ADDITIVE TECHNOLOGIES

Additive Manufacturing: Nano/Micro-mechanics and Length-Scale Phenomena

Additive manufacturing (AM) technologies enable microstructure and hence, mechanical properties to be tailored locally through careful selection of processing parameters and strategies. The characterization of mechanical properties behavior at both the micro- and nano-scales is critical for the fundamental understanding of relationships between processing, structure, and properties. This includes the elastic-plastic response, residual stresses, creep and relaxation properties, fracture toughness, and fatigue in local scales in additively manufactured materials.

This symposium focuses on the properties of various additively manufactured materials (metals, ceramics, polymers, biological/bio-inspired materials, composites) at small length-scales from both theoretical/modeling and experimental viewpoints. The scope includes, but not limited to, the following areas:

- Microstructure-micromechanics relationships of additive manufactured materials
- Location-specific property characterization in additive manufacturing through micro/nano-indentation testing
- In-situ nanomechanical measurements in application environments (thermal, electrical, electrochemical, and biological stimuli)
- Small scale quasi-static tests (tension, compression, bending, and torsional tests)
- Small scale fatigue, creep, and impact tests
- Nano-scale measurements of strain and stress
- Micromechanics-based modeling in additive manufacturing

ORGANIZERS
Meysam Haghshenas, University of Toledo
Robert Lancaster, Swansea University
Andrew J. Birnbaum, US Naval Research Laboratory
Jordan S. Weaver, National Institute of Standards and Technology
Aeriel D. Murphy-Leonard, Ohio State University

SYMPOSIUM SPONSORS
TMS Additive Manufacturing Committee
TMS Nanomechanical Materials Behavior Committee