#### Prospects and challenges for a global expansion of Nuclear Energy

Siegfried S. Hecker Stanford University

Acta Materialia Award in Materials and Society Symposium on "Global R&D Trends – Implications for Materials Science" San Antonio, TX March 5, 2013

# Nuclear electricity around the world

Nuclear Share of Electricity - NEI 2010



# **Global nuclear futures**

- Will there be a nuclear "renaissance?"
- Key challenges:
  - Safety and security
  - Economics
  - Waste disposal
  - Nuclear proliferation
  - Manpower
- Public acceptance and governmental control

These are major challenges for democratic countries

#### Fukushima Dai-ichi – new concerns about nuclear safety

Nuclear safety is paramount

Natural disasters
Human error
Acts of terrorism

# **Nuclear Electricity in the United States**

- In the late 1960's, conventional wisdom was the nuclear power industry was soaring with extraordinary expectations
- In the late 1980's, conventional wisdom was the domestic fleet would phase out with no new builds
- So what happened?
  - 101 utilities in 1991 → 87 utilities in 1999 → Currently 70% of total nuclear capacity is owned by top ten utilities
  - Nuclear assets were bought at bargain prices and plant economics improved







It is important to have a healthy dose of humility when talking about the future of nuclear power

Prof. Ed Blandford, UNM

## The "nuclear picture" in the United States

- Construction is continuing on 2 new AP-1000s at Vogtle in Georgia while 2 more units have been approved for V. C. Summer plant in South Carolina
- TVA is finishing Watts Bar construction





Prof. Ed Blandford, UNM

#### Doosan Heavy Industries, South Korea Pressure vessel for Vogtle AP-1000

Loss of nuclear supply chain in U.S.

# 2012: a very tough year for US nuclear industry

- U.S. could potentially lose four units at three sites due to long term outages
  - High heat concerns limited power output in US fleet over summer









Prof. Ed Blandford, UNM

## A nuclear winter?

- Aug. 24, 2012 editorial FINANCIAL TIMES
  - "Cost, not safety, is the biggest challenge for atomic power"
- Jeff Immelt (GE)
  - Nuclear power is really hard to defend financially
  - Especially to gas-fired generation, even some renewables
- Insufficient cost cutting in nuclear industry
  - Fukushima makes it more difficult
  - Tight regulation crimps competition and innovation
- Government role is important floor price for carbon?

Has nuclear power in U.S. gone from "too cheap to meter" to "too expensive to matter?"

## **Evolutionary path for nuclear power**



Prof. Ed Blandford, UNM

# **Technical Barriers: Need to accelerate learning**

- Nuclear world involves long lead times
  - Fuel demonstration
  - Material performance
  - Reliability data
  - Design inflexibility
- Power of plant demonstration is important but risky
  - Small modular reactors can help minimize risk
- Requires verification and validation of sophisticated computational tools for safety









## Scalable Nuclear Plant: Practical, Affordable

- Fully independent reactor modules
- I-8 modules per plant, 125-1,000 MWe
- Underground containment building
- Low-impact, air-cooled condenser
- Scalable to grid, site, load-growth
- Three-year construction schedule



500 MWe Configuration

Cost certainty ... Schedule certainty ... Capital efficient.

#### Renewed Interest in Molten Salt Technology

# High temperature and low pressure liquid salt coolant

High temperature coated particle fuel





#### Nuclear power supplies 15% of the world's electricity...



... but it is concentrated heavily in the developed world. Major expansion will come in the developing world – China & India

# Future of global nuclear power

- Nuclear reactor construction primarily in Asia
- Nuclear reactor manufacture shifting to Asia
  - South Korea emerges as major exporter
  - China is poised to be next major exporter
  - Japan is fading
  - Russia is pushing very hard, French are also
  - Questions of US nuclear supply chain
- Who will lead the regulatory and operations world?

We are seeing tectonic shifts in all aspects of global nuclear power to Asia – is it prepared to lead?

# China's post Fukushima nuclear plan



# Three Stages of Nuclear Power Growth





#### AP-1000 US-China Technology Transfer: Can China Lead in Passive ALWR Technology Export?

- SNPTC currently developing the CAP-1400 based on AP-1000 technology
  - Testing program being developed with assistance from US
- Construction of the first CAP1400, at a site near Weihei in Shandong Province, is officially scheduled to begin in April 2013
- CAP-1400 (or CAP-2100) will <u>not</u> be design certified by the US NRC







# China is currently constructing a high temperature gas reactor demonstration plant called HTR-PM

- HTR-PM demonstration plant features two 250MWth pebble-bed modules driving one 210 MW turbine generator
  - Located in Shidaowan, a coastal site near Rongcheng city on Shandong Peninsula
- In early December 2012, Chinese government approved the HTR-PM project and regulatory authority issued construction permit
- Began pouring concrete on December 9, 2012







