	Boone, K	Brachtl, S
Blades, W	Boonkird, A	Bracker, G
Blagojevic, A	Booth, R62, 273	Bradaškja, B
Blais, B	Borchers, T116	Bradford, V
Blank, C183, 278	Bordas, A	Bradshaw, A
Blankenau, B	Bordas, R	Bradshaw, N
Blankenburg, M233	Borenstein, A201	Bradshaw, R
Blankenship, D	Borgenstam, A	Bradshaw, T
Blankley, S	Borges, P 15, 43, 83, 120, 123, 165, 217	Brady, M164
Blassino, A	Borgi, S	Bragado, P170
Blay, T250	Borkar, T 16, 46, 83, 84, 234, 260, 261,	Bram, M252
Blazy, D	266, 267, 281, 290	Brandenburg, C 161, 209, 224
Blendell, J	Bornfeldt, K32	Brandl, C 52, 88, 295
Blobaum, K 29, 61, 133, 299	Borodin, N	Brandt, W
Blocher, M	Boroff, H	Branicio, P 50, 73, 154, 293
Blondel, S	Boro, J	Branscum, A
Bloom, R	Boron, G	Brasiliense, M
Blue, C	Borovikov, V	Braun, A
Blust, S	Borowiack, L	Braun, J
Boakye, D	Borowski, L	Braun, M
Bobbitt, S	Borra, C	Brechtl, J
Bobel, A 180, 213, 238	Borra, V	217, 240, 265, 266, 292
Bobev, S	Borrego, N	Brennan, D
Boccardo, A	Borrossi, R	Brennan, M
Boch, D	Bortoluci Ormastroni, L	Brennecka, G
Bochtler, B	Bose, P	Brenner, D
Bocklund, B 38, 126, 222, 265	Bose, S	Brewer, L 83, 134, 232, 278
Boebinger, M34	Bosker, J	Brian, E243
Boehlert, C 17, 31, 68, 193, 223, 233	Bosomworth, P251	Brice, C
Boehm, R	Bostanabad, R 144, 158, 288	Bridenstine, E
Boese, S	Bostan, B	Bringa, E112
Boeyink, B	Botelho Junior, A28	Brinkley, W
Bognarova, X 62, 164, 280	Botica Artalejo, E	Brink, T
Bo, H189	Böttger, B110	Bristow, A
Bohanon, B	Bottin-Rousseau, S65	Britton, B 42, 126, 159, 195, 222
Bohn, A	Bouchareb, N 263, 266, 291, 295	Britton, D 91, 125, 251
Bohra, P	Boudreault, C	Britton, T21, 42
Bolden, D12	Bouhattate, J	Britz, D
Boleininger, M211	Boukellal, A222	Brizes, E 10, 78, 115, 146, 289
Boleis, G	Bouobda Moladje, G	Broadhead, J
Bolintineanu, D	Bouras, D	Broderick, K
Bollapragada, S	Bourdin, B203	Broderick, T
2011p1uguau, 0	20010011, 20010111, 200	210 deliet, 1

Broeckmann, C157	Burns, J 9, 57, 95, 161, 222	Campbell, C180, 195
Broek, S	Burns, K144, 240	Campbell, P299
Broker, E	Burr, D32	Campbell, Q58, 82
Bromstad Myrvold, E153	Burrows, R62	Camp, I
Bronikowski, M140	Burr, P14, 261	Campos, M 104, 174, 234
Bronkhorst, C 102, 116, 136, 168,	Burtscher, M	Canal, G217
170, 184, 204, 261, 299, 300	Busch, R	Cance, J
Brookins, J72, 81	Bush, W	Çancı, Z24
Brooks, J	Busse, B	Cândido, V
Broucek, J	Butala, M	Canfield, P248
Broughton, J	Butch, N	Canulette, M
Broussard, A	Butler, A	Cao, C
Brown, A 20, 52, 90, 125, 156, 193,	Butler, B	Cao, F
221, 294, 295	Butler, N	Cao, J
Brown, B		
	Butler, T	Cao, L
Brown, D	Butterling, M141	Cao, P 55, 60, 66, 132, 157, 158, 165,
Brown, F	Butt, H	171, 192, 200, 217, 226, 246, 261, 298
Brown, J	Buttice, K	Cao, W
Brown, N 62, 63, 130, 153, 202, 218	Buturlim, V	Cao, X
Brown, P229	Buzzy, M241	Cao, Y 53, 60, 92, 97, 134, 192, 200, 225
Brozak, S	Byerly, K246	Cao, Z
Bruckard, W	Byers, E50, 216	Capolungo, L31, 41, 50, 62, 66, 85,
Brumblay, H	Bykov, E	102, 103, 126, 151, 164, 167, 216
Brunet, J	Byloff, J	Capote, G46
Brunner, R	Byrd, D	Capote Sanchez, A
Bruno, G151	Byrne, D	Cappia, F 33, 66, 103, 137, 170, 202,
Brupbacher, M254	Byun, D	205, 231, 249, 275
Bryan, T	Byun, J	Cappola, J 156, 208, 270
Bryant, E	Byun, T	Capps, N 33, 63, 66, 103, 137, 202
Bryantsev, V	, , , , , , , , , , , , , , , , , , , ,	Cappuccini, F
	_	
Buandra, A	C	Capriotti, L
Buandra, A		Capriotti, L
Buarque de Macedo, R160	Cabeza, S	249, 275
Buarque de Macedo, R	Cabeza, S	249, 275 Caputo, A
Buarque de Macedo, R.160Buchbaum, S.29Buchsbaum, S.29	Cabeza, S	249, 275 Caputo, A
Buarque de Macedo, R.160Buchbaum, S.29Buchsbaum, S.29Buckley, J.261	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234
Buarque de Macedo, R. 160 Buchbaum, S. 29 Buchsbaum, S. 29 Buckley, J. 261 Buckner, J. 160, 234	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G .191
Buarque de Macedo, R. 160 Buchbaum, S. 29 Buchsbaum, S. 29 Buckley, J. 261 Buckner, J. 160, 234 Bucsek, A. 28, 33, 66, 103, 137, 154,	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G .191 Carcassi, M .258
Buarque de Macedo, R. 160 Buchbaum, S. 29 Buchsbaum, S. 29 Buckley, J. 261 Buckner, J. 160, 234 Bucsek, A. 28, 33, 66, 103, 137, 154, 168, 171, 206, 260	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276
Buarque de Macedo, R. 160 Buchbaum, S. 29 Buchsbaum, S. 29 Buckley, J. 261 Buckner, J. 160, 234 Bucsek, A. 28, 33, 66, 103, 137, 154, 168, 171, 206, 260 Buğdaycı, M. 165	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260
Buarque de Macedo, R. 160 Buchbaum, S. 29 Buchsbaum, S. 29 Buckley, J. 261 Buckner, J. 160, 234 Bucsek, A. 28, 33, 66, 103, 137, 154, 168, 171, 206, 260 Buğdaycı, M. 165 Buehler, M. 124	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254
Buarque de Macedo, R. 160 Buchbaum, S. 29 Buchsbaum, S. 29 Buckley, J. 261 Buckner, J. 160, 234 Bucsek, A. 28, 33, 66, 103, 137, 154, 168, 171, 206, 260 Buğdaycı, M. 165 Buehler, M. 124 Bueno Villoro, R. 134	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90
Buarque de Macedo, R. 160 Buchbaum, S. 29 Bucksbaum, S. 29 Buckley, J. 261 Buckner, J. 160, 234 Bucsek, A. 28, 33, 66, 103, 137, 154, 168, 171, 206, 260 Buğdaycı, M. 165 Buehler, M. 124 Bueno Villoro, R. 134 Bufford, D. 39, 72, 73, 109, 208, 234	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212
Buarque de Macedo, R. 160 Buchbaum, S. 29 Bucksbaum, S. 29 Buckley, J. 261 Buckner, J. 160, 234 Bucsek, A. 28, 33, 66, 103, 137, 154, 168, 171, 206, 260 Buğdaycı, M. 165 Buehler, M. 124 Bueno Villoro, R. 134 Bufford, D. 39, 72, 73, 109, 208, 234	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197,	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212
Buarque de Macedo, R. 160 Buchbaum, S. 29 Buchsbaum, S. 29 Buckley, J. 261 Buckner, J. 160, 234 Bucsek, A. 28, 33, 66, 103, 137, 154, 168, 171, 206, 260 Buğdaycı, M. 165 Buehler, M. 124 Bueno Villoro, R. 134 Bufford, D. 39, 72, 73, 109, 208, 234 Bugdayci, M. 128 Bukulmez, I. 10	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 Cai, Z 209	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 Cai, Z 209 Çakıcı, M 131	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197 Caron, P. .147
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carney, C. .197 Caron, P. .147 Carotti, F. .166
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carney, C. .197 Caron, P. .147 Carotti, F. .166 Carpenter, D. .21
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135 Calderon, L .254, 279	Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carney, C. .197 Caron, P. .147 Carotti, F. .166 Carpenter, D. .21 Carpenter, E. .15
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135 Calderon, L 254, 279 Calderon Ortiz, G 39, 281	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197 Caron, P. .147 Carotti, F. .166 Carpenter, D. .21 Carpenter, E. .15 Carpenter, J. .20, 52, 90, 125, 146, 156, 156, 167, 182, 183, 193, 214, 215,
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135 Calderon, L 254, 279 Calderon Ortiz, G 39, 281 Calderon Rojas, M 273	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197 Caron, P. .147 Carotti, F. .166 Carpenter, D. .21 Carpenter, E. .15 Carpenter, J. .20, 52, 90, 125, 146, 156, 166, 167, 182, 183, 193, 214, 215, 221, 222, 239, 290, 294, 295
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135 Calderon, L 254, 279 Calderon Ortiz, G 39, 281 Calderon Rojas, M 273 Callaghan, J 282	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197 Caron, P. .147 Carpenter, D. .21 Carpenter, E. .15 Carpenter, J. .20, 52, 90, 125, 146, 156, 167, 182, 183, 193, 214, 215, 221, 222, 239, 290, 294, 295 Carpenter, W. .83
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 23 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135 Calderon Ortiz, G 39, 281 Calderon Rojas, M 273 Callaghan, J 282 Callahan, P 26, 58, 141, 165	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197 Caron, P. .147 Carotti, F. .166 Carpenter, D. .21 Carpenter, E. .15 Carpenter, J. .20, 52, 90, 125, 146, 156, 167, 182, 183, 193, 214, 215, 221, 222, 239, 290, 294, 295 Carpenter, W. .83 Carpick, R. .143
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135 Calderon Ortiz, G 39, 281 Calderon Rojas, M 273 Callaghan, J 282 Callahan, P 26, 58, 141, 165 Calta, N 13, 52	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197 Caron, P. .147 Carotti, F. .166 Carpenter, D. .21 Carpenter, E. .15 Carpenter, J. .20, 52, 90, 125, 146, 156, 166, 167, 182, 183, 193, 214, 215, 221, 222, 239, 290, 294, 295 Carpenter, W. .83 Carpick, R. .143 Carpman, B. .99
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135 Calderon Ortiz, G 39, 281 Calderon Rojas, M 273 Callaghan, J 282 Callahan, P 26, 58, 141, 165 Calta, N 13, 52 Calvat, M 44, 48, 141	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlsson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197 Caron, P. .147 Carotti, F. .166 Carpenter, D. .21 Carpenter, E. .15 Carpenter, J. .20, 52, 90, 125, 146, 156, 166, 167, 182, 183, 193, 214, 215, 221, 222, 239, 290, 294, 295 Carpenter, W. .83 Carpick, R. .143 Carpman, B. .99 Carradó, A. .212, 233
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135 Calderon Ortiz, G 39, 281 Calderon Rojas, M 273 Callaghan, J 282 Callahan, P 26, 58, 141, 165 Calta, N 13, 52 Calvat, M 44, 48, 141 Campanhão, A 67	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197 Caron, P. .147 Caron, P. .147 Carpenter, D. .21 Carpenter, J. .20, 52, 90, 125, 146, 156, .167, 182, 183, 193, 214, 215, .221, 222, 239, 290, 294, 295 Carpenter, W. .83 Carpick, R. .143 Carpman, B. .99 Carradó, A. .212, 233 Carradó, A. .212, 233, 252
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135 Calderon Ortiz, G 39, 281 Calderon Rojas, M 273 Callaghan, J 282 Callahan, P 26, 58, 141, 165 Calta, N 13, 52 Calvat, M 44, 48, 141	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197 Caron, P. .147 Carpenter, D. .21 Carpenter, E. .15 Carpenter, J. .20, 52, 90, 125, 146, 156, 167, 182, 183, 193, 214, 215, .221, 222, 239, 290, 294, 295 Carpenter, W. .83 Carpick, R. .143 Carpman, B. .99 Carradó, A. .212, 233 Carrell, A. .185
Buarque de Macedo, R	Cabeza, S 232 Cabibbo, M 115, 183, 213, 216, 288 Cabo Rios, A 174 Cabral De Oliveira, F 123 Cabrera, H 89 Cacciamani, G 73 Cackett, A 44 Cai, C 250 Cai, L 90 Cai, Q 172 Cairang, W 30, 196, 270, 272 Cai, W 92, 95, 119, 156, 160, 197, 224, 270 224, 270 Cai, Z 209 Çakıcı, M 131 Cakmak, E 292 Cakmak, O 10, 286 Calderoni, P 135 Calderon Ortiz, G 39, 281 Calderon Rojas, M 273 Callaghan, J 282 Callahan, P 26, 58, 141, 165 Calta, N 13, 52 Calvat, M 44, 48, 141 Campanhão, A 67	249, 275 Caputo, A. .78, 96 Caranchini, M. .233, 252 Carbajales, R. .234 Carballo-López, G. .191 Carcassi, M. .258 Carlos Fontes Vieira, C. .276 Carlson, J. .260 Carlson, K. .254 Carlson, M. .90 Carlton, H. .181, 205 Carneiro De Oliveira, J. .212 Carneiro, I. .117, 263 Carney, C. .197 Caron, P. .147 Caron, P. .147 Carpenter, D. .21 Carpenter, J. .20, 52, 90, 125, 146, 156, .167, 182, 183, 193, 214, 215, .221, 222, 239, 290, 294, 295 Carpenter, W. .83 Carpick, R. .143 Carpman, B. .99 Carradó, A. .212, 233 Carradó, A. .212, 233, 252

Carrington, A	Cerqueira, N	Chan, H 29, 99, 141, 272, 273
Carrion, P	Cervantes, L229	Chan, J
Carroll, J	Cervantes-Luevano, K191	Chankitmunkong, S49
Carroll, S	Cervellon, A	Chan, Y
Carruthers, A	Cesarano, P	Chao, K
Carsley, J 49, 52, 110, 188, 283	Ceteznik, S	Chao, P
Carson, R	Cetinkaya, S	Chao, Y
Carter, J 15, 35, 46, 68, 83, 119, 150,	Chaari-Schule, N249	Cha, P
186, 217, 240, 265, 266, 300	Chacko, Z	Chapman, H
Carter, M	Chada, S	287, 297
Carter, W	Chadwick, A	Chapman, R
Carvajal, J	Cha, E	Chaput, L
Carvalho, E	Chae, D	Charalambides, M
Carvalho, J	Chae, I	Charatsidou, E
Carvalho Lírio, J	Chae, J	Charit, I
Cary, J	Chae, S	Charpagne, M33, 38, 58, 68, 71, 76,
Casalena, L	Chae, Y	107, 113, 141, 195, 232, 262, 280
Casari, D	Chagnes, A	Chartrand, P
Casati, R 8, 77, 113, 145, 180, 285	Chailles N	Chasetti, A
Casella, A	Chaire Alexaida I	Chastukhin, A
Casey, D	Chaim Almeida, J	Chater, P
Cassagne, A	Chaithanya Kumar, K174	Chatterjee, A 33, 57, 108, 128, 248
Cassese, A	Challer I	Chattopadhyay, K
Castagnet, S	Chaldrage V	Chattopadhyay, S
Castano, C	Chalmaharti D	Chaudhuri, S
Castany P	Chalmah artis S 28, 105, 124, 156	Chauhan, N
Castally asia C	Chakraborty, S 28, 105, 124, 156,	Chauhan, R 99, 134, 137, 202, 247
Castelluccio, G111	192, 233	Chavira, A
Castillo, J	Charles I	Cha, W
Castillo-Sanchez, J	Chamberlain, J	Chawla, N
Castin, N	Chambers, T	Checkeye, J
Castro, B	Champagne, D	Chen, A
Castro, B	Champagne, V	Chen, B 86, 116, 121, 188, 267, 271
Castro-Ceseña, A	Champion, Y	Chen, C
Castro-Cescha, A	Chan, C	127, 138, 139, 152, 159,
Castro, R	Chancey, M 29, 99, 128	160, 179, 203, 209, 230, 276
Cater, S	Chander K, P	Chen, D
Caudill, J	Chandiran, E	Chen, E
Caulle, O	Chandra, A	Chen, G
Cavalcante, V	Chandra, K	Cheng, C
Cavaliere, P	Chandra, L	Cheng, D
Cavanaugh, N	Chandran, K	Cheng, G
Cavazos, S 62, 103, 205	Chandran, N	Cheng, I
Cawkwell, M	Chandrasekaran, S117	Cheng, J 41, 72, 101, 115, 145, 166,
Cazacu, O 170, 181, 241	Chandrasekhar, A213, 288	209, 274
Cazares, E	Chandross, M 21, 42, 143, 221, 222	Cheng, M
Ceballos, S	Chaney, D	Cheng, N
Ceccacci, A	Chang, A	Cheng, P
Cecchini, A	Chang, B 216, 246, 288	Cheng, T
Cech, M	Chang, C	Cheng, Y 156, 252, 266
Ceder, G60	Chang, F	Chen, H 74, 132, 160
Cederqvist, L	Chang, H 80, 117, 127	Chen, I
Celebi, O	Chang, J	Chen, J87, 92, 125, 128, 199,
Celebi, T154, 168	Chang, K	228, 233, 250, 293
Celina, M133	Chang, P55, 269	Chen, K 86, 114, 195, 260
Cerecedar, D	Chang, S	Chen, L
Cernatescu, I84	Chang, W	164, 170, 232
Ceron, M	Chang, Y	

Chen, M36, 83, 135, 149, 171,	Childs, M94	Choudhary, A
205, 228, 231, 250, 272, 300	Chin, J	Choudhary, K17, 47, 84, 120, 151, 187,
Chen, N	Chino, Y227	217, 241, 291
Chen, P 88, 93, 127, 155, 191, 192,	Chintalapalle, R 8, 111, 143, 179,	Choudhary, S
220, 243, 254, 268, 277, 297	212, 238, 255, 281	Choudhuri, D
Chen, Q 73, 74, 169	Chinwego, C	Choudhury, A
Chen, R89	Chipman, G140	Choudhury, P
Chen, S 18, 35, 40, 48, 55, 60, 74, 83,	Chisholm, M194, 261	Choudhury, S 17, 97, 184, 187, 193,
85, 102, 104, 110, 121, 127, 143,	Chitnis, K213	213, 226, 231, 287, 288
152, 188, 251, 265, 267, 269, 277	Chittick, C246	Chou, J
Chen, T11, 30, 32, 38, 65, 66, 79,	Chitturi, V	Chou, P
83, 102, 104, 115, 134, 135, 164,	Chiu, H 31, 104, 240	Chourasia, R
169, 181, 204, 230, 249, 274, 289	Chiu, L232	Chou, Y
Chen, w	Chiu, M 68, 127, 233, 252	Cho, W
Chen, W10, 30, 34, 55, 79, 83, 86,	Chiumenti, M245	Cho, Y 219, 280, 281, 286
110, 114, 125, 127, 128, 132, 160, 165,	Chiu, W	Choy-Hernandez, K
172, 205, 211, 217, 223, 224, 228, 229,	152, 188, 267	Choy, J
240, 250, 282, 285	Chiu, Y	Christadore, S
	Chi, Y	Christ, H
Chen Wissert V 20, 62 00, 133		
Chen-Wiegart, Y	Chmielewska, J	Christodoulou, P
166, 201, 227, 247, 272	Chmielewski, M	Christofidou, K68, 173, 178, 212, 222,
Chen, X 9, 96, 102, 122, 149, 173,	Chmielowski, M85	230, 237, 281
174, 177, 188, 209, 230,	Chmielus, M 8, 9, 77, 112, 113, 145,	Christopher, A
241, 261, 264, 274, 285	180, 182, 214, 239, 259,	Christopher, C146
Chen, Y 13, 30, 31, 33, 46, 50, 63, 66,	285, 286, 290	Christudasjustus, J 83, 99, 141
67, 73, 80, 83, 93, 100, 103, 134, 137,	Cho, A	Chrominski, W 47, 223, 248, 292
141, 156, 160, 168, 171, 186, 203, 206,	Choe, J	Chrzan, D15, 144
221, 222, 229, 233, 248, 252, 257,	Cho, H	Chua, J
274, 286	Cho, I	Chuang, C
Chen, Z58, 186, 207, 215, 244,	Choi, A	Chuang, M23, 55
254, 296	Choi, D 8, 276, 277, 280, 281	Chuang, Y
Chernenko, V	Choi, H 17, 91, 266, 280, 282, 292	Chua, S
Chern, J	Choi, I	Chuirazzi, W 13, 52, 82, 106, 197
Chernov, A	Choi, J12, 42, 43, 80, 116, 148,	Chu, K
Cherukara, M	168, 184, 263, 268, 279, 287	Chukwu, J
Chesetti, A	Choi, M 31, 99, 263, 267	Chulist, R
Chesser, I	Choi, P	265, 282
Chesseti, A	Choi, S	Chu, M
Chester Jude Emmanuel, M	264, 274, 290, 299	Chung, B
Cheu, D	Choi, T	Chung, D
Chevalier, C	Choi, W	Chung, G
Chevalier, G	Choi, Y 58, 69, 90, 136, 240, 266	Chung, H
Chevallier, G	Cho, J 10, 94, 116, 170, 277, 286	Chung, K
Chevalme, R	Cho, K	e
		Chung, M
Che, Y	Chokshi, A	Chung, S
Chhetri, S	Cho, L	Chung, T
Chhotaray, A48	Chollet, M	Chung, U
Chiang, C	Cho, M	Chung, Y
Chiang, H	Choma, T	Chu, R
Chi, C186	Chommaux, T	Church, B
Chidambaram, D 166, 184, 201,	Cho, N	Church, N 16, 52, 101
227, 254	Chong, L	Chu, S
Chidere, S	Chong, Y	Chu, Y
Chien, T150	Chopra, A86	Chu, Z53, 60
Chi Ho, N145	Choragwicki, B224	Ciccia, L241
Chikada, T32	Cho, S 56, 280, 298	Cicek, Y
Childers, M	Chotrattanapituk, A120, 257	Cichocki, K
Childs, B	Choubey, R	Cieślak, G
Childs, H	Choudhari, A 84, 234, 266, 290	Ciftci, J
		•

Cillessen, D	Coleman, J	Couet, A24, 29, 30, 62, 99, 133,
Cinar Sahin, F	Coleman, S	135, 197, 201, 226, 227,
Cinbiz, N	Coles, J	236, 237, 246, 272, 275
Cinkilic, E	Colineau, E	Courtney, J
Ciupiński, Ł	Colin, J247	Courtright, Z12, 245
Civiero, R	Colldeweih, A	Coury, F 165, 200, 279, 298
Claisse, A	Colligan, K	Coustier, F
Clancy, P	Collins, C84, 217	Coutinho, N
Clare, A	Collins, D 78, 207, 230	Couzinie, J
Clark, A	Collins, P35, 121, 150, 182,	161, 165, 209
Clark, C	222, 289, 298	Couzinié, J 83, 187, 235, 272
Clark, E	Colombo, G115	Coverdale Rangel Velasco, D 67, 104,
Clarke, A	Colon, B	268, 276
	Colon, F	Covin, P
176, 284, 288		
Clarke, K	Colorado, H 8, 19, 67, 77, 88, 104,	Cowley, I
Clark, L	113, 145, 180, 275, 276, 285	Cox, C
Clark, M	Colorado L., H	Cox, S
Clark, R	Colorado Lopera, H 104, 275, 276, 286	Coyne, J
Clark, S	Colvin, E	Crabbe, M
Clark, T33, 66, 103, 137, 171,	Compton, B245	Crabtree, E
206, 223	Compton, N	Cramer, B
Clausen, B	Conceição, K	Crawford, G 198, 254, 259, 283
Clausius, B61	Condemi, E	Crawford, I
Clausner, A	Conklin, D	Crawford, K
Clayton, R	Connelly, S	Cremer, J
Cleek, C	Connolly, D135	Crespillo, M34, 101
Clement, C 33, 63, 66, 103, 137, 170,	Connors, P 15, 160, 197	Cresswell, Z107
177, 205, 211, 231, 236, 249, 275	Conrad, J	Cretton, A
Clement, E	Conry, B	C. Riffel, K287
Clemmer, J	Conway, P	Crigger, J
Cleveland, M	Cook, A	Cristofolini, I
Cline, J	Cook, D	Crnkovich, N 24, 135, 197, 236
Clingerman, E260, 261	120, 124, 261	Croell, A254
Cloetens, P	Cooper, D	Croft, Z
Clouet, E	Cooper, J	Crook, P
Clowers, L	Cooper, K	Croom, B
Cloyd, A	Cooper, M 33, 66, 84, 94, 137, 170	Crossman, B 14, 57, 81, 165
Cluff, E	Copeland Johnson, T	Crozatti Rocha, L
Clyne, B	Copeland-Johnson, T30, 62	Cruchley, A
Çınar Şahin, F	=	Crum, J
	Coppola, B	
Coate ov. F	Copp, S	Cruz, E
Coatney, E	Cordero, Z	Cruz Junior, E
Cobb, C	Cordill, M 26, 203, 216, 223	Cruz, L
Cobb, J	Corkhill, C	Cruz Ramírez, A
Cobuci, B	Cormier, J 44, 141, 147, 178, 212, 234	Cruz-Ramírez, A
Cocke, C	Cornet, L	Cucciniello, N
Cockeram, B	Corona, E	Cui, B 25, 57, 95, 118, 128, 149, 160,
Cocks, A196	Corona, J	161, 197, 223, 224, 230, 270
Codd, D146, 274	Corpus, J	Cui, J 8, 22, 49, 118, 149, 176, 269
Coelho, A294	Correa, A117, 184	Cui, W
Coelho, D	Correa, D147	Cui, X
Coello Ramirez, I	Cortes, P	Cullinan, M
Coenen, J	Costa, M	Cullison, M
Coghlan, L62, 142	Cote, D119, 208, 259, 260, 261	Culter, I
Cohendoz, S	Côté, J55	Cundiff, K
Cohen-Karni, I	Cote, P	Cunningham, A
Cohen, M24, 150	Cottura, M59	Cunningham, C
Cohn, R	Couedel, V289	Cunningham, W
Cole, H		Cureton, W
		·

Curry, J	Daniyan, A 175, 221, 281	De Alwis Goonatilleke, M206
Curtarolo, S	Dantin, M213	Dean, L
Curtins, T208	Dan, X244	Dean, Q
Curtin, W50, 156	Daraz, U	de Azevedo, A
Curtis, N 24, 135, 197, 246	Darji, M	De Baglion, L
Curtis, T198	Darling, K	Deb, B
Curtit, F128	Darnbrough, E202	Debéda, H
Cusentino, M	Darsell, J	Debeer-Schmitt, L
Custer, J	Darvishi Alamdari, H242	DeBeer-Schmitt, L 61
Custodio, A	Darvishi Kamachali, R97, 186	Debiak, N
Cygan, R	Das, A 80, 109, 180, 189	Deb, P
Cymerman, K	Dasari, S 13, 37, 44, 60, 92, 117, 119,	Deb, S244
Czajka, A	132, 138, 165, 168, 173, 196,	De Carlan, Y
Czech, A 45, 115, 265, 286	200, 226, 246, 298	De Caro, D
Czerwinski, K	Dasch, K110	de Carvalho, E269
_	Das, D238	de Cassia Oliveira Carneiro, A 294
D	Dasgupta, A31	Dechaine, C11
Dabaghi, M	Dasgupta, D	Dechent, M122
Dabhade, V	Dasgupta, S	Deck, C44, 221
Dabney, T	Das Gupta, T45	Decker, F
Dabo, I	Das, H	Decker, P
	Dash, S	DeCost, B 47, 209, 232, 246
Dacheux, N	da Silva, C	Dedeci, O259
	da Silva Leal, J105	Dee, P
Da Costa Cesar, G	da Silva, R	Defer, M
da Cunha, B	Das, K 80, 83, 142, 263, 278, 281	Deffrennes, G
Dacus, B	Das, N	Defranco, T
Dada, M	Das, P	de Freitas, L
Daehn, G	Das, R 84, 86, 271	DeGarmo, K
Daffron, M	Das, S 33, 42, 51, 80, 83, 153, 169,	Degener, S
Daghbouj, N	179, 240, 263, 278, 281, 295	De Gorostiza, A
Dag Herman, A	Daub, K	De Graef, M
Dahlbom, D. 206 Dahl, R. 192	Daudt, N	DeGraef, M
Dahmani, M	Daugela, A156	Dehm, G
Dahotre, N	Daugela, J	Dehoff, R
146, 174, 222, 239, 240, 289	Daugela, M	Deisenroth, D
Daigle, S	Daum, L193	Deitz, J
Dailey, N	Daut, L	Dejoie, C
Daira, R	Davami, K 11, 79, 115, 171, 181, 289	deJong, A186
Dai, S	Davey, T	deJong, M78
Daisuke, A	David, R194	de Kloe, R
Dai, W	Davidson, J	Delabrouille, F
Dai, Y	Davidson, L287	Delagnes, A
Dake, J 97, 125, 193	Davies, H	De lamater-Brotherton, C62
Dalaker, H 56, 169, 270	Davies, M	De Lamater-Brotherton, C 63
Dal Forno Chuahy, F	Davila Morales, R288	De Landtsheer, J252
Dalvi, G	Daviou, M	Delaney, C
Daly, M	Davis, B	Delannoy, S
Dameron, A146, 285	Davis, C 29, 61, 133, 269, 299	Delaporte-Mathurin, R 166
Damjanovic, N	Davis, D	Delaqua, G
Damm, D109	Davis, K	De La Torre, J
Dana, A	Davis, M	De Leo, M
Danard, Y	Davis, S	De Leon, A
Dancer, C	Daw, M21	Delfino De Campos Neto, N165, 254
Dang, J	Dawson, P	della Ventura, N
Dang, k125	Dayal, K	Delloro, F
Dang, K	Dayton, M	Delp, A
Dang, R	De Almeida, M	Delrio, F
-	de Almeida, R	DelRio, F 11, 78, 143, 274

1 7 1 7	5	D 1
de Luis, R184	Dey, A111, 190	Divinskyi, S
Demchenko, P	Dey, K65	Dixit, S
de Melo, E		Dixit, T
	Deymier, P	
Demeneghi, G178	Dey, S	Dixon, C
DeMeritt, J	Dhakal, T	Dixon Wilkins, M
Demetriou, M	Dhal, A 79, 100, 190, 287	Di, Y
DeMeyere, E	Dhariwal, D	Djafia, Z
Demingos, P	Dhas, J	Djinigou, S
Demirci, K	Dhingra, S	Dlouhý, A11
Demircivi, P	Dhoka, S	Dmowski, W
Demkowicz, M	Dholabhai, P27	Doğan, Ö15, 197
De Moor, E	Dhole, A164	Dobbin, F126
Demopoulos, G	Dhulipala, S145, 206	Dobkowska, A142, 287
Deng, B	Diak, B	Dobricic, M147
Deng, C 22, 126, 197	Dialami, N245	Doddapaneni, V
Deng, X	Dial, L 78, 116, 209	Dodge, B
Deng, Y	Diallo, A65	Dogan, N
Deng, Z 69, 174, 293	Diamond, J	Doiron, P242
•		
de Nicolas-Morillas, M	Diamond, M	Dokumaci Alkan, E 118, 128, 241
Dennett, C53, 102	Diao, J	Dolde, M 150, 222, 298
Denninger, P	Diao, Y	Doles, R
Denonno, O	Dias, C	Dollmann, A
Densham, C141	Diatta, J	Dolmetsch, T 13, 141, 288
Dentinger, B	Diaz, A	Do, M
Deo, C	Diaz Abreu, A	Domenech, D
Deodhar, H 46, 190, 240	Diaz, D	
		Dominguez, M
de Oliveiira, J	Diaz, F210	Dominic, J
de Oliveira, J	Dickel, D219	Donald, A
de Oliveira, M	Dickens, T	Donald, S211
DePond, P	Dickerson, D	Donchev, A
Depree, N	Dickey, M	Donegan, S
Derby, B29, 34, 58, 95, 99,	Dicus, A115	Dongare, A50, 64, 88, 171,
101, 128, 237	Diebold, T	203, 216, 230
Dergaoui, A	Di, G278	Dong, C
C		•
Derimow, N 11, 75, 78, 96, 130, 280	Digole, S 84, 234, 266, 290	Dong, F 14, 44, 81, 118, 149, 264
Derlet, P39, 73, 109, 142, 178,	Dikra, B	Dong, J 34, 38, 216
211, 237, 254, 281	Di Lemma, F	Dong, K
De, S	Dillon, S 91, 94, 103	Dong, S
		Č
Desai, H	DiMarco, B	Dong, W
Desai, J	Di Mattia, R115	Dong, X
Desai, S 17, 47, 48, 84, 85, 120, 121,	Dimiduk, D	Donik,
151, 187, 217, 218, 241, 291, 292	Dimithe Aboumou, L84	Donik, C
Deshmukh, K	Dinda, G	Donkor, B
Deshpande, A	Ding, D236	Donnerbauer, K
Desorcy, L	Ding, H245	Donoghue, J
de Stefano Cavazos, S	Ding, K64	Donohoe, B
Detisch, M	•	Doran, S
	Ding, R	
Detlefs, C80	Dingreville, R 17, 18, 31, 48, 85, 91,	Dorari, E
Detrois, M	103, 111, 121, 124, 151, 187,	Doremus, L
212, 237, 281	193, 218, 292, 296, 298	Dorin, T
Detsi, E 12, 43, 80, 116, 148, 184, 263	Ding, W	Dorman, K
	•	
Devanathan, R 153, 190, 219, 242, 293	Ding, Y83	Doroudi, A171
Devaraj, A 10, 17, 34, 71, 72, 92, 110,	Diniz, C	Dos Santos, A
119, 120, 126, 134, 191, 193,	Diop, M87, 153	dos Santos, J
196, 200, 232, 233, 275	Diplas, S	Dos Santos, J
	-	
Devesa, I	Dirba, I	Douglas, G
Devulapalli, V	Dissanayake, S	Douglas, O
Dewanjee, P	The state of the s	D 1 D
2 0 11 412 9 0 0 9 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ditter, A	Douglass, D182
Dewitt, S	Ditter, A	Douglass, D

