Materials in Nuclear Energy Systems Conference (MiNES 2021)

Confirmed Presenters: The yellow boxes indicate a presenter has registered to attend.

Tuesday, November 9 8:00 AM				Wednesday, November 10			Thursday, November 11		
				8:00 AM		8:00 AM			
Fundamental Irradiation	Nuclear Fuel Cycles- Session I	Versatile Test Reactor	Fuels and Actinide Materials-	Fundamental Irradiation	Integrated Phenomena-	Advanced and Novel Materials-	Fuels and Actinide Materials-	Material Properties Evolution-	
Damage- Session I			Metallic Fuels I	Damage- Session IV	Session I	Session II	Thermal Properties, UN and UC Fuels II	Session II	
On the Exploitation of	Recent Advances in	Overview of in Reactor	3D-reconstruction via Genetic	Low Temperature Hardening-	Radiation-decelerated	Advanced Manufacturing for	Thermal Analysis of Advanced	Mesoscale Simulations of	
Databases to Predict the	Pyroprocessing of Light Water	Mechanical Testing in the	Algorithms: Application to	embrittlement Phenomenon IN	Corrosion of Nuclear Structural	Novel Material Design and	Nuclear Fuels during Simulated	Interactions between	
Embrittlement of Reactor	Reactor Fuel: Krista	Versatile Test Reactor: Tarik	Metallic Fuel: Fabiola Cappia,	9-14% Chromium Based	Materials in Gen IV Reactor	Development: Isabella Van	Off-normal Events: Elizabeth	Dislocation Loop and Point	
Pressure Vessels: Marta	Hawthorne, Argonne National	Saleh, Los Alamos National	Idaho National Laboratory	Ferritic-martensitic and Oxide	Environments: Michael Short,	Rooyen, Idaho National	Sooby, University of Texas at	Defects in bcc Iron: Haixuan	
Serrano, Ciemat	Laboratory	Laboratory		Dispersion Strengthened	Massachusetts Institute of	Laboratory	San Antonio	Xu, University of Tennessee	
				Steels: Arunodaya	Technology				
				Bhattacharya, Oak Ridge					
				National Laboratory					
Next Steps for Improved Defect	Instrumentation in Molten Salt	In Situ Mechanical Testing	Identifying Crystalline Phases	Decoupling Thermal and	Mitigating Irradiated Assisted	Additive Manufacturing (AM)	Development and Application	Mechanical Response of HT9	
Production and Mixing	Systems: Commercial	Method for Materials in	in Irradiated U-Pu-Zr Fuels	Irradiation Effects on	Stress Corrosion Cracking with	of Oxide Dispersion	of a UN Potential to Defect	and T91 under Dual-ion and	
Parameters: Beyond NRT DPA,	Availability, Custom Solutions,	Gaseous Environments: Peter	Using TEM: Assel Aitkaliyeva,	Clustering and Chemical	Minor Refractory Element	Strengthened (ODS) FeCrAl	Properties and High	Neutron Irradiations:	
ARC-DPA and RPA: Steven	and Gaps: Adam Burak,	Beck, Oregon State University	University of Florida	Redistribution in 14YWT ODS:	Modification – A High-	Using In Situ Oxidation: Ty	Temperature Elastic Constants:	Pengcheng Zhu, University of	
Zinkle, University of Tennessee	University of Michigan			Amrita Sen, Purdue University	throughput Approach Using	Austin, University of	Vancho Kocevski, Los Alamos	Tennessee, Knoxville	
					Compositionally-graded	Tennessee, Knoxville	National Laboratory		
					Specimen: Jingfan Yang,				
					Auburn University				
Comparison of Temperature-	Deliquescence of Eutectic LiCl-	Emissivity Measurements of	Does the Fuel Fabrication	Dose and Temperature Effect	Determination of Tritium	Ultra-fine Lattice Wicking	Chemical Interaction and	Rapid Simulation of the	
dependent Swelling Behavior	KCI Diluted with NaCl for	Silicon Carbide Cladding	Method Have an Impact on the	· ·	Trapping Mechanisms in the	Structures Additively	Incorporation of Lead with	Irradiated Microstructure in	
