Manufacturing and uncertainty

Tony Schmitz, Professor, FSME Mechanical Engineering and Engineering Science University of North Carolina Charlotte Charlotte, NC

Goal

Select processing parameters to achieve the desired outcome for the manufactured product (properties, dimensions, function...)

Obstacles

- Requires input-output relationship between parameters and outcome
- Inputs are not perfectly known
- Input-output relationship includes approximations and omissions
- Outputs cannot be perfectly measured [1, 2]

Situation

- Establish input-output model (materials science, physics, chemistry...)
- Predict output(s) given input(s)
- Incorporate uncertainty

Consider machining as an example manufacturing operation.

- 1. ISO, 1993, Guide to the Expression of Uncertainty in Measurement, International Organization for Standardization, Geneva, Switzerland
- 2. Barry N. Taylor and Chris E. Kuyatt, 2001, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, http://physics.nist.gov/TN1297, National Institute of Standards and Technology, Gaithersburg, MD.

Machining background

Machining background

feedback

Regeneration is a primary mechanism for chatter

• force depends on chip thickness

 chip thickness depends on current vibration and previous pass

• current vibration depends on force

Chip thickness is nearly constant – small force variation \rightarrow stable

Chatter – self-excited vibration that occurs in machining (large forces, poor finish)

Machining background

Stable and unstable (chatter) milling examples

Stable:

Forced vibration Repeats with each tooth passage Tooth passing frequency and multiples

<u>Chatter:</u> Self-excited vibration Does not repeat each tooth passage Natural frequency of structure

Forced vibration during stable cutting can lead to **surface location error**

- vibration state of tool when leaving surface defines location
- magnitude and phase of vibration is frequency dependent (tooth passing frequency or spindle speed).

System dynamics are described by a set of **second order time-delay differential equations**.

$$m_x \ddot{x}(t) + c_x \dot{x}(t) + k_x x(t) = F_x(t)$$

$$m_y \ddot{y}(t) + c_y \dot{y}(t) + k_y y(t) = F_y(t)$$
Include time-

Include x and y time-delay terms.

Describe tool/workpiece mass, damping, and stiffness in x/y directions.

Closed-form solution for set of delay differential equations is not available. Solution techniques include:

- analytical approximate solution used to determine stability limit as a function of operating parameters (spindle speed, axial depth of cut)
- numerical time domain simulation.

Solve set of second order time-delay differential equations using numerical integration.

Simulation steps

$$s = \frac{2\pi}{N_t \cdot d\phi}$$

$$h(i) = x(i-1) \sin \phi(i) - y(i-1) \cos \phi(i)$$

$$h(i) = f_t \sin \phi(i) + n(i-S) - n(i)$$

$$F_t = k_{tc}bh(i) + k_{te}b$$

$$F_n = k_{nc}bh(i) + k_{ne}b$$

$$x = \frac{1}{N_t \cdot d\phi}$$

$$d\phi$$

$$F_x(i) = F_t \cos \phi(i) + F_n \sin \phi(i)$$

$$F_y(i) = F_t \sin \phi(i) - F_n \cos \phi(i)$$

$$\ddot{x}(i) = \frac{F_x(i) - c_x \dot{x}(i-1) - k_x x(i-1)}{m_x}$$

$$\ddot{y}(i) = \frac{F_y(i) - c_y \dot{y}(i-1) - k_y y(i-1)}{m_y}$$

$$\dot{x}(i) = \dot{x}(i-1) + \ddot{x}(i) \cdot dt$$

$$\dot{y}(i) = \dot{y}(i-1) + \ddot{y}(i) \cdot dt$$

$$x(i) = x(i-1) + \dot{x}(i) \cdot dt$$

$$y(i) = y(i-1) + \dot{y}(i) \cdot dt$$

- Cutting conditions: spindle speed, radial/axial depth, feed per tooth, cutting force Simulation coefficients. inputs
 - Tool geometry: number of teeth, diameter, helix angle.
 - Tool point modal parameters: m, c, k in the x and y directions.

10

For dynamic systems, a *bifurcation is a dramatic change in the system state, or behavior*.

Milling exhibits various bifurcation (instability) types.