D 11 1 D 2 D 20 101 2 D	D D 0	70.
Doustkhah, E 27, 59, 98, 131, 272	Duran Duran, G	Efe, I
Dowden, S115	Durán González, M	Efe, M37, 110
Dowding, I	Duran, J	Eff, M
Downard, S	Duran, S82	Eftink, B30, 63, 71, 100, 127, 134,
Downey, C	Durnescu, A251	167, 202, 207, 229, 248, 273
Downs, W	Duscher, G	Egami, T
Doyle, F	Dussa, S	Egan, A
Doyle, J	Düssel, R	Egberts, P
Doyle, P	Dutra Júnior, S	Eger, Z
Drabold, D	Dutta, A	Eggeler, G 173, 193, 225, 253, 278
Draper, J	Duval, A24, 95	Eggemeyer, J
Draper, M	Duval, C69	Ehigie, C271
Draper, O229	Du, Y90, 126	Ehmann, K300
Drautz, R	Du, Z 139, 208, 260	Eidem, P
Dreisinger, D	Dvaz, K	Eiken, J
Dresselhaus-Marais, L 20, 21, 98,	Dvivedi, A	Einarsrud, K
171, 172	Dwivedi, P	Eisenlohr, P
Drewry, S	Dye, D	Ekaputra, C141
Driel, T	Dyrøy, A	Eka, S
Driscoll, D	Dyrset, J	Eklof, N
	•	
Drnek, T	Dzepina, B	Ekstrøm, K
Drossel, W	Dziedzic, D	Ekubaru, Y
Drouan, D	Dziekan, M	Elahi, P
Dryepondt, S24, 56, 95, 114, 214,	Dziri, A	Elangovan, E
239, 270	Dzugan, J	El-Atab, N
Duan, M	Dzulqornain, A60	Elattar, A278
Duan, T211	F	El Atwani, O 71, 192, 204
Duan, X	E	El-Atwani, O 157, 204, 229
Duan, Y	E. Allison, J	El Awady, J
Duarte Lopes, F	Eapen, J	El-Awady, J 43, 84, 120
Dubey, A50, 219	Earlam, M	El-Azab, A
Dubey, M8, 42, 75, 111, 144, 179, 262	Earthman, J	124, 212, 248
Duch, J	East, M	El-Badour, F
Dudarev, S		Elbakhshwan, M
	Easton M 110 202	210 4141011 (411) 111 (111 (111 (111 (111 (111 (1
Dudukovic, N	Easton, M	
	Ebeperi, D	Eldaly, O
Dudukovic, N	Ebeperi, D 157 Eberheim, R 95	
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109	Ebeperi, D .157 Eberheim, R .95 Eberl, K .117	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269	Ebeperi, D 157 Eberheim, R .95 Eberl, K .117 Ebert, J .105	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143	Ebeperi, D 157 Eberheim, R .95 Eberl, K .117 Ebert, J .105 Ebihara, K .46	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268	Ebeperi, D 157 Eberheim, R 95 Eberl, K 117 Ebert, J 105 Ebihara, K 46 Ebmeyer, W 27	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116 El Hachimi, M .124
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118	Ebeperi, D 157 Eberheim, R 95 Eberl, K 117 Ebert, J 105 Ebihara, K 46 Ebmeyer, W 27 Ebrahimi, A 136	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116 El Hachimi, M .124 El Hadad, Y .224, 265, 266, 271
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20	Ebeperi, D 157 Eberheim, R 95 Eberl, K 117 Ebert, J 105 Ebihara, K 46 Ebmeyer, W 27 Ebrahimi, A 136 Ebrahimi Kahou, S 210	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116 El Hachimi, M .124 El Hadad, Y .224, 265, 266, 271 Elhattab, K .91
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250	Ebeperi, D 157 Eberheim, R 95 Eberl, K 117 Ebert, J 105 Ebihara, K 46 Ebmeyer, W 27 Ebrahimi, A 136 Ebrahimi Kahou, S 210 Eccleston, E 92	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116 El Hachimi, M .124 El Hadad, Y .224, 265, 266, 271 Elhattab, K .91 El-Hiti, G .147, 291, 295
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135	Ebeperi, D 157 Eberheim, R .95 Eberl, K .117 Ebert, J .105 Ebihara, K .46 Ebmeyer, W .27 Ebrahimi, A .136 Ebrahimi Kahou, S .210 Eccleston, E .92 Echeverry-Rendón, M .147, 181, 233	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116 El Hachimi, M .124 El Hadad, Y .224, 265, 266, 271 Elhattab, K .91 El-Hiti, G .147, 291, 295 El-Husseiny, M .113
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141,	Ebeperi, D 157 Eberheim, R .95 Eberl, K .117 Ebert, J .105 Ebihara, K .46 Ebmeyer, W .27 Ebrahimi, A .136 Ebrahimi Kahou, S .210 Eccleston, E .92 Echeverry-Rendón, M .147, 181, 233 Echlin, M .11, 43, 175, 184	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116 El Hachimi, M .124 El Hadad, Y .224, 265, 266, 271 Elhattab, K .91 El-Hiti, G .147, 291, 295 El-Husseiny, M .113 Eliasson, G .109
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228	Ebeperi, D 157 Eberheim, R 95 Eberl, K 117 Ebert, J 105 Ebihara, K 46 Ebmeyer, W 27 Ebrahimi, A 136 Ebrahimi Kahou, S 210 Eccleston, E 92 Echeverry-Rendón, M 147, 181, 233 Echlin, M 11, 43, 175, 184 Eckert, J 40, 73, 109, 142, 228, 254	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116 El Hachimi, M .124 El Hadad, Y .224, 265, 266, 271 Elhattab, K .91 El-Hiti, G .147, 291, 295 El-Husseiny, M .113 Eliasson, G .109 Eliaz, N .76, 113, 282, 283, 284, 285
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249	Ebeperi, D 157 Eberheim, R .95 Eberl, K .117 Ebert, J .105 Ebihara, K .46 Ebmeyer, W .27 Ebrahimi, A .136 Ebrahimi Kahou, S .210 Eccleston, E .92 Echeverry-Rendón, M .147, 181, 233 Echlin, M .11, 43, 175, 184 Eckert, J .40, 73, 109, 142, 228, 254 Eckes, K .114	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116 El Hachimi, M .124 El Hadad, Y .224, 265, 266, 271 Elhattab, K .91 El-Hiti, G .147, 291, 295 El-Husseiny, M .113 Eliasson, G .109 Eliaz, N .76, 113, 282, 283, 284, 285 Eliseeva, O .105
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109	Ebeperi, D 157 Eberheim, R 95 Eberl, K 117 Ebert, J 105 Ebihara, K 46 Ebmeyer, W 27 Ebrahimi, A 136 Ebrahimi Kahou, S 210 Eccleston, E 92 Echeverry-Rendón, M 147, 181, 233 Echlin, M 11, 43, 175, 184 Eckert, J 40, 73, 109, 142, 228, 254	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116 El Hachimi, M .124 El Hadad, Y .224, 265, 266, 271 Elhattab, K .91 El-Hiti, G .147, 291, 295 El-Husseiny, M .113 Eliasson, G .109 Eliaz, N .76, 113, 282, 283, 284, 285 Eliseeva, O .105 Elissalde, C .252
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163	Ebeperi, D 157 Eberheim, R .95 Eberl, K .117 Ebert, J .105 Ebihara, K .46 Ebmeyer, W .27 Ebrahimi, A .136 Ebrahimi Kahou, S .210 Eccleston, E .92 Echeverry-Rendón, M .147, 181, 233 Echlin, M .11, 43, 175, 184 Eckert, J .40, 73, 109, 142, 228, 254 Eckes, K .114	Eldaly, O. .85 El-Danaf, E .113 Eldeeb, A .49 Elder, K .146, 265 El-Garaihy, B .116 El Hachimi, M .124 El Hadad, Y .224, 265, 266, 271 Elhattab, K .91 El-Hiti, G .147, 291, 295 El-Husseiny, M .113 Eliasson, G .109 Eliaz, N .76, 113, 282, 283, 284, 285 Eliseeva, O .105 Elissalde, C .252 Elkaffas, R .8
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163 Dunn, A 283	Ebeperi, D 157 Eberheim, R .95 Eberl, K .117 Ebert, J .105 Ebihara, K .46 Ebmeyer, W .27 Ebrahimi, A .136 Ebrahimi Kahou, S .210 Eccleston, E .92 Echeverry-Rendón, M .147, 181, 233 Echlin, M .11, 43, 175, 184 Eckert, J .40, 73, 109, 142, 228, 254 Eckes, K .114 Edionweme, S .192	Eldaly, O. 85 El-Danaf, E 113 Eldeeb, A 49 Elder, K 146, 265 El-Garaihy, B 116 El Hachimi, M 124 El Hadad, Y 224, 265, 266, 271 Elhattab, K 91 El-Hiti, G 147, 291, 295 El-Husseiny, M 113 Eliasson, G 109 Eliaz, N 76, 113, 282, 283, 284, 285 Eliseeva, O 105 Elissalde, C 252 Elkaffas, R 8 Elleithy, M 144
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163 Dunn, A 283 Dunn, B 117	Ebeperi, D 157 Eberheim, R .95 Eberl, K .117 Ebert, J .105 Ebihara, K .46 Ebmeyer, W .27 Ebrahimi, A .136 Ebrahimi Kahou, S .210 Eccleston, E .92 Echeverry-Rendón, M .147, 181, 233 Echlin, M .11, 43, 175, 184 Eckert, J .40, 73, 109, 142, 228, 254 Eckes, K .114 Edionweme, S .192 Edmondson, P .194	Eldaly, O. 85 El-Danaf, E 113 Eldeeb, A 49 Elder, K 146, 265 El-Garaihy, B 116 El Hachimi, M 124 El Hadad, Y 224, 265, 266, 271 Elhattab, K 91 El-Hiti, G 147, 291, 295 El-Husseiny, M 113 Eliasson, G 109 Eliaz, N 76, 113, 282, 283, 284, 285 Eliseeva, O 105 Elissalde, C 252 Elkaffas, R 8 Elleithy, M 144 Ellendt, N .79
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163 Dunn, A 283 Dunn, B 117 Dunn, E 29	Ebeperi, D 157 Eberheim, R 95 Eberl, K 117 Ebert, J 105 Ebihara, K 46 Ebmeyer, W 27 Ebrahimi, A 136 Ebrahimi Kahou, S 210 Eccleston, E 92 Echeverry-Rendón, M 147, 181, 233 Echlin, M 11, 43, 175, 184 Eckert, J 40, 73, 109, 142, 228, 254 Eckes, K 114 Edionweme, S 192 Edmondson, P 194 Edmunson, J 139	Eldaly, O. 85 El-Danaf, E 113 Eldeeb, A 49 Elder, K 146, 265 El-Garaihy, B 116 El Hachimi, M 124 El Hadad, Y 224, 265, 266, 271 Elhattab, K 91 El-Hiti, G 147, 291, 295 El-Husseiny, M 113 Eliasson, G 109 Eliaz, N 76, 113, 282, 283, 284, 285 Eliseeva, O 105 Elissalde, C 252 Elkaffas, R 8 Elleithy, M 144 Ellendt, N 79 Ellevseth, B 65
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163 Dunn, A 283 Dunn, B 117 Dunn, E 29 Dunne, F 225	Ebeperi, D 157 Eberheim, R 95 Eberl, K 117 Ebert, J 105 Ebihara, K 46 Ebmeyer, W 27 Ebrahimi, A 136 Ebrahimi Kahou, S 210 Eccleston, E 92 Echeverry-Rendón, M 147, 181, 233 Echlin, M 11, 43, 175, 184 Eckert, J 40, 73, 109, 142, 228, 254 Eckes, K 114 Edionweme, S 192 Edmondson, P 194 Edmunson, J 139 Edwards, C 143	Eldaly, O. 85 El-Danaf, E 113 Eldeeb, A 49 Elder, K 146, 265 El-Garaihy, B 116 El Hachimi, M 124 El Hadad, Y 224, 265, 266, 271 Elhattab, K 91 El-Hiti, G 147, 291, 295 El-Husseiny, M 113 Eliasson, G 109 Eliaz, N 76, 113, 282, 283, 284, 285 Eliseeva, O 105 Elissalde, C 252 Elkaffas, R 8 Elleithy, M 144 Ellendt, N 79 Ellevseth, B 65 Ellingsen, M 45
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163 Dunn, A 283 Dunn, B 117 Dunn, E 29 Dunne, F 225 Duong, A 15	Ebeperi, D	Eldaly, O. 85 El-Danaf, E 113 Eldeeb, A 49 Elder, K 146, 265 El-Garaihy, B 116 El Hachimi, M 124 El Hadad, Y 224, 265, 266, 271 Elhattab, K 91 El-Hiti, G 147, 291, 295 El-Husseiny, M 113 Eliasson, G 109 Eliaz, N 76, 113, 282, 283, 284, 285 Eliseeva, O 105 Elissalde, C 252 Elkaffas, R 8 Elleithy, M 144 Ellendt, N 79 Ellevseth, B 65 Ellingsen, M 45 Ellis, A 98
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163 Dunn, B 117 Dunn, E 29 Dunne, F 225 Duong, A 15 Duployer, B 48, 78	Ebeperi, D 157 Eberheim, R .95 Eberl, K .117 Ebert, J .105 Ebihara, K .46 Ebmeyer, W .27 Ebrahimi, A .136 Ebrahimi Kahou, S .210 Eccleston, E .92 Echeverry-Rendón, M .147, 181, 233 Echlin, M .11, 43, 175, 184 Eckert, J .40, 73, 109, 142, 228, 254 Eckes, K .114 Edionweme, S .192 Edmondson, P .194 Edmunson, J .139 Edwards, C .143 Edwards, D .43 Edwards, J .25, 96, 130, 279 Edwards, L .49, 54, 65, 86, 87, 93, 122,	Eldaly, O. 85 El-Danaf, E 113 Eldeeb, A 49 Elder, K 146, 265 El-Garaihy, B 116 El Hachimi, M 124 El Hadad, Y 224, 265, 266, 271 Elhattab, K 91 El-Hiti, G 147, 291, 295 El-Husseiny, M 113 Eliasson, G 109 Eliaz, N 76, 113, 282, 283, 284, 285 Eliseeva, O 105 Elissalde, C 252 Elkaffas, R 8 Elleithy, M 144 Ellendt, N 79 Ellevseth, B 65 Ellingsen, M 45 Ellis, A 98 Ellis, D 73
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163 Dunn, B 117 Dunn, E 29 Dunne, F 225 Duong, A 15 Duployer, B 48, 78 Dupuis, M 87	Ebeperi, D 157 Eberheim, R 95 Eberl, K 117 Ebert, J 105 Ebihara, K 46 Ebmeyer, W 27 Ebrahimi, A 136 Ebrahimi Kahou, S 210 Eccleston, E 92 Echeverry-Rendón, M 147, 181, 233 Echlin, M 11, 43, 175, 184 Eckert, J 40, 73, 109, 142, 228, 254 Eckes, K 114 Edionweme, S 192 Edmondson, P 194 Edmunson, J 139 Edwards, C 143 Edwards, D 43 Edwards, J 25, 96, 130, 279 Edwards, L .49, 54, 65, 86, 87, 93, 122, 136, 152, 153, 159, 169, 177, 188, 189,	Eldaly, O. 85 El-Danaf, E 113 Eldeeb, A 49 Elder, K 146, 265 El-Garaihy, B 116 El Hachimi, M 124 El Hadad, Y 224, 265, 266, 271 Elhattab, K 91 El-Hiti, G 147, 291, 295 El-Husseiny, M 113 Eliasson, G 109 Eliaz, N 76, 113, 282, 283, 284, 285 Eliseeva, O 105 Elissalde, C 252 Elkaffas, R 8 Elleithy, M 144 Ellendt, N 79 Ellevseth, B 65 Ellingsen, M 45 Ellis, A 98 Ellis, D 73 Ellissalde, C 252
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163 Dunn, B 117 Dunn, E 29 Dunne, F 225 Duong, A 15 Duployer, B 48, 78 Dupuis, M 87 Dupuy, A 14, 44, 81, 118, 149, 208, 264	Ebeperi, D 157 Eberheim, R .95 Eberl, K .117 Ebert, J .105 Ebihara, K .46 Ebmeyer, W .27 Ebrahimi, A .136 Ebrahimi Kahou, S .210 Eccleston, E .92 Echeverry-Rendón, M .147, 181, 233 Echlin, M .11, 43, 175, 184 Eckert, J .40, 73, 109, 142, 228, 254 Eckes, K .114 Edionweme, S .192 Edmondson, P .194 Edmunson, J .139 Edwards, C .143 Edwards, D .43 Edwards, J .25, 96, 130, 279 Edwards, L .49, 54, 65, 86, 87, 93, 122,	Eldaly, O. 85 El-Danaf, E 113 Eldeeb, A 49 Elder, K 146, 265 El-Garaihy, B 116 El Hachimi, M 124 El Hadad, Y 224, 265, 266, 271 Elhattab, K 91 El-Hiti, G 147, 291, 295 El-Husseiny, M 113 Eliasson, G 109 Eliaz, N 76, 113, 282, 283, 284, 285 Eliseeva, O 105 Elissalde, C 252 Elkaffas, R 8 Elleithy, M 144 Ellendt, N 79 Ellevseth, B 65 Ellingsen, M 45 Ellis, A 98 Ellis, D 73 Ellissalde, C 252 Ellyson, B 38, 71, 222
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163 Dunn, A 283 Dunn, B 117 Dunn, E 29 Dunne, F 225 Duong, A 15 Duployer, B 48, 78 Dupuis, M 87 Dupakiewicz, T 210	Ebeperi, D	Eldaly, O. 85 El-Danaf, E 113 Eldeeb, A 49 Elder, K 146, 265 El-Garaihy, B 116 El Hachimi, M 124 El Hadad, Y 224, 265, 266, 271 Elhattab, K 91 El-Hiti, G 147, 291, 295 El-Husseiny, M 113 Eliasson, G 109 Eliaz, N 76, 113, 282, 283, 284, 285 Eliseeva, O 105 Elissalde, C 252 Elkaffas, R 8 Elleithy, M 144 Ellendt, N 79 Ellevseth, B 65 Ellingsen, M 45 Ellis, D 73 Ellissalde, C 252 Ellyson, B 38, 71, 222 Elnunu, I 50, 65, 124, 268
Duenas Gonzalez, L 69, 250, 259 Dufresne, E 109 Du, G 269 Dugger, M 143 Du, J 50, 134, 157, 268 Dujovic, M 118 Du, M 20 Dumas, J 250 Dunand, A 135 Dunand, D 17, 36, 83, 103, 141, 177, 181, 218, 228 Dunbar, C 249 Duncan, A 109 Dunkel, J 163 Dunn, B 117 Dunn, E 29 Dunne, F 225 Duong, A 15 Duployer, B 48, 78 Dupuis, M 87 Dupuy, A 14, 44, 81, 118, 149, 208, 264	Ebeperi, D	Eldaly, O. 85 El-Danaf, E 113 Eldeeb, A 49 Elder, K 146, 265 El-Garaihy, B 116 El Hachimi, M 124 El Hadad, Y 224, 265, 266, 271 Elhattab, K 91 El-Hiti, G 147, 291, 295 El-Husseiny, M 113 Eliasson, G 109 Eliaz, N 76, 113, 282, 283, 284, 285 Eliseeva, O 105 Elissalde, C 252 Elkaffas, R 8 Elleithy, M 144 Ellendt, N 79 Ellevseth, B 65 Ellingsen, M 45 Ellis, A 98 Ellis, D 73 Ellissalde, C 252 Ellyson, B 38, 71, 222

El Saadany, O	Espinosa, A	Faraj, M
Elstad, K	Espinosa-Marzal, R	Farhi, E
Emad, B	Esteves, A	Farimani, A
Emanet, S245	Esteves de Araújo, J82	Farkas, D 18, 50, 154
Emerson, J 100, 108, 160, 231	Estournes, C	Farkoosh, A76, 113, 177, 282,
Emery, J	Estrada, D 35, 68, 106, 139, 174	283, 284, 285
Emile, P	Estrada, K	Farmer, K242
Emil Kaya, E	Estrada Ospino, E45	Farndell, A
Emmanuel, M	Estrin, Y 26, 58, 96, 129, 163, 199, 298	Fatemi, A
Endsley, M197, 262	Eswarappa Prameela, S	Fattahpour, S
Ener, S	Etherington-Rivas, M175	Fatto Offidani, D
Engelman, B	Etienne, E	Faulkner, N
Engel, N	Euh, K	Faurie, D
Eng Granlund, H153	Evans, A	Fayette, L
Engle, J	Evans, W	Fayfar, S
Eng, P	Evered, C	Fayomi, O
Engquist, M	Everhart, B	Feaster, J
Enikeev, N	Evirgen, A	Feaugas, X
Ensari, T	Ewing, R	Fedorov, A
Enstrom, S	Eyert, V	Fedyaev, T
Enzinger, N	Ezzat, A124	Feichtmayer, A
Episcopo, N	F	Fei, Z
Epler, M	1	Feldhausen, T 78, 107, 181
Erb, U	Fabas, C	Felfer, P
Erdemir, A	Faber, K 80, 101, 203	Felidj, N
Erdeniz, D	Faberman, S	Fellah, M 147, 263, 264, 266, 268,
Eres-Castellanos, A 26, 34, 58, 68, 97, 105, 130, 138, 164, 173, 207,	Fabijanic, D	291, 292, 295 Fellner, S
	Fabris, M	Telliel, 3
233 251 277 284 288 208		
233, 251, 277, 284, 288, 298 Fricak O	Fackler, P	Feng, B
Ericok, O	Fackler, P	Feng, B
Ericok, O .126 Eriksen, A .235	Fackler, P	Feng, B <
Ericok, O .126 Eriksen, A .235 Eriksen, N .159	Fackler, P	Feng, B .16 Feng, G .31, 64, 258 Feng, L .19, 88, 173, 194, 248, 296 Feng, N .223
Ericok, O .126 Eriksen, A .235 Eriksen, N .159 Erikson, W .234	Fackler, P	Feng, B 16 Feng, G 31, 64, 258 Feng, L 19, 88, 173, 194, 248, 296 Feng, N 223 Feng, R 16, 50, 83, 161, 182,
Ericok, O .126 Eriksen, A .235 Eriksen, N .159 Erikson, W .234 Eriksson, O .14	Fackler, P .178 Faderin, E .271 Fahrmann, M .41, 70, 74, 216 Faierson, E .174 Fajardo, S .237 Falconer, C .30, 201	Feng, B
Ericok, O .126 Eriksen, A .235 Eriksen, N .159 Erikson, W .234 Eriksson, O .14 Erman, J .87	Fackler, P .178 Faderin, E .271 Fahrmann, M .41, 70, 74, 216 Faierson, E .174 Fajardo, S .237 Falconer, C .30, 201 Faleschini, F .106	Feng, B
Ericok, O .126 Eriksen, A .235 Eriksen, N .159 Erikson, W .234 Eriksson, O .14 Erman, J .87 Ermisyam, I .49, 219, 242	Fackler, P .178 Faderin, E .271 Fahrmann, M .41, 70, 74, 216 Faierson, E .174 Fajardo, S .237 Falconer, C .30, 201 Faleschini, F .106 Falini, G .46	Feng, B
Ericok, O .126 Eriksen, A .235 Eriksen, N .159 Erikson, W .234 Eriksson, O .14 Erman, J .87	Fackler, P .178 Faderin, E .271 Fahrmann, M .41, 70, 74, 216 Faierson, E .174 Fajardo, S .237 Falconer, C .30, 201 Faleschini, F .106 Falini, G .46 Falk, M .85, 89, 125, 165, 200,	Feng, B
Ericok, O .126 Eriksen, A .235 Eriksen, N .159 Erikson, W .234 Eriksson, O .14 Erman, J .87 Ermisyam, I .49, 219, 242 Ersson, M .239 Ertekin, E .60	Fackler, P	Feng, B
Ericok, O .126 Eriksen, A .235 Eriksen, N .159 Erikson, W .234 Eriksson, O .14 Erman, J .87 Ermisyam, I .49, 219, 242 Ersson, M .239	Fackler, P	Feng, B
Ericok, O .126 Eriksen, A .235 Eriksen, N .159 Erikson, W .234 Eriksson, O .14 Erman, J .87 Ermisyam, I .49, 219, 242 Ersson, M .239 Ertekin, E .60 Esakoff, J .148	Fackler, P	Feng, B
Ericok, O 126 Eriksen, A 235 Eriksen, N 159 Erikson, W 234 Eriksson, O 14 Erman, J 87 Ermisyam, I 49, 219, 242 Ersson, M 239 Ertekin, E 60 Esakoff, J 148 Escamilla García, M 268	Fackler, P	Feng, B 16 Feng, G 31, 64, 258 Feng, L 19, 88, 173, 194, 248, 296 Feng, N 223 Feng, R 16, 50, 83, 161, 182, 226, 232, 239 Feng, T 206 Feng, Y 155 Feng, Z 57, 116, 139, 207, 214, 245 Fenocchio, L 73 Fensin, S 16, 20, 51, 88, 90, 107, 125, 135, 157, 184, 204, 219, 220
Ericok, O 126 Eriksen, A 235 Eriksen, N 159 Erikson, W 234 Eriksson, O 14 Erman, J 87 Ermisyam, I 49, 219, 242 Ersson, M 239 Ertekin, E 60 Esakoff, J 148 Escamilla García, M 268 Escarcega Herrera, K 16	Fackler, P	Feng, B
Ericok, O .126 Eriksen, A .235 Eriksen, N .159 Erikson, W .234 Eriksson, O .14 Erman, J .87 Ermisyam, I .49, 219, 242 Ersson, M .239 Ertekin, E .60 Esakoff, J .148 Escamilla García, M .268 Escarcega Herrera, K .16 Escobar Atehortua, J .199	Fackler, P	Feng, B
Ericok, O .126 Eriksen, A .235 Eriksen, N .159 Erikson, W .234 Eriksson, O .14 Erman, J .87 Ermisyam, I .49, 219, 242 Ersson, M .239 Ertekin, E .60 Esakoff, J .148 Escamilla García, M .268 Escarcega Herrera, K .16 Escobar Atehortua, J .199 Escobar, F .238 Escobar, J .43, 198, 207	Fackler, P	Feng, B
Ericok, O 126 Eriksen, A 235 Eriksen, N 159 Erikson, W 234 Eriksson, O 14 Erman, J 87 Ermisyam, I 49, 219, 242 Ersson, M 239 Ertekin, E 60 Esakoff, J 148 Escamilla García, M 268 Escarcega Herrera, K 16 Escobar Atehortua, J 199 Escobar, F 238 Escobar, J 216 Escobar-Moreno, I 161	Fackler, P	Feng, B 16 Feng, G 31, 64, 258 Feng, L 19, 88, 173, 194, 248, 296 Feng, N 223 Feng, R 16, 50, 83, 161, 182, 226, 232, 239 Feng, T 206 Feng, Y 155 Feng, Z 57, 116, 139, 207, 214, 245 Fenocchio, L 73 Fensin, S 16, 20, 51, 88, 90, 107, 125, 135, 157, 184, 204, 219, 220 Fenton, S 260, 299 Ferblantier, G 8, 42, 75, 111, 143, 144, 179, 212, 238, 255, 262, 281 Fereira, S 218 Ferguso, J 35, 68 Ferguson, I 134
Ericok, O	Fackler, P	Feng, B 16 Feng, G 31, 64, 258 Feng, L 19, 88, 173, 194, 248, 296 Feng, N 223 Feng, R 16, 50, 83, 161, 182, 226, 232, 239 Feng, T 206 Feng, Y 155 Feng, Z 57, 116, 139, 207, 214, 245 Fenocchio, L 73 Fensin, S 16, 20, 51, 88, 90, 107, 125, 135, 157, 184, 204, 219, 220 Fenton, S 260, 299 Ferblantier, G 8, 42, 75, 111, 143, 144, 179, 212, 238, 255, 262, 281 Fereira, S 218 Ferguso, J 35, 68 Ferguson, I 134 Ferguson, J 119
Ericok, O	Fackler, P	Feng, B 16 Feng, G 31, 64, 258 Feng, L 19, 88, 173, 194, 248, 296 Feng, N 223 Feng, R 16, 50, 83, 161, 182, 226, 232, 239 Feng, T 206 Feng, Y 155 Feng, Z 57, 116, 139, 207, 214, 245 Fenocchio, L 73 Fensin, S 16, 20, 51, 88, 90, 107, 125, 135, 157, 184, 204, 219, 220 Fenton, S 260, 299 Ferblantier, G 8, 42, 75, 111, 143, 144, 179, 212, 238, 255, 262, 281 Fereira, S 218 Ferguson, J 134 Ferguson, J 119 Ferk, F 205
Ericok, O	Fackler, P	Feng, B 16 Feng, G 31, 64, 258 Feng, L 19, 88, 173, 194, 248, 296 Feng, N 223 Feng, R 16, 50, 83, 161, 182, 226, 232, 239 Feng, T 206 Feng, Y 155 Feng, Z 57, 116, 139, 207, 214, 245 Fenocchio, L 73 Fensin, S 16, 20, 51, 88, 90, 107, 125, 135, 157, 184, 204, 219, 220 Ferton, S 260, 299 Ferblantier, G 8, 42, 75, 111, 143, 144, 179, 212, 238, 255, 262, 281 Fergus, J 35, 68 Ferguson, I 134 Ferguson, J 119 Ferk, F 205 Fernandes, C 82, 147
Ericok, O	Fackler, P	Feng, B 16 Feng, G 31, 64, 258 Feng, L 19, 88, 173, 194, 248, 296 Feng, N 223 Feng, R 16, 50, 83, 161, 182, 226, 232, 239 Feng, T 206 Feng, Y 155 Feng, Z 57, 116, 139, 207, 214, 245 Fenocchio, L 73 Fensin, S 16, 20, 51, 88, 90, 107, 125, 135, 157, 184, 204, 219, 220 Ferton, S 260, 299 Ferblantier, G 8, 42, 75, 111, 143, 144, 179, 212, 238, 255, 262, 281 Fereira, S 218 Ferguson, J 134 Ferguson, J 119 Ferk, F 205 Fernandes, C 82, 147 Fernandes, V 50
Ericok, O	Fackler, P	Feng, B 16 Feng, G 31, 64, 258 Feng, L 19, 88, 173, 194, 248, 296 Feng, N 223 Feng, R 16, 50, 83, 161, 182, 226, 232, 239 Feng, T 206 Feng, Y 155 Feng, Z 57, 116, 139, 207, 214, 245 Fenocchio, L 73 Fensin, S 16, 20, 51, 88, 90, 107, 125, 135, 157, 184, 204, 219, 220 Fenton, S 260, 299 Ferblantier, G 8, 42, 75, 111, 143, 144, 179, 212, 238, 255, 262, 281 Fereira, S 218 Ferguson, I 134 Ferguson, J 119 Ferk, F 205 Fernandes, C 82, 147 Fernandes, W 294
Ericok, O	Fackler, P	Feng, B
Ericok, O	Fackler, P	Feng, B
Ericok, O	Fackler, P	Feng, B 16 Feng, G 31, 64, 258 Feng, L 19, 88, 173, 194, 248, 296 Feng, N 223 Feng, R 16, 50, 83, 161, 182, 226, 232, 239 Feng, T 206 Feng, Y 155 Feng, Z 57, 116, 139, 207, 214, 245 Fenocchio, L 73 Fensin, S 16, 20, 51, 88, 90, 107, 125, 135, 157, 184, 204, 219, 220 Fenton, S 260, 299 Ferblantier, G 8, 42, 75, 111, 143, 144, 179, 212, 238, 255, 262, 281 Fereira, S 218 Ferguson, J 119 Ferk, F 205 Fernandes, C 82, 147 Fernandes, W 294 Fernández-Arteaga, J 51 Fernandez, F 265 Fernandez, M 296
Ericok, O	Fackler, P	Feng, B
Ericok, O	Fackler, P	Feng, B 16 Feng, G 31, 64, 258 Feng, L 19, 88, 173, 194, 248, 296 Feng, N 223 Feng, R 16, 50, 83, 161, 182, 226, 232, 239 Feng, T 206 Feng, Y 155 Feng, Z 57, 116, 139, 207, 214, 245 Fenocchio, L 73 Fensin, S 16, 20, 51, 88, 90, 107, 125, 135, 157, 184, 204, 219, 220 Fenton, S 260, 299 Ferblantier, G 8, 42, 75, 111, 143, 144, 179, 212, 238, 255, 262, 281 Fereira, S 218 Ferguson, J 119 Ferk, F 205 Fernandes, C 82, 147 Fernandes, W 294 Fernández-Arteaga, J 51 Fernandez, F 265 Fernandez, M 296

7 1 71 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	71.1.7	n 1 n
Fernandez-Zelaia, P 41, 115, 145, 239	Fleischer, J	Franke, P
Fernando, A116	Fleming, A	Frankus, F
Ferraioli, A	Flewitt, P	Frappart, S
Ferrè, F	Flick, A	Fraser, H 13, 16, 17, 27, 35, 110, 120,
Ferreira, A	Flores, E	150, 175, 209, 235, 244
Ferreira, F	Flores-Guerrero, M296	Fratto, E
Ferreira, J	Flores, K 39, 73, 109, 142, 178, 211,	Frazer, D 30, 44, 66, 101, 221, 223
Ferreiros, P	237, 240, 254, 281	Frederick, K
Ferreirós, P	Flores, M271	Freed, E
Ferrigno, J	Flores, N	Free, M
Ferry, S	Floro, J	Freitas, R 22, 51, 53, 60, 92, 126, 132,
Feygelson, B258	Flowers, J	158, 165, 192, 194, 200, 221,
Feygin, E193	Fluke, A160	226, 244, 246, 296, 298
Fezzaa, K	Flynn, D	French, A56
Fiedler, K	Foder, J74	French, J
Field, D	Fohtung, E51	Frenck, G257
Field, K 23, 63, 100, 102, 108, 113,	Fokwa, B	Frenck, J
127, 151, 196, 207, 211	Foley, B	Frenkel, A
Field, R165	Foley, D141, 224	Frenzel, J 173, 193, 225, 278
Fields, B	Fonseca, D	Freund, A
Fields, S 16, 47, 254, 259	Fonseca, E	Frey, C
Fierro, G290	Fons, P	Frey, M
Fieser, D	Fontaine, B	Freyman, M117
Figueiredo, R199, 267	Fontes Vieira, C 67, 104, 268, 269,	Freysoldt, C179
Figueroa Fierros, A	275, 276, 286	Friday, M
Figueroa, S	Foong, M	Frieden Templeton, W239
Fikar, J179	Forde, J	Fripp, N
Filho, V50	Ford, J82	Frizzera, E
Filleter, T	Ford, K	Frolov, T 21, 22, 52, 91, 121, 125, 157,
Fillingim, B	Ford, M	168, 193, 203, 295
Fillingim, K	Forget, C	Fronzi, M 27, 59, 98, 131, 272
Finch, T	Forien, J	Frosik, B90
Findley, K	Forsberg, K 28, 60, 175, 208, 234	Frosta, O
Finel, A17, 59	Forsik, S	Frost, R
Finfrock, C167, 224	Forsmark, J49	Frye, A
Finkeldei, S 94, 103, 137	Forsyth, M184	Fu, B
Finney, B149	Forti, M84, 85	Fu, C 18, 48, 60, 85, 121, 152, 188,
Fiona, S	Fortunato de Freitas, L 67, 104, 276	207, 267, 300
Fiory, A179	Fortunato De Freitas, L	Fuchs-Lynch, N 58, 101, 204
Firdaus, A258	Fossan, I	Fudger, S278
Firestone, B	Foster, A	Fuerst, T
Fischer, J	Foster, M	Fuierer, P
Fischer, M	Foti, V	Fujii, H
Fishel, R	Fountain, J	Fujikawa, S
Fisher, C 145, 181, 182, 213, 214,	Fourmann, J	Fujimoto, K
239, 287, 289	Fournier, C	Fujita, E
Fisher, G	Fowler, H	Fu, K
Fisher, R	160, 196, 269	Fullwood, D
Fitchorova, Y82	Fox, E	Fultz, B
Fitz-Gerald, J	Fradet, G	Fulzele, D
Fitzgerald, K	Fraile, A	Funase, S
Fitzpatrick, J	Frame, L	Furat, O
Fitzpatrick, M	Frampton, C	Furrer, D 41, 75, 84, 175
Fitzwater, L	Francis, C	Furuhara, T
Fjær, H	Franco de Carvalho, J294	Furu, O
Flaga, J	Francois, M249	Fu, S
Flahaut, D	Francois-Saint-Cyr, H	Fu, Y
Flanagan, J	Frankel, G 57, 160, 161, 194, 197,	
Flanagan, T171	224, 270	

G	Gao, C	Gascoin, F 18, 48, 78, 85, 121, 152,
0.11 m	Gao, F 37, 70, 211, 274, 279	188, 267
Gabb, T	Gao, H 26, 58, 96, 129, 163, 199, 298	Gaskey, B
Gachot, G	Gao, J	Gaskins, J
Gaddam, S	Gao, L 86, 114, 116, 158, 195	Gatto, A
Gaddam, V	Gao, M 15, 16, 46, 50, 83, 119, 150,	Gatto, M
Gadioli, M	153, 186, 197, 217, 218,	Gaudez, S
Gager, J	240, 265, 266	Gaudio, A
Gagey-Eilstein, N243	Gao, N	Gault, B
Gagneur, V	Gao, P	Gaur, A
Gaies, J	Gao, S	Gaur, V
Gaikwad, H	Gao, W	Gauspohl, J
Gaikwad, S	Gao, X	Gautam, P
Gaipov, R259	Gao, Y 20, 42, 87, 90, 181, 186, 194, 200, 209, 231, 266	Gauvin, G
Gakhar, R 29, 37, 133, 140, 142, 196,	Gao, Z	Gavalda-Diaz, O
227, 228, 247, 272	Garashchenko, O	Gaydos, L
Galanis, A	Garber, K	Gazeau, F
Gale, D245	Garces, G	Gazenbiller, E
Galetz, M24, 81, 100, 103, 112,	Garcia Alvarez, V	Gazza, J
142, 178	Garcia Caraveo, A	Gbenebor, O
Galikova, M	Garcia, D 71, 114, 214	Gbenebor, P
Gálíková, M26	Garcia de la Cruz, L	Gbur, J
Galindo-Nava, E133, 166, 201, 228,	García Díez, A77	Gebauer, J
247, 273	García, E	Gebes, S
Galinski, H	García-Hernández, M295	Gedsun, A
Gallagher, J 50, 65, 88, 268	Garcia-Hernandez, S	Geers, M58
Gallagher, R	Garcia-Izquierdo, F278	Gehmlich, N
Gallant, N	Garcia, J11, 147	Gehrig, M
Gallaway, G	Garcia Jimenez, A40	Geisler, B
Gallego, M	García, L271	Geith, M54
Gallino, I	Garcia Magana, J	Gelin, S
Galliopoulou, E	Garcia-Mendez, R	Gelmetti, M
Gallivan, R	García Merino, J	Ge, M
Galodé, A	Garcia Ortiz, H	Geneturk, M
Galtier, E	Garcia-Ramirez, M	Gendich, M
Galvin, C	Gardner, H	
Gamal, A	Garel, E	Geng, L
Gamboa, G10, 174	Garger, M	Geng, Y
Gammer, C 40, 73, 203, 254	Garg, M	Gentile, R
Gan, C 139, 208, 260	Garg, N	Gentry, R
Gandha, K	Garg, P 204, 217, 254	Gentry, S
Gandhi, A 14, 82, 216	Gariboldi, E212	Georgarakis, K169
Gandin, C	Gariety, D	George, E
Gandolfo, C	Garitaonandia, J185	Georges, E
Gandy, A	Garland, A145	Georges, M57
204, 230, 249, 274	Garlea, E	Gerczak, T
Gandy, D	Garmroudi, F	Gerdes, L
Ganesan, N	Garner, F 23, 56, 127, 202	Geri, M
Gangaraju, M	Garnett, J	Geringer, J 62, 102, 230
Ganguly, S 8, 77, 214, 215, 300	Garrett, T	German, J
Gan, J	Garrison, L 102, 126, 157, 159, 194,	Germann, T
192, 196, 219, 242, 251, 293	195, 221, 222, 223, 243	German, P145
Gannon, A239	Garrivier, N	Gersch, S
Gannon, W	Garza, E	Gerstl, S
Gan, Z	Garza, H	Gesteland, C
Gao, B	Garza, K	Gester, A
	Jasca, A	Gesuaidi, J

		0 1 11
Getley, A	Girigisu, S	Goncalves, V
Getto, E	Giri, S	Gonçalves, V
Ge, Z113	Giuliani, F	Gonderman, S
Ghafarollahi, A124	Giuntini, D 105, 139, 149, 174, 208,	Gongi, W
Ghanadi, N 214, 215, 259	229, 234, 252, 278	Gong, J 162, 197, 202
Ghanbari, Z	Gizer, G228	Gong, S
Ghasemi, Z153	Gladstein, A188	Gong, W
Ghauri, H	Glaessgen, E 41, 48, 111, 181	Gong, X
Ghazinejad, M286	Glaser, B	Gong, Y161
Ghazisaeidi, M 14, 19, 44, 88, 165	Glatzel, U103	Gonyaw, J
Ghimire, A192	Glaubitz, E	Gonzales, A70, 117
Ghiorghiu, F	Glavin, N	Gonzales, J
Ghodsi, A227	Gleason, A20, 112	Gonzalez, A
Gholizadeh, R	Gleason, M	González-Ángeles, I264
Ghomashchi, R182	Gleeson, B	Gonzalez Garcia, A
Ghorbani, M	Glerum, J	Gonzalez, L
Ghosh, A 64, 96, 120, 252	Gloag, R	Gonzalez Morales, D
Ghosh, C	Gloriant, T	Goodall, R
Ghosh, D 14, 44, 81, 118, 149, 260, 264	Glover, A	Goodarzi, S
Ghosh, E	Gluchowski, P	Goodelman, D
Ghosh, S 41, 75, 96, 129, 139, 181,	Gluck, A	Goodman, C
220, 277	Gludovatz, B 9, 32, 40, 64, 65, 83, 101	Goodson, M
Ghotbi, M	Gnida, D 14, 177, 257, 279	Goodwin, W
Ghule, B	Gobber, F	Goo, N
Giallonardo, J	Gobert, C	Gopalakrishnan, S
Giamouridou, M	Gockel, J	Gopalan, S
Gianola, D	Godard, P	Gopalan, V
168, 172, 277	Goddard, D	Gorai, P27, 43, 86, 120, 121, 131, 297
Gibb, J	Goddard, W	Gorannsson, K
Gibbon, S	Godec, M	Gordon, B
Gibbs, P	Goedjen, J	Gordon, E
Gibson, C	Goettsch, J	Gordon, J
Gibson, I	Goff, J	Gordon, R
Gibson, J	Gofryk, k	Gorelik, R
Gibson, M	Gofryk, K36, 70, 107, 140, 177, 210	Goring, S
Gide, K	Gogotsi, Y 35, 42, 44, 163, 262	Gor, M
Giels, M	Goh, Z	Gorman, A
Gienger, E	Gokcekaya, O	Gorr, B
Gietl, H	Gokelma, M 36, 69, 106, 140, 176,	Gorrey, R
Gigliotti, N	189, 210, 235, 253, 279	Gorske, S 80, 101, 203
Gikunoo, E	Gökelma, M	Gorsse, S
Gilani, N	Goken, M	Gosse, R
Gilankar, A	Göken, M	Goswami, A
Gilbert, A236	Golden, P	Goswami, R21, 148
Gilbert, D	Goldman, R258	Gothe, P55, 196
Gilbert, E	Goles, N	Goto, R
Gilbert, M169	Goley, Q	Gottschall, T
Gil Coury, F218	Goller, G	Goudeau, P
Giles, A	Gomes, N	Goudeli, E
Gilleland, C	Gomes, R276	Gould, J
Gillet, S141	Gómez Cuyàs, J192	Gourlay, C23, 55, 61, 65, 93, 127,
Gillham, J146, 183	Gomez Marroquin, M 91	159, 196, 269
Gilliland, W11, 203	Gomez-Perez, A	Govaere, A25
Gillon, J	Gomez, R	Govindarajan, M
Gill, S 108, 133, 196, 272	Gomond, A	Grabowski, B190
Gingl, E	Gonçalves, C200	Gradl, P
Girardin, G25	Gonçalves, F	Graefe, M154
Giribaldi, A	Gonçalves Pedroti, L294	Graening Seibert, T230

G		
Graening, T 102, 115, 157	Grubb, C	Gupta, A 14, 148, 167, 176, 217
Graeve, O82	Grubel, K237	Gupta, K167
Grafft, J226	Grumsen, F	Gupta, N
Graf, G115	Gründer, S	Gupta, P118, 218
Graham, S	Gruninger, M162	Gupta, R 16, 46, 57, 83, 224, 234, 267
Grain, N	Grydin, O146, 200	Gupta, S 12, 37, 43, 71, 80, 116, 117,
Grandini, C	Grygar, F	148, 184, 210, 263, 280
Grant, B	G S, M188	Gupta, V74
Grant, G	Guamanga, L	Guraja, S
Grasmo, G145	Guan, B117	Gurao, N
Grau, L178	Guan, D	Gurbuz Guner, S10
Graves, A	Guan, X	Gureyev, T
Graydon, K	Guarch Perez, C	Gurniak, E
Gray, G129, 184	Guazzagaloppa, J48	Gursoy, D
Gray III, G16	Gucik, M	Guruprasad, P96
Gray, S	Gudac, L	Guruswamy, S118
Graziano, M	Guehairia, S	Gu, S
Grbavac, T	Guenole, J	Gussev, M 30, 211, 229
Greaney, P	Guerard, S	Gustafson, S
Greeley, D	Guerrero, D	Gustinvil, R
Greenberg, B	Guest, J	Gutbrod, K
Green, N		
	Gu, G 19, 50, 88, 124, 153, 155, 163,	Gutfleisch, O
Green, T	182, 192, 213, 264, 268	Guthrie, R
Green-Warren, R	Guillemot, G	Gutierrez, E
Greer, A 39, 73, 109, 142, 178, 211,	Guillen, D 24, 27, 51, 56, 59, 94, 98,	Gutiérrez, E
237, 254, 281	108, 128, 131, 248, 270, 272	Gutiérrez, J
Greer, J 20, 205, 206, 289, 297	Guillon, O	Gutierrez Moreno, J 27, 59, 98,
Greer, R	Guillory II, R147	131, 272
Grégoire, B	Guillot, I	Gutierrez-Urrutia, I
Gregori, N	Guillou, F82	Gutnik, D
Gregurek, D 54, 92, 125	Guillou, R	Guven, A
Grejtak, T 17, 97, 129, 143, 179, 212,	Guilmeau, E	Guvenc, O
238, 255, 281	Gui, X246	Gu, W 11, 79, 115, 171, 181, 205,
Grennan, H	Guizar-Sicairos, M 20	231, 250, 289, 300
Grest, G221	Gu, J	Gu, Y
Grey, Z	Gulbrandsen, K159	Gu, Z184
Griebel, A	Gulletutan, U213	Guziewski, M180
Griesbach, C	Gülletutan, U297	Guzman, A185
Griffiths, J	Gülver, M219	Guzman-Garfias, R
Griffiths, R71	Gumaste, A 198, 245, 300	Guzman, J
Grillet, A	Gump, C146, 285	Guzman, P172
Grilli, N	Gumussoy, A	Guzmán-Ríos, E277
Grima, G	Gunasekaran, G 259, 286, 290	Gwalani, B22, 34, 40, 68, 92, 105,
Grimes, T140	Gunderson, C	119, 138, 173, 180, 199, 207,
Grimme, C100	Güneş, E193	213, 233, 238, 251, 275, 277
Grimm, J	Gunes, E	210, 200, 200, 201, 270, 277
Grippi, T 105, 112, 174	Gunnarson, G	H
Griveau, J	Günther, J	
Groetsch, A 51, 206, 297	Gunther, S	Haag, J 63, 102, 119, 127, 135, 204
Grogan, J	Gunzburger, M	Habeeb, M291
=		Haberl, B
Groom A 72 297	Guo, B	Habib, S
Groom, A	Guo, D	Habibzadeh, A
Gross, A	Guo, H	Habiyaremye, F150
Gross, G	Guo, J	Hache, M
Gross, M	Guo, S	Hachtel, J
Gross, O	Guo, X	Hackel, L
Gross, R	161, 164, 237, 262, 270	Hackett, M129
Grovenor, C	Guo, Y	Hadadzadeh, A11
Groves, M185	Guo, Z96	