in FCC Compositionally	Interim Waste Salt Storage:	Samples for Use in Gas Cooled	Fuel Performance	Irradiated Oxide Dispersion	TPBAR Aluminide Coating :	Manufactured from Tungsten:	Uranium Nitride Fuels: Andre	Flux Thimble Tubes to High	
Complex Alloys and 316H	Claire M Decker, University of	Fast Reactor: Noah Sutton,	Microstructure in Uranium-	Strengthened (ODS) Alloys:	Anne Chaka, Pacific Northwest	Carly Romnes, University of	Broussard, Rensselaer	Dose Using Ion Irradiation :	
Stainless Steel under Heavy-ion	Utah	TA&M Thermal Hydraulics Lab	molybdenum?: Maria	Samara Levine, University of	National Laboratory	Illinois at Urbana-Champaign	Polytechnic Institute	Gary Was, University of	
Irradiation: Calvin Parkin,			Okuniewski, Purdue University	Tennessee				Michigan	
University of Wisconsin-									
Madison									
Free Surface Impact on	Perovskite-derived Cs2SnCl6-	Design and Operation of an		The Subtle Effects of Nitrogen	Understanding Tritium	Innovative Elaboration Method	Phase and Thermodynamic	Atomistically Informed Cascade	
Radiation Damage in Pure	Silica Composites as Advanced	Out-of-pile Liquid Sodium	High Burnup U-10Zr Metallic	on Radiation Effects in	Permeation in FeCrAl Alloys:	of ODS Ferritic Steels	Analysis of Uranium	Overlap Model to Predict Alloy	
Nickel by In-situ Self-ion	Waste Forms for Chloride Salt	Experimental Facility for	Fuel: Tiankai Yao, Idaho	Tempered Martensitic Steels:	Rajnikant Umretiya, GE	Reinforced by Y2Ti2O7	Mononitride in High-	800H Microstructure Evolution	
rradiation: Can It be Avoided?:	Wastes: Jie Lian, Rensselaer	Mechanical Testing: Dustin	National Laboratory	Stuart Maloy, Los Alamos	Research	Pyrochlore Phase Oxide:	temperature Steam Light	during High-dose Neutron	
Marie Loyer-Prost, CEA	Polytechnic Institute	Mangus, Oregon State		National Laboratory		Guillaume Josserand, CEA	Water Reactor Atmospheres:	Irradiation: Samuel Morris,	
		University					Geronimo Robles, University of	University of Tennessee	
							Texas at San Antonio	Knoxville	
Pushing towards the Limits in	A First-principles Database	Fracture Mechanics-based	Constructing Multi-component	Defect Cluster Configurations		Strengthening Effects across		Solute Segregation and	
Characterization of Radiation	Approach to Predicting Trans-	Testing and DCPD in FLiNaK :	Diffusion under Irradiation in U			Ultrasonic Additive		Precipitation Across Damage	
Damage: Grace Burke,	uranic Waste Forms: Amir	Xavier Quintana, Oregon State	Mo Alloys: Benjamin Beeler,	zirconium: Implications for		Manufacturing (UAM)		Rates in Dual Ion Irradiated T91	
University of Manchester	Mofrad, University of South	University	North Carolina State University	Breakaway Irradiation Growth:		Interfaces: Michael Pagan,		Steel: Valentin Pauly,	
	Carolina			Jose March-Rico, University of		University of Tennessee		University of Michigan	
		ļ		Tennessee, Knoxville	ļ	Knoxville			
	10:30 AM			10:30 AM			10:20 AM		
Fuels and Actinide Materials-	Fundamental Irradiation	Nuclear Fuel Cycles- Session II	Fuels and Actinide Materials-	Fundamental Irradiation	Integrated Phenomena-	Advanced and Novel Materials-	Fuels and Actinide Materials-	Early Career Development in	
Fabrication Methodology	Damage- Session II	· · · · · · · · · · · · · · · · · · ·	Metallic Fuels II	Damage- Session V	Session II	Session III	Oxide Fuels I	Nuclear Materials - Panel	

	r	
Advanced Technology Fuel	Physical Understanding of	How Does PUREX Actually
Accelerated Development at	Radiation Hardening of	Work and What Do Chemists
Bangor University: Simon	Neutron Irradiated FeCr Alloys :	Do?: Jenifer Shafer, Colorado
Middleburgh, Bangor	Cristelle Pareige, University of	School of Mines
University	Rouen	
Synthesis of UN-U3Si2	The Kinetics and Stability of	Development and Application
