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Abstract 

This paper presents machine learning (ML) models for high fidelity prediction of 

compressive strength and modulus of elasticity (MOE) of concrete in relation to primary attributes 

of its mixture design. Two comprehensive databases, consisting of over 1000 and 500 data-records 

consolidated from technical publications, were used for training and testing the ML models that 

included random forests (RF), support vector machine (SVM) and multilayer perceptron artificial 

neural network (MLP-ANN). The metrics used for evaluation of prediction performance included 

five different statistical parameters and composite performance index (CPI). Results show that the 

RF model consistently outperforms the other two ML models in terms of prediction accuracy. 

Overall, machine learning is a very powerful and efficient tool for prediction of concrete properties 

as well as for the optimization of its mixture design to meet a set of desired performance criteria.  

Introduction 

Concrete is the most produced and used material in the world. There is burgeoning interest 

among researchers to develop numerical models that can reliably predict mechanical properties 

(e.g., compressive strength, and modulus of elasticity) of concrete in relation to the composition 

of its precursors and its mixture design [1]. Mechanical properties, such as compressive strength 

and modulus of elasticity can determine the workability, serviceability, durability, and quality 

control of concrete. However, the properties of concrete are complex – highly nonlinear, and, often, 

non-monotonous – and cannot be predicted using simple linear regression models because of the 

staggeringly large compositional degrees of freedom in concrete and the inherent nonlinear 
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relationships between mixture design variables and properties of concretes. Sophisticated 

approaches, such as Machine Learning (ML), have the capability to reveal the hidden, and complex, 

semi-empirical rules that govern the correlation between mixture design and properties of concrete. 

Previous studies [2], [3] have successfully employed ML models to predict concretes’ properties 

using their mixture design variables and age as inputs. 

 This study presents two-fold contributions. The first one is to compare the performance of 

three common ML models – random forests (RF), support vector machine (SVM) and multilayer 

perceptron artificial neural network (MLP-ANN) – on the prediction of compressive strength and 

modulus of elasticity (MOE) of concretes. The second one is to identify the best prediction model 

of the three models, which can not only enable reliable predictions but also support future research, 

as a baseline prediction model for comparison against other ensemble models. 

 

Machine Learning Model 

 This section presents an overview of three machine learning (ML) models implemented in 

this study. In each of the following sub-sections, one or more original references are provided that 

describe the formulation and implementation of the ML model in more detail. 

 

Support Vector Machine (SVM) 

 SVM, a ML model for both classification and regression tasks, predicts new patterns based 

on the training data as the goal of learning a maximum-margin hyperplane in the feature space [4]. 

The maximum hyperplane happens while the decision boundary has the maximal distance from 

any training data. During the training step, input variables are mapped from a low-dimension to a 

high-dimension feature space via kernel functions function included polynomial function, 

sigmoidal function, and Gaussian radial basis kernel function [5], [6]. The SVM attempts to 

determine a linear objective function fSVM (x, ω) (see Eq. 1) that has a maximum deviation of ε 

with respect to the actual value in the training dataset. 

𝑓𝑆𝑉𝑀 (𝑥, 𝜔) =  ∑𝜔𝑖𝐾𝑖 (𝑥) + 𝑏

𝑛

𝑖=1

 (1) 

 In Eq. 1, Ki represents the set of n nonlinear kernel functions which are used to transform 

the original input data (x) into higher dimensional feature space, b represents a bias term, and ω is 

the weight vector consisting of n choice coefficients.  

 Introduce non-negative slack variables ξi and 𝜉𝑖
∗ to the function, and the above optimization 

problem is reduced to the following problem  

Minimize: 
1

2
‖𝜔‖2 + 𝐶 ∑𝜉𝑖 + 𝜉𝑖

∗

𝑛

𝑖=1

    (2) 
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subject to 

{
 
 

 
 
𝑦𝑖 − 𝑓𝑆𝑉𝑀 (𝑥𝑖 , 𝜔) − 𝑏 ≤ 𝜀 + 𝜉𝑖

 
𝑓𝑆𝑉𝑀 (𝑥𝑖 , 𝜔) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖

∗

  
𝜉𝑖  𝑎𝑛𝑑 𝜉𝑖

∗ ≥ 0, 𝑎𝑛𝑑 𝑖 = 1, 2, 3…𝑛

 (3) 

 Here, C is constant which represents the degree of penalty of the sample with error 

exceeding the magnitude of the insensitive loss function (ε). In order to derive the optimum 

objective function, the parameters – ε and C – and any parameter associated with kernel function 

should be optimized. In this study, based on comparisons of prediction performances of each 

kernel, the 5th order polynomial kernel was chosen for SVM model.  

