 COURSE MODULES

MODULE 1: How to Design and Implement Robust Verification and Validation Practices
This module will instruct attendees on why V&V is critical for computational modeling of materials and structures and how to design and implement V&V practices.

MODULE 2: Code and Solution Verification
This module will instruct attendees on how to carry out code and solution verification.

MODULE 3: Computational Uncertainty Quantification
This module will cover the quantification of uncertainty in computational models.

MODULE 4: Quantifying Experimental Uncertainties for Validation Assessments
This module will cover the quantification of uncertainty in experimental data.

MODULE 5: Designing Validation Experiments: Combining Modeler and Experimentalist Perspectives
This module will present a discussion of the preliminary calculations and design of validation experiments aspects of the Verification & Validation in Computational Modeling of Materials and Structures study.

MODULE 6: Regulatory Agency Perspectives, Examples and Lessons Learned
This module will give the perspective of the importance and utility of VVUQ and provide examples in certain commercial sectors from the point of view of different regulatory agencies.

 COURSE INSTRUCTORS

LEAD INSTRUCTORS
(Pictured Left to Right)

• Jacob Hochhalter, University of Utah
• David Moorcroft, Federal Aviation Administration
• Aaron Tallman, Florida International University
• Michael Tonks, University of Florida
• Brandon M. Wilson, Los Alamos National Laboratory

ADDITIONAL INSTRUCTORS
(Pictured Left to Right)

• Kenneth Aycock, US Food and Drug Administration
• Zachary Harris, University of Virginia
• Joshua Kaizer, U.S. Nuclear Regulatory Commission

Register now and learn more about the curriculum and instructors at: www.tms.org/VVUQ2024