Composite Fuels by Spark	Alpha Prime (a') Precipitates in	of an Interatomic Potential for
Plasma Sintering and	FeCr Binary Alloy under Ion	the Investigation of Mixed
Properties Characterization:	Irradiations: Steven Zinkle, The	Oxide Compounds Containing
Bowen Gong, Rensselaer	University of Tennessee	Americium: Marjorie Bertolus,
Polytechnic Institute		CEA
Fabrication of Potentially High	Effect of Cr and Temperature	Radiation Damages Bohr's
Burnup Annular U-10Zr Fuel by	on Dislocation Loops in Heavy	Metrics: The Elemental
SPS: Dong Zhao, Rensselaer	Ion Irradiated Ultra-high Purity	Landscape: Jean-Christophe
Polytechnic Institute	FeCr Alloys: Yao Li, University	Sublet, IAEA
	of Tennessee Knoxville	
	1:30 PM	
Fuels and Actinide Materials-	Fundamental Irradiation	Nuclear Fuel Cycles- Session III
HTGR Fuels	Damage- Session III	
Cluster Dynamics Simulations	Cavity Formation in Ion	The Effect of Phase Structure
of Fission Gas and Product (Xe,	Irradiated Fe and Fe-Cr Ferritic	on the Aqueous Corrosion of
Ag) Diffusivities in TRISO UCO	Alloys: Yan-Ru Lin, University	Yttrium Disilicate: Keith Bryce,
Fuel Kernels : David Andersson,	of Tennessee	Rensselaer Polytechnic
Los Alamos National		Institute
Laboratory		
High Density TRISO Fuel: Daniel		Beta Transmutations in Apatite
Talbot, United States Air Force	Cavity Detection Using an	with Ferric Iron as an Electron
	Expanded Machine Learning	Acceptor – Implication for Nuclear Waste form
	Training Data Domain: Matt Lynch, University of Michigan -	
	Ann Arbor	Development: Jianwei Wang, Louisiana State University
		Louisiana state offiversity
Microstructural Analysis of	Impact of Grain Boundary and	Predicting Phase Stability of
Oxidized Tristructural Isotropic	Surface Diffusion on Fission	Potential Actinide-bearing
Particles (TRISO) in Mixed Gas	Gas Release in	Hollandite Waste Forms Using
Atmospheres : Katherine	UO ₂ Nuclear Fuel	First Principles Calculations:
Montoya, University of Texas	LINE A DIVERSE FILLING AND A AND	Amir Mofrad, University of
	Using a Phase Field Model: Md	· · · · ·
at San Antonio	Ali Muntaha, University of	South Carolina
	-	· · · · ·

The Challenges of \\945;- uranium: Fundamental Understanding of a Past and Future Nuclear Fuel Material: Andrea Jokisaari, Idaho National Laboratory Impact of Zirconium Concentration Variation on Metal Fuel Constituent Redistribution : Thaddeus Rahn, University of Florida	Radiation Effects and Thermal Stability in Ferritic Steels and High Entropy Alloys: Eda Aydogan, Middle East Technical University Effect of Damage Rate and Cascade Size on \\945;' Precipitate Stability in Fe-15Cr: Katey Thomas, University of Michigan	Kinetics of SiC Reaction with Water and Oxygen Under Light Water Reaction Conditions: Peter Doyle, Oak Ridge National Laboratory Structural Materials Testing for the Westinghouse Lead Fast Reactor: Mike Ickes, Westinghouse Electric Company	Opportunities for Advanced Concepts in Nuclear Fuel Development: Andrew Nelson, Oak Ridge National Laboratory Metal Hydride Moderator Development at Los Alamos National Laboratory: Tarik Saleh, Los Alamos National Laboratory	Atomic Scale Investigation of Thermodynamic and Defect Properties of (U,Pu)O ₂ Mixed Oxide: Marjorie Bertolus, CEA Phase-field Simulations of Fission Gas Bubbles in High Burnup UO2 during Steady- state and LOCA Transient Conditions: David Andersson, Los Alamos National	