 

Random Forest (RF) 

Random Forest, a collection of tree predictors, is based on two machine learning techniques: 

bagging and random feature selection [7], [8]. During the training process, a series of decision 

trees are grown, resulting in an output that averages all decision trees. Prior to split at each node, 

each individual tree is independently constructed with a subset of the original training set. The 

general construction step of the RF model can be summarized as follows: 

1) “nt” bootstrap samples are generated randomly from the original training dataset.  

2) Grow unpruned regression tree for each of the nt bootstrap datasets. The number of leaves of 

each tree is held constant across the entire model.  

3) Each tree predicts a data-point outside of the selected bootstrap space. The output of the 

prediction is designated as out of bag (OOB) prediction [9].  

4) Predict the output of testing data by, for a given input vector (x), aggregating and averaging 

the overall OOB prediction 𝑓𝑅𝐹
𝑛𝑡(𝑥) and OOB error rate (see Eq. 4).  

𝑓𝑅𝐹
𝑛𝑡(𝑥) =

1

𝑛𝑡
∑𝑓𝑅𝐹𝑗(𝑥)

𝑛𝑡

𝑗=1

 (4) 

 

Multilayer Perceptron Artificial Neural Network (MLP-ANN) 

 Artificial neural network (ANN) consists of several computational elements (termed as 

neurons) arranged in layers, resembling the network of neurons in the human brain responsible for 

processing information in a hierarchical fashion [10]. Multilayer perceptron artificial neural 

network (MLP-ANN) is a subclass of ANN with strong self-learning capabilities [11]. The 

hierarchical structure of MLP-ANN is comprised of: (i) one input layer containing a set of input 

nodes (ii) one or more hierarchical hidden consisting of computation nodes (iii) one output layer 

containing one computation node. Each neuron in any given hidden layer is functionally related – 

as shown in Eq. 5 – to all neurons in the previous layer. 

𝑁𝑗 = ∑𝑤𝑗𝑖𝑜𝑖 (5) 

 Here, Nj represents the activation of the jth neuron, i indicates the set of all neurons in the 

previous layer, wji represents the weight of the connection between neurons j and i, and oi is the 
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output of the neuron. Each neuron uses activation functions to calculate intermediate-output values, 

which are subsequently passed on as input values to the next neuron layer. This process proceeds 

throughout the network until reaching the final neuron layer that produces the final output. 

Activation functions are represented as sigmoidal or logistic-transfer functions (Eq. 6)[11]. 

𝑦𝑗 =  𝑓(𝑁𝑗) =
1

1 + 𝑒𝑤𝑗𝑖.  𝑁𝑗
 

   (6) 

where yj = f (Nj) is the activation function of the jth neuron. During the training step, a back-

propagation algorithm [12] is used to minimize deviation  between actual and predicted values. 

This is accomplished by iteratively adjusting and finally determining the optimal connection 

weights (i.e., wji) – pertaining to each activation function – by using the gradient descent approach 

or the Levenberg-Marquardt algorithm [11].    

 

Data Collection and Evaluation of Prediction of Machine Learning Models 

 Dataset-1, published by Yeh et al. [13], [14], consists of 1030 data-records, featuring 278 

unique concrete mixture designs and compressive strengths. In each data-record, there are eight 

input variables – contents of cement (kg. m-3), blast furnace slag (kg. m-3), fly ash (kg. m-3), 

superplasticizer (kg. m-3), water (kg. m-3), fine aggregate (kg. m-3) and coarse aggregate (kg. m-3), 

and age (days); and one output – compressive strength (MPa). Statistical parameters pertaining to 

Dataset-1 are shown in Table I.  

Table I: A summary of statistical parameters pertaining to each of the 9 attributes (8 input and 

1 output) of Dataset-1. The dataset consists of 1030 unique data-records.  

Attribute Unit Min. Max. Mean Std. Dev. 

