MATERIALS PROCESSING

Advanced Characterization of High-temperature Alloys: Phase Evolution during Manufacturing and Service-induced Deformation

High temperature alloys, including Ni-based, Ni-Fe-based, and Co-based superalloys, are critically important in enabling technological advancements from the aerospace to the power generation, chemical processing, and manufacturing industries to atomic energy. Fundamental to the performance of these materials are their deformation characteristics, both in terms of the deformation necessary during manufacture as well as the deformation sustained during service. Critical developments in the field of high temperature alloys in recent years have been reliant on controlling and utilising deformation and deformation induced phase transformations to achieve superior performance at increasingly higher temperatures. Such advances have been further enabled by the unparalleled innovation in the advanced characterization methods and data analysis tools used to investigate deformation characteristics in these materials, such as dynamic TEM, atom probe tomography, high resolution EBSD, advanced neutron and synchrotron X-ray diffraction, and resonant ultrasound spectroscopy, to name a few.

The aim of this symposium is to bring together the community to discuss the effect of deformation on microstructural control and performance in high temperature materials (Ni, Ni-Fe, Co superalloys, refractory metal alloys, multi-principal element alloys) through the lens of advanced characterization. The proposed technical scope of the symposium includes, but is not limited to:

- Co-operative chemistry and processing design for improved alloy performance
- Deformation effects on “finishing operations” including machining, heat treatment, and shot peening
- Effect of deformation on phase and property evolution
- High throughput methodologies for deformation assessment in manufacturing and in service performance
- Role of deformation in phase transformations and microstructural evolution
- Non-destructive and correlative evaluation of deformation accumulation during manufacturing and under in service conditions

ORGANIZERS
Katerina Christofidou, University of Sheffield
Benjamin Adam, Oregon State University
Stoichko Antonov, Max-Planck Institut für Eisenforschung GmbH
James Coakley, University of Miami
Martin Detroit, National Energy Technology Laboratory
Paraskevas Kontis, Norwegian University of Science and Technology
Stella Pedrazzini, Imperial College London
Sophie Primig, University of New South Wales

SYMPOSIUM SPONSORS
TMS Structural Materials Division
TMS High Temperature Alloys Committee