X441A: Effects of Varying	A New Statistical Approach for Atomistic Calculations of Point Defect Formation Energies in Multicomponent Solid-solution Alloys: Yongfeng Zhang, University of Wisconsin	3D Reconstruction and Quantification of Oxide Nano- porosity in Zirconium Alloys: Hongliang Zhang, University of Wisconsin Madison	Radiation Tolerance of Capacitive Discharge Resistance Welded 14YWT: Calvin Lear, Los Alamos National Laboratory	Laboratory Thermal Diffusivity of Nuclear Materials at the Miniature Scale: Najeb Abdul-Jabbar, Los Alamos National Laboratory	
	Effect of Helium Injection Rate on Cavity Microstructure in Dual Ion Irradiated T91 Steel : Valentin Pauly, University of Michigan		In-situ Nanomechanical Characterization of Neutron- irradiated HT-9 Steel: Assel Aitkaliyeva, University of Florida		
	1.20 DM			1:10 PM	
Fuels and Actinide Materials-	1:30 PM Fundamental Irradiation	Integrated Phenomena-	Advanced and Novel Materials-	Fuels and Actinide Materials-	Material Properties Evolution-
Metallic Fuels III	Damage- Session VI	Session III	Session IV	Oxide Fuels II	Session III
Transmission Electron	Radiation Enhanced Diffusion	Irradiation Creep and Fatigue	Novel Nickel-based Alloys for	New Microscopic Insights into	IASCC Initiation Testing of ex-
Microscopy of the Uranium-	(RED) and the Coupled Effects	Observed via In-situ Electron	Molten Salt Fast Reactor	the Fuel Cladding Interaction	PWR Baffle-former Bolts: Mike
22.5 Atom% Zirconium System	of Irradiation and Corrosion in	Microscopy: Khalid Hattar,	Structural Applications: Vijay	Layer of High Burnup Fuel:	Ickes, Westinghouse Electric
Following Casting, Cold-	Fe ₂ O _{3<td>Sandia National Laboratories</td><td>Vasudevan, University of North</td><td>Sarah Finkeldei, University of</td><td>Company</td>}	Sandia National Laboratories	Vasudevan, University of North	Sarah Finkeldei, University of	Company
working, and Annealing: Maria		Sanula National Laboratories	Texas	California-Irvine	company
A Okuniewski, Purdue University	Alamos National Laboratory			California-li vine	
An Investigation of FCCI Using	Radiation-induced Segregation	Wear and Friction Behavior of	Contextualizing Dispersoid	Three-dimensional	Mesoscale YellowJacket: A
Diffusion Couple Test between	· ·	Fuel Pebbles in Molten	Evolution within Friction Stir	Characterization of	Phase-field Model for
UMTZ Alloys and Cladding:	under Concurrent Grain	Fluoride Salt: Lorenzo Vergari,	Welded and Ion Irradiated	Microstructural Features in	Microstructure Dependent
Weiqian zhuo, Virginia Tech	Boundary Movement:	University of California	MA956: Elizabeth Getto,	Oxide Fuels: Casey McKinney,	Corrosion of Ni-Cr Alloys by
	Aashique Rezwan, University of	Berkeley	United States Naval Academy	University of Florida	Molten Fluoride Salts:
	Wisconsin Madison				Chaitanya Bhave, University of
					Florida
First-principles Study of the	Suppressing Irradiation	Thermal Gradient Effect on the	Temperature-controlled		Atom Probe Tomography Study
Interfaces between Gamma-U	Instabilities in Nanocrystalline	Helium and Intrinsic Defects	Friction Stir Welding: A	Fuel Pulverization Using Cluster	of Elemental Segregation and
and Uranium Carbide:	True astan the same house	Transport Properties in	Potential Crack Repair	and Molecular Dynamics:	Precipitation in Ion-irradiated
	Tungsten through Grain				
Benjamin Beeler, North	Boundary Doping: Jason	Tungsten: Enrique Martinez	Technology for 304L Stainless	Michael Cooper, Los Alamos	Advance Austenitic Alloy A709:
	Boundary Doping: Jason Trelewicz, Stony Brook		Steel Spent Nuclear Fuel-dry	Michael Cooper, Los Alamos National Laboratory	Dominic Piedmont, University
Benjamin Beeler, North	Boundary Doping: Jason	Tungsten: Enrique Martinez	Steel Spent Nuclear Fuel-dry Storage Canisters (SNF-DSC):		Dominic Piedmont, University of Illinois at Urbana-
