ADVANCED MATERIALS

2D Materials—Preparation, Properties & Applications

Since the discovery of Graphene, interest in basic and applied research in 2D-Materials is on the rise. Challenges and opportunities continue to grow in the areas of process-property-performance correlations in 2D-Materials. Efforts to transfer technology from fundamental R&D to prototyping to manufacturing are being pursued rigorously on a global scale. Studies on materials such as carbon nanotubes, graphene, hexagonal boron nitride, perovskites, phosphorene, transition metal dichalcogenides (TMDCs), xenes (germanene, silicene, stanene) are of interest to the symposium.

This symposium will include, but will not be limited to the following topics:

- **Scope 1: Methods of Fabrication, Material Properties**
 - Top-Down Approach – Mechanical Exfoliation, Liquid Phase Exfoliation, Ball-Milling Based Exfoliation
 - Bottom-Up Approach
 - Chemical Vapor Deposition, Wet Chemical Synthesis, Hydro/Solvothermal Synthesis
 - Electrical, Electronic, Magnetic, Mechanical, Optical, Structural & Thermal Properties

- **Scope 2: Modelling & Simulation**
 - Band-Structure, Transport Properties, Optical Properties, Device Simulation
 - Tools & Methods
 - Data sets of Properties
 - Standards, Methods

- **Scope 3: Device Fabrication, Properties & Applications**
 - Studies focused on the use of these materials for the fabrication of membranes, 2D-sheets, 2- and 3-Terminal active and passive devices, photodetectors, sensors, transistors, applications in batteries, solar cells, thermoelectrics, topological insulators, ultracapacitors, valleytronics are some of the examples of interest to the Symposium.

ORGANIZERS

Nuggehalli M. Ravindra, New Jersey Institute of Technology
Ramana Chintalapalle, University of Texas at El Paso
Gerald Ferblantier, Icube Laboratory - Strasbourg University
Sufian Abedrabbo, Khalifa University

SYMPOSIUM SPONSORS
TMS Thin Films and Interfaces Committee

www.tms.org/TMS2022