

Advanced Reactor Technology

Robert N. Hill Nuclear Engineering Division Argonne National Laboratory

2012 Nanonuclear Workshop Gaithersburg, Maryland June 6, 2012

Outline

- Advanced Reactor Trends
 - Small Modular Reactors
 - Generation-IV Reactors
- Comparison of Reactor Conditions
- Goals and Objectives
 - Potential Nanotechnology Impacts
 - Example Benefits and Issues

Attraction of Small and Medium Reactors (SMRs)

- <u>Financing</u>: Lower absolute overnight capital cost for low power plant
 - Economic viability is an issue; large monolithic reactors are priced in \$5-10B range or higher
- Fitness for small electricity grids, reduced design complexity, reduced impact of human factors and, perhaps, reduced infrastructure and staff requirements
 - May be a good choice for developing countries
- An option of incremental capacity increase
- Expand new site alternatives near to load centers
- Option of operation without on-site refueling
 - Attractive for nonproliferation regime
- Potential for enhanced safety

Utility Perspective

Nuclear Energy

• "Typical" nuclear company:

- \$13 B per year revenues
- \$13 B outstanding debt
- \$40 B assets
- \$17 B market capitalization
- Would rank 173 on the Fortune 500 list
- Large nuclear power plant (~\$10 B) a difficult challenge

Moody's 2009:

Holding Company	MWe	<u>Units</u>	Maj.	Full	М	kt Cap	Re	venue	<u> </u>	Debt	A	ssets
Exelon	16,715	19	17	13	\$	27.1	\$	17.3	\$	12.7	\$	49.2
Entergy	10,129	11	11	10	\$	14.3	\$	10.7	\$	12.0	\$	37.4
Dominion Resources	5,691	7	7	4	\$	24.6	\$	15.1	\$	18.0	\$	42.6
FPL Group	5,470	8	8	5	\$	21.5	\$	15.6	\$	18.9	\$	48.5
Duke Energy	5,173	6	5	5	\$	22.2	\$	12.7	\$	17.0	\$	57.0
Constellation Energy Group	3,874	5	5	4	\$	6.8	\$	15.6	\$	4.9	\$	23.5
FirstEnergy	3,862	12	3	3	\$	11.4	\$	13.0	\$	14.2	\$	34.3
Progress Energy	3,771	5	5	1	\$	11.6	\$	9.9	\$	12.8	\$	31.2
Southern	3,644	6	4	2	\$	28.7	\$	15.7	\$	19.9	\$	52.1
PSEG	3,612	5	5	1	\$	16.9	\$	12.4	\$	8.7	\$	28.7
PG&E	2,240	2	2	2	\$	15.9	\$	13.4	\$	13.0	\$	43.0
American Electric Power	2,069	2	2	2	\$	16.6	\$	13.5	\$	17.6	\$	48.4
Xcel Energy	1,668	3	3	3	\$	9.9	\$	9.6	\$	8.9	\$	25.5
Edison International	2,236	5	2	-	\$	10.8	\$	12.4	\$	11.1	\$	41.4
PPL	2,093	2	2	-	\$	9.8	\$	7.6	\$	7.8	\$	22.2
Ameren	1,190	1	1	1	\$	5.9	\$	7.1	\$	8.2	\$	23.8
Pinnacle West	1,147	3	-	-	\$	4.2	\$	3.3	\$	3.8	\$	11.8
NRG Energy	1,126	2	-	-	\$	5.8	\$	9.0	\$	8.7	\$	23.4
DTE Energy	1,122	1	1	1	\$	8.0	\$	8.0	\$	8.4	\$	24.2
SCANA	644	1	1	-	\$	4.7	\$	4.2	\$	4.9	\$	12.1
El Paso Electric	623	3	-	-	\$	0.9	\$	0.8	\$	0.9	\$	2.2
Great Plains Energy	545	1	-	-	\$	2.4	\$	2.0	\$	3.7	\$	8.5
Westar Energy	545	1	-	-	\$	2.6	\$	1.9	\$	2.8	\$	7.5
Berkshire Hathaway	434	2	-	-	\$	196.6	\$	112.5	\$	37.9	\$	297.1
Sempra Energy	430	2	-	-	\$	12.2	\$	8.1	\$	8.7	\$	28.5
PNM Resources	402	3	-	-	\$	1.0	\$	1.7	\$	1.8	\$	5.4
Total All Nuclear Companies	80,454	118	84	57	\$	492	\$	353	\$	287	\$	1,029
"Typical" Nuclear Utility	67 917	91	77	55	¢	175	ć	134	Ś	137	ċ	40 1