- A powerful interrogation tool for milling dynamics is **periodic sampling at the tooth period**.
- This sampling establishes the synchronicity of the motion (response) with the cutting force (excitation).
- For stable cutting conditions, only forced vibration is present and the sampled point repeats for each tooth passage (stable).
- For unstable cutting, on the other hand, the repetition of a single point is not observed and the character of the sampled points identifies the type of instability (chatter): secondary **Hopf** or period-n **bifurcations**.

<u>Example</u>

- 5% radial immersion up milling
- 30000 rpm spindle speed
- 721 Hz natural frequency, 0.009 damping ratio, and 4.1×10⁵ N/m stiffness
- cutter has one tooth, a 45 deg helix angle, and an 8 mm diameter
- aluminum alloy cutting force coefficients are: k_{tc} = 604×10⁶ N/m² and k_{nc} = 223×10⁶ N/m² (zero edge coefficients)

Bifurcation prediction

Period-2 bifurcation – once-per-tooth sampled points repeat at two distinct locations (special type of instability or chatter).

Bifurcation prediction

Secondary Hopf bifurcation – once-per-tooth sampled points do not repeat.

Chatter frequency is near the system natural frequency. This incommensurate frequency yields an **elliptical distribution** of points in the Poincaré map.

Experimental setup for stability and SLE

Flexure dynamics

- Stiffness: 1.75×10⁶ N/m
- Damping ratio: 1.36%
- Natural frequency: 125.8 Hz

Tool dynamics

- Stiffness: 4.24×10⁷ N/m
- Damping ratio: 9.5%
- Natural frequency: 1188 Hz

- Initial ribs machined on flexure (9.82 mm wide).
- Final pass completed with 2 mm radial depth of cut, 5 mm axial depth of cut.
- Spindle speed was varied.
- 0.35 mm/tooth
- Up milling
- Single carbide insert cutter
- 6061-T6 aluminum workpiece
- Surface location error (SLE) was measured.

SLE = commanded width – actual width

		100	I	I	I	
Spindle speed		50 _				_
(rpm)	Behavior	(()		T		
3180	Period-2	dx/dt (mm/s)				-
3190	Period-2	کې -50 -				_
3200	Period-2					
3210	Period-2	-100 -200	-100	0	100	200
3270	Stable	100		x ($\mu^{m)}$		
3300	Stable			I	I	
3330	Stable	50 _				_
3360	Stable	dx/dt (mm/s)				_
3400	Stable	•				
3500	Stable	-50 _		-		-
3600	Stable	-100 -200	-100	0	100	200

x (μ^{m})

		100	1	1	1	
Spindle speed		50 _				-
(rpm)	Behavior	8				
3180	Period-2	dx/dt (mm/s)				_
3190	Period-2	් -50 _				_
3200	Period-2					
3210	Period-2	-100 -200	-100	0	100	200
3270	Stable	100		x (µm)		
3300	Stable			·	·	
3330	Stable	50 _				-
3360	Stable	dx/dt (mm/s)				-
3400	Stable	•				
3500	Stable	-50 _				-
3600	Stable	-100 -200	-100	0	100	200
		200	100	0	100	200

x ($\mu^{m)}$

		100		1	
				\frown	_
Spindle speed		50 _			
(rpm)	Behavior	(s			
3180	Period-2	dx/dt (mm/s)	ø		
3190	Period-2	× +50 _			
3200	Period-2				
3210	Period-2	-100 -200	-100	0	100
3270	Stable	100		x (μ^{m})	
3300	Stable				
3330	Stable	50 _			
3360	Stable	dx/dt (mm/s)			
3400	Stable	-			
3500	Stable	-50 _			
3600	Stable	-100 -200	-100	0	100
		-200	-100	0	100

200

200

x ($\mu^{m)}$

- Parts were measured on CMM and SLE was calculated.
- Experimental results compared to prediction.

Opportunities

Similar opportunities available for other manufacturing operations.

Requirements:

- Process knowledge to define first-principles models (or AI?)
- Materials modeling to relate alloy composition to process behavior
- Experimental capabilities to validate models
- Propagation of input uncertainty to output uncertainty (numerical or analytical)
- Parameter selection under uncertainty (optimization)

Thank you.

Tony Schmitz Email: tony.schmitz@uncc.edu Phone: (704) 687-5086

This material is based on work supported by the National Science Foundation under Grant No. CMMI-1561221.