Benjamin Beeler, North	Boundary Doping: Jason Trelewicz, Stony Brook	Tungsten: Enrique Martinez	Steel Spent Nuclear Fuel-dry		Dominic Piedmont, University

Oxidation Performance of High Uranium Density Fuels for Light Water Reactors: Joshua White, Los Alamos National Laboratory	Irradiation: Finite Size Effects	
Fabrication and Properties of Uranium Dioxide-uranium Boride Composites: Erofili Kardoulaki, Los Alamos National Laboratory		
A Review of Current Understanding of Fluff Formation in Metallic Fuel via EBR-II Data and Modelling and Simulations.: Jake Fay, Rensselaer Polytechnic Institute		
	4:00 PM	
	Plenary	
	vanced Reactor Concept: Eben M	uluer, X-energy

Three-dimensional	Correlating Properties of	Dependence of Sink Strength	Thermal Annealing and	Experimental Characterization	The Role of Alloying Species on
Characterization of Pore	Irradiation Produced Nanoscale	Effects on Defect Evolution in	Irradiation Behavior of	of the Chemical Behavior of Cs,	Radiation Tolerance of BCC Fe
Evolution in High-burnup U-Mo	Superlattices with Irradiation	Dual-ion Irradiated Additive-	Ultrafine-grained and	I and Te in UO2 : Morgane	Binary Alloys: Patrick Warren,
: Maria A. Okuniewski, Purdue	Condition Parameters: Anton	Manufactured HT9: Pengyuan	Nanocrystalline FeCrAl Alloys:	Rochedy, CEA	Purdue University
University	Schneider, University of	Xiu, University of Michigan	Maalavan Arivu, Missouri		
	Wisconsin Madison		University of Science and		
			Technology		
	Study on Role of Irradiation		Finding a Balance in FeCrAl		
	Induced Vacancies and Voids		Alloys: Optimization of Alloy		
	on Strain-induced Martensitic		Chemistry for Balanced		
	Transformations by Molecular		Properties: Andrew Hoffman,		
	Dynamics: Chao Yang, Purdue		GE Research		
	,		GE Research		
	University				
	4:00 PM			3:30 PM	
Advanced and Novel Materials-	Fuels and Actinide Materials-	Material Properties Evolution-	Advanced and Novel Materials-	Fuels and Actinide Materials-	Material Properties Evolution-
Session I	Thermal Properties, UN and UC	Session I	Session V	Oxide Fuels III	Session IV
	Fuels I				
Overview of Fuel System	Utilization Potential for the	Development of a	MAX Phases for Nuclear	Calculation of Irradiation	Neutron Irradiation Effects on
Options for Nuclear Thermal	Molten Salts Thermal	Multicomponent Ideal-solution	Applications: Konstantina	Enhanced Diffusivities Using	PM-HIP Inconel 625: Caleb
Propulsion: Kelsa Palomares,	Properties Database –	(MCIS) Free Energy Phase-field	Lambrinou, SCK-CEN	Centipede: Christopher	Clement, Purdue University
Analytical Mechanics	Thermochemical (MSTDB-TC)	Model for Simulation of		Matthews, Los Alamos	
Associates	in Operational and Safety	Nuclear Materials		National Laboratory	
	Analysis for MSRs: Theodore	Microstructural Evolution:			
	Besmann, University of South	Chaitanya Bhave, University of			
	Carolina	Florida			
Grain Growth and Mechanical	Determination of Chromium	Effect of the Inner Liner on	Exploring the Radiation	Defect Clustering in	Influence of Different Heat
Properties of Nano ZrO2 Oxide	Corrosion Potential in the Na-K-		Response of Innovative	UO ₂ Doped	Treatments and Ion Irradiation
	Mg-U(III) Chloride Molten Salt :	Cracking: Aaron Colldeweih,	Accident Tolerant Fuel	Systems Studied Using XAS and	on the Microstructural
Mo30W: Neal Gaffin,	Jacob A. Yingling, University of	PSI	Candidate Concepts Based on	Neutron Scattering: Arjen van	Evolution and Microhardness
University of Tennessee -	South Carolina	131	High-entropy Alloys: Matheus	Veelen, Los Alamos National	of Inconel 625 Fabricated via
Knoxville	Journ Carolina				Laser-powder Bed Fusion: John
KIOXVIIIe			Araujo Tunes, Los Alamos	Laboratory	•