Cement kg. m-3 102.00 540.00 281.27 104.51 

Blast Furnace Slag kg. m-3 0.0000 359.40 73.896 86.279 

Fly Ash kg. m-3 0.0000 200.10 54.188 63.997 

Water kg. m-3 121.80 247.00 181.57 21.354 

Superplasticizer kg. m-3 0.0000 32.200 6.2050 5.9740 

Coarse Aggregate kg. m-3 801.00 1145.0 972.92 77.754 

Fine Aggregate kg. m-3 594.00 992.60 773.58 80.176 

Age Days 1.0000 365.00 45.662 63.170 

Compressive 

Strength 
MPa 2.3300 82.600 35.818 16.706 

 

 Dataset-2 was published by Sadati et al. [15]. This dataset comprised 526 unique data-

records. This dataset contains 13 inputs and 1 output. The 13 inputs parameters included: type of 

binder (“0” for plain binder and “1” for binary/ternary binder); contents (in kg. m-3) of cement, 

supplementary concrete material (SCM), natural coarse aggregate, recycled concrete aggregate 

(RCA), fine aggregate, and water; and density (in kg. m-3), water absorption capacity (in %) and 

maximum aggregate size (in mm) of natural coarse aggregate and RCA. The output parameter 

included the 28-day MOE (in GPa) of all concretes. Statistical parameters pertaining to the 

database are summarized in Table II.  
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Table II: A summary of statistical parameters pertaining to each of the 14 attributes (13 input 

and 1 output) of the Dataset-2. The database consists of 526 unique data-records. 

Attribute Unit Min. Max. Mean Std. Dev. 

Binder type Unitless 1 2 
  

Cement content kg. m-3 150.00 597.00 338.68 77.21 

SCMs (fly ash and/or slag) content kg. m-3 0.00 225.09 32.32 57.82 

Natural aggregate (coarse) content kg. m-3 0.00 1950.00 563.09 434.25 

RCA (coarse) content kg. m-3 0.00 1800.00 495.38 423.50 

Fine aggregate content kg. m-3 465.00 1301.10 730.69 121.87 

Natural agg. water absorption 

capacity 

% 0.20 6.10 1.22 0.77 

RCA water absorption capacity % 1.93 18.91 5.38 2.33 

Natural aggregate density kg. m-3 2482.79 2880.00 2616.63 84.67 

RCA density kg. m-3 1800.00 2602.00 2312.22 121.88 

Natural aggregate max. particle size mm 8.00 32.00 20.00 3.80 

RCA max. particle size mm 8.00 32.00 18.95 4.76 

Water kg. m-3 108.30 234.00 170.69 31.55 

28-day MOE (output) GPa 11.30 54.80 30.41 7.81 

 

 For training and evaluation of prediction performances of above three ML models, each 

above database was randomly split into two subsets: a training set (75% data-records) and a testing 

set (remaining 25% data-records). The training set was used to finalize and optimize ML model 

parameters, and testing set used to determine the cumulative error between predicted and measured 

values. Five different statistical parameters were used to assess the prediction performances of 

three ML models. The five statistical parameters include Person correlation coefficient (R), 

coefficient of determination (R2), mean absolute percentage error (MAPE), mean absolute error 

(MAE), and root mean squared error (RMSE). To gain a comprehensive evaluation of prediction 

performance of each model, the five statistical parameters were unified into a composite 

performance index (CPI) [16].  

 

Results and Discussion 

 As described in the previous section, three machine learning models were firstly trained by 

75% of the database and then prediction performances of each model were evaluated by against 

the rest 25% of the database. Predictions of mechanical properties of concretes from Database 1, 

and Database 2, as predicted by three ML models implemented in this study, are shown in Figure 

1, and 2, respectively, and statistical parameters of each model are enumerated in Table III, and 

IV.  

 As shown in Figure 1 and Table 3, all ML models presented in this study were able to 

predict the age-dependent the compressive strength of concrete with reasonable accuracy. This is 

evidenced by the relatively low and high values of RMSE (ranging between 4.51-and-6.33 MPa) 

and R2 (ranging between 0.86-and-0.93). Based on the values of CPI, the prediction performances 

of ML models can be ranked as RF > SVM > MLP-ANN. As can be seen in Figure 2 and Table 

4, all ML models produced predictions with reasonable accuracy, with the values of R ranging 
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from 0.66 to 0.91, and RMSE ranging from 6.02 GPa to 3.34 GPa. Based on the values of CPI, the 

prediction performances of the ML models can be ranked as RF > MLP-ANN> SVM. 