- "We view new nuclear generation plants as a 'bet the farm' endeavor for most companies, due to the size of the investment and length of time needed to build a nuclear power facility."
- Utilities should consider partnering with larger energy companies

Potential for Learning

Nuclear Energy

Navy industrial experience part of SMR business case

- Assembly line replication optimizes cost, schedule, and quality through greater standardization of components and processes
- Analysis of shipbuilding validates "*nth*" of a kind optimization
- Increased skilled workforce retention with order backlog and diverse jobs

Challenges Facing LWR SMRs

Nuclear Energy

Business prospects predicated on three premises

Significant investment needed to reach commercialization

On the order of \$500 M per design

Can the plants be built cheaply enough?

- Economies of replication > economies of scale?
- Need a factory to make the price attractive, need an attractive price to produce the orders to warrant building the factory

Can the operations and maintenance costs be kept down?

- How will simplified "inherently safe" designs translate into smaller workforce and operation costs?
- Must engage NRC to modify current regulations

Generation IV Nuclear Systems

- Six Generation IV Systems considered internationally
- Other systems, including non-reactor being explored
 - Accelerator-driven systems
 - Fusion-fission hybrids

System	Neutron spectrum	Coolant	Outlet coolant Temp. °C	Fuel cycle	Size (MWe)
VHTR (Very high temperature reactor)	thermal	helium	900-1 000	open	250-300
SFR (Sodium-cooled fast reactor)	fast	sodium	550	closed	30-150, 300-1 500, 1 000-2 000
SCWR (Supercritical water cooled reactor)	thermal/fast	water	510-625	open/closed	300-700 1 000-1 500
GFR (Gas-cooled fast reactor)	fast	helium	850	closed	1200
LFR (Lead-cooled fast reactor)	fast	lead	480-800	closed	20-180, 300-1 200, 600-1 000
MSR (Molten salt reactor)	Epithermal/fast	fluoride salts	700-800	closed	1 000

Current Trends in Nuclear Energy, 34th Nigerian Institute of Physics Conference, Ile-Ife, October 11-15, 2011

Generation IV

Very High Temperature Reactor (VHTR)

- High Temperature Applications
 - Direct gas Brayton cycle
- System Configuration
 - TRISO fuel particles
 - Low Power Density
 - Prismatic or Pebble Bed

Safety Behavior of VHTR

- Inherent characteristics
 - Inert, single phase helium coolant
 - Refractory coated robust fuel particles prevent releases
 - High temperature stable graphite structure and moderator
- Passively safe design
 - Slow heat-up of large graphite structures
 - In combination with low power density, implies long response times
 - Passive decay heat removal by radiation to cavity cooling
 - Annular core with negative temperature coefficients
 - No coolant voiding and/or change in moderation with temperature

Sodium-Cooled Fast Reactor (SFR)

- Fuel Cycle Applications
 - Actinide Management
- System Configuration
 - Metal Alloy or Oxide Fuel
 - Pool or Loop Configuration
 - High Power Density