Haddon-McMillan, T	Han, J 12, 38, 46, 72, 91, 108, 118,	Harris, Z25, 29, 57, 80, 95, 161,
Hadibeik Neishaboori, S	142, 186, 190, 233, 270, 277,	166, 214, 259
Hadibeik, S	280, 282, 286, 290, 298	Harr, M225
Haefelfinger, R221	Han, K	Harrysson, O
Hafen, J97	Han, L	Hart, G52
Hafen, T	Hanning, F	Hartmann, J
Haftlang, F	Hannum, M235	Hartmann, T272
Hagen, D	Han, Q	Hart, P
Hagen, E	Han, S	Hartstein, D
Haghdadi, N	230, 276, 285	Harvey, J
Haghshenas, M. 115, 182, 197, 214, 289	Hansda, P	Ha, S 51, 181, 293
Hague, R 244, 250, 297	Hansen, J	Hasan, A 54, 144, 231
Hahm, M294	Hansen, L	Hasan, M 199, 217, 242, 271, 283
Hahn, N	Hansen, M250	Hasan, S
Hain, C183	Hansen, R	Haseeb, A 34, 67, 104, 138, 276
Ha, J	Hans, M	Hasegawa, G
Hakonsen, A 65, 87, 136, 169, 189,	Hanson, K	Hasegawa, M
235, 253, 299	Hanson, S	Haselhuhn, A 25, 115, 215, 282
Halavanau, A	Hansson, C	Hashemi Monfared, A 67, 183, 215,
Halder, R	Han, Y	262, 288, 299
Halder, S	Hao, L	Hashimoto, N
Hale, C	Hao, S	
		Hasibuan, Y
Hale, L	Hao, T	Hassan Ali, M
Halet, J	Hao, X	Hassani, M171, 184, 205, 231,
Haley, J	Haque, A	250, 278, 300
Hall, B	Haque, M	Hassan, J
Haller, H	Haque, N	Hassan, T
Hall, J	128, 270, 279	Hass, D
Hall, M71, 226	Haque, T	Hassel, M106
Hall, S	Harada, H	Hastings, J
Halon, E277	Harada, M	Hastings, N
Halstenberg, P 201, 227, 272	Hara, T72	Hastings, T 34, 238, 265
Hamaguchi, D230	Harcuba, P286	Hatano, Y
Hamana, K	Harder, B	Hatayama, S
Hambli, N	Harder, R 20, 51, 59, 90, 170, 207	Hatler, C24, 204
Ham, D	Harding, L	Hattar, K 23, 30, 33, 34, 66, 101, 103,
Hamer, S	Hardy, A51	137, 171, 178, 206, 223, 269, 272
Hamilton, B219	Hardy, M 173, 178, 212, 237, 261, 281	Hatton, P
Hamilton, C85	Hargather, C 18, 50, 88, 123, 154, 190,	Hattrick Simpers, J209
Hamilton, S275	217, 220, 260	Hattrick-Simpers, J232
Hamlin, J	Hargrove, C135	Haugen, T169
Hammerschmidt, T 13, 44, 81, 84,	Hari, A172	Haugh, B30, 134
85, 117, 263	Haridas, R 100, 159, 198, 217, 245,	Hautier, G85
Hammi, S 224, 265, 266, 271	283, 284, 300	Havela, L
Hamm, M	Hariharan, K 24, 57, 117, 194	Hawary, M
Hamon, F 84, 128, 209	Harilal, H10	Hawelek, L 45, 185, 265
Hamrani, A	Harjo, S	Hawk, C222
Ham, S	Harley, J	Hawkins, L 205, 223, 247, 249
Hanagan, J292	Harma, E	Hawk, J
Han, C	Harmaji, A123	Hawthorne, K
Han, D	Harmer, M208	Hayashi, K
Hands, T	Harper, D	Hayat, A45
Handwerker, C	Harp, J	Hayes, J
Han, G	205, 231, 249, 275	Hayes, R
Han, H 17, 26, 108, 204, 278, 280	Harpur, B	Haynes, A
Han, I	Harris, A	Haynes, J
Hanifi, K	Harris, B	166, 214
11umm, K230	Harris, S	Hayrikyan, D
	Harris, W	Hazeli, K
	1141115, **	1102011, 13 11, /3, 1/0, 101, 200

TT . 11 D	II d C 41	11:1 D
Hazell, P	Herath, C41	Hilgers, B
Hearley, B	Herberger, C	Hilla, C79
Hearn, W	Herbert, E	Hill, C139
Hebble, D	Herbinet, R	Hillery, K
Hebert, R	Herbold, E64	Hilliard, B
Hébert, S	Herbsommer, M220	Hill, S
•		
He, C	Herisson de Beauvoir, T252	Hin, C
Heckman, E	Herling, D	Hinchliff, M218
Hector Jr., L194	Herman, M	Hinnebusch, S239
Heczko, M 11, 34, 57, 253	Hermann, R	Hinojos, A
Hedrick, E	Hermawan, D	Hinoki, T
Hedström, P 130, 239, 250, 261	Hernandez, A	Hino, M
He, G	Hernandez Bocanegra, C 269, 273	Hintsala, E 103, 167, 168, 238, 274
Hegedues, Z116	Hernandez-Bocanegra, C 273	Hintze, P
Hegedüs, Z	Hernández Bocanegra, C	Hire, A 47, 51, 120
He, H	Hernández-Bocanegra, C. 228, 273, 298	Hirsch, D243
Heidarnezhad, S	Hernandez, C	Hirschfeld, P47
Heiden, M	Hernandez Duran, E	Hirschhorn, J
		Hirschmann, E
Heilmaier, M	Hernandez, E	
Heimbrook, A114, 283	Hernandez, F	Hirsh, T
Heinemann, J	Hernandez, K	Hirst, C23, 63, 102, 108, 177, 211, 236
Heinrich, L	Hernandez McCloskey, J10	Hirt, C
Heish, P	Hernández Negrete, O14	Hirth, J123
He, J	Hernandez, P	Hisle, E
He, L	Hernandez Paredes, J	Hitchcock, D
Heldt, R	Hernández Pérez, N	Hlova, I
Helman, B	Hernandez, R81	Hoang, M
Helmer, A	Hernandez-Ramirez, A	Hoarston, J225
Helmersson, B249	Hernández-Ramírez, A 264	Hobbs, J
Helmreich, G	Hernandez, S	Hobbs, T115, 209
Helwing, R	Hernando-Revenga, M	Hobdari, M 135, 158, 182
He, M	Heron, J	Ho, C 48, 104, 233, 267, 277
Hemery, S 84, 175, 209	Herper, H	Höche, D
Hémery, S	Herrera, A	Hochhalter, J
Hemker, K 10, 13, 31, 71, 78, 176, 186,	Herrera, M273	Hocine, S 9, 86, 113, 285
209, 217, 238, 254, 283	Herrera-Ortega, M228	Hockaday, S 24, 56, 94, 128, 270
Hempel, J	Herrmann, J	Hodge, A 18, 50, 58, 88, 107, 123,
Henaff, G128	Hertel, T	137, 154, 190, 199, 213,
Hendeniya, N	He, S	214, 220, 229, 232
Henderson, H208	Hess, G	Hodge, D
Hendrix, E	Hess, J	Hodges, W
Henein, H	Hessong, E107	Hodgir, R
Hengsbach, F	Hester, C	Hodille, E
Hengst, A270	Hestroffer, J	Ho, E64
Heniken, N	He, W128, 208	Hoefnagels, J
Hennig, R 19, 47, 51, 75, 97, 120,	Hew, N	Hoekstra, J245
179, 294	He, X	Hoel-Bacle, A
-		
Henningsson, N	He, Y	Hoelzer, D
Henrique Nalon, G294	Heydrich-Bodensieck, J122	Hoffman, A 40, 140, 159
Henry, C45, 139	Heyen, M110	Hoffman, N
Henry, J	Heywood, S	Hoffmann, P
Heo, J	He, Z40	Hofmann, D
Heon, E194, 261	Hezil, N 147, 263, 266, 291, 295	Hofmann, F
Heo, S	Hickel, T	Hogg, J
Heo, T	Hicks, A	Hogue, A
Heo, U	Hicks, B	Hohenwarter, A 73, 83, 119, 236
Heo, Y	Higginson, R122	Ho, I
He, P93	Hightower, K198	Hoidn, O
He, Q	Hijazi, F	Holberton, H
., ~	,, =	

Holbrook, E.120, 291Holcombe, E.77, 161, 209, 232Holdeman, C.24, 210Holden, I.262Holdsworth, R.299	Hosemann, P 15, 29, 30, 33, 62, 63, 66, 95, 99, 102, 141, 182, 224, 237, 248, 272, 274 Hoshino, M	Huang Lu, Y86, 188, 267Huang, S39, 40, 74, 95, 114,130, 166, 258Huang, T34, 67, 228, 257Huang, W55, 181, 192, 233
Holdsworth, S	Hosokawa, A 138 Hosono, F 293 Hossain, M 94, 187, 197	Huang, X
Hollenbach, J	Hossain, S	Hua, X
Holm, E 18, 28, 48, 89, 102, 136, 162,	Hosseinzadeh, H 114, 284, 288	Hubbard, A
170, 190, 196, 204, 207, 242, 262, 299, 300	Hossfeld, M	Huber, D
Holmes, B	Houghton, O	Hu, D
Holmes, R 32, 65, 102, 135, 169, 204, 221, 230, 249, 274	Hou, W	Hudson, L
Holmes, Z228	Hovanski, R198	Huft, N
Holt, E	Hovanski, Y129, 162, 198, 225, 245, 271	Hu, G 264 Hughes, D 26
Holtzman, L	Hovey, C	Hughes, S
Homel, M239	How, A130, 166	Hughes, Z115
Homer, E 12, 19, 51, 52, 89, 98, 124,	Howard, C	Hugh, S
125, 152, 156, 192, 193, 277, 294	Howard, H	Hu, H
Hommer, G	Howard, L	Hu, J
Hong, J	Howard, R	97, 130, 164
Hong, M257	Howard, T	Hu, K
Hongpo, W	Howarter, J 24, 32, 210, 268, 269, 296	Hu, L125
Hong, Q	Howe, J	Humeniuc, D
Hong, S 266, 286, 290, 291, 293, 299 Hong, W	Howland, W	Hummel, M
Hong, Y 127, 134, 247	Hoyos, D	Humrickhouse, P
Hono, K	Hoyt, N29, 62, 99, 133, 166, 201,	Hunady, K
Hood, Z	227, 247, 272	Hung, C
Hooks, D	Hrabe, N 9, 11, 75, 77, 78, 114, 286	Hung, Y
Hoover, B	Hromiak, X	Hunke, S
Hopkins, N	Hsieh, C	Hunter, A
Hopkins, P	Hsieh, M93	Hunt, J
Höppel, H	Hsu, C	Hunt, M 54, 159, 189
Ho, R	Hsueh, C 186, 254, 265, 266, 277, 278	Hunyadi Murph, S 21, 53, 91, 126, 268
Hordley, T	Hsu, K	Huo, Y
Horikawa, K	Hsu, T	Hurel, V
Hornbuckle, B	Hsu, W243	Hurley, D13, 21, 33, 52, 53, 70, 94,
Horne, A	Hsu, Y83	137, 177, 211
Horner, J	Hu, A	Hurley, M
Horn, T	Huamán-Pérez, F	Hurst, M
Horta Belo, J	Huang, C	Hu, S57, 153, 164, 197, 214, 224, 231
Hort, N 28, 143, 165, 200	Huang, E 15, 46, 83, 119, 150, 186,	Husain, S
Horton, D	217, 240, 241, 265, 266, 286	Husein, M
Horvath, A	Huang, G	Husen, A
Höschen, T	204, 205, 226, 228, 261, 277, 289	Hussain, S
Hoseini Athar, S	Huang, I	Hussein, A
	Huang, J 65, 67, 121, 223, 292	Hussein, N
	Huang, L	Hussein, O

Hutchinson, C	Im, T159, 196	J
Hütter, A198	Im, W	*1 **
Huvelin, Z	Inamura, T	Jaber, H83
Huwald, E20	Ingale, T 10, 13, 16, 17, 119, 222, 259	Jablonski, P 34, 58, 72, 197
Hu, X	Ingle, T289	Jackson, A
Hu, Y 63, 83, 91, 244, 248, 289	Ingvarsson, S	Jackson, C
Huynh, T 182, 277, 282, 293	Inman, S	Jackson, J
Hu, Z 56, 75, 99, 127, 141, 202, 223	Innerdal, V65	Jackson, M
Hwang, G267	Inoue, J 52, 190, 292, 293	Jacob, K
Hwang, J 20, 39, 52, 89, 90, 125, 156,	Inoue, K	168, 229, 261
193, 221, 281, 290, 294, 295	Intini, C	Jacobsen, G30, 65
Hwang, S	Intrater, J86	Jacobson, G
Hwang, T32	Inubushi, Y172	Jacobs, R
Hyer, H	Inui, H	Jacobs, T
Hyers, R 180, 202, 234, 260	Iorkula, T271	Jadhav, Y
Hyoungseop, K	Iqbal, M	Jaebok, S
Hyun, S196	Irukuvarghula, S	Jafari Ghalejooghi, K
Hyun, Y	Irvine, S	Jafari, R
T	Isacco, S	Jaffer, S
I	Isac, M 49, 86, 122, 152, 188, 218,	Jagadish, K
Iabadden, D209	241, 292	Jagatramka, R
I. A. Jalali, S	Isac, N195	Jagielski, J
Ialovega, M	Isano, H	Jägle, E
Iams, A	Isasti, N	Jahan, S
Iannitti, G	Isgor, B	Jahazi, M
Iantaffi, C	Isgor, O	Jahed, H
Iazurlo, R113	Ishak, J	Jahns, K
Ibitoye, S	Isheim, D110, 285	Jahrsengene, G
Ibrahim, A	Ishibashi, R249	Jaime, R
Ibrahim, D	Ishida, F	Jain, A
Ibrahim, H	Ishida, K278	Jain, J
Ibrahim, M	Ishikawa, N	Jain, M
Ichikawa, Y	Ishikawa, S	Jain, R
Idczak, R 14, 177, 257, 279	Ishitaka, K	Jaisawal, R
Ifijen, I	Ishrak, F22	Jaiswal, M. 189 Jaiswal, R. 153
Igboanugo, J271	Ishtiaq, M	Jaiswal, S
Igunma, T62	Isiksacan, C219	Jakovljevic, K
Igwemezie, V300	Islam, M39, 60, 101, 106,	Jalali, S
Iida, K	279, 281, 282	Jalan, B
Iio, M102	Islam, S	Jam, A
Iizuka, M	Isotta, E	Jamal, S
Ijaz, M192	Issaka, A	Jambor, M
İkeda, K	Issa, R	Jame, H
Ikeda, R129	Issariyapat, A54	James, W
Ikeda, Y	Iten, J	Jamieson, T
Ikhmayies, S20, 52, 90, 125, 156,	Ito, A	Jana, P
193, 221, 294, 295	Itoh, G	Jana, S
Ikponwmonsa, A271	Iurkovskyi, A	Janczak-Rusch, J
Ilavsky, J 61, 207, 250, 251	Ivanisenko, J	Janecek, M
Ilgen, A274	Ivester, J	Jang, D
Iloeje, C 24, 56, 94, 128, 167, 202,	Iwamatsu, K	203, 230, 274
228, 270, 273	Iwaniec, U	Jang, G255
Il, S	Iwata, T	Jang, H
Ilyas, S	Iyer, V	Jang, J
Imen, R	Iyinbor, I	200, 251, 258, 285, 293
Im, H115	Izadi Najafabadi, M	Jang, T
Immer, C	•	Jang, Y
Im, S 80, 133, 281	Izumi, D	Jankowski, A

Jankowski, J	Jessee, S	Johnson, B122
Jansen, H	Jeter, I	Johnson, D 46, 158, 176, 204, 226, 261
Jansen, Y	Jeunon, J	Johnson, F
Janssen, J	Jeyamohan, R	Johnson, G
Janus, K	Jha, A	Johnson, H
Jaques, B	Jha, R	Johnson, J
Jared, B	Jha, S	Johnson, K
Jarek, R	216, 240, 263	Johnson, N
Jariwala, D	Jhen, Y	Johnson, O 20, 98, 125
Jarosinski, W283	Jia, C206	Johnson, S
Jarren, L	Jia, K	Johnson, T
Jarry, P	Jia, N	Johnston, B
Jarvis, D	Jiang, C 53, 70, 92, 94, 119, 137, 249	Jo, i
Jasien, C146	Jiang, H	Jo, J
Jasthi, B 16, 46, 83, 198, 267	Jiang, K	Jokisaari, A 55, 145, 160
Jaswandkar, S	Jiang, L	Jokissari, A160
Jaumouille, E149	Jiang, M	Jolly, B
Javey, A144	Jiang, P55	Jolly, M
Javidani, M122, 292	Jiang, R105, 112	Jomboh, K
Jawahery, S	Jiang, T156	Jonathan, C
Jawahir, I	Jiang, W 63, 66, 102, 165, 194, 288	Jones, A
Jayaraman Palanivel, A136, 169	Jiang, X90	Jones, C244
Jayaraman, T	Jiang, Y50, 67	Jones, J
Jayaram, S279	Jiang, Z20, 164	Jones, K 98, 126, 159, 162, 195, 222
Jayaram, V235	Jian, P164	Jones, M
Jayasankar, D99	Jian, W	Jones, N
Jayathilaka, P101	Jiao, C80	132, 173, 207, 237, 285
Jaynes, E	Jiao, M	Jones, S
Jeffries, J36, 107, 146, 169,	Jiao, Z163	Joo, H264
221, 222, 231	Jia, P	Joo, S
Jegatheesan, V279	Jia, Y86	Jordan, J94
Jelinek, A 58, 205, 254	Jia, Z50	Jordan, M
Jena, A	Ji, C286, 293	Jordon, B
Jenal, I	Jie, L	Jordon, J
Jen, I	Ji, K	Jordon, P
Jenkins, H	Jin, H	Joress, H
Jenkins, W	Jin, J	Jo, S
Jennings, D	Jin, L	Joseph, C
Jennings, R	Jin, M	Joshi, H
Jensen, B	127, 137, 160, 170, 196, 205, 223,	Joshi, N
Jensen, C	231, 236, 239, 246, 249, 269, 275	Joshi, P
Jensen, K	Jin, Q	Joshi, S
Jensen, Ø	Jin, X	Joshi, V 15, 16, 39, 80, 119, 238 Joslin, C
Jentoftsen, T	Jin, Y	Josse, M
Jentz, I	185, 208, 264	Jossey, M
Jeong, H	Jin, Z	Jourdan, T
Jeong, J	Ji, S	Jóźwik, I
Jeong, K	Ji, Y	Jo, Y
Jeong, M	Jo, A	Joy, J 41, 103, 126, 167
Jeong, N	Jobes, D	Jozwik, B
Jeong, S	Jobit, N	Juan, P
Jeong, Y	Johannsen, J	Juarez Tapia, J
Jeon, H	Johansson, I	Juárez Tapia, J
Jeon, J	Joh, D	Juárez-Tapia, J 264, 277, 295
Jeon, M	John, D	Ju, B
Jeon, S	John, M 47, 254, 258, 261	Juchau, M
Jeppsson, J288	John, R114, 162	Judd, K
Jerez, O	Johnson, A260	Jugan, A
		-

Juhasz, M	Kamai, M198	Karan, B285
Juhre, D245	Kamal, G	Karatas, M158
Jullien, M	Kamal, M41	Karber, C
Ju, M202	Kamath, R 110, 173, 207, 232, 251, 301	Kardoulaki, E
Jumaev, E	Kamat, R	Kareem, M116
Jump, N	Kamat, S217	Kariya, S54
Jund, P 18, 48, 85, 121, 152, 188, 267	Kamboj, A	Karki, S 84, 234, 266, 290
Juneja, R	Kam, D120	Kar, M191
Jung, C	Kamerman, D202	Karma, A
Jung, E	Kammenzind, B	Karmakar, A
Jung, I	Kamrava, S	Karmakar, S
Jung, J		Karmarkar, S
	Kanagarajah, H	
Jung, K114	Kandadai, N	Karna, S
Jung, S	Kandasamy, K 22, 71, 198, 245	Karpinski, M
Jung, W	Kandel, S	Karpov, D
Jung, Y	Kang, C22, 77	Karpovych, O
265, 266, 287, 293	Kang, D 52, 57, 110	Karpstein, N
Junior, B	Kang, G277	Karra, A
Júnior, E294	Kang, H 267, 285, 293	Karren, M215
Júnior, R	Kang, J 112, 171, 228, 290	Karrington, N
Jun, J	Kang, K	Kar, S
Jun, M	Kang, L277, 286	Karthikeyan, M68
Jun, T	Kang, M 52, 110, 241, 263, 280, 293	Karube, S
Ju, S	Kang, N 138, 215, 260, 267, 281	Karumuri, S
Justice, J	Kang, S	Karunakaran, V
Juul Jensen, D	224, 270, 280	Karunakar, D
juui jensen, D		Karuna Nidhi, K
K	Kang, T	
N.	Kang, Y	Karve, P
Kabakci, N	Kanki, S	Kasalo, M
Kabir, A	Kannan, R 9, 81, 97, 146, 147, 191,	Kasemer, M
Kacher, J 31, 64, 101, 135, 157, 162,	214, 239	151, 187, 217, 241, 291
168, 203, 211, 221, 230, 252, 274, 280	Kan, S24, 56	Kashyap, K188
Kadambi, S 17, 55, 168, 231	Kansal, A	Kaspar, T
1		-
Kadiryel K 40 73 194	Kanter, J	Kassner, M214
Kadirvel, K		-
Kadkhodaei, S	Kanter, J	Kassner, M214
Kadkhodaei, S 158 Kaehr, B 261	Kanter, J	Kassner, M.
Kadkhodaei, S	Kanter, J	Kassner, M. .214 Kastelic, S. .233 Katagiri, K. .172 Kataoka-Hamai, C. .233
Kadkhodaei, S	Kanter, J	Kassner, M. 214 Kastelic, S. 233 Katagiri, K. 172 Kataoka-Hamai, C. 233 Katariya, Y. 210
Kadkhodaei, S	Kanter, J	Kassner, M. .214 Kastelic, S. .233 Katagiri, K. .172 Kataoka-Hamai, C. .233 Katariya, Y. .210 Katase, T. .18, 59
Kadkhodaei, S	Kanter, J	Kassner, M .214 Kastelic, S .233 Katagiri, K .172 Kataoka-Hamai, C .233 Katariya, Y .210 Katase, T .18, 59 Kathayat, P .38
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114,161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27	Kanter, J	Kassner, M. .214 Kastelic, S. .233 Katagiri, K. .172 Kataoka-Hamai, C. .233 Katariya, Y. .210 Katase, T. .18, 59 Kathayat, P. .38 Kato, H. .135
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114,161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27Kaipainen, J.146, 288	Kanter, J	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194,
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114,161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27	Kanter, J	Kassner, M214Kastelic, S233Katagiri, K172Kataoka-Hamai, C233Katariya, Y210Katase, T18, 59Kathayat, P38Kato, H135Katoh, Y65, 102, 108, 194,204, 230, 249
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114,161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27Kaipainen, J.146, 288	Kanter, J	Kassner, M214Kastelic, S233Katagiri, K172Kataoka-Hamai, C233Katariya, Y210Katase, T18, 59Kathayat, P38Kato, H135Katoh, Y65, 102, 108, 194, 204, 230, 249Katona, R29, 57, 61, 187
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114,161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27Kaipainen, J146, 288Kajihara, M279	Kanter, J	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114,161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27Kaipainen, J146, 288Kajihara, M279Kajola, R271	Kanter, J	Kassner, M214Kastelic, S233Katagiri, K172Kataoka-Hamai, C233Katariya, Y210Katase, T18, 59Kathayat, P38Kato, H135Katoh, Y65, 102, 108, 194,204, 230, 249Katona, R29, 57, 61, 187Kato, T230Kato, Y62, 157, 204
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114, 161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27Kaipainen, J146, 288Kajihara, M279Kajola, R271Kakinuma, H72Kalakonda, P148, 179	Kanter, J	Kassner, M214Kastelic, S233Katagiri, K172Kataoka-Hamai, C233Katariya, Y210Katase, T18, 59Kathayat, P38Kato, H135Katoh, Y65, 102, 108, 194,204, 230, 249Katona, R29, 57, 61, 187Kato, T230Kato, Y62, 157, 204Katre, A.70
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114,161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27Kaipainen, J146, 288Kajihara, M279Kajola, R271Kakinuma, H72Kalakonda, P148, 179Kalapos, T117	Kanter, J	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A 70 Katsarelis, C 10
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114,161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27Kaipainen, J146, 288Kajihara, M279Kajola, R271Kakinuma, H72Kalakonda, P148, 179Kalapos, T117Kalarickal, N238	Kanter, J	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A .70 Katsarelis, C 10 Katsman, A .46
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114,161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27Kaipainen, J146, 288Kajihara, M279Kajola, R271Kakinuma, H72Kalakonda, P148, 179Kalapos, T117Kalarickal, N238Kalay, E261	Kanter, J	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A .70 Katsarelis, C .10 Katsman, A .46 Katsura, Y .59, 293
Kadkhodaei, S 158 Kaehr, B 261 Kafka, O 20, 25, 57, 75, 78, 96, 114, 161, 197, 224, 271, 301 Kagias, M 20, 206 Kahanavitage Don, K 279 Kahl, E 27 Kaipainen, J 146, 288 Kajihara, M 279 Kajola, R 271 Kakinuma, H 72 Kalakonda, P 148, 179 Kalapos, T 117 Kalarickal, N 238 Kalay, E 261 Kalay, Y 20, 52, 90, 125, 139, 156,	Kanter, J .32 Kantzos, C .11, 78, 121, 224 Kao, A .53, 135, 180, 215, 229, 287, 297 Kao, C .23, 55, 93, 127, 159, 196, 269 Kao, H .23, 277 Kaoumi, D .237 Kaplan, D .31 Kaplan, S .175 Kapoor, M .49, 188, 283 Kappagantula, K .129, 163, 199, 226, 246, 271 Kar, A .198, 259 Kara, B .292 Karadayi, I .128 Karade, S .259, 286, 290 Karadimas, G .235 Karagadde, S .283	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A .70 Katsarelis, C .10 Katsman, A .46 Katsura, Y .59, 293 Katta, A .238
Kadkhodaei, S158Kaehr, B261Kafka, O20, 25, 57, 75, 78, 96, 114,161, 197, 224, 271, 301Kagias, M20, 206Kahanavitage Don, K279Kahl, E27Kaipainen, J.146, 288Kajihara, M279Kajola, R271Kakinuma, H72Kalakonda, P.148, 179Kalarickal, N238Kalay, E.261Kalay, Y.20, 52, 90, 125, 139, 156,193, 221, 229, 261, 294, 295, 297	Kanter, J	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A .70 Katsarelis, C .10 Katsman, A .46 Katsura, Y .59, 293
Kadkhodaei, S 158 Kaehr, B 261 Kafka, O 20, 25, 57, 75, 78, 96, 114, 161, 197, 224, 271, 301 Kagias, M 20, 206 Kahanavitage Don, K 279 Kahl, E 27 Kaipainen, J .146, 288 Kajihara, M 279 Kajola, R 271 Kakinuma, H 72 Kalakonda, P .148, 179 Kalapos, T 117 Kalarickal, N 238 Kalay, E 261 Kalay, Y .20, 52, 90, 125, 139, 156, 193, 221, 229, 261, 294, 295, 297 Kalidindi, S .75, 187, 190, 241	Kanter, J .32 Kantzos, C .11, 78, 121, 224 Kao, A .53, 135, 180, 215, 229, 287, 297 Kao, C .23, 55, 93, 127, 159, 196, 269 Kao, H .23, 277 Kaoumi, D .237 Kaplan, D .31 Kaplan, S .175 Kapoor, M .49, 188, 283 Kappagantula, K .129, 163, 199, 226, 246, 271 Kar, A .198, 259 Kara, B .292 Karadayi, I .128 Karade, S .259, 286, 290 Karadimas, G .235 Karagadde, S .283	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A 70 Katsarelis, C 10 Katsura, Y 59, 293 Katta, A 238 Kattelman, J 184 Katti, D 191, 220
Kadkhodaei, S 158 Kaehr, B 261 Kafka, O 20, 25, 57, 75, 78, 96, 114, 161, 197, 224, 271, 301 Kagias, M 20, 206 Kahanavitage Don, K 279 Kahl, E 27 Kaipainen, J 146, 288 Kajihara, M 279 Kajola, R 271 Kakinuma, H 72 Kalakonda, P 148, 179 Kalapos, T 117 Kalay, E 261 Kalay, Y 20, 52, 90, 125, 139, 156, 193, 221, 229, 261, 294, 295, 297 Kalidindi, S 75, 187, 190, 241 Kalita, D 13, 248	Kanter, J.32Kantzos, C.11, 78, 121, 224Kao, A.53, 135, 180, 215, 229, 287, 297Kao, C.23, 55, 93, 127, 159, 196, 269Kao, H.23, 277Kaoumi, D.237Kaplan, D.31Kaplan, S.175Kapoor, M.49, 188, 283Kappagantula, K.129, 163, 199, 226, 246, 271Kar, A.198, 259Kara, B.292Karadayi, I.128Karade, S.259, 286, 290Karadimas, G.235Karagadde, S.283Karakanat, A.128	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A 70 Katsarelis, C 10 Katsman, A 46 Katsura, Y 59, 293 Katta, A 238 Kattelman, J 184
Kadkhodaei, S 158 Kaehr, B 261 Kafka, O 20, 25, 57, 75, 78, 96, 114, 161, 197, 224, 271, 301 Kagias, M 20, 206 Kahanavitage Don, K 279 Kahl, E 27 Kaipainen, J 146, 288 Kajihara, M 279 Kajola, R 271 Kakinuma, H 72 Kalakonda, P 148, 179 Kalapos, T 117 Kalarickal, N 238 Kalay, E 261 Kalay, Y 20, 52, 90, 125, 139, 156, 193, 221, 229, 261, 294, 295, 297 Kalidindi, S 75, 187, 190, 241 Kalita, D 13, 248 Kallal, J 89	Kanter, J.32Kantzos, C.11, 78, 121, 224Kao, A.53, 135, 180, 215, 229, 287, 297Kao, C.23, 55, 93, 127, 159, 196, 269Kao, H.23, 277Kaoumi, D.237Kaplan, D.31Kaplan, S.175Kapoor, M.49, 188, 283Kappagantula, K.129, 163, 199, 226, 246, 271Kar, A.198, 259Kara, B.292Karaca, H.100, 105Karadeyi, I.128Karadimas, G.235Karagadde, S.283Karakanat, A.128Karakash, Y.146	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A 70 Katsarelis, C 10 Katsura, Y 59, 293 Katta, A 238 Kattelman, J 184 Katti, D 191, 220
Kadkhodaei, S 158 Kaehr, B 261 Kafka, O 20, 25, 57, 75, 78, 96, 114, 161, 197, 224, 271, 301 Kagias, M 20, 206 Kahanavitage Don, K 279 Kahl, E 27 Kaipainen, J 146, 288 Kajihara, M 279 Kakinuma, H 72 Kalakonda, P 148, 179 Kalapos, T 117 Kalarickal, N 238 Kalay, E 261 Kalay, Y 20, 52, 90, 125, 139, 156, 193, 221, 229, 261, 294, 295, 297 Kalidindi, S 75, 187, 190, 241 Kalita, D 13, 248 Kallal, J 89 Kaloni, T 243	Kanter, J.32Kantzos, C.11, 78, 121, 224Kao, A.53, 135, 180, 215, 229, 287, 297Kao, C.23, 55, 93, 127, 159, 196, 269Kao, H.23, 277Kaoumi, D.237Kaplan, D.31Kaplan, S.175Kapoor, M.49, 188, 283Kappagantula, K.129, 163, 199, 226,246, 271246, 271Kar, A.198, 259Kara, B.292Karaca, H.100, 105Karadayi, I.128Karadimas, G.235Karagadde, S.283Karakanat, A.128Karakash, Y.146Karakaya, N.133	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A 70 Katsarelis, C 10 Katsman, A 46 Katsura, Y 59, 293 Katta, A 238 Kattelman, J 184 Katti, D 191, 220 Katti, K 155, 191, 220, 243, 268
Kadkhodaei, S 158 Kaehr, B 261 Kafka, O 20, 25, 57, 75, 78, 96, 114, 161, 197, 224, 271, 301 Kagias, M 20, 206 Kahanavitage Don, K 279 Kahl, E 27 Kaipainen, J 146, 288 Kajihara, M 279 Kakinuma, H 72 Kalakonda, P 148, 179 Kalarickal, N 238 Kalay, E 261 Kalay, Y 20, 52, 90, 125, 139, 156, 193, 221, 229, 261, 294, 295, 297 Kalidindi, S 75, 187, 190, 241 Kalita, D 13, 248 Kallal, J 89 Kaloni, T 243 Kalsar, R 15, 16, 80, 119	Kanter, J .32 Kantzos, C .11, 78, 121, 224 Kao, A .53, 135, 180, 215, 229, 287, 297 Kao, C .23, 55, 93, 127, 159, 196, 269 Kao, H .23, 277 Kaoumi, D .237 Kaplan, D .31 Kaplan, S .175 Kapoor, M .49, 188, 283 Kappagantula, K .129, 163, 199, 226, 246, 271 .246, 271 Kar, A .198, 259 Kara, B .292 Karaca, H .100, 105 Karadayi, I .128 Karade, S .259, 286, 290 Karadimas, G .235 Karakanat, A .128 Karakash, Y .146 Karakaya, N .133 Kara, L .103 Karamalidis, A .175, 208, 234	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A .70 Katsarelis, C 10 Katsman, A .46 Katsura, Y .59, 293 Katta, A 238 Kattelman, J .184 Katti, D .191, 220 Katti, K .155, 191, 220, 243, 268 Kattner, U .40, 74, 110, 143 Kauffmann, A .224
Kadkhodaei, S 158 Kaehr, B 261 Kafka, O 20, 25, 57, 75, 78, 96, 114, 161, 197, 224, 271, 301 Kagias, M 20, 206 Kahanavitage Don, K 279 Kahl, E 27 Kaipainen, J 146, 288 Kajihara, M 279 Kajola, R 271 Kakinuma, H 72 Kalakonda, P 148, 179 Kalapos, T 117 Kalarickal, N 238 Kalay, E 261 Kalay, Y 20, 52, 90, 125, 139, 156, 193, 221, 229, 261, 294, 295, 297 Kalidindi, S 75, 187, 190, 241 Kalita, D 13, 248 Kallal, J 89 Kaloni, T 243 Kalsar, R 15, 16, 80, 119 Kam, A 185	Kanter, J	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A .70 Katsarelis, C .10 Katswan, A .46 Katsura, Y .59, 293 Katta, A .238 Kattelman, J .184 Katti, D .191, 220 Katti, K .155, 191, 220, 243, 268 Kattner, U .40, 74, 110, 143 Kauffmann, A .224 Kaufman, J .260, 262
Kadkhodaei, S 158 Kaehr, B 261 Kafka, O 20, 25, 57, 75, 78, 96, 114, 161, 197, 224, 271, 301 Kagias, M 20, 206 Kahanavitage Don, K 279 Kahl, E 27 Kaipainen, J 146, 288 Kajihara, M 279 Kakinuma, H 72 Kalakonda, P 148, 179 Kalarickal, N 238 Kalay, E 261 Kalay, Y 20, 52, 90, 125, 139, 156, 193, 221, 229, 261, 294, 295, 297 Kalidindi, S 75, 187, 190, 241 Kalita, D 13, 248 Kallal, J 89 Kaloni, T 243 Kalsar, R 15, 16, 80, 119	Kanter, J .32 Kantzos, C .11, 78, 121, 224 Kao, A .53, 135, 180, 215, 229, 287, 297 Kao, C .23, 55, 93, 127, 159, 196, 269 Kao, H .23, 277 Kaoumi, D .237 Kaplan, D .31 Kaplan, S .175 Kapoor, M .49, 188, 283 Kappagantula, K .129, 163, 199, 226, 246, 271 .246, 271 Kar, A .198, 259 Kara, B .292 Karaca, H .100, 105 Karadayi, I .128 Karade, S .259, 286, 290 Karadimas, G .235 Karakanat, A .128 Karakash, Y .146 Karakaya, N .133 Kara, L .103 Karamalidis, A .175, 208, 234	Kassner, M 214 Kastelic, S 233 Katagiri, K 172 Kataoka-Hamai, C 233 Katariya, Y 210 Katase, T 18, 59 Kathayat, P 38 Kato, H 135 Katoh, Y 65, 102, 108, 194, 204, 230, 249 Katona, R 29, 57, 61, 187 Kato, T 230 Kato, Y 62, 157, 204 Katre, A .70 Katsarelis, C 10 Katsman, A .46 Katsura, Y .59, 293 Katta, A 238 Kattelman, J .184 Katti, D .191, 220 Katti, K .155, 191, 220, 243, 268 Kattner, U .40, 74, 110, 143 Kauffmann, A .224

T	W 11	W: II
Kaur, A	Kgomo, H	Kim, H 26, 30, 43, 44, 51, 58, 72, 77,
Kaur, H	K. G., P	78, 79, 80, 86, 95, 96, 99, 116, 129, 130,
Kaushik, A	Khademitab, M9	133, 137, 141, 163, 166, 168, 175, 188,
Kautz, E	Khafizov, M	196, 199, 202, 208, 222, 234, 238, 240,
Kaveh, A	137, 177, 211	244, 246, 265, 266, 267, 270, 272, 277,
Kavousi, S	Khaing, A	279, 286, 290, 291, 297, 298
Kawagishi, K237	Khair, M 62, 156, 170, 205, 273	Kim, J 21, 22, 32, 72, 79, 99, 116, 133,
Kawanishi, S	Khajezade, A164	136, 139, 159, 166, 168, 183, 201, 204,
Kawasaki, M80, 83, 150, 172,	Khaled, T291	220, 228, 238, 247, 254, 262, 263, 264,
199, 233	Khalifa, H	265, 266, 267, 273, 274, 275, 277, 278,
Kayaçetin, H	Khan, A 173, 187, 267	279, 280, 281, 290, 291, 293, 298
Kaya, I218	Khanal, B 29, 61, 129, 133, 163, 199,	Kim, K 9, 38, 43, 79, 88, 113, 186,
Kayane, R228	226, 246, 271, 299	248, 267, 277, 293, 297
Kayani, S	Khandelwal, P130, 160	Kim, M 32, 70, 150, 179, 183, 196,
Kayitmazbatir, M297	Khane, P117	257, 265, 269, 274, 277, 281, 293, 294
Kc, A30	Khanfri, J	Kimmell, C
Kc, S 148, 185, 216, 240, 263	Khan, M 83, 166, 227, 247, 299	Kim, N
Ke, C264	Khanna, S	Kim, R 39, 60, 130, 266
Keenan, F	Khanolkar, A	Kim, S 26, 28, 46, 60, 62, 120, 151,
Keffer, D	174, 177, 211	190, 202, 234, 244, 246, 247, 250, 258,
Ke, H	Khan, R	269, 270, 273, 279, 281, 282, 290, 292,
Keilbart, N	Khanra, A	293, 296
Keiser, J	Khan, S	Kim, T 12, 86, 138, 199, 264, 265,
Ke, J	Khare, D	267, 290
Kelestemur, M	Khatamsaz, D 84, 153, 218, 238, 279	Kimura, T
Kelleher, J	Khattab, D	Kimura, Y . 18, 48, 85, 121, 152, 188, 267
Keller, P	Khaykovich, B 108, 194, 250	Kim, W 59, 211, 254, 279, 281
Keller, T 58, 82, 208	Kheirkhah, P	Kim, Y 17, 24, 55, 108, 109, 112, 116,
Kelly, J	Khennane, A	117, 132, 196, 201, 215, 227, 265, 266,
Kelly, M	Khodakarami, M	269, 278, 286, 290, 292, 293, 294, 299
Kelly, R	Khomyakov, E	Kindelmann, M
Kelly, S	Khonsari, M	Kinney, P
Kemerling, B	Khor, C	Kinoshita, K
Kemmenoe, D	Khoshghadam Pireyousefan, M122	Kinosinta, K
Kemmerly, G	Khosla, H	Kinsey, B
•		·
Kemmotsu, K	Khosravani, A	Kiran, A
Kendall, L	Khot, S	Kiranbabu, S
Kendir, Y	Khraishi, T	Kirchlechner, C
Kenesei, P 52, 101, 116, 162	Khrenov, M	Kirka, M 9, 24, 41, 56, 78, 95, 114,
Keninger, N	Kiefe, R	115, 157, 239, 270, 287
Kennedy, C	Kiefer, P	Kirks, W
Kennedy, M35, 68	Kiener, D	Kirkwood, H
Kenny, G	Kihm, K	Kisailus, D101, 155, 163, 191, 220,
Kerbstadt, M	Kilgore, J	243, 268
Kerkhof, R	Kilian, K	Kishida, K
Kermarrec, J	Kilic, G	Kisiel, T
Kernion, S	Killam, A	Kiss, E
Kero, I	Killgore, J	Kistampally, S
Kerr, J	Kim, B	Kisub, C
Keshavarz, S	Kim, C 29, 55, 133, 144, 196, 277,	Kitahara, A
Keshri, A	281, 286, 293	Kitamura, A
Keskar, N	Kim, D 72, 196, 244, 257, 263, 265,	Kitt, A 146, 183, 215, 283
Keskinkilic, E	267, 269, 273, 276, 277, 281,	Kjos, O 106, 131, 153, 242
Kesler, M	286, 291, 293, 294, 296, 298	Klaus, D
Kessel, B	Kim, E 15, 116, 201, 227, 272, 276	Kleindienst, J
Kestur Gundapa, S	Kim, G 77, 83, 262, 286, 291	Klein, E
Keten, S		Kleinke, H
Kettimuthu, R		Klement, U205
Kevorkijan, V		

Klemm-Toole, J 26, 34, 58, 68, 97, 105, 114, 130, 138, 146, 164, 173, 178, 180,	Kokkirala, S .205 Koko, A .135	Kowalczyk, D
182, 183, 207, 212, 213, 214, 215, 233, 237, 238, 239, 251, 277, 281, 283, 288,	Ko, L	Kowalik, M
289, 290, 298	Kolanthai, E148	Ko, Y
Klenam, D	Kolasinski, R	Koyama, E293
Klimczuk, T107	Koley, S	Koyama, M 38, 72, 108, 142, 173, 280
Kling, D	Kolle, M	Koyanagi, T 63, 65, 102, 108, 194, 249
Klinger, L	Komarasamy, M	Kozakevich, J 218, 219, 241
Kloenne, Z13, 16, 47, 84, 120, 150,	Kombaiah, B 23, 33, 37, 55, 71, 94,	Koziol, P
186, 235, 291	117, 127, 160, 168, 196,	Kozlowski, M
Kluck, W	197, 223, 269, 280	Kozlowsk, P
Klusemann, B	Konala, S	Kozmel, T
K, N	Kondoh, K	Kracum, M
Knapp, G 244, 287, 297	Kondo, M	Krajewski, A
K N, C	Kondo, S	Kramer, M14, 22, 45, 82, 118, 149,
KN, C118	Koneru, S	176, 185, 264
Knezevic, M 11, 34, 41, 116, 151, 168,	Kong, F	Kramer, P
204, 261, 290, 291	Kong, J	Krane, M
Knipling, K	Kong, Y35, 38, 42, 68, 106,	Krass, H51
Knol, S	129, 139, 174	Krastins, I 180, 215, 229, 287, 297
Knowles, A 13, 17, 38, 44, 81, 103,	Konieczny, R	Krause, A
117, 178, 263	König, D	Kraus, L
Knowles, S	König, T24	Krawczyk, M257
Knox, K299	Konishi, S221	Kreiml, P
Knox, R	Konrad, L45	Krentz, T
Knudson, M	Konstantinos, G	Krick, B 143, 179, 212, 238, 255, 281
Knutsen, R	Kontis, P	Krieger, N
Kobayashi, E	Koo, C	Krienke, N
Kobayashi, G	Koo, J	Krill, C
Kobayashi, J	Koren, E	Krischanitz, R 54 Krishna, K 22, 115
Kobayashi, M	Körner, C	Krishnamoorthi, S
Kobayashi, R	Koroni, C	Krishnamurthy, R
Kobayashi, T	Korsunsky, A	Krizan, R
Kober, E	Kosanam, K	Kırlı, K
Kocaefe, D55, 223	Kose, M	Krogstad, J 33, 66, 103, 137, 171, 206
Kocaefe, Y	Kosiba, K	Krogstad, M206
Koch, A 77, 101, 162, 253	Koslowski, M109	Kroonblawd, M39
Kochmann, D 51, 91, 248	Kosmatka, J	Krooss, P
Kockelmann, W20	Kosmidou, M103	Kruck, E249
Koc, U	Kostka, A193	Krug, M
Kodama, R	Kotan, H	Kruizenga, A
Ko, E	Kothakonda, M120	Kruska, K
Koelmans, W	Kotha, S	Kruszewski, M
Koenig, A	Kotiadis, S	Krutz, N
Koenig, C	Kotsios, N	Krynicki, J
Koga, N	Koukolikova, M	Ksiazek, M
Ko, H	Koumpias, A	Kuball, M
Kohara, S	Kouraytem, N	Kubasek, J
Kohlhorst, N	Koury, D 66, 177, 272	Kübel, C
Köhl, R28	Kout, J	Kubena, I
Kohnert, A 31, 70, 141, 167, 196, 211	Koutny, D	Kube, S13, 39, 73, 109, 142, 178,
Kohnert, C194, 269	Kovar, D	211, 237, 254, 281
Kohne, T116	Kovnir, K	Kublik C, N
Koizumi, Y244	Kovo, A180	Kublik, N 250, 259, 285
Koju, R123	Ko, W 181, 190, 220, 228, 254, 296	Kuběna, I