# CEFR - 65MWt/25MWe (China Experimental Fast Reactor)



#### Chinese have recently embarked upon a Thorium Molten Salt Reactor (TMSR) Program

- Jiang Mianheng from the Chinese Academy of Sciences (CAS) and former son of former Chinese president, Jiang Zemin, has recently initiated a large thorium molten salt reactor program
- CAS program is based largely on the Molten Salt Reactor (MSR) program developed under Alvin Weinberg
- Chinese have adopted a similar strategy as the United States with respect to fluoride salt technology





## India - pushing the technological envelope





#### ARTIST VIEW OF 500 MWe FAST BREEDER REACTOR PROJECT

## South Korea has become a nuclear energy power house



#### A bird's eye view of Shin-Kori Units 3 & 4 Two APR-1400 plants

#### South Korea's nuclear export - United Arab Emirates



Korea Electric Power Corporation wins \$20 B bid – Dec. 2009 Ground broken March 14, 2011







#### Abu Dhabi

# South Korea's SMART Small PWR Plant

#### **SMART DESIGN**

- Small sized integral type Pressurized Water Reactor
- Elimination of the possibility of LBLOCA
- Self controlled pressurizer by a non-condensable gas
- Low power density and Boron free core
- Passive system for the decay heat removal
- Simplification of system/components



**MCP** 

CEDM

**Annular Cover** 

#### **Nuclear waste disposal**



## **Nuclear Power: Expansion vs. Spread**

#### States with nuclear power and aspiring nuclear power states.

| Americas              | Western<br>Europe      | Eastern<br>Europe    | Central<br>and South<br>Asia | East Asia/<br>Oceania  | Middle<br>East   | Africa             |
|-----------------------|------------------------|----------------------|------------------------------|------------------------|------------------|--------------------|
| Argentina<br>Brazil   | Belgium<br>Finland     | Armenia<br>Bulgaria  | India<br>Pakistan            | China<br>Japan         | Iran<br>Bahrain  | South<br>Africa    |
| Canada                | France                 | Czech                | Bangladesh                   | Korea                  | Egypt            | Algeria            |
| United<br>States      | Germany<br>Netherlands | Republic<br>Hungary  | Georgia<br>Kazakhstan        | Indonesia<br>Malaysia  | Israel<br>Jordan | Ghana<br>Kenya     |
| Mexico<br>Bolivia     | Spain<br>Sweden        | Lithuania<br>Romania | Mongolia<br>Sri Lanka        | Myanmar<br>Philippines | Kuwait<br>Oman   | Libya<br>Morocco   |
| Chile                 | Switzerland            | Russia               |                              | Singapore              | Qatar<br>Saudi   | Namibia            |
| Dominican<br>Republic | United<br>Kingdom      | Slovakia<br>Slovenia |                              | Thailand<br>Vietnam    | Saudi<br>Arabia  | Nigeria<br>Senegal |
| El<br>Salvador        |                        | Ukraine<br>Belarus   |                              |                        | Syria<br>Turkey  | Sudan<br>Tanzania  |
| Haiti                 |                        | Croatia              |                              |                        | UAE              | Tunisia            |
| Jamaica<br>Peru       |                        | Estonia<br>Greece    |                              |                        | Yemen            |                    |
| Uruguay<br>Venezuela  |                        | Latvia<br>Poland     |                              |                        |                  |                    |

Sources: the IAEA Power Reactor Information System, <u>www.iaea.org/programmes/a2</u>; Frank N. von Hippel, ed., "The Uncertain Future of Fission Power," review draft, wwww.fissilematerials.org; Polity IV Project, *Political Regime Characteristics and Transitions,* 1800-2007, <u>www.systemicpeace.org/inscr/inscr.htm</u>

# Importance of U.S. influence

- Regulatory, safety and operations standards
- U.S.-origin fuel restrictions
- Nonproliferation norms and practices
  - Congressional Blue Ribbon Committee Report (2012)
  - Bipartisan Policy Center Report (2012)

Current economics do not favor nuclear power in U.S. Growth will come in Asia – U.S. has reasons to stay involved

#### Early warnings about the inevitability of proliferation

#### "A Report on the International Control of Atomic Energy". Acheson-Lilienthal Report, March 28, 1946

• It is further recognized that atomic energy plays so vital a part in contributing to the military power, to the possible economic welfare, and no doubt to the security of a nation, that the incentive to other nations to press their own developments is overwhelming.

• The development of atomic energy for peaceful purposes and the development of atomic energy for bombs are in much of their course interchangeable and interdependent.

## **Nuclear Fuel Cycle**



# North Korea and Iran. Different paths to the bomb









28 MAY 201













#### North Korea threatens 'final destruction' of South Korea in UN debate By Tom Miles, Reuters, Geneva, Feb. 19, 2013



#### North Korea threatens to scrap armistice ending war Tue Mar 5, 2013 8:45am EST

# Dennis "Diplomat" Rodman to the rescue

100