Safety Implications of SFR Design Approach

- Superior heat transfer properties of liquid metals allow:
 - Operation at high power density and high fuel volume fraction
 - Low pressure operation with significant margin to boiling
 - Enhanced natural circulation for heat removal
- Inherent safety design
 - Multiple paths for passive decay heat removal envisioned
 - Tailored reactivity feedbacks to prevent core damage
- High leakage fraction implies that the fast reactor reactivity is sensitive to minor geometric changes
 - As temperature increases and materials expand, a net <u>negative</u> <u>reactivity feedback</u> is inherently introduced
- Favorable inherent feedback in sodium-cooled fast reactors (SFR) have been demonstrated
 - EBR-2 and FFTF tests for double fault accidents

Comparison of Key Reactor Characteristics

	Gen III ALWR	Gen IV VHTR	Gen IV SFR		
Applications	electricity generation	electricity generation, heat supply	electricity generation, actinide management		
Power, MW _{th}	3000-4500	600-800 (block) 300-400 (pebble)	800-3500 (loop or pool plant)		
Power Density, W/cm ³	50-100	≤ 6.5	200-400		
Primary Coolant (T _{Outlet} , ℃)	H ₂ O (300-350)	He (850-1000)	Na (510-550)		
Primary System Pressure (MPa)	15.5	7.1	0.1		
Fuel Material	UO ₂	UO ₂ , UC _{0.5} O _{1.5}	(U,TRU) oxide, metal alloy		
Fuel Form	pellet	Triso coated particle	pellet or slug		
Fuel Element / Assembly	nt / Assembly square pitch pin bundle		triangular pitch pin bundle with duct		
Moderator	light water	graphite	none		
Number of coolant circuits	2	1 or 2	3		
Core Structural Material	Structural Material zirconium alloy		ferritic steel		
Power Conversion Cycle	Conversion Cycle steam Rankine		superheated steam Rankine, or S-CO ₂ Brayton		

Advanced Reactor Objectives

- For all three technology options (LWR, VHTR, SFR), a major emphasis is improved cost of electricity
 - Reactor capital cost is the dominant cost component for nuclear energy
 - Reduce the commodity requirements
 - Reduce the physical footprint
 - Improve the energy conversion (more MWe per MWt)
 - Technology innovations being explored in current DOE-NE R&D
- Enhanced safety is another important goal
 - Following Fukushima, behavior of system in severe conditions
 - Passive decay heat removal
 - Seismic response
 - Inherent safety a major feature of Generation-IV designs
- Enhanced reliability can improve system energy production
 - Extended lifetime for the reactor plant
 - Improved capacity factor with simple maintenance

Potential Technical Areas for Nanotechnology Impact

Advanced nuclear fuels

- Improve thermal transport (lower operating temperatures)
- Control fission gas release (extend burnup)
- Advanced materials
 - Improved strength (translates to reduced commodity mass)
 - Corrosion resistance
 - High temperature applications for VHTR/SFR
 - Creep resistance
 - Radiation resistance for SFR (following example)

Coolant and Heat Transfer

- Nanofluids could improve basic properties (thermal conductivity, heat capacity, boiling temperature, overall heat transfer coefficient)
- Improved chemical properties (corrosion or other reactions)
- Energy Conversion
 - Improved thermal efficiency (enable higher T)
 - Again, improved heat transfer of working fluids

Radiation Damage of SFR In-Core Components

- Higher energy neutrons can cause more radiation damage
- Furthermore, flux level roughly an order of magnitude higher
 - Power density high and fission cross sections low
 - Net result is within-core damage of ~200 dpa for 20% burnup
 - 15

Radiation Resistant Materials

- Basic structures have significant impact on radiation tolerance
 - Initial austenitic steels exhibited void swelling
 - Significant improvement with ferritic steels
 - Attributed to body-centered cubic crystal structure
 - Demonstrated to 200 dpa in FFTF without void swelling
 - Some issues encountered with reduced strength
- Nanodispersion particles may further improve radiation resistance and strength properties
 - ODS steels being evaluated in international SFR R&D Programs
 - Several key issues must be demonstrated
 - Stability of the nanostructure in nuclear environment
 - Simplicity and consistency of fabrication
 - Ability to weld/join for reactor structures
 - Relative cost (commensurate with improved performance?)