Ku, C 121, 122, 267	Kuris, M	Lai, J
Kuchi, R149	Kurley, M243	Laikhtman, A201
Kuebel, C39	Kurniawan, K 28, 60, 234	Laing, J
Kuebel, E	Kuroda, P147	Lainhart, T162
Kučerová, L259	Kurosaki, K	Lai, S
Kuglarz, K	Kurpaska, Ł	Laitinen, V9
Kugler, G	Kurtyka, P	Lai, W
Kuglstatter, M	Kurzer-Ogul, K20	Lai, Y 98, 188, 216, 267
Kühne, T	Kusekar, S	Lakshmanan, A
Kuhr, S	Kushwaha, A	Laliberté-Riverin, S
Kukofka, A	Kusriantoko, P	
		Lama, A
Kuksenko, V	Kustas, A 78, 167, 252, 289	LaMarca, C
Kulathuvayal, A	Kusterer, E	LaMascus, P
Kulkarni, P	Kutsal, M	Lambeets, S
Kulkarni, Y	Kutukova, K	Lamberson, L47
Ku, M	Kuwata, N	Lambert-Garcia, R 86, 113, 285
Kumagai, M 121, 291, 293	Ku, Y55	Lambert, P
Kumah, D	Kvande, H	Lambert, R
Kumar, A 80, 82, 167, 182, 270	Kvit, A226, 275	Lamb, J
Kumara, C	Kvithyld, A 69, 136, 169, 235, 253	Lamb, K
Kumaran, S	Kwak, M254, 281	Lam, M
Kumar, B	kwak, N	Lamm, B65
Kumar, C	Kwak, N 204, 257, 293	Lamouri, A
Kumar, D	Kwasniak, P	Lamprinakos, N
Kumari, A	Kweon, K	Lam, S
Kumari, G	Kwiatkowski da Silva, A	Lam, T
Kumari, S	Kwiecien, M	Lancelot, C
Kumar, J	Kwofie, S	Lance, M
Kumar, K	Kwon, H 79, 117, 238, 265, 297	Lanceros Mendez, S
Kumar, M	Kwon, J	Lanceros-Mendez, S
Kumar, N25, 57, 71, 110, 129, 151,	Kwon, K	Lander, G
162, 176, 198, 210, 218, 225,	Kwon, N	Landini, J
226, 242, 245, 271, 300	Kwon, S 17, 121, 164, 170, 195, 244	Landon, C
Kumar, P 15, 23, 43, 55, 57, 83, 93,	Kwon, T	Landry, M
112, 113, 114, 120, 127, 159, 172,	Kwon, Y	Lane, B29
180, 196, 253, 269, 281, 286	Kynman, A140	Lane, J
Kumar Rao, K	Kyrilis, E45	Lan, G206
Kumar, S 13, 149, 278	T	Langan, D226
Kumar Saha, A24, 56, 69	L	Langan, S182
Kumar, V 94, 154, 176	Labaj, G	Langan, T177, 210
Kümmell, T	Labruyère, E	Langdon, O
Kumral, B	Lach, T	Langdon, T172
Ku, N		Lang, E 30, 63, 100, 134, 167, 178,
Kundu, A	229, 236, 274	202, 229, 240, 248, 269, 272, 273
Kundu, H189	Lacy, J	Langevin, J
Kundu, J	Lacy Jr, T	Langham, A
Kundu, S	Ladani, L 70, 112, 145, 216, 225, 288	Langhout, J
Kundu, T	Lados, D	Lang, M 86, 108, 141, 206, 236, 237
Kung, C	Ladygin, V244	Lanka, S
=	Lafarge, B252	
Kunimine, T	Lafferty, C	Lanzrath, A
Kunjam, P	Lagarda García, F268	Lapington, M
Kunkel, W	Laghi, V	Laplanche, G
Kunneparambil Sukumaran, A257	Lago Chamero, E	Larios, A
Kunwar, S	Lagoudas, D 96, 173, 180	Lark, A 71, 78, 213, 279
Künzler, M192	Lagunes, K271	Larouche, D
Kuo, P186	Laha, T	Larsen, S
Kuo, Y233	Lahoda, E	Larson, S
Kuramoto, S	Lai, C	Larsson, F
Kurfess, R	, 2	Larsson, P

LaSalle, B	LeDou, G191	Lenau, A
Lasheras, A	Lee, A15, 171	Lencina Wendt, Y172
Lasne, C	Lee, B	Lenka, R60
Lass, E 10, 13, 44, 46, 78, 81, 115, 117,	274, 293, 299	Lenling, B
146, 186, 245, 263, 265, 266, 289	Lee, C16, 19, 43, 120, 131, 138,	Lennard, J
Lasseter, J	265, 266, 286, 297	Lenthe, W
Lassnig, A 203, 216, 229	Lee, D79, 83, 116, 199, 266, 280, 290	Leonard, A
Lastovich, M	Lee, E	Leon Cazares, F
Latournerie, M	Lee, G	Leong, A 20, 133, 201, 227, 232
Latronico, G18	Lee, H 20, 28, 37, 94, 108, 167, 215,	Leong-Hau, K
Latypov, M219	243, 257, 258, 263, 277, 279,	Leon-Henao, H287
Lauber, L	282, 285, 293, 296	Leon, V213
Lau, D	Lee, I	Leopold Jean-Marie, G128
Lauhoff, C	Lee, J 12, 26, 28, 34, 49, 60, 65, 67, 77,	Leosson, K
Laukkanen, A 146, 265, 288	80, 90, 91, 104, 109, 116, 138, 173, 215,	Leósson, K
Lau, W	219, 240, 251, 258, 264, 265, 266, 267,	LePage, W114, 280
Lauzon-Gauthier, J55	270, 273, 276, 277, 281, 290, 293, 298	Leparoux, M145, 180
La, V292	Lee, K 67, 91, 120, 145, 263, 265,	Lepluart, L
Lavelle, A	266, 267, 286, 293	Le Pluart, L
Lavender, C	Lee, M 70, 73, 120, 219, 270, 274,	Lepple, M
Lavender, K	277, 278, 290	Leser, P
Lavernia, E	Lee, P 9, 49, 86, 98, 113, 122, 139,	Leshchev, D
244, 282, 283, 284, 285, 299	152, 180, 215, 239, 285, 287, 297	Lesko, J
Laverock, J	Lee, R	Lessmeier, M
Lavery, N	Lee, S 10, 11, 20, 22, 26, 34, 38, 60, 90,	Lester, B
Lavogiez, C	99, 102, 116, 134, 136, 168, 170, 171,	Lester, M280
Lavoie, P	196, 201, 204, 215, 219, 228, 248, 251,	Leszczewicz, J
LaVopa, A	260, 266, 267, 269, 278, 280, 282, 286,	L'Etoile, M
Lawal, T261	290, 293, 298, 299, 300	Letzig, D
Law, J	Lee, T 23, 55, 67, 93, 100, 127, 159,	Leung, A 49, 222, 292
		Deans, 11
		•
Lawrence Bright, E	160, 196, 269, 280, 290, 298	Leung, C 9, 86, 107, 113, 122, 139,
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C 9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C 9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C 9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C 9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C 9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C. 9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D .62 Leveille, M .143 Lévesque, J .122 Levi, A .20 Levi, C .141, 197
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C. .9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D .62 Leveille, M .143 Lévesque, J .122 Levi, A .20 Levi, C .141, 197 Levine, L .250
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C. .9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D .62 Leveille, M .143 Lévesque, J .122 Levi, A .20 Levi, C .141, 197 Levine, L .250 Levine, S .230
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C. .9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D .62 Leveille, M .143 Lévesque, J .122 Levi, A .20 Levi, C .141, 197 Levine, L .250 Levine, S .230 Levitas, V .171
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C. .9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D .62 Leveille, M .143 Lévesque, J .122 Levi, A .20 Levi, C .141, 197 Levine, L .250 Levine, S .230 Levitas, V .171 Levkulich, N .225
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C. .9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D .62 Leveille, M .143 Lévesque, J .122 Levi, A .20 Levi, C .141, 197 Levine, L .250 Levine, S .230 Levitas, V .171 Levkulich, N .225 Lew, A .21, 171
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C. .9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D .62 Leveille, M .143 Lévesque, J .122 Levi, A .20 Levi, C .141, 197 Levine, L .250 Levine, S .230 Levitas, V .171 Levkulich, N .225 Lew, A .21, 171 Lewandowska, M .198, 292
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C. .9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D .62 Leveille, M .143 Lévesque, J .122 Levi, A .20 Levi, C .141, 197 Levine, L .250 Levine, S .230 Levitas, V .171 Levkulich, N .225 Lew, A .21, 171
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C. .9, 86, 107, 113, 122, 139, 180, 215, 239, 285, 297 Levario, D .62 Leveille, M .143 Lévesque, J .122 Levi, A .20 Levi, C .141, 197 Levine, L .250 Levine, S .230 Levitas, V .171 Levkulich, N .225 Lew, A .21, 171 Lewandowska, M .198, 292
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C
Lawrence Bright, E	160, 196, 269, 280, 290, 298 Lee, W	Leung, C

Lian, J32, 66, 103, 167, 243, 272, 292	Limmer, K 26, 58, 97, 130, 164, 298	Liu, D 17, 29, 33, 47, 66, 84, 85, 103,
Liao, C	Lim, R102, 211	108, 120, 128, 137, 141, 151, 157,
Liao, J243	Lim, S	170, 187, 194, 205, 217, 221, 231,
Liao, T	Lim, T	237, 241, 243, 249, 275, 286, 291
Liao, X 87, 158, 163, 195, 222, 244, 297	Lim, Y	Liu, G
Liao, Y	Li, N 16, 66, 71, 95, 100, 129, 135,	Liu, H
Liaqat, U	151, 211	262, 275, 293 Liu, I225
Liautaud, F	Lin, A	
Liaw, P 15, 16, 46, 50, 83, 119, 150,	Lin, C	Liu, J 51, 60, 108, 117, 142, 226, 237,
161, 186, 191, 217, 226, 240,	Lincoln, J69	246, 258, 275, 282
265, 266, 286	Lin, D243	Liu, L
Li, B 14, 20, 31, 35, 40, 44, 52, 73, 81,	Lindblad, D	Liu, M 93, 195, 253
90, 118, 125, 149, 156, 172, 193,	Linde, C	Liu, N
207, 221, 264, 283, 294, 295	Linder, D	Liu, P
Libby, M208	Lind, J 64, 181, 205, 239	Liu, Q 46, 110, 190
Libero-Cruzado, J66, 177	Lindsay, S242	Liu, S 13, 27, 52, 60, 90, 159, 194,
Li, C 34, 88, 97, 109, 151, 156, 172,	Lindwall, G 40, 74, 110, 115, 143	263, 286
184, 196, 206, 232, 233, 250,	Lingnau, L	Liu, T 10, 38, 51, 92, 110, 148, 157,
269, 270, 292, 300	Lin, H127	196, 203, 214, 232, 233, 249
Lichtenegger, H	Linhares Junior, J	Liu, W87, 92, 116, 189, 207, 283, 300
Lichtenstein, T	Lin, J	Liu, X 23, 31, 50, 57, 62, 64, 117, 118,
Li, D 16, 47, 243, 259	Lin, K	127, 149, 156, 160, 165, 214,
Li, E	Lin, M 34, 67, 104, 138, 233, 276	224, 236, 264
Lieberman, E	Linne, M71	Liu, Y 34, 64, 67, 104, 127, 138, 147,
Liebscher, C21, 22	Lin, S	189, 218, 225, 244, 258, 270, 276
Liedke, M	138, 257, 258, 276	Liu, Z 11, 34, 52, 67, 74, 104, 127,
Liedke, O141	Linseis, F	130, 138, 153, 194, 239, 276
Lienert, U116	Linsmeier, C	Li, W 86, 113, 117, 233, 298
Lien, H	Lin, T104	Li, X 37, 38, 48, 90, 117, 145, 153,
Lieou, C	Linton, K	157, 188, 198, 207, 230, 253,
Liewald, M	Linton, N	266, 269, 278, 283
Li, F 63, 135, 154, 190	Lin, W159, 269	Li, Y 23, 26, 55, 56, 93, 103, 104, 117,
Li, G	Lin, Y 23, 55, 63, 74, 93, 108, 127,	125, 126, 127, 131, 134, 159, 178, 196,
Li, H 23, 92, 127, 207, 209, 210,	160, 186, 194, 204, 229, 249, 292	205, 207, 212, 249, 259, 261, 266, 269
262, 296	Lin, Z	Li, Z 14, 71, 72, 92, 101, 110, 120, 131,
Li, J 14, 16, 20, 38, 44, 52, 65, 73, 81,	Liotti, E301	200, 206, 214, 227, 249, 289, 296
84, 87, 90, 106, 108, 118, 123, 125,	Liou, Y	Ljungblad, U
149, 154, 156, 184, 193, 216, 221,	Lipinska, M	Ljungquist, S
235, 264, 269, 294, 295	Lipkin, D	Llanos Blancas, E 60
Li, K 55, 68, 139, 159, 269	Lippmann, O180	Llorca, J
Li, L 15, 19, 30, 37, 50, 66, 71, 88,	Lipton, Z	181, 194, 209, 216, 219
92, 124, 155, 156, 162, 184, 186, 192,	Li, Q 53, 61, 65, 68, 90, 91, 122, 271	LLorca, J
198, 207, 208, 238, 242, 245, 254, 268,	Li, R	Lloyd, M
270, 278, 290	Lirio, J	Llumiquinga, B
Lilensten, L	Li, S	L. McDowell, D
Li, M 30, 49, 92, 95, 97, 120, 178, 207,	Lisboa de Gouveia, G105	Lobato, F50
222, 223, 246, 257, 268, 290, 300	Lis, M	Lochun, K
Lima, D105	Liss, K 52, 79, 80, 150, 199, 233	Lock, D
Lima, G	List, F	Locke, J
	List III, F	
Lima, T		Locq, A
Li-Mayer, J	Li, T	Loeffler, J
Lim, B 72, 81, 97, 147	Litos, L	Loehde-Woolard, H254
Limback, M249	Littles, L	Logman, C299
Lim, G161	Litynska-Dobrzynska, L148	Lohaus, S
Lim, H 17, 18, 41, 48, 85, 121, 151,	Liu, B	Loh, H
156, 187, 203, 218, 292, 293	Liu, C	Lohser, J
Lim, J	,	Loiacono, D30
Lim, K 24, 109, 117, 168, 264, 266		Loiodice, L
Lim, M		Lok, J
ьші, іч		LOK, J98

	1 1 : 14	M D 11 F (0.202
Lolov, G	Ludwig, W	MacDonald, E
Lombardi, M	Lu, E	Machado, C
Loncnar, M	Luebbe, M	Machado, J
London, A	Luengas, O	Machado Ulsenheimer, A
Long, A	Lu, H	Macholz, J
Long, F	Luis Arrubla Agudelo, L	Macias, D
Long, K	Lu, J	MacIsaac, M
Long, L	Lu, K 14, 26, 44, 58, 81, 96, 105, 118,	Mackosz, K
Long, X	129, 139, 149, 163, 174, 199,	Mackowiak, K54, 92
Lopera, H	208, 234, 252, 264, 278, 298	MacLeod, K99
Lopes, A	Lukas, C15, 16	Ma, D
Lopes, D	Lukasz, K71	Madalena, J
Lopes, F	Luktuke, A127	Maddalena, R
Lopes Ribeiro, J	Lu, M186	Madej, L
Lopez, C61	Luna Falcon, P17	Madelain, M
López-Cornejo, M278	Lund, E	Madia, M
Lopez de la Torre, M18	Luo, A20, 40, 54, 61, 74, 110,	Madigan, M
Lopez-Garcia, J	143, 188, 200, 250	Madi, Y
Lopez Granados, N269	Luo, C67	Mädlow, M
Lopez-Granados, N	Luo, D	Madril, L
López Granados, N273	Luo, G92	Ma, E
López-Granados, N	Luo, J	Maeda, K
Lopez Honorato, E205	Luo, K 51, 123, 208	Maeda, M162
Lopez, I	Luo, M	Maeder, X 43, 51, 229, 231, 297
Lopez, L	Luo, X	Maegawa, M
Lopez Morales, A	Luo, Y	Maestas, D
López-Soria, J	Lu, P	Magallon, S
Lorentzon, M	Lupi, G113	Maghsoudi, M65, 169
Lori, O	Lupini, A	Maglione, M
Losko, A	Lu, S	Magnuessen, J
Lossius, L	Luscher, W	Magnuson, D
LoTempio, S	Lu, T	Magnussen, J117
Lotfpour, M 120, 190, 216, 220, 233	Luu, J	Magnusson, A81
Lott, D	Lu, Y 100, 108, 160, 184, 193, 213,	Magnusson, J
Lotte, G	223, 226, 231, 248	Ma, H
Loukus, A	Luzin, V	Mahadevan, S
Lou, L	Lv, B	Mahajan, H
Loumidis, A119	Lv, W54	Maharana, S
Lou, R	Lv, X	Mahata, C266
Lou, X 9, 10, 24, 38, 49, 56, 78, 95, 100,	Lv, Z	Mahato, B
114, 188, 270, 283, 285, 287, 290	Lynch, C160, 275	Mahato, S
Louzguine, D	Lynch, M	Mahat, R75, 187
Love, B	Lyon, A	Maheshwari, P160
Lovely, M	Lyons, J	Mahey, V 258, 259, 289, 297
Lowenstein, J	Lyon, Z174	Mahfuz, M
Lowery, A	Lyu, M	Mahjouri-Samani, M 35, 68, 106,
Lowe, T155, 191, 220, 243,	Lyu, P299	139, 174
260, 268, 292	Lyu, T	Mahmood, Y21, 98
Loyer Prost, M224	Lyu, Z 108, 204, 261, 266	Mahmud, A290
Lozano-Perez, S275	,	Maier, B
Lua, J	M	Maier, P 28, 61, 99, 147, 200
Lublin, D	Magaz B 20 07 100 107 227	Maiga, D
Lucadamo, G275	Maass, R	Mai, H
Lucas, A	Maaß, R	Maiorov, B
Lucas, N	Maawad, E	Maisey, M109
Lucon, E	Maben, M	Maity, A
Lucon, J	MacCari, F	Ma, J 57, 69, 113, 161, 222, 297
Lucon, P	MacDonald, B 171, 244, 290	Majasan, J
Ludwig, A	Macdonald, D142	Maji, A
0.		

N. 1 M	M	M (D 1 D
Majkut, M 86, 113, 285	Mansouri, A	Martinez-Paneda, E166
Majta, J	Mansouri Arani, M152	Martinez, R
Majumdar, B	Mansouri, E170	Martínez, R
Majumder, S 39, 72, 109, 231	Mansoz, B	Martinez Saez, E
Ma, K 8, 11, 81, 103, 117, 178	Mantilla-Matta, P91	Martinez-Saez, E
Makowska, M	Mantilla, N	Martínez-Soto, J
Maksymenko, A	Mantovani, D	Martin, H259
Makurunje, P282	Mantri, S 16, 17, 47, 84, 114, 120,	Martini, A
Makwana, A	150, 186, 195, 291	Martin, J284
Ma, L 71, 145, 181, 213, 239, 287	Manuel, M	Martin, M
Malacarne, R	Manu, K	Martins Moreira, L
Malakar, A	Manwatkar, S	Martins, P
Malakkal, L 70, 177, 211, 223, 231, 272	Manzoni, A	Martin, T
Malaplate, J	Manzoor, A	Maruhashi, A
Malaspina-Rojas, V	Mao, H	Marussi, S
Maldonado, G62	Mao, Q111	285, 297
Maldonado Otero, A 107	Mao, Y157, 187	Maruyama, T35
Malej, S	Mao, Z	Marvila, M
Malerba, L	Mara, N 31, 39, 58, 63, 72, 100, 101,	Marzbanrad, B15
Malik, A288	102, 103, 109, 134, 136, 167, 168,	Ma, S
Malkova, A259	170, 203, 204, 229, 248, 274, 299, 300	Masaeng, A
Mallick, D	Marathe, M	Masina, B
Mallik, D	Marchebois, H	Masina, S
Malmir, H	Marcial, J	Mason-Flucke, J261
Maloy, S 30, 38, 71, 100, 157, 206,	Marcuson, S	Mason, J17, 48, 85, 121, 126, 151,
229, 248, 249	Margem, F	187, 188, 218, 292
Maltais, A122	Margousian, A	Mason, P
Maltsev, D	Maria della Ventura, N	Mason, S
Mamivand, M	Maria, J	Massardier, V
Mamun, A	Marianetti, C	Massey, C 9, 10, 30, 63, 100, 108, 115,
Mandal, A	Marian, J 102, 125, 158, 165, 169,	116, 134, 167, 202, 229, 248, 273
Mandal, D	192, 224, 296	Mastorakos, I 21, 41, 53, 91, 126, 268
Mandal, N	Mari, N	Mastromatteo, F212
Mandal, S	Marina, O	Ma, T165, 252
Manda, S	Marinel, S	Mata, J
Mandolini, M	Mariotti, L	Matallana Guerrero, J
Mandrus, D	Markström, A	Matejczyk, D10
Manerbino, A	Marmo, F101	Mathaudhu, S 25, 34, 96, 98, 126, 129,
Mang, E 125, 165, 192, 224, 296	Marom, N	130, 159, 195, 222, 223, 231, 254, 279
Mangeney, C	Marques, S	Mathesan, S220
Manger, E	Marquis, E 34, 196, 223, 231, 253	Matheson, A
Mangolini, F	Marrero, E 100, 108, 160	Mathew, A
Maniere, C 105, 139, 174, 208, 234,	Marrero Jackson, E108	Mathew, E
252, 278	Marrujo, I	Mathew, N 52, 53, 134, 157, 203, 219
Manière, C	Marsden, E	Mathew, T
Manikanteswaran, N 68	Marshall, A	Mathis, A
Maniruzzaman, M	Marsico, C	Mathis, K
Manley, M 70, 172, 177, 206, 232,	Marstrander, T	Matlock, C
250, 300	Martin, A	Mato, T
Manner, V	Martina, F	Matsuda, M
Manness, S	Martin, B	Matsunaga, H
Mann, J	Martin, C135	Matsushita, M129, 162
Mann, S	Martinez, A	Matsushita, Y121
Manns, R	Martinez, C	Matthew Mann, J
Mann, T	Martinez, E 21, 53, 204, 222, 228,	Matthews, A
Manso, J	221 202	
	231, 282	Matthews, B
Manso-Morato, J	231, 282 Martínez-García, K	Matthews, C
Manso-Morato, J	-	
	Martínez-García, K	Matthews, C

Mattlet D 124	McCoughoy A	Mana A 122 259
Mattlat, D	McGaughey, A	Mena, A
Mattos, M142	McGill, J92	Menchaca, L
Matt, S	McGuire, M	Menchaca, R
Matz, N157	Mcilwain, L	Mendelev, M 63, 154, 157, 190
Mauget, F44, 178	McIntyre, J	Mendes, B
Maun, I 151, 176, 210, 218	Mckeown, J224	Mendes, M
Maurya, P	McKeown, J 15, 146, 288	Menet, P
Mauseth, T	McKeown, P	Mengucci, P
Ma, X	McKinney, C	Meng, W 63, 69, 162
Maximenko, A	McKinstry, M	Menon, V
Ma, Y 100, 125, 132, 161, 227	McKnight, T	Mensah, A
Maya-Visuet, E	Mcmahon, W101	Mensah-Darkwa, K46
May, B	McMaster, A	Men, X
Mayer, J	McMullin, C	Menze, R
Mayeur, J 75, 78, 145, 239, 288	McMurray, J	Merah, N 162, 292, 295
Mayo, U	Mcmurtrey, M174	Mercado, C
May, S	McMurtrey, M 13, 29, 37, 52, 247	Mercier, D
·		
Mazanova, V	McNamara, R	Merickel, J
Mazánová, V	McNutt, P	Merighe, P
Maziarz, W 21, 22, 45, 185, 265, 282	McQueen, T141, 161, 209, 213,	Merino, N
Mazor, A181	217, 246, 254	Merle, B
Mazumder, S	McRobie, C	Merlin, P
Mazur, J	McRobie, R	Merrell, J
Mazza, A	McWilliams, B 145, 181, 213, 239,	Merrell, M
Mazzer, E200, 298	245, 283, 287	Merritt, S
McArthur, B	Mead, P	Merwin, G
McArthur, D	Meddour, A	Mery, S
McArthur Sehar, D299	Medellin, S	Meshram, A210
Mccabe, R216	Mederos, M	Meskers, C28, 36, 60, 69, 106, 123,
McCabe, R 43, 101, 116, 199	Mediha, Z268	140, 154, 176, 191, 210, 279
McCall, S	Medina, F290	Messer, O118
McCarry, R	Medina, J 132, 227, 266	Messner, M 70, 116, 166, 187, 247
McCarthy, M60, 132, 165, 169, 200,	Medjahdi, G271	Mester, K
226, 246, 298	Medlin, D	Mettke, L
McCarthy, S	Meem, A	Metzger, K
		e
McCarthy, T	Meermeier, A	Metzger, L
McClelland, Z198	Meesa, M	Meyer, A
McClellan, K	Mehan, J	Meyer, H26
McClintock, D	Mehdi, M22	Meyer, M
McCloy, J	Meher, S	Meyers, M 16, 19, 67, 83, 88, 101, 104,
McConville, D114	Mehrotra, S	112, 156, 171, 180, 275, 276
McCormack, S	Mehta, A	Meyer, T186
McCrink, J	Mehta, R	Meza, A
Mccue, I10, 32, 38, 54, 65, 71, 78,	Meier, J	Meziere, J
102, 107, 115, 135, 141, 146, 169,	Meindlhumer, M	Mezyk, S
204, 230, 246, 249, 274, 280, 289	Mei, R	Mhadeshwar, A
McCue, I 38, 45, 70, 115, 206, 226, 296	Meir, M242	Mhatre, P146
Mcdannald, A 173, 207, 232, 251, 301	Meisami Azad, M	Mian, A287
McDannald, A232	Meisel, M	Mianjy, A
McDearis, S	Meistad, L	Miao, J 54, 61, 200, 214, 253, 261
Mcdermott, E 24, 38, 100, 287	Mei, Z127, 231	Miao, Y247
McDonald, S	Mejia Diaz, B	Miceli, A
McDonnell, M	Melcher, C	Michael, F
		Michalik, S
Mcdonnell, S	Mele, P	
McDonnell, S	Melfi, M	Michler, J43, 51, 64, 101, 183, 229,
McDougal, A163	Meli, A	231, 297
McDougal, E	Melia, M 16, 29, 61, 78, 133, 299	Middendorf, J
McDowell, D151	Mellor, R 32, 81, 93, 187	Middleburgh, S66
McElroy, T274	Melville, J	Mignanelli, P
<i>(</i> *	• *	•

M: 4 F	W: 1 II 70 211	W 1 T
Mignerot, F	Mishra, H	Mola, J
Mika, M	Mishra, R 15, 24, 35, 38, 79, 100, 159, 190, 198, 209, 217, 225, 240, 245,	Molina-Aldareguía, J
Mikhliev, O	262, 265, 282, 283, 284, 287, 300	Molina, J
Mikolajczak, M		Molinari, A
•	Mishra, S	Moling, B
Milani, V	Misiak, M	Mollaei, N
Miles, M	194, 223, 252, 280, 289, 297	Mollae, N
Miley, D	Misra, D	Moll, P
Milita, S	Misra, M	Molnar, K
Militzer, M	Misra, S	Molstad, E
Miller, B	Mistry, D	Molvik, K
Miller, C	Mistry, S	Momen, G242
Milleret, A	Misture, S	Momeni, K
Miller, J	Mitchell, D	Momotenko, D
Miller, K	Mitchell, I	Monaco, G
Miller, M	Mitchell, J	Monchoux, J
Miller, Q	Mitra, I243	Monclus, M209
Miller, R	Mitsuishi, K	Monclús, M
Miller, V12, 28, 61, 120, 138, 153,	Mittel, K53	Mondal, S 33, 108, 128, 248, 270
161, 178, 190, 219, 242, 293	Mitterer, C216	Monismith, S
Millot, T	Mittig, W223	Monreal, M
Mills, L 31, 186, 225, 236	Miura, H96, 280	Monserrat, B
Mills, M 11, 14, 19, 34, 57, 81, 132,	Miyamoto, G	Monson, A
165, 173, 175, 253	Miyanishi, K	Montagne, A
Mills, S 29, 99, 128, 272	Miyasaka, F	Montagnino, E32, 268
Milne, C296	Miyashita, A	Montanaro, L147
Milner, J	Mizak, M	Montanelli, L152
Minaruzzaman, M 33, 94, 177	Mizukami, R	Monteiro, N
Miner, J	Mizzi, C	Monteiro, S 20, 52, 67, 88, 90, 104,
Mings, A143	M Keleshteri, M	125, 156, 193, 221, 275, 276, 294, 295
Min, H	M. Keleshteri, M288	Montelione, A
Minheon, K295	Mock, C283	Montes de Oca Zapiain, D 29, 61,
Minh Quoc Le, C	Moffat, W	156, 187, 218
Minisandram, R	Mofor, E	Montes De Oca Zapiain, D29
Minissale, M	Mofrad, A	Montgomery, D
Min, K	Mogbojuri, G	Montiel, D 28, 62, 85, 105, 233
Minobe, R	Mogeritsch, J	Montiel, G
Minor, A 15, 29, 30, 43, 60, 83, 99,	Mohale, N	Monti, J
120, 128, 150, 165, 186,	Mohamed, H	Montoya, K
203, 217, 261, 272	Mohammad, I	Montoya, R
Minster, J	Mohammed, A	Montoya, T
Mion, T	Mohammed, S	Moody, M
Miracle, D 13, 44, 81, 186, 200, 235	Mohan, A	Moon, B
Miran, W	Mohan, S	Moon, G
Mireles, O 10, 78, 115, 146, 209, 289	Mohanty, A	Moon, H
Mirsabeigi, N	Mohanty, C	Moon, J
Mirshams, R	Mohanty, G	Moon, Y
Mirtaleb, A	Mohanty, I	Mooraj, S
Mirzaee, H	Mohanty, T	Moore, A
Mishchenko, Y	Mohnani, L	Moore, C
Mishin, Y	Mohotti, D	Moore, D21, 22, 42, 52, 91, 98, 125,
Mishra, A90, 153, 157, 190, 212,	Mohr, G	157, 193, 295
219, 242, 293	Mohsin, A	Moore, E
Mishra, B24, 49, 123, 154, 169,	Mohun, R	Moorehead, M 157, 197, 247, 248
175, 176, 191, 275	Mo, K	Moore, K
Mishra, D	Mokhtari, B	Moore, R
Mishra, G23	Mokso, R	Moore, S

M : F		W : 11 W
Moosavi, E 54, 92, 210	Mo, X	Murialdo, M
Moosavi-Khoonsari, E195	Mrabet, D242	Murphy, H
Morales Ferreira, S246	Mroczka, K	Murphy-Leonard, A28, 61, 99, 132,
Morales, L	Mrvar, P	165, 200, 214, 227, 258, 261, 298
Morankar, S	Mrzljak, S57	Murray, D197
Moran, S	M., S266	Murray, T52
Moran, T	Msagati, T	Murtagh, D
Mordehai, D	Mubassira, S 85, 191, 200	Murty, K 202, 229, 248
Moreira da Silva, A	Mu, D	Murty, S
Moreira, P	Mudryk, Y	Muruganandam, A288
	•	Č
Moreno, D	185, 264 Mudzanani, K	Murugan, S
Moreno, J		Musa, Z
Moreno, R	Mueller, B	Musinski, W 41, 75, 161, 224
Moreno-Ulloa, A	Mueller, M	Muszka, K
Morgan, D 46, 151, 190, 197, 243	Mueller, R	Muta, H
Morgan, N	Mueller, S122	Mutswatiwa, L
Morgan, R	Muftu, S	Mu, W 13, 43, 80, 81, 291
Moriarty, M143	Mugale, M 84, 234, 266, 290	Mu, X
Moridi, A42	Mugiono, E	Muzquiz, D
Mori, H	Mujahid, S 68, 139, 164, 230	Myeong, S
Morimitsu, M	Mujumdar, S	Myers, K
	Mukherjee, D	·
Morin, J	·	Myers, L
Morisada, Y129, 198	Mukherjee, M	Myhill, L
Mori, T18, 48, 85, 121, 152, 188,	Mukherjee, P 12, 43, 80, 116, 148,	Myint, P20
257, 267	184, 263	Myja, H179
Morita, K167	Mukherjee, S34, 127, 167, 204, 208,	Myrvold, E223
Mornout, C	217, 258, 300	
Morończyk, B 10, 208, 282	Mukhopadhyay, A 198, 207, 253	N
Moronaga, T	Mukhopadhyay, N	Naab, F
Moroz, M270	Mukhopadhyay, S 37, 92, 134, 196, 233	
Morrall, D	Mu, L53	Nabahat, M
Morris, J	Mula, D	Nabeel, M
221, 244, 296	Mula, S	Nabil, S
Morrison, P119	Mulewska, K	Nadeau, A
Mortagne Coderch, A	Müller, A	Naeem, M 81, 117, 163
~		Nafisi, S
Mort, P	Muller, E	Nagaraja, N
Moschetti, M83	Müller, M	Nagarajan, R184
Moscoso, Z	Müller, S	Naghibzadeh, K125
Moseley, D	Mulligan, J	Nagler, B
Moser, A	Mullin, K 13, 31, 78, 116, 184, 236,	Nag, S 78, 107, 146, 147, 180, 183,
Moser, N	254, 284	213, 214, 215, 238, 272
Moses-DeBusk, M292	Mullurkara, S	Naguib, M
Mossadeghian, S166	Mulukutla, M 34, 238, 265, 279	Nagy, G
Mostaan, M257	Mumm, D	
Mostafa, A	Munday, L	Na, H
Mostafaei, A9	Mundra, R	Nahavandian, M228
Moszczyńska, D	Munguia, J273	Nahian, M
Mota, J	Munizaga, V	Nahin, A69
Motallebi, R	Muñoz Hernandez, E60	Nahm, S286
		Naidu, J
Mote, A	Munoz, J	Naik, A82
Mothetha, M	Munro, T	Nair, A 18, 50, 88, 123, 154, 190, 220
Motta, A	Muntaha, M	Nair, K
Motta, C212	Murakami, K162	Naish, J
Mougin, K 143, 179, 212, 238, 252,	Murakami, Y118	Nait-Ali, A
255, 281	Muralidharan, G 41, 74, 247	Na, J
Mou, M	Muralidharan, K251	Najafi, A96
Mourou, C106	Muralikrishnan, V	Najjuuko, V
Mousa, E	Murayama, M	••
Mow, H260	Murgas Portilla, B134	Nakagawa, E

Nakajima, M	Nath, P287	Neu, R 78, 96, 157, 211
Nakamura, A72	Natsition, F	Neves, M
Nakamura, H	Nault, I	Neves Monteiro, S
Nakamura, Y59, 98	Naumov, A 129, 162, 198, 225, 245, 271	Neves, S
Nakanishi, Y	Naumov, P	Neville, T
Nakano, J	Naunheim, Y174	New, A 120, 213, 217, 241
Nakano, S	Nautiyal, P 13, 43, 80, 143, 291	Newman, J
Nakano, T215	Navarro Naranjo, J	Nezdyur, M
Nakata, T227	Navarro, P	Ngo, A114
Nakatsugawa, I	Navas, M81	Ngo, N
Nakayama, K93	Naveen Kumar, N	Ng, T226
Nakazato, S16	Nawaz, K	Nguyen, A
Nakazawa, A	Na, Y 24, 108, 109, 117, 265	Nguyen, B 94, 197, 275
Nakazawa, K	Nayak, A	Nguyen, D
Nakrani, J	Nayak, K91	Nguyen-Manh, D
Nalajala, D235	Nayak, S	Nguyen, N
Naleway, S 19, 32, 50, 64, 65, 88, 101,	Nayak, U	Nguyen, T 24, 27, 56, 59, 94, 98, 128,
124, 155, 192, 268	Nayir, N	131, 207, 270, 272
Namakian, R	Nayir, S	Nian, H
Namazi, B	Nazir, A	Ni, B
Nam, C	Ndiaye, O	Nice, T
	•	
Namilae, S	Ndjom, B	Nicholson, C
Nam, J	Nduwa, M	Nickerson, W
Namola, K	Neal, C	Nicolaides, D53
Nam, S	Neal, T54	Nicolopoulos, S
Namvari, M9	Nebgen, B	Nicol, S
Nam, W	Neçar, M	Niculescu, G14
Nanath, R	Necas, D	Niedziela, J 172, 206, 232, 250, 300
Nanda, F	Necheporenko, I	Niehoff, T
Nandakumar, A	Neding, B	Nie, J
Nandi, I	Needleman, A	Niemelä, J51, 297
Nandipati, S	Neelakandan, D16	Niendorf, T 9, 222, 244, 257
Nandwana, P9, 10, 24, 38, 72, 78,	Neelameggham, N 24, 28, 56, 61, 94,	Nieto-Valeiras, E
81, 97, 108, 142, 146, 147,	99, 128, 131, 132, 165, 175, 200,	Nie, Y 58, 68, 195, 262
183, 191, 214, 215, 251, 280	208, 227, 234, 270, 298	Niezgoda, S 136, 187, 188, 253, 266
Naorem, R46, 108, 147, 204, 226,	Negendank, M122	Nikitin, P
252, 289	Nehl, T45	Nikitin, V51, 90
Napolitano, R	Neils, A	Nikolai, D122
Naragani, D 41, 75, 111, 144, 187, 301	Neilson, W	Nimer, S
Naraghi, R	Neiner, D	Nino, J
Narayanan, T265	Nelaturu, P 79, 176, 197	Nipa, L
Narayan, J	Nellessen, P	Niraula, S146, 183
246, 263	Nelson, A243	Nisar, A
Narayan, R	Nelson, B	Nisbet, G
246, 263	Nemani, S	Nishijima, M
Nardi, A 15, 45, 82, 119	Nematollahi, M213	Nishikawa, H 23, 34, 55, 67, 93, 104,
Nardin, C	Nemets, G 100, 108, 160	127, 138, 159, 196, 269, 276
Narra, S 32, 65, 76, 77, 102, 135, 146,	Nemoto, Y	Nishikawa, N
158, 169, 182, 183, 204, 214,	Nene, S	Nitol, M
215, 230, 239, 249, 274, 290	Neogi, A96	Nittala, A
Nartu, M	Nepal, K	Niu, T
Nascimento, A	-	Niverty, S
	Neto, N	·
Nascimento Junior, E	Neuba, L	Nizard, P
Nasir Tak, T96	Neubert, L	Nizolek, T
Nastasi, M	Neuefeind, J	Nlebedim, I
Natalli, J	Neugebauer, J 39, 74, 91, 194, 295	Nln, G
Natan, A	Neumann, B	N, N
Nathan, G	Neumeier, S 81, 117, 132, 173, 178, 207	Noal Alves, S
Nathaniel, J	Neupane, M85	Nobuhiro, T240