 Usually, the prediction performance of SVM is good, especially when applied to predict 

the compressive strength of concrete [2], [17]. The inferior prediction performance of Database-2 

can be explained as that SVM models, very much like ANN models, rely on local search and 

optimization algorithms; as such, they suffer from the drawback of converging to a local minimum 

rather than the global minimum, especially when the relationship between input variables and 

output in the training dataset contains several closely-placed local minima.  

 Predictions made by the MLP-ANN model were more accurate compared to the SVM 

model. Nevertheless, the prediction performance of the MLP-ANN model could also be 

compromised due to its inherent susceptibility to converge to a local – as opposed to the global – 

minimum [18], [19]. However, in this study, the hyper-parameters of the MLP-ANN model were 

rigorously optimized through the 10-fold CV method; on account of this optimization, it is 

expected that the aforementioned drawback of the model was, at least partially, overcome, thereby 

allowing the model to produce predictions with reasonable accuracy. 

The RF model outperformed the two aforementioned models in terms of prediction accuracy. 

This is expected because, in the RF model, a large number of trees are grown without pruning or 

smoothening. On account of having a large number of unpruned trees, splits into data are more 

logical, and, therefore, errors resulting from generalization are minimized and overfitting of the 

training data is mitigated [9]. Furthermore, because of the two-stage randomization employed in 

the RF model correlation among unpruned trees is minimized (diversity among trees is high), the 

bias is kept low, and variance is significantly reduced.  

   
(a) (b) (c) 

Figure 1: Predictions made by ML models: (a) MLP-ANN; (b) RF; (c) SVM compared 

against actual compressive strength of concretes (drawn from Dataset-1). The dashed line 

represents the line of ideality and the solid lines represent a ±10% bound.   

 

Table III: Prediction performance of ML models, measured on the basis of the test set of 

Dataset-1. Five statistical parameters (i.e., R, R2, MAE, MAPE, and RMSE) and the composite 

performance index (CPI) are shown. 

ML Model R R2 MAE MAPE RMSE CPI 

 Unitless Unitless MPa % MPa Unitless 

MLP-ANN 0.9308 0.8664 5.0421 36.143 6.3300 1.0000 

SVM 0.9525 0.9073 3.5756 25.624 5.2234 0.4385 
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RF 0.9654 0.9320 3.2674 23.443 4.5103 0.1999 

 

         
(a) (b) (c) 

Figure 2: Predictions made by ML models: (a) MLP-ANN; (b) RF; (c) SVM method 

compared against actual MOE of concretes (drawn from Dataset-2). The dashed line represents 

the line of ideality and the solid lines represent a ±10% bound.  

 

Table IV: Prediction performance of ML models, measured on the basis of the test set of 

Dataset-2. Five statistical parameters (i.e., R, R2, MAE, MAPE, and RMSE) and the composite 

performance index (CPI) are shown. 

ML Model R R2 MAE MAPE RMSE CPI 

 Unitless Unitless GPa % GPa Unitless 

SVM 0.6672 0.4452 4.4568 69.999 6.0226 0.9880 

MLP 0.8559 0.7326 3.0973 48.646 4.3859 0.3770 

RF 0.9119 0.8316 2.5198 39.577 3.3448 0.1241 

 

Conclusion 

 As shown in this work, in spite of the inherently nonlinear and complex nature of the 

relationship between input (concrete mixture design) and output (concrete’s mechanical 

properties), machine learning (ML) models can reliably perform predictions. The modulus of 

elasticity (MOE) and compressive strength of concretes are predicted by random forests (RF) 

model, support vector machine (SVM), and multilayer perceptron artificial neural network (MLP-

ANN) models. The prediction performance of the RF model was superior compared to the other 

two models implemented in this study. The large number of unpruned trees, which develop logical 

input-output correlation and mitigate overfitting and generalization errors, contributed to the 

accuracy of the RF model. The further studies are needed to explore how the ensemble ML models 

can predict and optimize the properties of concretes. 
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