A Study of the Corrector	Incidente inte Drediction of	Efforts of Llost Treatmost	National Laboratory	Dislocation Loop Evolution in	Gahl, University of Missouri
A Study of the Corrosion	Insights into Prediction of	Effects of Heat Treatment,	High Throughput Study of	Dislocation Loop Evolution in	Mechanical Behavior of
Behavior of Cold-sprayed 304L		Build Angle and Radiation Type	Hardening and Void Swelling in		Additively Manufactured 316L
Stainless Steel for Dry Storage	Chloride Salts for Generation IV	on the Hardness and	Ion Irradiated Compositionally	Khafizov, Ohio State University	Stainless Steel and SiC before
Canisters: Richard Chiang,	MSRs: Juliano Schorne Pinto,	Microstructure of Inconel 625	Complex Alloys: Benoit		and after Neutron Irradiation :
University of Cincinnati	University of South Carolina	and 718 Fabricated via Laser-	Queylat, University of		Thak Sang Byun, Oak Ridge
		powder Bed Fusion Additive	Wisconsin, Madison		National Laboratory
		Manufacturing: John Gahl,			
		University of Missouri		1	

							
	E 20 DM						
	5:30 PM						
	Poster Session						
SKAPHIA: Presentation of the	e Latest Shielded Electron Probe Pietrucha, CAMECA Inc.	Micro Analysis (EPMA): Matt					
ACTINIS: Shielded SIMS for Analysis of Highly Radioactive Samples: Matt Pietrucha, CAMECA Instruments Inc.							
Atom Probe Tomography for N	Atom Probe Tomography for Nuclear Materials: Matthew Pietrucha, Cameca Instruments, Inc.						
- · ·	Design of a Test System for Hot Hydrogen-facing Components in Nuclear Thermal Propulsion Systems: William Searight, Pennsylvania State University						
	Developing Neural Network Model for Automated Analysis of Radiation-induced Grain Growth in UO2: Xinyuan Xu, Pennsylvania State University						
Atomistic Calculations on the Effective Bias of Cavities in BCC Fe: Yuhao Wang, University of Michigan - Ann Arbor							
Quantifying the Impact of an Electronic Drag Force on Defect Production from High-Energy Displacement Cascades in \\945-zirconium: Jose March-Rico, University of Tennessee, Knoxville							
Evaluation of Water Degradation in Medium Voltage Electric Cables Found in Nuclear Power							
Plants: Margaret Elmer-Dixon, University of Minnesota Duluth							
Quantification of the Resistance to Dislocation Glide in Pre-deformed and Ion-irradiated FeCrAl Alloys Using in Situ Micro-mechanical Testing: Jian Wang, University of Nebraska-Lincoln							

Cold Spray for Repair of	Molten Salt Thermal Properties	Mechanical T
Nuclear Power Plant	Database-Thermochemical	Cladding Tub
Components: Mike Ickes,	(MSTDB-TC) Status and New	Eftink, Los Ala
Westinghouse Electric	Assessment of MF-	Labor
Company	UF ₄ (M = Li, Na,	
	K, Cs) Systems: Johnathon Ard,	
	Johnathon Ard	
Metal and Amorphous Ceramic		Accessing High
Composites for Extreme		Microstruc
Conditions: Jian Wang,		Combined lor
University of Nebraska-Lincoln		Irradiation of a
		Steel: Zhijie Jia
		Mich
	1	

sting of Fuel	Discerning the Effects of Solute	Grain Growth Kinetic Models	Plutonium Defect		
es: Benjamin	Additions in FeCrAl on	for Accident Tolerant Oxide	Characterization through		
nos National	Dislocation Dynamics under	Fuel: Tashiema Ulrich, Los	Mechanical Deformation: C.A.		
atory	Irradiation Using a Machine	Alamos National Laboratory	Yablinsky, Los Alamos National		
	Learning Object Detection		Laboratory		
	Algorithm: Priyam Patki,				
	University of Michigan				
Damage Level					
ures Using					
and Neutron					
304L Stainless					
, University of					
gan					
	6:00 PM				
	Conference Banquet				
	What's Driving the Acceleration of Nuclear Materials Technology?: Rita Baranwal, EPRI				