Nocheseda, C	Oba, Y	Okafor, O
Noebe, R	Obbard, E	Okajyo, S
Noell, P	Obeng, Y	Okamoto, A
Nogales, K	O'Brien, C	Okazaki, A80
Nogita, K	O'brien, F	Okeke, I
196, 269	O'Brien, S 57, 131, 224	Okeke, U214
Noguchi, S	Obrosov, A	O'Kelley, B176
Nogueira, P	Obstalecki, M144	O'Kelly, P17, 35, 38, 110, 120, 150, 186
Nogueira Simões Cobuci, B 67	Obuba, S	Okuchi, T
Noh, H	Obuz, H	Okugawa, M
Nolan, P153	Ocampo-Vaca, F	Okuniewski, M 57, 100, 108, 160,
Nolan, T234	Ocares-Hermosa, J91	231, 249, 269, 275
Nomoto, K	Ochieze, U54	Okuno, Y
Nomura, N	Ochilov, J	Okuyucu, C58
Noorduin, W163	Ochoa, A	Olanrewaju, O 116, 168, 261
Noor, M	Ochoa, R 25, 96, 130, 279	Olaoluwa, D131
Noorsumar, G242	O'Connell, J	Olaveson, T
Noorzayee, S	O'Connor, A	Olbricht, J85
Nordlund, K	Octoviawan, A	Oldham, N
Nordstrom, M53	Oddershede, J	Olds, D
Norkett, J	Odette, G	Olejnik, E21, 22
Norman, J 11, 14, 208, 244	Odhiambo, H	Oleksak, R 15, 197, 218
Norouzi, E	Odo, L124	Olevsky, E 14, 44, 81, 105, 112, 118,
Norris, E	Odqvist, J	139, 149, 174, 208, 234, 252, 264, 278
Norvell, S	Odumuwagun, A222	Olier, P272
Nosal, E	Offidani, D	Olivas Martínez, M14, 208
Nosirova, M262	Off, R283	Oliveira, D 67, 104, 276
Nosonovsky, M	Ogata, S	Oliveira, F
Notari, L	Ogawa, S	Oliveira, J 10, 37, 71, 78, 115, 146,
Nourian, A78	Ogawa, Y	268, 280, 289
Nourian Avval, A	Ogbonnaya, M	Oliveira, M104
Nourian-Avval, A82	Ogitsu, T	Oliveira, N
Nouwens, C9	Ogoke, F 145, 213, 288	Oliveira, P
	Ogoke, F	
Novascone, S	Ogunseitan, O69	Oliveira, P
Novascone, S 33 Novitskii, A 18	Ogunseitan, O	Oliveira, R
Novascone, S .33 Novitskii, A .18 Nowak, B .89, 275	Ogunseitan, O69	Oliveira, R
Novascone, S 33 Novitskii, A 18	Ogurseitan, O	Oliveira, R
Novascone, S .33 Novitskii, A .18 Nowak, B .89, 275 Nowak, W .14, 257, 279	Ogurseitan, O	Oliveira, R
Novascone, S 33 Novitskii, A 18 Nowak, B 89, 275 Nowak, W 14, 257, 279 Nowell, M 43, 170	Ogurseitan, O	Oliveira, R
Novascone, S .33 Novitskii, A .18 Nowak, B .89, 275 Nowak, W 14, 257, 279 Nowell, M .43, 170 Nozawa, T .230	Ogurseitan, O	Oliveira, R
Novascone, S .33 Novitskii, A .18 Nowak, B .89, 275 Nowak, W .14, 257, 279 Nowell, M .43, 170 Nozawa, T .230 Ntanzi, L .228	Ogunseitan, O	Oliveira, R
Novascone, S 33 Novitskii, A 18 Nowak, B 89, 275 Nowak, W 14, 257, 279 Nowell, M 43, 170 Nozawa, T 230 Ntanzi, L 228 Nukala, P 185	Ogunseitan, O	Oliveira, R
Novascone, S 33 Novitskii, A 18 Nowak, B 89, 275 Nowak, W 14, 257, 279 Nowell, M 43, 170 Nozawa, T 230 Ntanzi, L 228 Nukala, P 185 Nuli, K 35	Ogunseitan, O	Oliveira, R
Novascone, S .33 Novitskii, A .18 Nowak, B .89, 275 Nowak, W .14, 257, 279 Nowell, M .43, 170 Nozawa, T .230 Ntanzi, L .228 Nukala, P .185 Nuli, K .35 Nunes, A .177	Ogunseitan, O	Oliveira, R
Novascone, S .33 Novitskii, A .18 Nowak, B .89, 275 Nowak, W .14, 257, 279 Nowell, M .43, 170 Nozawa, T .230 Ntanzi, L .228 Nukala, P .185 Nuli, K .35 Nunes, A .177 Nuñez, L .288	Ogunseitan, O	Oliveira, R
Novascone, S 33 Novitskii, A 18 Nowak, B 89, 275 Nowak, W 14, 257, 279 Nowell, M 43, 170 Nozawa, T 230 Ntanzi, L 228 Nukala, P 185 Nuli, K 35 Nunes, A 177 Nuñez, L 288 Nyamuchiwa, K 182, 240	Ogunseitan, O	Oliveira, R
Novascone, S 33 Novitskii, A 18 Nowak, B 89, 275 Nowak, W 14, 257, 279 Nowell, M 43, 170 Nozawa, T 230 Ntanzi, L 228 Nukala, P 185 Nuli, K 35 Nunes, A 177 Nuñez, L 288 Nyamuchiwa, K 182, 240 Nyborg, C 20	Ogunseitan, O	Oliveira, R
Novascone, S 33 Novitskii, A 18 Nowak, B 89, 275 Nowak, W 14, 257, 279 Nowell, M 43, 170 Nozawa, T 230 Ntanzi, L 228 Nukala, P 185 Nuli, K 35 Nunes, A 177 Nuñez, L 288 Nyamuchiwa, K .182, 240 Nyborg, C 20 Nyborg, L 134	Ogunseitan, O	Oliveira, R
Novascone, S 33 Novitskii, A 18 Nowak, B 89, 275 Nowak, W 14, 257, 279 Nowell, M 43, 170 Nozawa, T 230 Ntanzi, L 228 Nukala, P 185 Nuli, K 35 Nunes, A 177 Nuñez, L 288 Nyamuchiwa, K 182, 240 Nyborg, C 20 Nyborg, L 134 Nyce, G 29	Ogunseitan, O	Oliveira, R
Novascone, S .33 Novitskii, A .18 Nowak, B .89, 275 Nowak, W .14, 257, 279 Nowell, M .43, 170 Nozawa, T .230 Ntanzi, L .228 Nukala, P .185 Nuli, K .35 Nunes, A .177 Nuñez, L .288 Nyamuchiwa, K .182, 240 Nyborg, C .20 Nyborg, L .134 Nyce, G .29 Nycz, A .10, 72, 78, 107, 146, 183, 215	Ogunseitan, O	Oliveira, R
Novascone, S .33 Novitskii, A .18 Nowak, B .89, 275 Nowak, W .14, 257, 279 Nowell, M .43, 170 Nozawa, T .230 Ntanzi, L .228 Nukala, P .185 Nuli, K .35 Nunes, A .177 Nuñez, L .288 Nyamuchiwa, K .182, 240 Nyborg, C .20 Nyborg, L .134 Nyce, G .29 Nycz, A .10, 72, 78, 107, 146, 183, 215 Nydegger, M .100	Ogunseitan, O	Oliveira, R
Novascone, S .33 Novitskii, A .18 Nowak, B .89, 275 Nowak, W .14, 257, 279 Nowell, M .43, 170 Nozawa, T .230 Ntanzi, L .228 Nukala, P .185 Nuli, K .35 Nunes, A .177 Nuñez, L .288 Nyamuchiwa, K .182, 240 Nyborg, C .20 Nyborg, L .134 Nyce, G .29 Nycz, A .10, 72, 78, 107, 146, 183, 215 Nydegger, M .100 Nygren, K .25, 57, 79, 96, 116, 161,	Ogunseitan, O	Oliveira, R
Novascone, S .33 Novitskii, A .18 Nowak, B .89, 275 Nowak, W .14, 257, 279 Nowell, M .43, 170 Nozawa, T .230 Ntanzi, L .228 Nukala, P .185 Nuli, K .35 Nunes, A .177 Nuñez, L .288 Nyamuchiwa, K .182, 240 Nyborg, C .20 Nyborg, L .134 Nyce, G .29 Nycz, A .10, 72, 78, 107, 146, 183, 215 Nydegger, M .100 Nygren, K .25, 57, 79, 96, 116, 161, 161, 197, 224, 271	Ogunseitan, O	Oliveira, R
Novascone, S 33 Novitskii, A 18 Nowak, B 89, 275 Nowak, W 14, 257, 279 Nowell, M 43, 170 Nozawa, T 230 Ntanzi, L 228 Nukala, P 185 Nuli, K 35 Nunes, A 177 Nuñez, L 288 Nyamuchiwa, K 182, 240 Nyborg, C 20 Nyborg, L 134 Nyce, G 29 Nycz, A 10, 72, 78, 107, 146, 183, 215 Nydegger, M 100 Nygren, K 25, 57, 79, 96, 116, 161, 197, 224, 271 Nykiel, K 120 Nzeh, N 90	Ogunseitan, O	Oliveira, R
Novascone, S 33 Novitskii, A 18 Nowak, B 89, 275 Nowak, W 14, 257, 279 Nowell, M 43, 170 Nozawa, T 230 Ntanzi, L 228 Nukala, P 185 Nuli, K 35 Nunes, A 177 Nuñez, L 288 Nyamuchiwa, K 182, 240 Nyborg, C 20 Nyborg, L 134 Nyce, G 29 Nycz, A 10, 72, 78, 107, 146, 183, 215 Nydegger, M 100 Nygren, K 25, 57, 79, 96, 116, 161, 197, 224, 271 Nykiel, K 120	Ogunseitan, O	Oliveira, R
Novascone, S	Ogunseitan, O	Oliveira, R
Novascone, S 33 Novitskii, A 18 Nowak, B 89, 275 Nowak, W 14, 257, 279 Nowell, M 43, 170 Nozawa, T 230 Ntanzi, L 228 Nukala, P 185 Nuli, K 35 Nunes, A 177 Nuñez, L 288 Nyamuchiwa, K 182, 240 Nyborg, C 20 Nyborg, L 134 Nyce, G 29 Nycz, A 10, 72, 78, 107, 146, 183, 215 Nydegger, M 100 Nygren, K 25, 57, 79, 96, 116, 161, 197, 224, 271 Nykiel, K 120 Nzeh, N 90 O Connell, J 283	Ogunseitan, O	Oliveira, R
Novascone, S	Ogunseitan, O	Oliveira, R

Omi, I	OuYang, F55	Palacios, E
Onaifo, J	Ouyang, G 22, 46, 49, 176, 204, 226	Palacz, T115
Onaiwu, G179	Ouyang, L 46, 50, 266	Palaniappan, S240
Onal, M175, 191	Ouyang, M	Palanisamy, B
On, C	Ouzilleau, P	Palasyuk, A
Onukwuli, C	Overstreet, C	Palasyuk, O 45, 149, 265
Onyinyechi, O271	Ovi, M	Palau, A
Oommen, V	Øvrelid, E	Palavar, P
Ophus, C	Owen, C	Pal, D
*		Palermo, M
Opila, E 149, 160, 161, 197, 209, 224,	Owen, L	
236, 261, 270, 275	Owens, B	Palitzsch, W
Opoku, E	Oyegoke, J	Paliwal, M
Oppelstrup, T 121, 168, 203	Ozaki, N	Palkowski, H 212, 233, 252
Oppermann, P	Ozalp, A229, 261	Palmero, P
O'Quinn, E	Ozaltun, H	Palmer, S
Orikasa, K	Özbek, P56	Palmer, T
Oriola, T	Ozcan, S91	Palmert, F
Orlov, D	Ozcelik, G	Palmieri, M
Ornelas, A	Ozdemir, O	Pal, S
Ornelas-Rascon, C232	Ozdoganlar, B 42, 118, 144	Pal, U
Oros, T	Ozdogru, E	Palumbo, A
Orozco-Caballero, A216	Ozen, Z	200, 227, 298
Orrostieta, R	Ozerinc, S 11, 79, 115, 181, 289	Panat, R 12, 42, 106, 118, 144, 215,
Orsborn, K	Ozherelkov, D	231, 250
Ortega-Lopez, V106	Ozkan, C12, 43, 80, 116, 148, 184, 263	Pan, C 8, 139, 149
Orth, R289	Özmen, L131	Pandapas, C
Ortiz, J	Ozornio, J271	Pandey, A 12, 31, 43, 64, 80, 101, 116,
Orzel, M277	Özsoy, A	135, 148, 168, 184, 203, 216,
Osadnik, M	Ozturk, A	230, 263, 274, 287
Osayawe, O	Öztürk, B	Pandey, C
Osborne, M. 10, 78, 115, 146, 176, 209,	Ozturk, D	Pandey, K
236, 254, 279, 289	Öztürk, T	Pandey, S
	Ozturk, 1	
Osborn, K	n	Pandolfi, S
		D 11 D
Osborn, R	P	Panella, F
Osei-Owusu, N		Pan, F
	Pabich, B130	
Osei-Owusu, N	Pabich, B 130 Pace, K 177	Pan, F
Osei-Owusu, N. 183 Osen, K. 106	Pabich, B 130 Pace, K 177 Pachaury, Y 31	Pan, F 262 Pan, G 249
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C .100, 112	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92	Pan, F 262 Pan, G 249 Pang, E 190 Pang, H 237 Pang, X 30, 134 Pannier, Y 44
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227	Pan, F 262 Pan, G 249 Pang, E 190 Pang, H 237 Pang, X 30, 134 Pannier, Y 44 Panova, V 82
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138	Pan, F 262 Pan, G 249 Pang, E 190 Pang, H 237 Pang, X 30, 134 Pannier, Y 44 Panova, V 82 Pan, Q 49, 188, 283
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276	Pan, F
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89	Pan, F
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162 Ottomano, F 207, 241	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagano, A 118, 184	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129 Pan, W. 282
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagano, A 118, 184 Page, K 125	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162 Ottomano, F 207, 241	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagano, A 118, 184 Page, K 125 Pagone, E 106, 140, 235	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129 Pan, W. 282
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162 Ottomano, F 207, 241 Ottoni Negrao, P 199 Ott, R 46, 147, 149, 204, 226, 261	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagano, A 118, 184 Page, K 125 Pagone, E 106, 140, 235 Paguaga, S 88	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129 Pan, W. 282 Panwar, A. 209 Pan, X. 59, 157, 226
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162 Ottomano, F 207, 241 Ottoni Negrao, P 199 Ott, R 46, 147, 149, 204, 226, 261 Ouchen, F 287	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagano, A 118, 184 Page, K 125 Pagone, E 106, 140, 235 Paguaga, S 88 Pai, N 217	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129 Pan, W. 282 Panwar, A. 209 Pan, X. 59, 157, 226 Papadakis, L. 53
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162 Ottomano, F 207, 241 Ottoni Negrao, P 199 Ott, R 46, 147, 149, 204, 226, 261 Ouchen, F 287 Ouchi, T 175, 208, 234	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagano, A 118, 184 Page, K 125 Pagone, E 106, 140, 235 Paguaga, S 88 Pai, N 217 Paisner, S 103	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129 Pan, W. 282 Panwar, A. 209 Pan, X. 59, 157, 226 Papadakis, L. 53 Paplham, T. 246
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162 Ottomano, F 207, 241 Ottoni Negrao, P 199 Ott, R 46, 147, 149, 204, 226, 261 Ouchen, F 287 Ouchi, T 175, 208, 234 Oudriss, A 25	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagano, A 118, 184 Page, K 125 Pagone, E 106, 140, 235 Paguaga, S 88 Pai, N 217 Paisner, S 103 Pajerowski, D 206	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129 Pan, W. 282 Panwar, A. 209 Pan, X. 59, 157, 226 Papadakis, L. 53 Paplham, T. 246 Pappas, D. 255
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162 Ottomano, F 207, 241 Ottoni Negrao, P 199 Ott, R 46, 147, 149, 204, 226, 261 Ouchen, F 287 Ouchi, T 175, 208, 234 Oudriss, A 25 Ou, Y 80	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagen, K 125 Pagone, E 106, 140, 235 Paguaga, S 88 Pai, N 217 Paisner, S 103 Pajerowski, D 206 Pakanati, A 65, 136	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129 Pan, W. 282 Panwar, A. 209 Pan, X. 59, 157, 226 Papadakis, L. 53 Paplham, T. 246 Pappas, D. 255 Paradise, P. 29
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162 Ottomano, F 207, 241 Ottoni Negrao, P 199 Ott, R 46, 147, 149, 204, 226, 261 Ouchen, F 287 Ouchi, T 175, 208, 234 Oudriss, A 25 Ou, Y 80 Ouyang, B 40, 73, 110	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagano, A 118, 184 Page, K 125 Pagone, E 106, 140, 235 Paguaga, S 88 Pai, N 217 Paisner, S 103 Pajerowski, D 206 Pakanati, A 65, 136 Pak, P 145, 213, 288	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129 Pan, W. 282 Panwar, A. 209 Pan, X. 59, 157, 226 Papadakis, L 53 Paplham, T. 246 Pappas, D. 255 Paradowska, A. 218
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162 Ottomano, F 207, 241 Ottoni Negrao, P 199 Ott, R 46, 147, 149, 204, 226, 261 Ouchen, F 287 Ouchi, T 175, 208, 234 Oudriss, A 25 Ou, Y 80 Ouyang, B 40, 73, 110 Ouyang, F 23, 55, 93, 127, 159, 160,	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagen, K 125 Pagone, E 106, 140, 235 Paguaga, S 88 Pai, N 217 Paisner, S 103 Pajerowski, D 206 Pakanati, A 65, 136	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129 Pan, W. 282 Panwar, A. 209 Pan, X. 59, 157, 226 Papadakis, L. 53 Paplham, T. 246 Pappas, D. 255 Paradowska, A. 218 Paramanathan, M. 78
Osei-Owusu, N 183 Osen, K 106 Oses, C 14 Osholm, H 168 Osinsky, A 238 Oskay, C 100, 112 Osmond, P 25 Ossowski, T 177, 279 Ostendorp, S 193 Ostroverkhov, V 78, 209 Oswald, S 101 Ota, M 172 Ott, C 45, 206 Otten, R 193 Otto, J 162 Ottomano, F 207, 241 Ottoni Negrao, P 199 Ott, R 46, 147, 149, 204, 226, 261 Ouchen, F 287 Ouchi, T 175, 208, 234 Oudriss, A 25 Ou, Y 80 Ouyang, B 40, 73, 110	Pabich, B 130 Pace, K 177 Pachaury, Y 31 Packard, C 31, 112, 274 Padilla, K 240 Padilla, R 92 Padinhare Manissery, A 62, 227 Padin-Monroig, R 138 Padua, M 276 Paff, C 89 Pagan, D 17, 47, 75, 84, 102, 120, 151, 187, 217, 241, 291 Paganin, D 20 Pagan, M 82, 251 Pagano, A 118, 184 Page, K 125 Pagone, E 106, 140, 235 Paguaga, S 88 Pai, N 217 Paisner, S 103 Pajerowski, D 206 Pakanati, A 65, 136 Pak, P 145, 213, 288	Pan, F. 262 Pan, G. 249 Pang, E. 190 Pang, H. 237 Pang, X. 30, 134 Pannier, Y. 44 Panova, V. 82 Pan, Q. 49, 188, 283 Pan, S. 54, 79, 105 Pant, D. 266 Pant, K. 49 Pantleon, W. 11, 42, 79, 116, 147, 157, 184, 216, 290 Pantoja Salgado, G. 90 Panton, B. 129 Pan, W. 282 Panwar, A. 209 Pan, X. 59, 157, 226 Papadakis, L 53 Paplham, T. 246 Pappas, D. 255 Paradowska, A. 218

Paramsothy, M 21, 53, 91, 126, 268	Pathapati, S	Peerlings, R
	<u>*</u>	
Paranthaman, M	Pati, D	Pegritz, M
Paranthaman, P	Patil, C 28, 85, 105, 260	Pegues, J
Pardal, G	Patil, P	Pei, G14
Parham, J	Patil, R	Pei, Z
Parish, C	Patil, S	Pejman, R
Park, B	Patinet, S	Pekala, M 120, 213, 217, 292
Park, C 66, 71, 241, 273, 298	Patiño-Cardona, F	Pekarskaya, E
Park, D	Pati, R149	Pek, E 53, 70, 177
Park, E 73, 150, 211, 226, 228, 254,	Patki, P	Peker, A142
264, 265, 266, 274, 277, 281,	Patnaik, S	Pekguleryuz, M
291, 293	Patouillet, K	Pek, M
Parker, D	Patra, A	Pekoba, B
Parker, E	Patra, N	Pekol, C
Parker, G	Patra, P	Pelapur, R
Parker, M56	Patriarca, L113	Pelchen, L
Parker, S	Patrick, M193	Pellemoine, F 141, 197, 223, 236
Parker, T16	Patrinos, P	Pelton, A 40, 74, 110, 143
Parkes, N	Patsavellas, J118	Pelz, J
Park, G231	Pattel, R	Pena, M
Park, H 79, 112, 116, 138, 186, 196,	Patterson, M	Pena, R
202, 263, 266, 267, 277, 278,	Patterson, R	Penders, A
290, 293, 298	Patterson, T	Peng, H
Parkinson, D		6
	Pattnaik, K	208, 234, 270
Park, J 34, 52, 77, 79, 101, 110, 116,	Patullo, M 10, 13, 31, 176, 186	Peng, J
133, 137, 152, 162, 186, 190, 201, 220,	Paturaud, J	Peng, Q
244, 260, 263, 267, 277, 281, 290, 293,	Paudel, Y	Peng, X270
294, 297	Paul, A	Peng, Y 62, 95, 227, 272
Park, K 117, 153, 175, 257, 264, 265,	Paul, B	Peng, Z20, 52, 90, 125, 156, 193,
266, 268, 273, 298, 299	Paul, D	221, 294, 295
Park, M 108, 135, 230	Paulin, I 142, 283, 287	Pennacchio, A113, 145
Park, N	Paul, M9, 83	Pennell, S
Park, S 10, 25, 31, 43, 132, 145, 176,	Paul, P	Pepłowska, K
186, 200, 227, 258, 264, 273,	Paul, S	Peralta, T
286, 292, 298	Paulsen, K	Perbix, C
Park, Y 55, 67, 160, 190, 196, 201,	Paul, T 13, 15, 45, 82, 83, 119, 141, 182	Perea, D
		Pereira, A
263, 278, 281, 293	Paul, V	Pereira dos Santos, J
Parnaik, A 25, 130, 283	Pauly, V	
Parraga, H	Pavel, M	Pereira, I
Parson, N	Pavlov, T	Perepezko, J 79, 176, 211
Parsons, S	Pawlikowski, K	Perera, J
Partezana, J	Payne, E	Perez Coronado, J188
Parzer, M	Payne, M 15, 43, 83, 120, 261	Perez, D51, 218
Pascall, A	Payton, E	Pérez, E
Pasco, J 22, 182, 240, 266, 288	239, 290	Pérez Labra, M264
Pasebani, S 114, 139, 145, 214, 215, 259	Payton, O	Pérez-Labra, M 264, 295, 296
Passeraub, P	Payzant, A	Perez Larios, A
P. A. Subramanyam, A	Paz Salas, L	Perez, M
Pataky, G 25, 57, 96, 161, 197, 224, 271	Paz Soldan Palma, J	Pérez, P
·		Pérez Prado, M
Patel, A	Paz Soldan Pinto, J	
Patel, I	Paz y Puente, A34, 68, 105, 126, 138,	Perez, T
Patel, J	159, 173, 195, 207, 222, 233, 251, 277	Pérez Zubiaur, P
Patel, M	Pearson, J	Pericleous, K
Patel, R 216, 281, 298	Pearson, M257	Perisse Duarte Lopes, F 67, 104, 268,
Patenaude, H	Pecak, K	275, 276
Pateras, A51	Peccavet, T106	Perissé Duarte Lopes, F 67, 104, 276
Paternoster, C	Peddeti, C141, 272	Pero, R
Pathak, S 30, 58, 108, 116, 159, 168,	Pedraza, F 24, 95, 212	Perricone, V
229, 261, 268	Pedroti, L	Perriere, L 14, 141, 161, 209, 246
, , ,	, ,	

D 1) I	Pull i G	B
Perrière, L	Picklesimer, C	Pogue, E
Perrin, A	Pickles, J	Pohl, N
Perrin Toinin, J	Picu, C	Poirier, D
Perriot, R	Pielacha, B	Pokharel, R 136, 151, 188
Perron, A	Pienta, D	Pokhrel, G
Perry, J	Pierce, D 26, 138, 166, 289	Pokroy, B
Perry, M	Pierott Cabral, J	Polák, J
Persaud, S	Pierron, O31, 64	Polak, M46, 190
Person, N	Piersol, A	Polasik, A
Perumal, S	Pike, J	Polatidis, E
Perzynski, K299	Pikul, A 14, 177, 257, 279	Polcar, T
Peterkin, A201	Pikula, T177	Pole, M 37, 134, 214, 238
Peterlechner, M193	Pilania, G 153, 190, 219, 242, 293	Polishchuk, I
Peter, N 15, 79, 107, 150	Pilchak, A41, 84, 175, 209,	Pollard, B245
Peter, S	225, 235, 253	Pollock, T11, 13, 31, 43, 50, 78, 116,
Petersen, C247	Pilipchuk, M 28, 43, 105, 260	141, 175, 184, 186, 197, 225,
Petersen, P	Pillado, B	236, 254, 262, 284
Peterson, N	Pilla, G	Polonsky, A
Peterson, R	Pillai, D 16, 47, 209, 254, 258, 259, 261	Pomo, A21
Peterson, V 14, 170, 261	Pillai, R63, 72, 99, 107, 166, 260, 272	Ponge, D
Peterson, W 63, 108, 211	Pillari, L	Ponis, J
Peters, S	Piloseno, B292	Pontikes, Y 123, 154, 191
Pethö, L	Pilosino, B	Poole, L280
Petram, R9	Pilvelait, T	Poole, W
Petranikova, M	Pimblott, S140	Pooley, S
Petrich, L	Pimenta, S	Poon, J
Petric, M233	Pimentel, A	Poplawsky, J 16, 17, 31, 46, 50, 58, 72,
Petrie, C243, 284	Pineda, E	110, 113, 127, 193, 214, 226, 239
Petrič, M233, 252	Pinion, L	Popoola, A148, 228
Pettersen, T	Pinomaa, T 103, 146, 265, 288	Popoola, O148
Pettinari-Sturmel, F147, 186	Pinson, J	Popoola, P90, 228
Pettitt, F	Pint, B 29, 62, 63, 99, 102, 272	Popov, V
Pfetzing-Micklich, J	Pipala, J	Poreba, N
Phadi, T	Pippan, R	Porenta, N
Phalen, H213	Piquard, L	Porro, J
Pham, A	Pirnar, B	Porsch, K
Pham, B	Pisani, A	Portal, L
Pham, M 31, 64, 101, 135, 168, 203,	Pistidda, C228	Portela, C206
230, 274, 299	Pistorius, P 26, 92, 135, 146, 158,	Porter, D
Phan, M	239, 259, 261	192, 268
Phan, N145, 161	Pitike, K	Porter, I
Phan, T 26, 95, 203, 217	Pittman, C	Porter, J90
Pharr, G 64, 156, 238	Pitts, S 82, 157, 248	Portilla, B
Pharr, M148, 156	Pixner, F	Poselli, E
Phatak, C90	Pizano, L	Post, A
Philippsen, B56	Planck, J	Post, B 146, 147, 214
Philips, N 10, 78, 236	Playford, H132	Post, N
Phillion, A	Plotkowski, A 105, 113, 121, 214,	Potter, J
Phillippe Couzinie, J246	244, 287	Pouchon, M249
Phillips, N	Plotnikov, Y	Poudel, A
Phillpot, S 56, 80, 161, 275, 280, 296	Ploux, L	Poudel, N
Phounglamcheik, A	Plummer, G	Poudel, T
Phung, B	Plummer, J	Poulain, R
Pibulchinda, P 80	Pocquette, N	Poulsen, H
Picard, Y	Podgornij, B	Pourjam, M
Picco, L	Podgornik, B	Powell, A
Piccone, D	Podsiadła, D	175, 270, 299
Pickering, E81	Po, G	Powell, C
Pickett, C	Poghosyan, E 20	Pozzi, A
		,

Pozzi, M	Puchala, B	Qureshi, M
Prabhakaran, R 38, 100, 157, 229, 248	Puente-Orench, I	Qureshi, W
Prabhakaran, V80	Puentes Cantor, H228	Qu, S
Prabhakar, J66	Puga, H	Qu, W90
Prabhune, B181	Pukenas, A119	Qu, X
Pradeep, K	Pulido, H	_
Pradhan, A142, 275	Pulipaka, A	R
Pradhan, D	Pullen, L11	DL. D. 15 00 122 150 161
Pradhan, S	Puma, J	Raabe, D 15, 80, 133, 150, 161
Prado-Lázaro, J147	Pung, K	Rabe, C
Prahin, E	Punyafu, J230	Rabello Neves, P
Pramanick, A	Purdy, L	Rabello, R
Pramanik, B	Puri, S 31, 64, 101, 135, 168, 203,	Rabelo da Silva, C50
Prasad, A	230, 274	Rabiei, A 142, 274, 279, 301
Prasad, D	Pürstl, J	Rabin, A
Prasad Murugan, S	Purwanto, A	Rabkin, E 63, 135, 154, 190, 205, 220
<u> </u>		Race, C
Prasad, N	Pushpa, V	Racharla, J
Prasad, P	Putra, G	Rack, A9, 13, 86, 113, 122, 141,
Prasad R, A	Putz, B 31, 63, 100, 101, 134, 168,	180, 222, 285
Pratama, K	203, 229, 238, 248, 274	Rackley, C
Pratyush Behera, R149	Puybras, M210	Rack, P 148, 231, 239, 240
Preis, J	0	Rackwitz, J
Prenzlow, E	Q	Rademacher, M
Presley, M	Qadri, S	Radhakrishnan, M 10, 22, 115,
Presmanes, L	Qaisar, M	118, 240
Prestemon, S	Qazi, Z	Radon, A
Preston, A 13, 37, 82, 106, 247	Qian, B	Radovic, M
Preuss, M120	Qian, H	Rae Eon, K
Pribe, J41, 48, 75, 111, 144, 181, 301		
Pribram-Jones, A 34, 260, 262	Qian, M	Raeker, E
Price, S 38, 54, 70, 208, 259, 296	234, 252, 278	Rae, M
Prichard, P 76, 105, 112, 139, 174,	Qian, S	Rafferty, B
208, 234, 252, 278, 282	Qiao, J	Rafiei, B
Priebe, D	Qi, J 15, 17, 103, 189, 218, 270	Rafiq, S
Priedeman, J 41, 74, 116	Qi, L 19, 51, 89, 124, 156, 157, 192,	Rafique, M246
Prié, M	194, 254, 258, 261, 289, 294, 296	Raguraman, S
Priesen Reis, E	Qin, F90	Rahadian, F
	Qin, H262	Rahbar, N 46, 124, 220, 243, 268
Prieto, A	Qin, L	Rahimi, S
Prima, F 16, 17, 47, 84, 186, 187, 216	Qin, X86	Rahman, F
Primetzhofer, D	Qi, R287	Rahman, K107
Primig, S 34, 68, 105, 138, 173, 195,	Qiu, D	Rahman, R279
207, 233, 251, 277, 284	Qiu, R	Rahman, T72, 260
Prince, L	Qiu, S	Rahman, Z
Prince, M	Qi, Y	Rahul, F
Pritchard, M243	Qi, Z56, 102	Rahul, R292
Privat, K119	Quadros, F	Rai, B
Priyadarshi, A180	Quang, M	Raigosa, D
Priyadharshini, M183	Quarshie, J	Raiman, S
Probert, A231	Queylat, B	140, 166, 194, 201, 202, 227,
Proctor, J 94, 103, 137	Qu, H	247, 272, 278
Proehl, E160	Quincey, J	Raj, A 100, 191, 200, 216, 217, 229
Prokhorenko, M	•	•
Prokhorenko, S	Quinonero-Galindo, J	Raja, A
Prokic, M	Quinta da Fonseca, J	Rajagopalan, J31, 64, 101, 135, 168,
Prost, T	Quintana, i	199, 203, 230, 255, 274
Proudhon, H	Quintana, M 150, 182, 222, 298	Rajagopal, J
Provatas, N	Quirinale, D	Rajamudili, K300
Provines, J	Qu, J	Rajan, G198
Pryga, K	Quraishy, M291	Rajanna, R
11 y 5 a, 1		

Rajapakse, Y	Randolph, S239	Reed, P
Rajendran, H240	Rane, K105	Reese, C
Rajgire, S	Rangari, V	Reese, S
Rajib, S35	Rangel Velasco, D	Rees, J
Raji, H260	Ranger, M170	Reeve, S 17, 48, 85, 121, 151, 187,
Raji, M	Rani, P	218, 292
Rajput, S	Rankouhi, B	218, 292 Regidor, H182
Raj, R	Rao, B	Regmi, S 36, 107, 210
Raj, S	Rao, E	Rehman, K84
Raju Natarajan, A	Rao, M	Rehmer, B197, 214
Rakhmonov, J 103, 113, 214	Rao, P	Reichelson, D
Rakita, Y246	Rao, Y292	Reichelson, J
Rakoczy, L	Rapetti, A141	Reid, A
Rakovan, J	Rashidi, R	Reid, M218
Ralph, T180	Rasmussen, P	Reidy, J
Ramabathiran, A96	Rasooli, N	Reifsnyder Hickey, D111
Ramachandramoorthy, R 231	Rasouli, N	Reikher, A
Ramachandran, S82	Rath, D	Reilly, D
Ramadhani, M	Rath, L	Reis, C
Ramakrishna, G 55, 160, 196	Ratnala, D	Reiser, A 45, 119, 158, 171, 195, 205,
Ramalingam, M	Raturi, A	222, 231, 244, 250, 297, 300
Ramamurty, U	Raturi, D	Reis, M
Ramana, C8, 42, 75, 111, 144, 179,	Ratvik, A	Reiss, R
238, 262	Ratzker, B	Reiss, T
Ramanuj, V	Rauf, A	Remington, B
· · · · · · · · · · · · · · · · · · ·	Raut, K	Remonato, F
187, 218, 292		
Ramar, M	Ravel, B	Renault, P
Ramasamy, P	Ravikumar, S	Rendón Giraldo, J
Ramasamy, V	Ravi Narayanan, V	Renfro, M
Ramasubramanian, L 25, 37, 71, 130,	Ravindra, N8, 42, 75, 111, 144,	Renfrow, R
148, 280, 283	179, 218, 262	Renganayagalu, R188
Rame, J 178, 212, 237, 281	Ravindran, S	Rengifo, S
Ramesh, K	Ravi, P	Ren, H
Ramesh, M	Ravi, S	Ren, J 172, 212, 280
Ramgopal, T57	Ravi, V	Ren, M 87, 153, 189
Ramirez, A 10, 37, 78, 115, 129, 146,	Rawding, J	Renner, D
180, 213, 238, 287, 289	Rawlings, A	Renner, P
Ramirez, I	Rayaprolu, S	Ren, Q 72, 102, 107
Ramirez-Martinez, E	Ray, J	Renteria, C51, 191
Ramírez, P	Ray, N179	Rentz, R
Ram, K15, 224	Ray, P	Ren, X 73, 87, 125, 293
Ramos Ballesteros, A 196, 228	Razavi, M124	Ren, Y
Ramos-Ballesteros, A272	Razmi, J	Reny, P
Ramos Bandeeras, J	Ready, J	Ren, Z 103, 146, 193
Ramos Banderas, J	Ready, W	Ren Zulian, Q
Ramos-Banderas, J 228, 273, 298	Rebak, R 25, 57, 95, 128, 161	Repp, O129
Ramos, J273	Rebrin, M198	Reshetnyak, O270
Ramos, K	Recai Onal, M	Restum, J
Ramos Moreira Afonso, C177	Redarce, T	Reufsteck, T188
Ramprakash, S	Reddy, R60	Revelo Huertas, C286
Ramsey, C	Reddy, S	Revil-Baudard, B 109, 170, 181, 241
Ramulu, M	Reddy, T	Revilla-Cuesta, V
Rana, H	Redemann, B 141, 161, 209, 246, 254,	Reyes, F
Ranasingha, O287	275	Reyes Holguin, J261
Ranaweera, C101	Redford, J	Reyes, I
Randall, N	Redmond, J 50, 65, 88, 124, 268	Reyes, L
Randall, S	Redwing, J	Reyes Pérez, M
Randhavan, R	Redwing, N	Reyes-Pérez, M 264, 277, 295, 296
Randhaven, R	Reece, M	Reyes Pulido, H
	10000, 111	10,001 undo, 11

Reyes Ramos, W258	Ritchie, S	Rokkam, S19, 25, 27, 51, 57, 59, 89,
Reyes Tirado, F 10, 78, 115, 146, 289	Rittenhouse, J 30, 142, 223	95, 98, 124, 128, 131, 156, 160,
Reyes-Valderrama, M264, 277	Ritter, C	161, 192, 197, 224, 270, 272, 294
Reyes-Zacarias, J	Ritzo, M	Rolark, F
Reynolds, J	Rivera-Diaz-Del-Castillo, P 97, 126 Rivera, J	Rolchigo, M
Rezaei, A	Rivers, K	Rollett, A 9, 13, 48, 75, 90, 102, 103,
Reza-E-Rabby, M	Rivers, M	114, 115, 121, 145, 162, 213, 232
Reza, F	Rizk, J	Rolseth, S242
Rezazadeh, V58	R, M31	Romanovskaia, E 29, 57, 99, 141,
Rezwan, A	Roach, D69	272, 273
Rhee, H 68, 139, 164, 230	Roach, M	Romanovski, V 29, 57, 99, 141, 272
Rheinheimer, W	Robbe, P	Romedenne, M 62, 63, 102, 166
Rhoads, B 17, 97, 187	Robert, N	Rome, J
Rhodes, D	Robert, P	Romero, S
Rial Tubio, C	Robertson, E	Romero Serrano, J
Ribeiro, J	Roberts, S	Romero-Serrano, J
Ribeiro Oliveira, H294	Robin, I	Rometsch, P 152, 177, 210
Ribic, B	Robinson, A12	Rommel, S95, 105, 173, 207, 232,
Ricci, S	Robinson, D	251, 301
Richardson, S	Robinson, I	Romnes, C 10, 115, 209
Riche, H54	Robinson, J	Rondinelli, J 141, 161, 209, 226, 246
Richeton, T	Robinson, R	Ronevich, J
Richter, A	Robič, R	Ronnebro, E
Richter, B 48, 111, 181	Roccapriore, K	Ronning, F
Richter, J	Rock, C	Roop, M
Richter, N 63, 103, 105, 137, 214	Rodelas, J	Roper, B
Richter, R	Rodgers, M	Roper, C
Rickman, J	Rodrigues, S	Roques, A
Ricks, T	Rodriguez-Crespo, B	Rørvik, S 56, 106, 131
Ridgeway, C234	Rodriguez de Vecchis, P	Rosales, J
Ridley, M	Rodriguez De Vecchis, P 9, 77,	Rosalie, J
Ridwan, O	145, 290	Roschli, A
Riechers, B 39, 109, 237	Rodriguez De Vecchis, R	Rosenberg, S
Riedemann, T	Rodriguez, J	Rosenberg, W
Riedmüller, K	Rodriguez, K	Rosenkranz, S
Rielley, Z197	Rodriguez, L	Rose, S
Riemann, J	Rodriguez Laguna, M227	Rösner, H
Riensche, A	Rodriguez, M	Ross, A
Riesch, J 157, 194, 211, 221, 243	Rodriguez Perez, N	Rosseinsky, M
Rietema, C	Rodriguez, R	Rossi, E
Riffe, W	Rodriguez-Velamazan, J	Rossini, A
Rigby-Bell, M	Roehling, J	Rostamian, A
Righi, G	Roemer, F	Rost, C
Rijal, B	Roesler, J	Rotermund, B
Rijckaert, H18	Rogers, A	Roth, A35
Rim, I	Rogers, J 44, 129, 274	Rothchild, E 156, 221, 222
Ringer, S 40, 76, 132, 244, 260, 282,	Rogers, M	Roth, J24
293, 295	Roggelin, J	Roth, P178
Rio-Lopez, N	Roginski, A	Rottmann, P 45, 105, 176, 209, 224,
Rios, M	Rogoff, E	236, 254, 279
Riot, C	Rohatgi, P	Roubier, N
Risbet, M	Rohrer, G 125, 170, 190, 193, 213	Roucoules, V
Riss, A	Rojas, G	Rouf, A
Ritchie, R 15, 18, 43, 57, 83, 113, 114,	Rojas, V	Rouhani, A
120, 165, 186, 194, 217, 261		Roure, I

D 1	D 0	0 " 110 0
Rouse, J	Ryu, S	Sajjadifar, S9
Rousselle, M	Ryu, W	Sajl, S8
Rout, B	264, 265, 281	Sakaguchi, S
Röver, I	0	Sakamoto, Y293
Rovinelli, a126	S	Sakane, S
Rovinelli, A 41, 66, 167, 216	Cool I	292, 293, 296
Rowenhorst, D 26, 58, 173, 182,	Saal, J	Sakano, M
204, 289	Sá, B	Sakib, N
Rowthu, S	Sabatani, E	Sakurai, T
Ro, Y	Sabathier, C	Salado, M
Roy, A	Sabatini, C	Salas, D
· ·	Sabat, M265	
Roy, H	Sabau, A	Salas, E
Roy, P	S. Abdel-Khalik, H137	Salas Mula, D
Roy, R	Saberi, L	Salata-Barnett, M
Roy, S 14, 21, 82, 130, 133, 146, 182,	Sabirov, I	Salazar, D8, 9, 14, 45, 67, 77, 82,
183, 215, 258, 259, 261, 275,	Sable, P	104, 113, 118, 145, 149,
289, 297, 300	Sabuj, M111	180, 185, 264, 275, 285
Roy, T117	Saccone, D	Salazar Mejia, C82
Rozak, G	Sachan, A111	Salazar-Yantas, K91
Rozman, K58, 197	Sachan, R 8, 42, 75, 111, 144, 148,	Salehi, D178, 181
Rozo Vasquez, J		Salehi, S
Ruano, S	179, 185, 216, 217, 240, 262, 263	Salehnasab, B
Rubio-Ejchel, D	Sachi, S	Saleh, T89
Rucker, B	Sadaf, M	Salem, A
Ruckh, E	Sadeghzade, S 67, 183, 262, 299	Salem, H
	Sadler, B54, 159	Sales, B
Rudchenko, S	Sadowski, J	
Rudd, R	Sadriji, B	Salinas, J
Rudyk, B	Saedi, S260	Salleh, M
Ruediger, A	Saefan, A	Sallot, P
Ruestes, C	Saeki, M	Salloum-Abou-Jaoude, G65
Ruffley, J	Saevarsdottir, G189	Salman, S49
Rufner, J	Saez, E	Salomon, E
Ruggiero, A 111, 118, 184	Sagahaian, S9	Salonitis, K 118, 136, 169, 253
Ruggiero, M72	Saggi, A	Salvato, D
Ruggles, T	SaGong, M	Salvini, M196
Ruiz Sánchez, A60	Saha, G	Salvucci, R
Rundensteiner, E	Saha, M	Saly, E
Runnels, B 52, 91, 121, 220, 248		Samaei, A113
Rupert, T 105, 125, 137, 157, 226	Saha, P	Samajdar, I
Rupp, B	Saha, R	Samanta, A
Rupp, M	Saha, U	Samanta, K
Rusin, B 14, 257, 279	Sahin, F	S. Amaral, J
Russell, K	Sahin, S292	Samaras, D
Russell, N	Sahoo, S 12, 75, 111, 147, 215, 263, 288	Samarov, V
	Sahu, B 34, 212, 238, 265	
Russell, O	Sahul, R172	Samin, A
Russell, R	Sahu, P	Samolyuk, G
Russel, R	Sai Behara, S	Sanchez, C
Ruybalid, A	Said, A	Sánchez Mendoza, A
Rvindra, N	Saida, J	Sanchez-Poncela, M284
Ryan, D41	Saida, S	Sandberg, R
Ryan, P	Saidi, W	Sanders, D
Rycroft, C89	Sainju, R	Sanderson, S
Rydberg, J136	Saitoh, H	Sanders, P
Rye, K223		Sandhage, K
Ryou, K	Saito, K	Sandquist, J56
Ryu, C	Saito, N	Sangid, M 25, 77, 80, 111, 114, 116,
Ryu, D	Saito, Y	119, 162, 166, 181, 204, 212
Ryu, H	Saiz, N	Sanjay, K
Ryu, I	Saji, S222	Sanjurjo-Rodriguez, C213, 217
,,		2 , , 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

Sankaranarayanan, V219	Sa, V	Schnelle, J
Sankaran, S	Savage, C	Schniepp, H19, 67, 155, 191, 220,
Sankare, S	Savage, D 21, 43, 160, 232	243, 268
Sankar, V	Savage, G172	Schnitzer, R
San Marchi, C	Savarkar, S	Schoedel, A
Sannes, S	Saville, A	Schoekel, A
Sanniboina, S	Savinov, R	Schoenung, J 14, 69, 208, 244, 279
Sanni, O	Savovici, A	Scholz, R
San, S	Saw, W	Schonfeld, H
Sansoz, F	Sayeed, H 155, 207, 210, 217, 241	Schooler, C
Santala, M	•	
•	Scarlate, S	Schorne-Pinto, J 62, 227, 273
Santamaria, A	Scarpellini, A	Schott, T
Santa Maria, F	Scarponi, J	Schrad, C
Santangelo, M	Schaefer, B	Schrandt, S
Santecchia, E	Schaefer, J	Schreiber, B
Santiago, C	Schaefer, R118	Schreiber, D 63, 99, 141, 196, 204, 237
Santoni, A	Schaeffer, B	Schreiber, M11
Santos, J	Schaeperkoetter, J243	Schreiner, N
Santos, M294	Schäfer, R	Schretter, L
Santos Macías, J	Schaffer, J	Schriever, S
Santos Paixao, A	Schaller, R 29, 61, 269	Schroers, J 100, 142, 178
Santra, S	Schantl, P	Schuessler, B 16, 238, 249
Sarac, A	Schaper, M 146, 200, 280	Schuette, R226
Sarangi, S	Schappel, D	Schuh, C 18, 21, 22, 50, 52, 64, 82, 88,
Saravanan, H146, 259	Scharf, T	91, 119, 123, 125, 154, 157,
Sarebanzadeh, M216	Schefield, J	174, 190, 193, 220, 295
Sargin, I	Scheideler, W	Schuler, B
Sargin, I	Scheie, A	Schuler, G
Sarhan, A	Scheinker, A	Schuler, T
Sari, I	Schellert, S	Schulte, J
Sariturk, D	Schell, N	Schulthess, J
Sari, Y	Schenck, C	Schulz-Harder, A
Sarkar, S	Scherbring, S	Schulz, P
Sarkar, Z	Scheu, C	Schürch, P
Sarker, S	Schiavone, A	Schuster, B
Sarmiento, E	Schiavone, M	Schutz, F
Sarswat, P	Schill, W	Schwaiger, R 15, 79, 107, 199
Sarvesha, R	Schindelholz, E	Schwalbe, C 178, 212, 237, 281
S. A., S	Schirck, J	Schwam, D
Sasaki, M	Schlagel, D	Schwartz, J
Sasaki, T	Schlagel, J	Schwarz, F
Sasidhar, F 38, 72, 108, 142, 280	Schlereth, C24, 112	Schwarz, N
Sasidhar, K 16, 37, 45, 71, 171, 272	Schley, R21	Schwarz-Selinger, T211
Sathiyamoorthi, P265	Schmalbach, K 31, 63, 100, 103, 134,	Schweiger, L
Satılmış, U165	167, 168, 203, 229, 238, 248, 274	Schweinhart, B
Sato, G200	Schmid-Fetzer, R40	Schweizer, P51, 297
Sato, N	Schmidt, C8	Schwen, D
Sato, T244	Schmidt, F95, 141	Schwenk, G
Sato, Y129, 162, 198, 225,	Schmidt, J	Schwetter, A
245, 259, 271	Schmidt, V193	Schwiedrzik, J 51, 64, 101, 183, 231
Satpathy, B	Schmitz, M50	Scott, J176
Sau, A	Schmitz, T	Scott, L
Sauber, M	Schneider, A 33, 34, 49, 87, 122, 153,	Scott, S
Sauceda, D	170, 189, 219, 235, 242, 253	Scott, T
Sauer, L	Schneider, J	Scott, W
Saunders, E	Schneider, K	Scroggins, J
Saunders, H	Schneiderlochner, E	Scully, J 15, 29, 57, 95, 99, 141, 160,
Saunders, N	Schneider, M	161, 197, 209, 222, 270, 272, 273, 275
Saurabh, T	Schneider, S	Scuseria, T
Jauraun, 1	ociniciaci, o52	ocuse11a, 1138

Seaberg, M	Setyawan, W 63, 102, 169, 249	SharafEldin, K116, 124
Seal, S	Sevart, M	Sharda, A
Seaton, N	Sevinsky, A82	Shargh, A120
Sebastiani, M147	Seward, G	Sharma, A 10, 13, 16, 17, 43, 44, 47,
Sebastian-Olazabal, B258	Seyed Mahmoud, S	64, 84, 92, 101, 119, 120, 129, 150,
Sebastian, R	Seyoum, J	175, 186, 209, 217, 229, 235, 247,
Secor, E	Seyyedhosseinzadeh, H283	253, 284, 291, 300
Sediako, D 188, 218, 219, 241	Shabana, M	Sharma, B176
Seede, R	Shabnam, S	Sharma, D
Seepersad, C	Shachar, M239	Sharma, H 52, 101, 162
Sehar, D	Shade, P 144, 162, 187	Sharma, K
Sehitoglu, H 119, 121, 154, 168	Shadle, D	Sharma, M
Seiboth, F	Shadvar, N	Sharma, P 75, 198, 287
Seidman, D 16, 76, 113, 177, 180,	Shafae, M146	Sharma, R
282, 283, 284, 285	Shaffer, M53, 61, 91	Sharma, S 14, 32, 103, 115, 146, 174,
Seifert, H	Shafieizad, A	208, 239, 240, 272, 275
Seifi, M	Shafique, S	Sharma, V
Seif, M	Shahab, S	Sharon, J
Seiler, M56	Shahan, D	Sharp, S
Seita, M 71, 158, 195, 222, 244, 297	Shahani, A 188, 218, 283, 297	Shashaani, A295
Seixas Quintanilha Gomes, R 104, 268,	Shahbazmohamadi, S191	Shata, S
276	Shaheen, N	Shauf, E
Sekida, S	Shah, H	Shaw, B
Sekuła, A	Shah, I	Shaw, T
Selby, M	Shahid, M	Sheets, C
Seleson, P	Shahini, M	Sheffield, J
Selim, F 23, 53, 55, 94, 108, 127, 141,	Shah, J	Sheikh, S
160, 196, 223, 237, 269	Shah, M	Shekhar, R 68, 94, 210
Sellam, M	Shahnazari, A	Shelton, J
Selleby, M	Shah, S	Shelton, W
Selmi, T	Shah, Z	Shen, C
Semiatin, L	Shaikh, S	Sheng, X
284, 285	Shaik, M	Shen, J
Semple, J	Shakeel, Y	Shen, S
Senanu, S 56, 93, 94, 223, 242	Shakibi, A	Shen, T
Sen-Britain, S	Shakouri, A	Shen, X
Sen, D	Shamberger, C	Shen, Y 14, 23, 34, 51, 55, 67, 93, 104,
Sen, F	Shamroukh, A	105, 119, 127, 138, 159, 161, 164,
Sen, I	Shamsaei, N9, 77, 96, 112, 114,	196, 269, 276, 277, 290
Senkov, O 13, 44, 81, 117, 134, 263	151, 286	Sherburne, M
Seno, R	Shamsujjoha, M	Sheriff, K
Senor, D	Shanbhag, S	Sherif, Z
Sen, R	•	Sheu, E
	Shang, A	
Sen, S	Shang, B	Sheyfer, D
	Shang, J	
Seoane, A	Shang, S	Shibata, H 13, 43, 80, 81, 291
Seo, B	Shang, X	Shibata, M
Seo, J	Shang, Z	Shields, M
Seo, K	Shankar, K	Shih, P
Seol, J	Shankar, S 49, 253, 292	Shi, L
Seo, M	Shanks, K	Shim, A
Seo, S	Shanmukha Kiran, A	Shimada, M
Sepehrband, P	Shao, J	Shimak, E
Serhiienko, I	Shao, L 16, 23, 30, 33, 34, 56, 66, 75,	Shimizu, L
Serizawa, H	94, 99, 127, 134, 137, 141, 202, 247	Shimokawa, T
Serles, P	Shao, S 9, 77, 96, 112, 114, 151	Shim, S
Serrano, M	Shao, W	Shin, A
Serrano, R	Shao, Y	Shin, D
Seto, Y172	Shapiro, D	Shinde, D160

Shin, G. 2.19 Sigamani, A. 2.19 Sigano L. 2.13 Shin, G. 2.29 Sigano L. 2.13 Shin, G. 2.29 Shin, C. 2.20 Shin, C. 2.20 Shin, C. 2.20 Shin, R. 2.7 Shin, R. 2.7 Shin, R. 2.7 Shin, R. 2.7 Shin, R. 3.7 Shin, S. 3.7, 2.7, 2.7, 2.8, 2.8, 6. Shin, S. 3.18, 19, 19, 12, 2.9, 5. Shin, S. 3.18, 13, 19, 12, 12, 2.9, 5. Shin, S. 8.1, 183, 19, 12, 12, 2.9, 5. Shin, S. 8.1, 183, 19, 12, 12, 2.9, 5. Shin, S. 8.1, 183, 19, 12, 12, 2.9, 5. Shin, S. 8.1, 183, 19, 12, 2.9, 5. Shin, S. 1.2 Shin, Y. 1.2, 2.02, 2.15, 2.39, 2.17, 2.4, 2.9, 5. Shin, S. 1.2 Shin, S. 1.64 Shin, S. 1.			
Shingledecker. 10 Sikan. F. 150, 22, 298 Singh. V. 126, 127, 278, 288 Shin K. 27 Silaen. A. 74, 228 Singh. V. 262 Shin S. 68 Silberta. M. 101 Sinha. M. 1.69 Shin, S. 81, 183, 199, 217, 298 Siller, H. 37 Simost., S. 33 Shin, Y. 12, 202, 215, 299, 251, 274, 293 Sills, R. 52, 200 Sirrun, Q. 2.86 Shin, Q. 28, 61 Silva, B. 2.94, 295 Sirvin, O. 2.90 Shi, Q. 28, 61 Silva, B. 2.94, 295 Sirvin, G. 2.90 Shi, A. 1.62 Silva, B. 2.94, 295 Sirvin, G. 2.90 Shirato, N. 2.17 Sika, B. 2.94, 295 Sirvin, G. 2.94 Shirtania, R. 2.29 Silva, B. 2.94 Sikos, G. 2.84, 24 Shirtania, R. 2.29 Silva, B. 2.94 Sirak, M. 2.99 Shirtania, R. 2.29 Silva, B. 2.94		· ·	•
Shin, N. 257, 298 Shin, K. 272 Shin, M. 615 Shin, S. 81, 183, 199, 217, 298 Slilberstin, M. 1.01 Shin, M. 65 Shin, S. 81, 183, 199, 217, 298 Sliller, H. 373 Shin, W. 1614, 291 Sliller, C. 261, 277 Sliva, B. 21, 202, 215, 229, 231, 247, 293 Slike, R. 21, 202, 215, 229, 231, 247, 293 Slike, R. 210, 203 Shiotsu, R. 162 Sliomon, J. 63 Slivin, R. 162 Sliomon, J. 63 Slivin, R. 40, 47 Sliva, B. 294, 295 Sliva, D. 82 Sliva, R. 204 Shirarian, R. 216 Shirarian, R. 227 Sliva, B. 294, 295 Shirarian, R. 227 Sliva, B. 294 Shirarian, R. 228 Shirarian, R. 229 Sliva, B. 294 Sliva, B.		· ·	
Shin, K. 2.7 Silaen, A. 7.4.228 Sinha, M. 1.05 Shin, M. 6.5 Silberstein, M. 1.01 Sinha, S. 8.4 Shin, S. 8.1.183, 199, 217.298 Siller, H. 3.7 Sinn, J. 2.39 Shin, W. 164, 294 Siller, H. 3.7 Sincy, J. 5.28 Shin, S. 18, 21, 21, 220, 215, 239, 251, 274, 293 Sills, R. 5.21, 24, 261 Sirvinor, D. 2.39 Shi, Q. 26, 127 Sillouren, J. 66 Sirvinor, D. 299 Shi, R. 40, 47 Silva, B. 242, 251 Sirvinor, D. 290 Shirata, N. 217 Silva, B. 299 Silvinian, R. 294 Silvinan, R. 294 Silvinan, R. 294 Silvinian, R. 294 Silvinian, R. 294	Shingledecker, J		Singh, V 146, 147, 278, 283
Shin, M. 65 Silberstein, M. 101 Sinha, S. 8.1 183, 199, 217, 298 518. 5.	Shin, J	Sikan, F 150, 222, 298	Singh, Y262
Shinnoda, F. 6.5 Sille, R. 5.2 00 Innnott, S. 5.3 Shin, N. 1.64, 294 Siller, H. 3.7 Stons, J. 2.289 Shin, W. 1.64, 294 Silligman, C. 2.61, 275 Siregar, A. 2.19 Shiotsu, R. 1.62 Silomon, J. 6.0 Sirvinon, P.	Shin, K	Silaen, A74, 228	Sinha, M169
Shin, S. 8,183,199,217,298 Siller, H. 3.7 Stons, J. 2,98 Shin, Y. 1,12,202,215,239,251,274,293 Sills, R. 2,51,27 Sirizer, C. 3,00 Shin, Y. 1,12,202,215,239,251,274,293 Sills, R. 52,124,266 Sirvin, O. 2,300 Shi, Q. 2,63,61 Silva, B. 2,94,295 Sirvinski, C. 2,40 Shi, R. 40,47 Silva, D. 8,82 Sisson, M. 2,44 Shiramizu, K. 1,62 Silva, D. 8,82 Sisson, M. 1,49 Shiriana, R. 2,259 Silva, M. 2,995 Sirkob, M. 2,995 Shiriana, R. 2,259 Silva, M. 2,995 Sirvarpan, T. 1,36,169 Shivaraman, R. 2,239 Silverstein, R. 1,41 Sixio, M. 2,01 Shivaraman, R. 2,239 Silverstein, R. 1,41 Sixif, M. 1,00 Shokir, N. 9,183 Simco, M. 2,21 Sixif, M. 1,00 Shokir, N. 9,183 Simco, M.	Shin, M65	Silberstein, M	Sinha, S
Shin, S. 81,183, 199, 217, 298 Siller, H. 3.7 Sons, J. 2.98 Shin, Y. 1,62, 294, 215, 239, 251, 274, 233 Sills, R. 261, 275 Sirgar A. 219 Shin, Y. 1,22, 202, 215, 239, 251, 274, 233 Sills, R. 52, 124, 266 Sirvin Coop. 300 Shi, Q. 2,361 Silva, B. 294, 295 Sirvinski C. 240 Shi, R. 40,47 Silva, D. 8.82 Sisco, K. 244, 251 Shiramizu, K. 1.62 Silva, D. 8.82 Sisco, K. 244, 251 Shiranian, R. 2.259 Silva, M. 299 Sirko, M. 299 Shirinian, R. 2.59 Silva, M. 299 Sirko, M. 299 Shiranian, R. 2.59 Silva, S. 2.905 Sirviawamy, G. 1.134, 237 Shivaraman, R. 2.29 Silverstein, R. 1.41 Skaf, M. 1.06 Shivaraman, R. 2.29 Silverstein, R. 1.41 Skaf, M. 1.06 Shokir, N. 9.18 Sim	Shinoda, F	Sillekens, W	Sinnott, S
Shin, W			
Shiny Y. 12, 202, 215, 239, 251, 274, 295 Slicomon J.			
Shiotu R		•	ĕ
Shi, Q			
Shi, R			
Shirato, N. 217 Silva, D. 82 Sisson, M. 149 Shiratio, N. 217 Silva, E. 295 Sitko, M. 299 Shirinian, R. 259 Silva, M. 295 Sivawaman, T. 136, 169 Shitus, J. 70, 224 Siklva, S. 295 Sivawamany, G. 135 Shivaraman, R. 239 Sikverstein, R. 141 Skaf, M. 106 Shiyarsaad, A. 194, 269 Sikvestro, L. 294 Skaf, M. 106 Shokri, N. 163 Si, M. 201 Sker, F. 181 Shokri, N. 9, 183 Simc, G. 123 Skobre, F. 236 Shornikov, S. 264 Sim, G. 34, 123, 137, 166, 192, 274 Skobre Balantič D. 283 Shorrikov, S. 264 Sim, J. 255 Skolov, K. 4, 45 Shorrikov, S. 264 Sim, J. 257 Skolov, K. 4, 45 Shorrika, A. 210 Simonasi, N. 1, 294 Skolov, K. <td< td=""><td></td><td></td><td></td></td<>			
Shirato, N.			
Shirtun, I. 2.59 Silva, M. 2.95 Sivarapan, T. 1.36, 169 Shituc, J. 1.86 Silverstein, J. 2.95 Sivarapan, G. 1.35 Shivaraman, R. 2.29 Silverstein, R. 1.41 Skaf, M. 1.06 Shivprasad, A. 1.94, 269 Silvestrol. 2.94 Skaf, M. 1.06 Shobil, I. 6.67 Silvestrol. 2.94 Skalalad, K. 2.81 Shokiri, N. 9, 183 Simco, M. 2.34 Skjerrno, J. 5.6 Shokhifar, T. 147, 183, 215, 62 Sim, G. 34, 123, 137, 168, 219, 274, 281 Skobri Balantic, D. 2.83 Shornikov, S. 2.64 Sim, J. 2.57 Skotov, K. 4.45 Shortridge, A. 2.33 Simmonds, P. 5.3148 Skrotzki, B. 85, 197, 214 Shoutlag, A. 2.42 Simonasai, N. 1.04, 276 Slate, C. 2.22 Shoutlag, A. 2.42 Simonalis, M. 1.04, 276 Slate, C. 2.22 Shoutlag, A. 2.93			
Shitus, J. 70, 224 Silva, S.			
Shiue J 1.86 Silverstein J 1.34,237 Syph, J			
Shivaraman, R. .39 Sliverstein, R. .141 Skaf, M. .106 Shiyarsad, A. .194, 269 Slivestro, L. .294 Skailand, K. .281 Shoji, I. .153 Si, M. .201 Sket, F. .181 Shoki, N. .9 Simand, G. .123 Skinner, T. .236 Shokuhfar, T. .147, 183, 215, 262 Sim, G. .34, 123, 137, 168, 219, 274, 281 Skobir Balantič, D. .283 Shornikov, S. .264 Sim, J. .257 Skrotzki, B. .85, 197, 214 Short, M. .21, 29, 30, 44, 62, 99, 102, 102 Simmonds, P. .53, 148 Skrotzki, W. 119 Short, M. .21, 29, 30, 44, 62, 99, 102, 102 Simmonds, P. .53, 148 Skrybakmoen, E. .54, 31, 159, 159, 214 Short, M. .21, 29, 30, 44, 62, 99, 102 Simmonds, P. .187 Skybakmoen, E. .54, 31, 159, 214 Short, M. .21, 270, 277 Simmon, J. .187 Skybakmoen, E. .54, 31, 159, 159, 214 Short, M. .22, 23 Simmon, J. .19, 20			
Shivprasad, A 1.94,269 Silvestro, L 2.94 Skailand, K 2.81 Shi, Z 1.53 Si, M 2.01 Sket, F 1.81 Shohij, I 6.67 Simard, G 1.23 Skinner, T 2.236 Shokri, N 9, 183 Simco, M 2.34 Skjermo, J 5.6 Shokuhfar, T 147, 183, 215, 262 Sim, G 3.123, 173, 166, 219, 102 5.6 Shortikov, S 2.64 Sim, J 2.57 Skokov, K 4.5 Short, M 2.1, 29, 30, 44, 62, 99, 102 Simmonds, P 5.31, 148 Skrotzki, B 85, 197, 214 Shortridge, A 2.30 Simonassi, N 1.04, 275 Skybakmoen, E 54, 93, 153, 159 Shortridge, A 2.30 Simonassi, N 1.04, 276 Slade, J 2.42 Shortridge, A 2.30 Simonassi, N 1.04, 276 Slade, J 2.42 Shortridge, A 2.30 Simon, P 2.94 Slade, J 2.42 Short, H 2.66 Simonassi, N 1.04, 25			•
Shi, Z. 1.53 Si, M. 201 Sket, F. 1.81 Shobij, I. 67 Simard, G. 1.23 Skimer, T. 2.36 Shokri, N. 9,183 Simco, M. 2.34 Skjermo, J. 5.6 Shokuhfar, T. 147,183,215,262 Sim, G. 34,123,137,168,219,274,281 Skebobir Balantič, D. 283 Shornikov, S. 2.64 Sim, J. 2.57 Skrotzki, B. 88,197,214 Short, M. 2.1,29, 30, 44, 62,99, 102 Simmonds, P. 53, 148 Skrotzki, W. 1.19 Short, M. 2.1,229, 30, 44, 62,99, 102 Simmonds, P. 53, 148 Skrotzki, W. 1.19 Short, M. 2.1,229, 30, 44, 62,99, 102 Simmonds, P. 1.87, 218 Skrotzki, W. 1.19 Short, H. 2.66 Simmons, I. 1.87, 218 Skrotzki, W. 1.19 Short, H. 2.66 Simonelli, M. 72,79, 244, 250, 297 Slade, J. 2.23, 242 Shoulders, T. 1.80 Simonelli, M. 72,79, 244, 250, 297 Slade, J. 2.23			
Shohki, I. .67 Simard, G. .123 Skinner, T. .236 Shokri, N. .9,183 Simco, M. .234 Skjermo, J. .56 Shokuhfar, T. .147, 183, 215, 262 Sim, G. .34, 123, 137, 168, 219, 274, 281 Skokov, K. .45 Shornikov, S. .264 Sim, H. .257 Skrotzki, B. 85, 197, 214 Short, M. .21, 29, 30, 44, 62, 99, 102, 27 Simmonds, P. .53, 148 Skrotzki, B. 85, 197, 214 Shortridge, A. .230 Simmons, J. .187, 218 Skrotzki, B. .54, 93, 153, 159, 223, 242 Shortridge, A. .230 Simosei, J. .294, 295 Slade, J. .245, 154, 159, 223, 242 Shouther, T. 1.80 Simosei, J. .294, 295 Slater, C. .222 Shouther, T. 1.80 Simonlill, M. .214, 250, 297 Slican, A. .236 Shousha, S. 1.62, 249, 275 Simon II, W. .106, 153 Slater, C. .223, 285, 288 Shousha, S. 1.62, 249, 275 Simon, P. .196 Slifka, A.<	Shivprasad, A	·	
Shokuhfar, N 9, 183 Simco, M	Shi, Z153	Si, M201	Sket, F181
Shokuhfar, T 147, 183, 215, 262 Sim, G 34, 123, 137, 168, 219, 274, 281 Skobrin Balantič, D 283 Shoorshtari, A 215 Sim, H 257 Skokov, K 4.5 Shornikov, S 264 Sim, J 257 Skrotzki, B 85, 197, 214 Short, M 212, 29, 30, 44, 62, 99, 102, 272 Simmonds, P 533, 148 Skrotzki, W 119 Shortridge, A 230 Simmons, G 15 Skybakmoen, E 54, 93, 153, 159, 159, 159, 151, 187, 218 Shortridge, A 230 Simonsis, I 1.187, 218 Skybakmoen, E 54, 93, 153, 159, 159, 159, 151, 187, 218 Shortridge, A 230 Simonsis, I 1.187, 218 Skybakmoen, E 54, 93, 153, 159, 159, 214, 250, 297 Shoulders, T 180 Simonelli, M 72, 79, 244, 250, 297 Slate, C 223, 242 Shousha, S 168, 249, 275 Simon II, W 16 Slicak, A 2.9 Shreshtapalov, M 244 Simon, P 3.39, 7157, 205 Sload, E 2.24 Shuh, D 211 Simsek, E 147 <td>Shohji, I</td> <td>Simard, G123</td> <td>Skinner, T</td>	Shohji, I	Simard, G123	Skinner, T
Shokuhfar, T 147, 183, 215, 262 Sim, G 3.4, 123, 137, 168, 219, 274, 281 Skobrikop, C 283 Shoorsikoy, S 264 Sim, J 257 Skokov, K 4.5 Shorti, M 21, 29, 30, 44, 62, 99, 102, 133, 137, 166, 196, 201, 227, 272 Simmons, G 15 Skybakmeen, E 54, 93, 153, 159, 213, 159, 213, 158, 159, 214 Shortridge, A 230 Simeons, J 1.87, 218 Skybakmeen, E 54, 93, 153, 159, 223, 123, 129, 223, 122 Shortridge, A 230 Simeos, I 294, 295 Slade, J 223, 242 Shouther, T 180 Simon II, W 104, 276 Slater, C 222, 23, 242 Shousha, S 168, 249, 275 Simon III, W 16 Slezak, A 29 Shreshtapalov, M 24 Simon, P 333, 97, 157, 205 Sload, E 234, 48, 29 Shuha, S 293 Simpson, G 100 Slifka, A 38 Shuha, S 293 Simpson, G 107 Sloker, G 230 Shuka, S 293 Simpson, W 247, 272 Sloker, G	Shokri, N	Simco, M	Skjermo, J
Shooshtari, A. .215 Sim, H .257 Skokov, K. .45 Shorrikov, S. .264 Sim, J .257 Skrotzki, B 85, 197, 219 Short, M. .21, 29, 30, 44, 62, 99, 102, 133, 137, 166, 196, 201, 227, 227 Simmons, P .533, 148 Skrotzki, W .119 Shortridge, A. .233 Simmons, J .187, 218 .223, 242 Shortt, H .266 Simonelli, M .72, 79, 244, 250, 297 Slade, J .245 Shoutlders, T .180 Simonelli, M .72, 79, 244, 250, 297 Sleem, K .213, 285, 288 Shousha, S .168, 249, 275 Simon II, W .104 .26 Slater, C .22 Shree, J .279 Simonnin, P .196 Slifka, A .38 Shreshtapalov, M .24 Simpson, G .107 Sload, E .234 Shuai, S .293 Simpson, G .107 Slokker, G .230 Shuai, S .293 Simpson, W .247, 272 Slone, C .57 Shuhi, Y .161<			·
Shornikov, S.			
Short, M. 21, 29, 30, 44, 62, 99, 102, 133, 137, 166, 196, 201, 227, 227 Simmons, G. 1.53, 148 Skrotzki, W. 1.19 133, 137, 166, 196, 201, 227, 247, 261, 270, 272 Simmons, G. 1.15 Skybakmoen, E. 54, 93, 153, 159, 153, 159, 223, 242 Shortridge, A. 230 Simoes, I. 294, 295 Slade, J. 223, 242 Shoulders, T. 1.80 Simonelli, M. 72, 79, 244, 250, 297 Slater, C. 2.22 Shousha, S. 1.68, 249, 275 Simon III, W. 1.16 Slezak, A. 2.9 Shree, J. 279 Simon, P. 33, 97, 157, 205 Sloar, A. 2.30 Shreshtapalov, M. 24 Simon, P. 33, 97, 157, 205 Sloare, A. 2.29 Shuai, S. 293 Simpson, G. 1.07 Slokker, G. 2.30 Shuai, S. 293 Simpson, W. 247, 272 Sloore, C. 5.57 Shuhi, D. 211 Simse, E. 1.47 Sloore, C. 5.7 Shukla, A. 299 Sims, H. 78, 215, 22 Smalagic, A. 1.146, 259 </td <td></td> <td></td> <td></td>			
133, 137, 166, 196, 201, 227, 272 Simmons, G. 1.55 Skybakmoen, E. 54, 93, 153, 159, 247, 261, 270, 272 Simmons, J. 1.87, 218 223, 242 Shortridge, A.			
Shortridge, A			
Shortridge, A. 230 Simões, I 294, 295 Slade, J . 245 Shortt, H 266 Simonassi, N 104, 276 Slate, C . 22 Shoulders, T 180 Simonelli, M 72, 79, 244, 250, 297 Sleem, K 213, 285, 288 Shousha, S 168, 249, 275 Simon II., W 166 Slezak, A 2.9 Shree, J 279 Simonn, P 196 Slifka, A 38 Shreshstapalov, M 24 Simon, P 33, 97, 157, 205 Sloane, A 2.24 Shuit, S 293 Simpson, G 107 Sloker, G 2.34 Shuang, Y 42 Simpson, W 247, 272 Sloop, T 280 Shuki, Y 161 Sims, Z 10, 78, 115, 146, 289 Smalagic, A 146, 259 Shukla, N 144 Sinclair, D 147 Smidt, M 158 Shukla, S 37, 71, 110, 162, 253, 280 Singer, A 20 Smidt, T 192 Shukla, S 37, 71, 110, 162, 253, 280 Singer, D <th< td=""><td></td><td></td><td>· · · · · ·</td></th<>			· · · · · ·
Shortt, H 266 Simonassi, N 104,276 Slater, C 22 Shoulders, T 180 Simonalli, M 72,79,244,250,297 Sleem, K 213,285,288 Shousha, S 168,249,275 Simon II., W 16 Slezak, A 29 Shree, J 279 Simonnin, P 196 Slifka, A 38 Shreshtapalov, M 24 Simon, P 33,97,157,205 Sload, E 234 Shrivastava, A 190 Simonen, T 106,153 Sloane, A 222 Shuang, Y 42 Simpson, G 107 Sloker, G 230 Shuh, D 211 Simsek, E 147 Sloop, T 280 Shulk, Y 161 Sims, Z 10,78,115,146,289 Smallagic, A 45 Shukla, A 299 Simunovic, S 181 Smallwood, W 207,215 Shukla, P 189 Singer, J 35,259,260 Smirnov, A 158 Shultz-Johnson, L 140 Singer, J 35,57,79,84,98,99,148 Smitch, I <td></td> <td></td> <td>,</td>			,
Shoulders, T 1.80 Simonelli, M 72, 79, 244, 250, 297 Sleem, K 213, 285, 288 Shousha, S 1.68, 249, 275 Simon III, W 1.6 Slezak, A 2.99 Shree, J 279 Simonnin, P 1.96 Slifka, A 38 Shreshtapalov, M 2.42 Simon, P 33, 97, 157, 205 Sload, E 2.34 Shrivastava, A 1.90 Simonsen, T 1.06, 153 Sloare, A 2.22 Shuai, S 2.93 Simpson, G 1.07 Sloker, G 2.30 Shuang, Y 4.2 Simpson, W 2.47, 272 Slone, C 57 Shuk, D 2.11 Simsek, E 1.47 Sloop, T 2.80 Shuk, Y 1.61 Sims, Z 1.0, 78, 115, 146, 289 Smailagic, A 1.146, 259 Shukla, A 2.99 Simunovic, S 1.81 Smallwood, W 2.07, 215 Shukla, P 1.89 Singer, A 2.02 Smitch, I 1.58 Shultz-Johnson, L 1.40 Singer, J 35, 75, 7			
Shousha, S 168, 249, 275 Simon II,, W 16 Slezak, A 29 Shree, J 279 Simonnin, P 196 Slifka, A 38 Shreshtapalov, M 24 Simon, P 33,97,157,205 Sload, E 234 Shrivastava, A 190 Simonsen, T 106, 153 Sloane, A 222 Shuai, S 293 Simpson, G 107 Sloker, G 230 Shuang, Y 42 Simpson, W 247,272 Sloop, C 57 Shuh, D 211 Simsek, E 147 Sloop, T 280 Shuki, Y 161 Sims, Z 10, 78, 115, 146, 289 Smailagic, A 146, 259 Shukla, A 299 Simulovic, S 181 Smallwood, W 207, 215 Shukla, P 189 Singer, J 35, 259, 260 Smirnov, A 158 Shultz-Johnson, L 140 Singer, J 35, 259, 260 Smirnov, A 158 Shu, S 229, 231 Singh, A 35, 75, 79, 84, 98, 99, 148, Smith, A<			
Shree, J 279 Simonnin, P 196 Slifka, A 38 Shreshtapalov, M 24 Simon, P 33, 97, 157, 205 Sload, E 234 Shrivastava, A 190 Simonsen, T 106, 153 Sloane, A 222 Shuai, S 293 Simpson, G 107 Slokker, G 230 Shuang, Y 42 Simpson, W 247,272 Slone, C 57 Shuh, D 211 Simsk, E 147 Sloop, T 280 Shuki, Y 161 Sims, Z 10, 78, 115, 146, 289 Smallagic, A 146, 259 Shukla, A 299 Simunovic, S 181 Smallwood, W 207, 215 Shukla, P 189 Singer, A 20 Smidt, T 192 Shukla, S 37, 71, 110, 162, 253, 280 Singer, J 33, 575, 79, 84, 98, 99, 148 Smith, A 68, 180, 260 Shu, S 229, 231 Singh, A 35, 75, 79, 84, 98, 99, 148 Smith, A 68, 180, 260 Shu, Y 295 Singh, C 206, 290 </td <td></td> <td></td> <td></td>			
Shreshtapalov, M .24 Simon, P .33, 97, 157, 205 Sload, E .234 Shrivastava, A .190 Simonsen, T .106, 153 Sloane, A .222 Shuai, S .293 Simpson, G .107 Slokker, G .230 Shuang, Y .42 Simpson, W .247, 272 Sloop, T .280 Shuhei, Y .240 Sims, E .147 Sloop, T .280 Shukla, Y .161 Sims, Z .10, 78, 115, 146, 289 Smala, R .45 Shukla, A .299 Simunovic, S .181 Smallwood, W .207, 215 Shukla, P .189 Singer, A .20 Smith, T .192 Shukla, S .37,71,110,162,253,280 Singer, J .35,259,260 Smitrow, A .158 Shunmugasamy, V .227 Singh, A .35,75,79,84,98,99,148, Smith, I .15 Shuvo, M .46,190,266 Singh, C .206,290 Smith, D .45,183 Shywo, M .46,190,266 Singh, D .73			-
Shrivastava, A 190 Simonsen, T 106, 153 Sloane, A 222 Shuai, S 293 Simpson, G 107 Slokker, G 230 Shuang, Y 42 Simpson, W 247, 27 Slone, C 57 Shuh, D 211 Simsek, E 147 Sloop, T 280 Shuke, Y 240 Sims, H 78, 215, 224 Smaha, R 45 Shukla, A 299 Simunovic, S 181 Smallwood, W 207, 215 Shukla, N 144 Sinclair, D 147 Smidt, M 158 Shukla, S 37, 71, 110, 162, 253, 280 Singer, A 20 Smith, T 192 Shungasamy, V 227 Singh, A 35, 259, 260 Smirnov, A 158 Shu, S 229, 231 Singh, A 35, 75, 79, 84, 98, 99, 148, Smith, A 68, 180, 260 Shu, Y 295 Singh, C 206, 296 Smith, D 45, 183 Shuvo, M 46, 190, 266 Singh, D 73, 110, 142, 166, 207, 254 Smi			
Shuai, S. 293 Simpson, G 107 Slokker, G 230 Shuang, Y. 42 Simpson, W 247, 272 Slone, C 57 Shuh, D 211 Simsek, E 147 Sloop, T 280 Shuki, Y 240 Sims, H 78, 215, 224 Smaha, R 45 Shuki, Y 161 Sims, Z 10, 78, 115, 146, 289 Smailagic, A 146, 259 Shukla, A 299 Simunovic, S 181 Smallwood, W 207, 215 Shukla, P 189 Singer, A 20 Smidt, T 192 Shukla, S 37, 71, 110, 162, 253, 280 Singer, J 35, 259, 260 Smirnov, A 158 Shultz-Johnson, L 140 Singer, L 95 Smitch, I 15 Shungasamy, V 227 Singh, A 35, 75, 79, 84, 98, 99, 148, Smitch, I 15 Shuthanandan, V 72, 275 Singh, C 206, 290 Smith, D 45, 183 Shyam, A 103, 105, 110, 113, 214 Singh, H 29, 99, 272 <td>-</td> <td></td> <td></td>	-		
Shuang, Y 42 Simpson, W 247, 272 Slone, C 57 Shuh, D 211 Simsek, E 147 Sloop, T 280 Shukei, Y 240 Sims, H 78, 215, 224 Smaha, R 45 Shuki, Y 161 Sims, Z 10, 78, 115, 146, 289 Smailagic, A 146, 259 Shukla, A 299 Simunovic, S 181 Smallwood, W 207, 215 Shukla, P 189 Singer, A 20 Smidt, T 192 Shukla, S 37, 71, 110, 162, 253, 280 Singer, J 35, 259, 260 Smirnov, A 158 Shultz-Johnson, L 140 Singer, L 95 Smitch, I 15 Shunmugasamy, V 227 Singh, A 35, 75, 79, 84, 98, 99, 148, Smitch, I 15 Shutthanandan, V 72, 275 Singh, C 206, 294 Smith, D 45, 183 Shvo, M 46, 190, 266 Singh, G 296, 299 Smith, E 167 Shyam, A 103, 105, 110, 113, 214 Singh, I 29,		Simonsen, T	Sloane, A
Shuh, D 211 Simsek, E 147 Sloop, T 280 Shuhei, Y 240 Sims, H 78, 215, 224 Smaha, R 45 Shui, Y 161 Sims, Z 10, 78, 115, 146, 289 Smallagic, A 146, 259 Shukla, A 299 Simunovic, S 181 Smallwood, W 207, 215 Shukla, N 144 Sinclair, D 147 Smid, M 158 Shukla, P 189 Singer, A 20 Smidt, T 192 Shukla, S 37, 71, 110, 162, 253, 280 Singer, J 35, 259, 260 Smirnov, A 158 Shultz-Johnson, L 140 Singer, L 95 Smitch, I 15 Shumugasamy, V 227 Singh, A 35, 75, 79, 84, 98, 99, 148 Smith, A 68, 180, 260 Shu, S 229, 231 Singh, C 206, 290 Smith, D 45, 183 Shuvo, M 46, 190, 266 Singh, D 73, 110, 142, 166, 207, 254 Smith, E 167 Shyam, A 103, 105, 110, 113, 214 Singh, H 29, 99, 272 Smith, H 41, 172, 206, 232, 250, 300 Shyam,	Shuai, S	Simpson, G107	Slokker, G230
Shuhei, Y 240 Sims, H 78, 215, 224 Smaha, R 45 Shui, Y 161 Sims, Z 10, 78, 115, 146, 289 Smailagic, A 146, 259 Shukla, A 299 Simunovic, S 181 Smallwood, W 207, 215 Shukla, N 144 Sinclair, D 147 Smid, M 158 Shukla, P 189 Singer, A 20 Smitr, T 192 Shukla, S 37, 71, 110, 162, 253, 280 Singer, J 35, 259, 260 Smirnov, A 158 Shultz-Johnson, L 140 Singer, L 95 Smitch, I 15 Shunmugasamy, V 227 Singh, A 35, 75, 79, 84, 98, 99, 148, Smitch, I 15 Shutthanandan, V 72, 275 Singh, C 206, 290 Smith, C 214 Shu, Y 295 Singh, G 206, 290 Smith, E 167 Shyam, A 103, 105, 110, 113, 214 Singh, H 29, 99, 272 Smith, H 41, 172, 206, 232, 250, 300 Shyam, A 103, 105, 110, 113, 214 Singh, J 205 Smith, J 65, 132, 258 Sibley, T<	Shuang, Y42	Simpson, W247, 272	Slone, C
Shuhei, Y 240 Sims, H 78, 215, 224 Smaha, R 45 Shui, Y 161 Sims, Z 10, 78, 115, 146, 289 Smailagic, A 146, 259 Shukla, A 299 Simunovic, S 181 Smallwood, W 207, 215 Shukla, N 144 Sinclair, D 147 Smid, M 158 Shukla, P 189 Singer, A 20 Smitt, T 192 Shukla, S 37, 71, 110, 162, 253, 280 Singer, J 35, 259, 260 Smirnov, A 158 Shultz-Johnson, L 140 Singer, L 95 Smitch, I 15 Shunmugasamy, V 227 Singh, A 35, 75, 79, 84, 98, 99, 148, Smitch, I 15 Shuthanandan, V 72, 275 Singh, C 206, 284, 296 Smith, A 68, 180, 260 Shu, Y 295 Singh, G 206, 290 Smith, E 167 Shyam, A 103, 105, 110, 113, 214 Singh, H 29, 99, 272 Smith, H 41, 172, 206, 232, 250, 300 Shyam, A 103, 105, 110, 113, 214 Singh, J 205 Smith, J 65, 132, 258 <	Shuh, D	Simsek, E	Sloop, T
Shui, Y 161 Sims, Z 10, 78, 115, 146, 289 Smailagic, A . 146, 259 Shukla, A . 299 Simunovic, S . 181 Smallwood, W . 207, 215 Shukla, N . 144 Sinclair, D . 147 Smid, M . 158 Shukla, P . 189 Singer, A . 20 Smith, T . 192 Shukla, S . 37, 71, 110, 162, 253, 280 Singer, J . 35, 259, 260 Smirnov, A . 158 Shultz-Johnson, L . 140 Singer, L . 95 Smitch, I . 15 Shunmugasamy, V . 227 Singh, A . 35, 75, 79, 84, 98, 99, 148, Smith, A . 68, 180, 260 Shusthanandan, V . 72, 275 Singh, C . 206, 290 Smith, D . 45, 183 Shuvo, M . 46, 190, 266 Singh, D . 73, 110, 142, 166, 207, 254 Smith, E . 167 Shyam, A . 103, 105, 110, 113, 214 Singh, H . 29, 99, 272 Smith, H . 41, 172, 206, 232, 250, 300 Sibley, T . 196 Singh, J . 275 Smith, J . 65, 132, 258 Siddharth, S . 14 Singh, M . 220 <td>Shuhei, Y</td> <td></td> <td></td>	Shuhei, Y		
Shukla, A 299 Simunovic, S 181 Smallwood, W 207, 215 Shukla, N 144 Sinclair, D 147 Smid, M 158 Shukla, P 189 Singer, A 20 Smidt, T 192 Shukla, S 37, 71, 110, 162, 253, 280 Singer, J 35, 259, 260 Smirnov, A 158 Shultz-Johnson, L 140 Singer, L 95 Smitch, I 15 Shunmugasamy, V 227 Singh, A 35, 75, 79, 84, 98, 99, 148, Smith, A 68, 180, 260 Shu, S 229, 231 262, 284, 296 Smith, C 214 Shutthanandan, V 72, 275 Singh, C 206, 290 Smith, D 45, 183 Shuvo, M 46, 190, 266 Singh, D 73, 110, 142, 166, 207, 254 Smith, E 167 Shu, Y 295 Singh, G 49 Smith, H 41, 172, 206, 232, 250, 300 Shyam, A 103, 105, 110, 113, 214 Singh, H 29, 99, 272 Smith, H 41, 172, 206, 232, 250, 300 Sibley, T 196 Singh, J 265 Smith, J 65, 132, 258 Siddharth			
Shukla, N 144 Sinclair, D 147 Smid, M 158 Shukla, P 189 Singer, A 20 Smidt, T 192 Shukla, S 37, 71, 110, 162, 253, 280 Singer, J 35, 259, 260 Smirnov, A 158 Shultz-Johnson, L 140 Singer, L 95 Smitch, I 15 Shunmugasamy, V 227 Singh, A 35, 75, 79, 84, 98, 99, 148, Smith, A 68, 180, 260 Shu, S 229, 231 262, 284, 296 Smith, C 214 Shutthanandan, V 72, 275 Singh, C 206, 290 Smith, D 45, 183 Shuvo, M 46, 190, 266 Singh, D 73, 110, 142, 166, 207, 254 Smith, E 167 Shu, Y 295 Singh, G 49 Smith, H 41, 172, 206, 232, 250, 300 Shyam, A 103, 105, 110, 113, 214 Singh, H 29, 99, 272 Smith, H 41, 172, 206, 232, 250, 300 Sibley, T 196 Singh, J 275 Smith, J 65, 132, 258 Siddall, J 176 Singh, M 220 Smith, M 275 Siddharth, S			
Shukla, P 189 Singer, A 20 Smidt, T 192 Shukla, S 37, 71, 110, 162, 253, 280 Singer, J 35, 259, 260 Smirnov, A 158 Shultz-Johnson, L 140 Singer, L 95 Smitch, I 15 Shunmugasamy, V 227 Singh, A 35, 75, 79, 84, 98, 99, 148, Smith, A 68, 180, 260 Shu, S 229, 231 262, 284, 296 Smith, C 214 Shutthanandan, V 72, 275 Singh, C 206, 290 Smith, D 45, 183 Shuvo, M 46, 190, 266 Singh, D 73, 110, 142, 166, 207, 254 Smith, E 167 Shu, Y 295 Singh, G 49 Smith, H 41, 172, 206, 232, 250, 300 Shyam, A 103, 105, 110, 113, 214 Singh, H 29, 99, 272 Smith, H 41, 172, 206, 232, 250, 300 Sibali, L 69 Singh, J 275 Smith, J 65, 132, 258 Sibley, T 196 Singh, M 226 Smith, L 214 Siddall, J 176 Singh, M 220 Smith, M 275 Siddharth, S			
Shukla, S. 37, 71, 110, 162, 253, 280 Singer, J 35, 259, 260 Smirnov, A. 158 Shultz-Johnson, L 140 Singer, L .95 Smitch, I .15 Shunmugasamy, V 227 Singh, A .35, 75, 79, 84, 98, 99, 148, Smith, A .68, 180, 260 Shu, S .229, 231 262, 284, 296 Smith, C .214 Shutthanandan, V .72, 275 Singh, C .206, 290 Smith, D .45, 183 Shuvo, M 46, 190, 266 Singh, D .73, 110, 142, 166, 207, 254 Smith, E .167 Shyam, A 103, 105, 110, 113, 214 Singh, H .29, 99, 272 Smith, H .41, 172, 206, 232, 250, 300 Sibali, L .69 Singh, I .275 Smith, J .65, 132, 258 Sibley, T .196 Singh, J .265 Smith, J .65, 132, 258 Siddall, J .176 Singh, M .220 Smith, M .275 Siddharth, S .14 Singh, P .14, 18, 22, 46, 53, 68, 92, 126, Smith, N .21, 126, 133, 141, Siegmund, T .32, 260, 268 .158, 176, 194, 204, 221, 226, Smith, R<			
Shultz-Johnson, L 140 Singer, L .95 Smitch, I .15 Shunmugasamy, V .227 Singh, A .35, 75, 79, 84, 98, 99, 148, Smith, A .68, 180, 260 Shu, S .229, 231 .262, 284, 296 Smith, C .214 Shutthanandan, V .72, 275 Singh, C .206, 290 Smith, D .45, 183 Shuvo, M .46, 190, 266 Singh, D .73, 110, 142, 166, 207, 254 Smith, E .167 Shu, Y .295 Singh, G .49 Smith, H .41, 172, 206, 232, 250, 300 Shyam, A .103, 105, 110, 113, 214 Singh, H .29, 99, 272 Smith, H .41, 172, 206, 232, 250, 300 Sibali, L .69 Singh, I .275 Smith, J .65, 132, 258 Sibley, T .196 Singh, J .265 Smith, L .214 Siddall, J .176 Singh, M .220 Smith, M .275 Siddharth, S .14 Singh, P .14, 18, 22, 46, 53, 68, 92, 126, Smith, N .21, 126, 133, 141, Siegmund, T .32, 260, 268 .158, 176, 194, 204, 221, 226, Smith, R .23,		•	
Shunmugasamy, V		<u> </u>	
Shu, S 229, 231 262, 284, 296 Smith, C 214 Shutthanandan, V 72, 275 Singh, C 206, 290 Smith, D 45, 183 Shuvo, M 46, 190, 266 Singh, D 73, 110, 142, 166, 207, 254 Smith, E 167 Shu, Y 295 Singh, G 49 Smith, H 41, 172, 206, 232, 250, 300 Shyam, A 103, 105, 110, 113, 214 Singh, H 29, 99, 272 Smith-Hanssen, N 136 Sibali, L 69 Singh, J 275 Smith, J 65, 132, 258 Sibley, T 196 Singh, J 265 Smith, L 214 Siddall, J 176 Singh, M 220 Smith, M 275 Siddharth, S 14 Singh, P 14, 18, 22, 46, 53, 68, 92, 126, Smith, N 21, 126, 133, 141, Siegmund, T 32, 260, 268 158, 176, 194, 204, 221, 226, Smith, R 23, 160, 298 Sieradzki, K 161, 226, 246 233, 244, 261, 296, 298 Smith, R 23, 160, 298			
Shutthanandan, V .72, 275 Singh, C .206, 290 Smith, D .45, 183 Shuvo, M .46, 190, 266 Singh, D .73, 110, 142, 166, 207, 254 Smith, E .167 Shu, Y .295 Singh, G .49 Smith, H .41, 172, 206, 232, 250, 300 Shyam, A .103, 105, 110, 113, 214 Singh, H .29, 99, 272 Smith-Hanssen, N .136 Sibali, L .69 Singh, I .275 Smith, J .65, 132, 258 Sibley, T .196 Singh, J .265 Smith, L .214 Siddall, J .176 Singh, M .220 Smith, M .275 Siddharth, S .14 Singh, P .14, 18, 22, 46, 53, 68, 92, 126, Smith, N .21, 126, 133, 141, Siegmund, T .32, 260, 268 .158, 176, 194, 204, 221, 226, Smith, R .23, 160, 298 Sieradzki, K .161, 226, 246 .233, 244, 261, 296, 298 Smith, R .23, 160, 298			
Shuvo, M 46, 190, 266 Singh, D .73, 110, 142, 166, 207, 254 Smith, E .167 Shu, Y .295 Singh, G .49 Smith, H .41, 172, 206, 232, 250, 300 Shyam, A .103, 105, 110, 113, 214 Singh, H .29, 99, 272 Smith-Hanssen, N .136 Sibali, L .69 Singh, I .275 Smith, J .65, 132, 258 Sibley, T .196 Singh, J .265 Smith, L .214 Siddall, J .176 Singh, M .220 Smith, M .275 Siddharth, S .14 Singh, P .14, 18, 22, 46, 53, 68, 92, 126, Smith, N .21, 126, 133, 141, Siegmund, T .32, 260, 268 .158, 176, 194, 204, 221, 226, Smith, R .23, 160, 298 Sieradzki, K .161, 226, 246 .233, 244, 261, 296, 298 Smith, R .23, 160, 298			
Shu, Y. .295 Singh, G .49 Smith, H .41, 172, 206, 232, 250, 300 Shyam, A .103, 105, 110, 113, 214 Singh, H .29, 99, 272 Smith-Hanssen, N .136 Sibali, L .69 Singh, I .275 Smith, J .65, 132, 258 Sibley, T .196 Singh, J .265 Smith, L .214 Siddall, J .176 Singh, M .220 Smith, M .275 Siddharth, S .14 Singh, P .14, 18, 22, 46, 53, 68, 92, 126, Smith, N .21, 126, 133, 141, Siegmund, T .32, 260, 268 .158, 176, 194, 204, 221, 226, Smith, R .23, 160, 298 Sieradzki, K .161, 226, 246 .233, 244, 261, 296, 298 Smith, R .23, 160, 298		<u> </u>	
Shyam, A 103, 105, 110, 113, 214 Singh, H 29, 99, 272 Smith-Hanssen, N 136 Sibali, L .69 Singh, I 275 Smith, J 65, 132, 258 Sibley, T .196 Singh, J 265 Smith, L 214 Siddall, J .176 Singh, M 220 Smith, M 275 Siddharth, S .14 Singh, P 14, 18, 22, 46, 53, 68, 92, 126, Smith, N 21, 126, 133, 141, Siegmund, T .32, 260, 268 158, 176, 194, 204, 221, 226, Smith, R 23, 160, 298 Sieradzki, K .161, 226, 246 233, 244, 261, 296, 298 Smith, R 23, 160, 298		•	
Sibali, L .69 Singh, I .275 Smith, J .65, 132, 258 Sibley, T .196 Singh, J .265 Smith, L .214 Siddall, J .176 Singh, M .220 Smith, M .275 Siddharth, S .14 Singh, P .14, 18, 22, 46, 53, 68, 92, 126, Smith, N .21, 126, 133, 141, Siegmund, T .32, 260, 268 .158, 176, 194, 204, 221, 226, Smith, R .23, 160, 298 Sieradzki, K .161, 226, 246 .233, 244, 261, 296, 298 Smith, R .23, 160, 298		<u> </u>	
Sibley, T 196 Singh, J 265 Smith, L 214 Siddall, J 176 Singh, M 220 Smith, M 275 Siddharth, S 14 Singh, P 14, 18, 22, 46, 53, 68, 92, 126, Smith, N 21, 126, 133, 141, Siegmund, T 32, 260, 268 158, 176, 194, 204, 221, 226, Smith, R 161, 209, 246 Sieradzki, K 161, 226, 246 233, 244, 261, 296, 298 Smith, R 23, 160, 298	·	•	
Siddall, J.		<u> </u>	
Siddharth, S. Singh, P. 14, 18, 22, 46, 53, 68, 92, 126, Smith, N. <td>Sibley, T196</td> <td>Singh, J</td> <td>Smith, L</td>	Sibley, T196	Singh, J	Smith, L
Siegmund, T 32, 260, 268 158, 176, 194, 204, 221, 226, 161, 209, 246 Sieradzki, K 161, 226, 246 233, 244, 261, 296, 298 Smith, R 23, 160, 298	Siddall, J	Singh, M220	Smith, M275
Siegmund, T 32, 260, 268 158, 176, 194, 204, 221, 226, 161, 209, 246 Sieradzki, K 161, 226, 246 233, 244, 261, 296, 298 Smith, R 23, 160, 298	Siddharth, S14	Singh, P 14, 18, 22, 46, 53, 68, 92, 126,	Smith, N
Sieradzki, K		=	
	Sierros, K 35, 68, 106, 139, 174	Singh, R	

Smith, T11, 19, 63, 78, 154, 184, 190, 224, 245, 253	Soncini, R .242 Song, C .139	Spencer, P
Smith, W	Song, E	Speth, M
Smolentsev, S	Song, G 16, 117, 265, 266, 277, 293	Spiecker, E
Smyth, C	Song, H	Spieckermann, F
Snead, L 65, 102, 108, 229	Song, J 25, 72, 100, 206, 247, 249,	Spigarelli, S
Snitzer, J 10, 100, 287, 290	251, 272	Spinelli, J
Snow, B	Song, K	Spolenak, R 8, 100, 168, 192, 203,
Snure, M	Song, L	208, 231, 240, 281
Snyder, G	Song, R 29, 30, 43, 95, 156, 160	Spontak, R112
Snyder, J	Song, S	Sprengel, S
Snyder, K	Song, W 133, 166, 201, 228, 247, 273	Sprigode, T198
Soare, M	Song, X	Springell, R
Soares Barreto, E	Song, Y 12, 14, 152, 228, 250, 291	Sprouster, D 54, 65, 108, 194, 229
Soares De Lima, G	Son, H 49, 293, 299	Spyromilios, A66
Soares, H	Soni, V	Sratong-On, P
Soar, P	259, 282	Srejdak, M
Sobczak, N148	Son, J86	Sridharan, K 9, 15, 16, 29, 37, 45, 62,
Sobhani, S	Son, K	71, 78, 99, 114, 133, 166, 171,
Sobota, P 14, 177, 257, 279	Sonmez, M	201, 227, 247, 249, 272, 286, 287
Sobotka, J	Son, Q	Sridharan, N
Soboyejo, W	Son, S	Sridhar, M
Soderhjelm, C253	Sonzogni, O	Sridhar, N
Soffa, W	Sooby, E 62, 156, 170, 205,	Srinivasan, P
Sofie, S	261, 270, 273	Srinivasan Tirunilai, A216
Soghrati, S	So, P	Sriram, H 58, 96, 296
So, H	Sopu, D 39, 73, 109, 142, 178, 211,	Srivastava, A 118, 151, 153
Sohn, H	237, 254, 281	Srivastava, N 49, 251, 267, 288
Sohn, I 13, 43, 80, 291	Soren, C	Srivastava, R
Sohn, M	Sorensen, C	Srivastava, S
Sohn, S72, 79, 100, 161, 178, 266, 273	Sørhuus, A	Srivastava, V
Sohn, Y 182, 215, 277, 282, 293	Sotniczuk, A	Srivatsan, T 15, 46, 83, 119, 150, 186,
Sokol, M	Soto, C	217, 240, 265, 266
Sokolov, M	Soto-Medina, S	Srivilliputhur, S13, 17, 60, 92, 119,
Solanki, K	Soulacroix, J	132, 165, 200, 204, 226, 246, 298
Solano, J	Soulami, A15, 32, 37, 71, 207,	S, S
Solem, C	238, 242, 245 Souza, C294	Stacey, B
Solheim, A	Souza, D	Stack, I
Solheim, I	Souza, I	Stammkötter, S
Solhtalab, A	Souza, J	Stampfl, C
Soliman, S	Sowards, J 10, 78, 115, 146, 289	Stan, C
Solomon, A	Soykan, B	Stand, L
Solomon, P	Soylu, E	Stansby, J
Solorio Diaz, G273	Spadaccini, C	Stark, A
Solorio Díaz, G	Spaepen, F	Starkey, K
Solorio-Díaz, G273	Spangenberger, A	Staron, P
Solovyev, M294	Sparks, T 20, 46, 47, 53, 94, 124, 155,	Starr, D
Soltanmohammadi, R	190, 207, 210, 217, 218, 241	Stasik, M
Soltan Mohammadlou, B		
Soltero, S	Spear, A	Stauffer, D 103, 137, 167, 168, 238, 274
3011010, 3	Spear, A17, 47, 84, 98, 102, 114, 120, 151, 187, 217, 241, 291	Stauffer, D 103, 137, 167, 168, 238, 274 Stavitski, E
Somakumar, A	•	
	120, 151, 187, 217, 241, 291	Stavitski, E
Somakumar, A	120, 151, 187, 217, 241, 291 Spearot, D 17, 19, 48, 50, 51, 85, 121, 151, 156, 161, 187, 188, 203, 218, 229, 248, 292, 296	Stavitski, E
Somakumar, A	120, 151, 187, 217, 241, 291 Spearot, D17, 19, 48, 50, 51, 85, 121, 151, 156, 161, 187, 188, 203, 218, 229, 248, 292, 296 Specht, P	Stavitski, E
Somakumar, A	120, 151, 187, 217, 241, 291 Spearot, D17, 19, 48, 50, 51, 85, 121, 151, 156, 161, 187, 188, 203, 218, 229, 248, 292, 296 Specht, P	Stavitski, E.
Somakumar, A	120, 151, 187, 217, 241, 291 Spearot, D17, 19, 48, 50, 51, 85, 121, 151, 156, 161, 187, 188, 203, 218, 229, 248, 292, 296 Specht, P	Stavitski, E. 272 Stebner, A. 21, 48, 73, 82, 190, 221, 232, 251, 284 Steel, R. 162, 245 Stefanescu, C. 35 Stefanov, M. 12 Stegman, B. 283
Somakumar, A	120, 151, 187, 217, 241, 291 Spearot, D17, 19, 48, 50, 51, 85, 121, 151, 156, 161, 187, 188, 203, 218, 229, 248, 292, 296 Specht, P	Stavitski, E. 272 Stebner, A. 21, 48, 73, 82, 190, 221, 232, 251, 284 Steel, R. .162, 245 Stefanescu, C. .35 Stefanov, M. .12 Stegman, B. .283 Stegmann, J. .147
Somakumar, A	120, 151, 187, 217, 241, 291 Spearot, D17, 19, 48, 50, 51, 85, 121, 151, 156, 161, 187, 188, 203, 218, 229, 248, 292, 296 Specht, P	Stavitski, E. 272 Stebner, A. 21, 48, 73, 82, 190, 221, 232, 251, 284 Steel, R. 162, 245 Stefanescu, C. 35 Stefanov, M. 12 Stegman, B. 283

Steigerwald, I23	Stutsman, Z148	Sun, X12, 201
Steiner, M 54, 180, 213, 238, 247, 251	Suárez, O	Sun, Y 14, 39, 73, 109, 121, 122, 130,
Stein, F110	Suarez, S	132, 142, 178, 211, 237,
Steinlechner, S	Subbaraman, H	254, 269, 281, 291
Stenzel, M222	Subbarayan, G23	Sun, Z208
Stephen, O91	Subedi, K	Supakul, S229
Stephens, C	Subhash, G	Su, Q172
Stevens, A 146, 147, 191	Subramanian, K150	Su, R
Stewart, B	Sudabattula, S	Surafiel, F
Stewart, C 26, 183, 203, 253	Sudarshan, M220	Sur, D 160, 161, 209, 270, 275
Stewart, J	Sudbrack, C	Sure, J
Stewart, T47	Suder, W300	Suresh, K
Stiff-Roberts, A148	Sudhakar, K220	Suresh, S157
Stiles, C17, 47, 84, 120, 151, 187,	Suero, K	Surisetti, Y120, 175
213, 217, 241, 291, 292	Suganuma, K93	Surowiec, R
Stinville, J 12, 25, 38, 48, 50, 57, 71,	Sugar, J	Suryolaksono Pujilaksono, L 162
96, 107, 128, 141, 161, 175, 197,	Sugimoto, Y	Susan, D
216, 224, 225, 232, 271, 280	Sugiyama, T 32, 65, 221	Sushko, M
StJohn, D	Suharmon, R	Šuštarič, P
Stockwell, J	Suh, B 99, 132, 227	Šuštar, T74
Stoco, C	Suh, D	Su, T 60, 152, 228
Stożek, Z107	Suh, J	Suter, R136
Stoetzel, N	Suhonen, T	Sutou, Y 42, 278, 292
Stofanak, R	Suhuddin, U	Sutton, B 10, 108, 248
Stokes, D	Sujith, B	Sutton, H
Stollberg, D	Sukenaga, S	Suwardi, A188
Stone, H13, 44, 52, 81, 117, 173,	Sukhotskiy, V146, 208	Suwas, S
207, 237, 260, 263	Sukumaran, A66	Su, Y 62, 107, 162, 172, 197, 207,
Stone, J	Su, L	249, 255, 266, 269, 272, 292
Stopka, K 25, 57, 77, 96, 116, 119, 161,	Šulák, I	Su, Z192
162, 166, 181, 197, 204, 224, 271	Suleiman, R	Suzana, A51
Storck, S	Sullivan, A	Suzuki, S
Storms, A	Sultana, N	Suzumura, T
Stotzka, R	Sultonov, O	Svanidze, E
Stoudt, M 24, 56, 95, 251, 270	Sun, B133, 166, 201, 204, 228,	Svärd, M234
Strachan, A 18, 50, 88, 109, 120, 123,	247, 273, 296	Svensson, A
154, 190, 197, 220, 291	Sun, C30, 39, 62, 127, 156,	Swab, J
Strain, J	219, 283, 297	Swallow, R
Stranberg, N	Sun, D	Swaminathan, K
Strande, M	Sundar, A	Swamy, A
Strange, L	Sundaram, H61	Swan, J
Stransky, P223	Sundaran, S	Swarnkar, R198
Straska, J227	Sundararaghavan, V 28, 43, 71, 85,	Sweatman, K
Strasky, J	105, 260, 297	Sweeney, D
Strassheim, M82	Sundararaman, M31	Sweet, R
Strauch, M148	Sundburg, R	Sweidan, F
Strauss, A148, 198	Sundermann, T47	Swenson, M
Strayer, S	Sun, F 16, 17, 47, 84, 120, 125, 149,	Swinney, R
Strifas, A	150, 186, 216, 243, 258, 291	Swisher, M
Strobl, M249	Sung, C101	Switz, A
Strodick, S	Sung, H 70, 79, 91, 181	Syed, M228
Ström, P	Sun, H90	Synnott, F
Strong, K	Sun, J	Syvertsen, M
Strother, J	Sun, P	Szakacs, G
Stubbers, A	Sun, R	Szczech, T
Stubbins, J 37, 115, 167, 287	Sun, S	Szecówka, P56
Stuckner, J	Sun, T 57, 69, 103, 146, 153, 158,	Szewczyk, A
Stump, B	193, 214, 224	Szlezynger, M
Stumpf, G	Sun, W 17, 19, 98, 284, 293	, 0
<u>.</u> .	. , , , , , , , , , , , , , , , , , , ,	

Szlufarska, I	Tanato, H	Tebib, M
197, 236, 243	Tandoc, C	Tedjasukmana, R226
Szpunar, B70	Tang, C 38, 126, 213, 285, 287	Teferra, K 41, 75, 111, 144, 301
Szpunar, J70	Tang, G	Tegtmeier, T61
m	Tang, H	Tehranchi, A
T	Tang, J 17, 47, 216	Teka, M224
Ta, A161	Tang, K 32, 136, 191	Tekmanli, F
	Tang, M	Telgerafchi, A
Taşan, C	Tang, P	Tello Cabrera, E288
Taba, A	Tang, Q	Tello, E
Tabaru, K	Tang, W 10, 34, 102, 122, 149	Teng, F 63, 66, 94, 246, 275
Tabata, C	Tang, X50, 168	Teng, T288
Tache, O	Tang, Y 25, 30, 50, 76, 81, 195, 268	Tenório, J
Taché, O	Tanigawa, H	Teramae, T
Taghavi, S	Taniguchi, K	Tercelj, M
Taghizadeh, M	Tan, M	Terdik, J
Tahara, M	Tanoto, H	Tereshina-Chitrova, E
Taheri Andani, M297	Tan, P	Terricabras, A
Taheri, M18, 38, 60, 125, 132, 141,	Tan, Q	
161, 165, 170, 183, 186, 192, 200, 209,		Terry, M
213, 224, 226, 232, 246, 292, 296, 298	Tan, S	Teschke, M
Taheri-Mousavi, S 17, 38, 113, 145,	Tanusilp, S	Tesfaye, F 24, 56, 94, 128, 270
153, 166, 213, 291	Tanvar, H	Testa, G
Tahmasebi, P	Tan, W	Tetlie, P
Takada, Y293	Tan, X 23, 34, 55, 57, 114, 153, 157,	Tewari, R
Takagi, S	158, 197, 224, 264, 287	Tewksbury, G182
Takahashi, J81	Tan, Y155	Texier, D 12, 64, 128, 290
Takahashi, Y	Tan, Z118	Tezbir, D
Takaki, T	Tao, S	Thadhani, N
292, 293, 296	Tarifa, A179	Thakur, A144
Takaloo, A	Tari, V121	Thalagani, V87
Takamura, Y	Tarman, O	Thangaraj, B8
Takao, R	Tarpeh, W	Thapliyal, S 10, 72, 107, 166
Takeuchi, N	Tasaki, W119	Thaseen, A55
	Tasan, C11, 15, 16, 23, 25, 26, 37,	Theisen, E 14, 45, 82, 118,
Takeuchi, T	38, 42, 58, 79, 95, 97, 116, 130, 147,	149, 185, 264
Tak, T	148, 150, 160, 164, 166, 168, 184,	Thekkepat, K
Takuya, N	216, 290, 298	Theodosiou, A194
Talapatra, A	Taskin, K	Theyamaran, R
Talbot, A	Tasneem, M	Thiaudière, D 187, 224, 238
Talbot, C101	Tassone, C	Thie, H
Taleff, E	Tate, S	Thier, R
Talibi, M247	Tatman, J	Thies, D
Talignani, A157	Tatsumi, H	Thiessen, A
Taller, S 10, 63, 100, 146, 160, 177,	Taub, A	Thimont, Y
178, 211, 236	Tavakoli, R	Thodla, R
Tallman, A50, 111	Tavangarian, F 67, 147, 183, 215, 262,	Thoma, D
Talukder, N		
Tamaoka, T	288, 299	184, 197, 204, 297
Tamerler, C 155, 191, 220, 243, 268	Tavares, S	Thomas, B
Tamirisakandala, S235	Tavenner, J	Thomas, E
Tam, J171	Tawfik, Y	Thomas, G
Tamura, A	Taylor, B	Thomas, J
Tamura, N	Taylor, C 32, 57, 102, 135, 157, 299	Thomas, M
Tan, A179	Taylor, M	Thomas Murickan, R257
Tanaka, A	Taylor, P	Thomas, N247
Tanaka, F	Taylor, S 32, 44, 71, 141, 191, 196	Thomas, P
Tanaka, H	Taylor, Z21, 171	Thomas, S 21, 53, 169
Tanaka, M	Tchasse, P	Thomas, T
Tanaka, R	Teasly, T	Thomas, V 147, 183, 215, 262
Turiunu, 10	Tebbe, N	Thome, P

	W	
Thompson, A 57, 78, 161, 169, 224	Tomizawa, A	Trojan, A
Thompson, C23, 202	Tomkins, A	Tromas, C
Thompson, F	Tomkute, V	Trombetta, M62
Thompson, G11, 12, 14, 44, 50, 81,	Tompson, A61	Troost, N
98, 118, 125, 134, 149, 168,	Tonani-Penha, L260	Trost, C
208, 255, 264, 278	Toncich, N	Trostorff, S
Thompson, M	Tong, A 78, 209, 226, 238	Trouba, J
Thoopul Anantharanga, A 91, 121, 220	Tong, W	Truby, R
Thornton, K17, 19, 28, 51, 59, 62, 85,	Tong, X	Truhart, E240
89, 105, 124, 156, 188, 192,	Tong, Y275	Trujillo, A
218, 233, 294, 296	Tonini Simonassi, N 67, 104, 276	Trzcinski, O
Thotta Jayachandran, A259	Tonks, M 33, 56, 62, 66, 89, 97, 99,	Tsai, A241
Thurston, B	103, 137, 161, 170, 205, 231, 249, 270,	Tsai, C
Thurston, M	275, 280, 296	Tsai, F
Tiamiyu, A 15, 45, 82, 119, 150, 244	Tonni, F	Tsai, H
Tian, C	Tonry, C 53, 180, 215, 287, 297	Tsai, K
	•	
Tian, H	Topo, B	Tsai, M
Tian, W	Topolnicki, R	Tsai, W
Tian, Y	Topsakal, M 108, 196, 231	Tsai, Y 104, 122, 143, 152, 267, 277
Tiarks, J 30, 108, 112, 204, 252	Torbet, C	Tsaknopoulos, K119, 208, 259,
Tichy, S	Toriyama, M	260, 261
Tien, J	Torralba, J	Tsang, D71
Tiley, A	Torresani, E 105, 112, 139, 174, 208,	Tschirhart, J110
Tiley, J 29, 129, 272	234, 252, 278	Tse, M68
Tillman, M209	Torres, E243	Tseng, C152
Timbers, J69	Torres, J	Tseng, J
Tinajero Alvarez, R273	Tostes Linhares Júnior, J269	Tseng, M
Tin, S 115, 207, 251, 290, 301	Toth, K74	Tseng, S
Tippey, K	Totz, J	Tseng, W
Tirado, F	Touraivane, S	Tseng, Y
Tischler, J	Tourret, D	Tsianikas, S
Tisdale, H	Townsend, R	Tsoutsouva, M150
Titus, M 18, 31, 41, 74, 139, 161, 197,	Toyama, T	Tso, W
209, 216, 217, 238	Tozman, P	Tsuchiya, K
Titz, K117	Trainor, N	Tsuji, N
Tiwari, A 148, 185, 216, 240, 263	Tran, A17, 47, 84, 120, 151, 187,	230, 274, 290
Tiwari, R	217. 241. 291	Tsukamoto, K
==:::::================================	=17, =11, =21	_
Tiwari, S	Tranell, G	Tsukamoto, M
Tiwary, C	Tran, M	Tsurkan, P 50, 88, 216
Tiwary, J	Tran, N	Tsuruoka, R
To, A	Tran, T	Tsuruta, H
Tobah, M	Trautmann, C	Tsuzaki, K
Toda-Caraballo, I	Trehern, W 153, 197, 218	Tuchinda, N
Todd, I	Trelewicz, J 21, 32, 53, 65, 102, 108,	Tuck, C 72, 79, 297
Todorova, M	115, 135, 137, 154, 169, 177, 204,	Tucker, G52, 229
Togashi, T	211, 213, 229, 230, 236, 249, 274	Tucker, J
Tokita, S162	Tremblay, S152	Tucker, M
Tokunaga, N	Trembly, J147	Tucker, V 18, 31, 161, 216, 217, 238
Tolentino, M	Tremsin, A	Tulshibagwale, N284
Tolman, K227	Treuherz, D	Tunes, M
Tolnai, D 28, 61, 99, 132, 143, 165,	Trexler, M	Tung, S
200, 227, 298	Trieu, O	Tuomisto, F
Toloczko, M 57, 196, 248, 269	Trigg, D	Turan, A
Tom, A	Trinh, H	Turcksin, B
Toman, J	Trinh, L	Turconi, A
Tomar, V 153, 190, 219, 220, 242, 293	Trinkle, D 40, 97, 194	Turgeon, K
Tome, C	Tripathi, A	Turlo, V
Tomida, T	Tripathi, B	Turner, G248
	Tripathy, M	Turner, J
Tomita, Y	111paury, 1v110	Turner, J

Turner, R	V	Varma, Y
Turpin, R	Vadiraia S	Varnell, K80, 272
Tu, S	Vadiraja, S	Vasdev, A
Tutar, O	Vaerst, O	Vasoya, M180
Tveito, K	Vaghela, A	Vasquez, M
Twum Donkor, B	Vagliani, F	Vassilev-Galindo, V
Tyagi, K 151, 176, 210, 218, 242	Vaidya, M	Vasudeva, K
Tzanakis, I 49, 180, 239	Vaidya, U	Vasudevan, V 56, 204, 225, 247, 251,
Tzelepi, N	Vailhe, M	282, 289
Tzini, M	Vakanski, A	Vaubois, T
	Valdevit, L 158, 206, 244, 250, 288	Vaughan, J
U	Valdez, J	Vázquez-Gómez, O278
III P 27 52 52 62 05	Valentine, E	Vazquez Prudencio, A 169
Uberuaga, B	Valentino, G 38, 71, 78, 107, 141, 176,	Vazquez Tovar, G19
141, 193, 196	209, 213, 236, 239, 254, 279, 280	Vecchio, K
Ubic, R	Valenzuela Carrillo, M264	Vega-Montoto, L218
Uchiyama, T	Valenzuela-Carrillo, M264	Vela, B 84, 176, 213, 279, 292
Uddin, M	Valenzuela, T280	Velasco, D
Ueda, T	Valiant, P	Veloso, M
Uedono, A	Valiente Bermejo, M182	Vemparala, B
Ueshima, M93	Valilla, J	Venghaus, H
Uesugi, K	Vallejo, K	Venkatesan, P
Ulbricht, A214	Vallely, S	Venkatesh, V
Ulfig, R171	Vallet, M195	Venkatraman, A
Ullah, R169	Valle, V84, 209	Vennat, E
Ullakko, K	Vallot, S	
Ullberg, R 80, 161, 275, 280	Valurouthu, G42	Ventura, J
Ulrich, A 24, 44, 103	Van Bastian, L	Verduzco Gastelum, J
Ulucan, T52	Van Buuren, A 29, 61, 133, 299	Verduzco, J
Ulugun, B	Vandadi, M	Verduzco-Martínez, J
Umeda, J54	van den Blik-Jarvis, R	Vergara-Hernández, H278
Umeda, Y172	Van der Eijk, C	Verma, A
Umer, M45	Van Der Eijk, C 123, 154, 191	Vermaak, N
Umezawa, O295	·	Verma, K
Umoru, L	Van der Ven, A	Verma, S
Ungar, T225		Vermaut, P 47, 186, 216
Ungár, T123	van de Werken, N	Vermeij, T 43, 58, 229, 230
Ung, G	van Driel, T	Versteeg, G
Unocic, K 24, 56, 95, 239, 270	van Duin, A111	Verstijnen, J58
Unocic, R	Vang, K	Veselý, J
Unterberg, B	Van Haaren, A	Vessi, V
Upadhyay, M	Van Iderstine, D 68, 139, 164, 230	Vettergren, E
Upadhyay, P 80, 110, 129, 162, 198,	VanLieshout, R	Veverková, A233
225, 245, 271	Van Petegem, S 13, 141, 222, 232, 249	Veysset, D171
Upmanyu, M	van Rooyen, I	Viardin, A
Upreti, P	Van Rooyen, I 9, 78, 114, 287	Victoria Hernandez, J227
-	Van Swygenhoven, H158	Vidrio, R
Uranga, P 26, 58, 97, 130, 164, 298	van Veelen, A 108, 141, 237	Vieira, C 104, 269, 276, 294, 295
Urbano-Reyes, G	van Wees, L	Vieira, R14
Urias, C	Varahabhatla, S77	Vieira Rielli, V138
Ury, N	Varanasi, R	Vietz, L11
Ushioda, K	Varga, R	Vigil, M204
Utada, S	Vargas Giraldo, S151	Vijayan, S 34, 68, 105, 129, 138, 173,
Utke, I	Vargas, P	207, 232, 233, 251, 252, 277, 297, 301
Utsumi, R	Varga, T	Vikraman Pillai, D
Uygun, B	Varghese, E	Vilas, J
Uysalel, C	Varghese P J, G	Villalobos, J
Uysal Komurlu, M	Varley, Z	Villapun Puzas, V
Uysal, Z	Varma P R, H	Villechaise, P 84, 128, 178, 209, 234
	Varma, S 126, 159, 195, 222, 268	Villetiaise, F 84, 126, 176, 209, 234 Villlata, E
		·

	-	
Vilupanur, R247	Wagstaff, S	Wang, Y 19, 26, 27, 29, 30, 34, 35, 56,
Vimalathithan, P	Wahlmann, B117	58, 59, 64, 74, 84, 86, 88, 89, 92, 94,
Vira, D	Waite, C	95, 97, 99, 102, 104, 110, 128, 130, 141,
Virgili, N	Walallawita, R	147, 150, 153, 159, 164, 173, 174, 175,
Virgillito, E30, 285	Walderhaug, M159	193, 194, 197, 205, 207, 209, 223, 231,
Virtanen, S24, 117	Walker, C 64, 113, 156	235, 244, 245, 246, 248, 250, 253, 266,
Visarada, T	Walker, M257	275, 281, 296
Vishal, S	Wallace, E	Wang, Z 27, 64, 87, 106, 109, 114, 131,
Vishina, A	Wallace, G	153, 202, 215, 228, 257, 264, 266
Vishnu Prakash, P162	Wallace, R	Wan, L
Vispute, R148	Walla, N	Wanni, J184
Vistoso, V	Walle, S	Ward, L127
Viswanathan, G 16, 35, 110, 120, 150,	Wallin, M	Ward, R
175, 235, 266	Wallis, D	Ward, W
Viswanathan, V	Wall, M	Ward, Z
Vivekanandan, V	Walraven, C	Warner, J
Vizoso, D	Walsh, F	Warren, P
Vogel, H	Walsh, J	Warrier, S
Vogel, S	Walter, A	Warski, T
Vogl, L	Walter, O	Wartenta, S
•	Walters, C	
Vo, H		Warwick, M 63, 108, 211
Vohra, Y	Walters, J	Wasbø, S
Voisin, T	Walther, F 57, 77, 101, 162, 253	Waseem, O
Volkova, O 22, 193, 209, 244	Wanchoo, P	Was, G 23, 95, 102, 202, 270
Vollan, F	Wang, A	Wasik, J
Vollhuter, J	Wang, B 27, 83, 88, 164, 202, 248	Wassermann, N
Vollhüter, J 81, 132, 173, 207	Wang, C34, 55, 67, 104, 138, 159,	Watanabe, C
Vollmer, M	202, 269, 276	Watanabe, Y
Volpp, J	Wang, D	Waters, M 141, 161, 209, 246
Von Grapp, M	Wang, F 11, 152, 223, 230	Watkins, E
von Pavel, M162	Wang, G15, 46, 81, 83, 119, 150,	Watkins, J
Von Tiedemann, S	186, 217, 240, 265, 266	205, 231, 249, 275
Voorhees, P 16, 19, 51, 89, 97, 101,	Wang, H19, 21, 63, 100, 103, 122,	Watkins, T
113, 124, 156, 192, 203, 294	130, 137, 143, 156, 219,	Watroba, M
Vorontsov, V	249, 274, 283, 297	Watrous, M 36, 70, 107, 140, 177, 210
Vos, M235	Wang, J 14, 15, 20, 30, 44, 64, 66, 79,	Watson, M
Voyer, P189	84, 89, 96, 100, 149, 156, 165,	Watts, B61
Voyles, P	167, 199, 200, 252, 262, 265	Wayne, D177
Vreeling, A	Wang, K 32, 194, 230, 271	Wazeer, A274
Vukkum, V 10, 72, 92, 232	Wang, L 40, 149, 165	Wdowik, U70
Vu, L190	Wang, M 21, 55, 119, 129, 157, 163,	Weaver, J
Vu, N	199, 226, 246, 271	Weaver, M 160, 197, 224, 270
	Wang, P 34, 37, 67, 70, 79, 104, 106,	Webb, A
\mathbf{W}	138, 202, 269, 276, 278, 279	Webb, M
TAT 1 T	Wang, Q	Webb, S64
Wacker, J	Wang, R 14, 19, 42, 44, 70, 81, 94,	Weber, G 41, 48, 75, 111, 144, 181, 301
Wade, K	118, 149, 264	Weber, J
Wade-Zhu, J 32, 157, 194, 221, 243	Wang, S	Weber, R
Wadle, L	172, 243, 296	Weber, W
Wadley, H	Wang, T	Webler, B 13, 26, 43, 80, 145, 254,
Waegaert, A	214, 231, 245, 253, 280	261, 291
Wagers, S	Wang, W 15, 18, 26, 43, 53, 60, 80,	Webster, S
Waghu, R	83, 109, 120, 160, 167,	Weeks, J
Wagih, M91	202, 264, 298, 299	Weeks, T
Wagle, G	Wang, X 14, 23, 33, 38, 66, 103, 127,	Weeks, W
Wagner, A 141, 170, 205	=	
Wagner, G 113, 152, 198, 217, 241	131, 135, 137, 152, 157, 160, 163, 170, 171, 188, 204, 205, 207, 210, 213, 226	Wegener, M
Wagner, H	171, 188, 204, 205, 207, 210, 213, 226,	Wegner N
Wagner, M147	231, 236, 244, 249, 250, 264, 275	Wegner, N
		Wehrenberg, C

Wei, B66	White, E24, 56, 95, 112, 178, 182,	Winfrey, A
Weibel, A	214, 239, 252, 270, 290	Wing, B245
Weible, N54	White, J 42, 54, 71, 92, 94, 103, 108,	Winiarski, B
Wei, C121, 156	137, 170, 243, 287	Winkler, C237
Wei, D	Whitenton, E180	Winn, B
Wei, G	White, R50, 225	Winter, I 21, 22, 42, 52, 168, 222
Weihs, T 105, 150, 183, 200, 213, 232	White, S	Winterscheidt, E
Wei, J61	Whitfield, T81	Winther, G 79, 80, 151, 168
Weimer, A	Whitham, G	Wipf, O
Weinberger, C50, 149, 160, 168,	Whitlow, J	Wirsing, C299
197, 224, 248, 255, 270	Whitt, A 78, 224, 254	Wirth, B33, 56, 66, 102, 103,
Weinmann, M222	Whittaker, M 91, 222, 261	169, 178, 230
Wei, Q	Wiacek, R143	Wirth, L97
Wei, S	Wickemeyer, B	Wischhusen, M
Weiss, D105, 182, 188, 218, 219,	Wicker, R	Wisdom, C9
225, 234, 241, 282, 292	Wicks, S	Wise, G 173, 207, 237
Weissitsch, L	Widgeon Paisner, S 103, 108, 141,	Wise, I
Wei, T	170, 237, 243	Wishart, J
Weitekamp, R	Widom, M 15, 16, 50, 92, 200	Wisner, B21, 25, 53, 57, 91, 96, 126,
Weitz, S	Wiendlocha, B	161, 197, 224, 268, 271
Wei, Y	Wiese, B	Wiss, T94
Welk, B 16, 35, 110, 120, 150, 235	Wiesner, S	Wissuchek, F
Wellons, M	Wijesinghe, K	Wittgens, B
	, 6	C
Wells, S	Wijnen, J	Witt, K
Wenbin, J	Wikström, N	Witzen, W
Wendorf, J	Wilczopolska, M	Wojcicka, A
Wen, G	Wilde, G	Wojcieszynski, A
Weng, J	Wilding, M	Wojcik, A 45, 185, 265, 282
Weng, Y	Wilfong, B	Wójcik, A22
Wen, H 33, 66, 103, 137, 142, 171, 180,	Wilhelm, T	Wojcik, M
206, 207, 213, 223, 237, 246, 282	Wilkerson, J	Wojewoda-Budka, J148
Wenheng, G	Wilkinson, A	Wolfram, B
Wen, L	Wilkinson, H	Woller, K
Wen, Y 57, 153, 164, 214, 224, 283	Wilkins, R	230, 270, 272
Wenzlick, M	Willenbrink, S	Wollmershauser, J
Werden, J	Williams, A	Wolverton, C 59, 141, 161, 209, 246
Werner, F	Williams, B	Womack, D
Werner, G	Williams, C	Wong, C64
Werner, T	Williams, E	Wong, G
Wessman, A115, 146	Williams, G	Wong, Y
Wessman, S	Williams, J	Wonhui, J
West, E	Williams, K 16, 99, 247	Won Hui, J
West, H	Williamson, C83	Won-Kyeong, K
Westraadt, J11	Williamson, D	Wood, B 56, 88, 228, 248
Wewer, L	Willing, E 15, 16, 37, 45, 71	Wood, L
Wharry, J20, 23, 33, 55, 57, 66, 94,	Willis, P	Wood, M
100, 108, 127, 128, 160, 177, 180,	Willoughby, A	Woods, M
196, 211, 213, 223, 236, 238, 248,	Willumeit-Römer, R28	Woolrich, J212
269, 270, 275	Willwerth, J	Worku, M
Wheaeton, B110	Wilson, C230	Worsley, M117
Wheatley, C65	Wilson-Heid, A	Woryk, L70
Wheeler, J 101, 171, 181	Wilson, J	Wosnitza, J
Wheeler, M	Wilson, P	Wright, A 71, 129, 225
Wheeler, R31, 64, 101, 135, 168,	Wilts, B	Wright, J
203, 230, 274	Wimmer, A 24, 80, 128	Wright, S
Whelan, G76, 96	Wimmer, E89	Wróbel, J296
Whisler, J	Windes, W134	Wroblewski, R
White, B	Windfeldt, M56	Wrona, A
White, D 126, 159, 195, 222, 229	Wines, D	Wu, A25, 55, 121, 122, 159, 267, 269

Wu, C 16, 68, 152, 161, 219, 233, 296 Wudy, K	Xue, B. .90 Xue, D .50 Xue, F. .49, 164 Xue, L. .19 Xue, M .242 Xue, W .164	Yang, D
Wu, P	Xue, X	286, 287, 290, 297 Yang, K34, 186
Wurster, S	Xu, H 16, 46, 93, 124, 265 Xu, J	Yang, L
Wu, W 64, 96, 129, 163, 188, 199, 226, 231, 246, 252, 267, 271	Xu, K	Yang, P
Wu, X	Xu, P	Yang, S
Wu, Y 34, 67, 108, 125, 157, 248, 258 Wu, Z 13, 84, 89, 126, 149, 152, 190	Xu, W 34, 105, 126, 139, 153, 174, 190, 208, 219, 234, 238, 242,	Yang, T
Wyatt, B	252, 265, 278, 293 Xu, X	Yang, X
Wylie, A	Xu, Y	105, 108, 110, 121, 132, 157, 165, 179, 188, 200, 217, 226, 242, 244, 246, 269,
X	193, 300 V	298 Yang, Z 67, 106, 151, 239, 270, 292
Xavier, G295	Y	Yan, H
Xavier, L	Yabansu, Y	Yan, J
Xiang, B	Yabashi, M172	Yanmaz, L
Xiang, C221	Yabuuchi, T	Yano, H
Xiang, K	Yacout, A	Yano, K 30, 38, 63, 99, 100, 134, 141,
Xiang, T 39 Xian, H 83	Yaday, D	157, 167, 196, 202, 229, 248, 249, 273
Xiao, E	Yadav, N	Yan, Y33, 63, 83
Xiao, X 20, 51, 90, 108, 218, 272, 283	Yadav, V	Yao, J270
Xia, Y	Yadon, S	Yao, K
Xie, B 171, 209, 262	Yaghmazadeh, M55	Yao, T 137, 142, 170, 211, 223, 231,
Xie, D	Yaghoobi, M	246, 249, 275
Xie, K 20, 34, 52, 61, 90, 125, 132, 156,	Yagmurlu, B 36, 175, 191, 279	Yao, X
193, 216, 221, 248, 250, 281, 294, 295	Yagnik, S187	Yao, Y
Xie, L	Yahata, B	Yao, Z
Xie, S	Yakovenko, A	Yapo, J
Xie, W300	Yalisove, S	Yarasi, S
Xie, X 15, 46, 83, 119, 150, 186, 217,	Yamada, R	Yasinskiy, A
240, 265, 266	Yamada, S	Yasuda, H
Xie, Y 9, 33, 66, 78, 103, 114, 137, 141,	Yamagishi, D	Yasuda, K
170, 205, 231, 237, 249, 275, 287 Xi, J	Yamaguchi, S	Yasuhara, A
Xing, B	Yamaji, F	Yavas, B84, 105
Xiong, C	Yamamoto, T	Yaw, N
Xiong, D	Yamamoto, Y 10, 72, 115, 164, 166, 230	Yazawa, K131, 152
Xiong, H	Yamamura, A 17, 241, 292, 293	Yazdani, M50, 154
Xiong, L	Yamanaka, N	Yeager, J
Xiong, W 27, 59, 74, 97, 130, 131,	Yamashita, T	Ye, B
164, 182, 260	Yamashita, Y	Ye, D
Xi, Z194	Yana, D	Yee, J
Xu	Yanagimoto, J	Yeh, A
Xu, A	Yanamandra, K	Yehorov, A
Xu, B	Yan, D	Ye, J
Xu, C	Yan, F	Yen, H233
Au, D114, 213	rang, D 10, 31, 101, 103, 209, 210	Yen, J

Yenusah, C205	Younes Araghi, M 158, 164, 288, 297	Zagraran, A238
Yen, W	Young, B153	Zagyva, T158
Yen, Y34, 40, 67, 74, 104, 105,	Youngblood, J	Zahedian, M
138, 258, 276	Youngblood, S 52, 208, 234	Zahiri, A 120, 190, 216, 233
Yeo, J	Young, J 8, 42, 75, 111, 144, 179, 262	Zahler, P
Yeo, L	Young, M 10, 174, 225	Zak, A
Yeom, H10, 15, 16, 37, 45, 249,	Young, N	Zakia, T
273, 286, 287	Youn, S	Zak, S 31, 63, 100, 134, 168, 203,
Yeom, J	Yousefian, C	
		229, 248, 274 Žák, S26
Yeon, K	Yousefpour, A	
Yeon, S	Youssef, G 67, 104, 275	Zaldivar, R
Yeo, S	Yuan, B 42, 144, 231, 250	Zamani Khalajabadi, S
Yeratapally, S	Yuan, H	Zaman, L
181, 301	Yuan, L41, 146, 183, 215, 283, 297	Zaman, W252
Yetter, K	Yuan, R268	Zambolin, M80, 166
Ye, X	Yuan, S	Zamperini, S
Ye, Y	Yuan, X73	Zamudio-García, I
Ye, Z 161, 167, 216	Yuan, Z153	Zanelato, E
Yibole, H	Yu, B171	Zang, A
Yi, C	Yubuta, K	Zangari, G
Yi, H82	Yu, C138	Zang, C227
Yi, L	Yücedağ, E56	Zanjani Foumani, S
Yildirim, E230	Yuce, E	Zanjani Foumani, Z
Yildiz, B	Yucel, O	Zarandi, F 10, 78, 115, 146, 289
Yildiz, S	131, 165, 270	Zare, S
Yin, D	Yücel, O	Zargaran, A
Yin, G	Yu, D	Zarkadoula, E 126, 159, 195, 222
Yingling, J	Yuda, H	Zarzycki, P
Yin, J	Yue, C	Zaugg, J
Yin, K	Yue, S	Zavanelli, D
Yin, Z	Yu, H 37, 48, 71, 115, 129, 130, 158,	Zavarin, M 36, 70, 107, 140, 177, 210
Yi Pei, T	173, 183, 195, 196, 222, 244, 280, 297	Zavari, S
Yip, P	Yu, J	Zavdoveev, A
Yi, Y	Yu, K99	Zawodzki, M96
Yıldırım, C80	Yu, L33, 94	Zaza, M254
Yıldız, B56	Yu, M269	Zebarjadi, M152
Yoder, J	Yumnam, G172, 206	Zecevic, M39, 73, 101, 102, 116,
Yoder, T157	Yun, M	151, 199, 205
Yokokawa, T	Yunqing, T295	Zee, B
Yokomizo, T291	Yu, Q57, 217	Zelenika, A80
Yoo, B72	Yu, R165	Zelickman, Y238
Yoo, G	Yurtışık, K	Zeller-Plumhoff, B 28, 99, 147
Yoo, H	Yürük, A31	Zeng, G
Yoo, J	Yu, S	Zeng, J
Yoon, H60	YuShu, D	Zeng, Q
Yoon, J	Yusuf, M180	Zeng, X
Yoon, K 33, 43, 102, 150, 248, 274, 277	Yu, T58, 93	Zeng, Z
Yoon, M	Yu, W	Zenk, C 13, 24, 44, 81, 117, 173, 263
Yoon, T	Yu, X52, 110, 160, 197, 204, 224, 270	Zentz, L
Yoon, Y	Yu, Y	Zerouali, M
Yoo, S 22, 34, 67, 104, 138, 276	Yu, Z	Zevalkink, A
Yoo, T	Yvinec, T84	Zhai, Z 63, 80, 196
Yoo, Y	Z	Zhang, A
York, W	-	Zhang, B 83, 109, 162, 280, 283
Yoshida, S 186, 274, 290	Zacharie-Aubrun, I250	Zhang, C. 16, 27, 40, 46, 50, 59, 73, 88,
Yoshikawa, T	Zackiewicz, P 77, 185, 265	97, 110, 130, 142, 148, 164
You, D	Zafra, A	Zhang, D 13, 24, 38, 56, 71, 83, 94,
You, I	Zago, M	128, 157, 191, 203, 249, 270
You, J 120, 254, 294	<u> </u>	

Zhang, F. 40, 50, 73, 79, 173, 207. Zheng, C. 69, 93 Zibrow, M. 223 Zhang, G. 1.45 Zheng, D. 2.64 Zheng, R. 1.6 Zheng, G. 1.45 Zheng, G. 2.87 Zibrarth, R. 1.6 Zheng, G. 2.87 Zibrarth, R. 2.81 Zibrarth, R. 2.82 Zi			
Zhang, G	Zhang, F40, 50, 73, 79, 173, 207,	Zheng, C69, 93	Zibrov, M223
Zhang, G	232, 250, 251, 283, 301	Zheng, D	Ziebarth, R
Zhang, H. 32, 87, 90, 202, 228, 275, 295 Zhang, J. 294, 06, 65, 67, 49, 194, 135, 166, 181, 200, 201, 213, 245, 245, 247, 272, 247, 247, 247, 248, 247, 247, 248, 247, 247, 248, 247, 247, 248, 247, 248, 248, 248, 248, 248, 248, 248, 248	Zhang, G		
Zhang, 29, 40, 62, 65, 74, 99, 133, Zheng, K	č	=	
145, 156, 166, 181, 200, 201, 213,			
219, 227, 239, 247, 272, 287 78, 18, 28, 289 28, 289, 28, 289, 289, 289, 289, 289, 2			
Ehang, K. 49, 97, 139, 180, 215, 2 Eheng, W. 5, 52 Emins, M. 6, 2142		e e e e e e e e e e e e e e e e e e e	
Zhang, L		•	
Zhang, L. 2,4, 34, 56, 67, 94, 104 Zheng, Y 16, 47, 175, 209, 216, 235 Zheng, Z 225 Zheng, Z 225 Zheng, Z 225 Zhong, J 226 Zhong, J 226 Zhong, J 227 Zheng, Z 226 Zhong, J 227 Zheng, Z 226 Zhong, J 227 Zheng, S 246, 253, 254, 258, 259, 261, 283 Zheng, M 20, 43, 52, 83, 90, 120, 125 Zhong, M 20, 43, 52, 83, 90, 120, 125 Zhong, M 270, 285, 293, 2944, 295 Zhong, M 32, 65, 72, 102, 135, 160, 2 Zhipit, G 300 Zhrag, N 19, 50, 88, 124, 145, 155, 192 166, 169, 204, 230, 249, 274 Zhang, P 288, 288, 293, 293 Zhang, Q 38, 41, 74, 153, 189, 190 Zhang, R 219, 242, 293 Zhou, L 24, 240, 200 Zhang, S 219, 242, 293 Zhou, L 24, 240, 200 Zhang, S 219, 242, 293 Zhou, L 24, 240, 200 Zhang, S 21, 20, 50, 84, 213, 265 Zhou, F 133, 193 Zhang, W 172, 176, 205, 289 Zhou, K 242 Zhang, X 9, 19, 29, 30, 37, 63, 70, 103 Zhang, W 172, 176, 205, 289 Zhou, K 242 Zhang, X 9, 19, 29, 30, 37, 63, 70, 103 Zhou, L 34, 54, 68, 105, 117, 138, 173, 107, 114, 116, 125, 127, 129, 130, 137 149, 151, 156, 162, 171, 195, 210, 221 Zhou, W 21, 29, 30, 62, 99, 339, 41, 101, 103, 113, 173, 153, 174 Zhou, J 24, 24, 246 Zhou, W 27, 293, 299 Zhang, Y 31, 91, 33, 34, 37, 56, 66 Zhou, K 272, 292 Zhan, H 99, 201, 202, 214, 224, 226 Zhou, K 272, 292 Zhan, H 99, 201, 202, 214, 224, 226 Zhou, K 272, 292 Zhang, K 272, 293 Zhou, K 272, 292 Zhang, K 272, 292 Zh	Zhang, K	Zheng, T283	
Table Tabl		Zheng, W52	Ziminsky, K156
Theng. Z	Zhang, L24, 34, 56, 67, 94, 104,	Zheng, Y 16, 47, 175, 209, 216, 235,	Zimmerman, B 64, 181, 205, 239
Theng. Z	128, 138, 167, 269, 270, 276	246, 253, 254, 258, 259, 261, 283	Zimmerman, J 102, 136, 154, 170,
Zhang, M	, , , ,		
Zhang, M. 20, 43, 52, 83, 90, 120, 125, 125, 126, 126, 126, 186, 190, 193, 216, 221, 127, 186, 186, 186, 190, 193, 216, 221, 270, 285, 293, 294, 295		•	
The color of the	7hana M 20 42 52 92 00 120 125	•	
270, 285, 293, 294, 295 240, 265, 72, 102, 135, 160, 270, 271, 271, 271, 271, 271, 271, 271, 271	č		
Tabang, N. 19, 50, 88, 124, 145, 155, 192, 265, 268		•	
Chang, P. 1.88 226, 246, 271 Zixing, Z. 1.12 (zizong, Z. 1.15 (zizong, Z. 2.12 (zizong, Z. 2.13 (zizo		•	Zipitis, G
Zhang, P. 1.88 Zhong, Q. 2.87 Zhong, Z. 2.06 Zlothikov, I. 1.55, 1.63 Zhang, Q. 3.8, 41, 74, 153, 189, 190, 219, 242, 293 Zhou, B. 60, 194, 200 Zok, F. 2.80 Zhang, R. 251 Zhou, D. 2.60 Zou, C. 2.15, 163 Zhang, S. 1.2, 20, 50, 84, 213, 265 Zhou, D. 2.0 2.0 Zou, C. 2.213, 265 Zhang, T. 21, 199, 221, 297 Zhou, F. 153, 193 Zou, M. 1.49 Zhang, X. 9, 19, 29, 30, 37, 63, 70, 103, 107, 149, 116, 125, 127, 129, 130, 137, 149, 151, 156, 162, 171, 195, 210, 221, 221, 226, 230, 247, 270, 274, 279, 283, 292 Zhou, L. 34, 54, 68, 105, 117, 138, 173, 182, 202, 207, 233, 251, 277, 293, 299 Zhou, R. 20, W. 153 Zou, W. 153 Zou, W. 153 Zou, W. 1, 15, 45, 79, 82, 84, 115, 119, 150, 192, 202, 207, 233, 251, 277, 293, 299 250, W. N. 153 Zou, W. 1, 15, 45, 79, 82, 84, 115, 119, 192, 102, 211, 202, 207, 233, 251, 277, 293, 299 250, W. N. 153 Zou, W. 1, 15, 45, 79, 82, 84, 115, 119, 192, 102, 211, 202, 202, 203, 232, 250, 205, 265, 289, 300 Zou, Y. 21, 15, 45, 89, 80, 81	Zhang, N. 19, 50, 88, 124, 145, 155, 192,	166, 169, 204, 230, 249, 274	Zirps, M165
Zhang, P. 1.88 Zhong, Q. 2.87 Zhong, Z. 2.06 Zlothikov, I. 1.55, 1.63 Zhang, Q. 3.8, 41, 74, 153, 189, 190, 219, 242, 293 Zhou, B. 60, 194, 200 Zok, F. 2.80 Zhang, R. 251 Zhou, D. 2.60 Zou, C. 2.15, 163 Zhang, S. 1.2, 20, 50, 84, 213, 265 Zhou, D. 2.0 2.0 Zou, C. 2.213, 265 Zhang, T. 21, 199, 221, 297 Zhou, F. 153, 193 Zou, M. 1.49 Zhang, X. 9, 19, 29, 30, 37, 63, 70, 103, 107, 149, 116, 125, 127, 129, 130, 137, 149, 151, 156, 162, 171, 195, 210, 221, 221, 226, 230, 247, 270, 274, 279, 283, 292 Zhou, L. 34, 54, 68, 105, 117, 138, 173, 182, 202, 207, 233, 251, 277, 293, 299 Zhou, R. 20, W. 153 Zou, W. 153 Zou, W. 153 Zou, W. 1, 15, 45, 79, 82, 84, 115, 119, 150, 192, 202, 207, 233, 251, 277, 293, 299 250, W. N. 153 Zou, W. 1, 15, 45, 79, 82, 84, 115, 119, 192, 102, 211, 202, 207, 233, 251, 277, 293, 299 250, W. N. 153 Zou, W. 1, 15, 45, 79, 82, 84, 115, 119, 192, 102, 211, 202, 202, 203, 232, 250, 205, 265, 289, 300 Zou, Y. 21, 15, 45, 89, 80, 81	265, 268	Zhong, Y 43, 129, 148, 163, 171, 199,	Zisis, L 25, 80, 111, 166
zhang, Q. .87 Zhong, Z. .206 Zlotnikov, I. .155, 163 Zhang, Q. .38, 41, 74, 153, 189, 190, 21, 242, 293 Zhou, B. .60, 194, 200 Zok, F. .280 Zhang, R. .251 Zhou, D. .269 Zou, C. .213, 265 Zhang, S. .12, 20, 50, 84, 213, 265 Zhou, F. .153, 193 Zou, C. .213, 265 Zhang, W. .171, 176, 205, 289 Zhou, S. Zhou, S. .242 Zou, O. .204 20u, N. .153 107, 114, 116, 125, 127, 129, 130, 137, 177, 117, 119, 151, 166, 162, 171, 195, 210, 221, 226, 230, 247, 270, 274, 279, 283, 292 Zhou, S. .115 Zou, W. .154 Zou, W. .155, 163 Zhang, Y. .13, 19, 33, 34, 37, 56, 66, 90, 39, 41, 101, 103, 113, 137, 153, 174, 179, 194, 199, 201, 202, 214, 224, 226, 236 Zhou, S. .70, 87, 107, 137, 177, 211, 296 Zhou, S. Zhou, S. .70, 87, 107, 137, 177, 211, 296 Zhou, S. 213, 212, 231, 2132, 250, 265, 289, 300 Zhang, Z. .13, 19, 31, 43, 80, 96, 102, 214, 224, 226, 226, 232, 232, 283, 288, 293, 295 Yhou, T. .19, 50, 88, 93, 124, 155, 201 Zuba, S. .122, 189, 180, 181, 181, 181, 181, 181, 181, 181	Zhang, P		
Zhang, Q 38, 41, 74, 153, 188, 190, Zhou, B 60, 194, 200 Zok, F 280 Zhang, R 219, 242, 293 Zhou, C 74, 96, 228, 229 Zorn, J 59 Zhang, S 12, 20, 50, 84, 213, 265 Zhou, E 153, 193 Zou, M 149 Zhang, T 21, 199, 221, 297 Zhou, J 8.8 Zou, N 1.153 Zhang, X 9, 192, 93, 037, 63, 70, 103, 107, 114, 116, 125, 127, 129, 130, 137, 149, 151, 156, 162, 171, 195, 210, 221, 221, 226, 230, 247, 270, 274, 279, 283, 292 Zhou, S 182, 202, 207, 233, 251, 277, 293, 299 Zou, W 1.15, 45, 79, 82, 84, 115, 119, 191, 192, 101, 221, 210, 211, 204, 226, 207, 233, 251, 277, 293, 299 Zhou, S 115, 200, 8 20, V V Nou, W 157 Zhang, Y 1, 31, 313, 137, 153, 174, 174, 175, 174, 177, 137, 177, 211, 296 Zhou, S 70, 87, 107, 137, 177, 211, 296 Zrodowski, L 180, 187, 828 Zhang, Z 1, 33, 30, 41, 43, 80, 96, 102, 214, 224, 226, 22	•		
Zhang, R	•		
Zhang, R.	•		
Zhang, S. 12, 20, 50, 84, 213, 265 Zhou, F. 153, 193 Zou, M. 149 Zhang, T. 21, 199, 221, 297 Zhou, K. 242 Zou, N. 153, 193 Zhang, W. 172, 176, 205, 289 Zhou, K. 242 Zou, Q. 246 Zhang, X. 9, 19, 29, 30, 37, 63, 70, 103, 107, 114, 116, 125, 127, 129, 130, 137, 149, 151, 156, 162, 171, 195, 210, 221, 224, 226, 226, 230, 247, 270, 274, 279, 283, 292 Zhou, N. 115 Zou, Y. 14, 57, 78, 28, 81, 115, 119, 201, 221, 242, 226, 290, 33, 410, 103, 113, 137, 153, 174, 180, 181, 195, 205, 206, 206, 290, 33, 44, 101, 103, 113, 137, 153, 174, 180, 181, 195, 205, 206, 231, 243, 249, 250, 263, 270, 274, 275, 275, 282, 282, 283, 288, 293, 295 Zhou, N. 123, 177, 211, 296 Zhou, S. Zou, Y. 11, 154, 579, 82, 84, 115, 119, 200, 204, 204, 204, 204, 204, 204, 204			
Zhang, T. . 21, 199, 221, 297 Zhou, J. . 83 Zou, Q. . 24 Zhang, W. 172, 176, 205, 289 Zhou, K. . 242 Zou, Q. . 246 Lang, X. 9, 19, 29, 30, 37, 63, 70, 103, 149, 151, 156, 162, 171, 195, 210, 221, 244, 242, 242, 226, 226, 230, 247, 70, 274, 279, 283, 292 Zhou, N. . 115 226, 230, 247, 270, 274, 279, 283, 292 Zhou, R. . 298 213, 222, 231, 232, 250, 265, 289, 300 Zhang, Y. . 13, 19, 33, 34, 37, 56, 66, 91, 199, 201, 202, 141, 242, 246, 246, 270, 283, 291, 297 Zhou, N. . 210, 90 213, 222, 231, 232, 250, 265, 289, 300 Zhang, Z. 282, 283, 288, 293, 295 Zhou, W. 21, 29, 30, 62, 99, 133, 166, 214, 151, 180, 181, 195, 205, 260 Zuanetti, B. . 73 Lang, Z. 231, 243, 249, 250, 263, 270, 274, 275, 282, 266, 270, 274, 275, 282, 282, 282, 283, 288, 293, 295 Zhou, X. . 38, 52, 102, 192 Zukas, B. . 122, 189, 242 Lang, Z. 244, 270, 283, 291, 297 Zhou, X. . 38, 52, 102, 192 Zukas, B. . 122, 189, 242 Zhao, A. . 61, 293 Zhu, Y. . 19, 50, 88, 31, 124, 155, 248 Zuc, Y. . 221 Zhao, B. . 54, 79 Zh	č		
Zhang, W. 172, 176, 205, 289 Zhou, K. 2.42 Zou, Q. 2.46 Zhang, X. 9, 19, 29, 30, 37, 63, 70, 103, 103, 107, 114, 116, 125, 127, 129, 130, 137, 129, 151, 156, 162, 171, 195, 210, 221, 224, 226, 226, 230, 247, 270, 274, 279, 283, 292 Zhou, N. 157 226, 230, 247, 270, 274, 279, 283, 292 Zhou, S. 298 200, N. 115 123, 171, 180, 181, 195, 205, 206, 289, 300 290, 93, 94, 101, 103, 113, 137, 153, 174, 179, 194, 199, 201, 202, 214, 224, 226, 282, 283, 288, 293, 295 Zhou, T. 20, 90, 31, 31, 64, 68, 108, 187, 320, 206, 289, 300 20, 90, 31, 31, 60, 41, 43, 80, 96, 102, 282, 283, 288, 293, 295 Zhou, Y. 21, 293, 30, 62, 99, 133, 166, 200, W. 21, 293, 30, 62, 99, 133, 166, 200, W. 21, 293, 06, 299, 133, 166, 200, W. 21, 293, 30, 62, 99, 133, 166, 200, W. 21, 293, 30, 62, 99, 133, 166, 200, W. 21, 293, 30, 62, 99, 133, 166, 200, W. 21, 293, 30, 62, 99, 133, 166, 200, W. 20, 00, T. 20, 00, 00, 116, 18, 195, 205, 206, 289, 300 20, 00, T. 20, 00, T. 20, 00, W. 21, 293, 30, 62, 99, 133, 166, 200, W. 21, 293, 30, 62, 99, 133, 166, 200, W. 21, 293, 30, 62, 99, 133, 166, 200, W. 21, 293, 30, 62, 99, 133, 166, 200, W. 20, 00, T. 20, 00, T. 20, 00, W. 21, 292, 240, 227, 247, 270, 272, 282 20, 00, 00, 913, 140, 140, W. 21, 292, 260, 289, 309, 309, 309, 309, 3	•		
Zhang, X	•		
107, 114, 116, 125, 127, 129, 130, 137, 149, 151, 156, 162, 171, 195, 210, 221, 226, 230, 247, 270, 247, 279, 838, 292 Zhou, R	•		Zou, Q246
Table Tabl	Zhang, X 9, 19, 29, 30, 37, 63, 70, 103,	Zhou, L 34, 54, 68, 105, 117, 138, 173,	Zou, W157
226, 230, 247, 270, 274, 279, 283, 292 Zhou, R. 298 213, 222, 231, 232, 250, 265, 289, 300 Zhang, Y. 13, 19, 33, 34, 37, 56, 66, 90, 39, 49, 101, 103, 113, 137, 153, 174, 179, 1194, 199, 201, 202, 214, 224, 226, 231, 243, 249, 250, 263, 270, 274, 275, 282, 283, 288, 293, 295 Zhou, W. 21, 29, 30, 62, 99, 133, 166, 231, 243, 249, 250, 263, 270, 274, 275, 251 Zhou, W. 21, 29, 30, 62, 99, 133, 166, 231, 242, 246, 246, 2470, 283, 291, 297 Zhou, X. 38, 52, 102, 192, 202, 248, 288, 288, 293, 295 Zhou, X. 38, 52, 102, 192, 202, 248, 28, 8. 22 Uaghbi, M. 258 Zhang, Z. 13, 30, 41, 43, 80, 96, 102, 196, 201, 227, 247, 270, 272, 282 Zhou, Y. 19, 50, 88, 93, 124, 155, 204, 202, 192 Zukas, B. 122, 189, 242 Zhan, H. 90, 200 Zhou, Y. 19, 50, 88, 93, 124, 155, 202, 203, 203, 203, 203, 203, 203, 203	107, 114, 116, 125, 127, 129, 130, 137,	182, 202, 207, 233, 251, 277, 293, 299	Zou, Y 11, 15, 45, 79, 82, 84, 115, 119,
226, 230, 247, 270, 274, 279, 283, 292 Zhou, R. 298 213, 222, 231, 232, 250, 265, 289, 300 Zhang, Y. 13, 19, 33, 34, 37, 56, 66, 90, 39, 49, 101, 103, 113, 137, 153, 174, 179, 1194, 199, 201, 202, 214, 224, 226, 231, 243, 249, 250, 263, 270, 274, 275, 282, 283, 288, 293, 295 Zhou, W. 21, 29, 30, 62, 99, 133, 166, 231, 243, 249, 250, 263, 270, 274, 275, 251 Zhou, Y. 19, 50, 89, 93, 124, 155, 251 Zuhack, J. 57, 195, 251 Zhang, Z. 13, 30, 41, 43, 80, 96, 102, 109, 119, 126, 141, 151, 156, 179, 254, 264, 270, 283, 291, 297 Zhou, Y. 19, 50, 88, 93, 124, 155, 204 Zuu, S. Zuummo, W. 21, 89, 242 Zhao, A. 61, 293 Zhou, Z. 90, 151, 282 Zuo, Y. 150, 226 Zhao, A. 61, 293 Zhu, G. 93, 3124, 155, 202 Zuo, S. 221 Zhao, D. 12, 32, 56, 103, 149, 243, 272, 292 Zhu, G. 49, 239, 242 Zuo, Y. 12 Zhao, H. 83, 161 Zhu, G. 49, 239, 242 Zur, Loye, H. 36, 149 Zhao, H. 83, 161 Zhu, G. 49, 239, 242 Zwick, B. 220, 273 Zhao, G. 40, 56, 73, 74, 84, 110, 117, 274, 124, 124, 124, 124, 124, 124, 124, 12	149, 151, 156, 162, 171, 195, 210, 221,	Zhou, N	123, 171, 180, 181, 195, 205, 206,
Zhang, Y			
90, 93, 94, 101, 103, 113, 137, 153, 174, 179, 194, 199, 201, 202, 214, 224, 226, 240, 270, 272, 275, 282, 283, 288, 293, 295 282, 283, 288, 293, 295 Zhang, Z13, 30, 41, 43, 80, 96, 102, 109, 119, 126, 141, 151, 156, 179, 254, 264, 270, 283, 291, 297 Zhan, H			
Try, 194, 199, 201, 202, 214, 224, 226, 231, 243, 249, 250, 263, 270, 274, 275, 231, 243, 249, 250, 263, 270, 274, 275, 282, 282, 283, 288, 293, 295 Zhou, X	č		
231, 243, 249, 250, 263, 270, 274, 275, 282, 282, 283, 288, 293, 295, 285, 284, 293, 295, 285, 284, 293, 295, 285, 284, 293, 295, 285, 285, 285, 285, 285, 285, 285, 28			
Zhang, Z. 282, 283, 288, 293, 295 Zhou, X 38, 52, 102, 192 Zukas, B 122, 189, 242 Zhang, Z. .13, 30, 41, 43, 80, 96, 102, 109, 119, 126, 141, 151, 156, 179, 254, 264, 270, 283, 291, 297 192, 268, 298 Zuo, J .150, 226 254, 264, 270, 283, 291, 297 Zhou, Z .99, 151, 282 Zuo, Y .12 Zhao, A .61, 293 Zhuang, Q .93 Zuo, Y .12 Zhao, B .54, 79 Zhu, C .49, 239, 242 Zur Loye, H .227, 262, 273 Zhao, D .12, 32, 56, 103, 149, 243, 274, 274, 274 Zhu, G .250 Zuzek, B .283 Zhao, H .83, 161 Zhu, J .40 .40 .56, 73, 74, 84, 110, 117, 214, 144 .40 .40 .40 .56, 73, 74, 84, 110, 117, 214, 144 .40 .40 .56, 73, 74, 84, 110, 117, 214, 144 .40 .40 .40 .56, 73, 74, 84, 110, 117, 214, 144 .40 .40 .64, 176 .40 .40 .40 .56, 73, 74, 84, 110, 117, 214, 144 .40 .40 .40 .56, 73, 74, 84, 110, 117, 214, 144 .40 .40 .56, 73, 74, 84, 110, 117, 214, 144 .40 .40 .56, 73, 74, 84, 140, 117, 144 .40 <			
Zhang, Z.			
109, 119, 126, 141, 151, 156, 179, 192, 268, 298 Zuo, J 1.50, 226 254, 264, 270, 283, 291, 297 Zhou, Z 90, 151, 282 Zuo, S			
254, 264, 270, 283, 291, 297 Zhou, Z 90, 151, 282 Zuo, S 221 Zhan, H .90, 200 Zhuang, Q .93 Zuo, Y .12 Zhao, A .61, 293 Zhuang, S .164 zur Loye, H .227, 262, 273 Zhao, B .54, 79 Zhu, C .49, 239, 242 Zur Loye, H .36, 140 Zhao, D .12, 32, 56, 103, 149, 243, Zhu, G .250 Žužek, B .283 Zhao, H .83, 161 Zhu, H .193 Zwicknagl, G .36 Zhao, H .83, 161 Zhu, J .40 .40 .40 .40 .36 .36 Zhao, J .40, 56, 73, 74, 84, 110, 117, Zhu, J .40 .40 .40 .36 .36 .36 .36 .36 .36 .36 .36 .36 .36 .36 .36 .36 .34 .36	e e e e e e e e e e e e e e e e e e e		
Zhan, H 90, 200 Zhuang, Q .93 Zuo, Y .12 Zhao, A .61, 293 Zhuang, S .164 zur Loye, H .227, 262, 273 Zhao, B .54, 79 Zhu, C .49, 239, 242 Zur Loye, H .36, 140 Zhao, D .12, 32, 56, 103, 149, 243, Zhu, G .250 Žužek, B .283 Zhao, H .83, 161 Zhu, J .40 Zhao, J .40, 56, 73, 74, 84, 110, 117, Zhu, L .74 130, 143, 156, 215, 263 Zhu, M .151, 270, 292 Zhao, K .88 Zhu, N .16, 46, 83, 232, 267 Zhao, L .64, 176 Zhu, P .63 Zhao, M .42, 111, 144 Zhu, Q .67, 76, 121 Zhao, N .198 Zhu, R .90, 125 Zhao, S .156, 230 Zhu, S .293 Zhao, T .69 Zhu, X .163 Zhao, Y .35, 63, 72, 79, 83, 102, 109, Zhu, X .163 Zhao, Z .34, 87, 189, 282 Zhu, Y .26, 58, 96, 129, 142, 158, 163, Zhao, Z .34, 87, 189, 282 .164, 172, 195		, ,	Zuo, J
Zhao, A .61, 293 Zhuang, S .164 zur Loye, H .227, 262, 273 Zhao, B .54, 79 Zhu, C .49, 239, 242 Zur Loye, H .36, 140 Zhao, D .12, 32, 56, 103, 149, 243, Zhu, G .250 Žužek, B .283 Zhao, H .83, 161 Zhu, J .40 Zhu, J .40 Zhao, J .40, 56, 73, 74, 84, 110, 117, 130, 143, 156, 215, 263 Zhu, M .151, 270, 292 Zhu, N .64, 176 Zhu, N .64, 183, 232, 267 Zhao, K .88 Zhu, N .16, 46, 83, 232, 267 Zhu, P .63 Zhao, M .42, 111, 144 Zhu, P .63 Zhu, P .63 Zhao, N .198 Zhu, R .90, 125 Zhu, S .293 Zhao, S .156, 230 Zhu, S .293 Zhao, T .69 Zhu, T .58, 64, 128, 165 Zhao, Y .35, 63, 72, 79, 83, 102, 109, 109, 104, X .63 Zhao, Z .36, 36, 72, 79, 83, 102, 109, 104, X .63 Zhao, Z .36, 164, 172, 195, 199, 206, 222, 204, 204, 205 Zhao, Z .36, 164, 172, 195, 199, 206, 222, 204, 204,	254, 264, 270, 283, 291, 297	Zhou, Z 90, 151, 282	
Zhao, B. .54, 79 Zhu, C. 49, 239, 242 Zur Loye, H. .36, 140 Zhao, D. .12, 32, 56, 103, 149, 243, Zhu, G. .250 Žužek, B. .283 Zhao, H. .83, 161 Zhu, H. .193 Zwicknagl, G. .36 Zhao, J. .40, 56, 73, 74, 84, 110, 117, Zhu, J. .40	Zhan, H90, 200	Zhuang, Q	Zuo, Y12
Zhao, B. .54, 79 Zhu, C. 49, 239, 242 Zur Loye, H. .36, 140 Zhao, D. .12, 32, 56, 103, 149, 243, Zhu, G. .250 Žužek, B. .283 Zhao, H. .83, 161 Zhu, H. .193 Zwicknagl, G. .36 Zhao, J. .40, 56, 73, 74, 84, 110, 117, Zhu, J. .40	Zhao, A61, 293	Zhuang, S164	zur Loye, H 227, 262, 273
Zhao, D .12, 32, 56, 103, 149, 243, Zhu, G .250 Žužek, B .283 Zhao, H .83, 161 Zhu, J .40 Zhao, J .40, 56, 73, 74, 84, 110, 117, Zhu, J .40 Zhao, J .40, 56, 73, 74, 84, 110, 117, Zhu, L .74 130, 143, 156, 215, 263 Zhu, M .151, 270, 292 Zhao, K .88 Zhu, N .16, 46, 83, 232, 267 Zhao, L .64, 176 Zhu, P .63 Zhao, M .42, 111, 144 Zhu, Q .67, 76, 121 Zhao, N .198 Zhu, R .90, 125 Zhao, Q .124 Zhuravleva, M .258 Zhao, S .156, 230 Zhu, S .293 Zhao, T .69 Zhu, T .58, 64, 128, 165 Zhao, Y .35, 63, 72, 79, 83, 102, 109, Zhu, X .163 Zhao, Z .34, 87, 189, 282 .164, 172, 195, 199, 206, 222, Zha, R .71 .244, 297, 298 Zheludkevich, M .122 .219	Zhao, B54, 79	Zhu, C 49, 239, 242	Zur Loye, H
Zhao, H 83, 161 Zhu, J 40 Zhao, J 40, 56, 73, 74, 84, 110, 117, Zhu, L 74 130, 143, 156, 215, 263 Zhu, M 151, 270, 292 Zhao, K 88 Zhu, N 16, 46, 83, 232, 267 Zhao, L 64, 176 Zhu, P 63 Zhao, M 42, 111, 144 Zhu, Q 67, 76, 121 Zhao, N 198 Zhu, R 90, 125 Zhao, Q 124 Zhuravleva, M 258 Zhao, S 156, 230 Zhu, S 293 Zhao, T 69 Zhu, T 58, 64, 128, 165 Zhao, Y 35, 63, 72, 79, 83, 102, 109, Zhu, X 163 Thao, Z 34, 87, 189, 282 164, 172, 195, 199, 206, 222, Zha, R 71 244, 297, 298 Zheludkevich, M 122 Zhu, Z 219	Zhao, D	Zhu, G	
Zhao, H .83, 161 Zhu, J .40 Zhao, J .40, 56, 73, 74, 84, 110, 117, 2hu, L .74 130, 143, 156, 215, 263 Zhu, M .151, 270, 292 Zhao, K .88 Zhu, N .16, 46, 83, 232, 267 Zhao, L .64, 176 Zhu, P .63 Zhao, M .42, 111, 144 Zhu, Q .67, 76, 121 Zhao, N .198 Zhu, R .90, 125 Zhao, Q .124 Zhuravleva, M .258 Zhao, S .156, 230 Zhu, S .293 Zhao, T .69 Zhu, T .58, 64, 128, 165 Zhao, Y .35, 63, 72, 79, 83, 102, 109, 2hu, X .163 .164, 172, 195, 199, 206, 222, 204, 25 Zhao, Z .34, 87, 189, 282 .164, 172, 195, 199, 206, 222, 204, 204, 205 .20, 20, 204, 204, 205 Zhao, R .71 .71 .244, 297, 298 Zheludkevich, M .122 .25 .25			
Zhao, J	•		
Zhao, K.			
Zhao, K.			
Zhao, L .64, 176 Zhu, P .63 Zhao, M .42, 111, 144 Zhu, Q .67, 76, 121 Zhao, N .198 Zhu, R .90, 125 Zhao, Q .124 Zhuravleva, M .258 Zhao, S .156, 230 Zhu, S .293 Zhao, T .69 Zhu, T .58, 64, 128, 165 Zhao, Y .35, 63, 72, 79, 83, 102, 109, 2hu, X .163	_		
Zhao, M 42, 111, 144 Zhu, Q 67, 76, 121 Zhao, N 198 Zhu, R 90, 125 Zhao, Q 124 Zhuravleva, M 258 Zhao, S 156, 230 Zhu, S 293 Zhao, T 69 Zhu, T 58, 64, 128, 165 Zhao, Y 35, 63, 72, 79, 83, 102, 109, 2hu, X 163 116, 131, 217, 249, 264, 265 Zhu, Y 26, 58, 96, 129, 142, 158, 163, 163 Zhao, Z 34, 87, 189, 282 164, 172, 195, 199, 206, 222, 224, 244, 297, 298 Zheludkevich, M 122 Zhu, Z 219			
Zhao, N 198 Zhu, R 90, 125 Zhao, Q 124 Zhuravleva, M 258 Zhao, S 156, 230 Zhu, S 293 Zhao, T 69 Zhu, T 58, 64, 128, 165 Zhao, Y 35, 63, 72, 79, 83, 102, 109, 2hu, X 163 116, 131, 217, 249, 264, 265 Zhu, Y 26, 58, 96, 129, 142, 158, 163, 2hu, Y Zhao, Z 34, 87, 189, 282 164, 172, 195, 199, 206, 222, 2hu, R Zha, R 71 244, 297, 298 Zheludkevich, M 122 Zhu, Z 219			
Zhao, Q 124 Zhuravleva, M 258 Zhao, S 156, 230 Zhu, S 293 Zhao, T 69 Zhu, T 58, 64, 128, 165 Zhao, Y 35, 63, 72, 79, 83, 102, 109, 2hu, X 163 116, 131, 217, 249, 264, 265 Zhu, Y 26, 58, 96, 129, 142, 158, 163, 2hu, Y Zhao, Z 34, 87, 189, 282 164, 172, 195, 199, 206, 222, 2hu, Y Zha, R 71 244, 297, 298 Zheludkevich, M 122 Zhu, Z 219			
Zhao, S		Zhu, R	
Zhao, T. .69 Zhu, T. .58, 64, 128, 165 Zhao, Y. .35, 63, 72, 79, 83, 102, 109, Zhu, X. .163 116, 131, 217, 249, 264, 265 Zhu, Y. .26, 58, 96, 129, 142, 158, 163, Zhao, Z. .34, 87, 189, 282 .164, 172, 195, 199, 206, 222, Zha, R. .71 .244, 297, 298 Zheludkevich, M. .122 Zhu, Z. .219	Zhao, Q124	Zhuravleva, M	
Zhao, Y	Zhao, S	Zhu, S293	
Zhao, Y	Zhao, T69	Zhu, T 58, 64, 128, 165	
116, 131, 217, 249, 264, 265 Zhu, Y 26, 58, 96, 129, 142, 158, 163, Zhao, Z			
Zhao, Z. 34, 87, 189, 282 164, 172, 195, 199, 206, 222, Zha, R. 71 244, 297, 298 Zheludkevich, M. 122 Zhu, Z. 219			
Zha, R			
Zheludkevich, M			
Zircing, D			
	Ziiciig, D	2100011, 11114, 143	